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摘摘摘要要要

網路控制系統(NCS)改進了傳統的點對點連接方式，提供了安裝、使用以及擴展方面

的便利性。許多研究著重在網路訊號延遲和資料遺失這兩個主題上。本論文提出了一

個針對PI網路控制器、以系統頻寬為目標的參數自動調整方法。經由控制器參數的重

新調整，可以在控制帶有變動因素的平臺時達到特定的系統頻寬要求，並且能夠降低

因網路延遲時間變化產生的系統穩定性劣化程度。因為PI控制器在網路控制上有其極

限，本論文提出了一個採用H∞演算法的網路控制器設計流程，並且演示於一經系統辨

別而得的伺服控制系統模型上。在閉迴路的控制架構之外，額外加上了一個前饋式補

償器，以符合對於系統頻寬及延遲容忍度雙方面的要求。在資料經網路傳送後遺失的

情況發生時，本論文提出了以估測的方式重建訊息使系統得以維持正常運作，追跡效

能也不至於過度劣化。在控制器下命令至驅動器的路徑上，使用了對過往命令作多項

式近似的MFLSF訊息估測器；在感測器回傳系統動態資料至控制器的路徑上，則使用

了建立在系統模型上的MBLSF訊息估測器。在以馬可夫鏈為網路模型的前提之下，探

討了這兩類型的訊息估測器，並在不同網路情境下討論其可用性與追跡效能。
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ABSTRACT

Networked control systems (NCSs) offer advantages over the traditional point-to-point

connections and has been studied mainly in the network-induced delay and the package

dropout. Many theoretical approaches has been proposed to handle this two problems with

various algorithms. In this thesis, a general PI controller auto-tuning method based on the

optimization process is proposed. The specified system bandwidth can be achieved after

the tuning process without knowing the exact plant model applied to NCS. To handle the

network delay, actual procedures for H∞ controller design for NCSs is presented under

the mixed synthesis framework. The control structure with a forward compensator is

used to meet specifications in both delay tolerance and bandwidth. For compensating

network dropout in controller-to-actuator and sensor-to-controller paths, both the model-

free least square fit (MFLSF) estimator and the model-based least square fit estimator

(MBLSF) are used to improve the tracking performance, respectively, and stability criteria

of both MFLSF and MBLSF estimators are provided with the Markov chain model. By

switching MFLSF estimators according to the current identified network status, total

tracking performances can be thus significantly improved.
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Chapter 1 Introduction

1.1 Motivation

Recently, the use of network technology has dramatically increased. Control systems with

network communication between loop paths are called networked control systems (NCS).

The NCS structure offers advantages over the traditional point-to-point connections since

it reduces wiring cost, increases configuration flexibility, and is generally simple in instal-

lation and maintenance. However, new problems and challenges arise [1,2]. Therefore,

more and more researches focus on this area and different topics such as network-induced

delay and package dropout have been analyzed to motivate this study.

1.2 General Review

The PI controllers are widely used in different types of real applications, including NCS

control. Methods for tuning the PI control parameters are studied widely. A PI controller

auto-tuning method based on the desired gain-margin and the phase-margin is proposed

in [3] with the assumption that plant is limited to first or second order plus a dead-time to

obtain approximated solutions. An analytical solution for PID control parameters based

on exact plant frequency responses is provided in [4] and it leads to a difficult condition

to be satisfied in real situations. Tuning procedures with complex algorithms, such as the

neural network [5] or the genetic algorithm [6], need too much calculating time and are

unsuitable to be realized on a simple DSP micro-processor. A DSP-based auto-tuning

algorithm is realized in [7] using the gradient method, but with the time-domain indices

like the maximum overshoot or the rise time, which are easily affected by sensor noises or

system oscillations.

Discussions for NCS design with both the network delay and the package dropout

are presented in [8,9], mainly with model-based design methods. Also, the estimator is

realized with an observer with additional states, and state estimation convergence need

to be considered. Nikolai Vatanski et al. proposed an approach with Smith predictor [10],

1



and they point out some main drawbacks such as sensitivity to model mismatch, and it

needs to be solved by applying adaptive procedures. Many researches also focus on NCS

with H∞ theorem [11–13], but few of them can be directly realized.

An FIR type estimator is proposed in [14] with model-based receding horizon state

estimation and its stability criteria. For motion command estimation, there is no suitable

pre-defined model and a model-free estimation technique such as the Taylor estimation or

the least square estimation [15] are commonly applied. However, the stochastic nature of

the network is usually not included in these estimators. The stochastic model for network

is often used in stability analysis [16] with different criteria, but its restraints limits its

application in NCS.

In [17] and [18], NCSs with servo motors and networks like CAN or Ethernet are

concerned. All experiments and identified plants in this thesis are based upon them.

1.3 Problem Statement

1. Normally, remote controllers are designed separately by experts. When the network

is involved, system responses are thus changed and controllers need to be re-tuned.

Therefore, a simple yet efficient auto-tuning algorithm for NCS controllers that can

be implemented with a DSP micro-controller is thus needed.

2. In a networked control system, data transmission between the controller and the

plant acts like a time delay which is the key issue to be concerned in NCS. The

delay effect on system performance is different in different NCSs, and all of them

need to be considered in the controller design.

3. Network dropout occurs when packages collide or they arrive too slow in which it

is considered outdated. When dropout happens, network transmission fails to pass

data to the actuator input in the forward path or the controller input in the feedback

path, the missing messages must be estimated to keep system working in a normal

condition.
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1.4 Proposed Approaches

1. A control parameters optimization algorithm is proposed with the frequency re-

sponse measurement. A test signal is fed into system to excite responses in partic-

ular frequency bands and the measured magnitude responses are used in objective

function during optimization procedures to render a desirable system bandwidth. It

is assumed here that the network situation is with constant delay time.

2. In NCS controller design, the induced time delay is included with other specifi-

cations. Controller design with multiple performance requirements can be solved

by applying the H∞ algorithm. Each requirement is transformed into a weighting

function and an overall synthesis is performed in mixed sensitivity framework. By

adjusting weighting functions, a controller that fits all requirements can be thus

found. It is assumed here that the network situation is with the maximum delay

time.

3. The Markov chain theorem is used to model network transmission dropout behavior.

When dropout happens, two least square estimators with and without the model

are proposed to estimate missing network packages in both the feedback path and

the forward path, respectively. Under the Markov network model, stability criteria

for message estimators are provided.

1.5 Organization of the Thesis

The rest of this thesis is organized as follows: Chapter 2 proposed a PI controller auto-

tuning technique for NCS; Chapter 3 describes how H∞ algorithm is applied to NCS con-

troller design with a forward compensator. In Chapter 4, analysis of the network dropout

estimators are provided to verify the stability of NCS. Finally, Chapter 5 concludes this

thesis.
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Chapter 2 Controller Auto-Tuning in the

Frequency Domain

2.1 Estimation of the Frequency Responses

In the tuning procedure of the PI control parameters, suitable indices must be determined

to properly express system performance. Generally, there are two types of indices in either

the time domain or the frequency domain. Because the time domain indices, such as the

rise time, the maximum overshoot and the settle time, are easily affected by system steady-

state oscillations and sensor noises in real applications, frequency-domain performance

indices are used in this proposed approach.

A frequency response contains the magnitude and the phase parts, that is,

P (jω) = |P (jω)|∠P (jω) (2.1)

for a plant P (s) at a certain frequency ω. A frequently used index is the bandwidth ωb

that

|P (jωb)| =
1√
2

(2.2)

and the phase margin φ at the gain-cross frequency ωφ that

φ = π − ∠P (jωφ) (2.3)

where |P (jωφ)| = 1. The bandwidth is an index that represents how fast a system

can respond, and is measured from magnitude response. The phase margin is an index

to represent how stable a system is, and is measured from both magnitude and phase

responses. Therefore, the bandwidth is adopted as an index in the tuning procedure

because it is easy to measure. An alternative index for the phase margin is the closed-

loop phase responses at the bandwidth frequency ωb.

