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Department of Electrical and Control Engineering
National Chiao Tung University

Abstract

Removal of artifacts is an important step in angesech or application of
electroencephalogram (EEG).. The_artifacts may corgge-blinking, muscle noise,
heart signal, line noise, and-environmental eff€tch noises often make the raw
EEG signals not very useful for extraction/idegation of physiological phenomena
from EEG. The independent component ‘analysis (1322 popular technique for
artifact removal in brain research and some rem@tsonstrate that ICA can remove
the artifacts with lower (acceptable) loss of imf@tion. However, these reports select
useful independent components manually, primanlyldoking at the scalp-plots.
This is of great inconvenience and is a barrierB@1 or real-time applications of
EEG. In this thesis, we demonstrate that machiaenieg methods could be quite
effective to discriminate useful independent congmis from artifacts and our
findings suggests the possibility of developinguaiversal” machine for artifact

removal in EEG.
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1. Introduction

This thesis presents an automatic method for attifeemoval in independent
component analysis (ICA), this is a new implemeatatfor extending the ICA
application. At the first, we introduce what El@&ncephalography (EEG) is and the

noisy signals in EEG.

1-1. Property of EEG Signals

An EEG signal is a measurement of currents that fi@tween the neurons
(nerve cells), which have the same electronic diets/from a small zone in the gray
matter of brain. We use electrode to collect onandel EEG signal, and the
multichannel recording with electrodes, electrodpscare often used. Thus, we could
collect the EEG signal to analyze the specific ggatton EEG activity based on
subject behaviors. However, the EEG signal is ebrfrom electrode cap. Such
structure leads the electrodes which collect thétiphel zones of EEG activities and

noises.



1-1-1. Mixing Signals

EEG signals are resulted from the magnetic fieldiaian caused by the

compound delivery in the brain cell. We can measlweeminor field variation on the

scalp, and then after amplifying the signals we reaord them as the so-called EEG

signals. The EEG signals will measure operatiorthi various areas in cortex as

shown Fig. 1-1. Therefore, EEG signals are mixgghadi they will mix from each

source in the gray matter of brain. However, tlamgmission distance will result in

the decayed performance while receiving the sigmalgig. 1-1, the signals measured

from the left and right will be different-due-tcetidifferent transmission distance. Like

Channel(A) has high amplitude from Source(A) anddofrom Source(B), the signal

amplitude is depend on the inverse proportion efadice .Therefore, like in a noisy

meeting, we can separate the noises from the lgeguaice. The noisy signal could

be take out the EEG signals, too.
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Figure 1-1. The electrode records mixing brainvatisis.

1-1-2. Noise Artifacts

The noises are not always acceptable in all medsystems because it perhaps
will make the signals with noises unusable. In EEi@Gnals processing, we will
eliminate the noises perturbation as possible asame Since we couldn’t ensure the
perturbation signals waveform from the original EBi@nals, the normal variation
could be a characteristic for analysis. Howeveg prerturbation of noises will
destroys or covers the original existed charadtesisuch that the EEG signals cannot

be applied to phenomenon analysis or BCI applioatio
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Figure 1-2. The noise signals.

EEG signals measurement can be divided into twssel The First is external
noises. The external noises will be affected byitiseability of external environment
and measurement interface. Such in Fig. 1-2, theceevill produces line noises due
to the interfering of magnetic field. This frequgnabout 60 Hz, can be filtered by
low pass filter. However, the bad interface contadt be an important problem
between scalp and electrodes. Though we will enfwemeasurement impedance
under 5K, the testers will also unintentionally watheir heads during the testing,

which will make the bad interface contact and thd Bignals. While we encounter



such problem, we can only remove all the perioddaxf signals. The problems of

external noises in measurement can be improveafoyming experiment quality to

get better performance. The second is internalesoi$he internal noises mainly

come from the eye movement[1l] and muscle signal2in Fig. 1-2, such noises

will be absorbed in electrodes while measuring tedecyography (EMG) signals.

They may not be filtered or cleaned by enhancingeerment quality. Such

biomedical signals will also be transferred to &lmdes through scalp. For eye

movement, some researchers used the eye movemepimeqt to eliminate the eye

movement signals. Some researchers study the EM@nation. However, for the

real-time BCI system, involving the two signals m@@ment will result in the line in

BCI too long to make the real application-conveni@herefore, the direct analysis to

distinguish the EEG signals from the internal neiset only can solve the internal

noises problem, but also can make BCI applicatimadber, that is to say, it will not

be limited by only measuring the minor noises ieflaed electrodes. In the following,

we will introduce the study about solving this deohb.



1-2. Motivation

Removing the artifacts in electroencephalogram (E&ighal is an important but

difficult issue in EEG based applications. Howeubere are many kinds of reasons

to produce large and irregular artifacts in EEGordmg, such as eye-blinking,

muscle noise, heart signals, line noise and enwiaot factors, etc. The line noise and

environment factors are external noise, which istrcded by experiment and this

may be neglected by increasing signal to noise.r&ut, the eye-blinking, muscle

noise and heart signal are internal noise; whicisys existence and influence raw

EEG signal. If noises like eye-blinking appear frently, the EEG signal would not

be very useful. For EEG based research; it requresautomatic method that can

preserve the EEG signal while removing the artffact

1-2-1. EEG Feature Extraction

The EEG noisy signals have the regular form like tkye-blinking and

electrocardiography (ECG), and the irregular foike Ithe muscle activities and

eye-saccade in time course. For the regular naisegan remove it by subtracting the



reference from eye-tracking and ECG, or find thenilsir pattern to remove it.

However, the irregular noises like high frequencyivities could be eliminated by

low pass filter, but the other irregular noises hezdly weakened. Therefore, the

mathematical source separation method is a goawagip to solve this problem.

