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Analysis of the Time-delay Control and the Message
Estimation for Networked Control Systems

Student: Meng-Zhe Zhang Advisor: Dr. Pau-Lo Hsu

Institute of Electrical Control Engineering
National Chiao Tung University

ABSTRACT

Networked control systems (NCSs) offer advantages over the traditional point-to-point
connections and has been studied mainly in the network-induced delay and the package
dropout. Many theoretical approaches has been proposed to handle this two problems with
various algorithms. In this thesis, a general PI controller auto-tuning method based on the
optimization process is proposed. The specified system bandwidth can be achieved after
the tuning process without knowing the exact plant model applied to NCS. To handle the
network delay, actual procedures for Hs, controller design for NCSs is presented under
the mixed synthesis framework. The control structure with a forward compensator is
used to meet specifications in both delay tolerance and bandwidth. For compensating
network dropout in controller-to-actuator and sensor-to-controller paths, both the model-
free least square fit (MFLSF) estimator and the model-based least square fit estimator
(MBLSF) are used to improve the tracking performance, respectively, and stability criteria
of both MFLSF and MBLSF estimators are provided with the Markov chain model. By
switching MFLSF estimators according to the current identified network status, total

tracking performances can be thus significantly improved.
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Chapter 1 Introduction

1.1 Motivation

Recently, the use of network technology has dramatically increased. Control systems with
network communication between loop paths are called networked control systems (NCS).
The NCS structure offers advantages over the traditional point-to-point connections since
it reduces wiring cost, increases configuration flexibility, and is generally simple in instal-
lation and maintenance. However, new problems and challenges arise [1,2|. Therefore,
more and more researches focus on this area and different topics such as network-induced

delay and package dropout have been analyzed to motivate this study.

1.2 General Review

The PI controllers are widely used_in different types of real applications, including NCS
control. Methods for tuning the PI control parameters are studied widely. A PI controller
auto-tuning method based on the desired gain-margin and the phase-margin is proposed
in [3] with the assumption that plant is limited to first or second order plus a dead-time to
obtain approximated solutions. An analytical solution for PID control parameters based
on exact plant frequency responses is provided in [4] and it leads to a difficult condition
to be satisfied in real situations. Tuning procedures with complex algorithms, such as the
neural network [5] or the genetic algorithm [6], need too much calculating time and are
unsuitable to be realized on a simple DSP micro-processor. A DSP-based auto-tuning
algorithm is realized in [7]| using the gradient method, but with the time-domain indices
like the maximum overshoot or the rise time, which are easily affected by sensor noises or

system oscillations.

Discussions for NCS design with both the network delay and the package dropout
are presented in [8,9], mainly with model-based design methods. Also, the estimator is
realized with an observer with additional states, and state estimation convergence need

to be considered. Nikolai Vatanski et al. proposed an approach with Smith predictor [10],



and they point out some main drawbacks such as sensitivity to model mismatch, and it
needs to be solved by applying adaptive procedures. Many researches also focus on NCS

with H theorem [11-13], but few of them can be directly realized.

An FIR type estimator is proposed in [14] with model-based receding horizon state
estimation and its stability criteria. For motion command estimation, there is no suitable
pre-defined model and a model-free estimation technique such as the Taylor estimation or
the least square estimation [15] are commonly applied. However, the stochastic nature of
the network is usually not included in these estimators. The stochastic model for network
is often used in stability analysis [16] with different criteria, but its restraints limits its

application in NCS.

In [17] and [18], NCSs with servo motors and networks like CAN or Ethernet are

concerned. All experiments and identified plants in this thesis are based upon them.

1.3 Problem Statement

1. Normally, remote controllers are designed separately by experts. When the network
is involved, system responses-are thus changed and controllers need to be re-tuned.
Therefore, a simple yet efficient auto-tuning algorithm for NCS controllers that can

be implemented with a DSP micro-controller is thus needed.

2. In a networked control system, data transmission between the controller and the
plant acts like a time delay which is the key issue to be concerned in NCS. The
delay effect on system performance is different in different NCSs, and all of them

need to be considered in the controller design.

3. Network dropout occurs when packages collide or they arrive too slow in which it
is considered outdated. When dropout happens, network transmission fails to pass
data to the actuator input in the forward path or the controller input in the feedback
path, the missing messages must be estimated to keep system working in a normal

condition.



1.4 Proposed Approaches

1. A control parameters optimization algorithm is proposed with the frequency re-
sponse measurement. A test signal is fed into system to excite responses in partic-
ular frequency bands and the measured magnitude responses are used in objective
function during optimization procedures to render a desirable system bandwidth. It

is assumed here that the network situation is with constant delay time.

2. In NCS controller design, the induced time delay is included with other specifi-
cations. Controller design with multiple performance requirements can be solved
by applying the H., algorithm. Each requirement is transformed into a weighting
function and an overall synthesis is performed in mixed sensitivity framework. By
adjusting weighting functions, a controller that fits all requirements can be thus
found. It is assumed here that the network situation is with the maximum delay

time.

3. The Markov chain theorem is used to'model network transmission dropout behavior.
When dropout happens, two least square estimators with and without the model
are proposed to estimate missing network packages in both the feedback path and
the forward path, respectively. .Under the Markov network model, stability criteria

for message estimators are provided.

1.5 Organization of the Thesis

The rest of this thesis is organized as follows: Chapter 2 proposed a PI controller auto-
tuning technique for NCS; Chapter 3 describes how H,, algorithm is applied to NCS con-
troller design with a forward compensator. In Chapter 4, analysis of the network dropout
estimators are provided to verify the stability of NCS. Finally, Chapter 5 concludes this

thesis.



Chapter 2 Controller Auto-Tuning in the

Frequency Domain

2.1 Estimation of the Frequency Responses

In the tuning procedure of the PI control parameters, suitable indices must be determined
to properly express system performance. Generally, there are two types of indices in either
the time domain or the frequency domain. Because the time domain indices, such as the
rise time, the maximum overshoot and the settle time, are easily affected by system steady-
state oscillations and sensor noises in real applications, frequency-domain performance

indices are used in this proposed approach.
A frequency response contains the magnitude and the phase parts, that is,
P(jw) = |P(jw)|£LP(jw) (2.1)

for a plant P(s) at a certain frequency w. A frequently used index is the bandwidth wy,

that

| P(jws)| = % (2.2)

and the phase margin ¢ at the gain-cross frequency w, that
6 =1 — LP(juy) (2.3)

where |P(jwg)| = 1. The bandwidth is an index that represents how fast a system
can respond, and is measured from magnitude response. The phase margin is an index
to represent how stable a system is, and is measured from both magnitude and phase
responses. Therefore, the bandwidth is adopted as an index in the tuning procedure
because it is easy to measure. An alternative index for the phase margin is the closed-

loop phase responses at the bandwidth frequency wy,.

The discrete Fourier transform (DFT) is often adopted in the frequency response for
analysis and design. However, it is not easy for a DSP micro-processor to perform this

operation without particular hardware modules or a high precision sine table to calculate

4



Table 2.1: Estimated magnitude and phase estimation in Fig. 2.2 with 100 trials.

M | avg. M | variance
M 1 0.707 | 0.7065 | 0.0308
P | 150° | 149.08° | 2.817°

the inverse tangent function. Thus, the frequency response is obtained from the time-
domain here. To estimate the frequency response at a certain frequency wy, the desirable
bandwidth, a test signal with frequency wy is fed into the system to excite transient
responses. In practice, notch filters are applied to filter out specified signals other then
wy. By comparing the input and output signals in the time domain, the frequency response
of the system can be thus estimated, as shown in Fig. 2.1. Algorithm 2.1 shows how the

auto estimator works in detail.