The discrete Fourier transform (DFT) is often adopted in the frequency response for

analysis and design. However, it is not easy for a DSP micro-processor to perform this

operation without particular hardware modules or a high precision sine table to calculate

4



Table 2.1: Estimated magnitude and phase estimation in Fig. 2.2 with 100 trials.

M avg. M̂ variance

M 0.707 0.7065 0.0308

P 150◦ 149.08◦ 2.817◦

the inverse tangent function. Thus, the frequency response is obtained from the time-

domain here. To estimate the frequency response at a certain frequency ωf , the desirable

bandwidth, a test signal with frequency ωf is fed into the system to excite transient

responses. In practice, notch filters are applied to filter out specified signals other then

ωf . By comparing the input and output signals in the time domain, the frequency response

of the system can be thus estimated, as shown in Fig. 2.1. Algorithm 2.1 shows how the

auto estimator works in detail.

An example is shown in Fig. 2.2 with the original signals shown in the upper part

and the filtered signals shown in the lower part. In the simulation, the sampling rate is

7.5(kHz) and the input signal is with frequency ωf = 200(Hz). The input signal is with

amplitude 1, a random noise with uniform distribution between ±1 and a resonance signal

at 60(Hz) is added also with amplitude 1. A output signal is with amplitude 0.707, a phase

shift 150◦, a random noise with uniform distribution between ±0.7, and a resonance signal

at 60(Hz) with amplitude 0.7. The estimation result in the frequency domain for Fig. 2.2

are M̂ = 0.697 and P̂ = 146.41◦. Average estimation results for 100 trials are listed in

Table 2.1, in which sufficient accuracy can be achieved.

2.2 Optimization for Control Parameters

When the plant model changes, a re-design procedure for the controller is needed or

the system stability is not guaranteed. Therefore, a controller auto-tuning algorithm is

required to reduce manual controller adjustment while facing a changeable plant. This

can be done by considering control parameters auto-tuning as an optimization problem,

as shown in Fig. 2.3.

A typical constrained optimization problem is formed by the objective function f , a
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Figure 2.1: An illustration for frequency response auto estimation from both the input

and the output signals.

Figure 2.2: The I/O signals before and after applying the notch filter.
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Algorithm 2.1 The frequency response estimation at ωf by comparing sine waves.

1. A test signal with frequency ωf is fed into system with two signals as input a and

output b, and both signals are passed through notch filters N where

N(z−1) =
g − 2g cos(2πωf )z

−1 + gz−2

1− 2g cos(2πωf )z−1 + (2g − 1)z−2
(2.4)

with parameters

g =
1

1 + β
, BW =

2πωf
Q

, β =

√
1− σ2

σ
tan

BW

2
. (2.5)

with the width factor Q and the notch gain β.

2. For signal a, measure the positive peak value p+
a (k) and zero-crossing ta(k) instance

in the kth period.

3. Perform the same operations on signal b.

4. The magnitude response M̂ from a to b is estimated from calculating

M̂ =

∑
i

p+
b (i)∑

i

p+
a (i)

. (2.6)

5. The phase response P̂ from a to b is estimated from calculating

P̂ =

∑
i

(ta(i)− tb(i))
1
2

∑
i

(ta(i+ 1)− ta(i) + tb(i+ 1)− tb(i))
. (2.7)
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Figure 2.3: An illustration for PI control parameters auto-tuning process at frequency ωf .

set of variable x, and the constraints S for x, and is stated as

min f(x) s.t. x ∈ S. (2.8)

In this case of auto-tuning, control parameters are assigned to x, that is, for a PI controller,

x =
[
Kp Ki

]T
. (2.9)

The objective function f is defined from the closed-loop system frequency responses.

When a frequency response estimation at ωf mentioned in the previous section is per-

formed, the closed-loop magnitude responseM and the phase response P can be acquired

and are treated as the system performance indices. The objective function f is defined as

f =

∣∣∣∣∣∣
 M −M0

P − P0

∣∣∣∣∣∣
2

(2.10)

whereM0 and P0 are the objective closed-loop magnitude and phase response, respectively,

and is a minimizer for f . Generally, M0 is set to be -3dB so that after the optimization

process converges, the system would have bandwidth ωf . Note that the closed-loop fre-

quency response is determined by control parameters x, therefore, M and P are also

functions of x. A descent direction for f can be found by calculating the gradient value

that

∇f = 2∆F
[

∆M ∆P
]T

(2.11)

where

∆M = M −M0, ∆P = P − P0, ∆F =

 ∂M
∂Kp

∂P
∂Kp

∂M
∂Ki

∂P
∂Ki

 (2.12)

8



and x is updated as

x(k + 1) = x(k)− c∇f(k) (2.13)

in each searching iteration with the step size c. Note that the initial condition x(0) must

stabilize the plant. The partial derivatives are approximated from the frequency responses

variation near some specified work points. The constraints S for x are

0 < Kp < maxKp, 0 < Ki < maxKi (2.14)

such that each x(k) must stabilize the plant. If x(k + 1) exceed S, the invalid control

parameter will be reset into its range, e.g., for variable Ki,

Ki(k)− 2c(
∂M

∂Ki

∆M +
∂P

∂Ki

∆P ) < 0 → Ki(k + 1) = 0, (2.15)

Ki(k)− 2c(
∂M

∂Ki

∆M +
∂P

∂Ki

∆P ) > maxKi → Ki(k + 1) = maxKi.

This is a so called two-degree-of-freedom PI tuning algorithm.

2.3 Simulation

Consider an identified model [18] that

P (z−1) = 0.003864
1 + z−1

1− 0.9989z−1
(2.16)

and a PI controller Kpi

Kpi = Kp +Ki
1

1− z−1
(2.17)

with the sampling time h = 0.133(ms). The initial control parameters are

Kp = 3, Ki = 0.1.

The frequency responses estimation is performed by using a MATLAB function ’freqresp’

with additional uncorrelated noises applied to both the magnitude and the phase responses

with uniform distribution in [-0.05,0.05]. By observing the effects on M and P due to the

variation of x, an approximation of the partial derivatives matrix ∆F can be found that

∆F =

 0.0903 0.1238

0.03758 −0.05258

 . (2.18)
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Figure 2.4: Step responses for PI controller auto-tuning with ωf = 50(Hz) at the kth
iteration. (Bold: turning result at k = 100.)

The desired frequency response is with

M0 =
1√
2
, P0 = −50◦,

and a smaller P0 results in larger overshoot. The initial step size c is 10 and it decreases as

f decreases. The step responses before and after PI control parameters optimization tuned

at ωf = 50(Hz) is shown in Fig. 2.4. The system step response with the tuned PI controller

has nearly the same rise time but the maximum overshoot decreases from 32% to 5%.

Step responses for systems tuned in different ωf are also shown in Fig. 2.5, with similar

transient responses and 5% the maximum overshoots. The tuned control parameters are

listed in Table 2.2. Fig. 2.6 shows how control parameters and the frequency responses

change during the optimization process. It can be found that ∆M and ∆P converge

to zero after about 20 iterations, and also the proportional gain Kp. There are some

variations in the trajectory of Ki caused by noises in the frequency responses estimation,

but noise does not effect its estimation convergency.
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Figure 2.5: Step responses for systems with the tuned PI controllers at ωf = 50, 100, 200,

and 400(Hz), respectively.

Table 2.2: Simulation results for PI auto-tuning with initial Kp = 3 and Ki = 0.1.

ωf (Hz) 50 100 200 400

tuned Kp 4.937 9.856 18.938 38.030

tuned Ki 0.023 0.065 0.296 1.220
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Figure 2.6: The transient values of ∆M , ∆P , Kp, and Ki during each iteration with

ωf = 100(Hz).

