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Chinese Abstract 

中文摘要 

 腦波訊號的雜訊去除在研究上或應用上是一個很重要的步驟，在腦波訊號上

的雜訊可能會帶有眼動、肌肉信號、交流電干擾以及測量平台的環境所造成的.

這些雜訊會使得腦波信號會失真而無法使用，或是誤解是新的現象而讓預測結論

無法預期。由近幾年的期刊上常見獨立成份分析，是一個方便的訊號分離的方

法，能使得我們研究時能從分離出來訊號在頭殼上的位置，來辨別此獨立訊號在

頭殼上所扮演的角色,以及此獨立訊號是否帶有嚴重的雜訊。如果需要還原為腦

波訊號,能將帶有高度雜訊的獨立訊號去除後還原回原本腦波訊號的時域.從過

去已有期刊能證明此方法有高度的雜訊去除能力，但是目前此方式僅只於依照個

人經驗的選擇,尚未有標準化的分離訊選擇標準，使得腦機介面或即時腦波應用

上目前尚無法以此方法提供良好的腦波訊號。在這篇論文裡，我們以基礎的計算

機智慧的學習方式能證明，能夠以基礎的方法來分離出帶有高度雜訊的獨立訊

號，因此也證明製作自動化的獨立訊號分析雜訊去除系統是能實現的方式。 

關鍵字關鍵字關鍵字關鍵字：：：：腦電波、獨立成份分析、機器學習 
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English Abstract 

Abstract 

 Removal of artifacts is an important step in any research or application of 

electroencephalogram (EEG). The artifacts may contain eye-blinking, muscle noise, 

heart signal, line noise, and environmental effect. Such noises often make the raw 

EEG signals not very useful for extraction/identification of physiological phenomena 

from EEG. The independent component analysis (ICA) is a popular technique for 

artifact removal in brain research and some reports demonstrate that ICA can remove 

the artifacts with lower (acceptable) loss of information. However, these reports select 

useful independent components manually, primarily by looking at the scalp-plots. 

This is of great inconvenience and is a barrier for BCI or real-time applications of 

EEG. In this thesis, we demonstrate that machine learning methods could be quite 

effective to discriminate useful independent components from artifacts and our 

findings suggests the possibility of developing a ‘universal” machine for artifact 

removal in EEG. 

 

Keyword: EEG, Independent Component Analysis (ICA), Machine Learning 
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1. Introduction 

 

This thesis presents an automatic method for artifacts removal in independent 

component analysis (ICA), this is a new implementation for extending the ICA 

application. At the first, we introduce what Electroencephalography (EEG) is and the 

noisy signals in EEG. 

 

1-1. Property of EEG Signals 

 

An EEG signal is a measurement of currents that flow between the neurons 

(nerve cells), which have the same electronic activities from a small zone in the gray 

matter of brain. We use electrode to collect one channel EEG signal, and the 

multichannel recording with electrodes, electrode caps are often used. Thus, we could 

collect the EEG signal to analyze the specific pattern on EEG activity based on 

subject behaviors. However, the EEG signal is recorded from electrode cap. Such 

structure leads the electrodes which collect the multiple zones of EEG activities and 

noises. 
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1-1-1. Mixing Signals 

 

EEG signals are resulted from the magnetic field variation caused by the 

compound delivery in the brain cell. We can measure the minor field variation on the 

scalp, and then after amplifying the signals we can record them as the so-called EEG 

signals. The EEG signals will measure operation in the various areas in cortex as 

shown Fig. 1-1. Therefore, EEG signals are mixed signal, they will mix from each 

source in the gray matter of brain. However, the transmission distance will result in 

the decayed performance while receiving the signals. In Fig. 1-1, the signals measured 

from the left and right will be different due to the different transmission distance. Like 

Channel(A) has high amplitude from Source(A) and lower from Source(B), the signal 

amplitude is depend on the inverse proportion of distance .Therefore, like in a noisy 

meeting, we can separate the noises from the language voice. The noisy signal could 

be take out the EEG signals, too.  
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Figure 1-1. The electrode records mixing brain activities. 

 

1-1-2. Noise Artifacts 

 

The noises are not always acceptable in all measured systems because it perhaps 

will make the signals with noises unusable. In EEG signals processing, we will 

eliminate the noises perturbation as possible as we can. Since we couldn’t ensure the 

perturbation signals waveform from the original EEG signals, the normal variation 

could be a characteristic for analysis. However, the perturbation of noises will 

destroys or covers the original existed characteristics such that the EEG signals cannot 

be applied to phenomenon analysis or BCI applications.  
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EEG signals measurement can be divided into two classes. The First is external 

noises. The external noises will be affected by the instability of external environment 

and measurement interface. Such in Fig. 1-2, the device will produces line noises due 

to the interfering of magnetic field. This frequency, about 60 Hz, can be filtered by 

low pass filter. However, the bad interface contact will be an important problem 

between scalp and electrodes. Though we will ensure the measurement impedance 

under 5K, the testers will also unintentionally wave their heads during the testing, 

which will make the bad interface contact and the bad signals. While we encounter 

Eye-Blinking

Muscle Noise

Loosing 

Connection

Other Devices

Scalp

(with Skull)

Brain

(Gray Matter)

Magnetic Field

 

Figure 1-2. The noise signals. 
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such problem, we can only remove all the periods of bad signals. The problems of 

external noises in measurement can be improved by reforming experiment quality to 

get better performance. The second is internal noises. The internal noises mainly 

come from the eye movement[1] and muscle signals[2, 3]. In Fig. 1-2, such noises 

will be absorbed in electrodes while measuring electromyography (EMG) signals. 

They may not be filtered or cleaned by enhancing experiment quality. Such 

biomedical signals will also be transferred to electrodes through scalp. For eye 

movement, some researchers used the eye movement equipment to eliminate the eye 

movement signals. Some researchers study the EMG elimination. However, for the 

real-time BCI system, involving the two signals measurement will result in the line in 

BCI too long to make the real application convenient. Therefore, the direct analysis to 

distinguish the EEG signals from the internal noises not only can solve the internal 

noises problem, but also can make BCI application broader, that is to say, it will not 

be limited by only measuring the minor noises influenced electrodes. In the following, 

we will introduce the study about solving this problem. 
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1-2. Motivation 

 

Removing the artifacts in electroencephalogram (EEG) signal is an important but 

difficult issue in EEG based applications. However, there are many kinds of reasons 

to produce large and irregular artifacts in EEG recording, such as eye-blinking, 

muscle noise, heart signals, line noise and environment factors, etc. The line noise and 

environment factors are external noise, which is controlled by experiment and this 

may be neglected by increasing signal to noise ratio. But, the eye-blinking, muscle 

noise and heart signal are internal noise, which is always existence and influence raw 

EEG signal. If noises like eye-blinking appear frequently, the EEG signal would not 

be very useful. For EEG based research, it requires an automatic method that can 

preserve the EEG signal while removing the artifacts. 

