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對於網路入侵偵測系統之功能平行化樣本

比對演算法
學生：洪精佑 指導教授：黃育綸 博士

國 立 交 通 大 學電機與控制工程學系（研究所）碩士班

摘 要

在網路入侵偵測系統(NIDS)中，處理封包速度過慢的NIDS對於所保護的系統會有安

全性上的漏洞。其中，樣本比對演算法佔著影響系統效能的關鍵性角色。在本篇論文

中，我們試著分析目前NIDS中常見的樣本比對演算法，並且針對不同的演算法探討影響

其效能的因素。我們發現，樣本群中最短樣本的長度對於Wu-Manber演算法有決定性的

影響，當最短樣本的長度太短，會使其演算法效能過慢，另外同字首的樣本數量過多也

會拖累比對的速度，而使得攻擊者可經由設計封包內容大量使用此字首拖累比對的速

度，此稱為演算法攻擊(Algorithmic Attackes)。而對於Aho-Corasick演算法，長度短的

樣本或是相同字首的樣本群卻可使比對速度快過一般的情況。因此，我們提出結合此兩

種演算法的資料結構，並且透過功能平行化的方式將演算法對應到多核心系統中，可加

速樣本比對的速度，並使得儲存空間在可接受的範圍。透過比較各個演算法的實驗，我

們可得到使用功能平行化的比對演算法在雙處理器系統上比起原先的演算法最快可達

2.2倍的效能。並且對於演算法攻擊有一定的防禦力。
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Abstract

Pattern-matching algorithms are the core of network intrusion detection systems (NIDS).

The performance of a good pattern-matching algorithm hence dominates the processing time

required for deep packet inspections. In this research, we discuss the factors that can affect the

performance of a pattern-matching algorithm. Such factors include prefixes of rules and lengths

of the longest rules in a ruleset. Previous work to improve the performance of matching patterns

(Wu-Manber's and Aho-Corasick's algorithms) adopt either a hash table or finite automaton to

store the rulesets. None of these algorithms considers the parallelization when running on multi-

core systems. Herein, we propose a new pattern-matching algorithm for NIDS that can be easily

adapted to multi-core systems. Our algorithm is composed of a search mechanism based on

the function-parallelism approach and a composite data structure, combining the hash table and

finite state machines. We conduct a series of experiments to show that our algorithm is 2.2 times

faster than the Aho-Corasick algorithm and 1.21 times than Wu-Manber's in a dual-processor

system.
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Chapter 1

Introduction

1.1 Background

The popularity of networking brings easy data access, but also makes system vulnerabil-

ities exposed to the public. According to the statistics published by CERT [1], there are over

31,118 vulnerabilities being cataloged since 2004. Deploying shelters and alarms of attacks then

becomes one of the major challenges to enhance the network security. In recent years, many

researches focus on designing and developing network intrusion detection systems (NIDS) to

monitor the network traffic and efficiently detect the malicious packets or flows. The existing

NIDS systems [2][3][4] detect the malicious behaviors by comparing incoming packets with sig-

natures and rulesets pre-stored in the database. Since some malicious codes may be concealed

inside payloads, the NIDS systems adopt detection engines to check the content of payloads. A

detection engine is a component of NIDS that takes data from the packet decoder and compares

it against the rules configured in the NIDS. However, investigating a data payload is a com-

putational consuming work and may congest the whole NIDS. A study of NIDS[5] shows that

the detection engine takes about 75% of the total computing time of a NIDS. In other words,

a delayed detection engine may expose the NIDS to a vulnerability of dropping packets with

potential attacks.

The delay of a detection enginemay come from the pattern-matching algorithms, which con-
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tribute most in searching and detecting malicious signatures. Since different pattern-matching

algorithms adopt different searching methods, some of them can get better efficiency with dif-

ferent types of patterns. Some of them take less time in searching patterns, while some others

require lessmemory in storing rulesets. Many existing pattern-matching algorithms either intend

to improve the searching speed or reduce the storage cost when running on a single-processor

system, but none of them consider the parallelization when applied to a multi-processor system.

Trivially, a multi-processor system can improve the performance of detecting malicious

signatures by simultaneously running the pattern-matching algorithms. However, by applying

data-parallel approach to redesigning a pattern-matching algorithm may better improve the per-

formance of a detection engine running on a multi-processor system. The data-parallel approach

divides a payload and dispatches sub-payloads to parallel processors[6]. Such an approach re-

quires an elaborate dispatcher for dispatching payloads and balancing data flows; otherwise

synchronization between processors are required to prevent race condition when processing pay-

loads.

1.2 Contribution

The novel contribution of this paper include:

• we propose a new function-parallelism pattern-matching (FPPM) algorithm for NIDS run-

ning on multi-core systems. The algorithm is composed of

– a search mechanism based on the function-parallelism approach, and

– a composite data structure, combining the hash table and finite state machines.

The function-parallelism approach creates a queue for each processor for buffering pay-

loads to be processed. Based on the function-parallelism approach, payloads are buffered
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in the queues of processors. In such a design, since each processor has its own queue, it

requires fewer efforts to serialize data.

• we implement a detection engine running the FPPM algorithm on both single- and multi-

processor systems. For the realization of FPPM, several modifications were made to the

new detection engine, including separating the buffer queues and enhance the parallelism

of the original detection engine in multi-processor systems.

• we conduct a series of experiments to analyze the performance of the FPPM algorithm

when running on single- and multi-processor systems. From the experimental results, we

show that FPPM can reduce both the execution time and the memory space consumed by

the detection engine.