1-2-2. Literatures Survey

It is known that there are many artifacts removimgthods. There are three types

we could figure: First, Find out the_error signabdel, and then eliminate all the

similar models along the time:course. Second, tiges have high frequency that we

could filter it by low pass filter in‘frequency. .Third, we assume the noises are

mixed in the original signal, we could separatentheto different instance. Then we

can divide them by signals processing methods. Weplg introduce them well

known as follows:

(a). Raw EEG Analysis



The EEG analysis has many approaches [3-10] nairedie the artifacts, and we
introduce some common methods in researches. fiestime-domain regression [8,
10] is introduced. The time-domain regression dibes linear regression analysis
between the reference signal (EOG) and the EEGakign perform a regression
parameter. Then the EEG signal subtracts the refersignal plus the regression
parameter to get the approximate solution. Sectmel,adaptive filtering method
[7-10] is considered. The adaptive filtering nead®ference signal, which usually is
EOG as the reference to remove the ocular artifadien, in EEG ocular artifact
cancellation, the EOG is combined with:the ‘previolean EEG signal to the finite
response filter (FIR) to approximate to the curreletan EEG signal. The second
method is the averaged artifact subtraction (AA®had [4-6], which finds similar
artifact peaks and averages these artifacts torgtena subtraction model. This is then
subtracted from the noisy EEG to get the clean EBif@als [5, 6]. However, these
methods only can process the artifacts with fixeatdre like EOG. The noisy signhals
like muscle noise don’t exist any feasible pattésn these method, the research
present the detection of muscle noise by the paw26.25~32.0Hz [3]. Furthermore,

because the filtering method needs a referencalsigut we only pay the attention on



the EEG signals. Thus, we only discuss the AAS oeethith other method in below

sections.

(b). Principle Component Analysis

The first introduction of blind source separatismrinciple component analysis

(PCA). The PCA translates the original data intmeamportant components, which

mix the origin signals from covariant matrix. Thieme, we could receive a linear

transform matrix after PCA, then column:of inverseeight matrix could be present

on the scalp map depending: on the channel locdtibn12]. PCA based methods

result in components where a single-component noayad too much information

(signal). Furthermore, the muscle noise could lbleiced by separating into different

components. However, the ocular is a significaghal in PCA components, which

mix large signals from EEG. Thus, if we remove tdmeilar component from PCA,

three are many signals would be removed with thbaocomponent and distorted the

back-projection signal [13, 14]. Therefore, the P@Athod could reduce the muscle

noise, but the ocular effect may not do a good job.



(c). Independent Component Analysis

The second introduction of blind source separat®omdependent component

analysis (ICA). Among the different methods of fadts removal, ICA [15] is a

frequently used method. ICA methods generally asstirat the signals recorded on

the scalp are mixtures of time courses of temppralbdependent cerebral and

non-cerebral sources. The potentials generatedffgreht parts of the brain, scalp,

and body are linearly summed at the recording ldes. ICA also assumes that the

propagation delays are not significant:sMany ingedgions have demonstrated that

ICA could separate the artifacts and raw EEG sgfie3, 15-22]. Jung et al. in [13]

proposed a method for isolating and-removing difertypes of EEG artifacts by

linear decomposition using an extension of the B&l Sejnowski,’s

information-maximization ICA algorithm [23, 24]. €hextended algorithm [24] can

separate sources with either super-Gaussian oGaulssian amplitude distributions.

This enables one to remove line noises efficienflye algorithm does not require

reference channels for the artifact sources. Ththadefirst finds the independent

time courses of different cerebral and artifactrees and then the cleaned EEG

signals are obtained by eliminating the contrimsiof the artifact sources. Authors

10



in [16, 17, 20, 22] have used ICA to remove thedfbf eye-blinking. The EOG can

be used to record the artifacts caused by eyeibtinkn EEG signal. Then a linear

combination of EOG signal recorded at different gamg time can be subtracted to

find the artifact free EEG. Also, the EOG signalnche compared with the

independent components to identify independent corapts relating to EOG related

artifacts [16].

Independent component analysis has been effectissdy in removing artifacts

from fMRI also [25-27]. For example, task relatedtmon is a significant source of

motion in fMRI. Kochiyama et al. [26] used an1Cskd method to remove the effect

of task related motion. Then:they remove the IC®easated to task related motion

and reconstruct the image. McKeown-et-al. [27] maddnteresting application of

ICA and have demonstrated that ICA can very effetfi be used to separate fMRI

data into meaningful constituent components. It also separate consistently and

transiently task-related physiological changes, tasarelated physiological

phenomena, as well as movement artifacts. Thisareles evidence that ICA has

good results in source separation experiments.

The comparison of raw EEG analysis and ICA, AAShudtcannot rule out the

possibility of inclusion of some useful actual EE{gnal in the subtraction model,

11



and consequently it may induce distortions on scagps [4]. This reference also

shows that the ICA has batter quality of artifaetnoved EEG than AAS. The

comparison of PCA and ICA in [13, 14, 28-31] shothat ICA performs better

resolution. The artifact components extracted fiG# are generally found to exhibit

stronger correlation with the actual artifacts titfzat by the PCA artifact components.

All of these have motivated us to consider ICA blaadifact removal from EEG.

1-3. Problems

Typically when ICA is used for noise cleaning in &Esignal we use the

following steps: first the independent-components @omputed, then the artifacts

(some ICs) are removed and then EEG signal is stearted using the useful (good)

ICs by projecting back (Fig. 1-3). But, unfortungtthese researches select the useful

(good) independent components manually [13, 160821, 32], usually by looking

at the scalp maps. Such a system has several drisvb@irst it is dependent on

experts. So the availability of experts and subjecjudgment of experts could be

important determinant of the success of any apmbicabased on such ICs. The

neuroscientist and psychologist would be inconvasgewhen be introduced in ICA

12



analysis. And, they would get big trouble on nagynponents without the standard

of component selection. Second, for many real-tappglications such as detection of

drivers’ drowsiness, or in some BCI applications, @annot use such methods. These

problems can be eliminated if we can do the jobselecting useful ICs in an

automatic manner. Thus, we want to develop a |eknmechine, which, given the ICs

(in other words given the mixing matrix), can sélde useful ICs in an automatic

manner. Such a system can make BCI applicaticnsdatone (free from human

intervention) and can facilitate real-time applicas. This also opens up the

possibility of developing a “universal’” EEG artitaemoval system.

13
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1-4. Goals of this Study

We want to implement a new EEG analyzing schemke @A, and the Fig. 1-4
is our architecture. The automatic scheme needsstlabeling database, which from
the experience of the expert of neuroscientist.0Afe use this scheme to analyze the
components quickly and feedback to our database tbe advice from everyone.
Therefore, we need to examine the possibility gflementing the system carefully.