 

1-2-1. EEG Feature Extraction 

 

The EEG noisy signals have the regular form like the eye-blinking and 

electrocardiography (ECG), and the irregular form like the muscle activities and 

eye-saccade in time course. For the regular noise, we can remove it by subtracting the 
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reference from eye-tracking and ECG, or find the similar pattern to remove it. 

However, the irregular noises like high frequency activities could be eliminated by 

low pass filter, but the other irregular noises are hardly weakened. Therefore, the 

mathematical source separation method is a good approach to solve this problem. 

 

1-2-2. Literatures Survey 

 

It is known that there are many artifacts removing methods. There are three types 

we could figure: First, Find out the error signal model, and then eliminate all the 

similar models along the time course. Second, the noises have high frequency that we 

could filter it by low pass filter in frequency course .Third, we assume the noises are 

mixed in the original signal, we could separate them into different instance. Then we 

can divide them by signals processing methods. We simply introduce them well 

known as follows: 

 

(a). Raw EEG Analysis 
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 The EEG analysis has many approaches [3-10] to eliminate the artifacts, and we 

introduce some common methods in researches. First, the time-domain regression [8, 

10] is introduced. The time-domain regression does the linear regression analysis 

between the reference signal (EOG) and the EEG signal to perform a regression 

parameter. Then the EEG signal subtracts the reference signal plus the regression 

parameter to get the approximate solution. Second, the adaptive filtering method 

[7-10] is considered. The adaptive filtering needs a reference signal, which usually is 

EOG as the reference to remove the ocular artifacts. Then, in EEG ocular artifact 

cancellation, the EOG is combined with the previous clean EEG signal to the finite 

response filter (FIR) to approximate to the current clean EEG signal. The second 

method is the averaged artifact subtraction (AAS) method [4-6], which finds similar 

artifact peaks and averages these artifacts to generate a subtraction model. This is then 

subtracted from the noisy EEG to get the clean EEG signals [5, 6]. However, these 

methods only can process the artifacts with fixed feature like EOG. The noisy signals 

like muscle noise don’t exist any feasible pattern for these method, the research 

present the detection of muscle noise by the power in 26.25~32.0Hz [3]. Furthermore, 

because the filtering method needs a reference signal, but we only pay the attention on 
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the EEG signals. Thus, we only discuss the AAS method with other method in below 

sections. 

 

(b). Principle Component Analysis 

 

The first introduction of blind source separation is principle component analysis 

(PCA). The PCA translates the original data into some important components, which 

mix the origin signals from covariant matrix. Therefore, we could receive a linear 

transform matrix after PCA, then column of inversed weight matrix could be present 

on the scalp map depending on the channel location [11, 12]. PCA based methods 

result in components where a single component may contain too much information 

(signal). Furthermore, the muscle noise could be reduced by separating into different 

components. However, the ocular is a significant signal in PCA components, which 

mix large signals from EEG. Thus, if we remove the ocular component from PCA, 

three are many signals would be removed with the ocular component and distorted the 

back-projection signal [13, 14]. Therefore, the PCA method could reduce the muscle 

noise, but the ocular effect may not do a good job. 
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(c). Independent Component Analysis 

 

The second introduction of blind source separation is independent component 

analysis (ICA). Among the different methods of artifacts removal, ICA [15] is a 

frequently used method. ICA methods generally assume that the signals recorded on 

the scalp are mixtures of time courses of temporally independent cerebral and 

non-cerebral sources. The potentials generated by different parts of the brain, scalp, 

and body are linearly summed at the recording electrodes. ICA also assumes that the 

propagation delays are not significant. Many investigations have demonstrated that 

ICA could separate the artifacts and raw EEG signals [13, 15-22]. Jung et al. in [13] 

proposed a method for isolating and removing different types of EEG artifacts by 

linear decomposition using an extension of the Bell & Sejnowski,’s 

information-maximization ICA algorithm [23, 24]. The extended algorithm [24] can 

separate sources with either super-Gaussian or sub-Gaussian amplitude distributions. 

This enables one to remove line noises efficiently. The algorithm does not require 

reference channels for the artifact sources. The method first finds the independent 

time courses of different cerebral and artifact sources and then the cleaned EEG 

signals are obtained by eliminating the contributions of the artifact sources. Authors 
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in [16, 17, 20, 22] have used ICA to remove the effect of eye-blinking. The EOG can 

be used to record the artifacts caused by eye-blinking in EEG signal. Then a linear 

combination of EOG signal recorded at different sampling time can be subtracted to 

find the artifact free EEG. Also, the EOG signal can be compared with the 

independent components to identify independent components relating to EOG related 

artifacts [16]. 

Independent component analysis has been effectively used in removing artifacts 

from fMRI also [25-27]. For example, task related motion is a significant source of 

motion in fMRI. Kochiyama et al. [26] used an IC based method to remove the effect 

of task related motion. Then they remove the ICs associated to task related motion 

and reconstruct the image. McKeown et al. [27] made an interesting application of 

ICA and have demonstrated that ICA can very effectively be used to separate fMRI 

data into meaningful constituent components. It can also separate consistently and 

transiently task-related physiological changes, nontask-related physiological 

phenomena, as well as movement artifacts. This researches evidence that ICA has 

good results in source separation experiments. 

The comparison of raw EEG analysis and ICA, AAS method cannot rule out the 

possibility of inclusion of some useful actual EEG signal in the subtraction model, 
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and consequently it may induce distortions on scalp maps [4]. This reference also 

shows that the ICA has batter quality of artifact removed EEG than AAS. The 

comparison of PCA and ICA in [13, 14, 28-31] shows that ICA performs better 

resolution. The artifact components extracted from ICA are generally found to exhibit 

stronger correlation with the actual artifacts than that by the PCA artifact components. 

All of these have motivated us to consider ICA based artifact removal from EEG. 

 

1-3. Problems 

 

Typically when ICA is used for noise cleaning in EEG signal we use the 

following steps: first the independent components are computed, then the artifacts 

(some ICs) are removed and then EEG signal is reconstructed using the useful (good) 

ICs by projecting back (Fig. 1-3). But, unfortunately these researches select the useful 

(good) independent components manually [13, 16-18, 20, 21, 32], usually by looking 

at the scalp maps. Such a system has several drawbacks: First it is dependent on 

experts. So the availability of experts and subjective judgment of experts could be 

important determinant of the success of any application based on such ICs. The 

neuroscientist and psychologist would be inconvenience when be introduced in ICA 
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analysis. And, they would get big trouble on noisy components without the standard 

of component selection. Second, for many real-time applications such as detection of 

drivers’ drowsiness, or in some BCI applications, we cannot use such methods. These 

problems can be eliminated if we can do the job of selecting useful ICs in an 

automatic manner. Thus, we want to develop a learned machine, which, given the ICs 

(in other words given the mixing matrix), can select the useful ICs in an automatic 

manner.  Such a system can make BCI applications standalone (free from human 

intervention) and can facilitate real-time applications. This also opens up the 

possibility of developing a “universal” EEG artifact removal system. 
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Figure 1-3. A diagram of EEG analysis by using ICA. 

