% £ SDRE4=ISMC % 2+

2 PR R R BN 2

Reliable:Nonlinear Control

via Combining SDRE and ISMC Approaches

g o2t Hzk
hFRE R £

PoE RN R 4 L+ 4 & A~



# & SDRE 4 ISMC * 2+
2 AR AT R P IR e
Reliable Nonlinear Control

via Combining SDRE and ISMC Approaches

R S ] Student: Li-Gang Lin
1p Wi w1 Advisor: Dr. Yew-Wen Liang

A Thesis
Submitted to institute of Electrical and Control Engineering
College of Electrical Engineering and Computer Science
National Chiao Tung University
In Partial Fulfillment of the Requirements
For the Degree of Master
In

Electrical and Control Engineering
June 2010

Hsinchu, Taiwan, Republic of China

a:ig:f.fj\@],i.L,Lg,\E



# & SDRE4-ISMC% 3*
2P AT AR P
SEERR TR SRR EAN B

#F&

A 73 2RAR Ik B fé @ state-dependent Riccati equation (SDRE)IZ % &0

VRREARG PRI FEEZELIF] oo d 35138 7 integral sliding mode

control (ISMC)32.34 & # & % > FTFZIRT 0 X A W8 ki iz fov LA
Rm o @ XL SDRE 31 R AT 2R I A L f(X)=AX)X A

o R A

AKX E R PETD Ak B gk st BRI R

AP RETFATIES N Da AT E e B A

fzﬁ"l

v % ¥ - BSDREeH7fE > % » T HF 34 |

st it 7 ¥ oRiccati = 4250 3 A
TRE- RS PR EEERO L ABELET TR A EATREZ TR o
A2 Py FRACERY FEATE S B ASDRER i ¥ 1

5 FRE- R 2 3£ enSDREATfE 2 ;8 - k7 M F 1 1% o £ 6| F > A

TP A TR el i



Reliable Nonlinear Control

via Combining SDRE and ISMC Approaches

Student: Li-Gang Lin Advisor: Dr. Yew-Wen Liang

Department of Electrical and Control Engineering

National Chiao Tung University

ABSTRACT

In this thesis, we investigate the nonlinear reliable control issues via the state-dependent
Riccati equation (SDRE) scheme with application to the attitude control of a satellite. Owing
to incorporating with the integral sliding mode control (1ISMC) design, both the robustness
and the reliability performances are greatly improved. However, it is known that the
conventional SDRE scheme has to. symbolically-factorize the drift term in the form of
f(X)=A(x)x, and then using this A(x) to check system's stabilizability and observability
symbolically at every nonzero state for ensuring the solvability of an associated SDRE. These
checking conditions are in general not easy to implement when the system dynamics is
complicated, and there is no guideline provided for performing the factorization. As a result,
this study also presents an alternative approach of factorization, which only requires the
information of the system dynamics at every state and guarantees the existence of a unique
positive definite solution of the associated Riccati equation when a mild condition is satisfied.
It is shown that the alternative approach always works if the conventional SDRE approach
adopting any specific factorization for f(x) is successfully operated. An illustrative example is

also given to demonstrate the benefits of the alternative approach of factorization.
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CHAPTER ONE
INTRODUCTION

1.1 Motivation

Numerous design methodologies are known to exist for the control design of highly
nonlinear systems [12]. These include a huge number of linear design techniques used in
conjunction with gain scheduling [38]; nonlinear design methodologies such as dynamic
inversion [17] and sliding mode control. [33]; and adaptive techniques which encompass
both linear adaptive and nonlinear-adaptive control. Lesser known but promising nonlin-
ear design procedures are those that-involve state-dependent Riccati equations (SDRE)
[13]-[14].

Recently, the study of SDRE approach among the variety of control schemes for non-
linear systems has attracted considerable attention (see e.g., [10]-[13], and [36]) due to
its remarkable benefits. These include: 1) concept of SDRE approach is intuitive which
directly adopts the LQR design at every nonzero state; 2) SDRE approach can directly
address system performance through the specification of the performance index by adjust-
ing the state and the control weightings with predictable results, for instance, the engineer
may tune up the weightings on system state to speed up the response at the expense of
more control effort; 3) SDRE approach possesses an extra design degree of freedom arose
from the non-uniqueness of the SDC representation of the nonlinear drift term, which can
be utilized to enhance controller performance; 4) SDRE approach preserves the essential
system nonlinearities, since it does not truncate any system’s nonlinear term. Many prac-
tical and meaningful applications which are successfully performed by the SDRE design
include advanced guidance law development, autopilot design, integrated guidance and

control design, satellite and spacecraft control and estimation, process control, magnetic



levitation, control of systems with parasitic effects, control of artificial human pancreas,
robotics, simultaneous state and parameter estimation, fan control, and various bench-
mark problems (see [10], [15], [36] and the references therein).

SDRE scheme to the stabilization of nonlinear control systems is known to need to
symbolically factorize the drift term in the form of f(x,¢) = A(x, ¢)x, and then using this
A(x,t) to check system’s stabilizability and observability symbolically at every state for
ensuring the solvability of an associated state-dependent Riccati equations. In doing so,
the SDRE algorithm fully captures the nonlinearities of the system, bringing the nonlin-
ear system to a (non-unique) linear structure having state-dependent coefficient (SDC)
matrices, and minimizing a nonlinear performance index having a quadratic-like struc-
ture. Moreover, the nonuniqueness of the factorization creates extra degrees of freedom,
which can be used to enhance controller performance, such as robustness. But, there
is no guideline provided for the factorization f(x,t) = A(x,t)x, specifically to improve
robustness. However, with the help-of Integral-type Sliding Mode Control (ISMC), we
can still improve robustness using SDC factorization. The ISMC approach does not have
reaching phase and possesses the advantages of robustness and ease of implementation.
When the uncertainty and disturbance are matched regarding the nominal healthy sub-
system, the state trajectories of the nominal healthy subsystem and the uncertain system
are identical. Thus, in this study, we adopt the SDRE strategy for the nominal system,
and the ISMC strategy to completely nullify the matched uncertainty and disturbance.
In addition to robustness, we are also interested in the reliability issue related to SDRE
only and SDRE-ISMC combined designs.

However, we encounter some difficulties during the SDRE design. If the system dynam-
ics is sufficiently complicated, the checking conditions of stabilizability and observability
are generally not easy to implement, and there is no guideline provided for performing
the factorization fulfilling some predetermined control objectives. Moreover, if SDRE fails
some checking conditions at a system state, then the system may just stuck in the state
since SDRE can not guarantee a feasible control related to the unique positive definite
solution of the associated Riccati equation. As a result, this study also presents an alter-

native approach for the factorization, which only requires the information of the system



dynamics at every state and guarantees the existence of a unique positive definite solution
of the associated Riccati equation when a mild condition is satisfied. To be more detailed,
we give a necessary and sufficient condition for that solution as well as the implementing
algorithm on how to factorize f(x,t). Moreover, it is shown that the alternative approach
always works if the conventional SDRE approach adopting any specific factorization for
f(x,t) is successfully operated. An illustrative example is also given to demonstrate that
we adopt conventional approach at almost all system states, but at some states (which fails
to operate under conventional approach), instead we resort to the alternative approach

for a different factorization of A which works.

1.2 Outline

The rest of this thesis is organized as follows. Chapter 2 sketches the SDRE and ISMC
designs. Then we investigate the robustnéss,and reliability issues related to both the
SDRE and SDRE+ISMC combined designs with analytical simulation results. In Chapter
5, we formulate an alternative SDRE problem. ‘and describes our solution. Finally, we

provide a short conclusion and give some suggestions of future research related afterwards.



CHAPTER TWO
PRELIMINARIES

2.1 State Dependent Riccati Equation (SDRE)

Consider the following class of time-variant nonlinear control systems
x =f(x,t) + B(x,t)u (2.1)

where x € R" and u € IR™ denote_the,system states and control inputs, respectively,
f(x,t) € R", B(x,t) € R"™™ and f(0) = 0-.dn addition, we consider the following

performance index
J = /OO [XTQ(X)X + uTR(x)u} dt (2.2)
0

where Q7(x) = Q(x) > 0, RT (x)=.R(x) > 0.and.(-)” denotes the transpose of a vector
or a matrix. In this study, we assume that B(x,t) # 0 and Q(x) # 0 for any nonzero
state x.

SDRE techniques are increasingly being used in nonlinear control applications [15]
and entails factorization of the nonlinear dynamics into the state vector and the product
of a matrix-valued function that depends on the state itself [10]. In doing so, the SDRE
algorithm fully captures the nonlinearities of the system, bringing the nonlinear system
to a (non-unique) linear structure having state-dependent coefficient (SDC) matrices, and
minimizing a nonlinear performance index having a quadratic-like structure.

To solve the SDRE problem, almost all the existing studies adopted the following

procedure:

e Symbolically factorize f(x,t) into the form of f(x,t) = A(x,t)x, where A(x,t) €

RHXTL



e Check the stabilizability of [A(x,t), B(x,t)] and the observability of [A(x,t), C'(x)]
symbolically, where C'(x) € IR”*" has full rank and satisfies Q(x) = C7(x)C(x), to

ensure the solvability of the following SDRE [24]:

AT (x,1)P(x) + P(x)A(x,t) — P(x)B(x,t) R~ (x) BT (x,t)P(x) + Q(x) = 0. (2.3)
e Solve the SDRE for P(x) to produce the SDRE controller u = —R™!(x) BT (x, t) P(x)x.

2.2 Integral Sliding Mode Control (ISMC)

The design concept of Integral Sliding Mode Control (ISMC) is quite similar to Sliding
Mode Control (SMC, see e,g, [18], [26], [44], and [45]), and the main difference is that
ISMC adopts the integral-type sliding surface and results no reaching phase, i.e., the
system trajectories will start on the sliding manifold from the first time instant. Moreover,
when the system is on the sliding. manifold; .the system trajectories is determined by
the control law applied to the related nominal subsystem, and this control law can be
any control laws fulfilling design objectives. Intthe following, we describe the design of
ISMC([6], [7], and [28]).

Consider the following class of time-variant nonlinear control systems
x =f(xt)+Bx t)u+d (2.4)

where x € R" and u € R™ denote the system states and control inputs, respectively.
f(x,t) € R" and B(x,t) € R"*™ are both smooth functions. d denotes possible system
uncertainties and disturbances. Here we assume that d has only matched part with regard

to B, thus we write (2.4) as:
x = f(x,t) + B(x,t)(u+d,,) (2.5)

where d,, = BT (x,t) - d, B(x,t) is the pseudo-inverse matrix of B(x,t), and ||d,,|| <

Pm(X, 1), pm(x,t) > 0. Then we design the control law composed of two parts:
u=uy+ (2.6)

where ug is the control input applied to the nominal subsystem, x = f(x,t) + B(x,t) - u.

And u; is a discontinuous control input designed to compensate disturbances such that



the system trajectories can remain on the sliding manifold, as follows:

{ 0 ifs=0 @7
u = x,t)]T's : .
1 —p(x.t) - (BpacnTy s #0

where p(x,t) > p,(x,t), and the sliding surface is designed to be

s(x,f) — D.{x(t)—x(to)— /t[f(x(T),THB(x(T),T).uO(T)].dT}

to

-0 (2.8)

with D € R™*"™ and DB(x,t) having full rank. From (2.8), we observe that s(x,%y) = 0,
which implies the system trajectories start on the manifold from the first time instant

(tp). On the other hand, when system is on the sliding manifold, i.e., s = § = 0, from

(2.4) and (2.8), we obtain
s = D-{x—[f+ B(x,t)ug]}
= D -{[f + B(xgh)u+ B(x,t)d,,] — [f + B(x,t)uo]}

= DB(x,%) (u+ dy=up)
thus u = uy — d,;,, substitute into (2.4) and obtain
x = f(xt) +B(x;t) s ug

which explains that the system trajecteries-staying on the sliding manifold is identical to
that of the nominal system.

On the other hand, to see that u; keeps the system stay on the sliding manifold. When
s # 0, we choose the Lyapunov function V' = 1s”s, differentiate V and from (2.4)-(2.8),
we know

V = s's=s"DB(x,t)- (u+d,, —up)

= g7 x.t) - —p(x.t)- [DB(Xat)]TS
= s"DB(x,t) { plx.1) ||[DB(x,t)]TSH+dm}

< —p(x,0) - |I[DB(x, )]"s|| + [|du]| - [[[DB(x,1)]"s|
< [=p(x0) + pm(x, 0] - [[[DB(x, )]s
< 0.