1.3 Synopsis

This thesis is organized as follows. We review the basic process flow of the NIDS and

examine the pattern-matching algorithms used for the detection engine in Chapter 2. We also

evaluate the performance of these pattern-matching algorithms in Chapter 2. Then, we pro-

pose the FPPM algorithms and study the efficiency of it in Chapter 3. The implementation of

the new detection engine is described in Chapter 4 and the experimental results to confirm the

performance of FPPM are shown in Chapter 5. In the end, we conclude the thesis in Chapter 6.
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Chapter 2

Related Work

In this chapter, we examine the basic process flow of the NIDS and go deep into the most

computing-consuming part -- the detection engine. We use Snort as an example because of its

popularity and clarity. We further classify the pattern matching algorithms used in the detection

engine of Snort. First, we dig inside the structure of Snort and dissect the functional components.

2.1 SNORT

Snort is one of most popular NIDS over recent years for its open-source benefits and flexi-

bility of adapting to different platforms and hybrid network environments. Inside Snort there is

a succession of essential components that process different sector of every packet from the net-

work and detect abnormal situation on the types of network protocols, the network traffic flow,

and the signatures of potential risks. The basic processing flow of Snort is shown in Figure 2.1.

The process flow includes the packet capturer, the packet decoder, the preprocessors, the de-

tection engine and the alerting and logging components[7]. The packet capturer takes charge

of capturing packets from network where NIDS is monitoring. The packet decoder determines

which protocol is in use for a given packet and matches the data against allowable behavior for

patterns of that protocol. The preprocessors can be separated to many different sub-components

including advanced decoding, protocol normalization and attack detection. The detection en-

gine compares packets with the patterns to find signature of malicious codes. The alerting and
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logging components take the appropriate actions in accordance with the signatures found by the

detection engine or the preprocessors.

Packet 
Capturer

Packet 
Decoder

Alerting & 
Logging 

Components

Detection 
Engine

Pre-
processors

Rulesets

Figure 2.1: The process flow of Snort

The execution of a large number of patterns of the rulesets is inside the detection engine. In

the detection engine, the rules used by the detection engine are separated into four rule groups:

TCP, UDP, ICMP, IP. When processing a packet, the detection engine first checks the protocol.

If the protocol is TCP, UDP, or ICMP, the detection engine checks the ruleset for that protocol;

otherwise, it checks the IP ruleset. Then, the detection engine calls prmFindRuleGroup, which

returns the appropriate pattern group based on source and destination ports in the packet, and

passes the pattern-group matching function. Inside the matching function, the detection engine

first checks any rules with uricontents. For each URI marked in the rule by the http inspect

preprocessor, the detection engine calls the setwise pattern engine. After checking each of the

uricontents rules, then the regular content rules are checked in the same manner, last all of the

rules without content.

When checking the uricontents and the content of a packet, the detection engine compares

them with the patterns in the Snort rulesets by a specified pattern-matching algorithm. The

users can specify the algorithms only at the configuration stage of Snort. Since the detection

engine is a critical part of NIDS that affects performance of the overall system, it is important
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to choose a suitable algorithm for different NIDS depending on the capacity of the system. An

improper algorithm will debase the performance of the detection engine immensely. Methods

of choosing a suitable algorithm depend on the hardware capacity such as computing power and

memory space restriction. The type of pattern groups is also an important factor that affects

the performance of the pattern-matching algorithms[8]. We will explain the impression in the

following chapters.

2.2 Pattern Matching Algorithms

The procedure of a pattern matching algorithm can be separated into two stages, the pre-

constructing and searching stage. At the pre-constructing stage, the pattern matching algorithm

compiles the patterns for searching and adopts an optimized data structure to accelerate the

searching speed. For multi-pattern matching algorithms, a group of patterns are enveloped to the

specified structures, so it is capable of searching multiple patterns at a time. The data structure

is stored in the memory for use at the searching stage.

At the searching stage, the algorithm takes the searching text as an input to the pre-constructed

structure and find thematched patterns. Because the amount of the searching text is much ampler

than the amount of patterns, the measurement of the performance of pattern matching algorithms

is by the processing speed of the searching text at the searching stage. In addition, another mea-

surement of these algorithms is the memory space consumed to construct the patterns to the

specified structure at the pre-constructing stage. In this thesis, we use these two measurements

as the indicators to the performance of the pattern matching algorithms.

Basically, patternmatching algorithms used in Snort can be categorized into two approaches,

heuristic-based approach and automaton-based approach [9]. The heuristic-based approach
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skips the dispensable characters to accelerate the searching speed and the automaton-based ap-

proach is based on deterministic finite automata (DFA) to process input payloads against the

patterns. In Snort, The Boyer-Moore algorithm [10] and The Wu-Manber algorithm [11] pro-

cess the pattern matching by heuristic-based approach and the Aho-Corasick algorithm [12] is

an antique but efficient algorithm based on automaton-based approach. These algorithms are

explained in more detail below.

2.2.1 Boyer-Moore Algorithm

The Boyer-Moore algorithm is a speedy pattern matching algorithm because of its charac-

ters skip ability. Two tables, the bad-character shift table and the good-suffix shift table, are

built at the pre-constructing stage of the Boyer-Moore algorithm. The bad-character shift table

records the minimum length can be skipped when searching character mismatches to the right-

most character of the pattern. If the mismatching character of the searching text does not appear

in the pattern, the next character being compared can be skipped the pattern length long. The

good-suffix shift table records the minimum length can be skipped when the suffix of the pattern

matches but a mismatching occur in the middle of the pattern. In Snort, a variant of the Boyer-

Moore algorithm is actually used, which is known as the Boyer-Moore-Horspool algorithm or

Horspool's algorithm which only applies the bad-character shift table.

Given a pattern pat of length m, the bad-character shift table is an array of 256 elements,

which is 256 possible conditions of a one-byte character, with the initial value m. Then, the

pat[m]-th element of the array is set to 0, the pat[m − 1]-th element is set to 1, and so on until

the pat[1]-th element is set to m− 1.