2.4 Experiments

2.4.1 System Setup

Consider a servo motor system based on a TI TMS320F2812 DSP micro-controller [18],

as shown in Fig. 2.7. Its block diagram is shown in Fig. 2.8, which contains multi-loop

control structure such as the current loop, the velocity loop and the position loop. A PI

controller auto-tuner as shown in Fig. 2.3 for the velocity-loop plant is implemented. The

test signal adopted in the frequency responses estimation is a square wave signal, because

it is easier to generate and is more steady in the network environment. Coefficients for

the notch filter are chosen that σ = 1√
2
and Q = 4. The input signal signal is a 300(rpm)

speed command with a ±30(rpm) square wave at a specified frequency about 200(Hz)

and the output signal is the speed response of the closed-loop system. Both signals before

and after applying the notch filter shown in Fig. (2.9). Relationships between M , P

and different values of Kp and Ki measured at ωf = 100(Hz) are shown in Fig. 2.10(a)

with Kp ∈ [0.5, 5] and Ki = 1.5 and 2.10(b) with Kp = 2.5 and Ki ∈ [0, 3]. By using a
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Figure 2.7: Picture of the servo motor system.

Figure 2.8: Block diagram of the servo motor system.
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Figure 2.9: The I/O signals before and after applying the notch filter.

(a) (b)

Figure 2.10: The effects on M and P from different (a)Kp and (b)Ki.

second-order polynomial approach, a numerical model for the partial derivatives can be

found that

∆F =

 −0.0596Kp+ 0.3258 0.0166Kp− 0.1064

0.166Ki+ 0.2750 −0.0306Ki+ 0.0773

 . (2.19)

The optimization process is performed with the update algorithm in Eq. (2.13).
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Table 2.3: PI controller parameters auto-tuning results for different initial x.

ωf (Hz) Kp(0) tuned Kp Ki(0) tuned Ki

(a) M < M0 200 3 2.037 3 9.089

(b) M > M0 200 5 2.08 5 9.17

(c) M < M0, loaded 100 2 3.96 2 12.521

(d) M < M0 500 1 5.70 1 31.14

(e) M < M0, repeated 500 1 5.70 1 31.42

2.4.2 Results

Because the main idea of this experiment is to verify the usability of the proposed control

parameters optimization procedure, the property of convergence and repeatability are

the most concerned. The optimization is performed at different target frequencies ωf =

100, 200, and 500(Hz). The optimization process with startingM < M0 andM > M0 are

shown in Fig. 2.11 and 2.12 with parameters listed in Table 2.3(a) and 2.3(b), respectively.

Both of them converge to specifiedM0 and P0 with similar control parameters Kp and Ki.

A converging rate test with different step size c is shown in Fig. 2.13. It shows that the

optimization process converges faster with a larger c, but it also leads to larger oscillation

of tuned control parameters. Too large step size will lead to divergence of the optimization

process. A test with servo system with 5 times load of inertia and ωf = 100(Hz) is shown

in Fig. 2.14 with parameters in Table 2.3(c). Although actual plant model is changed,

the optimization process still converges. A test for the repeatability is shown in Fig. 2.15

with the initial M < M0 at a relatively high frequency ωf = 500(Hz) and the process is

repeated again, as shown in Fig. 2.16. Their tuning results are shown in Table 2.3(d) and

(e), respectively, and are with similar control parameters. From the experiment results,

the proposed optimization procedure presents reliable repeatability and convergency.

2.5 Auto-Tuning for the Network Delay

When the network induced delay occurs, the phase margin of the system decreases and the

system stability degrades. The PI control parameters optimization process can be then
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Figure 2.11: Optimization starts with M < M0 at ωf = 200(Hz).

Figure 2.12: Optimization starts with M > M0 at ωf = 200(Hz).
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Figure 2.13: Optimization starts withM < M0 with different step size c = 0.0625, c = 0.5

and c = 4 at ωf = 200(Hz).

Figure 2.14: Optimization starts with M < M0 and with 5 times extra loading at ωf =

100(Hz).
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Figure 2.15: Optimization starts with M < M0 at ωf = 500(Hz).

Figure 2.16: Optimization starts with M < M0 at ωf = 500(Hz), repeated.
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applied to re-tune the NCS controller under the assumption of a constant network delay.

Fig. 2.17 shows the step responses before and after auto-tuning for system in (2.16) with

different network induced delay time z−τ at ωf =100(Hz). The original PI controller is

tuned without the network delay as shown in Fig. 2.4 with τ = 0, and clearly the network

delay degrades the system performance. Therefore, the re-tuned controllers lead to better

performances with the smaller maximum overshoots, and their control parameters are

listed in Table 2.4. When the delay time τ is small, the optimization process works

as well. For longer delay time, however, the integral gain Ki drops to zero during the

optimization process, and there are steady-state errors in the closed-loop step responses.

The reason is that for a typical PI controller Kpi, the phase response is

∠Kpi =

−90◦, as ω → 0,

0◦, as ω →∞
(2.20)

and it will decrease the value of open-loop phase responses in nearly all frequency. There-

fore, the effects of the integral gain Ki actually decreases the phase margin, and make

the system more unstable under the networked situation. Its benefit for eliminating the

steady-state error is not considered in the objective function f in Eq. (2.10). The system

controlled with only the P controller is more stable than the original PI controller, and

the steady-state error problem could be solved by applying a forward gain with value of

1.0142. It should be noted that when the delay time τ is too large, e.g., τ = 20 as shown

in Fig. 2.18, the minimal value of the objection function f will not be zero. The tuned

PI control parameters are

Kp = 4.972, Ki = 0

and their trajectory are shown in Fig. 2.19, with the final values that

∆M = 0.576, ∆P = −24.23◦

and f = 0.512.

2.6 Summary

In this chapter, the following results can be summarized as:
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Figure 2.17: Step responses after auto-tuning at ωf = 100(Hz) for different delay time

z−τ with τ =1, 2, 4, and 8. The sampling time h = 0.133(ms).

Table 2.4: Results of control parameters auto-tuning with extra delay z−τ at ωf =100(Hz).

\τ 0 1 2 4 8

tuned Kp 9.880 9.963 10.174 10.476 10.332

tuned Ki 0.0809 0.0112 0 0 0

DC gain 1 1 0.986 0.986 0.986
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Figure 2.18: Step responses before and after auto-tuning at ωf = 50(Hz) for the system

with z−20.
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1. An algorithm for the frequency responses estimation in the time-domain is pro-

posed. This method can be easily implemented in a DSP micro-processor and is

with sufficient accuracy for further optimization process.

2. A general PI control parameters optimization procedure is described and is verified

in both simulation and experiment to prove its usability and repeatability. With

this algorithm, the control performance in bandwidth can be maintained with model

variation caused by the network.
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Chapter 3 H∞ Design for the Network

Delay Systems

3.1 Theoretical Structure

A general framework for H∞ design is the linear fractional transformation (LFT), as

shown in Fig. 3.1. Define the following notations as

w : external input, such as
[
d n r

]T
y : controller input

z : weighted output

u : controller output

and denote Tab as the transfer function from a to b, then the following relationship holds: z

y

 =

 Tzw Tzu

Tyw Tyu

 w

u

 (3.1)

One objective of the H∞ algorithm is to minimize the value of ‖Tzw‖∞ where

‖Tzw‖∞ = sup max
ω

σ(Tzw(ω)), ω ∈ R. (3.2)

Let ‖w‖22 and ‖z‖22 represent energies of input and output signal, respectively, then

‖z‖22 ≤ ‖Tzw‖∞ ‖w‖
2
2 . (3.3)

P(s)

uK(s)

wz

y

Figure 3.1: General linear fractional transformation(LFT) framework.
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Figure 3.2: Mixed synthesis framework for H∞ design.

It means that the maximum energy transfer ratio for the system is bounded, and an upper

bound γ is

‖Tzw‖∞ < γ. (3.4)

When γ is smaller, variations caused by the input w to the output z are smaller.

There are several general frameworks for H∞ NCS controller design, as discussed in

[11]. However, they are also too general that it is hard to apply time-domain or frequency-

domain performance requirements to them. To achieve specified system performances,

weighting functions would be applied to LFT framework to shape frequency responses

within a particular frequency band. Rules for choosing weighting functions are different

because of various purposes. A frequently used structure is the mixed sensitivity design

framework [19], as shown in Fig. 3.2.