Since DB(x,t) is assumed full rank and s(x,f;) = 0, the control law (2.6) and (2.7)

guarantees the system remain on the sliding manifold, i.e., s = 0, Vt € [tg, 00).



CHAPTER THREE
STUDY OF ROBUSTNESS PERFORMANCE
OF SDRE-+ISMC SCHEME

SDRE can be used to enhance the performance of robustness through the extra de-
sign degree of freedom arose from the non-uniqueness of the SDC representation of the
nonlinear drift term (see e.g., [10] and [12]). But, there is no guideline provided for the
factorization f(x,t) = A(x,t)x to improve robustness. However, with the help of ISMC,
we can still improve robustness using SDCfactorization. The ISMC approach does not
have reaching phase and possesses the advantages of robustness and ease of implementa-
tion. When the uncertainty_and disturbance are matched regarding the nominal healthy
subsystem, the state trajectories of the mominal ‘healthy subsystem and the uncertain
system are identical. Thus, “in this chapter,-we adopt the SDRE strategy for the nom-
inal system, and the ISMC strategy to.completely nullify the matched uncertainty and
disturbance.

In Section 3.1, we define the system type, cost function, and control objective. Then we
detailed the design of control law of SDRE and SDRE+ISMC in Section 3.2. Finally, we

apply the control law to the satellite attitude control and analyze the simulating results.

3.1 Problem Statement

Consider a set of n 2nd-order time-variant nonlinear control systems as described by
5(1 = X9
- . ~ 1
{ %o = f(x,t) + B(x,t)u+d. (3.1)
T

Here, x; = (21, -, 2,)7 € R", X3 = (Tpy1," +, Ton)! € R™ and x = (x,x2)T are

the system states, u = (u1,- -+, u,)T € IR™ are the control inputs and m > n, d =

(dy,-++,d,)T € R™ denote possible model uncertainties and/or external disturbances and



(1) denotes the transpose of a vector or a matrix. Note that System(3.1) is equivalent to

the following system dynamic:

% = f(x,t) + B(x,t)ju +d (3.2)

where f(x,t) = [x3  fT(x, )7, B(x,t) = [0

nxm

: BT(x,1)]", and d = (07, : d7)7.

Assumption 3.1 : f(x,t) € R" and B(x,t) € R"*™ are smooth functions with f(0) =

Assumption 3.2 : For all states, B(x,t) is full rank.

Moreover, we define the quadratic performance index
J= / X"Q(x)x +u"R(x)u] dt (3.3)
0

where Q(x) = Q(x)T > 0 and R(x) = R(x)T >"0.

The control objective issto compare the performances of the two control strategies
(SDRE and SDRE+ISMC) when there are possible model uncertainties and/or external
disturbances. To be more precisely, we study whether the system can be stabilized and
use the cost function (and others mentioned later) defined in (3.3) as an index to compare

the performance.



3.2 Design of Control Law
3.2.1 SDRE

Under Assumption 3.1, we can factorize the drift term in the form of f(x,t) = A(x,t)x
and let every element of system (3.1) state appearing in f(x,t) contributes as an element
in A(x,t), i.e. capture their state dependency in the proper entry of SDC matrix. To
achieve this goal, we adopt some factorizing techniques given by [10]. The following are

some examples to illustrate:

xg cos(xg) cos(xy)

-1 -1
= ZL‘GMZL‘Q + xGMm + [1 + (cos(z3) — 1)(cos(x2) — 1)]xg
) T3
T
T2
_ { 0 9€6COS(§§)_1 xGCOS(zg)_l 00 {1+ (cos(z3) — 1)(cos(x2) — 1)] } ii
Ts
L T6 |

(3.4)

The drift term, xq cos(z3) cos(ay); has three state components, x5, x3, and xg, thus they
contribute in the (1,2), (1,3), and (1;6) entries of the corresponding SDC matrix, respec-

tively.

3 cos?(x3) sin(2x)

1sin(2 1 in(2 1 cos®(z3) — 1
= ZWM + 1 cosz(xg)w:cl + Z% sin(2z1)xs
F T
€2
— H%@Jﬁcogm)%ﬁm 0 i%gn(ml) 0 0 O} ii
T
L L6

(3.5)

The drift term, i cos?(z3)sin(2z), has three state components, z;, and xs, thus they

contribute in the (1,1), and (1, 3) entries of the corresponding SDC matrix, respectively.



x5 sin(xg) sin(zy)

= %x5 sin(xs) Smx(;m)xg + %x5 sm{i:cg) sin(xq)xs + % sin(x3) sin(xq)xs
Fy
L2
{ 0 35 sin(xg)sm;f) %xg)smxi”) sin(zz) 0 gsin(as)sin(zs) 0 } ii
Ts
L %6 |

(3.6)

The drift term, x5 sin(x3) sin(xs), has three state components, x5, x3, and x5, thus they
contribute in the (1,2), (1,3), and (1, 5) entries of the corresponding SDC matrix, respec-
tively.

After symbolically factorize f(x,t) into the form of f(x,t) = A(x,t)x, where A(x,t) €

IR™™", we adopt the following proceduires to solve the SDRE problem:

e Check the stabilizabilityyof [A(x;t), B(x, )] aud the observability of [A(x,t), C'(x)]
symbolically, where C{(x) ‘€ IRP*™ has full rank and satisfies Q(x) = CT(x)C(x), to
ensure the solvability ©of the following SDRE [24]:

AT (x,t)P(x) + P(x)A(X,#) =P x)B& )R (x)B" (x,1)P(x) + Q(x) = 0. (3.7)

e Solve the SDRE for P(x) to produce the SDRE controller u = —R™!(x) BT (x, t) P(x)x.

10



3.2.2 ISMC
Consider System (3.1), first we need following assumptions.

Assumption 3.3 : There exist p,,(x,t) > 0 such that
ldmll < pim(x,1) (3.8)
where d,, = BT(x,t) - d, and Bt (x,t) is the pseudo-inverse matrix of B(x,t).

Assumption 8.4 : The origin of the nominal subsystem X; = x, and Xy = f (x,t) +

B(x, t)u is uniformly asymptotically stabilizable, that is, there exists a control uy and a

continuously differentiable function V'(x,t) such that

n((xll) < Vx,1) < y(llx]]) (3.9)

oV (x.t) <8V(x, N\

and 5 W > : {f(x, t) + B(x, t)uo} < —s([Ix]]) (3.10)

where 71,7 : RT — IRT are elass kg functions and-y; is a class K function.
Under Assumptions 3.3"and 3.4, the control law is designed into two parts:
u=u;+u (3.11)

where ug can be any control law which satisfies Assumption 3.4 and creates a desired
system trajectory for the state of the uncertain system to follow. In this chapter, ug
adopts the SDRE strategy. On the other hand, u; is designed to compensate for the
disturbances such that the system state can remain on the sliding manifold.

Along the ISMC design procedure, the sliding manifold is introduced as (3.12) below:

2]

= §(x,t)

- E-{X(t)—x(to)—/t [f(x(T),THB(x(T),T)-uO(T)}-dT} (3.12)

to
where D = (D;, D) and D; € R™", D € R™*". Note that D - B(x,t) = D - B(x,1).

Differentiate (3.12), the sliding manifold (3.12) is simplified to be

sixt) = D+ {xalt) ~xalte) - / [Ex(r), 1)+ B(x(r).7) - wo(r)] - dr}

to

= 0. (3.13)

11



Note that Vx, DB(x, ) is full rank.
When the system is on the sliding manifold, x = 0 and $ = 0. From (3.1) and (3.12),

it is obtained that

Hence u = —BT(x,t) - [d + B(x,t)ug]. By substituting this u into (3.1), the system
resembles the nominal system.

The other part of control law, u;, the discussion separate into two cases: one is when
s = 0, u; = 0; The other is when s # 0, u; is designed to keep s = 0, let

[Dl?’(x, t))''s
DB (x|

u = —p(x,t) (3.14)

where p(x,t) > pm(x,t). By-choosing the Lyapunov function as V = $s”s, then differen-

tiate V' and substitute into (3:11) and (3.12),

vV = s's
= s'D-[B(x,t)u+d — B(x,t)ug]

sTDB(x,t) - [ug +uy + BT (x,t)d — ug)

< —p(x,t) - [IIDB(x, 0)]"s|| + || B (x,t)d]| - [|[DB(x, )] s]]
< [=p(x,t) + pm(x,1)] - |[[DB(x, 1)] ||
< 0.

To conclude, the following theorem is presented.

Theorem 3.1 For the nonlinear 2nd-order system (3.1) under Assumptions 3.2-3.4, if

adopting the following control law:

Uup ifs=0 (3.15)
u= [DB(x,1)]T's : .
UO—p(X,t)'W lfS?éO

then the origin of this system is globally asymptotically stable (GAS).

12



3.3 Application to Satellite Attitude Control
3.3.1 Satellite Dynamics

An attitude model for a spacecraft along a circular orbit can be described in the same
form as (3.1) with n = 3 [32]. The three Euler’s angles (¢,6,1) and their derivatives
are adopted as the six state variables. For simplicity, we assume in this study that
the thruster is the only applied control force. Let x = (¢,9,w,¢5,é,¢)T and f(x, t) =

(fi(x,1), fa(x,1), f3(x,1))T. The overall system dynamics has parameters described as

below:
. I, — 1,
fi(x,t) = worecrscrs — WeT55T35T2 + TsTe + WoTsCT1ST38T + WoTsCT35T1
xr
L, 07 ) 2 L 5o 9
+woxeCcr3cT] + §w08( x3)c T18Ty + SWoc 235(2x1) — WoTEST3ST2STY
L ovo o L, 2 3 99
—5Wos w28 r3s(221) — §w03(2x3)3x23 L= SwWoc xos(211) |, (3.16)
fg(x, t) = WoTEST3CT| + WoT CL38X| + WoLgCLIST2ST1 + WoL5ST3CLaST| + WoLgST3SToCL
Iz - Ia:
+ 7 TyTe T+ WolgCL1SL38To + WoLACL3ST1 — WoLgST3CTo
y
L, 2 L, 3 5
—§w03(2x2)3 Tg0x] — Qwocxzsxls(ng) + §wos(2x2)cx1 : (3.17)
fg(X, t) = WpT4ST18T3S8T2 —~ WeTgCLx1CT3STy — WoL5CL1ST3CT2 + WoLgST3ST1 — WoL4CT3CT
I, —
+ TyT5 + WL LCXZCT — WL 4ST3SToST1 — WoL5ST3CTo
z
L, L 5 3 5
—5w03(2x3)cx203:1 + 5 wes r35118(219) — §wos(2x2)sx1 : (3.18)

. 0.67 067 0.67 0.67
B(x,t) = B=| 069 —0.69 —0.69 0.69 |. (3.19)
028 0.28 —-0.28 —0.28

Here, I,, I,,, and I, are the inertia with respect to the three body coordinate axes, wy de-
notes the constant orbital rate, and ¢ and s denote the cos and sin functions, respectively.
Note that, Assumptions 3.1 and 3.2 are obviously satisfied, since B(x,t) is a constant
matrix and any three columns taking from B is invertible. Therefore, the system is found
to be controllable for any control inputs and Assumption 3.4 is also satisfied.

The control objective is to compare the performances of the two control strategies
(SDRE and SDRE+4ISMC) when there are possible model uncertainties and/or external

disturbances. To be more precisely, we study whether the system can be stabilized and
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use the cost function (and others mentioned later) defined in (3.3) as an index to compare

the performance.
3.3.2 Simulation Results

In this section, we use MATLAB software to simulate the satellite attitude control un-
der SDRE and ISMC approach. For both control approaches, we check whether the sys-
tem with disturbances can be stabilized and compare their performances (e.g. quadratic
performance index and convergence time).

The Table 3.1 shows the simulating parameters in this chapter: (Note that for SDRE

approach, the procedure of factorizing f(x,t) = A(x,t)x is described in Appendix)

Table 3.1. Simulation parameters.