An example is shown in Fig. 2.2 with the original signals shown in the upper part
and the filtered signals shown in the lower part. In the simulation, the sampling rate is
7.5(kHz) and the input signal is with frequency w; = 200(Hz). The input signal is with
amplitude 1, a random noise with uniform distribution between £1 and a resonance signal
at 60(Hz) is added also with amplitude 1. A output signal is with amplitude 0.707, a phase
shift 150°, a random noise with uniform distribution between 4+0.7, and a resonance signal
at 60(Hz) with amplitude 0.7. The estimation result in the frequency domain for Fig. 2.2
are M = 0.697 and P = 146.41°. Average estimation results for 100 trials are listed in

Table 2.1, in which sufficient accuracy can be achieved.

2.2 Optimization for Control Parameters

When the plant model changes, a re-design procedure for the controller is needed or
the system stability is not guaranteed. Therefore, a controller auto-tuning algorithm is
required to reduce manual controller adjustment while facing a changeable plant. This
can be done by considering control parameters auto-tuning as an optimization problem,

as shown in Fig. 2.3.

A typical constrained optimization problem is formed by the objective function f, a
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Figure 2.1: An illustration for frequency response auto estimation from both the input

and the output signals.

Figure 2.2: The I/O signals before and after applying the notch filter.



Algorithm 2.1 The frequency response estimation at wy by comparing sine waves.

1. A test signal with frequency wy is fed into system with two signals as input a and

output b, and both signals are passed through notch filters N where

2

N g —2gcos(2mwys)zt + g2~
z =
1 —2gcos(2mwys)z=t + (29 — 1)272

with parameters

1 2mwy 1—o02 BW

with the width factor () and the notch gain (.

2. For signal a, measure the positive peakvalue p (k) and zero-crossing ¢, (k) instance

in the kyj, period.
3. Perform the same operations on signal b:

4. The magnitude response M from a to b is estimated from calculating

2 (d)
M=swm

5. The phase response P from a to b is estimated from calculating

A P (ta(d) = ()
RS S TN R AR V)

7
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Figure 2.3: An illustration for PI control parameters auto-tuning process at frequency wy.

set of variable x, and the constraints S for x, and is stated as
min f(z) s.t. x € S. (2.8)
In this case of auto-tuning, control parameters are assigned to x, that is, for a PI controller,
T

The objective function f is defined from the closed-loop system frequency responses.
When a frequency response estimation at-w; mentioned in the previous section is per-
formed, the closed-loop magnitude response M and the phase response P can be acquired

and are treated as the system performance indices. The objective function f is defined as
2

M — M,
f= (2.10)
P—-PF
where M, and F, are the objective closed-loop magnitude and phase response, respectively,
and is a minimizer for f. Generally, M, is set to be -3dB so that after the optimization
process converges, the system would have bandwidth wy. Note that the closed-loop fre-

quency response is determined by control parameters x, therefore, M and P are also

functions of x. A descent direction for f can be found by calculating the gradient value

that
T
Vi=2AF [ AM AP | (2.11)
where
oM OP.
AM =M — My, AP =P — Py, AF = | %% 9% (2.12)
oM 9P
0K; 0K;



and x is updated as
z(k+1) =x(k) — cV f(k) (2.13)

in each searching iteration with the step size c¢. Note that the initial condition (0) must
stabilize the plant. The partial derivatives are approximated from the frequency responses

variation near some specified work points. The constraints S for x are
0< K, <max K,, 0 < K; <maxK; (2.14)

such that each z(k) must stabilize the plant. If x(k + 1) exceed S, the invalid control

parameter will be reset into its range, e.g., for variable Kj,

M P
Ki(k) — 2C(§K'AM + gK-AP) <0 — Ki(k+1)=0, (2.15)
Ki(k) — 2C(§%AM + SI?AP) >max K; — Ki(k+1) =maxK;.

This is a so called two-degree-of-freedom PI tuning algorithm.

2.3 Simulation

Consider an identified model [18] that

1+ 271
P(z7) = 0.003864 —————— 2.16
(z7) 1 - 0.998921 (2.16)
and a PI controller K,
1

with the sampling time h = 0.133(ms). The initial control parameters are
K,=3, K;=0.1.

The frequency responses estimation is performed by using a MATLAB function ’fregresp’
with additional uncorrelated noises applied to both the magnitude and the phase responses
with uniform distribution in [-0.05,0.05]. By observing the effects on M and P due to the

variation of x, an approximation of the partial derivatives matrix AF can be found that

0.0903  0.1238
AF = . (2.18)
0.03758 —0.05258



14

12}

0.8

0.6

0.4

0.2 e ‘ . s - SRR - - .

0 | | | | | | | | |
0 001 002 003 004 005 0.06 0.07r 0.08 0.09 0.1

(sec)

Figure 2.4: Step responses for PI controller auto-tuning with wy; = 50(Hz) at the ki
iteration. (Bold: turning result at A =100.)

The desired frequency response is with
1
V2’

and a smaller P results in larger overshoot. The initial step size ¢ is 10 and it decreases as

M,y = Py = —50°,

f decreases. The step responses before and after PI control parameters optimization tuned
at wy = 50(Hz) is shown in Fig. 2.4. The system step response with the tuned PI controller
has nearly the same rise time but the maximum overshoot decreases from 32% to 5%.
Step responses for systems tuned in different w; are also shown in Fig. 2.5, with similar
transient responses and 5% the maximum overshoots. The tuned control parameters are
listed in Table 2.2. Fig. 2.6 shows how control parameters and the frequency responses
change during the optimization process. It can be found that AM and AP converge
to zero after about 20 iterations, and also the proportional gain K,. There are some
variations in the trajectory of K; caused by noises in the frequency responses estimation,

but noise does not effect its estimation convergency.

10



1.4 T T T T T T T T T

0
0 0.005 0.01 0.015.°0.02 0.025 0.03 0.035 0.04 0.045 0.05
(sec)

Figure 2.5: Step responses for systems with the tuned PI controllers at w; = 50, 100, 200,
and 400(Hz), respectively.

Table 2.2: Simulation results for PI auto-tuning with initial K, = 3 and K; = 0.1.

wiHz) | 50 | 100 | 200 | 400
tuned K, | 4.937 | 9.856 | 18.938 | 38.030

tuned K; | 0.023 | 0.065 | 0.296 | 1.220

11
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Figure 2.6: The transient values of AM, AP, K,, and K, during each iteration with
wy = 100(Hz).