3.2 Weighting Functions

The design purpose in the mixed synthesis framework is to satisfy∥∥∥[ WsS WrR WtT
]∥∥∥
∞
< γ (3.5)

where S is the sensitivity function, R is the control sensitivity function, and T is the

complementary sensitivity function where

S =
1

1 +KP
, R =

K

1 +KP
, T =

KP

1 +KP
(3.6)
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with weighting functions Ws, Wr, and Wt, respectively. Because Eq. (3.5) is not for

explicit design purposes, a set of inequalities with similar effects are chosen to approach

it where

‖S‖∞ < ‖Ws‖−1
∞ , ‖R‖∞ < ‖Wr‖−1

∞ , ‖T‖∞ < ‖Wt‖−1
∞ (3.7)

The selection of weighting functions in Eq. (3.7) is to specify the shape of each sensitivity

function in the frequency domain. When a generated controller tends to satisfy Eq.

(3.7), the γ value in Eq. (3.5) will have smaller value. Generally, there are no straight

forward rules in mixed synthesis that can generate a perfect controller at the first try,

and weighting functions need to be adjusted to meet performance requirements if there

is needed. For each sensitivity function, the requirement is different, and its weighting

function is designed separately with a template function. Practically, some low-pass

or high-pass filters are applied to the template function to further shape its sensitivity

functions.

3.2.1 Template for Ws

A requirement for the sensitivity function S is to have lower magnitude response in low

frequency parts, which means the system is designed to be insensitive for external varia-

tions. It can be written as in the following statement that

‖S‖ is

< εs, when ω is small,

→ 1, when ω is large,

where εs is an arbitrarily small value. An usual template for Ws is

Ws =
s/Ms + ωs
s+ ωsεs

, (3.8)

as shown in Fig. 3.3. The value of ωs is selected for the low-pass frequency range, and

Ms is selected for proper peak value of S. The upper bound of sensitivity function is

determined by εs.
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Figure 3.3: Template for the weighting function Ws.

3.2.2 Template for Wr

A requirement for the control sensitivity function R is to reduce effects from the high-

frequency sensor noise n to the controller output u as the the noise rejection. A common

template function for Wr is expressed as

Wr =
s+ ωr/Mr

εrs+ ωr
(3.9)

where the value of ωr decides the range of working frequency, and Mr decides the upper

bound of magnitude response, as shown in Fig. 3.4.

3.2.3 Template for Wt

A template for the complementary sensitivity function T can be found from the small

gain theorem. When a system has a multiply uncertainty, for a nominal system P0, the

actual system acts like

P = P0(I + ∆P ), (3.10)

a criterion for the system to achieve internally stability is

∥∥P0K(I + P0K)−1
∥∥
∞ ‖∆P‖∞ ≡ ‖T‖∞ ‖∆P‖∞ < 1. (3.11)
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Figure 3.4: Template for the weighting function Wr.

Consider system uncertainty mainly in the network delay as

P = P0e
−jωθ (3.12)

where θ is the delay time. Therefore,

∆P (θ) =
P

P0

− 1 = e−jωθ − 1 (3.13)

Let ‖Wt‖∞ ≥ ‖∆P‖∞, and

‖T‖∞ < ‖Wt‖−1
∞ ≤ ‖∆P‖

−1
∞ , (3.14)

system stability is thus guaranteed. From Eq. (3.13),

lim
ω→0
‖∆P‖ → ωθ, max

(
lim
ω→∞

‖∆P‖
)

= 2. (3.15)

A first-order realization for Eq. (3.15) is

Wt(θ) =
2θs

θs+ 2
. (3.16)

From Eq. (3.16), it has the following property that

θ1 > θ2 → ‖Wt(θ1)‖ > ‖Wt(θ2)‖ (3.17)

as shown in Fig. 3.5. Therefore, when choosing θ for Wt, the maximum delay time θmax

is chosen that

Wt = Wt(θmax). (3.18)
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Figure 3.5: Frequency response for Wt and ∆P with θ = 10 and θ = 30.

3.3 H∞ NCS Design Procedures

3.3.1 Performance Target

A design flow for H∞ NCS controller is applied to a servo motor system [17] with an

identified plant P that

P (s) = V (s)× 1

s
=

180.1s+ 10000

s2 + 190s+ 1000
× 1

s
(3.19)

where V (s) is the build-in velocity-loop plant. The actuator generates output voltage

calculated from the controller output to the motor and the rotor position is fed back from

sensor. When the measurement of the rotor position is transmitted through network to

a remote controller, an equivalent delay is determined by network transmission. Before

H∞ controller is designed, since delay decreases the phase margin and causes instability,

a lead controller is used to restore phase margin. Let a lead controller be designed as

Klead = 6.442
s+ 7.7495

s+ 18.36244
(3.20)

that it satisfies system performance specifications listed in Table 3.1. An H∞ controller

is designed to further improve performance of the lead controller Klead by specifying
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performance specifications.

3.3.2 Design Weighting Functions

Specification of this example is provided in Table 3.1. From Eq. (3.8), since the larger

peak value of ‖S‖ easily causes ripples, the maximum value is set as Ms = 1. According

to the requirement that the bandwidth must be larger than 2.4(Hz), ωs is set to be 2.32

with εs = 10−6 so that the sensitivity function approaches zero at a low frequency. The

calculated Ws becomes

Ws =
s+ 2.32

s+ 2.32× 10−6
. (3.21)

According to the requirement of disturbance rejection and Eq. (3.9), let ωr = 72 and

assign εs an arbitrary small number with Mr = 1. Besides, a low-pass filter is cascaded to

template Wr because there is an integrator already in P (s). Thus, the weighting function

Wr becomes

Wr =
s+ 72

1e− 3s+ 72
× s/10 + 1

s+ 0.01
. (3.22)

From Eq. (3.16), let θmax = 0.6× 180
π

and

Wt =
2θmaxs

θmaxs+ 2

∣∣∣∣
θmax=0.6× 180

π

=
1.2× 180s

0.6× 180s+ 2π
. (3.23)

Gather the designed weighting functions and apply to MATLAB function ’mixsyn’ with

plant transfer function P , a H∞ controller is generated that

Khinf =
7.727e− 4s5 + 5564s4 + 3.332e6s3 + 6.39e5s2 + 6063s+ 0.06057

s6 + 781.9s5 + 1.238e5s4 + 8.632e6s3 + 3.994e6s2 + 3.916e4s+ 0.09083
(3.24)

with γ = 1.956. System performances are listed in Table 3.1. It can be found that the

system with the controller Khinf fits the bandwidth specification, but delay tolerance and

disturbance rejection requirements are unsatisfied. This means weighting functions need

to be further adjusted.

3.3.3 Adjust H∞ Algorithm Property

Generally when the stability of a NCS is considered, a control strategy is to maintain a

proper phase margin for the closed-loop system since the delay time may vary in a NCS.
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Table 3.1: Specification for system performances.

Klead desired Khinf
freq. crossover(rad/sec) 2.87 12.5

phase margin 101.3◦ 80.2◦

max Td(sec) 0.616 0.6 0.11

bandwidth(rad/sec) 2.39 >2.4 15.6

|KS(j100)|(dB) 16.28 <0 19.1

plantcontrol ler
r y

network

u+
-

forward
compensator

Figure 3.6: New NCS control structure with a forward compensator.

However, due to the fact that the phase lagged caused by network delay as

∠e−jωθ = −jωθ, (3.25)

the delay-induced phase lag increases as frequency increases. To maintain the same phase

margin, it needs a lead compensation in the higher frequency range. Controllers designed

by H∞ algorithm only considers magnitude response and it actually decreases open-loop

gain to maintain system stability. When open-loop gain within some frequency band

is lower than one, the input sinusoidal signals within this frequency band can tolerate

arbitrarily large network delay without causing system instability in closed-loop system

responses.

However, reducing open-loop gain slows system response and there is a trade-off

between delay tolerance and bandwidth, even with the H∞ algorithm. To conquer this

problem, a forward compensator is applied before system input node, as shown in Fig.

3.6. Therefore, H∞ algorithm is used to satisfy the delay tolerance requirement, and a

forward compensator is designed to improve system performance.