This thesis attempts to demonstrate that it is il&sto develop such a
“universal” machine. Here, we use four machinenesy tools, the usual multilayer
perceptron (MLP) architectureswith hyperbolic.tamgsignal function (MLPTAN)
and MLP architecture with redial basis functiomgigfunction (MLPRBF), the radial
basis function neural network (RBENN);-and the suppector machine with radial
basis kernel function (SVMRBF). This four superdisaethods are fundamental and
wide applying in researches. Some results of thigstigation have been reported in
[33]. To improve the performance of the proposedhime we use the simple majority
voting fusion scheme. To demonstrate the effecéssrof such a system we use a
10-fold cross validation protocol to check the gstency of train data, and a

10-classification test to examine the test dataay.

15



1-5. Organization of this Study

In this investigation we introduce a 10-Fold crosdidation to check the
consistency of feature, and test the classificagierformance in practice. We shall
evident this model is exist. A part of this invgstion has been report in [33]. The
proposed approach can account for the variabilityuseful scalp-map between
individuals. We need a labeled training data sethwinformation to teach the
classifiers the useful / useless scalp-map. Irapproach, we label the useful / useless
mark on each scalp-map, and.assume the usefulszgdfhas general feature and the
possibility of classification. We divide the tramata into 10 folds to find the
consistency, and train 10 classifiers:to-evideatdlassification performance. We find
that, the scalp-map data set exhibit a non-linksdying group, and the supervised
methods have good performance in classificationlt®sConsequently, an automatic
selection system can be used to classify usefaklegs scalp-maps and that is what
we do in this investigation.

This thesis is organized as follows. Chapter2 dessrthe EEG data collection,
Data pre-processing, independent component andhesisy, the scalp-map, and the

weight matrix normalization. Chapter3 shows thel@aton of automatic selection

16



system including 10-Fold cross validation, 10 dfésstesting and the threshold of

testing results. Chapter 4 shows the experimeesailts and the discussion is given in

chapter5. Finally, we conclude our findings in diea@.

17



2. Data Acquisition and Pre-Processing

2-1. EEG Data Collection

We have collected the EEG data from the virtualitegVR) environment
[34-36] installed at the Brain Research CentehefNational Chiao Tung University.
The EEG data are collected when each subject pesf@a driving task which is
subjected to disturbances. We have used a 32-chafr20 system (Fig. 2-1) for
recording the EEG, and the impedancerbetween EEGretles and skin was kept to
less than 58 by injecting NaCl based conductive gel. Data waneplified and
recorded by the Scan NuAmps Express-system (Conghasnketd., VIC, Australia)
shown in Fig. 2-1, a high-quality 40-channel digEEG amplifier capable of 32-bit
precision sampled at 1000 Hz. Table 2-2 shows geeications of the NuAmps
amplifier. The EEG data were recorded with 16-liagtization levels at a sampling
rate of 500 Hz in this studyl.o reduce the burden of computation, the datalee t
down-sampled to sampling rate of 250 Hz.

However, we recorded the data using 30 channéksrgtare 2 reference

channels). Of these 30 channels, we have ignomth@nels which are near the eye

18



position (Fpl, Fp2) to reduce the effect of blinkiof eyes. In this investigation the

independent components are generated using the EB@latform [37] developed

in MATLAB (The Math Works, R2007a)The EEG data were processed using a

low-pass filter with a cut-off frequency of 50 Hz order to remove the power line

noise (60Hz) and other high-frequency noise. Siiyilaa high-pass filter with a

cut-off frequency at 0.5 Hz was applied to remoasdhine drifts.

Figure 2-1. The 32 channel EEG cap and electroldesment of international
10-20 system. The letters used are: F: Frontal [bb&mporal lobe. C: Central
lobe. P: Parietal lobe. O: Occipital lobe. "Z" neféo an electrode placed on the

mid-line (zero).

19



2-2. Subjects

We have used a set of 35 subjects (ages varyimg ##0 to 40 years old) to
generate data for the investigation. Subjects westucted to lane keeping driving
experiment. It keeps the car at the center ofdhe by controlling the steering wheel,
and to perform the driving task consciously in ViRvieonment. The whole driving

experiment lasted about 60 to 90 minutes.

2-3. Independent Component Analysis

The independent component analysis [38, 39] isigstital technique which can
separate mixed signals, including the EEG signal, maximally independent
components (ICs) by a specified measure of staistindependence. The ICA
assumes a data model U = WX, where X is queuedroohectors of data recorded
from individual EEG channels, W is a weight matfor mixing independent
components back to original signals, U is queuellinao vector of statistically

independent components. In Fig. 2-2, this is thigaat removal method by using ICA.

20



First, we have a set of collected EEG data, X. Thenmplement the ICA algorithm
to separate X into component domain (U), and weehthe weight matrix W which
present the linear combination of each EEG datanTtve use the back-projection, X
= WU, this method can construct the data from compisngnorigin time domain.
We could use columns of Yo construct ICs as a weighted combination of Xe Th
EEGLAB provides a tool for the visualization of @wmnn of W*, which is known as

component scalp map.

21
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2-4. Weight Matrix Normalization

After implement the ICA process, we get the weiglatrix. The rows of the weight
matrix represent the EEG channels location and dablemns of weight matrix
represent the ICs, like (Fig. 2-3) [18]. In order dliminate the different between
individuals, we normalize the weight matrix by mse method. Every component
results in a scalp map. We generate the componalt siap using the EEGLAB that
uses the value of a normalized weight vector ansity to fill the relative channel
location on the scalp as displayed inFig: 2-4. Hiepanel shows the element of a
column vector mapped on :the scalp location; while tight panel shows the
corresponding scalp map. And the weight distributtm scalp-map is like Fig. 2-5.
The scalp map depicts projections of the ICs oneleetrode sites. The scalp maps
help in localizing the activation of the ICs. Wite help of scalp maps we can detect

the ICs whose activities are concentrated at acpéat electrode location.

23



Component 1 | > Component 28

Wl,l le W:LS oo
WZ,]_ W2,2 W2,3 oo
W3,1 W3,2 W33 °°e

E Weight Vector
(Component 2)
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Figure 2-4. An illustration of how a scalp map iawin.
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Figure 2-5. A central component scalp map’s crestian.

25



3. Automatic Scheme for Useful Independent Component

Selection

3-1. Labeling of Useful / Useless Components

In almost all applications, an expert looks at sschlp-maps and decides on
whether a scalp map (hence an independent compaseguod (useful/signal) or bad
(not useful).