I, 2000 N - m - s
I, 400 N - m - s
I, 2000 N -m - s°
Wo 1.0312'x 1073 rad/s
d (0:05sin(t), 0.05.cos(2t), 0.05 sin(3t))"
A(x,t) see’Appendix 3A
D I3
Q Is
R I,
ug SDRE approach
p(x, 1), pn (X, 1) BE(x, )d|o + 1
X (Z0.7,-0.07,1.5,0.3, 1.3, —0.2)7

Furthermore, to alleviate chattering, we modify the control law (3.15) into:

DB (x,0))7s] ’
uO_p(X7t).M 1f||[DB(X7t)]TSH <€

€

_ £ . PBeOTs e 1D B(x. )] s|| >
u:{uo plx.1) rz 1 IIDB 1)) > e (3.20)

where we choose € = 0.02.
The simulation results are shown in Figs. 3.1-3.3, and the summary of comparison of
performance are shown in Table 3.2.

We denote the results:

e SDRE : the system without disturbance (nominal system) under SDRE approach

only

e SDRE : the disturbed system under SDRE approach only
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e SDRE+ISMCd : the disturbed system using SDRE-ISMC combined approaches

In addition, in Table 3.2, we also compare the performances under the Sliding Mode
Control (SMC, see Section 3.2.3 in [42]), LQR (see Section 3.2.2 in [42]), and LQR-ISMC

combined approach (see Section 3.2.1 in [42]), respectively.
e SMC : the disturbed system under nonlinear SMC approach only

e LQR : the system without disturbance (nominal system) under nonlinear LQR ap-

proach only
e LQRA : the disturbed system under nonlinear LQR approach only
o LQRA4ISMCd : the disturbed system using LQR-ISMC combined approaches

From Fig. 3.1, we observe that SDRE approach stabilizes the nominal system but
fails to stabilize when there exists disturbances: However, resorting to ISMC, the system
with disturbances can still be stabilized. -In addition, it is interesting to find that the
trajectory of SDRE+ISMCd and SDRE for mominal design are almost identical (this is
why we seem to see only two trajectories in this figure), this agrees with the theoretical
conclusion. Moreover, the persistent, oscillation”of the state trajectory of SDREd comes
from the effect of the disturbance d, which also contributes to the oscillating control
inputs of SDREd and SDRE+ISMCd in Fig. 3.2. From Fig. 3.2, we see that the control
inputs of SDRE+ISMCd experiences larger oscillating amplitude than SDREd, this is
because the additional part of control inputs in SDRE+ISMCd than SDREd, u; in (3.11),
which contributes to compensate disturbances while SDRE control scheme has no such
mechanism. Finally, in Fig. 3.3, it is obvious that sliding variables of SDRE+ISMCd
start on the sliding manifold and remain on it afterwards, which again agrees with the
theoretical results that ISMC has no reaching phase.

Table 3.2 shows the comparison of performance, including energy consumption [u’u,
quadratic performance index [(x’x+u’u), required maximum control magnitude ||u||,
and convergence time (when the magnitude of state is less than 0.01 at first time). For

nominal system, LQR [42] approach seems to have better performance than SDRE in
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energy consumption [u’u, state regulation [x”x, quadratic performance index [(x!x+
u’u) and convergence time. But SDRE scheme has smaller maximum control magnitude
|lul|s since LORd uses Taylor’s series approximation up to 3rd-order for the real LQR
solution associated to a Hamiltonian-Jacobian equation of the the nonlinear system [49].
For the system with disturbances, LQR+ISMCd approach also have better performance
than SDRE+ISMCd in energy consumption [u’u, state regulation [x’x, quadratic per-
formance index [(x’x+u’u) and convergence time. Moreover, both SDRE+ISMCd and
LQRAISMCd consumes more control energy than the corresponding nominal control law
SDRE and LQR [42], respectively. This is because the additional part, u; in (3.11), is
required in the ISMC design. Last but not least, we see that SMCd has the least con-
vergence time among all approaches, and can be explained by the fact that Sliding Mode
Control (SMC) inherently possesses robustness to model uncertainties and/or external

disturbances [6]-[7], [16], [18], and{45].

To sum up, we conclude that SDRE (so as LQR).is not a robust control law.

1 T T T 0.5 T T
05 SDREd SDREd
x 0. 1 X
1 2, y
0 CORE- IS \/QSDREHSMCd
.
SDRE
~o5LSBRE : : -05 : : :
5 10 15 20 0 5 10 15 20
t t
1 ; 0.5 ;
_SDREd SDRE
. O k£ . ol 2
3 4
/@EHSMCM SDRE+ISMCd
-1 4 -0.5
SDRE SDRE
_2 L L L _l n "
0 5 10 15 20 0 5 10 15 20
t t
1 1 ‘
__SDREd
x. 0 < 05f
5 6
SDRE+ISMCd __SDREd
_l 4 0,
sorE— | —SDRE+IsMcCd
SDRE
- ; ; ; | iy ; ; ; |
0 5 10 15 20 0 5 10 15 20

t t

Fig. 3.1. Time history of the six state variables.
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SDRE
15 1 ol /
1 ]
u u DREd
! 2 05 SPRES ]
05 SDRE ] SDRE+ISMCd
SDREd
0 £ - |
\(V\SDREHSMCd
-05 ‘ : : -15 ‘ : :
5 10 15 20 0 5 10 15
t t
05— _——spre : : 06 : : :
0 A
0.4 ]
08 ] SDRE
. SDREd soREdisMcd | Yoo, SDRE SDRE+ISMCd
-15 1
O,
_2 4
-25 : -0.2 : :
0 5 10 15 20 5 10 15
t t
Fig. 3.2. lime-history of the four control inputs.
0.1
0.05 —
S1 o
-0.05 =
-0.1 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
t
0.5 T
SZ o
-0.5 | | | | | | | | |
2 4 6 8 10 12 14 16 18 20
t
0.5 T
S3 o
-05 | | | | | | | | |
2 4 6 8 10 12 14 16 18 20

Fig. 3.3. Time history of the sliding variables (SDRE+ISMCd).
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Table 3.2. Comparison of performance.

Performance Index

Controller X ()] —500e2 1073 | fulue [ fxIx | [(x"x+uTu) | ||Ju]| | Convergence
time
LQR~+ISMCd You 2.1259 | 4.6294 6.7553 2.5099 5.173
SDRE-+ISMCd 207979 | 417618 7.5597 2.3917 11.981
SMCd Yes 2.4605 | 4.8981 7.3586 2.6305 4.633
LQRd
S NG X1 /8 X X X
LQR Yes 1.9517 7 '4.6277 6.5794 2.5099 5.157
SDRE 2.7756 | 4.7638 7.5395 2.3917 11.598
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Appendix 3A

We denote

_ I
e [, I, and I3 denote =-—=, % L

- , and

I,—I -1 .
— —, respectively.
x z

e c and s denote the cos and sin functions, respectively.

As Section 3.2.1 illustrates, first we reformulate the drift terms (3.16)-(3.18) into:

Reformed Drift Terms

f1 is reformed as:

creg — 1 crs — 1 1 ST
2 T + WoTg— w3+ wo[l + (cxs — 1)(caxg — 1)]|ws — TS T3 —2 Ty
i) T3 3 i)

1 ST3 1 1 1 1 cr1 — 1

——WTs——SToTy — —WoST3STaksi+ =l xexs + = 1506 + —[1woxs
3 T3 3 2 2 4 1

Wole

ST3SToT1

STy 1 Sx3 1
+—Lworscry ST3— 9 + —djWoxscay —STox 3+ — [1wo(cr1 S350 + ST35T9)Ts5
4 ) 4 XT3 4
sxq 1 cxs—1 1 cry — 1
+-lworscrs—xy + liwy—Ts5 sxyas + = Lwo(crssry + szy)xs + Liwozs
3 T 3 T3 3 T

€

crs —1 1 s
+hwote P Lgl(ers = D) (emp==)+ 1]as + gflwgs(ng)x—2x2
s 2
! 1 1 1 2 1
+6]1w§3(2x3)m;713x2x1 ¥ gllwgsxgsx—?@ - éllwgS(xj3)02$13$2$3 + Zjlwgsx—xllﬂ
1 2 1 2pa — 1 1
+Z]1W3621'33(x3;1)3;‘1 + lewg%s(Qxl)xg — Z[1W0$681‘381‘28x—x;x1

1 STy 1 Sx3 1
——liworesrs——sr1xe — —lHworg——ST3511x3 — — [1WoST3ST2ST1Xg
4 ) 4 T3 4

1 s(2x1 1 s2xy 1 5°T3
—I——Ilwngxngxg ( ):pl - —Ilw3—32x33(2x1)x2 — —Ilw§s2x2—s(2x1)x3
6 T 6 i) 6 T3
1 s%xy STy 1 s(2x5
——Lwis(2x3)sTo——x1 — = Lwis(2x3) —— 8?1129 — = LW} ( >sx232x1x3
6 T 6 i) 6 T3
3 s(2xy 3 s(2xy 3 Ary —1
—ZLwicPx, ( )xl — ZLw? ( )xl — S hwg——5(2x1 ) xs. (3A.1)
0 0 0
4 T 4 I 4 )
f2 is reformed as:
cr1 — 1 1 Sx3 1 1 sxq
—WoTST3 1+ —worg—cr1x3 + —wo(sw3cry + sw3)Te + —WoTyCrz— 1
3 I 3 XT3 3 3 T
1 crs — 1 1 1 STy 1 ST
+—WoTy ST123 + —wo(cr3swy + ST1)Tq + —WoTeCT3STe——T1 + —WoTCT3— ST T2
3 T3 3 4 €T 4 )
1 crs — 1 1 1 STy
+ZWO$5 SToST1T3 + ZWO(C.fgS.I'QSl'l + sxgsxl)xG + ZWO.I'g)S.I'gCl'Q—l'l
Z3 (a1
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1 cro — 1 1 ST3 1
+—WoT5ST3——ST1 T2 + —Wols——CT2ST1T3 + —wo(sxgcxgsxl + s:cgsxl)x5
4 T2 4 T3 4
1 cry — 1 1 STy 1 ST3
+—Wor4ST35%9 T1 + —WeTyST3——CL1 T2 + —WoLy——ST2CT1 X3
4 T 4 ) 4 T3

1 1 1 1 cr; — 1
+-wo(sw3sxocry + sT35T9) Ty + = lowers + = loxsx6 + = Iowory
4 2 2 4 1

SX38ToT1

1 STy 1 Sx3 1
+Z[2wO.I'4C.fL'18.I'3—£U2 + Z[QWO$4C$1—S$2$3 + ngwo(cxlsxgsxg + sw35%9) 1y
x

2 T3
1 sx 1 crs — 1 1
+—[2w0x4cx3—1x1 + = Lhwoxy 3 sr1x3 + = Iowo(crzsry + sx1)xy
3 T 3 T3 3
cryg — 1 1 sx
— — Lo S5T3—2 Ty — = IywoTs—>croxs — — lhwoy(sxgcxs + sx3)xg
3 ) 3 T3 4
1 cry — 1 1 s(225) 1 s%xg
——Iw? 2 1 — = Lw? s¥cry + S5 Lw?s(2xe) ——cx
62w08$28 T3 o LT g2 o (s5caq + 835)22 — b 05(229) - 173
1 511 1 20952 28T
——Iyw?iex 2x3)x1 — =Ilhw sx18(2x Irw; 2x3)x
6124 2x1(3)1 62 o 15(223) 79 ~ gl 1(3)1
1 s(2x3) 3 cr; —1 3 s(2x2)
—— Lwicxysx x5 + —Lwis(2x 21 + = Lhw? cr1+ 1)xs. 3A.2
62021953 3420(2) o 1420952(1 )2 ( )
fg is reformed as:
1 ST 1 STy 1 Sx3 1
—WoLy——STST3X1 + w0w4sx1—sx3x2 + =WST STo—— T3 + —WpST1ST2ST3T 4
4 T 4 4 i) 74 T3 4
cry — 1 ST crs — 1
—WoTe (cx3 — 1)smyr) —wpkelety = 1) =25 — woxg SToT3 — WoSTaTe
T yp)
crq crog — 1 Sx3
— WX STy — Ty — woTssZg(exry —1) Ty ~wWors—(cry — 1)x3 — WosT3T5
T €2 I3
1 ST 1 ST3 1 cr; —1 crs — 1
+-WoTeST3——T1 + -Wole——SX X3+ -WpST3ST1Te — Woly———TL1 — Wol4 I3
3 1 3 XT3 3 T I3
1 1 cr1 — 1 crs — 1
—wol(cxs — 1)(cay — 1) + 1]ay + 5[39553:4 + 513954905 + I3woxy ; 21 + Izwozy E; x3
1 3
1 sx 1 STo
+1wo[(cxs — 1) (cxy — 1) + 1y — = WoT 4 ST38T9 ) — = [3WoT4ST3—2 871 s
4 T 4 )
1 ST3 1 1 cryg — 1
——I3wors——8x98T1 T3 — —I3WSx35T28T 1Ty — —I3woT5ST3 T
4 T3 4 3 T2
1 Sx3 1 1 cr1 — 1 1 9 cry — 1
—=Il3wog——cxox3—I3wy(Ssx3crs + ST3)T5 — = [3W5S(21 r1 — —I3wis(2x T
330%3 23330(32 3)T5 230(3) o 1 230(3) s 2
1 2 1 STy 1 sx
—= I3} 25(213) [(cxy — 1) (cay — 1) + 1as 4+ = Lwds? w3 = s(229) a1 + = Iswis* w3501 — 29
2 XT3 6 I 6 )
1 s%r3 3 ST 3 s(225)
Isw sr18(2x — S Lwks(2xy) =1y — = I3w? ST1Ta. 3A.3
+630x3 15(222) w3 430(2>x11 430:L“2 122 ( )

Then we can factorize the drift term of System (3.1) into f = A(x,1) - x and the elements

of A(x,t) is described as below:
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Factorization of the Drift Terms

A(x,t) = [a;j(x,t)]

ay; = 0,7 =1,2,3,5,6; and ajy = 1.
Qg5 = 0,7 =1,2,3,4,6; and a5 = 1.
as; = 0,7 =1,2,3,4,5; and ajs = 1.