2.4 Experiments

2.4.1 System Setup

Consider a servo motor system based on a TT TMS320F2812 DSP micro-controller 18],
as shown in Fig. 2.7. Its block diagram is shown in Fig. 2.8, which contains multi-loop
control structure such as the current loop, the velocity loop and the position loop. A PI
controller auto-tuner as shown in Fig. 2.3 for the velocity-loop plant is implemented. The
test signal adopted in the frequency responses estimation is a square wave signal, because
it is easier to generate and is more steady in the network environment. Coefficients for
the notch filter are chosen that o = \/LE and Q = 4. The input signal signal is a 300(rpm)
speed command with a £30(rpm) square wave at a specified frequency about 200(Hz)
and the output signal is the speed response of the closed-loop system. Both signals before
and after applying the notch filter shown in Fig. (2.9). Relationships between M, P
and different values of K, and K; measured at wy = 100(Hz) are shown in Fig. 2.10(a)

with K, € [0.5,5] and K; = 1.5 and 2.10(b) with K, = 2.5 and K; € [0,3]. By using a

12



Figure 2.7: Picture of the servo motor system.
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Figure 2.8: Block diagram of the servo motor system.
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Figure 2.9: The I/O signals before and after applying the notch filter.
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Figure 2.10: The effects on M and P from different (a)K, and (b);.

second-order polynomial approach, a numerical model for the partial derivatives can be

found that

—0.0596Kp + 0.3258  0.0166Kp — 0.1064
AF = . (2.19)
0.166Ki + 0.2750  —0.0306Ki + 0.0773

The optimization process is performed with the update algorithm in Eq. (2.13).
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Table 2.3: PI controller parameters auto-tuning results for different initial x.

wr(Hz) | K,(0) | tuned K, | K;(0) | tuned K;
(a) M < M, 200 3 2.037 3 9.089
(b) M > M, 200 5 2.08 5 9.17
(¢) M < My, loaded 100 2 3.96 2 12.521
(d) M < M, 500 1 5.70 1 31.14
(e) M < My, repeated | 500 1 5.70 1 31.42

2.4.2 Results

Because the main idea of this experiment is to verify the usability of the proposed control
parameters optimization procedure, the property of convergence and repeatability are
the most concerned. The optimization is performed at different target frequencies wy =
100, 200, and 500(Hz). The optimization process with starting M < M, and M > M, are
shown in Fig. 2.11 and 2.12 with parametersilisted in Table 2.3(a) and 2.3(b), respectively.
Both of them converge to specified My and [y with similar control parameters K, and K.
A converging rate test with different, step size ¢ is shown in Fig. 2.13. It shows that the
optimization process converges faster with alarger ¢, but it also leads to larger oscillation
of tuned control parameters. Too large step size will lead to divergence of the optimization
process. A test with servo system with 5 times load of inertia and w; = 100(Hz) is shown
in Fig. 2.14 with parameters in Table 2.3(c). Although actual plant model is changed,
the optimization process still converges. A test for the repeatability is shown in Fig. 2.15
with the initial M < M at a relatively high frequency w; = 500(Hz) and the process is
repeated again, as shown in Fig. 2.16. Their tuning results are shown in Table 2.3(d) and
(e), respectively, and are with similar control parameters. From the experiment results,

the proposed optimization procedure presents reliable repeatability and convergency.

2.5 Auto-Tuning for the Network Delay

When the network induced delay occurs, the phase margin of the system decreases and the

system stability degrades. The PI control parameters optimization process can be then

15
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Figure 2.11: Optimization starts with M < M, at wy = 200(Hz).
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applied to re-tune the NCS controller under the assumption of a constant network delay.
Fig. 2.17 shows the step responses before and after auto-tuning for system in (2.16) with
different network induced delay time 2z~ at w; =100(Hz). The original PI controller is
tuned without the network delay as shown in Fig. 2.4 with 7 = 0, and clearly the network
delay degrades the system performance. Therefore, the re-tuned controllers lead to better
performances with the smaller maximum overshoots, and their control parameters are
listed in Table 2.4. When the delay time 7 is small, the optimization process works
as well. For longer delay time, however, the integral gain K; drops to zero during the
optimization process, and there are steady-state errors in the closed-loop step responses.
The reason is that for a typical PI controller K,;, the phase response is

—-90°, asw — 0,
LKy = (2.20)

0°, as w — 00

and it will decrease the value of open-loop phase responses in nearly all frequency. There-
fore, the effects of the integral gain K; actually decreases the phase margin, and make
the system more unstable under the networked situation. Its benefit for eliminating the
steady-state error is not considered.in the objective function f in Eq. (2.10). The system
controlled with only the P controller is more stable than the original PI controller, and
the steady-state error problem could be solved by applying a forward gain with value of
1.0142. It should be noted that when the delay time 7 is too large, e.g., 7 = 20 as shown
in Fig. 2.18, the minimal value of the objection function f will not be zero. The tuned

PI control parameters are
K,=4972, K; =0

and their trajectory are shown in Fig. 2.19, with the final values that
AM = 0.576, AP = —24.23°

and f = 0.512.

2.6 Summary

In this chapter, the following results can be summarized as:

19



0.5

delay =1

0.01 0.02 0.03

0.04
(sec)
delay =4
0.01 0.02 0.03 ~0.04
(sec)

delay =2

before
0 : ‘ tuned
0 0.01 002 0.03 0.04
(sec)
delay =8
1t [ N
o5 -
0 ; ; ;
0 0.01 002 0.03 0.04
(sec)

Figure 2.17: Step responses after auto-tuning at w; = 100(Hz) for different delay time

277 with 7 =1, 2, 4, and 8. The sampling time h = 0.133(ms).

Table 2.4: Results of control parameters auto-tuning with extra delay 2" at w; =100(Hz).

\7 0 1 2 4 8
tuned K, | 9.880 | 9.963 | 10.174 | 10.476 | 10.332
tuned K; | 0.0809 | 0.0112 | 0 0 0
DC gain | 1 1 | 0986 | 0.986 | 0.986
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1. An algorithm for the frequency responses estimation in the time-domain is pro-
posed. This method can be easily implemented in a DSP micro-processor and is

with sufficient accuracy for further optimization process.

2. A general PI control parameters optimization procedure is described and is verified
in both simulation and experiment to prove its usability and repeatability. With
this algorithm, the control performance in bandwidth can be maintained with model

variation caused by the network.
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Chapter 3 H., Design for the Network

Delay Systems

3.1 Theoretical Structure

A general framework for H,, design is the linear fractional transformation (LFT), as

shown in Fig. 3.1. Define the following notations as

T
w : external input, such as [ d n r }
y : controller input

z : weighted output

u : controller output

and denote Ty, as the transfer function from-a to b, then the following relationship holds:

z Tzw Tzu w
= (3.1)
Y Tyw Ty U
One objective of the H,, algorithm is to minimize the value of ||T%, ||, where
| T, = supmax o (T (w)), w € R. (3.2)
Let ||wl||5 and ||| represent energies of input and output signal, respectively, then
2 2
2[5 < 12wl 1wl (3:3)

y4 w

<«<— P(s) &=

] K(s) |

Figure 3.1: General linear fractional transformation(LFT) framework.
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Figure 3.2: Mixed synthesis framework for H,, design.

It means that the maximum energy transfer ratio for the system is bounded, and an upper

bound 7 is
[Towllo < - (3.4)
When + is smaller, variations caused by the input w to the output z are smaller.

There are several general frameworks-for H,, NCS controller design, as discussed in
[11]. However, they are also too general that it is hard to apply time-domain or frequency-
domain performance requirements to-them.  To achieve specified system performances,
weighting functions would be applied to LFT framework to shape frequency responses
within a particular frequency band. Rules for choosing weighting functions are different
because of various purposes. A frequently used structure is the mixed sensitivity design

framework [19], as shown in Fig. 3.2.

3.2 Weighting Functions

The design purpose in the mixed synthesis framework is to satisfy

H[WSS W.R WtT}Hm<7 (3.5)

where S is the sensitivity function, R is the control sensitivity function, and T is the

complementary sensitivity function where

1 K KP

— - = T =_"—""__ .
S 1+KP’R 1+ KP’ 1+ KP (3.6)
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with weighting functions Wy, W,, and W, respectively. Because Eq. (3.5) is not for
explicit design purposes, a set of inequalities with similar effects are chosen to approach

it where
5]l < IWalls s 1Rl < IWalls s 11Tl < WIS (3.7)

The selection of weighting functions in Eq. (3.7) is to specify the shape of each sensitivity
function in the frequency domain. When a generated controller tends to satisfy Eq.
(3.7), the v value in Eq. (3.5) will have smaller value. Generally, there are no straight
forward rules in mixed synthesis that can generate a perfect controller at the first try,
and weighting functions need to be adjusted to meet performance requirements if there
is needed. For each sensitivity function, the requirement is different, and its weighting
function is designed separately with a template function. Practically, some low-pass
or high-pass filters are applied to the template function to further shape its sensitivity

functions.