Firstly, adjust weighting functions to meet stability requirement. Let ωs = 0.1 and
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Figure 3.7: Sensitivity functions and weighting functions. (Solid: weighting functions;

dotted: sensitivity functions.)

θmax = 36.4, and a new controller is generated that

Khinf_mod =

∑
ais

i∑
bisi

(3.26)

with γ = 1.4527 and

ai =
[

0.0015 1.082e4 2.056e6 1.083e8 7.026e6 5.949e4 0.5942
]
,

bi =
[

1 299.6 3.409e6 1.747e6 3.37e7 6.505e7 8.373e5 0.08372
]
. (3.27)

System performance indices are listed in Table 3.2. It can be found that delay tolerance

is enlarged with the trade-off as a low bandwidth. Frequency responses for sensitivity and

weighting functions are shown in Fig. 3.7.

3.3.4 Order Reduction for the Controller

The order of controller designed by applying the H∞ algorithm equals to the summation

of orders of plant P and all weighting functions Ws, Wr and Wt, and is generally much
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Figure 3.8: Frequency responses before and after controller order reduction. (Solid: before

reduction; dotted: after reduction.)

higher than it requires. By observing magnitude in the frequency response, it can be

found that not all poles/zeros play major on control performance or system stability.

Therefore, other reduction methods can be also applied, such as pole-zero cancellation.

From the Bode plot of the controller, there are two pairs of nearby pole and zero in

high frequency(> 102(rad/sec)) and low frequency(< 10−4(rad/sec)) that they have no

significant effects on system performance and stability. Performing pole zero cancellation

to these two pairs of pole/zero can reduce the controller order without degrading system

responses. After pole-zero cancellation, a fourth-order controller is acquired

Khinf_loop =
104.9764(s+ 0.05495)(s2 + 190s+ 10000)

(s+ 40.84)(s+ 2.147)(s2 + 153.3s+ 7128)
(3.28)

The frequency responses for controller and after order reduction is shown in Fig. 3.8.

Their similarity within specified frequency bands can be found.
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Figure 3.9: Illustration for H∞ NCS controller design.

Table 3.2: Performance comparison.

desired without pre-filter with pre-filter

freq. crossover(rad/sec) 2.74 2.74

phase margin 121◦ 121◦

max Td(sec) 0.6 0.772 0.772

bandwidth(rad/sec) >2.4 0.07 6.42

|KS(j100)|(dB) <0 -1.6 -1.6

3.3.5 Forward Compensator Design

To enhance delay tolerance, the H∞ algorithm tents to lower open-loop gain and causes a

magnitude lack in the high frequency region, as shown in Fig. 3.9. It can be compensated

by a forward compensator. After H∞ controller order reduction, a forward compensator

is then designed that

Khinf_pre =

(
s/0.009561 + 1

s/0.01 + 1

)(
s/0.03578 + 1

s/0.05495 + 1

)
(3.29)

which is basically a high-pass filter with two pole-zero pairs as shown in Fig. 3.10, and aims

on compensating magnitude response lack within some frequency range. The maximum

gain value is 4.12(dB), and system performance with a forward compensator is listed in

Table 3.2.
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3.3.6 Simulation

Comparison in the system bandwidth for different controllers are shown in Fig. 3.11. It

can be found that the H∞ algorithm with modified weighting functions design enlarges

the bandwidth from 2.39(Hz) to 6.42(Hz) compared to the original lead controller design.

The rising time also decreases from 0.915(sec) to 0.338(sec).

The stability improvement can be observed by comparing transient responses under

different network delay conditions. Fig. 3.12 shows the system responses with different

controllers for a 1(Hz) input signal with varying network delay. With the delay time

Td = 0, both controllers have similar transient responses, but system controller by lead

controllers has smaller amplitude due to its smaller bandwidth. When a network delay

Td = 0.7(sec) is applied at t = 0.7, the delay tolerance of system controlled by applying

the lead controller is not held anymore and the system becomes unstable. (See Table

3.1). Meanwhile, although the tracking performance for H∞ control is thus degraded, the

system still remains stable.
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3.4 Summary

In this chapter, the following results can be summarized as:

1. The rules for designing template of weighting functions under the mixed synthesis

framework is described, and the steps for H∞ NCS controller designed is illustrated

with the identified plant from a servo motor system.

2. The control structure with a forward compensator is provided that it improves the

system performances while still keeping its stability. Simulations shows the H∞

design lead to larger delay tolerance and higher bandwidth.
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Chapter 4 Analysis of Message Estimation

for the Dropout

4.1 Markov Chain as Network Model

The network structure between the controller and the plant is shown in Fig. 4.1. The

plant with the actuator and the sensor is considered as a continuous linear system,

and a DSP micro-controller adopted as a network node with a sampling period h. Let

τk =
[
τ sck τ cak

]T
, and τ sck , τ cak be the kth term of sensor-to-controller delay time and

controller-to-actuator delay time, respectively. Suppose that the delay τk is determined,

a Markov state rk is then assigned and

rk ∈
{

1, · · · , s
}
. (4.1)

Denote Yk as a set that contains every previous Markov states and delay time, that is,

Yk =
{
τ0 ∼ τk, r0 ∼ rk

}
(4.2)

The property of a Markov chain for every measurable set F has the relationship that

P(τk ∈ F |Yk−1, rk) = P(τk ∈ F |rk) (4.3)

Eq. (4.3) means the probability that delay time τk appears can be derived directly from

current Markov state rk. Let Q = {qij} be the Markov transition matrix where

qij = P(rk+1 = j|rk = i), i, j ∈
{

1, · · · , s
}

(4.4)

actuator plant sensorcontrol ler
r y

h continuous

DSP
node

network

h

Figure 4.1: A NCS block diagram.
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Figure 4.2: A two-state Markov chain with transition probability q1 and q2.

and let πi(k) = P(rk = i) be the probability of each Markov state, and denote π(k) as the

Markov probability distribution vector that

π(k) =
[
π1(k) π2(k) · · · πs(k)

]
. (4.5)

A single step transition of Markov chain can be represented as

π(0) = π0

π(k + 1) = π(k)Q. (4.6)

A simple illustration of a two-state Markov chain is shown in Fig. 4.2.

When Markov chain model is used for network analysis, it is generally assumed to

be stationary and regular and the limit of probability distribution

π∞ = lim
k→∞

π(k) (4.7)

exists and is independent with π(0). After a long transition time and suppose π(k) is in

a steady state π∞, then

π∞Q = π∞, and
s∑
i=1

π∞i = 1, (4.8)

and π∞ can be derived uniquely from the equation above. For example, consider a two-

state Markov chain with state transition probability

P(rk = 1|rk−1 = 1) = q1 (4.9)

P(rk = 2|rk−1 = 2) = q2

or in a matrix form

Q =

 q1 1− q1
1− q2 q2

 . (4.10)

39



Generally, network is on when the first data received, so π0 =
[

1 0
]
. From Eq. (4.8),

π∞ can be derived by calculating the eigenvector e with eigenvalue λ = 1 of the matrix

QT − I. In this case,

e =
[

1 q1−1
q2−1

]T
with λ=1 (4.11)

and the steady-state probability distribution π∞ is

π∞ =
[

q2−1
q1+q2−2

q1−1
q2+q1−2

]
. (4.12)

4.2 System Stability with Markov Chain Network

Consider a discrete plant

xk+1 = Φxk + Γuk + vk

yk = Cxk + wk (4.13)

where x(t) ∈ Rn, yk ∈ Rp, and vk, wk are uncorrelated Gaussian noise with average 0 and

covariance matrices R1 and R2. A general form of controller Kc is

xck+1 = Φc(τk, rk)x
c
k + Γc(τk, rk)yk (4.14)

uk = Cc(τk, rk)x
c
k +Dc(τk, rk)yk

which is a time-varying system. If network delay occurs, Φc and Γc change with different

value of rk and τk, the Markov state and the delay time, separately. Combine Eq. (4.13)

and Eq. (4.14) into a new state space equation as

zk+1 = Φ̄zk + Γ̄ek (4.15)

where

zk =
[
xTk (xck)

