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之非線性系統可靠度控制理論與應用 

 

研究生：林立岡         指導教授：梁耀文 博士 

國立交通大學電控工程研究所 

 
 

摘要 

 

本論文探討非線性系統使用state-dependent Riccati equation (SDRE)理論的

可靠度控制設計，並應用於衛星之姿態控制。由於引進了integral sliding mode 

control (ISMC)理論合併使用，研究發現可以大大增進系統的穩健性和可靠度。

然而，傳統的SDRE設計必須先拆解漂流項成為f(x)=A(x)x的形式，然後再利

用A(x)及線性理論來判斷系統在該狀態的可穩定性和可觀測性以確保對應

之SDRE存在正定解。但當系統動態足夠複雜時，這些判斷條件不容易被檢

驗，此外，目前文獻也沒有提供不同拆解方式的分析與比較。因此，本論

文提出另一種SDRE的拆解方式，並探討能保證對應的Riccati方程式存在正

定唯一解的充分且必要條件，此充要條件只需要系統動態在該狀態之資訊。

本論文中也發現如果採用固定拆解方式的傳統SDRE設計方法能夠正常工

作，那麼本論文探討的SDRE拆解方式一樣可以正常工作。透過例子，我們

說明了本論文提出拆解方法的好處。 
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ABSTRACT 
 

In this thesis, we investigate the nonlinear reliable control issues via the state-dependent 

Riccati equation (SDRE) scheme with application to the attitude control of a satellite. Owing 

to incorporating with the integral sliding mode control (ISMC) design, both the robustness 

and the reliability performances are greatly improved. However, it is known that the 

conventional SDRE scheme has to symbolically factorize the drift term in the form of 

f(x)=A(x)x, and then using this A(x) to check system's stabilizability and observability 

symbolically at every nonzero state for ensuring the solvability of an associated SDRE. These 

checking conditions are in general not easy to implement when the system dynamics is 

complicated, and there is no guideline provided for performing the factorization. As a result, 

this study also presents an alternative approach of factorization, which only requires the 

information of the system dynamics at every state and guarantees the existence of a unique 

positive definite solution of the associated Riccati equation when a mild condition is satisfied. 

It is shown that the alternative approach always works if the conventional SDRE approach 

adopting any specific factorization for f(x) is successfully operated. An illustrative example is 

also given to demonstrate the benefits of the alternative approach of factorization. 
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CHAPTER ONE

INTRODUCTION

1.1 Motivation

Numerous design methodologies are known to exist for the control design of highly

nonlinear systems [12]. These include a huge number of linear design techniques used in

conjunction with gain scheduling [38]; nonlinear design methodologies such as dynamic

inversion [17] and sliding mode control [33]; and adaptive techniques which encompass

both linear adaptive and nonlinear adaptive control. Lesser known but promising nonlin-

ear design procedures are those that involve state-dependent Riccati equations (SDRE)

[13]-[14].

Recently, the study of SDRE approach among the variety of control schemes for non-

linear systems has attracted considerable attention (see e.g., [10]-[13], and [36]) due to

its remarkable benefits. These include: 1) concept of SDRE approach is intuitive which

directly adopts the LQR design at every nonzero state; 2) SDRE approach can directly

address system performance through the specification of the performance index by adjust-

ing the state and the control weightings with predictable results, for instance, the engineer

may tune up the weightings on system state to speed up the response at the expense of

more control effort; 3) SDRE approach possesses an extra design degree of freedom arose

from the non-uniqueness of the SDC representation of the nonlinear drift term, which can

be utilized to enhance controller performance; 4) SDRE approach preserves the essential

system nonlinearities, since it does not truncate any system’s nonlinear term. Many prac-

tical and meaningful applications which are successfully performed by the SDRE design

include advanced guidance law development, autopilot design, integrated guidance and

control design, satellite and spacecraft control and estimation, process control, magnetic
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levitation, control of systems with parasitic effects, control of artificial human pancreas,

robotics, simultaneous state and parameter estimation, fan control, and various bench-

mark problems (see [10], [15], [36] and the references therein).

SDRE scheme to the stabilization of nonlinear control systems is known to need to

symbolically factorize the drift term in the form of f(x, t) = A(x, t)x, and then using this

A(x, t) to check system’s stabilizability and observability symbolically at every state for

ensuring the solvability of an associated state-dependent Riccati equations. In doing so,

the SDRE algorithm fully captures the nonlinearities of the system, bringing the nonlin-

ear system to a (non-unique) linear structure having state-dependent coefficient (SDC)

matrices, and minimizing a nonlinear performance index having a quadratic-like struc-

ture. Moreover, the nonuniqueness of the factorization creates extra degrees of freedom,

which can be used to enhance controller performance, such as robustness. But, there

is no guideline provided for the factorization f(x, t) = A(x, t)x, specifically to improve

robustness. However, with the help of Integral-type Sliding Mode Control (ISMC), we

can still improve robustness using SDC factorization. The ISMC approach does not have

reaching phase and possesses the advantages of robustness and ease of implementation.

When the uncertainty and disturbance are matched regarding the nominal healthy sub-

system, the state trajectories of the nominal healthy subsystem and the uncertain system

are identical. Thus, in this study, we adopt the SDRE strategy for the nominal system,

and the ISMC strategy to completely nullify the matched uncertainty and disturbance.

In addition to robustness, we are also interested in the reliability issue related to SDRE

only and SDRE-ISMC combined designs.

However, we encounter some difficulties during the SDRE design. If the system dynam-

ics is sufficiently complicated, the checking conditions of stabilizability and observability

are generally not easy to implement, and there is no guideline provided for performing

the factorization fulfilling some predetermined control objectives. Moreover, if SDRE fails

some checking conditions at a system state, then the system may just stuck in the state

since SDRE can not guarantee a feasible control related to the unique positive definite

solution of the associated Riccati equation. As a result, this study also presents an alter-

native approach for the factorization, which only requires the information of the system
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dynamics at every state and guarantees the existence of a unique positive definite solution

of the associated Riccati equation when a mild condition is satisfied. To be more detailed,

we give a necessary and sufficient condition for that solution as well as the implementing

algorithm on how to factorize f(x, t). Moreover, it is shown that the alternative approach

always works if the conventional SDRE approach adopting any specific factorization for

f(x,t) is successfully operated. An illustrative example is also given to demonstrate that

we adopt conventional approach at almost all system states, but at some states (which fails

to operate under conventional approach), instead we resort to the alternative approach

for a different factorization of A which works.

1.2 Outline

The rest of this thesis is organized as follows. Chapter 2 sketches the SDRE and ISMC

designs. Then we investigate the robustness and reliability issues related to both the

SDRE and SDRE+ISMC combined designs with analytical simulation results. In Chapter

5, we formulate an alternative SDRE problem and describes our solution. Finally, we

provide a short conclusion and give some suggestions of future research related afterwards.
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CHAPTER TWO

PRELIMINARIES

2.1 State Dependent Riccati Equation (SDRE)

Consider the following class of time-variant nonlinear control systems

ẋ = f(x, t) + B(x, t)u (2.1)

where x ∈ IRn and u ∈ IRm denote the system states and control inputs, respectively,

f(x, t) ∈ IRn , B(x, t) ∈ IRn×m and f(0) = 0. In addition, we consider the following

performance index

J =
∫ ∞

0

[

xTQ(x)x + uTR(x)u
]

dt (2.2)

where QT (x) = Q(x) ≥ 0, RT (x) = R(x) > 0 and (·)T denotes the transpose of a vector

or a matrix. In this study, we assume that B(x, t) 6= 0 and Q(x) 6= 0 for any nonzero

state x.

SDRE techniques are increasingly being used in nonlinear control applications [15]

and entails factorization of the nonlinear dynamics into the state vector and the product

of a matrix-valued function that depends on the state itself [10]. In doing so, the SDRE

algorithm fully captures the nonlinearities of the system, bringing the nonlinear system

to a (non-unique) linear structure having state-dependent coefficient (SDC) matrices, and

minimizing a nonlinear performance index having a quadratic-like structure.

To solve the SDRE problem, almost all the existing studies adopted the following

procedure:

• Symbolically factorize f(x, t) into the form of f(x, t) = A(x, t)x, where A(x, t) ∈

IRn×n .
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• Check the stabilizability of [A(x, t), B(x, t)] and the observability of [A(x, t), C(x)]

symbolically, where C(x) ∈ IRp×n has full rank and satisfies Q(x) = CT (x)C(x), to

ensure the solvability of the following SDRE [24]:

AT (x, t)P (x) + P (x)A(x, t)− P (x)B(x, t)R−1(x)BT (x, t)P (x) +Q(x) = 0. (2.3)

• Solve the SDRE for P (x) to produce the SDRE controller u = −R−1(x)BT (x, t)P (x)x.

2.2 Integral Sliding Mode Control (ISMC)

The design concept of Integral Sliding Mode Control (ISMC) is quite similar to Sliding

Mode Control (SMC, see e,g, [18], [26], [44], and [45]), and the main difference is that

ISMC adopts the integral-type sliding surface and results no reaching phase, i.e., the

system trajectories will start on the sliding manifold from the first time instant. Moreover,

when the system is on the sliding manifold, the system trajectories is determined by

the control law applied to the related nominal subsystem, and this control law can be

any control laws fulfilling design objectives. In the following, we describe the design of

ISMC([6], [7], and [28]).

Consider the following class of time-variant nonlinear control systems

ẋ = f(x, t) + B(x, t)u+ d (2.4)

where x ∈ IRn and u ∈ IRm denote the system states and control inputs, respectively.

f(x, t) ∈ IRn and B(x, t) ∈ IRn×m are both smooth functions. d denotes possible system

uncertainties and disturbances. Here we assume that d has only matched part with regard

to B, thus we write (2.4) as:

ẋ = f(x, t) + B(x, t)(u+ dm) (2.5)

where dm = B+(x, t) · d, B+(x, t) is the pseudo-inverse matrix of B(x, t), and ||dm|| ≤

ρm(x, t), ρm(x, t) > 0. Then we design the control law composed of two parts:

u = u0 + u1 (2.6)

where u0 is the control input applied to the nominal subsystem, ẋ = f(x, t) +B(x, t) · u.

And u1 is a discontinuous control input designed to compensate disturbances such that
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the system trajectories can remain on the sliding manifold, as follows:

u1 =

{

0 if s = 0

−ρ(x, t) · [DB(x,t)]T s

||[DB(x,t)]T s|| if s 6= 0
(2.7)

where ρ(x, t) > ρm(x, t), and the sliding surface is designed to be

s(x, t) = D ·
{

x(t)− x(t0)−
∫ t

t0

[f(x(τ), τ) + B(x(τ), τ) · u0(τ)] · dτ
}

= 0 (2.8)

with D ∈ IRm×n and DB(x, t) having full rank. From (2.8), we observe that s(x, t0) = 0,

which implies the system trajectories start on the manifold from the first time instant

(t0). On the other hand, when system is on the sliding manifold, i.e., s = ṡ = 0, from

(2.4) and (2.8), we obtain

ṡ = D · {ẋ− [f +B(x, t)u0]}

= D · {[f +B(x, t)u+B(x, t)dm]− [f +B(x, t)u0]}

= DB(x, t) · (u+ dm − u0)

thus u = u0 − dm, substitute into (2.4) and obtain

ẋ = f(x, t) + B(x, t) · u0

which explains that the system trajectories staying on the sliding manifold is identical to

that of the nominal system.