1 cry — 1

ay = —Liwors
4 €T 3 T

1 c°x
—I—éllwgS(Ql'g)TSl‘g —I— ZIlefL'—l —I—

1 sr1 1
2.2 .2
—lewox(;sxgsxg— + éllwos T98° 13

3 s(2xy) 3 s(2z1)
—lewgczxg o 4I1w(2] o

cry—1 1 Sy

Qg2 = WoTs
X2 X2
sry 1 STy 1

1
—I——Ilwgs(2x3)— + éllwgsxgx—Q — lewol'Gngl‘—Sl‘l

6 To
1,8 STy

6
crs—1 1 ST3 1

43 = WoTe
T3 3 XT3

1 cx3—1 crg—1- 1

—|—[1UJ0§.’L'5 sx1 Iy wWoTe +

1 sCcry —1 1 Sx3

+-Lwi——s(221) — Z]1w0$6—8x25$1 ~ 5

4 XT3 T3

QAqq4 = 0.

1 1 1 1
y5 = —ngS.%'gSl'z + —Lzg + —Lwo(crysT3sae + sxasey) + gflwo(cxgsxl + saq).

2 4

s(2xq)
x I

XT3 I3 6

ST
ST38%s + —lHwoxrscxs— + Liwoxg

—Ilw

X

:
——[1w0x—82$38(2$1) — 6[10038(2.%‘3)1:—8 T
2 2

ST

xZs3

2

xq
2 o 5(271)

1
— gllwgs(Q:cg)sxg—

1 STo
— gWQ[E{,Sl’g— + le(A)Q{L'g)Cl’lSl’g—

(o)
STo
2

3

I 3
— —WyLs—— STy + 1 LWL 5CL 1 T ST

s(2x3)

T3
1

X1

CQ.’L'

Ary — 1
— lewgi

cry — 1

S2ZL'1

€

2x1).
p s(2x1)

15T2

Ilw382$2%8(2$1)

xs

1
asgg = woll + (cxs — 1)(cxy —1)] + 5[11‘5 + Lwo[(cxs — 1) (cxy — 1) + 1]

—lewOSl'gSl'QSl'l.
1 cxy—1 1 sty 1 STy
a5y = =—WoTeST3 + -WeTysCr3—— + —WoLeCr3STy——

3 T 3 T 4 T
1 sty 1 ct;—1 1 cr] —

+—WoT5ST3CT2—— + —WoTgST3ST2 + —lhwory ST38T9
4 T 4 T 4 T
1 sty 1 cx;—1 1 STy

4= Lworscrs— — = Lwisres’zs — ~ Lwicry—s(213)
3 T 6 T 6 T
1 STy 3 cr; — 1

—— Lw2==5(2x3) + — Lw?s(2xs .
5 s (23) + oo (2a)
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52

Q53

Q54

Q55

Q56

ae1

Q62

63

Qg4

1 STy 1 cry — 1 1 STy
—WoLeCr3—— ST + —WoT5ST3 ST1 + —WeT4ST3——CT
4 T2 4 T2 4 )

cxa—1 1 55(2x9)
w

1 sxo 1
+ZIQWO.I'4CZ'18.I'3— — g[QWO.I'GSl'g (s5cry + s35)

— 12
i) i) 6 0 €T
1 cryg —1 3 s(2x9)
g b2 ™ 2 2
——lhwi———sx15(2x3) + — Low (cxqp +1).
6 i) 4 )
1 Sx3 1 crs — 1 1 crs — 1
—WoTg——CTr{ + —Wolyg——8T1 + —WoTs ST9S8T1
3 I3 3 I3 4 XT3
1 Sx3 1 ST3 ST3
4+ —WoTs——Cx38T1 + —WoLa——STacx1 + — IowoTacr1—— ST
4 T3 4 T3 4 T3
1 crs — 1 1 ST 1 s2x3
+=Irwoxs sty — = loworg—cry — — lhwis(2r9) —=cx;
3 T3 3 T3 6 T3
2 s(2x3)
——Iywicrysxy .
0
6 T3

1 1
gwo(cxgs:pl + sxq) + ZWO(SJfgSZL'QCJfl + swgswy) + Z[gwo(cxlsxgsxg + swgswy)

1
+§[QWO(C$3SHZ'1 + saq).

1
ZWO(S{L'gCZL'QSl’l + swgswy).

1 1
gWO(Sl'ngl + sx3) + Zwo(cxgsxzsxl + ST9811) + 5]23:6954 + 512954

—ZIQWO(SZL'gch'Q + s23).

1 sxq cry — 1 cx
—WoTa—— ST9ST3 — )T (€xs — 1)sxy = worssrs—
4 €T T T
1 sxq cryp —1 cr{=1
+—WoTgST3—— — Woly + I3wpxy
3 T €Ty X1
sty 1 cry —1 1 Sxq
——I3wox48T35T9— — Igwo 5(2753)——— + = Lwis® x3—3(2x2)
4 €T 2 T 6 €T
3 sxl
——Igw 2[L‘2
4 05 ( ) l‘l
1 Sy Sy cry — 1
—WoTyST1—8T3 — WoTg(cr) — 1)— — wozssrs(cry — 1)
4 To To )
Sy 1 cry—1 1 cxry — 1
——IswoxssT3—— 511 — =I3wWoT55T3 — ~I3w}s(2x3)
4 i) 3 i) 2 €T
1 sty 3 s(2xo
+— Igw032x33:p1— — —Igwg ( )sxl.
6 i) 4 )
1 ST3 crs — 1 Sx3
—WOST1STy—— — Woleg———STg — Wols— (cry — 1)
4 XT3 T3 T3
1 Sx3 crs — 1 crs —1
+—WoLg——ST1 — Woly + l3wory
3 T3 T3 T3
1 Sx3 1 s(2x3
—— 3wy r3—" 579571 — = I3W} ( )[(cxg —1D(cxy — 1) + 1]
4 T3 2 T3
1 2.1'3
4= Izwi —5115(213).
6 T3

1 1
JUOST18Ta5T3 — wol(cxs — 1)(exy — 1) + 1] + 513x5 + Lwo[(cxs — 1) (cxy — 1) + 1]
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—ngwosxgsxgsxl.

1 1 1
ags = —wosT3 + =I3zy — —I3w0%cw2x3—l3w0(sxgcw2 + sx3).
2 3 T3 3
age = —WoSTa + gwosxy,swl. (3A.4)
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CHAPTER FOUR
STUDY OF RELIABILITY PERFORMANCE
OF SDRE-+ISMC SCHEME

In Chapter 3, we found that SDRE is not a robust scheme via numerical simulation,
but when combined with Integral-type Sliding Mode Control (ISMC), the closed-loop
system is less sensitive to disturbances. In this chapter, we investigate the reliability issue
of SDRE. Since there is no guideline provided for the factorization f(x,t) = A(x,1)x,
specifically, to improve reliability, we' resorts to ISMC approach to improve robustness
performance for a specific factorization.ef themmonlinear drift term.

From the approach viewpoint, reliable control can be classified as active [3]-[5], [19],
[31], [35], [39], [50], [51] orwpassive [23];7]27], [29],'[46]-[49]. In a passive reliable design,
we need to separate the healthy actuators-from these actuators that might malfunction
before it applies on the system. {Nevertheless; it is difficult to retrieve such information
in advance. On the contrary, in the active reliable control design, faults are detected and
identified by a fault detection and diagnosis (FDD) mechanism, and then the controllers
are reconfigured in real time in accordance with the online detection results. Therefore,
we only consider the active reliable design in this chapter.

In Section 4.1, we define the system type, cost function, and control objective. Then we
detailed the design of FDD and control law of SDRE and ISMC in Section 4.2. Finally, we

apply the control law to the satellite attitude control and analyze the simulating results.

4.1 Problem Statement

In this study, we assume that the actuators’ fault has been successfully detected and
diagnosed by a Fault Detection and Diagnosis (FDD) mechanism. The fault may be

time varying and include degradation, amplification and outage [30], [41]. Before the

24



occurrence of faults, the engineers may take any kind of control strategy to fulfill their
desired system performance. When the fault is detected and diagnosed, the control law
is guided to switch to an active reliable law for ensuring system performance. Thus, after
the fault is detected, we may divide the actuators into two groups H and JF, within which
we assume that all of the actuators in H are healthy, while those in F experience faults.
Therefore, System (3.1) can be rewritten as

{ X1 = X - - - (4.1)
xy = f(x,t) + By(x,t)uy + Br(x,t)ur +d

where x; = (21, -+, 2,)7 € R", X3 = (Tpy1, -+, Ton)! € R” and x = (x],x1)7 are

the system states, uy € IR* and ur € R™ " are the control inputs. f(x,t) € R"
and B(x,t) = [By(x,t) € R™" : Bg(x,t) € R™™ ] ¢ R™™, where m > k > n.

d=(dy,---,d,)" € R" denote possible model uncertainties and/or external disturbances.

Note that System(4.1) is equivalent to the following system dynamic:
x = f{xt) +B(x;tHju+d (4.2)

where f(x,t) = [x2 ET(X, ", Bt =107,
d=(0I,,:d"".

nx1

Assumption 4.1 : f(x,t) and B(x,t) are smooth functions with f(0) = 0.
Assumption 4.2 : For all states, B(x,t) is full rank.

Moreover, we define the quadratic performance index
J = / {XTQ(X)X + uTR(x)u} dt (4.3)
0

where Q(x) = Q(x)T > 0 and R(x) = R(x)T > 0.

The control objective is to compare the performances of the two control strategies
(SDRE and SDRE+4ISMC) when there are possible model uncertainties and/or external
disturbances, especially when some actuators malfunction. To be more precisely, We study
whether the system can be stabilized and use the cost function (and others mentioned

later) defined in (4.3) as an index to compare the performance.
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4.2 Design of Active Reliable Control Law

We assume that the output values of the faulty actuators are successfully diagnosed

by an FDD mechanism as
ur = ﬁ_/—-"—Au_/—- (44)

where i and Aur denote the estimated value and the estimated error, respectively.