T

]T
, ek =

[
vTk wTk

]T
, (4.16)

and

Φ̄ =

 Φ + ΓDcC ΓCc

ΓcC Φc

 , Γ̄ =

 I ΓDc

0 Γc

 (4.17)
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with the covariance matrix

R =

 R1 0

0 R2

 . (4.18)

Define the conditional state covariance Pi(k) as

Pi(k) = EYk−1
(zkz

T
k |rk = i) (4.19)

and

P̃i(k) = Pi(k)πi(k) = EYk−1
(zkz

T
k 1rk=i). (4.20)

If the covariance matrix in Eq. (4.19) is bounded, the closed-loop system in Eq. (4.15)

can be thus considered as BIBO stable. It can be shown that the vectorized form of P̃ (k)

satisfies the recursion as [20]

P̃ (k + 1) = (QT ⊗ I)diag(Ai)P̃ (k) + (QT ⊗ I)(diag(πi(k))⊗ I)G (4.21)

where

P̃ (k) =
[
vecP̃1(k) vecP̃2(k) · · · vecP̃s(k)

]T
(4.22)

G =
[
vecG1 vecG2 · · · vecGs

]T
and

Ai = Eτk(Φ̄(τk)⊗ Φ̄(τk)|rk = i)

Gi = Eτk(Γ̄(τk)RΓ̄T (τk)|rk = i). (4.23)

From Eq. (4.21), if the stability matrix

V = (QT ⊗ I)diag(Ai) (4.24)

has all its eigenvalues inside the unit circle, P̃ (k) is bounded, thus the covariance matrix

Pi(k) is also bounded. Therefore, the closed-loop system is stable in the BIBO sense. For

example, the stability matrix V of a NCS with network modeled by a two-state Markov

chain is

V =

 q1A1 (1− q2)A2

(1− q1)A1 q2A2

 (4.25)
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where

Ai = Eτk(Φ̄(i)⊗ Φ̄(i)), i ∈ {1, 2}. (4.26)

Moreover, if Φ̄(rk) is not a function of τk,

Ai = Φ̄(i)⊗ Φ̄(i), i ∈ {1, 2}. (4.27)

This happens when the network dropout is modeled as in a Markov chain mentioned later

in section 4.4 and section 4.5.

4.3 Network Dropout Modeled by the Markov Chain

4.3.1 Network Dropout

Consider an NCS with network transmission dropout modeled by a a two state Markov

chain [9]. Define the Markov states rk for the kth network transmission as

rk =

1, kth data received,

2, kth data dropout,
(4.28)

as shown in Fig. 4.2. Generally this happens when τk is near h and the processing time

left is not enough. The state transition matrix Q is in the same form as Eq. (4.10). Let

π0 =
[

1 0
]
, the average dropout rate Pd can be derived from the stead-state probability

distribution π∞ as in Eq. (4.12) as

Pd =
q1 − 1

q2 + q1 − 2
. (4.29)

The relationship between Q and the average dropout is shown in Fig. 4.3, which the stair

curves for constant dropout rate are straight lines that end up in [q1, q2] = [1, 1]. For

instance, the plot in 4.4(a) has Pd = 0.5 and 4.4(b) has Pd = 0.385. Clearly, even with

identical Pd values, the network situations could still be different with different Q.

4.3.2 Markov Model Measurement

When using Eq. (4.24) to determine the stability of a specified NCS, it is crucial to know

the value of Markov transition matrix Q. Generally, it can be calculated from a series
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Figure 4.4: The two-state Markov chain with (a) [q1, q2] = [0.5, 0.7] and [0.7, 0.7] (dropout

rate 0.5) (b) [q1, q2] = [0.5, 0.2] and [0.7, 0.52] (dropout rate 0.385).

of network transmission data with enough data length. Several examples for a two-state

Markov chain are shown in Fig. 4.4 with a data length 300. The values of steady-state

probability distribution π∞ are identical in both Fig. 4.4(a) and 4.4(b), and obviously

that different Q values cause different distribution for rk.

However, the exact value of Q is unknown, and it needs to be found from measured

data set as in Fig. 4.4. A general algorithm to estimate Q is shown in Algorithm 4.1.

Perform this estimation for 100 times with different Q and the mean error are shown in

Table 4.1. It can be found that for data length equal to 300, the mean error for estimated

Q̂ is around 3%. Fig. 4.5 shows that Q̂ converges after about 150 samples. In q1 − q2
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Algorithm 4.1 Estimating Q̂

1. Assign a Markov state rk to each network instance k.

2. qij equals to the count of state transition from ri to rj is divided by total appearance

and

qij(k) =

∑
k

(ri → rj)∑
k

(ri)

3. Form the matrix Q̂ with elements in the ith row and jth column be qij(k̄), where k̄

is the maximum data length.

plane, the measured value will stay in a small region near the actual Q. The measurement

precision increases as the data length increases. Normally, larger qii converges faster in

estimation.

Table 4.1: Q̂ estimation with different Q.

case 1 case 2 case 3 case 4

[q1, q2](%) 50 50 70 70 50 20 70 52

mean error(%) 3.2 3.3 2.8 3.1 3.0 3.1 2.7 3.8

4.3.3 Dropout Estimation

To overcome network transmission dropout problem, data estimation methods are used.

From Fig. 4.6, there are two separate estimations needed in the controller-to-actuator

path and the sensor-to-controller path. Since the tracking signal r is arbitrarily given, the

estimated signal can also be regarded as both the model-based and the model-free signals.

These two kinds of signal are estimated in different ways using the model-based least

square fit (MBLSF) and the model-free least square fit (MFLSF) methods, respectively.

For simplification, each situation is analyzed independently. The network connection is

treated as a single direction only in one way because of the complexity in real analysis.
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Figure 4.6: Markov network with dropout and the forward and feedback estimation.
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4.4 The MBLSF Estimation

4.4.1 Structure

Consider the NCS with a plant P , the controller Kc with feedback control that

u = −Kcy. (4.30)

Assume that the network connection is only between sensor-to-controller path. Therefore,

the plant P becomes xk+1 = Axk +Buk

yk = Cxk +Duk
(4.31)

and controller Kc becomes xck+1 = Acx
c
k +Bc(−ȳk)

uk = Ccx
c
k +Dc(−ȳk)

. (4.32)

When network dropout occurs, an estimation method is applied to the controller input

signal such that

ȳk =

yk, if rk = 1(normal),

ŷk, if rk = 2(dropout),
(4.33)

where ŷk is the estimated value. Since plant input uk and output yk are fully known in

the controller side, ŷk can be also estimated from model-based estimation methods. From

the past W points, y and u has the following relationship [14] :

yk,W = CWxk−W +DWuk,W (4.34)

where

uk,W =
[
uTk−1 uTk−2 · · · uTk−W

]T
yk,W =

[
yTk−1 yTk−2 · · · yTk−W

]T
(4.35)
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and

CW =
[

(CAW−1)T (CAW−2)T · · · (CA)T (C)T
]T

DM =



D CB CAB · · · CAW−3B CAW−2B

0 D CB · · · CAW−4B CAW−3B

0 0
. . . . . . ...

...
...

... . . . D CB CAB

0 0 · · · 0 D CB

0 0 · · · 0 0 D


. (4.36)

The value of xk−W can therefore be estimated from a model-based least square fit estima-

tion that

x̂k−W = (CTWCW )−1CTW (yk,W −DWuk,W ). (4.37)

and ŷk can be calculated from x̂k−W that

ŷk = CAW x̂k−W +
W∑
i=1

CAi−1Buk−i +Duk (4.38)

= Hyk,W + (BW − CAW (CTWCW )−1CTWDW )uk,W +Duk

where

H = CAW (CTWCW )−1CTW ,

BW =
[
CB CAB · · · CAW−2B CAW−1B

]
. (4.39)

Note that W must be larger or equal to the order of xk, otherwise CTWCW will be singular

and T cannot be found. In other words, there must be more samples than unknowns.