At the searching stage with a searching text tex of length L, the algorithm first get the shift

value by inputting tex[i], where i is initialized as m, to the bad-character shift table. If the shift

7



value is not 0, means that the searching character is not matching to the last character of the

pattern, and the shift value is added up to i and repeat this process. If the shift value is 0, which

means a hit of the last character of the pattern, and tex[i− 1] will be compared with pat[m− 1]

and keep comparing until a mismatch happens or the entire pattern is matching to the piece of

the searching text. This procedure will be repeated until reaching the end of the text.

The Boyer-Moore algorithm or Boyer-Moore-Horspool algorithm has much good perfor-

mance for the lengthy patterns but the drawback is that it can only perform on single pattern

at a time. That is, if the database has n different patterns, the payload of each packet needs

to be checked n times. In Snort, there are over 1000 patterns in a pattern group [13], using

single-pattern matching algorithm makes the detection engine work inefficient due to only one

pattern being searched at a time, so we need multi-pattern matching algorithm that can execute

searching process with multiple patterns at a time.

2.2.2 Wu-Manber Algorithm

The Wu-Manber algorithm is a multi-pattern matching algorithm using the ideas of the

Boyer-Moore algorithm. Like the Boyer-Moore algorithm, Snort actually uses a modified ver-

sion of the Wu-Manber algorithm. For the simplicity, here we refer the modified Wu-Manber

algorithm as the Wu-Manber algorithm.

At pre-constructing stage, the Wu-Manber algorithm maintains a shift table according to

the first m characters of all patterns, where m is the minimum length of all patterns. The shift

table of the Wu-Manber algorithm is similar to the bad-character shift table of the Boyer-Moore

algorithm but based on 2 characters instead of just one. The Wu-Manber algorithm also builds a

hash table that contains all the patterns by hashing first two characters and uses list structure to

connect the patterns with the same hash value. For example, if the ruleset includes three patterns,
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String

apple

misuse

applaud

(a)

Hash

aa

...

ap

...

Shift

4

...

3

...

la 0

... ...

ab 4

(b)

Hash

...

...

mi

ap

...

appleapplaud

misuse

(c)

Figure 2.2: Tables used in theWu-Manber algorithm: (a) Cutting the strings to minimum length
(b) Shift table by 2-byte characters (c) Hash table by the first 2 prefix of patterns

apple, applaud and misuse.the shortest pattern is apple, whose length m is 5. Then the Wu-

Manber algorithm takes the first 5 characters of all patterns to construct the shift tables, showing

in Figure 2.2(a). The shift table is decided by two continuous characters in first m characters

of all pattern. Taking string pl as a example, pl appears in the second word of apple and appla

from the rightmost, so its shift value is 1, showing in Figure 2.2(b). Last, the Wu-Manber

algorithm constructs hash table by the first two characters of all patterns. In this example, apple

and applaud will be in the same list due to the same prefix, Figure 2.2(c).

At the searching stage, the algorithm works like the Boyer-Moore algorithm, using the

(i − 1)-th and i-th, where i is initialized as m, character of the searching text as an input to

find the shift value of the shift table. If the shift value is not 0, then i is added up the shift value

up and repeats the above operation. If the shift value is 0, which means these 2 characters on

searching is matched to (i−1)-th and i-th character of some patterns, TheWu-Manber algorithm

next calls the hash table with the (i−m− 1)-th and (i−m)-th character of the searching text,

gets the head of the list, which links the patterns with the same 2 prefix, and searches through

the list finding the matching patterns.
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2.2.3 Aho-Corasick Algorithm

The Aho-Corasick algorithm is another famous multi-pattern matching algorithm used in

Snort, which construct a DFA structure using every character of each pattern as a link to next

state. At the pre-constructing stage, the beginning state is assigned first. Then the states are

linked to the previous state repeatedly according to each character of the pattern and form a

syntax tree. Figure 2.3 shows a syntax tree using apple and applaud as an example. The

final state is a cycle with boldface. After building the syntax tree, the left links of each state are

linked to the corresponding states. A state, which has 256 possible next conditions of a one-byte

character, has 256 links to next states, and some links point to the states with duplicate prefixes.

Figure 2.4 shows the DFA from the syntax tree of apple and applaud. For the clearness, we

omit the links which point to the beginning state.

1 2 3 4 5

7

8

6

9

a p p l
a

e

u

d

Figure 2.3: Example of a syntax tree

When at the searching stage, the Aho-Corasick algorithm starts at beginning state and each

character of the searching text makes a state transition to the next state. Once current state is

a final state, it means a pattern is found and a message will be sent to the detection engine for

further inspection. The state transition will be executed until the last character of the searching

text is checked.

One obvious drawback of the Aho-Corasick algorithm is that the memory space consump-
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7
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6
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a
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d

a a a
a

a
a

p
a

Figure 2.4: Example of a DFA in the Aho-Corasick algorithm

tion of the DFA structure is considerable. There are some researches [14][15] proposed to reduce

the heavy memory consumption of the Aho-Corasick algorithm, but the addition of operations

used for compress and uncompress the structure also increases the execution time. The total

memory consumption of the DFA structure will be evaluated more accurately in the next sec-

tion.

There is another searching algorithm in Snort, the SFK algorithm, which searches thematch-

ing patterns using byte-trees. The SFK algorithm is for specially low memory computing envi-

ronments and the searching speed is largely slower than the other two algorithms. We assume

the our computing environments are morden personal computers or even network computers

with sufficient memory space so we choose to omit the usage of the SFK algorithm.

2.3 Analysis

For the multi-pattern matching algorithms introduced above, we evaluate the space com-

plexity and the time complexity by different characteristics of the pattern groups. First, we need

to build the performance formulas of the algorithms.

We first define the variable we need in evaluation of the performance of different algorithms.