For any subject, we have 28 ICs and-hence. 28 scapes, SM, SM,, ..., SMs.
The {" scale-map, SMis generated using th® column vectory;, of the mixing A",
we use some experts (well experienced-researciverscan interpret / analyze EEG
to label each scalp map (and hence e@chs signal (useful component with label 1)
or as artifact (not useful with label 0). Figurediplays the 28 scalp maps
corresponding to a particular subject. In Fig. 3wle have labeled the useful
components as good and the remaining ones as bagx&mple, the®] 6" and 1§
components are labeled as bad as these possiblyspond to eye blinking. We
emphasize that there may be some scalp-maps ot whperts may not agree about

classifying the maps as artifacts or not.
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In this way we generate a total of 980 column wvesgt@ach representing an

independent component. Each such component iselhbet good or bad. The

generalization capability of any machine learniggtem designed from data heavily

depends on variability in the training data. If tih@ning data set has representation

from the entire population, then the performanceystem designed from such data is

expected to be good. Thus, data from just one suloay not (usually will not)

capture the desired level of variability even itlsudata are generated in different

session of the same subject. In this investigat@have used data from 35 subjects.

Although, we cannot claim that'this datasset walzé the required level of variability,

it is expected to do a reasonably good job.

We have summarized someuseful-scalp map in tile 81, it shows the scalp

maps which has been chosen for brain activity rebea. And the table 3-2 is the

useless components which we want to remove it.
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Figure 3-1. A set ofillustrative ICA scalp map ¢ddd by experts.

28



Table 3-1. An example of useful component set.

Component Name

Positive Scalp-Map

Negative Scalp-Map

Frontal

®

Central

Parietal

Occipital

Bi-lateral

Left mu

Right mu

@O00@®
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Table 3-2. A example set of useless components.

Component Name

Example 1

Example 2

Eye-Blinking

Muscle Noise

7
O

0@

Others

|
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3-2. Supervised Methods

In this study, we use the supervised method. Tasore has two concerns. First,
the scalp-map has the same feature that we coettefne it before training. Second,
the unsupervised method can’t separate the usefeéléss components. Cause there
has no way to detect the super Gaussian distribudio the scalp map in different
position, but the supervised method could solvedhguestions in a easily way. In
this section, we introduce three basic and widesedu classifiers, multilayer
perceptron neural network (MLP), radialbasis.fiorctneural network (RBF), and

support vector machine (SVM) in our investigation..

3.2.1. Multilayer Perceptron Neural Network

We have used the back-propagation algorithm fonitrg MLP networks with

single hidden layer. The MLPTAN and MLPRBF both anelltilayer perceptron

networks (Figure 3-2).

31



Input Layer Hidden Layer Output Layer

VA, N

5] W >
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Data
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Figure 3-2. An example of one hidden layer neuetvork architecture.

Let us explain the architecture-of-MLP neural netvd-irst, in a network, we
want to perform the function:

f(X)=D (1)

We have an inpu =(x,X,,..--,X.)" , and perform the desire output
D= (dl,dz,---,dp)T . Then, from the beginning of neural network, foe tnput layer:

S(x)=x,i=1...,n (2)

S([) is the sigmoid function of a neuron, depend ontwkarning scheme we

want. Then, for the hidden layer:
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n

Zh:ZV\/ihS(Xi),hzl,...,q 3)

i=0

w, is the weight value between neurons from hiddgerléo output layer. For

the output layer:

n
Yi :ZWhjS(Zh)’j:l""’p (4)
i=0
w,; is the weight value between neurons from inpueidg hidden layer. At the

finish of neural network,S(yj) is the output of the neural network.

And we define the mean squared error for a newtaork :

p

E:%Z(di _S(yi ))2 ©)

j=1
In the back-propagation scheme, we can calculaegthdient using the chain

rule of calculus between the hidden layer and dugyer:

oE _ e 0sly,) ay,
T aaly (6)
oW, as(y,.) ay;, ow,

The back-propagation between input layer and hidialger:

0E _ OE 09(z) oz,
= (7)
ow, 09S(z,) 9z, ow,

Then we could update the weight between the layerdjidden to output layer

weights:
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Wy = Wy + AWy = W, +77 {_ a—E] (8)
oW,

n is the learning rate in the neural network. Fguito hidden layer weights:

. oE
Wy, =Wy, +Aw, =W +’7(_WJ 9)
in

Both of MLPTAN and MLPRBF use the log-sigmoid tréersfunction at the

output layer:

1
1+e™

S(x) = (10)
The only difference between the two networks ishie signal function of the hidden

layer. The MLPTAN uses hyperbolic tangent signaiction:

S(x)= ﬁ -1 (11)

The MLPRBF uses the radial basis function:

S(x)=e (12)

3.2.2. Radial Basis Function Neural Network

The RBF network (RBFNN) uses exactly three layensut layer, basis function
layer and output layer. Unlike MLP, the activatimmctions of the hidden nodes are

not of sigmoid type, rather each hidden node reprssa radial basis function. The
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transformation from the input space to the hiddeace is nonlinear but each node in
the output layer computes just the weighted suth@foutputs of the previous layer,
i.e., each output layer node makes a linear tramsfbon. Thus the difference
between MLPRBF (with just one hidden layer) and RBHies not only in the signal
function of the output layer, but also the learnsgheme. The learning of RBF
network is usually performed in two phases. An pesuvised learning method is
applied to estimate the basis function parametdren a supervised learning method,
such as gradient descent or least square erronagstiis applied to tune the network
weights between the hidden layer andithe outpiérlayor the detail of tuning the
network weights, we need a-training data $et{X,,d }<,. And the function is
generated by taking a weighted linear-superposiafdhe basis functions:

f(X):kZZwiMx—xk”) (13)

X =X,| is the distance between the inpXt =(x,X,,:-,x,)" and a

training data pointXi T . From the requirement like (1), we have the equati

Z::vvi¢0|x—xi||)=dk,k=1...,q (14)

In order to recast this system of equations intérisnéorm, we introduce some
definitions:

D :(dl,dz,"',dQ)T (15)
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W :(Wl’WZ"“!WQ)T (16)

¢0|x X)X, - xQu

(17)
cﬂQ\ -X H ¢Q\ -
Then we can get a equation from (X):
D = oW
There, we can solve W from (X):
W=D (18)
And, our distance function is the Gaussian funstion
o(x)= e 19)

[ is the spread parameter in our parameter.

However, the parameters of‘the-basis functionsatsm be tuned using gradient

descent technique.