Then System (4.1) can be written as

X1 =%, and Xy = f(x,t) + By(x, t)uy + Br(x,t)(ir + Aur) +d (4.5)

where uy € R* and 6z, Aur € R™*.
4.2.1 SDRE

Similar to Section 3.2.1 but with slight' medification, we symbolically factorize f(x,t)
into the form of f(x,t) = A(x,&)x(see Appendix 3A in Chapter 3), where A(x,t) € R"*",

and then adopt the following procedures. to solve the' SDRE problem:

e Check the stabilizability of [A(x5t); By(x, t)] and the observability of [A(x,t), C'(x)]

symbolically, where By, (x,t) = [0F (k) - B (x,1)]", C(x) € RP*" has full rank

nx

and satisfies Q(x) = CT(x)C(x); to ensure the solvability of the corresponding
SDRE [24].

e Solve the SDRE for P(x) to produce the SDRE controller u = —R~!(x) B, (x, t) P(x)x.
4.2.2 ISMC

Under Assumption 4.2, System (4.5) is rewritten into:

5(1 = X9 and 5(2 = f"(X, t) + .BH(X7 t) : (ll’H + Adm) + B]:(X, t) : fl}“ (46)

where Ad,, = Bj(x,t) - [Br(x,t)Aur + d] and Bj;(x,t) is the pseudo-inverse matrix of

BH (X7t>‘
Assumption 4.3 : There exist p,,(x,t) > 0 such that

1A|| < pm(x, 1) (4.7)
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Assumption 4.4 : The origin of the nominal subsystem

)'(1 = X9
' ° . 4.8
{ Xy = f(x,t) + B(x,t)u (48)
is uniformly asymptotically stabilizable, that is, there exists a control ug and a continu-

ously differentiable function V(x,t) such that

n([xl) <Vi(x,t) < 72T||XH) (4.9)
and E)Vé}tc, t) N <6V6§§, t)) . [f“(x, t) + B(x, t)uo} < —(Ix|]) (4.10)

where 71,7 : RT — IRT are class K., functions and 5 is a class K function.

Along the ISMC design procedure, the sliding manifold is introduced as (4.11) below:

s(x,t) = D-{xz(t)—xg(to)— /t [f(x(T),T)+B(x(T),T>.uo(T)}.dT}

to

=0 (4.11)

where D € R™" and DBy (x,1) is-full rank Vx.
When the system’s trajectory is on the sliding manifold, s = 0, § = 0, from (4.6) and

(4.11), it is obtained that

s = D- [Xg—f—é(x,t)ll()]

= D- [BH(X, t) . (UH + Aum) + B]:(X, t)ﬁ]: — B(X, t)llo] =0

= Uy = —Bi(x, t) . [B]:(X, t)fl]: — B(X, t)ll()] — Adm

Substitute uy into (4.6), the equivalent system dynamics is obtained

{ X; - f(Qx, t) 4+ B(x, t)ug (4.12)

which agrees with the nominal system defined in Assumption (4.4).

In order to keep the system state on the sliding manifold, it is chosen that

uy = { B;;_FL(X, t) ’ [E(X, t>u0 - B;]:(Xa t)ﬁ]:] if s = 0; (4 13)
Bj(x,t) - [B(x,t)ug — Br(x,t)ur] +u; ifs+#0 '
and
Uy = x [DBH(Xa t)]TS
1= —p(x, )||[DBH(X, sl (4.14)



where p(x,t) > p,(x,t). Note that u; is designed to keep the state on the sliding manifold.

By choosing the Lyapunov function as V' = %STS, then differentiate V' and substitute into

(4.11), (4.13) and (4.14),

vV = s's

= STD : [BH(X, t) . (UH + Adm) + B]:(X, t)ﬁ]: — .B(X7 t)ll()]

= STD : [B(X, t)ll() — B]:(X, )ﬁ]: + B’H X, t)lll + BH(X, t)Adm + B]:(X, t)fl]: — B(X, t)llo]

t (
TP P L p(x [DBH(X’MTS
= s DBy(x,t) { px, 1) [DBH(XatﬂTSH
)

‘ +a, |
DB, )| - plx.

< + |[[DBy(x, )]s]| - [|Ad,|
< [IDBu(x,1)]"s|| - [=p(x, 1) + pm(x, 1)]
< 0.

To sum up with an important theorem,

Theorem 4.1 : Suppose that System (4.1) experiences actuator faults at the control
channels in F with estimated value @iz and error Auz given by FDD mechanism (4.5).
Then the origin of System (4.1) under” Assumptions 4.1 - 4.4 and the control law given by
(4.13)-(4.14) is globally asymptotically stable (GAS).

4.3 Application to Satellite Attitude Control

In this section, we use the same satellite attitude control model as in Section 3.3.1.
In the following, we first detail the design of fault detection and diagnosis (FDD) and

compare the simulating results using different control methods.
4.3.1 Design of Fault Diagnosis and Detection (FDD)

In this section, we investigate the deign of FDD observer mentioned in Section 3.3.1
for the satellite attitude control. The main idea of this design is to decouple the control
input so that the fault associated with each channel can be diagnosed and distinguished

from the healthy ones. And the following system dynamics, same as (3.1), is considered.

5(1 = X9
{ %y = f(x,t) + B(x, t)u +d. (4.15)
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" X
Controller -
Observer
residual
alarm signals signals
FDD

Fig. 4.1. FDD diagram

Fig. 4.1 shows the relation between FDD and system. Since the three Euler rates can
be expressed in terms of angular velocity vector, which is available through accelerometer
and gyroscope [34], in this section, we assume that all of the state variables are available
for measurement and that B(x,€)4m (4.15) is-a Constant matrix. We adopt the observer

and residual signals r; from [32] as-(4.16) and (4.17)-below:
& = [ (20 i T liua ki - (245 11&), i=1,2,3 (4.16)
and
r; = Zigsl TR W =1,2,3 (4.17)

where k; > 0. It was shown in [32] that any single actuator fault can be detected and
diagnosed at an exponential rate depending on k;.
When the residual signals are larger than a selected threshold, the alarm will be set

to be on.

4.3.2 Simulation Results

In this section, we still use MATLAB software to simulate the satellite attitude control
under SDRE and ISMC approach. For both control approaches, we check whether the sys-
tem with disturbances can be stabilized and compare their performances (e.g. quadratic
performance index and convergence time).

The following Table 4.1 shows the simulating parameters in this chapter: (Note that

for SDRE approach, the procedure of factorizing f = A(x, ¢)x is described in Appendix)
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Table 4.1. Simulation parameters.

I, 2000 N - m - s
I, 400 N -m - s
I, 2000 N - m - s
wo 1.0312 x 1073 rad/s
d (0.01 sin(t), 0.01 cos(2t), 0.01 sin(3¢))”
A(x,t) see Appendix 3A in Chapter 3
D I3
Q Is
R I4
ug SDRE approach
P05, 0, 5,1 [Adullx +05
X0 (0.7,0.07,—1.5, 0.3, —1.3,0.2)T
k1 10
ko 10
k3 10

Furthermore, to alleviate chatteringy wesmmodify the control law (4.13) into:

{ B (x,t)[B(x,t)ko — Ba(X, t)as=mp(x {)sRBuOs ip 11D B, (x, 1)]Ts|| > e (4.18)
u = .

BB ()75 ’
if [|[DBy(x,1)]"s|| < e

Ts

By (x, 1)[B(x, t)ko — B (x, 000z] = plx, )il s
where we choose € = 0.02. We simulate the faulty situation by that us fails at time 1 and
alarm signals as soon as |r;| = 0.01.

The simulation results are showinin Figs~4.2-4.6, and the summary of comparison of

performance are shown in Table 4.2.

We denote the results:

e SDRE : the system without disturbance (nominal system) under SDRE approach

only
e SDREr : the disturbed and actuator-failed system under SDRE approach only

e SDRE+ISMCr : the disturbed and actuator-failed system using SDRE-ISMC com-

bined approaches

In addition, in Table 4.2, we also compare the performances under the Sliding Mode
Control (SMC, see Section 4.2.2 in [42]), LQR (see Section 4.2.3 in [42]), and LQR-ISMC

combined approach (see Section 4.2.1 in [42]), respectively.
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e SMCr : the disturbed and actuator-failed system under nonlinear SMC approach

only

e LQR : the system without disturbance (nominal system) under nonlinear LQR ap-

proach only

e LQRr : the disturbed system and actuator-failed under nonlinear LQR approach

only

o LQRAHISMCr : the disturbed and actuator-failed system using LQR-ISMC combined

approaches

It is observed from Fig. 4.2 that the stabilization performance is, as expected, achieved
for the SDRE and the SDRE+ISMC designs. Besides, the state trajectories of the ISMC
and those for nominal design (SDRE)sarerfound almost identical, which agrees with the
theoretical conclusion. From FEig. 4.6, the sliding variables of the SDRE+ISMC design are
seen to keep at zero all the time. It-implies that the system states remain on the sliding
manifold for all ¢, which also agrees with 'the main results. In Fig. 4.4, the actuator fault
is successfully detected by both designs, since the magnitude of the second residual signal
exceeds the threshold near tsprpsisme.~ 1.047and tspre ~ 1.067, respectively. This can
also be seen from the alarm signals given in Fig. 4.5 where alarms denotes the fault of
the second actuator. After the fault is successfully detected, the associated active reliable
controllers are activated and the magnitude of the residual signals soon decreases, as
shown in Fig. 4.4. The persistent oscillation of the residual signal comes from the effect
of the disturbance d, which also contributes to the oscillating control inputs (uy, us, uy) of
SDREr and SDRE+ISMCr in Fig. 4.3. It is also noted from Figs. 4.3 that SDRE+ISMC
design is observed to require larger control efforts than SDRE design due to the additional
control u; in (4.13) and (4.14). Finally, since the SDRE+ISMC design of this example
adopts the SDRE scheme for the nominal healthy subsystem, its performances are close
to those of SDRE except for the requirement of extra control component to compensate
for the uncertainties.

Table 4.2 shows the comparison of performance, including energy consumption [uu,
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quadratic performance index [(x’x+u’u), required maximum control magnitude ||u||,
and convergence time (when the magnitude of state is less than 0.01 at first time). For
nominal system, LQR [42] approach has better performance than SDRE for all consid-
ered performance indexes. For the system with disturbances, LQR+ISMCr approach
also has better performance than SDRE+ISMCr. Moreover, both SDRE4+ISMCr and
LQRAISMCr consumes more control energy than the corresponding nominal control law
SDRE and LQR [42], respectively. This is because the additional part, u; in (4.13) and
(4.14), is required in the ISMC design. Last but not least, we see that SMCr [42] and
SDREr succeeds to stabilize, but LQRr [42] fails. To sum up, we conclude that in this

study SDRE control law possesses certain robustness but not reliable.

1 ‘ ‘ ‘ 0.5 ‘ :
CORES SDRE+SMCt
« 05 ; 1 «
1 / 2
/\L 0
0 = \//¥ T
SDREY SDRE
SDRE+ISMCr
_05 SDRE i i i _05 1 1 1
5 10 15 20 0 5 10 15 20
t t
! 'SDRE+ISMCr" 05 " SDRET ‘
£
0 St 0,
& R % SDRE
SDREY
o SDRE | 05
SDRE+ISMCr
P ; ; ; ) ; ; ;
0 5 10 15 20 0 5 10 15 20
t t
1 ‘ SrTER 1 ‘ :
! SDRE+SMCr
x; 0 SDRE X5 051
° SDRE
_l 4 O,
SDRE+SMCr SDREF
-2 ; -05
0 5 10 15 20 5 10 15 20

Fig. 4.2. Time history of the six state variables.
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SDRE+ISMCr
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Fig. 4.3. Time history.
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Fig. 4.4. Time history of the three residual signals.
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-1 1 | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
t
15
sbre+ismer | ‘
alarm, 1
0.5 *
0 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
t
1
SbREHSMCr ‘ ‘
0.5 *
alarm,
-0.5 *
-1 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
t
Fig. 4.5. Time history of the three alarm signals.
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Fig. 4.6. Time history of the three sliding variables (SDRE+ISMCr).
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Table 4.2. Comparison of performance.