11



pt is the size of an address pointer, var is the size of an integer variable, Npat is the total number

of the patterns, Lpat is the average length of the patterns and Spat is the size of a pattern element,

which records the necessary items of a pattern, like pattern ID, length, depth and a pointer to the

next pattern.

2.3.1 Space Complexity

The hash table of theWu-Manber algorithm stores the lists hashing by first two characters of

each pattern and therefore it needs 256×256 address pointers to different lists. In all of the lists,

the sum of total pattern elements is included, which increasesNpat×Spat to the total memory

consumption. In addition, the shift table also needs 256×256 integer variables to indicate the

shift length by 2 character input. The total memory usage is:

2562 × pt + 2562 × var + Npat× Spat (2.1)

Also, the Aho-Corasick algorithm maintains a DFA where each state with 8-bits data that

can branch to 256 different results, which means when adding a state to the DFA, 256 address

pointers will be occupied to store next 256 different states from the original state. The total

memory consumption of a DFA is:

256× pt× states + Npat× Spat, (2.2)

where states = Npat × Lpat. By comparing these two equations, we can conclude that the

memory consumption of the Aho-Corasick algorithm expand more quickly than of the Wu-

Manber algorithm when adding new patterns. And for the pattern groups with large average

length, the Aho-Corasick algorithm needs much more memory space to store the DFA structure.
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2.3.2 Time Complexity

The evaluation of the time complexity of different pattern matching algorithm is much more

complicated. To effectively estimate the total time consumption by calculating the most time-

consuming part of these algorithms, we simplified the equations to only measure the number of

memory accesses. The measurement of number of memory accesses may not precisely tell the

total time of execution by the pattern matching processes, but it can reveal a tendency of each

algorithm when bringing into different pattern groups.

For the number of memory accesses in the Wu-Manber algorithm, we also need to define

that SV is the average shift value, Phash(i) is the probability of hash table hit with the amount

of patterns i in the list. We can calculate the number of memory accesses with the searching text

of length L:

L

SV
×

max∑
i=1

Phash(i)× i, (2.3)

where max is the maximum number of patterns of the lists in the hash table. One of the risks of

the Wu-Manber algorithms is that the attackers can elaborately arrange the payload of packets

to shorten the average shift value SV and increase the probability of Phash(i) with large amount

of patterns i, and therefore slow down the speed of the pattern matching process. For the pattern

group with short SV , the attackers only have to increase Phash(max) to efficiently stick the

system.

The Aho-Corasick algorithm bases on the DFA, whose searching time is roughly linear to

the length of payload, O(n), but we further evaluate the number of memory accesses of a DFA.

We define Pcurrent(i) is that the probability of the current state pointing to the i-th state and

Pnext(i) is the probability of the i-th state changing to a different state when inputting the next

searching character, and we get the number of memory accesses with the searching text of length
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L:

L×
states∑
i=1

Pcurrent(i)× Pnext(i), (2.4)

where states = Npat×Lpat and
∑states

i=1 Pcurrent(i) = 1, 0 ≤ Pcurrent(i) ≤ 1. We can predict

the probability is concentrated in the shallow states in the average case, which means Pcurrent(i)

is a rather large number for state i is close to the beginning state. And For a diverse pattern

group, the probability of changing state of the beginning state Pnext(1) is near to 1 with large

amount of patterns.

2.4 Discussion

Now we discuss the effect of the length and the prefix in the pattern groups on both algo-

rithms according to the evaluation above and conclude with some suggestion on separating the

pattern groups.

2.4.1 Length

The Wu-Manber algorithm is a fast multi-pattern searching algorithm but the searching

speed depends heavily on the minimum length of all the patterns which is the maximum length

the payload can be skipped. The minimum length of the pattern group has a direct effect on the

average shift value SV because SV can never exceed the minimum length of the pattern group.

That means longer minimum length in pattern group makes better searching performance to the

Wu-Manber algorithm.

There is not obvious effect of the pattern length on the Aho-Corasick algorithm, but for the

same number of patterns but with narrow average pattern length, theAho-Corasick algorithm can

reduce the total number of states, consequently increasing the cache hit rate and the searching
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speed.

It is a good way to put lengthy pattern groups into the Wu-Manber group for enhancing the

searching speed and put narrow pattern groups into the Aho-Corasick group for reducing the

memory consumption. For only one pattern group, we can separate the pattern group by the

length and construct each pattern sub group by each algorithm to get better performance than

the original algorithm.

2.4.2 Prefix

Also, a large number of patterns with the same prefixes may cause a problem for the Wu-

Manber algorithm that links all the patterns with the same first two characters to a list structure.

When the input of searching text hit the valid hash value of the hash table, a large time cost

will be paid to search patterns through the list. However, in the Aho-Corasick algorithm, the

patterns with the same prefixes means can reduce the former states for construction of DFA,

then reducing the memory consumption.

If there are hybrid lengthy and narrow patterns with the same prefixes, using the Aho-

Corasick algorithm to construct the pattern group into the DFA structure can prevent the Wu-

Manber from the algorithmic attacks.
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Chapter 3

Function-Parallelism Pattern-Matching

Algorithm

We proposed a new structure called function-parallelism pattern-matching (FPPM) algo-

rithm that combined the automaton-based and heuristic-based approach to fasten the pattern

matching speed in multi-processor systems. Two main kinds of algorithms mostly used in the

detection engine of Snort, the Aho-Corasick algorithm of the automation-based algorithms and

the Wu-Manber algorithm of the heuristic-based algorithms, are applied to construct the new

algorithm. We first modified these algorithms to be able to combine with each other to reduce

the memory utilization. Then, we separate the pattern group into two sub pattern groups by an

important character of the patterns, the minimum length of the pattern group, each sub pattern

group constructed by either one of these modified pattern matching algorithms, to enhance the

performance of each algorithm by function-parallelism approach. Also, we further evaluate the

performance of our new pattern matching algorithm in the last of the chapter.