3.2.1 Template for W,

A requirement for the sensitivity funetion S is to have lower magnitude response in low
frequency parts, which means the system is designed to be insensitive for external varia-
tions. It can be written as in the following statement that

< €5, When w is small,

151 is

— 1, when w is large,

where ¢, is an arbitrarily small value. An usual template for W is

M, s
W, = u, (3.8)
S + WsE,

as shown in Fig. 3.3. The value of w; is selected for the low-pass frequency range, and
M; is selected for proper peak value of S. The upper bound of sensitivity function is

determined by &;.
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Figure 3.3: Template for the weighting function Wj.

3.2.2 Template for W,

A requirement for the control sensitivity function R is to reduce effects from the high-
frequency sensor noise n to the controller output u as the the noise rejection. A common

template function for W, is expressed as

s+ w. /M,

W, =
ErS + Wy

(3.9)

where the value of w, decides the range of working frequency, and M, decides the upper

bound of magnitude response, as shown in Fig. 3.4.

3.2.3 Template for W,

A template for the complementary sensitivity function 7' can be found from the small
gain theorem. When a system has a multiply uncertainty, for a nominal system F,, the

actual system acts like
P =Py (I+ AP), (3.10)
a criterion for the system to achieve internally stability is

|PK (L + BB AP, = |T] L |AP],, <1 (3.11)
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Figure 3.4: Template for the weighting function W,..

Consider system uncertainty mainly in the network delay as
P = Pye 9+ (3.12)
where 6 is the delay time. Therefore,
P —jwh
AP(#) = = —1=¢e7" =1 (3.13)
R
Let [Willo = [[AP] ., and
Il < Wil < IAP|L, (3.14)
system stability is thus guaranteed. From Eq. (3.13),

lim || AP — w0, max(lim ||AP||> — 2. (3.15)

A first-order realization for Eq. (3.15) is
20s

Wi(0) = . 3.16
From Eq. (3.16), it has the following property that
Oy > 0y — [Wi(01)]] > [[W:(62)]] (3.17)

as shown in Fig. 3.5. Therefore, when choosing 6 for W;, the maximum delay time 6.,

is chosen that

W, = Wi(Omax)- (3.18)

27



10 T

(dB)

—2 . . L

102 10™ 10
(rad/sec)

Figure 3.5: Frequency response for W, and AP with § = 10 and 6 = 30.

3.3 H,, NCS Design Procedures

3.3.1 Performance Target

A design flow for H,, NCS controller is applied to a servo motor system [17] with an

identified plant P that
1 180.1s + 10000 1
P =V - = - 3.19
() = V() X 2= 377905 7 1000 ~ 3 (3.19)

where V(s) is the build-in velocity-loop plant. The actuator generates output voltage

calculated from the controller output to the motor and the rotor position is fed back from
sensor. When the measurement of the rotor position is transmitted through network to
a remote controller, an equivalent delay is determined by network transmission. Before
H, controller is designed, since delay decreases the phase margin and causes instability,

a lead controller is used to restore phase margin. Let a lead controller be designed as

s+ 7.7495
s+ 18.36244

that it satisfies system performance specifications listed in Table 3.1. An H,, controller

Kjoaq = 6.442 (3.20)

is designed to further improve performance of the lead controller Kj,,q by specifying
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performance specifications.

3.3.2 Design Weighting Functions

Specification of this example is provided in Table 3.1. From Eq. (3.8), since the larger
peak value of || S|| easily causes ripples, the maximum value is set as My = 1. According
to the requirement that the bandwidth must be larger than 2.4(Hz), w; is set to be 2.32
with e, = 107% so that the sensitivity function approaches zero at a low frequency. The
calculated W, becomes

s+ 2.32
W, = ) 3.21
s+2.32x 106 ( )

According to the requirement of disturbance rejection and Eq. (3.9), let w, = 72 and
assign £, an arbitrary small number with M, = 1. Besides, a low-pass filter is cascaded to
template W, because there is an integrator already in P(s). Thus, the weighting function

W, becomes

s+ 72 s/10 41
W, = : 3.22
le—3s+72 5+ 001 (322)
From Eq. (3.16), let O = 0.6 X 1%0 and
20 0ax 1.2. %180
W, = i ki (3.23)

Omaxs + 2|y _ggemo 0.6 X 180s + 271
Gather the designed weighting functions and apply to MATLAB function 'mixsyn’ with

plant transfer function P, a H., controller is generated that

o e 7.727e — 455 + 55645 + 3.332e65% + 6.39e5s* + 6063s + 0.06057
hinf ™ 56 781.05% + 1.238e5s* + 8.632¢657 + 3.994¢652 + 3.916eds + 0.09083

(3.24)

with v = 1.956. System performances are listed in Table 3.1. It can be found that the
system with the controller KY;, ¢ fits the bandwidth specification, but delay tolerance and
disturbance rejection requirements are unsatisfied. This means weighting functions need

to be further adjusted.

3.3.3 Adjust H,, Algorithm Property

Generally when the stability of a NCS is considered, a control strategy is to maintain a

proper phase margin for the closed-loop system since the delay time may vary in a NCS.
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Table 3.1: Specification for system performances.

Kleaq | desired | Kyipf

freq. crossover(rad/sec) | 2.87 12.5

phase margin 101.3° 80.2°

max Ty(sec) 0.616 0.6 0.11
bandwidth(rad/sec) 2.39 >24 | 15.6
|K'S(j100)|(dB) 1628 | <0 | 19.1

' , COLOF:;V:QZW tO_ Jcontroller ) plant y;
network
/7 /7

Figure 3.6: New NCS control structure with a forward compensator.
However, due to the fact that the phase lagged caused by network delay as
Ze T = —ju, (3.25)

the delay-induced phase lag increases as frequency increases. To maintain the same phase
margin, it needs a lead compensation in the higher frequency range. Controllers designed
by H,, algorithm only considers magnitude response and it actually decreases open-loop
gain to maintain system stability. When open-loop gain within some frequency band
is lower than one, the input sinusoidal signals within this frequency band can tolerate
arbitrarily large network delay without causing system instability in closed-loop system

respomnses.

However, reducing open-loop gain slows system response and there is a trade-off
between delay tolerance and bandwidth, even with the H,, algorithm. To conquer this
problem, a forward compensator is applied before system input node, as shown in Fig.
3.6. Therefore, H,, algorithm is used to satisfy the delay tolerance requirement, and a

forward compensator is designed to improve system performance.

Firstly, adjust weighting functions to meet stability requirement. Let w, = 0.1 and

30



_. 50 _. 100
[aa] [an]
z T 50
3 38 =
2 0 = 2 0 == T
= = 2 —
g =~ g0
-50 -100
90 ——— 180
S N > I
3 R N e ) RN
g 0 g 0 ~3
© ] ~
ey e ~
[[ o ~
-90 = - = -180 = = =
10 10 10 10 10 10
Frequency (rad/sec) Frequency (rad/sec)
T openloo|
200 200 P P
o [
T 100 T 100
(3] [}
E o ———= —_— - S 0
= - Z
g -100 § ~100
-200 -200
O——==== — 360
=) ~ =)
s N s S
o -180 S s 0 -== T
%] %] ~
© N © =
= =
o o
-360 -360

Frequency (rad/sec)

Frequency (rad/sec)

Figure 3.7: Sensitivity functions and weighting functions. (Solid: weighting functions;

dotted: sensitivity functions.)