Performance Index

Controller [[X(t)|[ts00 <1072 | fulu f fx'x | [(x"x+u'u) | ||u]|l | Convergence
time

LQRA+ISMCr Ve 1.6149 | 4.4142 6.0291 2.1232 8.844
SDRE+ISMCr 4.0208 | 4.7619 8.7827 2.3917 11.61
SMCr Yes 18763 16.0829 7.9592 2.2829 7.094
LQRr No X X X X X
SDREr Yes 3.5434 |.-5:066 8.6094 2.3917 16.982
LQR Yes 1:5576" | '4.4156 5.9732 2.1232 8.799
SDRE 2.7756 | 4.7638 7.5395 2.3917 11.598
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CHAPTER FIVE
ON FACTORIZATION OF THE DRIFT TERM IN
SDRE SCHEME

5.1 Problem Statement

Although the SDRE algorithm fully captures the nonlinearities of the system, bringing
the nonlinear system to a (non-unique) linear structure having state-dependent coefficient
(SDC) matrices, and minimizing a nonlinear performance index having a quadratic-like
structure, it has some drawbacks: First, it is known that the conditions“[A(x, t), B(x, )]
is stabilizable” and “[A(x, t),.0(x)] is-observable” are required for the existence of a unique
positive definite solution P(x) in Eq. (2:3)[24]; however, these symbolic checking con-
ditions are in general not easy to implement. especially when the system dynamics is
complicated. Next, there is no‘guideline provided for the factorization f(x,t) = A(x,t)x.
To avoid these difficulty, in this study, we consider the following approach instead.

Problem A: At any nonzero state x and time ¢, f := f(x, t) is a constant vector, while
B := B(x,t) and C := C(x) are constant matrices. Find a matrix A := A(x,t) € R"*"
pointwise such that Ax = f, (A, B) is stabilizable and (A, C) is observable.

To demonstrate the benefits of the alternative approach, we give an example below
which shows the traditional SDRE scheme does not work when a specific factorization of
f = Ax is adopted, but the alternative approach do work.

Example: Let f = (2 + 2323, 2322)T, B = (0,1)T and C' = I,. Suppose that a specific
1 a222
0 2%xy

(A, B) is not stabilizable when x; = 0 or 29 = 0. Thus, the SDRE, given by (2.3), might

factorization for f = Ax is given as A := < ) Clearly, (A, C') is observable, but

fail to have a positive definite solution P(x) when z; = 0 or 25 = 0, which will result in

the SDRE scheme failing to operate. However, since Q(x) = CT(x)C(x) = I, Problem
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A is solvable for this case (see Corollary 5.2). |

It is also worth noting that Problem A is always solvable if the SDRE problem for
some specific factorization can be continuously operated. We first consider the Problem
A at a specific nonzero state, as described in Problem B below:

Problem B: Given two constant vectors x,f € IR", and two constant matrices B €
R™™ and C' € RP*" with x # 0, rank(B) > 1 and rank(C') > 1, when does there exist
a matrix A € R™" pointwise such that Ax = f, (A, B) is stabilizable and (A, C) is
observable?

Note that, Problem A (and B) are always solvable for the case of n = 1. Therefore,
in the following we only consider the case of n > 1. To answer Problem B, we denote
(R™)* = {xT|x € R"}, which is known to be the dual space of R" [22]. Suppose
that py,---,pxr € R" and qf,---,qf € (R")*. We denote {py,---,pr}* = {q’ €
(R™)* | q"pi=0for 1 <i <k} and{qi -<ia/}t ={p e R"|q'p=0for 1 <i<I}.
In addition, we denote B+ :={q’-e-(IR™)*¢"B =0} and C* := {p € R"|Cp = 0}.

5.2 Solvability Condition
We assume that the matrix A is diagonalizable/in the form of
A=V (5.1)

where D =diag[\y, -+, \,] € R, M = [py,-+,pn] € R™", M~ = [q1,-+,q,)T €
IR™" and A, - -, \, are distinct. Clearly, i, -, \, are the eigenvalues of A, p; and ql
are the right and the left eigenvectors of A associated with eigenvalues \;, respectively.

We have the following lemma:

Lemma 5.1 Let A be factorized in the form of (5.1). Then
(i) Ax=f < MNqlx=q/fforalli <= q! (\x—f) =0 for all i.
(ii) (A, C) is observable if and only if p; € C+ foralli =1,--- n.

(iii) (A, B) is controllable if and only if q & Bt for alli=1,---,n.
(

iv) (A, B) is stabilizable if and only if qF & B+ whenever \; > 0.

Proof: (i) The result follows from writing Ax = f in the form of DM ~'x = M~!f and

then comparing both sides componentwise.
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(ii) It is known from the PBH test [8] that the pair (A, C') is observable if and only
if rank(( )\i[CLA )) =nforalli=1,---,n,ie., ( )\i[ClA ) p # 0 for any p # 0.
It is clear that (A\;/ — A)p = 0 if and only if ()\;, p) is an eigenpair of A or p = 0. It
follows that (A, C) is observable if and only if C'p; # 0 for all i, that is, p; ¢ C* for all
1=1,---,n.

(iii) It is known that (A, B) is controllable if and only if (AT, BT) is observable [8].
Since (\;,q;), i@ = 1,---,n, are eigenpairs of A, we have from the proof of (ii) that
(AT, BT) is observable if and only if BTq; # 0, i.e., qf B # 0, for all 5. Thus, (A, B) is
controllable if and only if qf ¢ B+ for all i.

(iv) (A, B) is stabilizable if and only if rank([\; — A : B]) = n for those i in which
A\ > 0 [8]. This is equivalent to q7 B # 0 whenever \; > 0, that is, qf & B+ whenever
A > 0. [ |

We also need the following three results:

Lemma 5.2 Let V be a k dimensional vector subspace of (IR")*, k < n, and {q}, -+, q} }
are linearly independent (LI) veetors with qi & V. Then there exists i, € V such that

{af - iy} are LL

Proof: Suppose that such qfﬂ does not_exist.  Then V C span{q?,---,q}}. Since

both V and span{q?’,- -, ql} have dimension k, we have V =span{q’,---,q’}, and thus

ql € V, a contradiction. This completes the proof. ]
Lemma 5.3 Let V be a k—1 dimensional vector subspace of (R*)* and {v7T,--- ,v}} be
a basis of (IR*)* with v ¢ V for all i. Besides, let W; := span{v?,---, vl vL .- vI}.

Then V ¢ UF_,W;. As a result, there exists a nonzero v’ € V such that v’ = 8 | a;v)

and oy Z0 foralli=1,--- k.

Proof: Note that, for all « = 1,---,k, W, is a vector space of dimension k — 1 and
V # W;; Otherwise, V]T € V for all j # i, which contradicts to the assumption VjT Y
for all j. Since U¥_,W; is not a vector space, we thus have V ¢ UY_ W;. This fact
together with {vI, ... vI} being a basis implies there exists a nonzero v € ¥ such that
vl =% a;v!I with a; # 0 for all 4; Otherwise, each v € V will belong W for some 1,

which contradicts V ¢ UF_ W |
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Lemma 5.4 Let {qT,---,q%_;,c¢’} are LI and q! := a.c” + Z? 1 Oz]q], a. # 0 and
a; #0forall j=1,---,n—1. Then
(i) {ai,---,q,} are LL
(ii) For any ¢ € {1,---,n}, the n vectors {qaf,---,qa/;,q%,, -, q’,c’} are LL

(111) For any (NS {L t 'an}a {q?a ' 'aqgllaquJrlﬂ t 7qn}l ( )

Proof: (i) Suppose that >, k;qf = 0T. Inserting the expression of ql into the
equation yields 7' (k; + kpoi)q? + knpaec? = 0T, Since {qT,---,q% |, cT} are LI, we
have k,a. = 0 and k; + k,a; = 0 for all s = 1,---,n — 1. Since a, # 0, we have k, = 0
and k; = 0 for 4 = 1,---,n — 1. This proves the linear independency of {qf,---,q’}.

(ii) Suppose that 7, k:jq]T + ke = 0T, Inserting q into the equation, we have
S (ky =+ kna)aT + knoiql + (knoe + ke)e” = 0T, Since {qf,---,q_,c"} are LI and
a; # 0, we have from the coefficient of. qiT that k, = 0, and thus k. = 0 and k; = 0 for all
j#iand j <n—1. Thus, {qf "+, a/_;,ql, .. ~teql, ¢’} are LL

(iii) Suppose, on the contrary, that fqt,--,q’,q, .-, q-}* C (c’)*. Then any
nonzero vector p € {q},--=ql |, q;ﬂrl, -+ qL1* has the property ¢’'p = 0 and q]Tp =0
for all j # i. Since {q], - @i, L4y 1.qh€" } /is.a basis for (IR")*, it follows that p
must be a zero vector, which conttadicts the faet that {qf, - -, q |, qiTH, gl s
vector space of dimension 1. This proves that {q],---,q/ ., a’;, -, a’}* Z (c"):. =

In the following, we denote IR™ the set of negative real numbers. A necessary and

sufficient condition for Problem B is now stated as Theorem 5.1 below:

Theorem 5.1 Problem B is unsolvable if and only if {x, f} are linearly dependent (LD)
and Cx = 0.

Proof: We divide the proof into the following four cases:

Case 1: ({x,f} are LI and C[x, f] # 0)
Note that, C[x,f] # 0 implies that there exists a nonzero row vector ¢’ of C' with
cl' ¢ {x,f}*+. Choose A, -+, \, € R™ such that the n vectors {\x—f |i=1,---,n} are
distinct and ¢ (Ax—f) £ 0 foralli =1,---,n. If n > 2, since dim((\x—f)*) =n—1 for

all 4, we may easily choose qf € (\x —f)+, 1 <i <n — 2, satisfying qf & (\,_1x — )+,
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ql(A\px —f) >0, g/ (A\yx—f) >0fori=2---n—2and {q},---,q_,,cT} are LI
Since q1 € (A\,_1x — ) and dim((\,_1x — f)*) = n — 1, it follows from Lemma 5.2 that
there exists a qf | € (\,_1x — f)* such that {q7,---,qf ;,c’} are LI. We also select
ql | satisfying qX ;(A\,x — f) > 0. Define qZ = ac” + ¥ 'qf, a = —[2 qF (\x —
£)]/[cT (\,x—f)]. Clearly, a # 0 since ¢”'(\,x—f) # 0, q] (A\,x—f) > 0 and qf (\,x—f) >
0 for 2 < i < n — 1. Moreover, it is easy to check that ql(\,x — f) = 0. Thus,
from (i) of Lemma 5.1, we have Ax = f. From the structure of q’, the fact p; €
{af.---.al,,q - -, 9. }* and Lemma 5.4, we have p; € (c”)* for all 4. This together
with C+ C (cT)* and (ii) of Lemma 5.1 implies that (A4, C) is observable. Finally, (A, B)
is stabilizable since A\; € R~ for all <. Thus, Problem B is solvable. If n = 2, the proof of
this case can also be easily derived if we choose q7 € (A\;x — f)* and qf (\ox — f) > 0.
Case 2: ({x,f} are LI and Cx,f] = 0)
This case implies that each nonzero rew-vector ¢’ of C satisfies ¢!’ € {x,f}+. Similar to
that of Case 1, we choose Ay, ¢ A= JR™ [such that the n vectors {A\x—f |i=1,---,n}
are distinct. Suppose that # >:2. Since (A;x — )& M.ct is a vector space of dimension
n — 2 for all i, we may choose qf € {Ax =) Nct (N, x — )t for 1 <i<n—2and
ql & (A\,_1x — )+ such that {ql, - ql ;) are Ll Since W 1= (\,_1x — f)t Nct has
dimension n — 2, W C V := ¢! and qf - W, we have from Lemma 5.2 that there exists
a vector qf , € W\(\,x — f)* such that {qf,---,q% ,} are LI. Under these settings,
{qF, -+, ql |, c’} are also LI since qfc = 0 for all 1 <4 < n — 1. Now, from Lemma
5.3, there exists a vI € (\,x — f)* such that v = X" ayq! and a; # 0 for all .
Since both ¢’ and vT belong to (A\,x — )1, we have q = ¢’ +vI € (\,x — f)*.
Thus, from (i) of Lemma 5.1, we have Ax = f. Besides, from the structure of g, the
fact p; € {af, .4l 1,94, --,q’}* and Lemma 5.4, we have p; & (c’)* for all i.
This together with C+ C (¢)* and (ii) of Lemma 5.1 implies that (A, C) is observable.
Finally, (A, B) is stabilizable since A\; € R~ for all 7. Thus, Problem B is solvable. The
case for n = 2 can be similarly proved if we choose qf € (A;x — f)X\(\ox — f)*.
Case 3: ({x,f} are LD and Cx # 0)
Let ¢’ be a nonzero row vector of C' such that ¢’x # 0, and b be a nonzero column

vector of B. We choose n — 1 distinct real numbers Ay, -+, \,_1 € IR™, and n — 1 LI row
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vectors q1, -+, ql , € x*. This implies that {qf,---,q%_,,cT} are LI since c” ¢ x*. If
{x,b} are LD (i.e., xt = bt), we choose q} := ac” + X' qF, a # 0. It follows that
ql ¢ bt and thus qF € B* since B+ C bt. On the other hand, if {x,b} are LI, the

above-mentioned qf,---,ql | may be chosen from x* satisfying qIb > 0 and q/'b > 0
foralli =2,-- — 1. Tt follows that 37" q/b > 0, and therefore there exists a nonzero
constant o such that (ac” + X' q7)b = ac’b + X7 q7'b # 0 no matter ¢’b is zero
or not. Here, we also choose q = ac? + Y7 'ql as before. Clearly, qf ¢ B+ since

ql ¢ b+ and B* C bt. Finally, we choose ), such that qX(\,x — f) = 0. From these
discussions, we have q (\;x —f) = 0 for all i = 1, - - -, n, which implies from (i) of Lemma
5.1 that Ax = f. Besides, due to the special structure of q? and (ii) of Lemma 5.4,
we have {q{,---,q/ .47, --,q.,c’} are LI for any i = 1,---,n. This fact together
with (iii) of Lemma 5.4 and p; € {q{, -+, 4 1,9}, -, gL} leads to cp; # 0 for all 4,
and thus Cp; # 0 for all i. Thatyis,-by-(ii) of Lemma 5.1, (A, C) is observable. Since
A, o1 € R™ and qf &0B+,(4) B) is stabilizable by (iv) of Lemma 5.1. Thus,
Problem B is solvable.
Case 4: ({x,f} are LD and Cx =0)