 

 

Figure 1-4. An automatic EEG analysis scheme by using ICA. 
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1-4. Goals of this Study 

We want to implement a new EEG analyzing scheme with ICA, and the Fig. 1-4 

is our architecture. The automatic scheme needs a exist labeling database, which from 

the experience of the expert of neuroscientist. We can use this scheme to analyze the 

components quickly and feedback to our database form the advice from everyone. 

Therefore, we need to examine the possibility of implementing the system carefully. 

This thesis attempts to demonstrate that it is feasible to develop such a 

“universal” machine. Here, we use four machine learning tools, the usual multilayer 

perceptron (MLP) architecture with hyperbolic tangent signal function (MLPTAN) 

and MLP architecture with redial basis function signal function (MLPRBF), the radial 

basis function neural network (RBFNN), and the support vector machine with radial 

basis kernel function (SVMRBF). This four supervised methods are fundamental and 

wide applying in researches. Some results of this investigation have been reported in 

[33]. To improve the performance of the proposed method we use the simple majority 

voting fusion scheme. To demonstrate the effectiveness of such a system we use a 

10-fold cross validation protocol to check the consistency of train data, and a 

10-classification test to examine the test data accuracy. 
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1-5. Organization of this Study 

 

In this investigation we introduce a 10-Fold cross validation to check the 

consistency of feature, and test the classification performance in practice. We shall 

evident this model is exist. A part of this investigation has been report in [33]. The 

proposed approach can account for the variability of useful scalp-map between 

individuals. We need a labeled training data set with information to teach the 

classifiers the useful / useless scalp-map. In our approach, we label the useful / useless 

mark on each scalp-map, and assume the useful scalp-map has general feature and the 

possibility of classification. We divide the train data into 10 folds to find the 

consistency, and train 10 classifiers to evident the classification performance. We find 

that, the scalp-map data set exhibit a non-linear classifying group, and the supervised 

methods have good performance in classification results. Consequently, an automatic 

selection system can be used to classify useful / useless scalp-maps and that is what 

we do in this investigation. 

This thesis is organized as follows. Chapter2 describes the EEG data collection, 

Data pre-processing, independent component analysis theory, the scalp-map, and the 

weight matrix normalization. Chapter3 shows the evaluation of automatic selection 
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system including 10-Fold cross validation, 10 classifier testing and the threshold of 

testing results. Chapter 4 shows the experimental results and the discussion is given in 

chapter5. Finally, we conclude our findings in chapter6. 
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2. Data Acquisition and Pre-Processing 

 

2-1. EEG Data Collection 

 

We have collected the EEG data from the virtual reality (VR) environment 

[34-36] installed at the Brain Research Center of the National Chiao Tung University. 

The EEG data are collected when each subject performs a driving task which is 

subjected to disturbances. We have used a 32-channel 10-20 system (Fig. 2-1) for 

recording the EEG, and the impedance between EEG electrodes and skin was kept to 

less than 5kΩ by injecting NaCl based conductive gel. Data were amplified and 

recorded by the Scan NuAmps Express system (Compumedics Ltd., VIC, Australia) 

shown in Fig. 2-1, a high-quality 40-channel digital EEG amplifier capable of 32-bit 

precision sampled at 1000 Hz. Table 2-2 shows the specifications of the NuAmps 

amplifier. The EEG data were recorded with 16-bit quantization levels at a sampling 

rate of 500 Hz in this study. To reduce the burden of computation, the data are then 

down-sampled to sampling rate of 250 Hz. 

 However, we recorded the data using 30 channels (there are 2 reference 

channels). Of these 30 channels, we have ignored 2 channels which are near the eye 
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position (Fp1, Fp2) to reduce the effect of blinking of eyes. In this investigation the 

independent components are generated using the EEGLAB platform [37] developed 

in MATLAB (The Math Works, R2007a). The EEG data were processed using a 

low-pass filter with a cut-off frequency of 50 Hz in order to remove the power line 

noise (60Hz) and other high-frequency noise. Similarly, a high-pass filter with a 

cut-off frequency at 0.5 Hz was applied to remove baseline drifts.  

 

 

 

 

Figure 2-1. The 32 channel EEG cap and electrodes placement of international 

10–20 system. The letters used are: F: Frontal lobe. T: Temporal lobe. C: Central 

lobe. P: Parietal lobe. O: Occipital lobe. "Z" refers to an electrode placed on the 

mid-line (zero). 
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2-2. Subjects 

 

We have used a set of 35 subjects (ages varying from 20 to 40 years old) to 

generate data for the investigation. Subjects were instructed to lane keeping driving 

experiment. It keeps the car at the center of the lane by controlling the steering wheel, 

and to perform the driving task consciously in VR environment. The whole driving 

experiment lasted about 60 to 90 minutes. 

 

2-3. Independent Component Analysis 

 

The independent component analysis [38, 39] is a statistical technique which can 

separate mixed signals, including the EEG signal, to maximally independent 

components (ICs) by a specified measure of statistical independence. The ICA 

assumes a data model U = WX, where X is queued column vectors of data recorded 

from individual EEG channels, W is a weight matrix for mixing independent 

components back to original signals, U is queued column vector of statistically 

independent components. In Fig. 2-2, this is the artifact removal method by using ICA. 
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First, we have a set of collected EEG data, X. Then we implement the ICA algorithm 

to separate X into component domain (U), and we have the weight matrix W which 

present the linear combination of each EEG data. Then, we use the back-projection, X 

= W-1U, this method can construct the data from components to origin time domain. 

We could use columns of W-1 to construct ICs as a weighted combination of X. The 

EEGLAB provides a tool for the visualization of a column of W-1, which is known as 

component scalp map. 
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Figure 2-2. An example of removing artifacts by ICA. 
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2-4. Weight Matrix Normalization 

 

After implement the ICA process, we get the weight matrix. The rows of the weight 

matrix represent the EEG channels location and the columns of weight matrix 

represent the ICs, like (Fig. 2-3) [18]. In order to eliminate the different between 

individuals, we normalize the weight matrix by z-score method. Every component 

results in a scalp map. We generate the component scalp map using the EEGLAB that 

uses the value of a normalized weight vector as intensity to fill the relative channel 

location on the scalp as displayed in Fig. 2-4. The left panel shows the element of a 

column vector mapped on the scalp location, while the right panel shows the 

corresponding scalp map. And the weight distribution on scalp-map is like Fig. 2-5. 