Omax = 36.4, and a new controller is generated that

S a;st

Sh (3.26)

Khinf mod =

with v = 1.4527 and

- |

[1 200.6 3.409e6 1.747e¢6 3.37e7 6.505e7 8.373eb 0.08372]. (3.27)

0.0015 1.082e4 2.056e6 1.083e8 7.026e6 5.949¢4 0.5942},

System performance indices are listed in Table 3.2. It can be found that delay tolerance
is enlarged with the trade-off as a low bandwidth. Frequency responses for sensitivity and

weighting functions are shown in Fig. 3.7.

3.3.4 Order Reduction for the Controller

The order of controller designed by applying the H, algorithm equals to the summation
of orders of plant P and all weighting functions Wy, W, and W;, and is generally much
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Figure 3.8: Frequency responses before and after controller order reduction. (Solid: before

reduction; dotted: after reduction.)

higher than it requires. By observing magnitude in the frequency response, it can be
found that not all poles/zeros play. major on control performance or system stability.
Therefore, other reduction methods can be also applied, such as pole-zero cancellation.
From the Bode plot of the controller, there are two pairs of nearby pole and zero in
high frequency(> 10%(rad/sec)) and low frequency(< 107%(rad/sec)) that they have no
significant effects on system performance and stability. Performing pole zero cancellation
to these two pairs of pole/zero can reduce the controller order without degrading system

responses. After pole-zero cancellation, a fourth-order controller is acquired

104.9764(s + 0.05495)(s2 + 190s + 10000)

P _ 3.28
hinf_loop ™ (740.84) (s + 2.147)(s2 + 153.35 + 7128) (3.28)

The frequency responses for controller and after order reduction is shown in Fig. 3.8.

Their similarity within specified frequency bands can be found.
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Figure 3.9: Hlustration for H,, NCS controller design.

Table 3.2: Performance comparison.

desired | without pre-filter | with pre-filter
freq. crossover(rad/sec) 2.74 2.74
phase margin 121° 121°
max Ty(sec) 0.6 0.772 0.772
bandwidth(rad/sec) >2.4 0.07 6.42
|K.S(j100)|(dB) <0 -1.6 -1.6

3.3.5 Forward Compensator Design

To enhance delay tolerance, the H,, algorithm tents to lower open-loop gain and causes a
magnitude lack in the high frequency region, as shown in Fig. 3.9. It can be compensated
by a forward compensator. After H,, controller order reduction, a forward compensator

is then designed that

. 1+1 . 1
5/0.009561 + )(s/o 03578 + > (3.20)

K- =
hinf_pre < 5/0.01 + 1 5/0.05495 + 1

which is basically a high-pass filter with two pole-zero pairs as shown in Fig. 3.10, and aims
on compensating magnitude response lack within some frequency range. The maximum
gain value is 4.12(dB), and system performance with a forward compensator is listed in

Table 3.2.
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Figure 3.10: System responses after a forward compensator applied.

3.3.6 Simulation

Comparison in the system bandwidth for different controllers are shown in Fig. 3.11. It
can be found that the H,, algorithm with modified weighting functions design enlarges
the bandwidth from 2.39(Hz) to 6.42(Hz) compared to the original lead controller design.

The rising time also decreases from 0.915(sec) to 0.338(sec).

The stability improvement can be observed by comparing transient responses under
different network delay conditions. Fig. 3.12 shows the system responses with different
controllers for a 1(Hz) input signal with varying network delay. With the delay time
T,; = 0, both controllers have similar transient responses, but system controller by lead
controllers has smaller amplitude due to its smaller bandwidth. When a network delay
Ty = 0.7(sec) is applied at t = 0.7, the delay tolerance of system controlled by applying
the lead controller is not held anymore and the system becomes unstable. (See Table
3.1). Meanwhile, although the tracking performance for H, control is thus degraded, the

system still remains stable.
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4 1 Hz signal with different delay
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Figure 3.12: Transient response for different controller, with a 1Hz sine wave input and a

delay Ty = 0.7 after ¢t = 19.
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3.4 Summary

In this chapter, the following results can be summarized as:

1. The rules for designing template of weighting functions under the mixed synthesis
framework is described, and the steps for H,, NCS controller designed is illustrated

with the identified plant from a servo motor system.

2. The control structure with a forward compensator is provided that it improves the
system performances while still keeping its stability. Simulations shows the H.

design lead to larger delay tolerance and higher bandwidth.
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Chapter 4 Analysis of Message Estimation
for the Dropout

4.1 Markov Chain as Network Model

The network structure between the controller and the plant is shown in Fig. 4.1. The
plant with the actuator and the sensor is considered as a continuous linear system,
and a DSP micro-controller adopted as a network node with a sampling period h. Let
T, = [ TS T ]T, and 7.¢, 7. be the kth term of sensor-to-controller delay time and
controller-to-actuator delay time, respectively. Suppose that the delay 7, is determined,

a Markov state r; is then assigned and
nee{1 -, s} (4.1)
Denote Y} as a set that contains every previous Markov states and delay time, that is,
Yy = { To~ Tk, To ™~ Tk } (4.2)
The property of a Markov chain for‘every-measurable set F' has the relationship that
P(r, € F|Yi_1,7) = P(11. € F|r1) (4.3)

Eq. (4.3) means the probability that delay time 7, appears can be derived directly from

current Markov state . Let @ = {g;;} be the Markov transition matrix where

dij :P<rk+1 :j|Tk:Z>, Z7] € { 1, e, S } (44)
h continuous h
r DSP y
Jcontroller| node H actuator plant i,| sensor
Network &t
/ /

Figure 4.1: A NCS block diagram.
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) ‘8‘ "

Figure 4.2: A two-state Markov chain with transition probability ¢; and ¢».

and let m;(k) = P(ry = i) be the probability of each Markov state, and denote 7 (k) as the

Markov probability distribution vector that
m(k) = | m(k) m(k) - m(k) |- (4.5)

A single step transition of Markov chain can be represented as

©(0) = mp
m(k+1) = 7n(k)Q. (4.6)

A simple illustration of a two-state.Markov- chain is shown in Fig. 4.2.

When Markov chain model-is used for network analysis, it is generally assumed to

be stationary and regular and the limit of probability distribution

7 = lim 7 (k) (4.7)

k—o0
exists and is independent with 7(0). After a long transition time and suppose 7 (k) is in

a steady state 7°°, then
T°Q =7, and wao =1, (4.8)

and 7 can be derived uniquely from the equation above. For example, consider a two-

state Markov chain with state transition probability

Plry =1lree1=1) = ¢ (4.9)

P(Tk = 2|7’k—1 = 2) = ({2

or in a matrix form
q1 1—q

Q= . (4.10)
l—q@ @
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Generally, network is on when the first data received, so my = [ 10 } From Eq. (4.8),
7> can be derived by calculating the eigenvector e with eigenvalue A = 1 of the matrix