Since {x,f} are LD, we have £ = Ax for some constant . Suppose that there exists A
such that Ax = f. Then Ax = f/=Ax;and thus (), x) is an eigenpair of A. This fact

together with the condition Cx = 0 results in < x = 0, which implies that

C
AN —A
(A, C) is unobservable and Problem B is unsolvable.
Summarizing the above three cases gives the result. [ |

From Theorem 5.1, we have the next two trivial results:
Corollary 5.1 Problem B is solvable if and only if Cx # 0 or {x, f} are LI

Corollary 5.2 Problem A is always solvable if any one of the following two conditions
holds:
(i) Q(x) is a nonsingular matrix for all x # 0.

(i) Q(x) = @ is a constant matrix and rank(Q) = n.
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5.3 Implementation

We look forward to implement by usage of orthogonal matrices because the condition
number of them equals 1 [40]. In particular, we choose the Householder matrix [20],

denoted as H € IR"™", which is orthogonal and possesses following properties:
1. H=1-2vvT where I is the (n x n) identity matrix, v € IR" is an unit vector.

2. -1 is one eigenvalue of H with corresponding eigenvector, v. Moreover, 1 of multi-
plicity (n-1) are the other eigenvalues with corresponding eigen-space being perpen-

dicular to v.
3. H' = H, det(H) = —1, and tr(H) = n — 2.

4. Let H' = HyH,, where H; = I — 2v;v! ||vi]| = 1, i = 1,2, then H’ is an orthog-
onal matrix. Moreover, if vy and-wvj-are LI, then the subspace perpendicular to
span(vy, va) is the eigen-space-of H' c¢orresponding to eigenvalue 1 of multiplicity

(n—2).
To implement, we need the following lemmas:

Lemma 5.5 Assume that A € R**™isorthogonal, diagonalizable, and has four distinct

eigenvectors: p1 = Pr + iPr, P2 = Pr — iP1, P3 = qr +14q;, and ps = qg — 1q;, with
corresponding distinct eigenvalues Ay = o, + 18,, Ao = o, — 18y, A3 = 4 + 13;, and

Ay = ag + 1S3, where 8, # 0 and 3, # 0. Then

(i) A can be represented as A = ¥ ( g ;]1 >\I/_1, where S = < _Oég gp ) € R***,
p

T :diag[)\37 )\47 T An] S ]R(an)X(an)’ and W = [PRPIPBPZL U pn:| .
(i) prlps and [[prl| = [|p/l| = -
(iii) (pr,Pr1,9r,q;) is an orthogonal set.

Proof: (i) Since A is diagonalizable, let A = " Apial = 372, Lipia? + 213 ipia?
where p; and q; are right and left eigenvectors of A associated with A’s eigenvalues );,

respectively, for ¢ = 1,2, ---,n. Consider the first summation only,
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. . ap + i 0 . T : .7
22:1 Aipiqi” = PR‘HPIZPR—ZPI} < ! 0 B o ) {(hTZQQT} = {W11W2] {(hTZQQT] )
a, — 103,

where w1 = pray, — P18y +1(PrBy + Prayp) and Wy = pray, — P18, — i(PrSy + Pray). Here
w; and wy are complex LI vectors. In order to yield two real-valued LI vectors from wy

and wo, let 1y = %(Wl +W3) = proy, —Prfpy and ry = %i(wl — W) = prf,+ Ppra,. Hence

riirs| = oy piipas, + prcy| = |pripr] ( o )

(ii) Since A is orthogonal, we have pfip; = 1 & (pr + ip;)?(pr +ip;) = 1 &

(PkPr+P; Pr)+i(P; Pr —PEPr) = 1. Moreover, we have pi'p, = 0 < (pr+ip1)” (Pr—
ipr) = 0% (phpr—pPrpr) —i(pI pr+pPLpr) = 0. Combining these two equations yields
Ipall = lIprll = & and prLpy

(iii) Since A is orthogonal, we have pfps = 0 < (pr + ip;)"(ar +iq;) = 0 &
(phar+prar) —i(pfar —pkas) = 0. Moreover, we have pfps = 0 < (pr+ipr)?(qr —
iqr) =0 < (phar — pfas) —i(pYar + phas) = 0. Combining these two equations yields
2phar — 2iprqr = 0 and 2pT qi % 2ipLq; = 0;ite., prldgr, Prlas, prlar and prlq;.

Lemma 5.6 Consider H.= HyH{, whete H; = ['—2u;u’ with LI unit vectors u; € R",
for i = 1,2, are both Householder,matrices: Let o £75 denote two eigenvalues of H (else
being 1) with corresponding eigenveetors, p.=pr + ip; and p. Moreover, we choose LI

unit vectors uz, uy € {uy, uy}+, then
(i) span(uy,uz)=span(pr, pr)-
(ii) o= —1+2cos?f and 3 = /1 — a2, where cos = ufu,.

(iii) p and p will still be eigenvectors of HsH and H,;H3H, where Hy = I — 2uzul and

H, = I — 2uyul | with unchanged corresponding eigenvalues o + i3.

Proof: (i)Because H(pg+ip;) = (a+i8)(pr+ip;), we have H pREpI] = {pREpI] ( _aﬁ g )

Lee H=T( ", )0 where T = [pa+ ipripa — ipripsipi -+ ipa] , and
0 In—2)x(n—2)
. !
K = a+if 0 . € R***. By Lemma 5.5, we can rewrite H as I” K 0 !
0 a—if 0 In-2)x(n-2)

, where I" = {prpIEpgprlf . --fpn},and K = < _O[ﬁ g ) € IR***. Note that span(pg, p;) =

(Ps, Pu; -+, Pn)” and span(uy, uz) = (3, Pa, -+, Pn) ", therefore span(pr, pr)=span(uy, uy).
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(ii) From the definition of trace of a matrix, we have tr(HyH;) = n—2+2a. In addition,
tr(HoH,) = tr [(I — 2upul)(I — 2u1u1T)} = tr [I —2uju! — 2upul + 4(u2Tu1)(u2u1T)} =
n—4+4cos? §, where cos ) = ul'uy = tr(uluy) = tr(ulu;). Combining these two results
yields & = —1 + 2cos?f. Moreover, since det(HyH,) = 1, we have o®> + > =1 = 8 =
V1—a2

(iii)By (i), span(uj,uy) =span(pg,ps). Given that uz € {u;,us}*, then uz €
{pr,pr}t = puz = pluz = 0. Hence HsHp = (I — 2uzul )Hp = (I — 2uzul)(a +
i8)p = (o + if)p. Similarly, it is true for p. By similar procedure, it is true for HyH3H.
|

From Lemma 5.6, we have the following two results:

Corollary 5.3 Recall that C' is defined in Problem A in Section 5.1.

1. span(uy,uy) ¢ C* & span(pr,pp) Z:C+ & CT(p) = CT(pr+ip;) # 0 &
CT(p) = C"(pr — ip1) # 0

2. We categorize 6 into the the following:

(a) € (0,5) U, ma\ a>0.

(b) 0 € (%, %) . Q=0

w

(c) 0=7%,7: (o, B) = (0,1).

(d) 6=73: (@, ) = (=1,0).

By using above lemmas, we obtain the next important result described by Theorem

5.2 as below:

Theorem 5.2 We consider that rank(C') =rank(B) = 1( other cases can be discussed
similarly) and denote ¢’ and b as one row vector of C' and one column vector of B,

respectively. Under the following two cases of assumptions:
(i) If nis odd, i.e., n = 3,5,7,- - -, we assume that {x, f} are LI, and {c”,f} are LL
(ii) Ifniseven,ie.,n =468, - weassume that {x, f,c’} are LI. Moreover, if f7x < 0,

we also assume that {x,f, b} are LI
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Then we can factorize A, which solves Problem A, into products of Householder matrice,

therefore the condition number of A equals 1 [40].

- (; il T _ _Kx+f n. _ _Kx—f
Proof: (i)Let K = Ik If f'x <0, thenlet u; = ot © RS else, let uy = i=m €

IR". Hence Hx = f, where H; = I — 2u;u;”. Then choose an unit vector us € IR" such
that uy € f+ , and uy, € C*. Since uy € £+, we have HyH x = f, where Hy = I —2uou,”.

If fx <0, then let u; = H?;Lri;\\ € IR". By Lemma 5.6, we know that the two eigenvalues

(# 1) of HyH; will have positive real parts; else, we require that [ulu| = 1) < %,
hence the eigenvalues(# 1) of HyH; will have negative real parts, else if n = 3, we also
require that b ¢ span(uy, uy).

When n = 3, we require that ¢ & span(uy, uy). Then we can construct A. If fTx <0,
then let A = —H,H, hence all eigenvalues of A will have negative real parts, which implies
that A is stabilizable. On the other hand, since uy, € C*, by Lemma 5.6 and Corollary
5.3, we have the two right eigenveetors(# —1)-0f’A not perpendicular to c¢y. Moreover,
since ¢!’ ¢ span(uy, uy), the'right eigenvector corresponding to eigenvalue -1 will not be
perpendicular to ¢’ which-means A is observable; else, we let A = HyH,. Therefore A
is stabilizable since the left €igenvector-corresponding to the only eigenvalue of real part
(1) is not perpendicular to b. On'the other hand; A is observable by same reason as the
other case of fTx < 0.

When n # 3, we need an iteration. Iterate this step over i = 3,5,7,---,n — 2.
Choose unit vectors u; and u,;y;, which form a sub-basis of (uy,ug,-- -,ui,l,f)L and
cTu; # 0. Therefore we have H; - HyH;x = f, and by Lemma 5.6, that the eigenvec-
tors of H;_1--- HyH; corresponding to span(uy,ug, - -, u;_1) will still be eigenvectors of
Hiy -+ HyHy. 1f i = n—2, we also require that ¢’ ¢ span(uy,uy,---,u,_1). Moreover, if
f7x < 0, then we require that [ul, u;| = &ip1) > % and §(y1,4) 7 Eaim1) 7 - F S21);
else, we require that |uZ-T+1uZ-| = 1) < % and iy14) # i) 7 o # &), else if
i =n — 2, we also require that b ¢ span(uy,ug, -+, u,_1). As all iterations are done, we
still need the final step to fully construct A. If f7x < 0, then A = —H,,_, - - - HyH,, where
Hy=1- 2uju]T, Vji=1,2,---,n—1. By Lemma 5.6, we have all eigenvalues of A having

negative real parts, which implies that A is stabilizable. On the other hand, since u; & c*,
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by Lemma 5.6 and Corollary 5.3, we have the n-1 eigenvectors of A corresponding to
eigenvalues(# —1) not perpendicular to c. Moreover, since ¢!’ ¢ span(uy,ug, -+, u,_1),
the right eigenvector of A corresponding to eigenvalue -1 will not be perpendicular to ¢’
which means A is observable; else, we let A = H,_;--- HyH;. Therefore A is stabilizable
since the left eigenvector corresponding to the only eigenvalue of positive real part, which
equals 1 and this left eigenvector is perpendicular to span(uj,ug,---,u,_1), is not per-
pendicular to b. On the other hand, A is observable by same reason as the other case of
fTx < 0.