On the other hand, to see that u1 keeps the system stay on the sliding manifold. When

s 6= 0, we choose the Lyapunov function V = 1
2
sT s, differentiate V and from (2.4)-(2.8),

we know

V̇ = sT ṡ = sTDB(x, t) · (u+ dm − u0)

= sTDB(x, t) ·
{

−ρ(x, t) · [DB(x, t)]T s

||[DB(x, t)]Ts|| + dm

}

≤ −ρ(x, t) · ||[DB(x, t)]Ts||+ ||dm|| · ||[DB(x, t)]T s||

≤ [−ρ(x, t) + ρm(x, t)] · ||[DB(x, t)]Ts||

< 0.

Since DB(x,t) is assumed full rank and s(x, t0) = 0, the control law (2.6) and (2.7)

guarantees the system remain on the sliding manifold, i.e., s = 0, ∀t ∈ [t0,∞).
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CHAPTER THREE

STUDY OF ROBUSTNESS PERFORMANCE

OF SDRE+ISMC SCHEME

SDRE can be used to enhance the performance of robustness through the extra de-

sign degree of freedom arose from the non-uniqueness of the SDC representation of the

nonlinear drift term (see e.g., [10] and [12]). But, there is no guideline provided for the

factorization f(x, t) = A(x, t)x to improve robustness. However, with the help of ISMC,

we can still improve robustness using SDC factorization. The ISMC approach does not

have reaching phase and possesses the advantages of robustness and ease of implementa-

tion. When the uncertainty and disturbance are matched regarding the nominal healthy

subsystem, the state trajectories of the nominal healthy subsystem and the uncertain

system are identical. Thus, in this chapter, we adopt the SDRE strategy for the nom-

inal system, and the ISMC strategy to completely nullify the matched uncertainty and

disturbance.

In Section 3.1, we define the system type, cost function, and control objective. Then we

detailed the design of control law of SDRE and SDRE+ISMC in Section 3.2. Finally, we

apply the control law to the satellite attitude control and analyze the simulating results.

3.1 Problem Statement

Consider a set of n 2nd-order time-variant nonlinear control systems as described by

{

ẋ1 = x2

ẋ2 = f̃(x, t) + B̃(x, t)u+ d̃.
(3.1)

Here, x1 = (x1, · · · , xn)T ∈ IRn , x2 = (xn+1, · · · , x2n)T ∈ IRn and x = (xT
1 ,x

T
2 )

T are

the system states, u = (u1, · · · , um)T ∈ IRm are the control inputs and m ≥ n, d̃ =

(d1, · · · , dn)T ∈ IRn denote possible model uncertainties and/or external disturbances and
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(·)T denotes the transpose of a vector or a matrix. Note that System(3.1) is equivalent to

the following system dynamic:

ẋ = f(x, t) + B(x, t)u+ d (3.2)

where f(x, t) = [xT
2

... f̃T (x, t)]T , B(x, t) = [0Tn×m

... B̃T (x, t)]T , and d = (0T
n×1

... d̃T )T .

Assumption 3.1 : f(x, t) ∈ IRn and B(x, t) ∈ IRn×m are smooth functions with f(0) =

0.

Assumption 3.2 : For all states, B(x, t) is full rank.

Moreover, we define the quadratic performance index

J =
∫ ∞

0

[

xTQ(x)x + uTR(x)u
]

dt (3.3)

where Q(x) = Q(x)T ≥ 0 and R(x) = R(x)T > 0.

The control objective is to compare the performances of the two control strategies

(SDRE and SDRE+ISMC) when there are possible model uncertainties and/or external

disturbances. To be more precisely, we study whether the system can be stabilized and

use the cost function (and others mentioned later) defined in (3.3) as an index to compare

the performance.
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3.2 Design of Control Law

3.2.1 SDRE

Under Assumption 3.1, we can factorize the drift term in the form of f(x, t) = A(x, t)x

and let every element of system (3.1) state appearing in f(x, t) contributes as an element

in A(x, t), i.e. capture their state dependency in the proper entry of SDC matrix. To

achieve this goal, we adopt some factorizing techniques given by [10]. The following are

some examples to illustrate:

x6 cos(x3) cos(x2)

= x6
cos(x2)− 1

x2
x2 + x6

cos(x3)− 1

x3
x3 + [1 + (cos(x3)− 1)(cos(x2)− 1)]x6

=
[

0 x6
cos(x2)−1

x2

x6
cos(x3)−1

x3

0 0 [1 + (cos(x3)− 1)(cos(x2)− 1)]
]





















x1
x2
x3
x4
x5
x6





















.

(3.4)

The drift term, x6 cos(x3) cos(x2), has three state components, x2, x3, and x6, thus they

contribute in the (1, 2), (1, 3), and (1, 6) entries of the corresponding SDC matrix, respec-

tively.

1
2
cos2(x3) sin(2x1)

=
1

4

sin(2x1)

x1
x1 +

1

4
cos2(x3)

sin(2x1)

x1
x1 +

1

4

cos2(x3)− 1

x3
sin(2x1)x3

=
[

1
4
sin(2x1)

x1

+ 1
4
cos2(x3)

sin(2x1)
x1

0 1
4
cos2(x3)−1

x3

sin(2x1) 0 0 0
]





















x1
x2
x3
x4
x5
x6





















.

(3.5)

The drift term, 1
2
cos2(x3) sin(2x1), has three state components, x1, and x3, thus they

contribute in the (1, 1), and (1, 3) entries of the corresponding SDC matrix, respectively.
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x5 sin(x3) sin(x2)

=
1

3
x5 sin(x3)

sin(x2)

x2
x2 +

1

3
x5

sin(x3)

x3
sin(x2)x3 +

1

3
sin(x3) sin(x2)x5

=
[

0 1
3
x5 sin(x3)

sin(x2)
x2

1
3
x5

sin(x3)
x3

sin(x2) 0 1
3
sin(x3) sin(x2) 0

]





















x1
x2
x3
x4
x5
x6





















.

(3.6)

The drift term, x5 sin(x3) sin(x2), has three state components, x2, x3, and x5, thus they

contribute in the (1, 2), (1, 3), and (1, 5) entries of the corresponding SDC matrix, respec-

tively.

After symbolically factorize f(x, t) into the form of f(x, t) = A(x, t)x, where A(x, t) ∈

IRn×n , we adopt the following procedures to solve the SDRE problem:

• Check the stabilizability of [A(x, t), B(x, t)] and the observability of [A(x, t), C(x)]

symbolically, where C(x) ∈ IRp×n has full rank and satisfies Q(x) = CT (x)C(x), to

ensure the solvability of the following SDRE [24]:

AT (x, t)P (x) + P (x)A(x, t)− P (x)B(x, t)R−1(x)BT (x, t)P (x) +Q(x) = 0. (3.7)

• Solve the SDRE for P (x) to produce the SDRE controller u = −R−1(x)BT (x, t)P (x)x.
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3.2.2 ISMC

Consider System (3.1), first we need following assumptions.

Assumption 3.3 : There exist ρm(x, t) > 0 such that

||d̃m|| ≤ ρm(x, t) (3.8)

where d̃m = B̃+(x, t) · d̃, and B̃+(x, t) is the pseudo-inverse matrix of B̃(x, t).

Assumption 3.4 : The origin of the nominal subsystem ẋ1 = x2 and ẋ2 = f̃(x, t) +

B̃(x, t)u is uniformly asymptotically stabilizable, that is, there exists a control u0 and a

continuously differentiable function V (x, t) such that

γ1(||x||) ≤ V (x, t) ≤ γ2(||x||) (3.9)

and
∂V (x, t)

∂t
+

(

∂V (x, t)

∂x

)T

·
[

f̃(x, t) + B̃(x, t)u0

]

≤ −γ3(||x||) (3.10)

where γ1, γ2 : IR
+ → IR+ are class K∞ functions and γ3 is a class K function.

Under Assumptions 3.3 and 3.4, the control law is designed into two parts:

u = u0 + u1 (3.11)

where u0 can be any control law which satisfies Assumption 3.4 and creates a desired

system trajectory for the state of the uncertain system to follow. In this chapter, u0

adopts the SDRE strategy. On the other hand, u1 is designed to compensate for the

disturbances such that the system state can remain on the sliding manifold.

Along the ISMC design procedure, the sliding manifold is introduced as (3.12) below:

s = s(x, t)

:= D ·
{

x(t)− x(t0)−
∫ t

t0

[

f(x(τ), τ) + B(x(τ), τ) · u0(τ)
]

· dτ
}

(3.12)

where D = (D1, D) and D1 ∈ IRm×n, D ∈ IRm×n. Note that D · B(x, t) = D · B̃(x, t).

Differentiate (3.12), the sliding manifold (3.12) is simplified to be

s(x, t) = D ·
{

x2(t)− x2(t0)−
∫ t

t0

[

f̃(x(τ), τ) + B̃(x(τ), τ) · u0(τ)
]

· dτ
}

= 0. (3.13)
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Note that ∀x, DB̃(x, t) is full rank.

When the system is on the sliding manifold, x = 0 and ṡ = 0. From (3.1) and (3.12),

it is obtained that

ṡ = D ·
{

ẋ2 − [f̃ + B̃(x, t)u0]
}

= D ·
{

f̃ + B̃(x, t)u+ d̃− [f̃ + B̃(x, t)u0]
}

= D · [B̃(x, t)u+ d̃− B̃(x, t)u0]

= 0.

Hence u = −B̃+(x, t) · [d̃ + B̃(x, t)u0]. By substituting this u into (3.1), the system

resembles the nominal system.

The other part of control law, u1, the discussion separate into two cases: one is when

s = 0, u1 = 0; The other is when s 6= 0, u1 is designed to keep s = 0, let

u1 = −ρ(x, t) [DB̃(x, t)]T s

||[DB̃(x, t)]T s||
(3.14)

where ρ(x, t) > ρm(x, t). By choosing the Lyapunov function as V = 1
2
sT s, then differen-

tiate V and substitute into (3.11) and (3.12),

V̇ = sT ṡ

= sTD · [B̃(x, t)u+ d− B̃(x, t)u0]

= sTDB̃(x, t) · [u0 + u1 + B̃+(x, t)d− u0]

≤ −ρ(x, t) · ||[DB̃(x, t)]T s||+ ||B̃+(x, t)d|| · ||[DB̃(x, t)]T s||

≤ [−ρ(x, t) + ρm(x, t)] · ||[DB̃(x, t)]T s||

< 0.

To conclude, the following theorem is presented.