Rewrite Eq. (4.38) in a matrix form as

ŷk = Hyk,W + T uk,W +Duk (4.40)

where

T = BW − CAW (CTWCW )−1CTWDW (4.41)
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and a time-varying state space equation can be constructed from xk, xck, ūk,W and ȳk,W

which

zk+1 = Φ1(rk)zk (4.42)

where

zk =
[
xTk (xck)

T uTk,W ȳTk,W

]T
(4.43)

and

Φ1(rk) =





A−BEdDcC BEdCc 0 0

BcEDC Ac −BcDEdCc 0 0

−ET
1,W−1EdDcC ET

1,W−1EdCc Eu,W−1 0

−ET
1,W−1EDC ET

1,W−1DEdCc 0 Eu,W−1


, rk = 1,



A BEdCc −BEdDcT −BEdDcH

0 Ac −BcDEdCc BcEDT BcEDH

0 ET
1,W−1EdCc Eu,W−1 − ET

1,W−1EdDcT −ET
1,W−1EdDcH

0 ET
1,W−1DEdCc −ET

1,W−1EDT Eu,W−1 − ET
1,W−1EDH


,

rk = 2,

(4.44)

with

Eu,K =

 01×K 0

IK 0K×1

 , E1,K =
[

1 01×K

]
(4.45)

and

Ed = (I +DcD)−1, ED = (DEdDc − I). (4.46)

System stability can be thus determined by applying Φ1(rk) to Eq. (4.24) and check its

maximum eigenvalues for different Markov transition matrix Q.

4.4.2 Simulation Setup

A plant P obtained from a real networked servo motor system [17] is adopted as

P (s) =
8.04

(1 + 0.00167s)
× 1

s
(4.47)
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which is the velocity-loop model with an integrator by expending the velocity-loop plant

into the position loop. A controller Kc is chosen as

Kc(s) = 10. (4.48)

The sampling time h is set to be 2(ms). By discretizing the plant P into a state space

form, the plant model becomes

A =

 1.3019 −0.6038

0.5 0

 , B =

 0.125

0

 , C =

 0.0537

0.0723

T (4.49)

and D = 0, and the controller Kc becomes

Ac = 0, Bc = 0, Cc = 0, Dc = 10. (4.50)

In each sampling period, a packet is transmitted through the network between controller

at the remote site and the plant in the near site. If the packet does not arrive in time,

the control algorithm will replace it with an estimated value. This process is modeled by

a two-state Markov chain as in Eq. (4.28) with a pre-specified Q. The input signal rk is

chosen as

rk = sin(0.05k), k ∈ {1, 2, . . . 1000}. (4.51)

4.4.3 Stability

Assume the network connection work as described in Eq. (4.31) and (4.32), a simulation is

tested by applying Φ1(rk) to Eq. (4.24) and the maximum eigenvalue of V with different Q

is also calculated. Because P is with an order 2, the minimum value forW is 2. Estimator

coefficients H and T for W ≤ 4 are listed in Table 4.2. For example, the estimation for

yk when W = 2 is

ŷk = 1.3019ȳk−1 − 0.3019ȳk−2 + 0.0067uk−1 + 0.0045uk−2. (4.52)

The maximum eigenvalues max |λ| forW = 2, 3 versus Q are shown in Fig. 4.7. For both

cases, the values of max |λ| only exceed or equal to 1 when q2 = 100%, that is, when the

network is fully occupied. Otherwise, the model-based LSF is always stable according the

the present analysis.
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Table 4.2: H and T values for plant P withW ≤ 4.

W H T

2 [1.3019,−0.3019] [0.0067, 0.0045]

3 [0.6936, 0.4901,−0.1837] [0.0067, 0.0086, 0.0027]

4 [3.136, 3.057, 2.797, 1.934,−0.924]×10−1 [0.067, 0.111, 0.09, 0.051, 0.014]×10−1

4.4.4 Tracking Performance

Time-domain illustrations are shown in Fig. 4.8 and Fig. 4.9 under a relatively undesirable

network condition [q1, q2] = [0.1, 0.8]. Note that the system remains stable as predicted.

The root mean square (RMS) error is 0.122 × 10−3, which is neglectable. When noise

vk exists in sensor feedback, a larger W renders a smaller noise effect and it leads to a

smaller RMS error. This is shown in Table 4.3. Therefore, W value should be properly

chosen to minimize calculate efforts and noise effects with practical concern. In the present

simulation, W = 3 is the best choice, as shown in Table 4.3.

Table 4.3: Tracking RMS error and the maximum error with different order of MBLSF

estimations with [q1, q2] = [0.1, 0.8] simulated with a noise vk = uniform[±0.1].

W RMS×103 max |e|×103

2 78.974 289

3 68.287 192

4 65.739 187

5 63.604 181
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Figure 4.7: Maximum eigenvalue for different Q in MBLSF estimation with (a) W = 2

(b) W = 3.
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Figure 4.8: Time response for MBLSF with W = 2 at [q1, q2] = [0.1, 0.8].
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Figure 4.9: Time response for MBLSF with W = 2 and noise at [q1, q2] = [0.1, 0.8].
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4.5 The MFLSF Estimation

4.5.1 Structure

Assume that the network connection is only in the controller-to-actuator path. The plant

P is discretized into discrete state space form that xk+1 = Axk +Būk

yk = Cxk +Dūk
(4.53)

and controller Kc(s) xck+1 = Acx
c
k +Bc(−yk)

uk = Ccx
c
k +Dc(−yk)

. (4.54)

When network dropout occurs, an estimation method is applied to the controller output

signal such that

ūk =

uk, rk = 1(normal),

ûk, rk = 2(dropout),
(4.55)

where ûk is the estimated value. Since uk contains information from rk and can only be

estimated from model-free estimation methods. Suppose that uk is aNth order polynomial

function with variable tk [15],

uk = c0 + c1tk + c2t
2
k + · · ·+ cN t

N
k (4.56)

where ci ∈ R and tk ∈ Z, because Eq. (4.56) is used in a discrete-time system. The

kth data can be then estimated by a model-free least square fit method from previous M

points with Nth order estimation. Let tk−M−1 = 0, thus

uk,M = LM,NcN (4.57)

where

uk,M =
[
uTk−1 uTk−2 · · · uTk−M

]T
,

cN =
[
c0 c1 · · · cN

]T
, (4.58)
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and

LM,N =


1 M · · · MN

1 M − 1 · · · (M − 1)N

...
... . . . ...

1 1 · · · 1N

 . (4.59)

The estimated ûk is

ûk = bM,N(LT
M,NLM,N)−1LT

M,Nuk,M (4.60)

where

bM,N =
[

1 M + 1 (M + 1)2 · · · (M + 1)N
]
. (4.61)

Rewrite Eq. (4.60) in a summation form that

ûk =
M∑
j=1

pjuk−j (4.62)

where pi are coefficients calculated from the MFLSF estimation above. Combine the

estimated data ûk when network dropout occurs and received data uk,M into a vector

ūk+1,M = Pūk,M (4.63)

where

P =


p1 p2 · · · pM

1 0 · · · 0
... . . . ...

0 · · · 1 0

 . (4.64)

For example, when M = 3 and N = 2, the matrix becomes

P =


4
3

1
3
−2

3

1 0 0

0 1 0

 .
A time-varying state space equation can be constructed from xk, xck, and ūk,M that

zk+1 = Φ2(rk)zk (4.65)
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where

zk =
[
xTk (xck)

T (ūk,M)T
]T

(4.66)

and

Φ2(rk) =




A−BEdDcC BEdCc 0

BcEDC Ac −BcDEdCc 0

−ET
1,NEdDcC ET

1,NEdCc Eu,N

 , rk = 1,


A 0 BE1,NP

−BcC Ac −BcDE1,NP

0 0 P

 , rk = 2.

(4.67)

System stability can be thus determined by applying Φ2(rk) to Eq. (4.24) and check its

maximum eigenvalues for different Markov transition matrix Q.