3.2.3. Support Vector Machine

The basic SVM [40-42] is formulated for a two dawoblem. If the training data

are linearly separable, then SVM finds an optimwpedmplane that maximizes the

margin of separation between the two classes.
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Given a training setX,Y), x, OX, x; 00Pand y, 0Y, the class label associated
with x,; y, 0{-1, +1}, the learning problem for SVMs is to finthe weight vector
w and biag such that they satisfy the constraints:

X, W+b=>+1for y; =+1 (20)
X;iW+b< -1 for y; =-1 (21)

and the weight vectow minimizes the cost function
_1or
D(w) _EW W (22)

The constraints written in (20)-(21) can be'combias

yi(x;.w +Db)z+1 Zigi. (23)

In our casey; is a column-vector of A“and +1 and -1 can be viessgood
component and bad component. If the training panésnot linearly separable, then
there is no hyperplane that separates them inttiy@and negative classes. In this
case, the problem is reformulated considering theksvariablesé =0; i=12,...,N .

For mostx,, & =0. The constraints are now modified as follows:

X, W+b=>+1-¢ for Y, =+1 (24)
X,.W+b<-1+¢ for Y, =1 (25)
& =20 [0, (26)

The SVM then findsw, minimizing
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d(w, &) :%WTW +C%gﬁ 27)
subject to constraints (24)-(26). The regularizat@rameteC controls the trade off
between the complexity of the system and the nuroberisclassifications.

If the training points are not linearly separalaleyonlinear mapping is used to
map the training data from® to some higher dimensional feature spatewith an
expectation hat the data may be linearly sepanablg. The mapping is implicitly
realized using a kernel function. There are difiétgpes of kernels that are popular.
Here we shall use only the RBF kernel:

2
K(X’Xi):e—YHX_Xi” ,Y>0. (28)

We call SVM with the RBFE kernel as SVMRBE. Like Mlaad RBF network.
3-3. Training Algorithm Structure

Let us explain our design schemes using the net®ileTAN. The ICA
components (i.e., the s) are partitioned randomly into 10 folds, eacle@dfial (to the
extent possible) size. We leave out one of the dlfsffor validation while the
reaming 9 folds are used for training the systemd® this, the first issue to address

is the choice of number of hidden layers and nurobeindes in each hidden layer. In
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all our experiments we use just one hidden layer.filfd the best choice for the
number of hidden nodes, we use a second (innee) [E3-fold cross validation as
illustrated in Fig. 3-3. For MLPTAN we choose thesbarchitecture by considering
networks with number of neurons in the hidden layier{10, 11, 12, 13, 14, 15}.

Once we find the best structure, we take that secture and rained the network
using the outer level 9-folds. The trained netwisrthen tested on fold that is left out.
Then the entire process of random partitioning iftbfolds and computing the

performance of the network using the optimal patamf®und by a second level of
cross-validation is repeated 5 times. The-average and its standard deviation over
these 5 partitions are then reported.  Similar Brpnts are then conducted with
MLPRBF, RBFNN, and SVMRBF. For-MLPTAN also we fitide best architecture

by considering networks with number of neuronshia hidden layers in {10, 11, 12,

13, 14, 15}. For the RBFNN network, two parametas to be decided: the number
of hidden nodes and the spread parameter of thedizawbasis function. For this we
have considered 35 choices : five choices for timaber of hidden nodes, {60, 65, 70
75, 80} and seven choices for the spread paraméiets 1.75, 2, 2.25, 2.5, 2.75, 3}.

For the SVM classifier also we need to find sugabblues for C and spread. To

choose the optimal pair, we have considered 104cebo eight choices for the
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number of RBF scaling factor, {0.5, 1, 1.5, 2.5]18, 20, 25} and 13 choices for the

box constraint value, {0.01, 0.1, 0.15, 0.2, 0@8, 1, 1.5, 1.75, 2, 3, 4, 5}.

Weight Vectors
(Old 25 Subjects)

—_Ilz_‘lz_ Validate Data (F2)
| F3 \4
Z% | Supervised | Collection
—__F6 Method Result
— _F8
—L_E9 Find Optimal .
—L_F10 Learning Origin Label
Collect Parameter

ollec

> Train Data S

Figure 3-3. Ten-fold cross-validation of training@ithm structure.

3-4. Cross Validation

Cross-validation, sometimes called rotation estiomat is a method for

evaluating the result performance of a classiftas mainly used in the whole labeled

train data, and estimates how accurately a classifill perform the prediction.

Moreover, suppose we have a classifier with onmare unknown parameters, and a
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data set to which the classifier can be fit thentdata. The fitting process optimizes
the classifier parameters to make the classifinatiotrain data as well as possible. In
our experiment, we use the 10-fold cross-validatidme origin data set is partitioned
into 10 subsets (folds). The folds are selectedthed the sampling numbers is
approximately equal in all the folds. In our cléissiof a dichotomous classification,
this means that each fold contains roughly the sproportions of the two types of
class labels. The detail algorithm of 10-fold crgafidation is in 3-3. The advantage
of this method over repeated random sub-samplitigaisall observation we used for
both training and validation, and eachrobservasamsed for validation exactly once.
From the rounds of 10-fold, each fold perform gssifier once. Then we collect the

classifiers from 10 rounds, and test the-data géatthvese 10 optimal classifiers.

3-5. Testing Algorithm Structure

In the second set of experiments, we use a fug® $scheme which is designed
to assess the effect of variability in subjectsteHge use a 10-fold cross validation on
the data obtained from 25 training subjects (700nadized weight vectors, 331 good

and 369 bad). As done earlier, we leave out onthenflO folds for validation while
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the reaming 9 folds are used for training the systi this experiment, in order to
choose the optimal architecture, we do not use iangr level cross validation
because we have new data on 10 subjects (280 npeahaleight vectors, 83 good
and 197 bad) for testing. We use the entire datmn fthe 9-folds to find the best
architecture for MLPTAN using the left out "ifold as the validation set. As
candidate architectures, we consider the samef ggissible hidden nodes, {10, 11,
12, 13, 14, 15}, as done earlier.

Once we find the best structure (in terms of misifecations on the validation
set), we take that trained network for future User. example, suppose the 10 folds
are labeled as;H=1, ..., 10. “When we leave fold, 6ut for validation, we get the
classifier G, the best MLPTAN trained-using;f=1, ..., 10; k. In this way, we get
10 different classifiers (C;k=1,...,10. Each of these classifiers is designasetd on
the training data from the 25 subjects.