QT — I. In this case,
-1 T .
e= [ 1ot ] with A=1 (4.11)

and the steady-state probability distribution 7> is

wwz[ 2ol _qi-l ] (4.12)

a+q2—2  gq2tq1—2

4.2 System Stability with Markov Chain Network

Consider a discrete plant

Trr1 = Pxp+ Tup + vp

e = Cap+wy (4.13)

where x(t) € R", y, € RP, and vy; wy are uncorrelated Gaussian noise with average 0 and
covariance matrices R; and R,. A general form of controller K, is
Tipr = QT ri)ay + T(7h, 1) Us (4.14)

up = CN7g, )25 + DTk, Tr) Yk

which is a time-varying system. If network delay occurs, ®¢ and I'® change with different
value of rp and 73, the Markov state and the delay time, separately. Combine Eq. (4.13)

and Eq. (4.14) into a new state space equation as

Zk+1 = CI)Zk + f@k (415)

where
T T

Zg = [ xi o (xf)T } , ek = [ vl wf ] ; (4.16)
and

_ o+ I'DC T'Ce _ I I'D¢

o = . I = (4.17)

re<c ¢ 0 TI¢



with the covariance matrix

Ry 0
R= . (4.18)
0 Ry

Define the conditional state covariance P;(k) as

Pi(k) = By, _, (z2p e = 9) (4.19)
and

Pi(k) = Pi(k)mi(k) = By, _, (212] 1r,=i). (4.20)

If the covariance matrix in Eq. (4.19) is bounded, the closed-loop system in Eq. (4.15)
can be thus considered as BIBO stable. It can be shown that the vectorized form of P (k)

satisfies the recursion as [20]

P(k+1) = (QF ® Idiag(A) P (k) + (QF ® I)(diag(m(k)) ® )G (4.21)
where
Pk) = [vecﬁ’l(k:) vecBy(k) o vecﬁs(k)]T (4.22)
G = [Vecgl vecGy - veel, }T

and

Ai = B (B(1) @ (1)|re = 1)

G = E, (C(m)RCT(73)|rk = 7). (4.23)

From Eq. (4.21), if the stability matrix
V = (Q" ® Idiag(A;) (4.24)

has all its eigenvalues inside the unit circle, P(k) is bounded, thus the covariance matrix
P;(k) is also bounded. Therefore, the closed-loop system is stable in the BIBO sense. For
example, the stability matrix V of a NCS with network modeled by a two-state Markov
chain is

@A (1= q2)As

V= (4.25)
(1—q)A 02 Az
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where

A =E, (®(i) @ (i), i € {1,2}. (4.26)
Moreover, if ®(r) is not a function of 7,

A =0() @ @), i € {1,2}. (4.27)

This happens when the network dropout is modeled as in a Markov chain mentioned later

in section 4.4 and section 4.5.

4.3 Network Dropout Modeled by the Markov Chain

4.3.1 Network Dropout

Consider an NCS with network transmission dropout modeled by a a two state Markov

chain [9]. Define the Markov states 7} for the kj, network transmission as

1, ki, data received,
e (4.28)

2, kyp, data dropout,

as shown in Fig. 4.2. Generally this happens when 7 is near h and the processing time
left is not enough. The state transition matrix ) is in the same form as Eq. (4.10). Let
Ty = [ 10 ] , the average dropout rate P, can be derived from the stead-state probability
distribution 7 as in Eq. (4.12) as

¢ —1
Pf=——. 4.29
I G2+ q — 2 (429)

The relationship between ) and the average dropout is shown in Fig. 4.3, which the stair
curves for constant dropout rate are straight lines that end up in [g1,¢] = [1,1]. For

instance, the plot in 4.4(a) has P; = 0.5 and 4.4(b) has P, = 0.385. Clearly, even with

identical P; values, the network situations could still be different with different Q).

4.3.2 Markov Model Measurement

When using Eq. (4.24) to determine the stability of a specified NCS, it is crucial to know

the value of Markov transition matrix ). Generally, it can be calculated from a series
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Figure 4.4: The two-state Markov chain with (a) [¢1, ¢2] = [0.5,0.7] and [0.7,0.7] (dropout
rate 0.5) (b) [g1,¢2) = [0.5,0.2] and [0.7,0.52] (dropout rate 0.385).

of network transmission data with enough data length. Several examples for a two-state
Markov chain are shown in Fig. 4.4 with a data length 300. The values of steady-state
probability distribution 7 are identical in both Fig. 4.4(a) and 4.4(b), and obviously

that different () values cause different distribution for r.

However, the exact value of () is unknown, and it needs to be found from measured
data set as in Fig. 4.4. A general algorithm to estimate () is shown in Algorithm 4.1.
Perform this estimation for 100 times with different ) and the mean error are shown in
Table 4.1. It can be found that for data length equal to 300, the mean error for estimated
Q is around 3%. Fig. 4.5 shows that Q converges after about 150 samples. In ¢; — ¢
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Algorithm 4.1 Estimating Q

1. Assign a Markov state r; to each network instance k.

2. ¢;j equals to the count of state transition from 7; to r; is divided by total appearance

and
Zk:(ﬁ — ;)
>.(ri)

k

qij(k) =

3. Form the matrix Q with elements in the it}, row and jip, column be qij(k), where k

is the maximum data length.

plane, the measured value will stay in a small region near the actual (). The measurement
precision increases as the data length increases. Normally, larger ¢; converges faster in

estimation.

Table 4.1: ) estimation with different Q.

case 1 case 2 case 3 case 4
[q1, q2](%) 50 50 70 70 50 20 70 52
mean error(%) | 3.2 | 337728 | 3.1| 30| 31| 27| 3.8

4.3.3 Dropout Estimation

To overcome network transmission dropout problem, data estimation methods are used.
From Fig. 4.6, there are two separate estimations needed in the controller-to-actuator
path and the sensor-to-controller path. Since the tracking signal r is arbitrarily given, the
estimated signal can also be regarded as both the model-based and the model-free signals.
These two kinds of signal are estimated in different ways using the model-based least
square fit (MBLSF) and the model-free least square fit (MFLSF) methods, respectively.
For simplification, each situation is analyzed independently. The network connection is

treated as a single direction only in one way because of the complexity in real analysis.
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Figure 4.6: Markov network with dropout and the forward and feedback estimation.
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4.4 The MBLSF Estimation

4.4.1 Structure

Consider the NCS with a plant P, the controller K, with feedback control that
u=—K.y. (4.30)

Assume that the network connection is only between sensor-to-controller path. Therefore,

the plant P becomes

Trp1 = Az + Buy (4.31)
Y = OZEk + Duk
and controller K. becomes

up = Cox$ + Do(—9k)
When network dropout occurs, an estimation method is applied to the controller input
signal such that

Yk, if rp = 1(normal),
y (4.33)

Uk, if rp = 2(dropout),

<
BN
Il

where g, is the estimated value. Since plant input u, and output y; are fully known in
the controller side, g can be also estimated from model-based estimation methods. From

the past W points, y and u has the following relationship [14] :

yew = Cwap—w + Dwugw (4.34)
where
T
wor = [l oy el |
Yew = [y,?,l Yio yszr (4.35)
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and

Cw

[ (C«AW71>T (C«AW72)T

D CB CAB
0 D (B
0 O
0 O
0 O

(A" ()"

CAV-3B CcAV-2B |
CAV-B CAV-3B

D CB CAB
0 D CB
0 0 D

T

(4.36)

The value of x;_y can therefore be estimated from a model-based least square fit estima-

tion that

Tp—w = (Ctj/Iﬂ/CW)ilclj/;AYk,W — Dwugw).

and g, can be calculated from Z;_y that

where

H
Bw

=1

CAY(Chew)Ch

[ CB (CAB

w
CAV&_w + Y CAT Bug—i+ Duy

CAV-2B CAV-1B ] .