(ii)Let k and u, as given in (i). Then choose an unit vector uy € IR™ such that uy € f+
and uy € ct. Since uy € £+, we have HyH x = f, where H, = [ — 2uou,?. If f7x < 0,
we require that [ulu| = &gy > %, and by Lemma 5.6, the two eigenvalues (# 1) of
HyH, will have positive real parts; else, we require that [ulu,| = §) < %, hence the
eigenvalues(# 1) of HyH; have negative real parts.

When n = 4, we choose.an unit.-vector uz ‘€ {u;, u,, f}+ and require that ¢’ ¢
span(uy, uy, f), which implies cTug = 0. Finally, we c¢an construct A. If fTx < 0, then
A = —HyHq, hence all eigenvalues of A have negative-real parts, which implies that A is
stabilizable. On the other hand, sinee uy € ¢ andc’u; # 0, by Lemma 5.6 and Corollary
5.3, we know that the three right eigenvectors of A corresponding to eigenvalues (# —1)
is not perpendicular to ¢’. Moreover, since the right eigenvector of A corresponding to
eigenvalue -1 is perpendicular to span{uj,us,us} and {x,f,c} are LI, we obtain that
{uy, c} are LI and therefore this right eigenvector is not perpendicular to ¢, which means
A is observable; else, we let A = HyH;. By similar derivation of ¢, we conclude that the
right eigenvector corresponding to eigenvalue 1 is not perpendicular to b. Therefore A is
stabilizable since the left eigenvector corresponding to the only eigenvalue of real parts
(equals 1) is not perpendicular to b. On the other hand, A is observable by same reason
as the other case of fIx < 0.

When n # 4, we need an iteration. Iterate this step over ¢ = 3,5,---,n — 3.
Choose unit vectors u; and u,;,1, which form a sub-basis of (u;,uy,---,u;_1,f)* and
c’u; # 0. Therefore we have H; ., --- HoHx = f, and by Lemma 5.6, that the eigen-

vectors of H; 1 --- HyH; corresponding to span(uy, uy,---,u;_1) are still eigenvectors of
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Hiyy -+ HyH,. 1f i = n—3, we also require that ¢ ¢ span(uy, uy, -+, u,_s, f). Moreover,
if fTx < 0, then we require that |uiT+1uZ~| = &(i+1,4) > % and (ir1,0) 7 §aim1) 7 0 7 S@2,1)5
; else, we require that |ul w| = 414 < % and {1, 7 -1y 7 0 # &2)- As all
iterations are done, we choose unit vector u,_; € {uy,uy,---,u, o, f}+. Finally, we
can construct A. If fTx < 0, then A = —H,,_; - -- HyH,, where H; =1- 2ujuJT,Vj =
1,2,---,n — 1. By Lemma 5.6, we have all eigenvalues of A having negative real parts,
which implies that A is stabilizable. On the other hand, since u; € ct and ¢’ ¢
span(uy, Uy, « -+, u,_9, f), by Lemma 5.6 and Corollary 5.3, we have the n-1 eigenvectors of
A corresponding to eigenvalues (# —1) not perpendicular to c¢. Moreover, since this right
eigenvector of A corresponding to eigenvalue -1 is perpendicular to span(uy, - - -, u,_1) and
{x,f,c} are LI, we have {uy,c} are LI and thus this eigenvector is not perpendicular to
¢, which means A is observable; else, we let A = H,,_1--- HyH,. By similar derivation of
¢, we conclude that the right eigenvector-corresponding to eigenvalue 1 is not perpendic-
ular to b. Therefore A is stabilizable-since the left cigenvector corresponding to the only

eigenvalue of positive real part (equals 1)is 1ot perpéndicular to b. On the other hand,

A is observable by same reason as theother case of fix < 0. [ |

5.4 Algorithm

Prerequisite: {x,f} are LI or Cx # 0.
Case 1: {x,f} are LI, and {c”,f} are LI. (n =3,5,7,--)

— lIfll T _ _Kx+f n, _ _Kx—f
Step.1. Let K = ik If f°x <0, then let u; = TRt f]] © R"; else, let u; = TRx—f] €

R".

Step.2. Choose an unit vector us € IR™ such that u, € f+, and uy, ¢ C+. If f'x < 0,
then we require that [ujw| = 1) > %; else, we require that [ulu;| = o1y < %,
else if n = 3, we also require that b ¢ span(uy, uy). Note that if n = 3, we require

that ¢ ¢ span(uy,uy) and then go to Step.4.

Step.3. Iterate this step over ¢ = 3,5,7,---,n — 2. Choose unit vectors u; and u;,1,
which form a sub-basis of (u;,uy, -+, u;_1,f)* and cTu; # 0. If i =n — 2, we also
require that ¢ ¢ span(uy, uy,---,u, ;). Moreover, if fTx < 0, then we require
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that |ul w| = {41 > % and (t1,0) 7 o) # - - 7 &2,1); else, we require that
lul w| = ity < % and (i1, 7 Sui-1) 7 - F §21), else if i = n — 2, we also

require that b & span(uy, ug, -, u,_1).

Step.4. If fIx < 0, then A = —H,_1---HyH;; else A = H,_,---HyH,, where H; =

I—2wul Vi=1,2--- n—1

Case 1: (n=4,6,8,--)

Prerequisite: {x,f,c’} are LI If fTx < 0, we also require that {x,f, b} are LI

— lIfll T _ _Kx+f n. _ _Kx—f
Step.1. Let K = Eik If f°x <0, then let u; = TRt f]] © R"; else, let u; = TRx—fT €

R".
Step.2. Choose an unit vector u, & IR §uch. that u, € £+, and u, ¢ C+. If fT'x < 0,
then we require that [ulay}= o1y %; elsey we require that [ujuy| = o1y < %

Note that if n = 4, we tequire that ¢’ & span(uj, uy, f) and then go to Step.4.

Step.3. Iterate this step over i = 3;5;7. -+ n — 3. Choose unit vectors u; and u;,1,
which form a sub-basis of (u;5u, - - -, u;_14£)* and cTu; # 0. If i = n — 3, we also
require that ¢’ ¢ span(u;, g, 15w, L2, f). Moreover, if fTx < 0, then we require

that [u], jw| = Euv1, > % and &(iy1,4) 7 Euio1) 7# - 7 &21); else, we require that

|UZ‘T+1112‘| = &(i+1,) < % and (1) # iy 7 F )
Step.4. Choose an unit vector u,_; € {uy,ug, -, u,_o, f}L.

Step.5. If fIx < 0, then A = —H,_1---HyH;; else A = H,_,---HyH,, where H; =

I —2uwu! Vi=1,2,---,n—1.

Case 2: {x,f} are LI, and {c”,f} are LD. (n > 2)

(As case 1 of Theorem.5.1 describes)

Step.1. Choose \; € IR~ such that {\x — f} are all distinct and ¢(\;x —f) # 0

Vi=1,2,-,n.
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Step.2. Choose qf € (\ix — ), 1 <i <n— 2, satisfying qf € (A\,_1x — )4, qf (\x —

£)>0,q/\x—f)>0Vi=2,3,---,n—2and {q1, -, q,_9,c’ } are L1,

Step.3. Findq! | € (\,_1x—f)* such that {q],---,q} |, c’}are Lland q ,(\,x—f) >
0.

_ n—1 <
Step.4. Define q = ac” + 7' qF, where a = [Z[é?l(;:fx(:\;)] 0

Case 2: (n=2)
We choose q € (\;x — f)* such that q7 (Ayx — f) > 0. Furthermore, A, Ay and g} can

be chosen by the above algorithm(case n > 2).

Case 3: {x,f} are LD, and c”f # 0.
(As case 3 of Theorem.5.1 describes)

Step.1. Choose distinct \; € IR~ and LI row.vectorsq’ € x*, Vi =1,2,---,n — 1.

Step.2. If {x,b} are LD, ‘choose any-& € IR # 0; else, we additionally require that
aib > 0 and qjb > 0.5 = 2,3,---,n_#1: Moreover, we choose a such that

(ac” + X5 af)b # 0.
Step.3. q = acl + Y qf.
Step.4. Choose A, € R such that q (\,x — f) = 0.

5.5 Illustrative Example
- 2-Dim Single-Input Affine System

Consider the single-input affine system [2]

By = a9 — 5. (5.3)

Let state vector x = (z1,22)?. For demonstrating, we choose the performance index
1 -1

to be: J = [5° {XTQX + uﬂ dt, where Q = < 11

) > 0, and the initial condition is
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x = (0.5,1)T. We adopt two approaches to simulate and then compare their performance.
One is a continuous stabilizer concerning center manifold (CM) as given in [1],[2], ucy =
—T9 + X1 + %:cl% — x3; the other adopts SDRE to obtain the feedback controller, usprg-
For both approaches, it can seen from Fig. 5.1 that the system state can be stabilized.

On the other hand, we attempt to use the SDRE approach and see what might happen.
1 —x2
0 O

into the associated Riccati equation and obtain the control law. However, we find that

At first, we try the fixed factorization of A(x,t) = ( ), feed this factorization
the associated Riccati equation fails to give a positive semi-definite solution since (A, C)
is not detectable for o = 1 [24]. As a result, we resort to a different factorization of
A near (0.5,1) as described in previous sections. Note that £(1,1) = 0, thus {x,f} are
LI. By Theorem 5.1, we know that Problem A is solvable. After adopting this different
factorization of A near (0.5,1) once, we still use the original fixed factorization to obtain
the control law. From Fig. 5.1, it.can be-seen that the system state will finally also be
stabilized.

From Table. 5.1, the SDREwapproach is found.to results better performance than the
given stabilizer in quadratie-performance’ [ x*Q(x)x =+ u?, energy consumption [ u? and

the convergence time.

Table 5.1. Comparison of performance

I Performance Index
Controller [x(t)||tmoo <1073 | [u? | [(xTx 4+ u?) | |u|s | Convergence time
CM Vs 2.567 6.182 0.735 140
SDRE 0.149 2.176 1.086 55
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Fig. 5.1. State variables (x) and control input (u).
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CHAPTER SIX
CONCLUSIONS AND
SUGGESTIONS FOR FURTHER RESEARCH

6.1 Conclusions

In this thesis, we have investigated several interesting issues. In Chapter 3, we show
from simulation that SDRE is not a robust scheme, but when incorporating with ISMC,
the robustness performance can be greatly improved. In Chapter 4, we also consider
the reliability issue of SDRE. By using the same dynamical system as in Chapter 3, we
show that SDRE is not a reliable design, either, Again, we resort to ISMC and organize
a reliable controller that can tolerate some actuators™outage. After encountering some

difficulties during the design.using SDRE; e.g;

e hard to symbolicly check the conditions for the existence of the unique positive

definite solution of the related Riccati equation
e no guidelines existed to factorize the drift term to satisfy some design criterion

we present an alternative approach to ease the implementation of traditional SDRE design.
In Chapter 5, we formulate an alternative approach to factorize the drift term in SDRE
scheme and give a necessary and sufficient condition (Theorem 5.1) that is much easier
to check whether Problem A is solvable than the fixed factorization of the traditional
SDRE. If Problem A is solvable, we give an alternative approach to construct the SDC
matrix instead of using the fixed factorization of the traditional SDRE. By an illustrative
example (Section 5.5), we demonstrate that while the traditional SDRE fails at some
state, we still can resort to this alternative approach for a small deviation from this state

and then adopts the original fixed factorization.
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6.2 Suggestions for Further Research

There are still many interesting topics related to this thesis that are worth further

studying, as listed below:

1. Try to parameterize all the SDC matrices satisfying the necessary and sufficient

condition (Theorem 5.1).

2. Among all the parameterizations for a specific state, try to formulate an algorithm
to find the (local) optimal solution at every state in the sense of minimizing the

corresponding performance index.

3. Try to extend local optimum to global optimum (Dynamic programming [25] may

be a possible direction to solve this problem).
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