3.1 Composite Data Structure

As mentioned in previous chapter, when the minimum length of the pattern group exceeds a

threshold, TheWu-Manber algorithm has a better performance than the Aho-Corasick algorithm

in average case. For this reason we separate the pattern group into two sub groups by the length

and use the Wu-Manber algorithm to search the sub group with lengthy patterns. With the sub
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group with short patterns, we use a modified Aho-Corasick algorithm to do the pattern matching

process. In this modified Aho-Corasick algorithm, we construct the pattern group into a DFA

structure and combine the former two states of the DFA into one state, as figure 3.1 shows.

Because when state skipping in the DFA with short patterns, the current state often points to the

former states, the benefits of combining the former states of the DFA are to reduce the memory

fetching frequency at the former states, and to combine with the hash table of the Wu-Manber

algorithm more easily.
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Figure 3.1: Combination of first two states in the DFA structure

Next, we combine the hash table of theWu-Manber algorithm and the beginning state of the

modified Aho-Corasick algorithm into the prefix table. We first separate the one-byte patterns

from the pattern group need for pattern-matching process, and construct a one-byte table to store

them by lists structure. For the left patterns, we construct a prefix table to link all of them. Each

element in the prefix table contains an address to the list in hash table or the next state in aDFA, as

figure 3.2 shows. Each item in the prefix table contains either structure dynamically according

to length threshold, which is the minimum length of the pattern group searched by the Wu-

Manber algorithm. First, the pattern group is separated by the first two characters, that means

there are 2562 sub groups, each sub group with the same two prefixes. Then, length threshold

decides each sub group to one of the two groups, the Aho-Corasick group and the Wu-Manber

group, by comparing the minimum length of the sub group with it. If the minimum length of

17



the sub group is over length threshold, then this sub group is assigned to the Wu-Manber group,

or assigned to the Aho-Corasick group if not. Algorithm 1 shows the pre-constructing stage

process of the FPPM algorithm.
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Figure 3.2: Combination of the hash table in the Wu-Manber algorithm and the beginning state in the modified
Aho-Corasick algorithm

3.2 Function-Parallelism Search Mechanism

At the searching stage, both approaches, heuristic-based and automaton-based, are sepa-

rated by the function-parallelism approach to do each searching process. In the heuristic-based

approach, the bad-character shift table works just like in the Wu-Manber algorithm. When the

bad-character shift table returns 0, the FPPM algorithm first checks the prefix table using first

two characters as an input by retreating (m-1) characters back from the current searching char-

acter, where m is the maximum length can be shifted, and see if this prefix group belongs to

the Wu-Manber list structure. If true, then searching process through the list will be started. If

false, it means no element corresponding to this prefix and continues searching patterns with

next characters. Algorithm 2 shows the heuristic-based part of the FPPM algorithm.
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Algorithm 1 Pre-Construction Stage Process of FPPM Algorithm
for each pattern[i] do
PUT pattern[i] to prefix[ pattern[i][0] ][ pattern[i][1] ]

end for
for each prefix[j][k] do
COUNT the minimum length of patterns in prefix[j][k] = minlen
if minlen ≤ length threshold then
PUT prefix[j][k] to AC DFA

else
PUT prefix[j][k] to WM LIST

end if
end for
for every pattern[i] ∈ AC DFA do
CONSTRUCT pattern[i] to the modified DFA

end for
for every pattern[i] ∈WM LIST do
CONSTRUCT pattern[i] to the Wu-Manber hash table

end for
COMBINE the modified DFA & the Wu-Manber hash table

In the automaton-based approach, the prefix table in FPPM stands for the first state. The

FPPM algorithm first checks if the prefix group belongs to the DFA structure with first two

characters of the searching text. If true, then the current state is pointed to the hitting state and

searches for the next state by the next character, as the Aho-Corasick algorithm does. If false, the

FPPM algorithm skips one character and then checks the prefix table with two characters next

to the skipped character. The prefix table will be checked again and again until the input hits the

DFA group. Also, for every input of the searching text, the automaton-based part will check the

one-byte table to see if there are one-byte pattern hits. Algorithm 3 shows the automaton-based

part of the FPPM algorithm.

3.3 Computational Efficiency

The structure of the FPPM algorithm combines the DFA and hash table and therefore con-

sumes the memory space between the Aho-Corasick algorithm and the Wu-Manber algorithm.
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Algorithm 2 Search Stage Process of the heuristic part in the FPPM Algorithm
Input text with length len
minlen← length threshold
i← minlen− 1
while i < len do
if ShiftTable[ text[i− 1] ][ text[i] ] ̸= 0 then

i← i + ShiftTable[ text[i-1] ][ text[i] ]
else
if prefix[text[i-minlen+1]][text[i-minlen+2]] ∈WM LIST then
for each pattern[j] ∈ prefix[text[i-minlen+1]][text[i-minlen+2]] do
COMPARE pattern[j] to text + (i−minlen + 1)
if Matched then
CALL Matched Function

end if
end for

end if
i← i + 1

end if
end while

Algorithm 3 Search Stage Process of the automaton part in the FPPM Algorithm
Input text with length len
i← 0
CurState← 0
while i < len do
SEARCH One-Byte Table with text[i]
if CurState = 0 then
if prefix[text[i]][text[i + 1]] ∈ AC DFA then

CurState = prefix[text[i]][tex[i + 1]]
i← i + 1
SEARCH One-Byte Table with text[i]

end if
else

CurState← State[CurState].next[text[i]]
end if
if State[CurState] = final then
CALL Matched Function

end if
i← i + 1

end while
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Because the data structure of the FPPM algorithm utilizes the hash table and shift table, the

memory consumption of FPPM is more than of the Wu-Manber algorithm. The FPPM algo-

rithm separates the short patterns to the DFA and combines the front two states to the prefix

table. Thus it consumes much less memory compared with the DFA with the same pattern

group. According to eq. 2.1 and eq. 2.2, the total memory consumption of the FPPM algorithm

is:

2562 × pt + 2562 × var + 256× pt× AC states + Npat× Spat, (3.1)

here AC states means the total number of states constructed from the Aho-Corasick group. In

the Aho-Corasick group, because the average length and the amount is less than in the original

pattern group, AC states is much less than states in eq. 2.2.