Hyew + (Bw — CAY (G Cor Y Cry Dy )ugw + Dy,

(4.37)

(4.38)

(4.39)

Note that W must be larger or equal to the order of zy, otherwise Cf;,Cyy will be singular

and 7 cannot be found. In other words, there must be more samples than unknowns.

Rewrite Eq. (4.38) in a matrix form as

U = Hyrw + Tugw + Duy,

where

T = By — CAY (CE Cyw) ' CE Dy
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and a time-varying state space equation can be constructed from xy, xf, Gy w and yiw

which

i1 = Pu(re)sn (4.42)
where
T
se=| ol @R ulw vhw ] (4.43)
and
A— BE;D.C BE,C. 0 0
B.EpC A.— B.DE,C. 0 0
, T = 17
_ElT,W—lEchO ElT,W_1EdCc Eow-1 0
~Bly_\EpC  Ely,_DE,C. 0 Euw_1
D (1) = A BE,C. —BE,D.T —BE,;D.H
0 A.— B.DE,C. B.EpT B.EpH
0 BTy EC. Bgwii=Ely, E.D.T —ELy, _ EsDMH
L Ty = 27
(4.44)
with
Oixx O
Eu,K - § ) EI,K = [ 1 Oixk ] (445)
Ik Ogxi
and
E;=(I+D.D)"', Ep=(DE;D.—1I). (4.46)

System stability can be thus determined by applying ®4(ry) to Eq. (4.24) and check its

maximum eigenvalues for different Markov transition matrix Q).

4.4.2 Simulation Setup

A plant P obtained from a real networked servo motor system [17] is adopted as

8.04 1
Pls) — 1 447
(s) (1+0.00167s) s (4.47)
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which is the velocity-loop model with an integrator by expending the velocity-loop plant

into the position loop. A controller K, is chosen as
K.(s) = 10. (4.48)

The sampling time h is set to be 2(ms). By discretizing the plant P into a state space

form, the plant model becomes

T
1.3019 —0.6038 0.125 0.0537
A= , B= , C= (4.49)
0.5 0 0 0.0723
and D = 0, and the controller K. becomes
A.=0, B.=0, C.=0, D.=10. (4.50)

In each sampling period, a packet is transmitted through the network between controller
at the remote site and the plant in the near site. If the packet does not arrive in time,
the control algorithm will replace it with an estimated value. This process is modeled by
a two-state Markov chain as in Eq.(4:28) with a pre-specified . The input signal 7y, is

chosen as

re = sin(0.05k), k € {1,2,.7.1000}. (4.51)

4.4.3 Stability

Assume the network connection work as described in Eq. (4.31) and (4.32), a simulation is
tested by applying ®;(r%) to Eq. (4.24) and the maximum eigenvalue of V' with different @
is also calculated. Because P is with an order 2, the minimum value for W is 2. Estimator
coefficients H and 7 for W < 4 are listed in Table 4.2. For example, the estimation for

yr when W = 2 is
U = 1.3019y,—1 — 0.3019y;_2 + 0.0067us—1 + 0.0045us_o. (4.52)

The maximum eigenvalues max |\| for W = 2, 3 versus ) are shown in Fig. 4.7. For both
cases, the values of max |A| only exceed or equal to 1 when ¢ga = 100%, that is, when the
network is fully occupied. Otherwise, the model-based LSF is always stable according the

the present analysis.
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Table 4.2: 'H and 7 values for plant P withI < 4.

w H T

2 [1.3019, —0.3019] [0.0067,0.0045]

3 [0.6936, 0.4901, —0.1837] [0.0067,0.0086, 0.0027]

4 1 [3.136,3.057,2.797,1.934, —0.924] . 10— | [0.067,0.111,0.09,0.051,0.014],10-

4.4.4 Tracking Performance

Time-domain illustrations are shown in Fig. 4.8 and Fig. 4.9 under a relatively undesirable
network condition [g;, ¢g2] = [0.1,0.8]. Note that the system remains stable as predicted.
The root mean square (RMS) error is 0.122 x 1073, which is neglectable. When noise
v exists in sensor feedback, a larger W renders a smaller noise effect and it leads to a
smaller RMS error. This is shown in Table 4.3. Therefore, W value should be properly
chosen to minimize calculate efforts and noise effects with practical concern. In the present

simulation, W = 3 is the best choice;'asshown in Table 4.3.

Table 4.3: Tracking RMS error and the maximum error with different order of MBLSF

estimations with [g1, ¢2] = [0.1,0.8] simulated with a noise vy = uniform[40.1].
W | RMSx10% | max |e|x10?
2 78.974 289
3 68.287 192
4 65.739 187
d 63.604 181
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4.5 The MFLSF Estimation

4.5.1 Structure

Assume that the network connection is only in the controller-to-actuator path. The plant

P is discretized into discrete state space form that

T = Az + By (4.53)
Yp = Cxy + Dy,
and controller K.(s)
Thp = Acrp+ Be(—y) (4.54)

up = Cexy + De(—yr)
When network dropout occurs, an estimation method is applied to the controller output
signal such that

U, 7 = l(normal),

Uy = (4.55)

Uy, 711 = 2(dropout),
where 1, is the estimated value. Since u, contains information from r;, and can only be
estimated from model-free estimation methods. Suppose that uy, is a Ny}, order polynomial

function with variable t; [15],
ur = co + c1ty + czti 4+t cNt,iV (4.56)

where ¢; € R and ¢, € Z, because Eq. (4.56) is used in a discrete-time system. The
ki}, data can be then estimated by a model-free least square fit method from previous M

points with Ny}, order estimation. Let tx_5,—1 = 0, thus

u, v = Ly ven (4.57)
where
T
wear = [l ol ol |
T
cN = [CO CHREE CN} : (4.58)
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and

1 M MN
1 M-1 --. (M — l)N

LM’N = ‘ ' ‘ . . (4.59)
1 1 1V

The estimated 4y, is

ik = barn (L v Lingy) Ly v (4.60)
where

buny=|1 M+1 (M+12 - (M+DY | (4.61)
Rewrite Eq. (4.60) in a summation form that

M
ﬁk = ijuk_j (462)
j=1

where p; are coefficients calculated from the MFLSF estimation above. Combine the

estimated data 5 when network-dropout oceurs-and received data uy s into a vector

Upy1,m = Pug oy (4.63)
where
pr P2 - PMm
1 0 --- 0
0 --- 1 0

For example, when M = 3 and N = 2, the matrix becomes

I
(e — ol
— O Wi
=
i

o

A time-varying state space equation can be constructed from xy, xf, and 1y s that

Zgr1 = Po(rr) 2k (4.65)
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where

T
2=y (2p)" (W)’ (4.66)
and
. _
A—- BE;D.C BE,C. 0
B.EpC A.— B.DE,C. 0 s =1,

—E{yE;D.C  E[yE.C. E,n
D,(r,) =4 F - - (4.67)

A 0 BENP
~B.C A, —B.DE,xP | Ty = 2.

0 0 P

\ L _

System stability can be thus determined by applying ®s(rx) to Eq. (4.24) and check its

maximum eigenvalues for different Markov transition matrix Q).