Now each of these 10 classifiers is tested ondbedata obtained from the 10
new subjects. Each classifier generates a valuel0 feor a given test dats;, let y

be output from classifier C Now we compute a score for the test data poin;

10 .
as§ = ZVL /10 . In a typical fusion process = 5 will be interpreted as good
k=1

component; otherwise, a bad component. Howevedealisions made in this manner
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may not necessarily be correct. So it might beebétt use a threshold on S to make

the decision. A decision with a higher thresholdally will indicate more confidence

on the decision.

In the above discussion we have illustrated thegs® using MLPTAN. Similar

experiments are also conducted with MLPRBF and RBFNo find the optimal

parameters for MLPRBF, RBFNN, and SVMRBF we usegame set of candidate

choices as done with the corresponding tool irfitseset of experiments.
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> C1 | Label
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(New 10 Subjects)
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y
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(0¥

C8
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>_C10

Figure 3-4. Testing algorithm through ten-fold @esalidation training classifiers.
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4. Experiment Results

4-1. Cross Validation Results of Training Data

Table 4-1 reports the average accuracy and standiewition through four
different machine learning models. We can cleairig that the SVMRBF performs
the best accuracy about 92.6%. The second bettiarméng model is RBFNN whose
accuracy can reach about 90.6%. The other two hewtavorks, MLPTAN and
MLPRBF perform similar accuracy._In_addition, wencaee that the standard
deviations of these models are very low and comsiginot reach 1%). It means that
the training models had been trained as a.goodtsteiwith the optimal parameters.
Therefore, the training experimental results arewshthat it might be possible to
have automatic systems for useful independent caergoselection. It is a strong
indicator of the fact that with adequate trainiregadit may be possible to design a
“universal machine” for selection of good / usefatlependent components. Such
systems would be extremely useful for real-timeliappons. The table 4-2 is the

training parameters for performance evaluation ftesting data.
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Table 4-1. The accuracy of 10-fold cross validation

Supervised Method

Accuracy Rate * Standard Deviation

MLPTAN 83.5% + 0.0082
MLPRBF 83.8% + 0.0133

RBFNN 90.6% * 0.0085
SVMRBF 92.6% + 0.0037

Table 4-2. The parameters of supervised methods.

, RBFNN SVMRBF
Validate | MLPTAN | MLPRBF _ RBFNN | SVMRBF
Maximum Box

Fold Neurons | Neurons Spread | Gamma .

Neurons Constraint
Fold 1 11 12 70 3.0 2.0 2.5
Fold 2 12 10 80 2.5 2.0 5.0
Fold 3 10 13 80 3.0 2.25 5.0
Fold 4 13 13 75 3.0 2.5 15
Fold 5 12 13 70 2.75 2.0 1.0
Fold 6 15 14 60 2.5 2.0 1.0
Fold 7 10 10 70 2.75 2.25 1.0
Fold 8 12 15 75 2.75 2.5 2.5
Fold 9 13 10 80 3.0 2.0 0.5
Fold 10 10 11 65 2.75 2.5 1.0
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4-2. Evaluation Performance of Testing Data

To evaluate the performance of the training stmectwiom the four different
machine learning models, we collect other differ&@tsubjects EEG datasets and
applied ICA to extract the testing components. Eadbject also has 28 components
in each session. For real-life application, we vidlially test the accuracy
performance of each subject. Figure 4-1 plots tlezage accuracy of testing datasets
from 10 subjects via different threshold score.fé&#nt color dotted lines mean the
average accuracy of testing datasets using différaiming structures with thresholds
from 0.1 to 0.9. Short vertical lines on each thadd point mean the standard
deviation of average accuracy from:10-subjects.ofdiag to the Figure 4-1 results,
we have two major findings. The first finding isaththe classification accuracy of
four different models are increasing when the thoésbis also increasing from 0.1 to
0.6 and then decreasing. The RBFNN model perfotmshbiest accuracy (92.5%)
under threshold 0.6 and the local optimum threshaldes 0.6 and 0.7 will lead to
the better classification performance accordintheoperformance curves. Moreover,
we collect the classification accuracy of each sctjinder threshold 0.6 in Table 4-3.

The numerator value in brackets means the numbeoroéct classified components
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and the denominator value means the totally 2&ete¢d components.

The other finding is that SYVMRBF (the black linegrfprms the more stable

classification performance. All classification acaties of 10 different thresholds are

over 85%. Therefore, if we cannot find the globatimum value of the threshold, we

can use SVMRBF to be a general model of useful comvapts selection. It can

guarantee the classification performance is 85%east. In other words, 85%

accuracy means that there are four misclassifietpoments in 28 components.
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Figure 4-1. Average accuracy of testing datasets ft0 subjects via different

threshold score.

age

Table 4-3. Classification accuracy of each subjecer threshold 0.6.
Subjects S1 S2 S3 S4 S5 S6 S7 S8 S S10 Aver|
MLPTAN 85.7% | 89.3% | 85.7% | 96.4% | 78.6% | 100% | 89.3% | 92.9% | 92.9% | 82.1% | 89.3%
(24128) | (25/28) | (24/28) | (27/28) | (22/28) | (28/28) | (25/28) | (26/28) | (26/28) | (23/28) | (250/280)
VLPREE 82.1% | 89.3% | 85.7% | 92.9% | 85.7% | 89.3% | 89.3% | 89.3% | 92.9% | 92.9% | 88.9%
(23/28) | (25/28) | (24/28) | (26/28) | (24/28) | (25/28) | (25/28) | (25/28) | (26/28) | (25/28) | (249/280)
RBENN 92.9% | 89.3% | 89.3% | 96.4% | 82.1% | 96.4% | 92.9% | 100% | 92.9% | 92.9% | 92.5%
(26/28) | (25/28) | (25/28) | (27/28) | (23/28) | (27/28) | (26/28) | (28/28) | (26/28) | (26/28) | (259/280)
SUMREE 82.1% | 92.9% | 89.3% | 89.3% | 85.7% | 92.9% | 82.1% | 89.3% | 89.3% | 89.3% | 88.2%
(23/28) | (26/28) | (25/28) | (25/28) | (24/28) [11(26/28) | (23/28) | (25/28) | (25/28) | (25/28) | (247/280)

For real-life application, we

do not know the nebserved component is useful

or useless. In other words, that means.we cannow khe desire output of each

observed data. Therefore, we need to calculatgdiséive predictive valuePPV)

from the confusion matrix to know the predictivefpemance. In this study, tHePV

means the useful component predictive r&t€RR). Equation (28) shows thePV

formula in whichTP means true positive value aRB means false positive value.