Another benefit of the FPPM algorithm is to reduce the amount of memory accesses, there-

fore reducing the execution time. For the heuristic part of FPPM, compared with theWu-Manber

algorithms in eq. 2.3, the number ofmemory accesses is proportional to L
SV

. through isolating the

lengthy patterns to theWu-Manber group, theminimum length of theWu-Manber group is larger

than the original minimum length, making sure that the original average shift value SVoriginal

and the new shift value SVnew are SVorigianl ≤ SVnew for the same searching text. In addition,

through decreasing the amount of patterns, the probability of prefix table hit Pprefix(i), i > 0

can also be reduced, compared with Phash(i) in eq. 2.3.

For the automaton part of the FPPM algorithm, the equation of the amount of memory

accesses is the same as in eq. 2.4, but the probability of pointing to the beginning statePcurrent(1)

is larger than the original. Besides, the probability of the beginning state changing to a different

statePnext(1) becomemuch less in our case. Next, we prove that the amount ofmemory accesses

of the automaton part is less than that of the original Aho-Corasick algorithm for the same pattern
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group. We separate the original equation in eq. 2.4 to:

L× (
N∑

i=1

Pcurrent(i)× Pnext(i) +
states∑

i=N+1

Pcurrent(i)× Pnext(i)), (3.2)

where state2 ∼ stateN are next to the beginning state. Now we prove that the total amount of

memory accesses in the FPPM algorithm is less than in the Aho-Corasick algorithm. By proving

that the New[Pcurrent(1)×Pnext(1)] ≤
∑N

i=1 Pcurrent(i)×Pnext(i) and the remainders stays the

same, the above result can be proven. We first define that Pnext−j(i) is the probability of the

i-th state changing to the j-th state, and we can get:

N∑
i=1

Pcurrent(i)× Pnext(i)

≥ [
N∑

i=1

Pcurrent(i)]× [
N∑

i=2

Pnext−i(1)× Pnext(i)]

(∵ Pnext(1) is the smallest in Pnext(i) and

N∑
i=2

Pnext(i) = 1)

≥ [
N∑

i=1

Pcurrent(i)]× {
N∑

i=1

Pnext−i(1)[Pnext(i)− Pnext−1(i)]}

= New[Pcurrent(1)× Pnext(1)]

For the one-byte patterns, although the number of memory accesses is proportional to the search-

ing text length L, the cache miss rate of accessing the one-byte table is near to 0 because the

table size is rather small compared with the prefix table and the DFA, so we omit the effect of

accessing the one-byte table.

The FPPM algorithm can reduce the amount of cache misses and the performance of FPPM

increases along with the expanding pattern groups. We will show the experimental comparison

with the original algorithms in chapter 5.
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Chapter 4

Implementation

After constructing two pattern matching approaches in the FPPM algorithm, we next adapt

them to the multi-processor systems, and for the single-processor systems, we also find a way to

install the FPPM algorithm to it. It is important to carefully deploy the FPPM algorithm to the

system because the poor deployment will reduce the total performance of the pattern matching

process. We also discuss the deployment to different types of systems and explain the data flow

in detail in this chapter.

4.1 FPPM Detection Engine

In the implementation of the FPPM algorithm, we use the source codes of the detection

engine in Snort2.6.1 to generate the kernel of FPPM. Two source code files, acsm.h and wmw.h,

are the kernels of the Aho-Corasick algorithm and the Wu-Manber algorithm separately in the

detection engine of Snort. There are two important modules, the pre-constructing function and

the searching function, inside each of these files. We combine the kernels of different algorithms

in Snort and reserve the trivial codes like capitalizing the searching text and calling the matched

functions if matched.

We also modify the detection engine of Snort to fit in with the function-parallelism request.

The original detection engine of Snort is not adapted to the multi-processor systems and the

only way to implement the original detection engine is by data-parallelism approach. The per-

formance by this way may be depressed because of the synchronization efforts. In the modified
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detection engine, we separate the different searching parts of the FPPM algorithm to new threads

and we bind these threads to each processor to clear the context switch of different threads. The

utilization of threads is to apply them to the multi-processor systems easily[16]. We also con-

struct a queue for each processor to remove the mutual exclusion of accessing the input packets.

In this implementation, we provide the kernel of the FPPM algorithm, that includes:

• the pre-constructing function of the FPPM algorithm that combines the data structure of

two different algorithms,

• the searching function of the FPPM algorithm that execute searching processing by the

function-parallelism approach,

• and the information function that shows the patterns andmemory information of the FPPM

algorithm.

We also provide the new detection engine that applies multi-thread conformable to the multi-

processor systems and makes a fine integration of FPPM. Next, we discuss the implementations

to different types of the NIDS.

4.2 Case Study

We design different processing flows of the detection engine depending on how many pro-

cessors the system has and explain the benefits of each processing flow that takes advantage of

the FPPM algorithm. The concept behind the processing flow is to abate the synchronization

efforts and reduce the probability of time block of the mutual exclusion. The details in the types

of systems may be unique, but the performance of the detection engine can increase by applying

this concept.
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4.2.1 Single-Processor System

For the single-processor system, which can only execute an instruction at a time, the two

pattern matching parts in the FPPM algorithm are lined up to a sequential way. When a packet

comes in, the detection engine first checks the type and the input and output port of the packet.