4.5.2 Stability

Assume that the network connection works as described in Eq. (4.53) and (4.54), the
simulation is peformed with the same setup in section 4.4.2. Estimator coefficients for

M < 3 are listed in Table 4.4. For example, the MFLSF with M =2 and N =1 is
'LALk == 27«_%71 - ﬂk,Q. (468)

Apply ®o(ry) to equation Eq. (4.24) and calculate the maximum eigenvalue of V' with
different ). The calculated results are shown in Fig. 4.10. Each line represents the
boundary between max|A| < 1 (top-left) and max|A| > 1 (bottom-right), or the stable
and the unstable regions, respectively. The stable area increases as M increases or as
N decreases. Compared with Fig. 4.7, MFLSF is more likely to be unstable and is the
dominant factor for dropout estimation stability. As stated in Eq. (4.24), system stability
criteria defined here is BIBO stability. That is, if ) is located in the unstable region but
not very far from the boundary, the system response will have bounded RMS error but
unbounded maximum absolute error. Fig. 4.11 shows a NCS with the same () value

with different M and N. When N increases, the stable region becomes smaller. It is
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possible for a specified @ being BIBO stable in MFLSF(1,0) but not in MFLSF(2,1) or
MFLSF(3,2).

Table 4.4: [p;] values for M < 3.

M\N 0 1 2
1 [1] - -
2 [3 3] [2 —1] -
3 |05 35 3))lsg 3 —31][8 -3 1]

4.5.3 Tracking Performance

Generally, the value of N in MFLSF is with the most concern and M is set to be (N +1).
Theoretically, higher order of N can preserve higher-order natures of those data to be

estimated and therefore, it has better tracking performance. RMS error with different
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Figure 4.11: Time responses for MFLSF(1,0), MFLSF(2,1) and MFLSF(3,2) and [¢1, ¢2] =
[0.4,0.2].

MFLSF estimations are listed in Table 4.5, and they are in good agreement with predicted
results. However, higher N also causes MFLSF to have smaller unstable area in () plane,

and it leads to unbounded maximum tracking error, as listed in Table 4.6.

Table 4.5: RME error for MFLSF estimations with different [¢y, ¢o].

[q1,¢2] | MFLSF(1,0) | MFLSF(2,1)
[0.7,0.2] 4.34 0.54
[0.4,0.2] 6.19 1.59
[0.7,0.4] 8.06 2.00
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Table 4.6: The maximum tracking error for MFLSF with different [g¢1, go].

[q1, 2] | MFLSF(1,0) | MFLSF(2,1)

0.7,0.2] 7.36 13.02
0.4,0.2] 9.13 327.89
0.7,0.4] 19.23 137.88

4.5.4 Estimator Switching Policy

From the previous analysis, there is a trade-off in selecting N between RMS error and
maximum tracking error. To conquer this problem, an estimator switching mechanism is
proposed here. Initially, a set of reference points R; is spreaded on the () plane. Each
point has a particular value of @); and its stability with any MFLSF estimator can be
determined and a suitable estimator is assigned to it. A set of 2 x 2 reference points is
shown in Fig. 4.12. When dropout occurs, the local Markov transition matrix @ can be
measured from previous j points by.applying Algorithm 4.1. For example, there are 16
possible values of local Q when j = 5, as-:shown'in Fig. 4.12. For each reference point R;,
the probability can be found for-a generated data set with length 7 has a local Markov
transition matrix ), which is different from one another. For each local @;, there exists

a reference point R; such that

and is has the maximum likelihood. Normally, Q; and R; are nearby points on the
@ plane, as shown in Fig. 4.13. A switching mechanism according to the maximum

likelihood relationship is shown in Algorithm 4.2.

Consider the plant P and controller K. in Eq. 4.47 and 4.48 with estimators
MFLSF(2,1) and MFLSF(1,0), a local @ estimation with a set of 2 x 2 reference points and
j = bis applied. System performance for local () estimation compared with static MFLSF
estimations is listed in Table 4.7. Clearly, the proposed algorithm possesses benefits from

both estimator MFLSF(2,1) and MFLSF(1,0).
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Algorithm 4.2 MFLSF estimation based on local Q.
1. Calculate the stable region for each MFLSF estimator candidate to be switched.

2. Put h x h reference points R; uniformly on @) plane and define the length j for
local Q estimation. For each R;, there is a MFLSF estimator with the best tracking

performance.

3. From the maximum likelihood relationship stated in Eq. (4.69), each @Q is assigned
a MFLSF estimator according to the reference point R;, as shown in Fig. 4.14 and

Fig. 4.13.

4. When dropout occurs, estimate local @ value from previous j-point dropout se-

quence.

5. Switch current estimator to a MFLSF estimator based on the estimated local Q.

0.5 ! ! ! ! ' '
: : : : B [1/4,1/4]
: : : : — % [3/4,1/4]
0.4} . . . . —o—[3}4,3/4] 4
f : f f f maximum
03+ il
=
3 : : : . : :
g ' ' ' f f f
Q 02k / * i
0.15 |- /. |
01l / / \ |
0 e | i - =
0 2 4 6 8 10 12 14 16

16 local Q with j=5

Figure 4.14: The probability values for each local Q from 4 different reference points.
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Table 4.7: Tracking performance for static MFLSF estimation and MFLSF with local @
estimation with (a)[g1, ¢2] = [0.7,0.2] (b)[g1, 2] = [0.4,0.2], and (c) [q1, ¢2] = [0.7,0.4] .

[0.7,0.2] MFLSF(1,0) | local @ | MFLSF(2,1)
(@) |  RMSyq03 4.34 2.54 0.54
max |Ay| 102 7.36 9.13 13.02

[0.4,0.2] MFLSF(1,0) | local Q | MFLSF(2,1)
(b)  RMS, 03 6.19 5.15 1.59

max |Ay| 102 9.13 13.49 327.89

[0.7,0.4] MFLSF(1,0) | local Q | MFLSF(2,1)
()|  RMS.,qq: 8.06 5.73 2.00
max |Ay| 102 19:23 19.17 137.88

4.6 Summary

In this chapter, the following results can be summarized as:

1. Two types of estimators MBLSF and MFLSF for the network dropout are proposed.
With the network modeled by a two-state Markov chain, stability criteria for each
estimator is also determined. Simulations with different Markov transition matrix

@ verify the present results.

2. Simulations for the network dropout with different estimators are performed, and
analysis of the tracking performances for estimators with different parameters M,
N, and W are also provided. An MFLSF estimator switching mechanism based
on local @) is proposed that it can maintain the tracking performances even under

different network traffic situations.
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Chapter 5 Conclusion

5.1 Conclusion

In this thesis, networked control systems under three different circumstances are discussed

as follows:

1. A general method based on optimization process is proposed for PI controller auto-
tuning. Once the bandwidth requirement is specified, control parameters can be
automatically updated and finally being tuned up with the set bandwidth. Several
simulation and experimental results have verified the usefulness and repeatability

of the proposed algorithm for NCS.

2. Also, rules of H,, algorithm for NCS design are proposed. By considering the tol-
erated time delay, the proposed Hx design method has an advantage that several
system performance requirements c¢an be transformed into weighting functions and
are used in the mix synthesis framework.’ A control structure with forward compen-
sator to avoid delay tolerance and bandwidth trade-off is proposed to satisfy both

requirements.

3. Finally, network dropout estimation methods in both controller and plant side of the
network are proposed in this thesis. Two estimators MFLSF(M,N) and MBLSF (W)
with criteria provided. The MBLSF estimator is almost guaranteed to be sta-
ble and with nearly zero tracking error due to its model-based nature. Different
MFLSF(M, N) works with varied performance under differently Markov transition
matrix (). Moreover, a switching mechanism is proposed to reduce both RMS error

and the maximum tracking error simultaneously.

5.2 Future Work

Although different methods are proposed to maintain system stability and performance

requirements under different network situations, an overall structure that combines all of
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them is not provided. In practical situations, this should be implemented with the ability
that different methods can be switched actively when the network situation changes. To
do so, a general yet effective way to detect the current network situation is also needed,

which is hard to achieve for different types of network.
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