Theorem 3.1 For the nonlinear 2nd-order system (3.1) under Assumptions 3.2-3.4, if

adopting the following control law:

u =







u0 if s = 0

u0 − ρ(x, t) · [DB̃(x,t)]T s

||[DB̃(x,t)]T s|| if s 6= 0
(3.15)

then the origin of this system is globally asymptotically stable (GAS).
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3.3 Application to Satellite Attitude Control

3.3.1 Satellite Dynamics

An attitude model for a spacecraft along a circular orbit can be described in the same

form as (3.1) with n = 3 [32]. The three Euler’s angles (φ, θ, ψ) and their derivatives

are adopted as the six state variables. For simplicity, we assume in this study that

the thruster is the only applied control force. Let x = (φ, θ, ψ, φ̇, θ̇, ψ̇)T and f̃(x, t) =

(f̃1(x, t), f̃2(x, t), f̃3(x, t))
T . The overall system dynamics has parameters described as

below:

f̃1(x, t) = ω0x6cx3cx2 − ω0x5sx3sx2 +
Iy − Iz
Ix

[

x5x6 + ω0x5cx1sx3sx2 + ω0x5cx3sx1

+ω0x6cx3cx1 +
1

2
ω2
0s(2x3)c

2x1sx2 +
1

2
w2

0c
2x3s(2x1)− ω0x6sx3sx2sx1

−1

2
ω2
0s

2x2s
2x3s(2x1)−

1

2
ω2
0s(2x3)sx2s

2x1 −
3

2
ω2
0c

2x2s(2x1)
]

, (3.16)

f̃2(x, t) = ω0x6sx3cx1 + ω0x4cx3sx1 + ω0x6cx3sx2sx1 + ω0x5sx3cx2sx1 + ω0x4sx3sx2cx1

+
Iz − Ix
Iy

[

x4x6 + ω0x4cx1sx3sx2 + ω0x4cx3sx1 − ω0x6sx3cx2

−1

2
ω2
0s(2x2)s

2x3cx1 −
1

2
w2

0cx2sx1s(2x3) +
3

2
ω2
0s(2x2)cx1

]

, (3.17)

f̃3(x, t) = ω0x4sx1sx3sx2 − ω0x6cx1cx3sx2 − ω0x5cx1sx3cx2 + ω0x6sx3sx1 − ω0x4cx3cx1

+
Ix − Iy
Iz

[

x4x5 + ω0x4cx3cx1 − ω0x4sx3sx2sx1 − ω0x5sx3cx2

−1

2
ω2
0s(2x3)cx2cx1 +

1

2
w2

0s
2x3sx1s(2x2)−

3

2
ω2
0s(2x2)sx1

]

, (3.18)

B̃(x, t) = B̃ =







0.67 0.67 0.67 0.67
0.69 −0.69 −0.69 0.69
0.28 0.28 −0.28 −0.28





 . (3.19)

Here, Ix, Iy, and Iz are the inertia with respect to the three body coordinate axes, ω0 de-

notes the constant orbital rate, and c and s denote the cos and sin functions, respectively.

Note that, Assumptions 3.1 and 3.2 are obviously satisfied, since B(x, t) is a constant

matrix and any three columns taking from B is invertible. Therefore, the system is found

to be controllable for any control inputs and Assumption 3.4 is also satisfied.

The control objective is to compare the performances of the two control strategies

(SDRE and SDRE+ISMC) when there are possible model uncertainties and/or external

disturbances. To be more precisely, we study whether the system can be stabilized and
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use the cost function (and others mentioned later) defined in (3.3) as an index to compare

the performance.

3.3.2 Simulation Results

In this section, we use MATLAB software to simulate the satellite attitude control un-

der SDRE and ISMC approach. For both control approaches, we check whether the sys-

tem with disturbances can be stabilized and compare their performances (e.g. quadratic

performance index and convergence time).

The Table 3.1 shows the simulating parameters in this chapter: (Note that for SDRE

approach, the procedure of factorizing f(x, t) = A(x, t)x is described in Appendix)

Table 3.1. Simulation parameters.
Ix 2000 N ·m · s2
Iy 400 N ·m · s2
Iz 2000 N ·m · s2
ω0 1.0312× 10−3 rad/s

d̃ (0.05 sin(t), 0.05 cos(2t), 0.05 sin(3t))T

A(x, t) see Appendix 3A
D I3
Q I6
R I4
u0 SDRE approach

ρ(x, t), ρm(x, t) ||B+(x, t)d||∞ + 1
x0 (−0.7,−0.07, 1.5, 0.3, 1.3,−0.2)T

Furthermore, to alleviate chattering, we modify the control law (3.15) into:

u =







u0 − ρ(x, t) · [DB̃(x,t)]T s

||[DB̃(x,t)]T s|| if ||[DB̃(x, t)]T s|| ≥ ǫ

u0 − ρ(x, t) · [DB̃(x,t)]T ǫ

ǫ
if ||[DB̃(x, t)]T s|| < ǫ

(3.20)

where we choose ǫ = 0.02.

The simulation results are shown in Figs. 3.1-3.3, and the summary of comparison of

performance are shown in Table 3.2.

We denote the results:

• SDRE : the system without disturbance (nominal system) under SDRE approach

only

• SDREd : the disturbed system under SDRE approach only

14



• SDRE+ISMCd : the disturbed system using SDRE-ISMC combined approaches

In addition, in Table 3.2, we also compare the performances under the Sliding Mode

Control (SMC, see Section 3.2.3 in [42]), LQR (see Section 3.2.2 in [42]), and LQR-ISMC

combined approach (see Section 3.2.1 in [42]), respectively.

• SMC : the disturbed system under nonlinear SMC approach only

• LQR : the system without disturbance (nominal system) under nonlinear LQR ap-

proach only

• LQRd : the disturbed system under nonlinear LQR approach only

• LQR+ISMCd : the disturbed system using LQR-ISMC combined approaches

From Fig. 3.1, we observe that SDRE approach stabilizes the nominal system but

fails to stabilize when there exists disturbances. However, resorting to ISMC, the system

with disturbances can still be stabilized. In addition, it is interesting to find that the

trajectory of SDRE+ISMCd and SDRE for nominal design are almost identical (this is

why we seem to see only two trajectories in this figure), this agrees with the theoretical

conclusion. Moreover, the persistent oscillation of the state trajectory of SDREd comes

from the effect of the disturbance d̃, which also contributes to the oscillating control

inputs of SDREd and SDRE+ISMCd in Fig. 3.2. From Fig. 3.2, we see that the control

inputs of SDRE+ISMCd experiences larger oscillating amplitude than SDREd, this is

because the additional part of control inputs in SDRE+ISMCd than SDREd, u1 in (3.11),

which contributes to compensate disturbances while SDRE control scheme has no such

mechanism. Finally, in Fig. 3.3, it is obvious that sliding variables of SDRE+ISMCd

start on the sliding manifold and remain on it afterwards, which again agrees with the

theoretical results that ISMC has no reaching phase.

Table 3.2 shows the comparison of performance, including energy consumption
∫

uTu,

quadratic performance index
∫

(xTx+uTu), required maximum control magnitude ||u||∞,

and convergence time (when the magnitude of state is less than 0.01 at first time). For

nominal system, LQR [42] approach seems to have better performance than SDRE in
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energy consumption
∫

uTu, state regulation
∫

xTx, quadratic performance index
∫

(xTx+

uTu) and convergence time. But SDRE scheme has smaller maximum control magnitude

||u||∞ since LORd uses Taylor’s series approximation up to 3rd-order for the real LQR

solution associated to a Hamiltonian-Jacobian equation of the the nonlinear system [49].

For the system with disturbances, LQR+ISMCd approach also have better performance

than SDRE+ISMCd in energy consumption
∫

uTu, state regulation
∫

xTx, quadratic per-

formance index
∫

(xTx+uTu) and convergence time. Moreover, both SDRE+ISMCd and

LQR+ISMCd consumes more control energy than the corresponding nominal control law

SDRE and LQR [42], respectively. This is because the additional part, u1 in (3.11), is

required in the ISMC design. Last but not least, we see that SMCd has the least con-

vergence time among all approaches, and can be explained by the fact that Sliding Mode

Control (SMC) inherently possesses robustness to model uncertainties and/or external

disturbances [6]-[7], [16], [18], and [45].

To sum up, we conclude that SDRE (so as LQR) is not a robust control law.
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Table 3.2. Comparison of performance.

Performance Index
Controller ||x(t)||t→∞ < 10−3

∫

uTu
∫

xTx
∫

(xTx + uTu) ||u||∞ Convergence
time

LQR+ISMCd 2.1259 4.6294 6.7553 2.5099 5.173
SDRE+ISMCd

Yes
2.7979 4.7618 7.5597 2.3917 11.981

SMCd Yes 2.4605 4.8981 7.3586 2.6305 4.633
LQRd
SDREd

No X X X X X

LQR 1.9517 4.6277 6.5794 2.5099 5.157
SDRE

Yes
2.7756 4.7638 7.5395 2.3917 11.598
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Appendix 3A

We denote

• I1, I2, and I3 denote Iy−Iz
Ix

, Iz−Ix
Iy

, and Ix−Iy
Iz

, respectively.

• c and s denote the cos and sin functions, respectively.

As Section 3.2.1 illustrates, first we reformulate the drift terms (3.16)-(3.18) into:

Reformed Drift Terms :

f̃1 is reformed as:

ω0x6
cx2 − 1

x2
x2 + ω0x6

cx3 − 1

x3
x3 + ω0[1 + (cx3 − 1)(cx2 − 1)]x6 −

1

3
ω0x5sx3

sx2
x2

x2

−1

3
ω0x5

sx3
x3

sx2x3 −
1

3
ω0sx3sx2x5 +

1

2
I1x6x5 +

1

2
I1x5x6 +

1

4
I1ω0x5

cx1 − 1

x1
sx3sx2x1

+
1

4
I1ω0x5cx1sx3

sx2
x2

x2 +
1

4
I1ω0x5cx1

sx3
x3

sx2x3 +
1

4
I1ω0(cx1sx3sx2 + sx3sx2)x5

+
1

3
I1ω0x5cx3

sx1
x1

x1 + I1ω0
1

3
x5
cx3 − 1

x3
sx1x3 +

1

3
I1ω0(cx3sx1 + sx1)x5 + I1ω0x6

cx1 − 1

x1
x1

+I1ω0x6
cx3 − 1

x3
x3 + I1ω0[(cx3 − 1)(cx1 − 1) + 1]x6 +

1

6
I1ω

2
0s(2x3)

sx2
x2

x2

+
1

6
I1ω

2
0s(2x3)

c2x1 − 1

x1
sx2x1 +

1

6
I1ω

2
0sx3

sx2
x2

x2 +
1

6
I1ω

2
0

s(2x3)

x3
c2x1sx2x3 +

1

4
I1ω

2
0

sx1
x1

x1

+
1

4
I1ω

2
0c

2x3
s(2x1)

x1
x1 +

1

4
I1ω

2
0

c2x3 − 1

x3
s(2x1)x3 −

1

4
I1ω0x6sx3sx2

sx1
x1

x1

−1

4
I1ω0x6sx3

sx2
x2

sx1x2 −
1

4
I1ω0x6

sx3
x3

sx2sx1x3 −
1

4
I1ω0sx3sx2sx1x6

+
1

6
I1ω

2
0s

2x2s
2x3

s(2x1)

x1
x1 −

1

6
I1ω

2
0

s2x2
x2

s2x3s(2x1)x2 −
1

6
I1ω

2
0s

2x2
s2x3
x3

s(2x1)x3

−1

6
I1ω

2
0s(2x3)sx2

s2x1
x1

x1 −
1

6
I1ω

2
0s(2x3)

sx2
x2

s2x1x2 −
1

6
I1ω

2
0

s(2x3)

x3
sx2s

2x1x3

−3

4
I1ω

2
0c

2x2
s(2x1)

x1
x1 −

3

4
I1ω

2
0

s(2x1)

x1
x1 −

3

4
I1ω

2
0

c2x2 − 1

x2
s(2x1)x2. (3A.1)

f̃2 is reformed as:

1

3
ω0x6sx3

cx1 − 1

x1
x1 +

1

3
ω0x6

sx3
x3

cx1x3 +
1

3
ω0(sx3cx1 + sx3)x6 +

1

3
ω0x4cx3

sx1
x1

x1

+
1

3
ω0x4

cx3 − 1

x3
sx1x3 +

1

3
ω0(cx3sx1 + sx1)x4 +

1

4
ω0x6cx3sx2

sx1
x1

x1 +
1

4
ω0x6cx3

sx2
x2

sx1x2

+
1

4
ω0x5

cx3 − 1

x3
sx2sx1x3 +

1

4
ω0(cx3sx2sx1 + sx2sx1)x6 +

1

4
ω0x5sx3cx2

sx1
x1

x1
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+
1

4
ω0x5sx3

cx2 − 1

x2
sx1x2 +

1

4
ω0x5

sx3
x3

cx2sx1x3 +
1

4
ω0(sx3cx2sx1 + sx3sx1)x5

+
1

4
ω0x4sx3sx2

cx1 − 1

x1
x1 +

1

4
ω0x4sx3

sx2
x2

cx1x2 +
1

4
ω0x4

sx3
x3

sx2cx1x3

+
1

4
ω0(sx3sx2cx1 + sx3sx2)x4 +

1

2
I2x6x4 +

1

2
I2x4x6 +

1

4
I2ω0x4

cx1 − 1

x1
sx3sx2x1

+
1

4
I2ω0x4cx1sx3

sx2
x2

x2 +
1

4
I2ω0x4cx1

sx3
x3

sx2x3 +
1

4
I2ω0(cx1sx3sx2 + sx3sx2)x4

+
1

3
I2ω0x4cx3

sx1
x1

x1 +
1

3
I2ω0x4

cx3 − 1

x3
sx1x3 +

1

3
I2ω0(cx3sx1 + sx1)x4

−1

3
I2ω0x6sx3

cx2 − 1

x2
x2 −

1

3
I2ω0x6

sx3
x3

cx2x3 −
1

4
I2ω0(sx3cx2 + sx3)x6

−1

6
I2ω

2
0sx2s

2x3
cx1 − 1

x1
x1 −

1

6
I2ω

2
0

s(2x2)

x2
(sx3cx1 + sx3)x2 −

1

6
I2ω

2
0s(2x2)

s2x3
x3

cx1x3

−1

6
I2ω

2
0cx2

sx1
x1

s(2x3)x1 −
1

6
I2ω

2
0

cx2 − 1

x2
sx1s(2x3)x2 −

1

6
I2ω

2
0

sx1
x1

s(2x3)x1

−1

6
I2ω

2
0cx2sx1

s(2x3)

x3
x3 +

3

4
I2ω

2
0s(2x2)

cx1 − 1

x1
x1 +

3

4
I2ω

2
0

s(2x2)

x2
(cx1 + 1)x2. (3A.2)

f̃3 is reformed as:

1

4
ω0x4

sx1
x1

sx2sx3x1 +
1

4
ω0x4sx1

sx2
x2

sx3x2 +
1

4
ω0sx1sx2

sx3
x3

x3 +
1

4
ω0sx1sx2sx3x4

−ω0x6
cx1 − 1

x1
(cx3 − 1)sx2x1 − ω0x6(cx1 − 1)

sx2
x2

x2 − ω0x6
cx3 − 1

x3
sx2x3 − ω0sx2x6

−ω0x5sx3
cx1
x1
x1 − ω0x5sx3(cx1 − 1)

cx2 − 1

x2
x2 − ω0x5

sx3
x3

(cx2 − 1)x3 − ω0sx3x5

+
1

3
ω0x6sx3

sx1
x1

x1 +
1

3
ω0x6

sx3
x3

sx1x3 +
1

3
ω0sx3sx1x6 − ω0x4

cx1 − 1

x1
x1 − ω0x4

cx3 − 1

x3
x3

−ω0[(cx3 − 1)(cx1 − 1) + 1]x4 +
1

2
I3x5x4 +

1

2
I3x4x5 + I3ω0x4

cx1 − 1

x1
x1 + I3ω0x4

cx3 − 1

x3
x3

+I3ω0[(cx3 − 1)(cx1 − 1) + 1]x4 −
1

4
I3ω0x4sx3sx2

sx1
x1

x1 −
1

4
I3ω0x4sx3

sx2
x2

sx1x2

−1

4
I3ω0x3

sx3
x3

sx2sx1x3 −
1

4
I3ω0sx3sx2sx1x4 −

1

3
I3ω0x5sx3

cx2 − 1

x2
x2

−1

3
I3ω0

sx3
x3

cx2x3
1

3
I3ω0(sx3cx2 + sx3)x5 −

1

2
I3ω

2
0s(2x3)

cx1 − 1

x1
x1 −

1

2
I3ω

2
0s(2x3)

cx2 − 1

x2
x2

−1

2
I3ω

2
0

s(2x3)

x3
[(cx2 − 1)(cx1 − 1) + 1]x3 +

1

6
I3ω

2
0s

2x3
sx1
x1

s(2x2)x1 +
1

6
I3ω

2
0s

2x3sx1
sx2
x2

x2

+
1

6
I3ω

2
0

s2x3
x3

sx1s(2x2)x3 −
3

4
I3ω

2
0s(2x2)

sx1
x1

x1 −
3

4
I3ω

2
0

s(2x2)

x2
sx1x2. (3A.3)

Then we can factorize the drift term of System (3.1) into f = A(x, t) ·x and the elements

of A(x, t) is described as below:
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Factorization of the Drift Terms :

A(x, t) = [aij(x, t)]

a1j = 0, j = 1, 2, 3, 5, 6; and a14 = 1.

a2j = 0, j = 1, 2, 3, 4, 6; and a15 = 1.

a3j = 0, j = 1, 2, 3, 4, 5; and a16 = 1.

a41 =
1

4
I1ω0x5

cx1 − 1

x1
sx3sx2 +

1

3
I1ω0x5cx3

sx1
x1

+ I1ω0x6
cx1 − 1

x1

+
1

6
I1ω

2
0s(2x3)

c2x1 − 1

x1
sx2 +

1

4
I1ω

2
0

sx1
x1

+
1

4
I1ω

2
0c

2x3
s(2x1)

x1

−1

4
I1ω0x6sx3sx2

sx1
x1

+
1

6
I1ω

2
0s

2x2s
2x3

s(2x1)

x1
− 1

6
I1ω

2
0s(2x3)sx2

s2x1
x1

−3

4
I1ω

2
0c

2x2
s(2x1)

x1
− 3

4
I1ω

2
0

s(2x1)

x1
.

a42 = ω0x6
cx2 − 1

x2
− 1

3
ω0x5sx3

sx2
x2

+
1

4
I1ω0x5cx1sx3

sx2
x2

+
1

6
I1ω

2
0s(2x3)

sx2
x2

+
1

6
I1ω

2
0sx3

sx2
x2

− 1

4
I1ω0x6sx3

sx2
x2

sx1

−1

6
I1ω

2
0

s2x2
x2

s2x3s(2x1)−
1

6
I1ω

2
0s(2x3)

sx2
x2

s2x1 −
3

4
I1ω

2
0

c2x2 − 1

x2
s(2x1).

a43 = ω0x6
cx3 − 1

x3
− 1

3
ω0x5

sx3
x3

sx2 +
1

4
I1ω0x5cx1

sx3
x3

sx2

+I1ω0
1

3
x5
cx3 − 1

x3
sx1 + I1ω0x6

cx3 − 1

x3
+

1

6
I1ω

2
0

s(2x3)

x3
c2x1sx2

+
1

4
I1ω

2
0

c2x3 − 1

x3
s(2x1)−

1

4
I1ω0x6

sx3
x3

sx2sx1 −
1

6
I1ω

2
0s

2x2
s2x3
x3

s(2x1)

−1

6
I1ω

2
0

s(2x3)

x3
sx2s

2x1.

a44 = 0.

a45 = −1

3
ω0sx3sx2 +

1

2
I1x6 +

1

4
I1ω0(cx1sx3sx2 + sx3sx2) +

1

3
I1ω0(cx3sx1 + sx1).

a46 = ω0[1 + (cx3 − 1)(cx2 − 1)] +
1

2
I1x5 + I1ω0[(cx3 − 1)(cx1 − 1) + 1]

−1

4
I1ω0sx3sx2sx1.

a51 =
1

3
ω0x6sx3

cx1 − 1

x1
+

1

3
ω0x4cx3

sx1
x1

+
1

4
ω0x6cx3sx2

sx1
x1

+
1

4
ω0x5sx3cx2

sx1
x1

+
1

4
ω0x4sx3sx2

cx1 − 1

x1
+

1

4
I2ω0x4

cx1 − 1

x1
sx3sx2

+
1

3
I2ω0x4cx3

sx1
x1

− 1

6
I2ω

2
0sx2s

2x3
cx1 − 1

x1
− 1

6
I2ω

2
0cx2

sx1
x1

s(2x3)

−1

6
I2ω

2
0

sx1
x1

s(2x3) +
3

4
I2ω

2
0s(2x2)

cx1 − 1

x1
.
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a52 =
1

4
ω0x6cx3

sx2
x2

sx1 +
1

4
ω0x5sx3

cx2 − 1

x2
sx1 +

1

4
ω0x4sx3

sx2
x2

cx1

+
1

4
I2ω0x4cx1sx3

sx2
x2

− 1

3
I2ω0x6sx3

cx2 − 1

x2
− 1

6
I2ω

2
0

s(2x2)

x2
(sx3cx1 + sx3)

−1

6
I2ω

2
0

cx2 − 1

x2
sx1s(2x3) +

3

4
I2ω

2
0

s(2x2)

x2
(cx1 + 1).

a53 =
1

3
ω0x6

sx3
x3

cx1 +
1

3
ω0x4

cx3 − 1

x3
sx1 +

1

4
ω0x5

cx3 − 1

x3
sx2sx1

+
1

4
ω0x5

sx3
x3

cx2sx1 +
1

4
ω0x4

sx3
x3

sx2cx1 +
1

4
I2ω0x4cx1

sx3
x3

sx2

+
1

3
I2ω0x4

cx3 − 1

x3
sx1 −

1

3
I2ω0x6

sx3
x3

cx2 −
1

6
I2ω

2
0s(2x2)

s2x3
x3

cx1

−1

6
I2ω

2
0cx2sx1

s(2x3)

x3
.

a54 =
1

3
ω0(cx3sx1 + sx1) +

1

4
ω0(sx3sx2cx1 + sx3sx2) +

1

4
I2ω0(cx1sx3sx2 + sx3sx2)

+
1

3
I2ω0(cx3sx1 + sx1).

a55 =
1

4
ω0(sx3cx2sx1 + sx3sx1).

a56 =
1

3
ω0(sx3cx1 + sx3) +

1

4
ω0(cx3sx2sx1 + sx2sx1) +

1

2
I2x6x4 +

1

2
I2x4

−1

4
I2ω0(sx3cx2 + sx3).

a61 =
1

4
ω0x4

sx1
x1

sx2sx3 − ω0x6
cx1 − 1

x1
(cx3 − 1)sx2 − ω0x5sx3

cx1
x1

+
1

3
ω0x6sx3

sx1
x1

− ω0x4
cx1 − 1

x1
+ I3ω0x4

cx1 − 1

x1

−1

4
I3ω0x4sx3sx2

sx1
x1

− 1

2
I3ω

2
0s(2x3)

cx1 − 1

x1
+

1

6
I3ω

2
0s

2x3
sx1
x1

s(2x2)

−3

4
I3ω

2
0s(2x2)

sx1
x1

.

a62 =
1

4
ω0x4sx1

sx2
x2

sx3 − ω0x6(cx1 − 1)
sx2
x2

− ω0x5sx3(cx1 − 1)
cx2 − 1

x2

−1

4
I3ω0x4sx3

sx2
x2

sx1 −
1

3
I3ω0x5sx3

cx2 − 1

x2
− 1

2
I3ω

2
0s(2x3)

cx2 − 1

x2

+
1

6
I3ω

2
0s

2x3sx1
sx2
x2

− 3

4
I3ω

2
0

s(2x2)

x2
sx1.