According to these information, the detection engine finds the pattern group that includes all

signatures the packet may conceal. After picking up the pattern group, because the FPPM algo-

rithm has two sub pattern groups and either group may be an empty group, the detection engine

further checks if there is a need to process the heuristic part or the automation part to save the

redundant time. Figure 4.1 shows the basic flow of the detection engine of single-processor

system.

IF  pattern group includes 
the Wu-Manber group

EXECUTE the heuristic part of the FPPM algorithm

IF  pattern group includes 
the Aho-Corasick group

EXECUTE the automaton part of the FPPM algorithm

Yes

Yes

START detection engine & INPUT 
pattern group and searching text

No

END detection engine

No

Figure 4.1: The basic flow in the single-processor detection engine
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4.2.2 Dual-Processor System

In the dual-processor system, the FPPM algorithm can allot the heuristic and automaton

part to different processors to reduce cache miss rate and enhance the searching speed. For

each processor, we build different queues to buffer the packet payload needs to do deep packet

inspection. The benefit of using separating queues is that the detection engine can avoid using

mutual exclusion to prevent repeating the pattern matching process to the same packet. Waiting

for mutual exclusion may waste a lot of computational energy. When a packet is processed

by the pre-processors, the next step is sent to the detection engine for deep packet inspection.

For the new detection engine using the FPPM algorithm, the packet payload will be copied

or dispatched, according to the sub pattern group valid or not, to the queues of the processors

where the pattern matching process is running with the specified approach and pattern group.

Figure 4.2 shows the structure of the dual-processor detection engine.

Processor 1
Automaton

Part

Packet2

..
Packet1

QUEUE

Packet4Packet5

Reproducer
or 

Dispatcher

Packet3

...

...
Packet2

Pre-
Processors

QUEUE

Processor 2
Heuristic

Part

Figure 4.2: The packet flow in the dual-processor detection engine
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4.2.3 Multi-Processor System

The multi-processor system here refers to the system with multiples of two processors.

This is also a common example of the multi-processor system. In the multi-processor system,

we can bind the structure of the dual-processor system to any two processors (a FPPM set) in the

multi-processor system, as Figure 4.3 shows. In addition to the "R or D" manager (in charge of

reproduction or dispatch) in each set of processors, there is a dispatcher to allot every incoming

packet to different FPPM set to balance the workload of each set.

PacketPacket Dispatcher...Pre-
Processors

.....

R or D

...

P1 P2

..

R or D

...

P1 P2

.. ...

P1 P2

Set 1 Set 2 Set N
R or D

Figure 4.3: The packet flow in the multi-processor systems
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Chapter 5

Experiments

In this chapter, we compare the performance of different pattern matching processes be-

tween the FPPM algorithm and the original algorithms, the Aho-Corasick algorithm and the

Wu-Manber algorithm, running separately on a single-processor and multi-processor system.

We use different number of randomized patterns as input and test different indicators of each

algorithm. And then we analyze the result to confirm the evaluation in the previous chapters.

5.1 Experimental Setup

In our experimental platform, we set up a personal computer with a quad-processor CPU,

2G random access memory, installed with Linux operating system. The hardware and software

specifications are shown below.

Component Specification

CPU Intel Core2 Quad Q6600 @ 2.40GHz

Level 1 cache 32KB (Date) & 32KB (Instruction)

Level 2 cache 4096 KB 16-way associative

RAM 2 GB

OS Linux 2.6.24

Both theAho-Corasick andWu-Manber algorithms are distilled from the source code of Snort2.6.1

and compile by gcc 4.2.4[17]. The FPPM algorithm is modified from these two algorithms to

fit the details described in the previous chapters. The searching text is generated from random
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8-bit characters, and the data size is 170 MB. To make the searching text more like the actual

data used in the network, we separate them to 20k packets by the length from 200 to 1500 bytes.

The patterns are also randomly generated from the same random numbers and the pattern length

is ranged from 1 to 40. The choise of the length threshold is by simulation of the searching time

of a little piece of random data with different values to check what value of length threshold

makes the best performance of the FPPM algorithm. The value of length threshold is various

with different pattern groups but the range is almostly from 5 to 7.

For the pure test, we first affiliate the OS routines and the applications to the first core of

CPU, and bind the algorithms to the other cores of CPU to eliminate the influence of context

switches and interrupt service routines. We record the total processing time of each algorithm

by getting the system time using the gettimeofday function, which is a high-resolution timing

function. The subtraction of the start time and the finish time will get the accurate processing

time in our experiments.

5.2 Experimental Results

In the experiments, we first compare the searching time of the pattern-matching algorithms

in single processor and dual processors to see the differences between the original sequential

way and the function-parallelism approach. The number of cache misses is also an important

factor that affect the searching time of the algorithm and we simulate the cache misses to show a

tendency with the growing pattern group. We also experiment the worst case of each algorithm

by modifying the searching text to measure the searching time when the algorithmic attacks take

place. Last, we measure the memory consumption of different data structures constructed by

each algorithm.
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5.2.1 Exp#1: Performance on Single-Processor NIDS

In the first experiment, we measure the time consumption of each algorithm in processing

the searching text in single processor. To process both parts of the FPPM algorithm, the automa-

ton and heuristic, we use a sequential way described in the previous chapter. Figure 5.1 shows

the result by different numbers of patterns. We can conclude that as the pattern group grows up,

the FPPM algorithm can reduce the processing time by properly separating the pattern group to

well fit algorithm. Of the processing speed with 10k patterns, the FPPM algorithm is 1.9 times

faster than the Aho-Corasick algorithm and 1.18 times than the Wu-Manber algorithm.
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Figure 5.1: Processing time of the algorithms in single processor