4.5.2 Stability

Assume that the network connection works as described in Eq. (4.53) and (4.54), the

simulation is peformed with the same setup in section 4.4.2. Estimator coefficients for

M ≤ 3 are listed in Table 4.4. For example, the MFLSF with M = 2 and N = 1 is

ûk = 2ūk−1 − ūk−2. (4.68)

Apply Φ2(rk) to equation Eq. (4.24) and calculate the maximum eigenvalue of V with

different Q. The calculated results are shown in Fig. 4.10. Each line represents the

boundary between max |λ| < 1 (top-left) and max |λ| ≥ 1 (bottom-right), or the stable

and the unstable regions, respectively. The stable area increases as M increases or as

N decreases. Compared with Fig. 4.7, MFLSF is more likely to be unstable and is the

dominant factor for dropout estimation stability. As stated in Eq. (4.24), system stability

criteria defined here is BIBO stability. That is, if Q is located in the unstable region but

not very far from the boundary, the system response will have bounded RMS error but

unbounded maximum absolute error. Fig. 4.11 shows a NCS with the same Q value

with different M and N . When N increases, the stable region becomes smaller. It is
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Figure 4.10: Stability region on Q plane for MFLSF with different (M,N).

possible for a specified Q being BIBO stable in MFLSF(1,0) but not in MFLSF(2,1) or

MFLSF(3,2).

Table 4.4: [pi] values for M ≤ 3.

M＼N 0 1 2

1 [ 1 ] − −

2 [ 1
2

1
2

] [ 2 −1 ] −

3 [ 1
3

1
3

1
3

] [ 4
3

1
3
−2

3
] [ 3 −3 1 ]

4.5.3 Tracking Performance

Generally, the value of N in MFLSF is with the most concern and M is set to be (N + 1).

Theoretically, higher order of N can preserve higher-order natures of those data to be

estimated and therefore, it has better tracking performance. RMS error with different
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Figure 4.11: Time responses for MFLSF(1,0), MFLSF(2,1) and MFLSF(3,2) and [q1, q2] =

[0.4, 0.2].

MFLSF estimations are listed in Table 4.5, and they are in good agreement with predicted

results. However, higher N also causes MFLSF to have smaller unstable area in Q plane,

and it leads to unbounded maximum tracking error, as listed in Table 4.6.

Table 4.5: RME error for MFLSF estimations with different [q1, q2].

[q1, q2] MFLSF(1,0) MFLSF(2,1)

[0.7,0.2] 4.34 0.54

[0.4,0.2] 6.19 1.59

[0.7,0.4] 8.06 2.00
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Table 4.6: The maximum tracking error for MFLSF with different [q1, q2].

[q1, q2] MFLSF(1,0) MFLSF(2,1)

[0.7,0.2] 7.36 13.02

[0.4,0.2] 9.13 327.89

[0.7,0.4] 19.23 137.88

4.5.4 Estimator Switching Policy

From the previous analysis, there is a trade-off in selecting N between RMS error and

maximum tracking error. To conquer this problem, an estimator switching mechanism is

proposed here. Initially, a set of reference points Ri is spreaded on the Q plane. Each

point has a particular value of Qi and its stability with any MFLSF estimator can be

determined and a suitable estimator is assigned to it. A set of 2 × 2 reference points is

shown in Fig. 4.12. When dropout occurs, the local Markov transition matrix Q̄ can be

measured from previous j points by applying Algorithm 4.1. For example, there are 16

possible values of local Q̄ when j = 5, as shown in Fig. 4.12. For each reference point Ri,

the probability can be found for a generated data set with length j has a local Markov

transition matrix Q̄, which is different from one another. For each local Q̄i, there exists

a reference point Ri such that

R(Q̄i) = max
j

P(Q̄i|Rj) (4.69)

and is has the maximum likelihood. Normally, Q̄i and Ri are nearby points on the

Q plane, as shown in Fig. 4.13. A switching mechanism according to the maximum

likelihood relationship is shown in Algorithm 4.2.

Consider the plant P and controller Kc in Eq. 4.47 and 4.48 with estimators

MFLSF(2,1) and MFLSF(1,0), a local Q estimation with a set of 2×2 reference points and

j = 5 is applied. System performance for local Q estimation compared with static MFLSF

estimations is listed in Table 4.7. Clearly, the proposed algorithm possesses benefits from

both estimator MFLSF(2,1) and MFLSF(1,0).
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Figure 4.12: 2× 2 reference points and the values of local Q̄ with j = 5.

Figure 4.13: Local Q̄ mapped into different reference points according to the maximum

likelyhood.
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Algorithm 4.2 MFLSF estimation based on local Q̄.

1. Calculate the stable region for each MFLSF estimator candidate to be switched.

2. Put h × h reference points Ri uniformly on Q plane and define the length j for

local Q̄ estimation. For each Ri, there is a MFLSF estimator with the best tracking

performance.

3. From the maximum likelihood relationship stated in Eq. (4.69), each Q̄ is assigned

a MFLSF estimator according to the reference point Rj, as shown in Fig. 4.14 and

Fig. 4.13.

4. When dropout occurs, estimate local Q̄ value from previous j-point dropout se-

quence.

5. Switch current estimator to a MFLSF estimator based on the estimated local Q̄.

Figure 4.14: The probability values for each local Q̄ from 4 different reference points.
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Table 4.7: Tracking performance for static MFLSF estimation and MFLSF with local Q

estimation with (a)[q1, q2] = [0.7, 0.2] (b)[q1, q2] = [0.4, 0.2], and (c) [q1, q2] = [0.7, 0.4] .

(a)

[0.7,0.2] MFLSF(1,0) local Q MFLSF(2,1)

RMS×103 4.34 2.54 0.54

max |∆y|×102 7.36 9.13 13.02

(b)

[0.4,0.2] MFLSF(1,0) local Q MFLSF(2,1)

RMS×103 6.19 5.15 1.59

max |∆y|×102 9.13 13.49 327.89

(c)

[0.7,0.4] MFLSF(1,0) local Q MFLSF(2,1)

RMS×103 8.06 5.73 2.00

max |∆y|×102 19.23 19.17 137.88

4.6 Summary

In this chapter, the following results can be summarized as:

1. Two types of estimators MBLSF and MFLSF for the network dropout are proposed.

With the network modeled by a two-state Markov chain, stability criteria for each

estimator is also determined. Simulations with different Markov transition matrix

Q verify the present results.

2. Simulations for the network dropout with different estimators are performed, and

analysis of the tracking performances for estimators with different parameters M ,

N , and W are also provided. An MFLSF estimator switching mechanism based

on local Q is proposed that it can maintain the tracking performances even under

different network traffic situations.
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Chapter 5 Conclusion

5.1 Conclusion

In this thesis, networked control systems under three different circumstances are discussed

as follows:

1. A general method based on optimization process is proposed for PI controller auto-

tuning. Once the bandwidth requirement is specified, control parameters can be

automatically updated and finally being tuned up with the set bandwidth. Several

simulation and experimental results have verified the usefulness and repeatability

of the proposed algorithm for NCS.

2. Also, rules of H∞ algorithm for NCS design are proposed. By considering the tol-

erated time delay, the proposed H∞ design method has an advantage that several

system performance requirements can be transformed into weighting functions and

are used in the mix synthesis framework. A control structure with forward compen-

sator to avoid delay tolerance and bandwidth trade-off is proposed to satisfy both

requirements.

3. Finally, network dropout estimation methods in both controller and plant side of the

network are proposed in this thesis. Two estimators MFLSF(M ,N) and MBLSF(W )

with criteria provided. The MBLSF estimator is almost guaranteed to be sta-

ble and with nearly zero tracking error due to its model-based nature. Different

MFLSF(M,N) works with varied performance under differently Markov transition

matrix Q. Moreover, a switching mechanism is proposed to reduce both RMS error

and the maximum tracking error simultaneously.

5.2 Future Work

Although different methods are proposed to maintain system stability and performance

requirements under different network situations, an overall structure that combines all of
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them is not provided. In practical situations, this should be implemented with the ability

that different methods can be switched actively when the network situation changes. To

do so, a general yet effective way to detect the current network situation is also needed,

which is hard to achieve for different types of network.
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