a63 =
1

4
ω0sx1sx2

sx3
x3

− ω0x6
cx3 − 1

x3
sx2 − ω0x5

sx3
x3

(cx2 − 1)

+
1

3
ω0x6

sx3
x3

sx1 − ω0x4
cx3 − 1

x3
+ I3ω0x4

cx3 − 1

x3

−1

4
I3ω0x3

sx3
x3

sx2sx1 −
1

2
I3ω

2
0

s(2x3)

x3
[(cx2 − 1)(cx1 − 1) + 1]

+
1

6
I3ω

2
0

s2x3
x3

sx1s(2x2).

a64 =
1

4
ω0sx1sx2sx3 − ω0[(cx3 − 1)(cx1 − 1) + 1] +

1

2
I3x5 + I3ω0[(cx3 − 1)(cx1 − 1) + 1]

22



−1

4
I3ω0sx3sx2sx1.

a65 = −ω0sx3 +
1

2
I3x4 −

1

3
I3ω0

sx3
x3

cx2x3
1

3
I3ω0(sx3cx2 + sx3).

a66 = −ω0sx2 +
1

3
ω0sx3sx1. (3A.4)
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CHAPTER FOUR

STUDY OF RELIABILITY PERFORMANCE

OF SDRE+ISMC SCHEME

In Chapter 3, we found that SDRE is not a robust scheme via numerical simulation,

but when combined with Integral-type Sliding Mode Control (ISMC), the closed-loop

system is less sensitive to disturbances. In this chapter, we investigate the reliability issue

of SDRE. Since there is no guideline provided for the factorization f(x, t) = A(x, t)x,

specifically, to improve reliability, we resort to ISMC approach to improve robustness

performance for a specific factorization of the nonlinear drift term.

From the approach viewpoint, reliable control can be classified as active [3]-[5], [19],

[31], [35], [39], [50], [51] or passive [23], [27], [29], [46]-[49]. In a passive reliable design,

we need to separate the healthy actuators from those actuators that might malfunction

before it applies on the system. Nevertheless, it is difficult to retrieve such information

in advance. On the contrary, in the active reliable control design, faults are detected and

identified by a fault detection and diagnosis (FDD) mechanism, and then the controllers

are reconfigured in real time in accordance with the online detection results. Therefore,

we only consider the active reliable design in this chapter.

In Section 4.1, we define the system type, cost function, and control objective. Then we

detailed the design of FDD and control law of SDRE and ISMC in Section 4.2. Finally, we

apply the control law to the satellite attitude control and analyze the simulating results.

4.1 Problem Statement

In this study, we assume that the actuators’ fault has been successfully detected and

diagnosed by a Fault Detection and Diagnosis (FDD) mechanism. The fault may be

time varying and include degradation, amplification and outage [30], [41]. Before the
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occurrence of faults, the engineers may take any kind of control strategy to fulfill their

desired system performance. When the fault is detected and diagnosed, the control law

is guided to switch to an active reliable law for ensuring system performance. Thus, after

the fault is detected, we may divide the actuators into two groups H and F , within which

we assume that all of the actuators in H are healthy, while those in F experience faults.

Therefore, System (3.1) can be rewritten as

{

ẋ1 = x2

ẋ2 = f̃(x, t) + B̃H(x, t)uH + B̃F (x, t)uF + d̃
(4.1)

where x1 = (x1, · · · , xn)T ∈ IRn , x2 = (xn+1, · · · , x2n)T ∈ IRn and x = (xT
1 ,x

T
2 )

T are

the system states, uH ∈ IRk and uF ∈ IRm−k are the control inputs. f(x, t) ∈ IRn

and B̃(x, t) = [B̃H(x, t) ∈ IRn×k ... B̃F(x, t) ∈ IRn×(m−k)] ∈ IRn×m , where m ≥ k ≥ n.

d̃ = (d1, · · · , dn)T ∈ IRn denote possible model uncertainties and/or external disturbances.

Note that System(4.1) is equivalent to the following system dynamic:

ẋ = f(x, t) + B(x, t)u+ d (4.2)

where f(x, t) = [xT
2

... f̃T (x, t)]T , B(x, t) = [0Tn×m

... B̃T (x, t)]T , u = (uT
H

... uT
F)

T , and

d = (0T
n×1

... d̃T )T .

Assumption 4.1 : f(x, t) and B(x, t) are smooth functions with f(0) = 0.

Assumption 4.2 : For all states, B(x, t) is full rank.

Moreover, we define the quadratic performance index

J =
∫ ∞

0

[

xTQ(x)x + uTR(x)u
]

dt (4.3)

where Q(x) = Q(x)T ≥ 0 and R(x) = R(x)T > 0.

The control objective is to compare the performances of the two control strategies

(SDRE and SDRE+ISMC) when there are possible model uncertainties and/or external

disturbances, especially when some actuators malfunction. To be more precisely, We study

whether the system can be stabilized and use the cost function (and others mentioned

later) defined in (4.3) as an index to compare the performance.
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4.2 Design of Active Reliable Control Law

We assume that the output values of the faulty actuators are successfully diagnosed

by an FDD mechanism as

uF = ûF +∆uF (4.4)

where ûF and ∆uF denote the estimated value and the estimated error, respectively.

Then System (4.1) can be written as

ẋ1 = x2 and ẋ2 = f̃(x, t) + B̃H(x, t)uH + B̃F(x, t)(ûF +∆uF) + d̃ (4.5)

where uH ∈ IRk and ûF , ∆uF ∈ IRm−k .

4.2.1 SDRE

Similar to Section 3.2.1 but with slight modification, we symbolically factorize f(x, t)

into the form of f(x, t) = A(x, t)x (see Appendix 3A in Chapter 3), where A(x, t) ∈ IRn×n ,

and then adopt the following procedures to solve the SDRE problem:

• Check the stabilizability of [A(x, t), BH(x, t)] and the observability of [A(x, t), C(x)]

symbolically, where BH(x, t) = [0Tn×(m−k)

... B̃T
H(x, t)]

T , C(x) ∈ IRp×n has full rank

and satisfies Q(x) = CT (x)C(x), to ensure the solvability of the corresponding

SDRE [24].

• Solve the SDRE for P (x) to produce the SDRE controller u = −R−1(x)BT
H(x, t)P (x)x.

4.2.2 ISMC

Under Assumption 4.2, System (4.5) is rewritten into:

ẋ1 = x2 and ẋ2 = f̃(x, t) + B̃H(x, t) · (uH +∆dm) + B̃F (x, t) · ûF (4.6)

where ∆dm = B̃+
H(x, t) · [B̃F (x, t)∆uF + d̃] and B̃+

H(x, t) is the pseudo-inverse matrix of

B̃H(x,t).

Assumption 4.3 : There exist ρm(x, t) > 0 such that

||∆dm|| ≤ ρm(x, t) (4.7)
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Assumption 4.4 : The origin of the nominal subsystem

{

ẋ1 = x2

ẋ2 = f̃(x, t) + B̃(x, t)u
(4.8)

is uniformly asymptotically stabilizable, that is, there exists a control u0 and a continu-

ously differentiable function V (x, t) such that

γ1(||x||) ≤ V (x, t) ≤ γ2(||x||) (4.9)

and
∂V (x, t)

∂t
+

(

∂V (x, t)

∂x

)T

·
[

f̃(x, t) + B̃(x, t)u0

]

≤ −γ3(||x||) (4.10)

where γ1, γ2 : IR
+ → IR+ are class K∞ functions and γ3 is a class K function.

Along the ISMC design procedure, the sliding manifold is introduced as (4.11) below:

s(x, t) = D ·
{

x2(t)− x2(t0)−
∫ t

t0

[

f̃(x(τ), τ) + B̃(x(τ), τ) · u0(τ)
]

· dτ
}

= 0 (4.11)

where D ∈ IRn×n and DB̃H(x, t) is full rank ∀x.

When the system’s trajectory is on the sliding manifold, s = 0, ṡ = 0, from (4.6) and

(4.11), it is obtained that

ṡ = D · [x2 − f̃ − B̃(x, t)u0]

= D · [B̃H(x, t) · (uH +∆um) + B̃F(x, t)ûF − B̃(x, t)u0] = 0

⇒ uH = −B̃+
H(x, t) · [B̃F (x, t)ûF − B̃(x, t)u0]−∆dm.

Substitute uH into (4.6), the equivalent system dynamics is obtained

{

ẋ1 = x2

ẋ2 = f̃(x, t) + B̃(x, t)u0
(4.12)

which agrees with the nominal system defined in Assumption (4.4).

In order to keep the system state on the sliding manifold, it is chosen that

uH =

{

B̃+
H(x, t) · [B̃(x, t)u0 − B̃F(x, t)ûF ] if s = 0;

B̃+
H(x, t) · [B̃(x, t)u0 − B̃F(x, t)ûF ] + u1 if s 6= 0

(4.13)

and

u1 = −ρ(x, t) [DB̃H(x, t)]
T s

||[DB̃H(x, t)]T s||
(4.14)
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where ρ(x, t) > ρm(x, t). Note that u1 is designed to keep the state on the sliding manifold.

By choosing the Lyapunov function as V = 1
2
sT s, then differentiate V and substitute into

(4.11), (4.13) and (4.14),

V̇ = sT ṡ

= sTD · [B̃H(x, t) · (uH +∆dm) + B̃F(x, t)ûF − B̃(x, t)u0]

= sTD · [B̃(x, t)u0 − B̃F(x, t)ûF + B̃H(x, t)u1 + B̃H(x, t)∆dm + B̃F(x, t)ûF − B̃(x, t)u0]

= sTDB̃H(x, t) ·
{

−ρ(x, t) [DB̃H(x, t)]
T s

||[DB̃H(x, t)]T s||
+∆dm

}

≤ −||[DB̃H(x, t)]
T s|| · ρ(x, t) + ||[DB̃H(x, t)]

T s|| · ||∆dm||

≤ ||[DB̃H(x, t)]
T s|| · [−ρ(x, t) + ρm(x, t)]

< 0.

To sum up with an important theorem,

Theorem 4.1 : Suppose that System (4.1) experiences actuator faults at the control

channels in F with estimated value ûF and error ∆uF given by FDD mechanism (4.5).

Then the origin of System (4.1) under Assumptions 4.1 - 4.4 and the control law given by

(4.13)-(4.14) is globally asymptotically stable (GAS).

4.3 Application to Satellite Attitude Control

In this section, we use the same satellite attitude control model as in Section 3.3.1.

In the following, we first detail the design of fault detection and diagnosis (FDD) and

compare the simulating results using different control methods.

4.3.1 Design of Fault Diagnosis and Detection (FDD)

In this section, we investigate the deign of FDD observer mentioned in Section 3.3.1

for the satellite attitude control. The main idea of this design is to decouple the control

input so that the fault associated with each channel can be diagnosed and distinguished

from the healthy ones. And the following system dynamics, same as (3.1), is considered.

{

ẋ1 = x2

ẋ2 = f̃(x, t) + B̃(x, t)u+ d̃.
(4.15)
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Fig. 4.1. FDD diagram

Fig. 4.1 shows the relation between FDD and system. Since the three Euler rates can

be expressed in terms of angular velocity vector, which is available through accelerometer

and gyroscope [34], in this section, we assume that all of the state variables are available

for measurement and that B̃(x, t) in (4.15) is a constant matrix. We adopt the observer

and residual signals ri from [32] as (4.16) and (4.17) below:

ξi = fnew
i (z) + ui + liu4 + ki · (zi+3 − ξi), i = 1, 2, 3 (4.16)

and

ri = zi+3 − ξi, i = 1, 2, 3 (4.17)

where ki > 0. It was shown in [32] that any single actuator fault can be detected and

diagnosed at an exponential rate depending on ki.