PPV(UCPR) =

TP(TrueUsefulComponenis

TP(TrueUsefulComponenist FP(FalseUsefulComponenis

(28)

Corresponding to this study,P means the number of true useful components
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andFP means the number of false onesUBPR equation, we have the assumption

that theFP value is as small as possible because these datfal components are

always from bad components (noise). Figure 4-2sptbe averag&CPR from 10

subjects via different thresholds. According toufeg4-1 results, RBFNN performs

the best accuracy performance when the thresholdtd26. Hence, we collect the

UCPR of each subject under threshold 0.6 in Table 4@ famd that RBFNN still

performs the bedt CPRperformance (86%). In Table 4-4, the numeratoneaheans

the number of true useful components and the derador value means true useful

components add false ones. Each subject has. atthmest false useful components

during the prediction process: of four models. Dmehe useful components are less

than bad components, some uncertainty.-components frad components will be

easy to misclassify and affect tb€PR significantly. Hence, we need to increase the

population of useful components to enhance theilgéyabnd performance of the

automatic scheme.

49



0.95

0.9

0.85

0.8

0.75

Useful Component Predictive Rate

i —&— MLPTAN
I MLPREBF
—&— RBFNN
L —e— S\VMREF
1 1 Il Il 1 1
01 02 03 04 05 06 07 08 09
Threshold

Figure 4-2. Average useful component predictite feom 10 subjects via different
threshold score.

Table 4-4. Useful component predictive rate of eadbject under threshold 0.6.

Subjects S1 S2 S3 S4 S5 S¢ SY4 SB S »1Bverage
71/89
MLPTAN 6/9 8/10 | 8/11 | 4/5 6/9 8/8 6/8 8/9 12/12 5/8
(79.8%)
74/96
MLPRBF | 6/10 | 9/12 | 8/11 | 4/6 8/11 | 7/9 6/8 8/10 | 12/12 | 6/7
(77.1%)
74/86
RBFNN 6/7 8/10 | 8/10 | 4/5 6/8 8/9 7/9 9/9 12/12 6/7
(86.0%)
78/106
SVMRBF | 7/12 | 9/11 | 9/12 | 4/7 8/11 | 8/10 | 6/10 | 9/12 | 12/13| 6/8
(73.6%)
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In Figure 4-2, theUCPR will be monotonically increasing in terms of the

increasing thresholds. It shows the higher threshparforms the better predictive

performance. In addition, although SVMRBF perfortims best training performance,

we can find it does not perform the best accuractesting evaluation process. The

predictive performance of SVMRBF is also not stafie real-life application in

comparison with other three models.

In summary, we suggest that RBFNN model will be lie¢ter model for the

automatic scheme of useful component selectiorcatt also perform the better

predictive performance for real-life_applicationedarding the optimal threshold of

RBFNN model, we suggest setting value at 0.6 isighdo have better performance.

Since the number of good compeonents-is:much snthiter the bad components, the

training process may give more importance to thseneomponents. We plan to

explore the utility of data replication as well generation of additional data through

rotation or negation. All these are part of futumeestigation.
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5. Discussion

5-1. The Difference between Training and Testing

At Training session, the best accuracy was SVMR&EG%), the second was
RBFCC (90.4%). However, the testing session shodiéidrent results. The best
accuracy was RBFNN (92.5%) in test session, andSMEIRBF accuracy (89.6%)
was going to the third. This difference could inlmoe that the different dataset fitted
different classifier. Therefore, the!'multi-class#tion method was a good

consideration to eliminate this:problem of differdataset.

5-2. The Optimal Threshold

In order to compare the different classifiers, weeded to choose the same
threshold. Here we chose the threshold at 0.6.tiButoptimal threshold is different
between classifiers. The RBFNN, MLPRBF, and MLPTA&M the local maximum
accuracy in threshold 0.6 to 0.7. And the SVMRBH tlae maximum accuracy at
threshold 0.9. Thus, the result was a concern famplementing the

multi-classification.
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5-3. The Positive Predictive Rate (PPR)

In chapter 4, we introduced the PPR to find the bé&sssifier from the ration
between the true positive and good prediction outzoThe PPR showed the high
accuracy of classifier, then the true positive wlobk high and the false negative
would be low. The PPR results evidenced this phemam at threshold 0.6. However,
there were some problems that if we reduced omgiad label numbers, the PPR
would be increase. We had two reasons to explanpttoblem. First, the labeling of
scalp-map was defined by expert. neurascientist,thadyood and bad label humber
was dependent on subjects. Second, the. highestaagcrate eliminated a problem
which from the high thresholdperformed-very lowséa positive, and if the true
positive is exist, the PPR would be one. But wesehiie highest accuracy rate rather
than high threshold. Therefore, the PPR was a daotbr to choose the better

classifier.
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6. Conclusion

Noise removal in EEG signal is an essential andomant step in any

application of EEG. If independent component anslissused for this purpose, then

selection of useful independent components is thetrarucial step. Typically this

selection is done by human experts who decide tapldat the scalp maps. This

manual intervention not only makes it dependenthenavailability and subjectivity

of experts, but also it becomes a stumbling blacBCI and in any other real-time

application involving EEG. In this investigationgvinave demonstrated that machine

learning approaches can solve this problem to atgretent. In particular, we have

used four machine learning tools. Although all ledérh are quite effective, the SVM

with RBF kernel appears to be the most consistedt [Eence suitable one. Our

investigation also indicates that the performantea drained system on different

subjects could be different, but this effect is mety severe and can be eliminated

using fusion. Normally in a fusion scheme, decisi@me made based on majority

voting. In our investigation, using a simple schwection we have found that higher

vote does not necessarily mean better performahce dassifier system.  Our
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investigation indicates that it is possible to dasa “universal system” for such job,

given adequate training data.

Since the number of good components is much snthber the bad components,

the training process may give more importance gopbor components. We plan to

explore the utility of data replication as well generation of additional data through

rotation or negation. All these are part of futumeestigation.