The scalp map depicts projections of the ICs on the electrode sites. The scalp maps 

help in localizing the activation of the ICs. With the help of scalp maps we can detect 

the ICs whose activities are concentrated at a particular electrode location.  
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Figure 2-3. An example of weight vector. 

 

 

 

Figure 2-4. An illustration of how a scalp map is drawn. 
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Figure 2-5. A central component scalp map’s cross section. 
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3. Automatic Scheme for Useful Independent Component 

Selection 

 

3-1. Labeling of Useful / Useless Components 

 

In almost all applications, an expert looks at such scalp-maps and decides on 

whether a scalp map (hence an independent component) is good (useful/signal) or bad 

(not useful). 

For any subject, we have 28 ICs and hence 28 scale-maps, SM1, SM2, …, SM28. 

The ith scale-map, SMi, is generated using the ith column vector, xi, of the mixing A-1, 

we use some experts (well experienced researchers) who can interpret / analyze EEG 

to label each scalp map (and hence each xi) as signal (useful component with label 1) 

or as artifact (not useful with label 0).  Figure 3 displays the 28 scalp maps 

corresponding to a particular subject. In Fig. 3-1, we have labeled the useful 

components as good and the remaining ones as bad. For example, the 1st, 6th and 18th 

components are labeled as bad as these possibly correspond to eye blinking.  We 

emphasize that there may be some scalp-maps on which experts may not agree about 

classifying the maps as artifacts or not.  
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In this way we generate a total of 980 column vectors, each representing an 

independent component. Each such component is labeled as good or bad.  The 

generalization capability of any machine learning system designed from data heavily 

depends on variability in the training data. If the training data set has representation 

from the entire population, then the performance of system designed from such data is 

expected to be good. Thus, data from just one subject may not (usually will not) 

capture the desired level of variability even if such data are generated in different 

session of the same subject. In this investigation, we have used data from 35 subjects. 

Although, we cannot claim that this data set will have the required level of variability, 

it is expected to do a reasonably good job. 

 We have summarized some useful scalp map in the table 3-1, it shows the scalp 

maps which has been chosen for brain activity researches. And the table 3-2 is the 

useless components which we want to remove it. 
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Figure 3-1. A set of illustrative ICA scalp map labeled by experts. 
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Table 3-1. An example of useful component set. 

Component Name Positive Scalp-Map Negative Scalp-Map 

Frontal 

  

Central 

  

Parietal 

  

Occipital 

  

Bi-lateral 

  

Left mu 

  

Right mu 
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Table 3-2. A example set of useless components. 

Component Name Example 1 Example 2 

Eye-Blinking 

  

Muscle Noise 

  

Others 
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3-2. Supervised Methods 

 

In this study, we use the supervised method. The reason has two concerns. First, 

the scalp-map has the same feature that we could predefine it before training. Second, 

the unsupervised method can’t separate the useful / useless components. Cause there 

has no way to detect the super Gaussian distribution on the scalp map in different 

position, but the supervised method could solve these questions in a easily way. In 

this section, we introduce three basic and widely used classifiers, multilayer 

perceptron neural network (MLP), radial basis function neural network (RBF), and 

support vector machine (SVM) in our investigation.. 

 

3.2.1. Multilayer Perceptron Neural Network 

 

We have used the back-propagation algorithm for training MLP networks with 

single hidden layer. The MLPTAN and MLPRBF both are multilayer perceptron 

networks (Figure 3-2).  
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Let us explain the architecture of MLP neural network. First, in a network, we 

want to perform the function: 

DXf =)(               (1) 

We have an input T
nxxxX ),,.,( 21 L= , and perform the desire output 

T
pdddD ),,,( 21 L= . Then, from the beginning of neural network, for the input layer: 

( ) nixxS ii ,,1, K==            (2) 

( )⋅S  is the sigmoid function of a neuron, depend on what learning scheme we 

want. Then, for the hidden layer: 

 

Figure 3-2. An example of one hidden layer neural network architecture. 
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( ) qhxSwz
n

i
iihh ,,1,

0

K==∑
=

         (3) 

ihw  is the weight value between neurons from hidden layer to output layer. For 

the output layer: 

 ( ) pjzSwy
n

i
hhjj ,,1,

0

K==∑
=

         (4) 

hjw  is the weight value between neurons from input layer to hidden layer. At the 

finish of neural network, ( )jyS  is the output of the neural network. 

And we define the mean squared error for a neural network : 

( )( )∑
=

−=Ε
p

j
jj ySd

1

2

2

1
           (5) 

In the back-propagation scheme, we can calculate the gradient using the chain 

rule of calculus between the hidden layer and output layer: 

( )
( )

hj

j

j

j

jhj w

y

y

yS

ySw ∂
∂

∂
∂

∂
Ε∂=

∂
Ε∂

         (6) 

The back-propagation between input layer and hidden layer: 

( )
( )

ih

h

h

h

hih w

z

z

zS

zSw ∂
∂

∂
∂

∂
Ε∂=

∂
Ε∂

         (7) 

Then we could update the weight between the layers, for hidden to output layer 

weights: 
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η  is the learning rate in the neural network. For input to hidden layer weights: 










∂
Ε∂−+=∆+=

ih
ihihihih w

wwww η'
       (9) 

Both of MLPTAN and MLPRBF use the log-sigmoid transfer function at the 

output layer: 

( )
xe

xS −+
=

1

1
            (10) 

The only difference between the two networks is in the signal function of the hidden 

layer. The MLPTAN uses hyperbolic tangent signal function: 

 ( ) ( ) 1
1

2
12

−
+

= −− xe
xS            (11) 

The MLPRBF uses the radial basis function: 

 ( ) 2xexS −=              (12) 

 

3.2.2. Radial Basis Function Neural Network 

 

The RBF network (RBFNN) uses exactly three layers: input layer, basis function 

layer and output layer. Unlike MLP, the activation functions of the hidden nodes are 

not of sigmoid type, rather each hidden node represents a radial basis function. The 
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transformation from the input space to the hidden space is nonlinear but each node in 

the output layer computes just the weighted sum of the outputs of the previous layer, 

i.e., each output layer node makes a linear transformation. Thus the difference 

between MLPRBF (with just one hidden layer) and RBFNN lies not only in the signal 

function of the output layer, but also the learning scheme. The learning of RBF 

network is usually performed in two phases. An unsupervised learning method is 

applied to estimate the basis function parameters. Then a supervised learning method, 

such as gradient descent or least square error estimate, is applied to tune the network 

weights between the hidden layer and the output layer. For the detail of tuning the 

network weights, we need a training data set Q
kkk dXT 1},{ == . And the function is 

generated by taking a weighted linear superposition of the basis functions: 

( )∑
=

−=
Q

k
ki XXwXf

1

)( φ           (13) 

 kXX −  is the distance between the input T
nxxxX ),,.,( 21 L=  and a 

training data point TXi ∈ . From the requirement like (1), we have the equation: 

( ) QkdXXw k

Q

i
ii ,,1,

1

K==−∑
=

φ         (14) 

In order to recast this system of equations into matrix form, we introduce some 

definitions: 

T
QdddD ),,,( 21 L=            (15) 
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T
QwwwW ),,,( 21 L=            (16) 

( ) ( )

( ) ( )
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−−

−−
=Φ

QQQ

Q

XXXX

XXXX

φφ

φφ

L

MOM

L

1

111

       (17) 

Then we can get a equation from (X): 

WD Φ=  

There, we can solve W from (X): 

DW 1−Φ=              (18) 

And, our distance function is the Gaussian functions: 

( ) 2xex βφ −=            (19) 

β  is the spread parameter in our parameter. 