When the residual signals are larger than a selected threshold, the alarm will be set

to be on.

4.3.2 Simulation Results

In this section, we still use MATLAB software to simulate the satellite attitude control

under SDRE and ISMC approach. For both control approaches, we check whether the sys-

tem with disturbances can be stabilized and compare their performances (e.g. quadratic

performance index and convergence time).

The following Table 4.1 shows the simulating parameters in this chapter: (Note that

for SDRE approach, the procedure of factorizing f = A(x, t)x is described in Appendix)
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Table 4.1. Simulation parameters.
Ix 2000 N ·m · s2
Iy 400 N ·m · s2
Iz 2000 N ·m · s2
ω0 1.0312× 10−3 rad/s

d̃ (0.01 sin(t), 0.01 cos(2t), 0.01 sin(3t))T

A(x, t) see Appendix 3A in Chapter 3
D I3
Q I6
R I4
u0 SDRE approach

ρ(x, t), ρm(x, t) ||∆dm||∞ + 0.5
x0 (0.7, 0.07,−1.5,−0.3,−1.3, 0.2)T

k1 10
k2 10
k3 10

Furthermore, to alleviate chattering, we modify the control law (4.13) into:

u =







B̃+
H(x, t)[B̃(x, t)k0 − B̃F(x, t)ûF ]− ρ(x, t) [DB̃H(x,t)]T s

||[DB̃H(x,t)]T s|| if ||[DB̃H(x, t)]
T s|| ≥ ǫ

B̃+
H(x, t)[B̃(x, t)k0 − B̃F(x, t)ûF ]− ρ(x, t) [DB̃H(x,t)]T s

ǫ
if ||[DB̃H(x, t)]

T s|| < ǫ
(4.18)

where we choose ǫ = 0.02. We simulate the faulty situation by that u2 fails at time 1 and

alarm signals as soon as |ri| ≥ 0.01.

The simulation results are shown in Figs. 4.2-4.6, and the summary of comparison of

performance are shown in Table 4.2.

We denote the results:

• SDRE : the system without disturbance (nominal system) under SDRE approach

only

• SDREr : the disturbed and actuator-failed system under SDRE approach only

• SDRE+ISMCr : the disturbed and actuator-failed system using SDRE-ISMC com-

bined approaches

In addition, in Table 4.2, we also compare the performances under the Sliding Mode

Control (SMC, see Section 4.2.2 in [42]), LQR (see Section 4.2.3 in [42]), and LQR-ISMC

combined approach (see Section 4.2.1 in [42]), respectively.
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• SMCr : the disturbed and actuator-failed system under nonlinear SMC approach

only

• LQR : the system without disturbance (nominal system) under nonlinear LQR ap-

proach only

• LQRr : the disturbed system and actuator-failed under nonlinear LQR approach

only

• LQR+ISMCr : the disturbed and actuator-failed system using LQR-ISMC combined

approaches

It is observed from Fig. 4.2 that the stabilization performance is, as expected, achieved

for the SDRE and the SDRE+ISMC designs. Besides, the state trajectories of the ISMC

and those for nominal design (SDRE) are found almost identical, which agrees with the

theoretical conclusion. From Fig. 4.6, the sliding variables of the SDRE+ISMC design are

seen to keep at zero all the time. It implies that the system states remain on the sliding

manifold for all t, which also agrees with the main results. In Fig. 4.4, the actuator fault

is successfully detected by both designs, since the magnitude of the second residual signal

exceeds the threshold near tSDRE+ISMC ≈ 1.04 and tSDRE ≈ 1.067, respectively. This can

also be seen from the alarm signals given in Fig. 4.5 where alarm2 denotes the fault of

the second actuator. After the fault is successfully detected, the associated active reliable

controllers are activated and the magnitude of the residual signals soon decreases, as

shown in Fig. 4.4. The persistent oscillation of the residual signal comes from the effect

of the disturbance d̃, which also contributes to the oscillating control inputs (u1,u3,u4) of

SDREr and SDRE+ISMCr in Fig. 4.3. It is also noted from Figs. 4.3 that SDRE+ISMC

design is observed to require larger control efforts than SDRE design due to the additional

control u1 in (4.13) and (4.14). Finally, since the SDRE+ISMC design of this example

adopts the SDRE scheme for the nominal healthy subsystem, its performances are close

to those of SDRE except for the requirement of extra control component to compensate

for the uncertainties.

Table 4.2 shows the comparison of performance, including energy consumption
∫

uTu,
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quadratic performance index
∫

(xTx+uTu), required maximum control magnitude ||u||∞,

and convergence time (when the magnitude of state is less than 0.01 at first time). For

nominal system, LQR [42] approach has better performance than SDRE for all consid-

ered performance indexes. For the system with disturbances, LQR+ISMCr approach

also has better performance than SDRE+ISMCr. Moreover, both SDRE+ISMCr and

LQR+ISMCr consumes more control energy than the corresponding nominal control law

SDRE and LQR [42], respectively. This is because the additional part, u1 in (4.13) and

(4.14), is required in the ISMC design. Last but not least, we see that SMCr [42] and

SDREr succeeds to stabilize, but LQRr [42] fails. To sum up, we conclude that in this

study SDRE control law possesses certain robustness but not reliable.
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Table 4.2. Comparison of performance.

Performance Index
Controller ||x(t)||t→∞ < 10−3

∫

uTu
∫

xTx
∫

(xTx+ uTu) ||u||∞ Convergence
time

LQR+ISMCr 1.6149 4.4142 6.0291 2.1232 8.844
SDRE+ISMCr

Yes
4.0208 4.7619 8.7827 2.3917 11.61

SMCr Yes 1.8763 6.0829 7.9592 2.2829 7.094
LQRr No X X X X X
SDREr Yes 3.5434 5.066 8.6094 2.3917 16.982
LQR 1.5576 4.4156 5.9732 2.1232 8.799
SDRE

Yes
2.7756 4.7638 7.5395 2.3917 11.598
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CHAPTER FIVE

ON FACTORIZATION OF THE DRIFT TERM IN

SDRE SCHEME

5.1 Problem Statement

Although the SDRE algorithm fully captures the nonlinearities of the system, bringing

the nonlinear system to a (non-unique) linear structure having state-dependent coefficient

(SDC) matrices, and minimizing a nonlinear performance index having a quadratic-like

structure, it has some drawbacks. First, it is known that the conditions“[A(x, t), B(x, t)]

is stabilizable” and“[A(x, t), C(x)] is observable” are required for the existence of a unique

positive definite solution P (x) in Eq. (2.3) [24]; however, these symbolic checking con-

ditions are in general not easy to implement, especially when the system dynamics is

complicated. Next, there is no guideline provided for the factorization f(x, t) = A(x, t)x.

To avoid these difficulty, in this study, we consider the following approach instead.

Problem A: At any nonzero state x and time t, f := f(x, t) is a constant vector, while

B := B(x, t) and C := C(x) are constant matrices. Find a matrix A := A(x, t) ∈ IRn×n

pointwise such that Ax = f , (A,B) is stabilizable and (A,C) is observable.

To demonstrate the benefits of the alternative approach, we give an example below

which shows the traditional SDRE scheme does not work when a specific factorization of

f = Ax is adopted, but the alternative approach do work.

Example: Let f = (x1 + x21x
3
2, x

2
1x

2
2)

T , B = (0, 1)T and C = I2. Suppose that a specific

factorization for f = Ax is given as A :=

(

1 x21x
2
2

0 x21x2

)

. Clearly, (A,C) is observable, but

(A,B) is not stabilizable when x1 = 0 or x2 = 0. Thus, the SDRE, given by (2.3), might

fail to have a positive definite solution P (x) when x1 = 0 or x2 = 0, which will result in

the SDRE scheme failing to operate. However, since Q(x) = CT (x)C(x) = I2, Problem
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A is solvable for this case (see Corollary 5.2).

It is also worth noting that Problem A is always solvable if the SDRE problem for

some specific factorization can be continuously operated. We first consider the Problem

A at a specific nonzero state, as described in Problem B below:

Problem B: Given two constant vectors x, f ∈ IRn , and two constant matrices B ∈

IRn×m and C ∈ IRp×n with x 6= 0, rank(B) ≥ 1 and rank(C) ≥ 1, when does there exist

a matrix A ∈ IRn×n pointwise such that Ax = f , (A,B) is stabilizable and (A,C) is

observable?

Note that, Problem A (and B) are always solvable for the case of n = 1. Therefore,

in the following we only consider the case of n > 1. To answer Problem B, we denote

(IRn)∗ = {xT|x ∈ IRn}, which is known to be the dual space of IRn [22]. Suppose

that p1, · · · ,pk ∈ IRn and qT
1 , · · · ,qT

l ∈ (IRn)∗. We denote {p1, · · · ,pk}⊥ = {qT ∈

(IRn)∗ | qTpi = 0 for 1 ≤ i ≤ k} and {qT
1 , · · · ,qT

l }⊥ = {p ∈ IRn |qT
i p = 0 for 1 ≤ i ≤ l}.

In addition, we denote B⊥ := {qT ∈ (IRn)∗|qTB = 0} and C⊥ := {p ∈ IRn |Cp = 0}.

5.2 Solvability Condition

We assume that the matrix A is diagonalizable in the form of

A =MDM−1 (5.1)

where D =diag[λ1, · · · , λn] ∈ IRn×n , M = [p1, · · · ,pn] ∈ IRn×n , M−1 = [q1, · · · ,qn]
T ∈

IRn×n , and λ1, · · · , λn are distinct. Clearly, λ1, · · · , λn are the eigenvalues of A, pi and qT
i

are the right and the left eigenvectors of A associated with eigenvalues λi, respectively.

We have the following lemma:

Lemma 5.1 Let A be factorized in the form of (5.1). Then

(i) Ax = f ⇐⇒ λiq
T
i x = qT

i f for all i ⇐⇒ qT
i (λix− f) = 0 for all i.

(ii) (A,C) is observable if and only if pi 6∈ C⊥ for all i = 1, · · · , n.

(iii) (A,B) is controllable if and only if qT
i 6∈ B⊥ for all i = 1, · · · , n.

(iv) (A,B) is stabilizable if and only if qT
i 6∈ B⊥ whenever λi ≥ 0.

Proof: (i) The result follows from writing Ax = f in the form of DM−1x =M−1f and

then comparing both sides componentwise.
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(ii) It is known from the PBH test [8] that the pair (A,C) is observable if and only

if rank

((

C
λiI − A

))

= n for all i = 1, · · · , n, i.e.,
(

C
λiI −A

)

p 6= 0 for any p 6= 0.

It is clear that (λiI − A)p = 0 if and only if (λi,p) is an eigenpair of A or p = 0. It

follows that (A,C) is observable if and only if Cpi 6= 0 for all i, that is, pi 6∈ C⊥ for all

i = 1, · · · , n.

(iii) It is known that (A,B) is controllable if and only if (AT , BT ) is observable [8].

Since (λi,qi), i = 1, · · · , n, are eigenpairs of AT , we have from the proof of (ii) that

(AT , BT ) is observable if and only if BTqi 6= 0, i.e., qT
i B 6= 0, for all i. Thus, (A,B) is

controllable if and only if qT
i 6∈ B⊥ for all i.