55



7. Future Works

In Fig. 7-1, the labeled useful component is mankéth a blue circle, and the

prediction of useful component is marked with redgtangle. It presents that the

component which only has red rectangle or bluelecirse the misclassification. In

order to make the clustering correctly, the componghich only has both red

rectangle and blue circle is considered. Howewemakes a problem between the

components in Fig. 7-1 (a) no. 7, and (b) no. 8 HidThese components are useful

component (it is parietal) by manual selection, et classifier selects the (a) no. 7

and (b) no. 8 as useful component without the (bl% Because in the training data,

there are some components which-have high-weigatialectrode position on scalp

map, the similar component is in the Fig. 7-1 (b) &7 (this is an example in the

frontal region). Therefore, if we want to implemehe component clustering, we

need to improve the automatic component selectioreneffective, or enhance the

dimension of the weight matrix to extract more ddé&atures.
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(b)

Figure 7-1. An illustration of how a scalp map iawin.
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7-1. The Enhancement of Feature

The enhancement of weight matrix is a good choickitoire experiment. Not

only we can reduce the misclassification of insigint data dimensions, but also the

new matrix has the possibility that the componduastering could remove the bad

component by itself. In our experiment, we usedcB&nnel recording. However,

there exist 32, 64, or 128 channels to record & Bignal. It is a big trouble if we

change the recording channel, the classifier adraatic selection needs to be trained

again for new input data. Therefore,~we could absisithe scalp-map as our new

feature for training classifiers.: The different ohel recording would generate the

same scalp map topology, which"is the matrix thatoalled color map. The color

map could be a large or small matrix, which is ciele by the concentration of points

on the scalp map. We can train and evaluate dessliy the color maps as input data.

The component clustering system could be perforbyedsing the color maps, which

supplies the more detail from scalp-map for fuexperiment. These hypothesis need

to design a new system scheme to implement, tlatdther topics in future works.
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7-2. Auto Clustering System

The component clustering system is a designingctépiextent the ability of
independent component analysis. In recent resesrtte ICA can separate the EEG
signals into independent components and draw thkp seap by weight matrix. And
we can analyze specific independent componenteatiesponding scalp-map. Thus,
we could point out the EEG activities from differeegions. Like the component
based on occipital lobe has the advantage on dneasianalysis, the component
based on prefrontal cortex usually:concentrategyeeblinking affect. We could base
on these characteristic phenomena to understandsbeciation between the brain
activities and behaviors. If we. could achieve tbistem, for the engineers or
psychologists which has no neuroscience backgrauad important tool to introduce
them into brain analysis. Currently, mostly brasearches based on ICA have lots of
conclusion between component activities and belnswvidherefore, we could
implement the component clustering system for thresearches in brain computer
interface or real-time application. This work wethanges the application of raw EEG

based analysis system in the world.
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Appendix

The confusion matrix from evaluation results:

(a). MLPTAN
T0.1 C1 c2 T0.2 C1 c2 T0.3 C1 Cc2 T04 C1 Cc2
Cc1 83 114 Cc1 82 80 Cc1 82 64 c1 81 41
Cc2 0 83 Cc2 1 117 c2 1 133 c2 2 156
0.59 0.71 0.77 0.85
(166/280) (199/280) (215/280) (237/280)
T0.5 C1 C2 T0.6 C1 C2 T0.7 C1 C2 T0.8 C1 C2
Cc1 75 33 Cc1 71 18 Cc1 65 12 c1 54 5
c2 8 164 c2 12 179 (o7 18 185 c2 29 192
0.85 0.89 0.89 0.88
(239/280) (250/280) (250/280) (246/280)
T0.9 C1 Cc2 C1: Good Component Class
c1 35 1 C2: Bad Component Class
Cc2 48 196 TX.X: Threshold X.X
0.82
(231/280)
(b). MLPRBF
T0.1 C1 c2 T0.2 C1 c2 T0.3 C1 Cc2 T04 C1 Cc2
c1 83 122 c1 82 84 c1 81 60 c1 79 44
c2 0 75 c2 1 113 c2 2 137 c2 4 153
0.56 0.7 0.78 0.83
(158/280) (195/280) (218/280) (232/280)
705 C1 C2 T0.6 C1 C2 T0.7 C1 C2 T0.8 C1 Cc2
c1 76 35 c1 74 22 c1 68 11 c1 61 5
c2 7 162 c2 9 175 c2 15 186 c2 22 192
0.85 0.89 0.91 0.9
(238/280) (249/280) (254/280) (253/280)
T09 C1 Cc2 C1: Good Component Class
C1 32 1 C2: Bad Component Class
c2 51 196 TX.X: Threshold X.X
0.81
(228/280)




(c). RBFNN

T0.1 C1 c2 T0.2 C1 c2 T0.3 C1 Cc2 T04 C1 Cc2
Cc1 83 96 c1 83 77 Cc1 82 55 c1 81 38
c2 0 101 c2 0 120 c2 1 142 c2 2 159
0.66 0.72 0.8 0.86
(184/280) (203/280) (224/280) (240/280)
T0.5 C1 C2 T0.6 C1 C2 T0.7 C1 C2 T0.8 C1 C2
Cc1 79 25 Cc1 74 12 Cc1 59 4 c1 44 2
c2 4 172 c2 9 185 Cc2 24 193 Cc2 39 195
0.9 0.93 0.9 0.85
(251/280) (259/280) (252/280) (239/280)
T09 C1 c2 C1: Good Component Class
c1 30 1 C2: Bad Component Class
Cc2 53 196 TX.X: Threshold X.X
0.81
(226/280)
(d). SVMRBF
T0.1 C1 c2 T0.2 C1 c2 T0.3 C1 Cc2 T04 C1 Cc2
c1 82 41 c1 82 36 Cc1 80 33 Cc1 80 33
c2 1 156 c2 1 161 c2 3 164 c2 3 164
0.85 0.87 0.87 0.87
(238/280) (243/280) (244/280) (244/280)
T05 C1 C2 T0.6 C1 C2 T0.7 C1 C2 T0.8 C1 C2
c1 78 33 c1 78 28 c1 78 25 c1 74 20
c2 5 164 c2 5 169 c2 5 172 c2 9 177
0.86 0.88 0.89 0.90
(242/280) (247/280) (250/280) (251/280)
T09 C1 Cc2 C1: Good Component Class
C1 74 20 C2: Bad Component Class
c2 9 177 TX.X: Threshold X.X
0.90
(251/280)