However, the parameters of the basis functions can also be tuned using gradient 

descent technique. 

3.2.3. Support Vector Machine 

 

 The basic SVM [40-42] is formulated for a two class problem. If the training data 

are linearly separable, then SVM finds an optimum hyperplane that maximizes the 

margin of separation between the two classes. 
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Given a training set Y),(X, ,i X∈x  pℜ∈ix and ,y i Y∈  the class label associated 

with ix ; ∈iy {-1, +1}, the learning problem for SVMs is to find the weight vector 

w and bias b such that they satisfy the constraints: 

1. +≥+ bi wx  for 1y +=i         (20) 

1. −≤+ bi wx  for 1y −=i         (21) 

and the weight vector w minimizes the cost function  

www T

2

1
)( =Φ .           (22) 

The constraints written in (20)-(21) can be combined as  

1).(y +≥+ bii wx  i∀ .        (23) 

In our case, xi is a column vector of A and +1 and -1 can be views as good 

component and bad component. If the training points are not linearly separable, then 

there is no hyperplane that separates them into positive and negative classes. In this 

case, the problem is reformulated considering the slack variables 0≥iξ ; Ni ,...,2,1= . 

For most ix , 0=iξ . The constraints are now modified as follows: 

ii b ξ−+≥+ 1.wx  for 1+=iy        (24) 

ii b ξ+−≤+ 1.wx  for 1−=iy        (25) 

0≥iξ , i∀ .           (26) 

The SVM then finds ,w  minimizing 
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∑
=

+=Φ
N

i
i

T C
12

1
),( ξξ www          (27) 

subject to constraints (24)-(26). The regularization parameter C controls the trade off 

between the complexity of the system and the number of misclassifications. 

If the training points are not linearly separable, a nonlinear mapping ϕ  is used to 

map the training data from pℜ  to some higher dimensional feature space Η , with an 

expectation hat the data may be linearly separable in Η . The mapping is implicitly 

realized using a kernel function. There are different types of kernels that are popular. 

Here we shall use only the RBF kernel: 

2||||γ),(K iei
xxxx −−= , 0γ > .      (28) 

We call SVM with the RBF kernel as SVMRBF. Like MLP and RBF network. 

 

3-3. Training Algorithm Structure 

 

Let us explain our design schemes using the network MLPTAN. The ICA 

components (i.e., the xi s) are partitioned randomly into 10 folds, each of equal (to the 

extent possible) size. We leave out one of the 10 folds for validation while the 

reaming 9 folds are used for training the system. To do this, the first issue to address 

is the choice of number of hidden layers and number of nodes in each hidden layer. In 
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all our experiments we use just one hidden layer. To find the best choice for the 

number of hidden nodes, we use a second (inner) level 10-fold cross validation as 

illustrated in Fig. 3-3. For MLPTAN we choose the best architecture by considering 

networks with number of neurons in the hidden layers in {10, 11, 12, 13, 14, 15}. 

Once we find the best structure, we take that architecture and rained the network 

using the outer level 9-folds. The trained network is then tested on fold that is left out. 

Then the entire process of random partitioning into 10-folds and computing the 

performance of the network using the optimal parameter found by a second level of 

cross-validation is repeated 5 times. The average error and its standard deviation over 

these 5 partitions are then reported.  Similar experiments are then conducted with 

MLPRBF, RBFNN, and SVMRBF. For MLPTAN also we find the best architecture 

by considering networks with number of neurons in the hidden layers in {10, 11, 12, 

13, 14, 15}. For the RBFNN network, two parameters are to be decided: the number 

of hidden nodes and the spread parameter of the Gaussian basis function. For this we 

have considered 35 choices : five choices for the number of hidden nodes, {60, 65, 70 

75, 80} and seven choices for the spread parameters, {1.5, 1.75, 2, 2.25, 2.5, 2.75, 3}. 

For the SVM classifier also we need to find suitable values for C and spread. To 

choose the optimal pair, we have considered 104 choices: eight choices for the 
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number of RBF scaling factor, {0.5, 1, 1.5, 2.5, 5, 10, 20, 25} and 13 choices for the 

box constraint value, {0.01, 0.1, 0.15, 0.2, 0.25, 0.3, 1, 1.5, 1.75, 2, 3, 4, 5}. 

 

 

 

3-4. Cross Validation 

 

Cross-validation, sometimes called rotation estimation, is a method for 

evaluating the result performance of a classifier. It is mainly used in the whole labeled 

train data, and estimates how accurately a classifier will perform the prediction. 

Moreover, suppose we have a classifier with one or more unknown parameters, and a 

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10

Supervised Supervised Supervised Supervised 
MethodMethodMethodMethod

Train DataTrain DataTrain DataTrain Data

Find Optimal Find Optimal Find Optimal Find Optimal 
Learning Learning Learning Learning 

ParameterParameterParameterParameter

Collection Collection Collection Collection 
ResultResultResultResult

Origin LabelOrigin LabelOrigin LabelOrigin Label

Weight Vectors
(Old 25 Subjects)

Collect

Validate Data (F2)

 

Figure 3-3. Ten-fold cross-validation of training algorithm structure. 
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data set to which the classifier can be fit the train data. The fitting process optimizes 

the classifier parameters to make the classification of train data as well as possible. In 

our experiment, we use the 10-fold cross-validation. The origin data set is partitioned 

into 10 subsets (folds). The folds are selected so that the sampling numbers is 

approximately equal in all the folds. In our classifier of a dichotomous classification, 

this means that each fold contains roughly the same proportions of the two types of 

class labels. The detail algorithm of 10-fold cross-validation is in 3-3. The advantage 

of this method over repeated random sub-sampling is that all observation we used for 

both training and validation, and each observation is used for validation exactly once. 

From the rounds of 10-fold, each fold perform a classifier once. Then we collect the 

classifiers from 10 rounds, and test the data set with these 10 optimal classifiers. 