(iv) (A,B) is stabilizable if and only if rank([λiI − A
... B]) = n for those i in which

λi ≥ 0 [8]. This is equivalent to qT
i B 6= 0 whenever λi ≥ 0, that is, qT

i 6∈ B⊥ whenever

λi ≥ 0.

We also need the following three results:

Lemma 5.2 Let V be a k dimensional vector subspace of (IRn)∗, k < n, and {qT
1 , · · · ,qT

k }

are linearly independent (LI) vectors with qT
1 6∈ V. Then there exists qT

k+1 ∈ V such that

{qT
1 , · · · ,qT

k+1} are LI.

Proof: Suppose that such qT
k+1 does not exist. Then V ⊂ span{qT

1 , · · · ,qT
k }. Since

both V and span{qT
1 , · · · ,qT

k } have dimension k, we have V =span{qT
1 , · · · ,qT

k }, and thus

qT
1 ∈ V, a contradiction. This completes the proof.

Lemma 5.3 Let V be a k−1 dimensional vector subspace of (IRk)∗ and {vT
1 , · · · ,vT

k } be

a basis of (IRk )∗ with vT
i 6∈ V for all i. Besides, let Wi := span{vT

1 , · · · ,vT
i−1,v

T
i+1, · · · ,vT

k }.

Then V 6⊂ ∪k
i=1Wi. As a result, there exists a nonzero vT ∈ V such that vT =

∑k
i=1 αiv

T
i

and αi 6= 0 for all i = 1, · · · , k.

Proof: Note that, for all i = 1, · · · , k, Wi is a vector space of dimension k − 1 and

V 6= Wi; Otherwise, vT
j ∈ V for all j 6= i, which contradicts to the assumption vT

j 6∈ V

for all j. Since ∪k
i=1Wi is not a vector space, we thus have V 6⊂ ∪k

i=1Wi. This fact

together with {vT
1 , · · · ,vT

k } being a basis implies there exists a nonzero vT ∈ V such that

vT =
∑k

i=1 αiv
T
i with αi 6= 0 for all i; Otherwise, each v ∈ V will belong Wi for some i,

which contradicts V 6⊂ ∪k
i=1Wi.
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Lemma 5.4 Let {qT
1 , · · · ,qT

n−1, c
T} are LI and qT

n := αcc
T +

∑n−1
j=1 αjq

T
j , αc 6= 0 and

αj 6= 0 for all j = 1, · · · , n− 1. Then

(i) {qT
1 , · · · ,qT

n} are LI.

(ii) For any i ∈ {1, · · · , n}, the n vectors {qT
1 , · · · ,qT

i−1,q
T
i+1, · · · ,qT

n , c
T} are LI.

(iii) For any i ∈ {1, · · · , n}, {qT
1 , · · · ,qT

i−1,q
T
i+1, · · · ,qT

n}⊥ 6⊂ (cT )⊥.

Proof: (i) Suppose that
∑n

i=1 kiq
T
i = 0T. Inserting the expression of qT

n into the

equation yields
∑n−1

i=1 (ki + knαi)q
T
i + knαcc

T = 0T. Since {qT
1 , · · · ,qT

n−1, c
T} are LI, we

have knαc = 0 and ki + knαi = 0 for all i = 1, · · · , n − 1. Since αc 6= 0, we have kn = 0

and ki = 0 for i = 1, · · · , n− 1. This proves the linear independency of {qT
1 , · · · ,qT

n}.

(ii) Suppose that
∑

j 6=i kjq
T
j + kcc

T = 0T. Inserting qT
n into the equation, we have

∑n−1
j 6=i (kj + knαj)q

T
j + knαiq

T
i + (knαc + kc)c

T = 0T. Since {qT
1 , · · · ,qT

n−1, c
T} are LI and

αi 6= 0, we have from the coefficient of qT
i that kn = 0, and thus kc = 0 and kj = 0 for all

j 6= i and j ≤ n− 1. Thus, {qT
1 , · · · ,qT

i−1,q
T
i+1, · · · ,qT

n , c
T} are LI.

(iii) Suppose, on the contrary, that {qT
1 , · · · ,qT

i−1,q
T
i+1, · · · ,qT

n}⊥ ⊂ (cT )⊥. Then any

nonzero vector p ∈ {qT
1 , · · · ,qT

i−1,q
T
i+1, · · · ,qT

n}⊥ has the property cTp = 0 and qT
j p = 0

for all j 6= i. Since {qT
1 , · · · ,qT

i−1,q
T
i+1, · · · ,qT

n , c
T} is a basis for (IRn)∗, it follows that p

must be a zero vector, which contradicts the fact that {qT
1 , · · · ,qT

i−1,q
T
i+1, · · · ,qT

n}⊥ is a

vector space of dimension 1. This proves that {qT
1 , · · · ,qT

i−1,q
T
i+1, · · · ,qT

n}⊥ 6⊂ (cT )⊥.

In the following, we denote IR− the set of negative real numbers. A necessary and

sufficient condition for Problem B is now stated as Theorem 5.1 below:

Theorem 5.1 Problem B is unsolvable if and only if {x, f} are linearly dependent (LD)

and Cx = 0.

Proof: We divide the proof into the following four cases:

Case 1: ({x, f} are LI and C[x, f ] 6= 0)

Note that, C[x, f ] 6= 0 implies that there exists a nonzero row vector cT of C with

cT 6∈ {x, f}⊥. Choose λ1, · · · , λn ∈ IR− such that the n vectors {λix− f | i = 1, · · · , n} are

distinct and cT (λix−f) 6= 0 for all i = 1, · · · , n. If n > 2, since dim((λix−f)⊥) = n−1 for

all i, we may easily choose qT
i ∈ (λix− f)⊥, 1 ≤ i ≤ n− 2, satisfying qT

1 6∈ (λn−1x− f)⊥,
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qT
1 (λnx − f) > 0, qT

i (λnx − f) ≥ 0 for i = 2, · · · , n − 2 and {qT
1 , · · · ,qT

n−2, c
T} are LI.

Since qT
1 6∈ (λn−1x− f)⊥ and dim((λn−1x− f)⊥) = n− 1, it follows from Lemma 5.2 that

there exists a qT
n−1 ∈ (λn−1x − f)⊥ such that {qT

1 , · · · ,qT
n−1, c

T} are LI. We also select

qT
n−1 satisfying qT

n−1(λnx − f) ≥ 0. Define qT
n = αcT +

∑n−1
i=1 qT

i , α = −[
∑n−1

i=1 qT
i (λnx −

f)]/[cT (λnx−f)]. Clearly, α 6= 0 since cT (λnx−f) 6= 0, qT
1 (λnx−f) > 0 and qT

i (λnx−f) ≥

0 for 2 ≤ i ≤ n − 1. Moreover, it is easy to check that qT
n (λnx − f) = 0. Thus,

from (i) of Lemma 5.1, we have Ax = f . From the structure of qT
n , the fact pi ∈

{qT
1 , · · · ,qT

i−1,q
T
i+1, · · · ,qT

n}⊥ and Lemma 5.4, we have pi 6∈ (cT )⊥ for all i. This together

with C⊥ ⊂ (cT )⊥ and (ii) of Lemma 5.1 implies that (A,C) is observable. Finally, (A,B)

is stabilizable since λi ∈ IR− for all i. Thus, Problem B is solvable. If n = 2, the proof of

this case can also be easily derived if we choose qT
1 ∈ (λ1x− f)⊥ and qT

1 (λ2x− f) > 0.

Case 2: ({x, f} are LI and C[x, f ] = 0)

This case implies that each nonzero row vector cT of C satisfies cT ∈ {x, f}⊥. Similar to

that of Case 1, we choose λ1, · · · , λn ∈ IR− such that the n vectors {λix− f | i = 1, · · · , n}

are distinct. Suppose that n > 2. Since (λix − f)⊥ ∩ c⊥ is a vector space of dimension

n− 2 for all i, we may choose qT
i ∈ {(λix− f)⊥ ∩ c⊥}\(λnx− f)⊥ for 1 ≤ i ≤ n− 2 and

qT
1 6∈ (λn−1x − f)⊥ such that {qT

1 , · · · ,qT
n−2} are LI. Since W := (λn−1x − f)⊥ ∩ c⊥ has

dimension n− 2, W ⊂ V := c⊥ and qT
1 6∈ W, we have from Lemma 5.2 that there exists

a vector qT
n−1 ∈ W\(λnx − f)⊥ such that {qT

1 , · · · ,qT
n−1} are LI. Under these settings,

{qT
1 , · · · ,qT

n−1, c
T} are also LI since qT

i c = 0 for all 1 ≤ i ≤ n − 1. Now, from Lemma

5.3, there exists a vT ∈ (λnx − f)⊥ such that vT =
∑n−1

i=1 αiq
T
i and αi 6= 0 for all i.

Since both cT and vT belong to (λnx − f)⊥, we have qT
n := cT + vT ∈ (λnx − f)⊥.

Thus, from (i) of Lemma 5.1, we have Ax = f . Besides, from the structure of qT
n , the

fact pi ∈ {qT
1 , · · · ,qT

i−1,q
T
i+1, · · · ,qT

n}⊥ and Lemma 5.4, we have pi 6∈ (cT )⊥ for all i.

This together with C⊥ ⊂ (cT )⊥ and (ii) of Lemma 5.1 implies that (A,C) is observable.

Finally, (A,B) is stabilizable since λi ∈ IR− for all i. Thus, Problem B is solvable. The

case for n = 2 can be similarly proved if we choose qT
1 ∈ (λ1x− f)⊥\(λ2x− f)⊥.

Case 3: ({x, f} are LD and Cx 6= 0)

Let cT be a nonzero row vector of C such that cTx 6= 0, and b be a nonzero column

vector of B. We choose n− 1 distinct real numbers λ1, · · · , λn−1 ∈ IR−, and n− 1 LI row
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vectors qT
1 , · · · ,qT

n−1 ∈ x⊥. This implies that {qT
1 , · · · ,qT

n−1, c
T} are LI since cT 6∈ x⊥. If

{x,b} are LD (i.e., x⊥ = b⊥), we choose qT
n := αcT +

∑n−1
i=1 qT

i , α 6= 0. It follows that

qT
n 6∈ b⊥, and thus qT

n 6∈ B⊥ since B⊥ ⊂ b⊥. On the other hand, if {x,b} are LI, the

above-mentioned qT
1 , · · · ,qT

n−1 may be chosen from x⊥ satisfying qT
1 b > 0 and qT

i b ≥ 0

for all i = 2, · · · , n−1. It follows that
∑n−1

i=1 qT
i b > 0, and therefore there exists a nonzero

constant α such that (αcT +
∑n−1

i=1 qT
i )b = αcTb +

∑n−1
i=1 qT

i b 6= 0 no matter cTb is zero

or not. Here, we also choose qT
n := αcT +

∑n−1
i=1 qT

i as before. Clearly, qT
n 6∈ B⊥ since

qT
n 6∈ b⊥ and B⊥ ⊂ b⊥. Finally, we choose λn such that qT

n (λnx − f) = 0. From these

discussions, we have qT
i (λix− f) = 0 for all i = 1, · · · , n, which implies from (i) of Lemma

5.1 that Ax = f . Besides, due to the special structure of qT
n and (ii) of Lemma 5.4,

we have {qT
1 , · · · ,qT

i−1,q
T
i+1, · · · ,qT

n , c
T} are LI for any i = 1, · · · , n. This fact together

with (iii) of Lemma 5.4 and pi ∈ {qT
1 , · · · ,qT

i−1,q
T
i+1, · · · ,qT

n}⊥ leads to cpi 6= 0 for all i,

and thus Cpi 6= 0 for all i. That is, by (ii) of Lemma 5.1, (A,C) is observable. Since

λ1, · · · , λn−1 ∈ IR− and qT
n 6∈ B⊥, (A,B) is stabilizable by (iv) of Lemma 5.1. Thus,

Problem B is solvable.