5.2.2 Exp#2: Performance on Multi-Processor NIDS

The next experiment is to test these algorithms in multiple processors. We use two of the

quad-processor CPU to test our algorithm, each processor with a 4MB L2 cache. Each processor

with its own cache can reduce the competition for the limited cache resources and make the

experiment more robust. For the Aho-Corasick and the Wu-Manber algorithm, we use data-
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parallelism approach to apply them on the dual processors. And we bind each part of the FPPM

algorithm to different processors of the CPU and measure the final processing time. Figure 5.2

shows the experimental result. With 10k patterns, the processing speed of the FPPM algorithm

in dual processors is 2.2 times of the Aho-Corasick algorithm and 1.21 times of the Wu-Manber

algorithm. With function-parallelism approach, the performance of the FPPM algorithm is better

than the original algorithms because comparing to a bulky data structure, separating to small

groups can reduce the frequency of distant memory accesses and hence reduce the cache miss

rate. For a multi-processor systemwith individaul caches, using function-parallelism can reduce

the duplicate cache misses of the same data.
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Figure 5.2: Processing time of the algorithms in dual processors

5.2.3 Exp#3: Number of Cache Misses

After showing the processing time in the single- and multi-processor system, we next cal-

culate the number of cache misses to confirm the evaluation discussed in the previous chapters.

At this experiment, we use a powerful memory management simulator valgrind [18], that can

simulate the L1 and L2 cache miss in the IA-32 systems. An L1 cache miss costs as twenty
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times of CPU circles as An L2 cache miss does. We summed up the scaled number of L1 cache

misses and the number of L2 cache misses to indicate the total time cost of cache miss penalty.

As figure 5.3 shows, as the pattern group grows up, the cache miss number of FPPM is more

gently rising than the others.
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Figure 5.3: Number of cache misses in each algorithm

5.2.4 Exp#4: Algorithmic Attack

As mentioned in the previous sections, the Wu-Manber algorithm may suffer from the al-

gorithmic attacks. In this experiment, we modified the searching text to abundantly hit the hash

value with a list that includes the most patterns to congest the Wu-Manber algorithm. Fig-

ure 5.4 shows that the searching speed of the Wu-Manber algorithm is greatly reduced. For

the Aho-Corasick algorithm, the searching time is rather decreased with the modified searching

text because with a great number of duplicate characters, the memory accesses to the DFA can

focus on the same states and reduce the frequency of data switch in cache. Therefore, the FPPM

algorithm can hold out the searching speed by separating the patterns with the same prefixes to

the Aho-Corasick group by length threshold and lengthening the shift length of the heuristic
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part to reduce the number of comparison. .
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Figure 5.4: Processing time of each algorithm by the modified searching text

5.2.5 Exp#5: Storage Cost

Last, we compare the memory consumption of each pattern matching algorithm. Unlike

the Aho-Corasick algorithm, in which the memory consumption is linear to the pattern number

and the average length of the pattern group, the Wu-Manber algorithm uses the hash table and

shift table to record the pattern elements, therefore the memory consumption nearly fixed to

the table size as the pattern group grows up. The FPPM algorithm applies the structures of the

Wu-Manber and the Aho-Corasick algorithm so the memory consumption is between these two

algorithms and is greatly reduced from the structure of the DFA in which the memory consump-

tion is proportional to the number of states. Figure 5.5 shows the memory consumption of each

algorithm. Due to the separation of the lengthy patterns into the Wu-Manber group, the memory

consumption of FPPM expands slowly when the pattern group grows up.
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Figure 5.5: Comparison of the memory consumption of each algorithm

5.3 Discussion

We summarize these experiments of comparision of the different algorithms and find that

the FPPM algorithm has the best performance in searching speed within these algorithms. We

also test the real data to make sure that the FPPM algorithm has better performance than the

originals, by utilizing Snort 2.6.0 with different searching algorithms to trace DARPA 1999

week 2 dataset. The ruleset for Snort 2.6.0 has 2830 rules and the dataset has 1753377 packets.

The experimental result shows that the Snort takes 5.87 seconds to process all the packets by the

Wu-Manber algorithm, 4.64 seconds by the Aho-Corasick algorithm and 4.06 seconds by the

FPPM algorithm. The differences between the simulation results and the real data results may

due to the different characteristics of the randomly generated rulesets and the existent rulesets,

and the FPPM algorithm has the best processiing performance both in simulation and real test.
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Chapter 6

Conclusion and Future Work

In this thesis we first evaluated the performance of two multi-pattern matching algorithms

by different types of patterns. We found that the length of the patterns with the same prefixes

could substantially affect the searching speed and the memory consumption of these algorithms.

We combined the structure of DFA in the Aho-Corasick algorithm and the structures of list and

shift table in the Wu-Manber algorithm to a new prefix table to reduce the effects of pattern

length. And we modified these two algorithms at the searching stage by the function-parallelism

approach to the FPPM algorithm. The experimental results show that the performance of the

FPPM algorithm is better than only using any one of the Aho-Corasick or the Wu-Manber algo-

rithm in the average case. In addition, The FPPM algorithm can alleviate the algorithmic attacks

that extensively increase the execution time by elaborately arranged payload.

In the next step, wewill make effort to that the FPPM algorithm can dynamically reconstruct

the DFA and the list structures at the searching stage by the workload of the processors. The

reconstructing between these two structures can prevent the malicious attacks and balance the

workload of each processor. The frequency of reconstructing the structures is a big issue because

the reconstruction will seize a part of computing energy. In addition, for some pattern groups

with special characteristics, the FPPM algorithm can parallelize the groups by adapting the same

algorithm, for example, all Wu-Manber algorithm or all modified Aho-Corasick algorithm to

accelerate the overall searching speed. With the enhancement of FPPM algorithm, the NIDS

can have a large capacity of processing packet flow.
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