 

3-5. Testing Algorithm Structure 

 

In the second set of experiments, we use a fusion type scheme which is designed 

to assess the effect of variability in subjects. Here we use a 10-fold cross validation on 

the data obtained from 25 training subjects (700 normalized weight vectors, 331 good 

and 369 bad). As done earlier, we leave out one of the 10 folds for validation while 
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the reaming 9 folds are used for training the system. In this experiment, in order to 

choose the optimal architecture, we do not use any inner level cross validation 

because we have new data on 10 subjects (280 normalized weight vectors, 83 good 

and 197 bad) for testing. We use the entire data from the 9-folds to find the best 

architecture for MLPTAN using the left out 10th fold as the validation set.  As 

candidate architectures, we consider the same set of possible hidden nodes, {10, 11, 

12, 13, 14, 15}, as done earlier.   

Once we find the best structure (in terms of misclassifications on the validation 

set), we take that trained network for future use. For example, suppose the 10 folds 

are labeled as Fi; i=1, …, 10.  When we leave fold Fk out for validation, we get the 

classifier Ck, the best MLPTAN trained using Fi; i=1, …, 10; ik. In this way, we get 

10 different classifiers Ck ;k=1,…,10. Each of these classifiers is designed based on 

the training data from the 25 subjects. 

Now each of these 10 classifiers is tested on the test data obtained from the 10 

new subjects. Each classifier generates a value 0 or 1. For a given test data, xi, let yk
i 

be output from classifier Ck. Now we compute a score Si for the test data point xi 

as 10/
10

1
∑
=

=
k

i
ki yS  .  In a typical fusion process Si >= 5 will be interpreted as good 

component; otherwise, a bad component. However, all decisions made in this manner 
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may not necessarily be correct. So it might be better to use a threshold on S to make 

the decision. A decision with a higher threshold usually will indicate more confidence 

on the decision.  

In the above discussion we have illustrated the process using MLPTAN. Similar 

experiments are also conducted with MLPRBF and RBFNN. To find the optimal 

parameters for MLPRBF, RBFNN, and SVMRBF we use the same set of candidate 

choices as done with the corresponding tool in the first set of experiments.  

 

 

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10

Test DataTest DataTest DataTest Data 10 Classifier10 Classifier10 Classifier10 Classifier
ResultsResultsResultsResults

ThresholdingThresholdingThresholdingThresholding
ResultResultResultResult

Extra DataExtra DataExtra DataExtra Data
LabelLabelLabelLabel

10 Classifiers

Weight Vectors 
(New 10 Subjects)

Figure 3-4. Testing algorithm through ten-fold cross validation training classifiers. 
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4. Experiment Results 

 

4-1. Cross Validation Results of Training Data 

 

Table 4-1 reports the average accuracy and standard deviation through four 

different machine learning models. We can clearly find that the SVMRBF performs 

the best accuracy about 92.6%. The second better performing model is RBFNN whose 

accuracy can reach about 90.6%. The other two neural networks, MLPTAN and 

MLPRBF perform similar accuracy. In addition, we can see that the standard 

deviations of these models are very low and consistent (not reach 1%). It means that 

the training models had been trained as a good structure with the optimal parameters.  

Therefore, the training experimental results are shown that it might be possible to 

have automatic systems for useful independent component selection. It is a strong 

indicator of the fact that with adequate training data it may be possible to design a 

“universal machine” for selection of good / useful independent components. Such 

systems would be extremely useful for real-time applications. The table 4-2 is the 

training parameters for performance evaluation from testing data. 
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Table 4-1. The accuracy of 10-fold cross validation. 

Supervised Method Accuracy Rate ± Standard Deviation 

MLPTAN 83.5% ± 0.0082 

MLPRBF 83.8% ± 0.0133 

RBFNN 90.6% ± 0.0085 

SVMRBF 92.6% ± 0.0037 

 

Table 4-2. The parameters of supervised methods. 

Validate 

Fold 

MLPTAN  

Neurons 

MLPRBF  

Neurons 

RBFNN 

Maximum 

Neurons 

RBFNN 

Spread 

SVMRBF 

Gamma 

SVMRBF 

Box 

Constraint 

Fold 1 11 12 70 3.0 2.0 2.5 

Fold 2 12 10 80 2.5 2.0 5.0 

Fold 3 10 13 80 3.0 2.25 5.0 

Fold 4 13 13 75 3.0 2.5 1.5 

Fold 5 12 13 70 2.75 2.0 1.0 

Fold 6 15 14 60 2.5 2.0 1.0 

Fold 7 10 10 70 2.75 2.25 1.0 

Fold 8 12 15 75 2.75 2.5 2.5 

Fold 9 13 10 80 3.0 2.0 0.5 

Fold 10 10 11 65 2.75 2.5 1.0 
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4-2. Evaluation Performance of Testing Data 

 

To evaluate the performance of the training structure from the four different 

machine learning models, we collect other different 10 subjects EEG datasets and 

applied ICA to extract the testing components. Each subject also has 28 components 

in each session. For real-life application, we individually test the accuracy 

performance of each subject. Figure 4-1 plots the average accuracy of testing datasets 

from 10 subjects via different threshold score. Different color dotted lines mean the 

average accuracy of testing datasets using different training structures with thresholds 

from 0.1 to 0.9. Short vertical lines on each threshold point mean the standard 

deviation of average accuracy from 10 subjects. According to the Figure 4-1 results, 

we have two major findings. The first finding is that the classification accuracy of 

four different models are increasing when the threshold is also increasing from 0.1 to 

0.6 and then decreasing. The RBFNN model performs the best accuracy (92.5%) 

under threshold 0.6 and the local optimum threshold values 0.6 and 0.7 will lead to 

the better classification performance according to the performance curves. Moreover, 

we collect the classification accuracy of each subject under threshold 0.6 in Table 4-3. 

The numerator value in brackets means the number of correct classified components 
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and the denominator value means the totally 28 extracted components. 

The other finding is that SVMRBF (the black line) performs the more stable 

classification performance. All classification accuracies of 10 different thresholds are 

over 85%. Therefore, if we cannot find the global optimum value of the threshold, we 

can use SVMRBF to be a general model of useful components selection. It can 

guarantee the classification performance is 85% at least. In other words, 85% 

accuracy means that there are four misclassified components in 28 components. 
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Figure 4-1. Average accuracy of testing datasets from 10 subjects via different 

threshold score. 

 

 

Table 4-3. Classification accuracy of each subject under threshold 0.6. 

Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Average 

MLPTAN  
85.7% 

(24/28) 

89.3% 

(25/28) 

85.7% 

(24/28) 

96.4% 

(27/28) 

78.6% 

(22/28) 

100% 

(28/28) 

89.3% 

(25/28) 

92.9% 

(26/28) 

92.9% 

(26/28) 

82.1% 

(23/28) 

89.3% 

(250/280) 

MLPRBF  
82.1% 

(23/28) 

89.3% 

(25/28) 

85.7% 

(24/28) 

92.9% 

(26/28) 

85.7% 

(24/28) 

89.3% 

(25/28) 

89.3% 

(25/28) 

89.3% 

(25/28) 

92.9% 

(26/28) 

92.9% 

(25/28) 

88.9% 

(249/280) 

RBFNN 
92.9% 

(26/28) 

89.3% 

(25/28) 

89.3% 

(25/28) 

96.4% 

(27/28) 

82.1% 

(23/28) 

96.4% 

(27/28) 

92.9% 

(26/28) 

100% 

(28/28) 

92.9% 

(26/28) 

92.9% 

(26/28) 

92.5% 

(259/280) 

SVMRBF 
82.1% 

(23/28) 

92.9% 

(26/28) 

89.3% 

(25/28) 

89.3% 

(25/28) 

85.7% 

(24/28) 

92.9% 

(26/28) 

82.1% 

(23/28) 

89.3% 

(25/28) 

89.3% 

(25/28) 

89.3% 

(25/28) 

88.2% 

(247/280) 

 

For real-life application, we do not know the new observed component is useful 

or useless. In other words, that means we cannot know the desire output of each 

observed data. Therefore, we need to calculate the positive predictive value (PPV) 

from the confusion matrix to know the predictive performance. In this study, the PPV 

means the useful component predictive rate (UCPR). Equation (28) shows the PPV 

formula in which TP means true positive value and FP means false positive value. 

 

)  ()  (

)  (
)(

ComponentsUsefulFalseFPComponentsUsefulTrueTP

ComponentsUsefulTrueTP
UCPRPPV

+
=   (28) 

 

Corresponding to this study, TP means the number of true useful components 
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and FP means the number of false ones. In UCPR equation, we have the assumption 

that the FP value is as small as possible because these false useful components are 

always from bad components (noise). Figure 4-2 plots the average UCPR from 10 

subjects via different thresholds. According to Figure 4-1 results, RBFNN performs 

the best accuracy performance when the threshold set at 0.6. Hence, we collect the 

UCPR of each subject under threshold 0.6 in Table 4-4 and find that RBFNN still 

performs the best UCPR performance (86%). In Table 4-4, the numerator value means 

the number of true useful components and the denominator value means true useful 

components add false ones. Each subject has at most three false useful components 

during the prediction process of four models. Due to the useful components are less 

than bad components, some uncertainty components from bad components will be 

easy to misclassify and affect the UCPR significantly. Hence, we need to increase the 

population of useful components to enhance the stability and performance of the 

automatic scheme. 
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 Figure 4-2. Average useful component predictive rate from 10 subjects via different 

threshold score. 

 

 

Table 4-4. Useful component predictive rate of each subject under threshold 0.6. 

 

Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Average 

MLPTAN  6/9 8/10 8/11 4/5 6/9 8/8 6/8 8/9 12/12 5/8 
71/89 

(79.8%) 

MLPRBF  6/10 9/12 8/11 4/6 8/11 7/9 6/8 8/10 12/12 6/7 
74/96 

(77.1%) 

RBFNN 6/7 8/10 8/10 4/5 6/8 8/9 7/9 9/9 12/12 6/7 
74/86 

(86.0%) 

SVMRBF 7/12 9/11 9/12 4/7 8/11 8/10 6/10 9/12 12/13 6/8 
78/106 

(73.6%) 
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In Figure 4-2, the UCPR will be monotonically increasing in terms of the 

increasing thresholds. It shows the higher threshold performs the better predictive 

performance. In addition, although SVMRBF performs the best training performance, 

we can find it does not perform the best accuracy in testing evaluation process. The 

predictive performance of SVMRBF is also not stable for real-life application in 

comparison with other three models. 

In summary, we suggest that RBFNN model will be the better model for the 

automatic scheme of useful component selection. It can also perform the better 

predictive performance for real-life application. Regarding the optimal threshold of 

RBFNN model, we suggest setting value at 0.6 is enough to have better performance. 

Since the number of good components is much smaller than the bad components, the 

training process may give more importance to the noise components. We plan to 

explore the utility of data replication as well as generation of additional data through 

rotation or negation. All these are part of future investigation. 
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5. Discussion 

 

5-1. The Difference between Training and Testing 

  

At Training session, the best accuracy was SVMRBF (92.6%), the second was 

RBFCC (90.4%). However, the testing session showed different results. The best 

accuracy was RBFNN (92.5%) in test session, and the SVMRBF accuracy (89.6%) 

was going to the third. This difference could introduce that the different dataset fitted 

different classifier. Therefore, the multi-classification method was a good 

consideration to eliminate this problem of different dataset. 

 

5-2. The Optimal Threshold 
 

In order to compare the different classifiers, we needed to choose the same 

threshold. Here we chose the threshold at 0.6. But the optimal threshold is different 

between classifiers. The RBFNN, MLPRBF, and MLPTAN had the local maximum 

accuracy in threshold 0.6 to 0.7. And the SVMRBF had the maximum accuracy at 

threshold 0.9. Thus, the result was a concern for implementing the 

multi-classification. 



 

53 

 

5-3. The Positive Predictive Rate (PPR) 
 

In chapter 4, we introduced the PPR to find the best classifier from the ration 

between the true positive and good prediction outcome. The PPR showed the high 

accuracy of classifier, then the true positive would be high and the false negative 

would be low. The PPR results evidenced this phenomenon at threshold 0.6. However, 

there were some problems that if we reduced origin good label numbers, the PPR 

would be increase. We had two reasons to explain this problem. First, the labeling of 

scalp-map was defined by expert neuroscientist, and the good and bad label number 

was dependent on subjects. Second, the highest accuracy rate eliminated a problem 

which from the high threshold performed very low false positive, and if the true 

positive is exist, the PPR would be one. But we chose the highest accuracy rate rather 

than high threshold. Therefore, the PPR was a good factor to choose the better 

classifier. 
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6. Conclusion 

 

Noise removal in EEG signal is an essential and important step in any 

application of EEG. If independent component analysis is used for this purpose, then 

selection of useful independent components is the most crucial step. Typically this 

selection is done by human experts who decide looking at the scalp maps. This 

manual intervention not only makes it dependent on the availability and subjectivity 

of experts, but also it becomes a stumbling block in BCI and in any other real-time 

application involving EEG. In this investigation, we have demonstrated that machine 

learning approaches can solve this problem to a great extent. In particular, we have 

used four machine learning tools. Although all of them are quite effective, the SVM 

with RBF kernel appears to be the most consistent and hence suitable one. Our 

investigation also indicates that the performance of a trained system on different 

subjects could be different, but this effect is not very severe and can be eliminated 

using fusion. Normally in a fusion scheme, decisions are made based on majority 

voting.  In our investigation, using a simple score function we have found that higher 

vote does not necessarily mean better performance of a classifier system.   Our 
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investigation indicates that it is possible to design a “universal system” for such job, 

given adequate training data.  

Since the number of good components is much smaller than the bad components, 

the training process may give more importance to the poor components. We plan to 

explore the utility of data replication as well as generation of additional data through 

rotation or negation. All these are part of future investigation.  
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7. Future Works 

 

In Fig. 7-1, the labeled useful component is marked with a blue circle, and the 

prediction of useful component is marked with red rectangle. It presents that the 

component which only has red rectangle or blue circle is the misclassification. In 

order to make the clustering correctly, the component which only has both red 

rectangle and blue circle is considered. However, it makes a problem between the 

components in Fig. 7-1 (a) no. 7, and (b) no. 8 and 15. These components are useful 

component (it is parietal) by manual selection, but the classifier selects the (a) no. 7 

and (b) no. 8 as useful component without the (b) no.15. Because in the training data, 

there are some components which have high weight in an electrode position on scalp 

map, the similar component is in the Fig. 7-1 (b) no. 27 (this is an example in the 

frontal region). Therefore, if we want to implement the component clustering, we 

need to improve the automatic component selection more effective, or enhance the 

dimension of the weight matrix to extract more detail features. 
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(a). 

 

(b) 

Figure 7-1. An illustration of how a scalp map is drawn.  
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7-1. The Enhancement of Feature 

 

The enhancement of weight matrix is a good choice of future experiment. Not 

only we can reduce the misclassification of insufficient data dimensions, but also the 

new matrix has the possibility that the component clustering could remove the bad 

component by itself. In our experiment, we used 28-channel recording. However, 

there exist 32, 64, or 128 channels to record the EEG signal. It is a big trouble if we 

change the recording channel, the classifier of automatic selection needs to be trained 

again for new input data. Therefore, we could consider the scalp-map as our new 

feature for training classifiers. The different channel recording would generate the 

same scalp map topology, which is the matrix that we called color map. The color 

map could be a large or small matrix, which is selected by the concentration of points 

on the scalp map. We can train and evaluate classifiers by the color maps as input data. 

The component clustering system could be performed by using the color maps, which 

supplies the more detail from scalp-map for future experiment. These hypothesis need 

to design a new system scheme to implement, that is another topics in future works. 
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7-2. Auto Clustering System 

 

The component clustering system is a designing topic to extent the ability of 

independent component analysis. In recent researches, the ICA can separate the EEG 

signals into independent components and draw the scalp map by weight matrix. And 

we can analyze specific independent component with corresponding scalp-map. Thus, 

we could point out the EEG activities from different regions. Like the component 

based on occipital lobe has the advantage on drowsiness analysis, the component 

based on prefrontal cortex usually concentrates the eye-blinking affect. We could base 

on these characteristic phenomena to understand the association between the brain 

activities and behaviors. If we could achieve this system, for the engineers or 

psychologists which has no neuroscience background is an important tool to introduce 

them into brain analysis. Currently, mostly brain researches based on ICA have lots of 

conclusion between component activities and behaviors. Therefore, we could 

implement the component clustering system for these researches in brain computer 

interface or real-time application. This work will changes the application of raw EEG 

based analysis system in the world. 
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Appendix 

The confusion matrix from evaluation results: 

(a). MLPTAN 

T0.1 C1 C2 T0.2 C1 C2 T0.3 C1 C2 T0.4 C1 C2

C1 83 114 C1 82 80 C1 82 64 C1 81 41

C2 0 83 C2 1 117 C2 1 133 C2 2 156

0.59

(166/280) 

0.71

(199/280)

0.77

(215/280)

0.85

(237/280) 

T0.5 C1 C2 T0.6 C1 C2 T0.7 C1 C2 T0.8 C1 C2

C1 75 33 C1 71 18 C1 65 12 C1 54 5

C2 8 164 C2 12 179 C2 18 185 C2 29 192

0.85

(239/280) 

0.89

(250/280) 

0.89

(250/280) 

0.88

(246/280)

T0.9 C1 C2 T1.0 C1 C2 C1: Good Component Class

C1 35 1 C1 x x C2: Bad Component Class

C2 48 196 C2 x x TX.X: Threshold X.X

0.82

(231/280)
X

 

(b). MLPRBF 

T0.1 C1 C2 T0.2 C1 C2 T0.3 C1 C2 T0.4 C1 C2

C1 83 122 C1 82 84 C1 81 60 C1 79 44

C2 0 75 C2 1 113 C2 2 137 C2 4 153

0.56

(158/280)

0.7

(195/280)

0.78

(218/280) 

0.83

(232/280) 

T0.5 C1 C2 T0.6 C1 C2 T0.7 C1 C2 T0.8 C1 C2

C1 76 35 C1 74 22 C1 68 11 C1 61 5

C2 7 162 C2 9 175 C2 15 186 C2 22 192

0.85

(238/280) 

0.89

(249/280) 

0.91

(254/280) 

0.9

(253/280) 

T0.9 C1 C2 T1.0 C1 C2 C1: Good Component Class

C1 32 1 C1 x x C2: Bad Component Class

C2 51 196 C2 x x TX.X: Threshold X.X

0.81

(228/280) 
X
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(c). RBFNN 

T0.1 C1 C2 T0.2 C1 C2 T0.3 C1 C2 T0.4 C1 C2

C1 83 96 C1 83 77 C1 82 55 C1 81 38

C2 0 101 C2 0 120 C2 1 142 C2 2 159

0.66

(184/280)

0.72

(203/280) 

0.8

(224/280) 

0.86

(240/280)

T0.5 C1 C2 T0.6 C1 C2 T0.7 C1 C2 T0.8 C1 C2

C1 79 25 C1 74 12 C1 59 4 C1 44 2

C2 4 172 C2 9 185 C2 24 193 C2 39 195

0.9

(251/280) 

0.93

(259/280) 

0.9

(252/280)

0.85

(239/280) 

T0.9 C1 C2 T1.0 C1 C2 C1: Good Component Class

C1 30 1 C1 x x C2: Bad Component Class

C2 53 196 C2 x x TX.X: Threshold X.X

0.81

(226/280) 
X

 

(d). SVMRBF 

T0.1 C1 C2 T0.2 C1 C2 T0.3 C1 C2 T0.4 C1 C2

C1 82 41 C1 82 36 C1 80 33 C1 80 33

C2 1 156 C2 1 161 C2 3 164 C2 3 164

0.85

(238/280)

0.87

(243/280)

0.87

(244/280)

0.87

(244/280)

T0.5 C1 C2 T0.6 C1 C2 T0.7 C1 C2 T0.8 C1 C2

C1 78 33 C1 78 28 C1 78 25 C1 74 20

C2 5 164 C2 5 169 C2 5 172 C2 9 177

0.86

(242/280)

0.88

(247/280)

0.89

(250/280)

0.90

(251/280)

T0.9 C1 C2 T1.0 C1 C2 C1: Good Component Class

C1 74 20 C1 x x C2: Bad Component Class

C2 9 177 C2 x x TX.X: Threshold X.X

0.90

(251/280)
X

 