Case 4: ({x, f} are LD and Cx = 0)

Since {x, f} are LD, we have f = λx for some constant λ. Suppose that there exists A

such that Ax = f . Then Ax = f = λx, and thus (λ,x) is an eigenpair of A. This fact

together with the condition Cx = 0 results in

(

C
λI −A

)

x = 0, which implies that

(A,C) is unobservable and Problem B is unsolvable.

Summarizing the above three cases gives the result.

From Theorem 5.1, we have the next two trivial results:

Corollary 5.1 Problem B is solvable if and only if Cx 6= 0 or {x, f} are LI.

Corollary 5.2 Problem A is always solvable if any one of the following two conditions

holds:

(i) Q(x) is a nonsingular matrix for all x 6= 0.

(ii) Q(x) = Q is a constant matrix and rank(Q) = n.
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5.3 Implementation

We look forward to implement by usage of orthogonal matrices because the condition

number of them equals 1 [40]. In particular, we choose the Householder matrix [20],

denoted as H ∈ IRn×n , which is orthogonal and possesses following properties:

1. H = I − 2vvT , where I is the (n× n) identity matrix, v ∈ IRn is an unit vector.

2. -1 is one eigenvalue of H with corresponding eigenvector, v. Moreover, 1 of multi-

plicity (n-1) are the other eigenvalues with corresponding eigen-space being perpen-

dicular to v.

3. HT = H , det(H) = −1, and tr(H) = n− 2.

4. Let H ′ = H2H1, where Hi = I − 2viv
T
i , ||vi|| = 1, i = 1, 2, then H’ is an orthog-

onal matrix. Moreover, if v1 and v2 are LI, then the subspace perpendicular to

span(v1,v2) is the eigen-space of H ′ corresponding to eigenvalue 1 of multiplicity

(n− 2).

To implement, we need the following lemmas:

Lemma 5.5 Assume that A ∈ IRn×n is orthogonal, diagonalizable, and has four distinct

eigenvectors: p1 = pR + ipI , p2 = pR − ipI , p3 = qR + iqI , and p4 = qR − iqI , with

corresponding distinct eigenvalues λ1 = αp + iβp, λ2 = αp − iβp, λ3 = αq + iβq, and

λ4 = αq + iβq, where βp 6= 0 and βq 6= 0. Then

(i) A can be represented as A = Ψ

(

S 0
0 T

)

Ψ−1, where S =

(

αp βp
−βp αp

)

∈ IR2×2 ,

T =diag[λ3, λ4, · · · , λn] ∈ IR(n−2 )×(n−2 ), and Ψ =
[

pR

...pI

...p3
...p4

... · · · ...pn

]

.

(ii) pR⊥pI and ||pR|| = ||pI || = 1√
2
.

(iii) (pR,pI ,qR,qI) is an orthogonal set.

Proof: (i) Since A is diagonalizable, let A =
∑n

i=1 λipiq
T
i =

∑2
i=1 λipiq

T
i +

∑n
i=3 λipiq

T
i ,

where pi and qi are right and left eigenvectors of A associated with A’s eigenvalues λi,

respectively, for i = 1, 2, · · · , n. Consider the first summation only,
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∑2
i=1 λipiqi

T =
[

pR + ipI

...pR − ipI

]

(

αp + iβp 0
0 αp − iβp

)

[

qT
1

...qT
2

]T

=
[

w1
...w2

] [

qT
1

...qT
2

]T

,

where w1 = pRαp−pIβp+ i(pRβp+pIαp) and w2 = pRαp−pIβp− i(pRβp+pIαp). Here

w1 and w2 are complex LI vectors. In order to yield two real-valued LI vectors from w1

and w2, let r1 =
1
2
(w1+w2) = pRαp−pIβp and r2 =

−i
2
(w1−w2) = pRβp+pIαp. Hence

[

r1
...r2

]

=
[

pRαp − pIβp
...pRβp + pIαp

]

=
[

pR

...pI

]

(

αp βp
−βp αp

)

.

(ii) Since A is orthogonal, we have pH
1 p1 = 1 ⇔ (pR + ipI)

H(pR + ipI) = 1 ⇔

(pT
RpR+pT

I pI)+ i(p
T
I pR−pT

RpI) = 1. Moreover, we have pH
1 p2 = 0 ⇔ (pR+ ipI)

H(pR−

ipI) = 0 ⇔ (pT
RpR −pT

I pI)− i(pT
I pR +pT

RpI) = 0. Combining these two equations yields

||pR|| = ||pI || = 1√
2
and pR⊥pI .

(iii) Since A is orthogonal, we have pH
1 p3 = 0 ⇔ (pR + ipI)

H(qR + iqI) = 0 ⇔

(pT
RqR+pT

I qI)− i(pT
I qR−pT

RqI) = 0. Moreover, we have pH
1 p4 = 0 ⇔ (pR+ ipI)

H(qR−

iqI) = 0 ⇔ (pT
RqR −pT

I qI)− i(pT
I qR +pT

RqI) = 0. Combining these two equations yields

2pT
RqR − 2ipT

I qR = 0 and 2pT
I qI + 2ipT

RqI = 0, i.e., pR⊥qR, pR⊥qI , pI⊥qR and pI⊥qI .

Lemma 5.6 Consider H = H2H1, where Hi = I−2uiu
T
i with LI unit vectors ui ∈ IRn ,

for i = 1, 2, are both Householder matrices. Let α± iβ denote two eigenvalues of H (else

being 1) with corresponding eigenvectors, p = pR + ipI and p̄. Moreover, we choose LI

unit vectors u3,u4 ∈ {u1,u2}⊥, then

(i) span(u1,u2)=span(pR,pI).

(ii) α = −1 + 2 cos2 θ and β =
√
1− α2, where cos θ = uT

1 u2.

(iii) p and p̄ will still be eigenvectors of H3H and H4H3H , where H3 = I − 2u3u
T
3 and

H4 = I − 2u4u
T
4 , with unchanged corresponding eigenvalues α± iβ.

Proof: (i)BecauseH(pR+ipI) = (α+iβ)(pR+ipI), we haveH
[

pR

...pI

]

=
[

pR

...pI

]

(

α β
−β α

)

.

Let H = Γ

(

K 0
0 I(n−2)×(n−2)

)

Γ−1 , where Γ =
[

pR + ipI

...pR − ipI

...p3
...p4

... · · · ...pn

]

, and

K =

(

α+ iβ 0
0 α− iβ

)

∈ IR2×2 . By Lemma 5.5, we can rewriteH as Γ′
(

K ′ 0
0 I(n−2)×(n−2)

)

Γ′−1

, where Γ′ =
[

pR

...pI

...p3
...p4

... · · · ...pn

]

, andK ′ =

(

α β
−β α

)

∈ IR2×2 . Note that span(pR,pI) =

(p3,p4, · · · ,pn)
⊥ and span(u1,u2) = (p3,p4, · · · ,pn)

⊥, therefore span(pR,pI)=span(u1,u2).
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(ii)From the definition of trace of a matrix, we have tr(H2H1) = n−2+2α. In addition,

tr(H2H1) = tr
[

(I − 2u2u
T
2 )(I − 2u1u

T
1 )
]

= tr
[

I − 2u1u
T
1 − 2u2u

T
2 + 4(uT

2 u1)(u2u
T
1 )
]

=

n−4+4 cos2 θ, where cos θ = uT
1 u2 = tr(uT

1 u2) = tr(uT
2 u1). Combining these two results

yields α = −1 + 2 cos2 θ. Moreover, since det(H2H1) = 1, we have α2 + β2 = 1 ⇒ β =
√
1− α2.

(iii)By (i), span(u1,u2) =span(pR,pI). Given that u3 ∈ {u1,u2}⊥, then u3 ∈

{pR,pI}⊥ ⇒ pHu3 = p̄Hu3 = 0. Hence H3Hp = (I − 2u3u
T
3 )Hp = (I − 2u3u

T
3 )(α +

iβ)p = (α+ iβ)p. Similarly, it is true for p̄. By similar procedure, it is true for H4H3H .

From Lemma 5.6, we have the following two results:

Corollary 5.3 Recall that C is defined in Problem A in Section 5.1.

1. span(u1,u2) 6⊂ C⊥ ⇔ span(pR,pI) 6⊂ C⊥ ⇔ CT (p) = CT (pR + ipI) 6= 0 ⇔

CT (p̄) = CT (pR − ipI) 6= 0.

2. We categorize θ into the the following:

(a) θ ∈ (0, π
4
) ∪ (3π

4
, π) : α > 0.

(b) θ ∈ (π
4
, 3π

4
) : α < 0.

(c) θ = π
4
, 3π

4
: (α, β) = (0, 1).

(d) θ = π
2
: (α, β) = (−1, 0).

By using above lemmas, we obtain the next important result described by Theorem

5.2 as below:

Theorem 5.2 We consider that rank(C) =rank(B) = 1( other cases can be discussed

similarly) and denote cT and b as one row vector of C and one column vector of B,

respectively. Under the following two cases of assumptions:

(i) If n is odd, i.e., n = 3, 5, 7, · · ·, we assume that {x, f} are LI, and {cT , f} are LI.

(ii) If n is even, i.e., n = 4, 6, 8, · · ·, we assume that {x, f , cT} are LI. Moreover, if fTx ≤ 0,

we also assume that {x, f ,b} are LI.
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Then we can factorize A, which solves Problem A, into products of Householder matrice,

therefore the condition number of A equals 1 [40].

Proof: (i)Let K = ||f ||
||x|| . If f

Tx ≤ 0, then let u1 =
Kx+f

||Kx+f || ∈ IRn ; else, let u1 =
Kx−f

||Kx−f || ∈

IRn . Hence H1x = f , where H1 = I − 2u1u1
T . Then choose an unit vector u2 ∈ IRn such

that u2 ∈ f⊥ , and u2 6∈ C⊥. Since u2 ∈ f⊥, we have H2H1x = f , where H2 = I−2u2u2
T .

If fTx ≤ 0, then let u1 =
Kx+f

||Kx+f || ∈ IRn . By Lemma 5.6, we know that the two eigenvalues

(6= 1) of H2H1 will have positive real parts; else, we require that |uT
2 u1| = ξ(2,1) <

1√
2
,

hence the eigenvalues(6= 1) of H2H1 will have negative real parts, else if n = 3, we also

require that b 6∈ span(u1,u2).

When n = 3, we require that cT 6∈ span(u1,u2). Then we can construct A. If fTx ≤ 0,

then let A = −H2H1, hence all eigenvalues ofA will have negative real parts, which implies

that A is stabilizable. On the other hand, since u2 6∈ C⊥, by Lemma 5.6 and Corollary

5.3, we have the two right eigenvectors(6= −1) of A not perpendicular to cT . Moreover,

since cT 6∈ span(u1,u2), the right eigenvector corresponding to eigenvalue -1 will not be

perpendicular to cT , which means A is observable; else, we let A = H2H1. Therefore A

is stabilizable since the left eigenvector corresponding to the only eigenvalue of real part

(1) is not perpendicular to b. On the other hand, A is observable by same reason as the

other case of fTx ≤ 0.

When n 6= 3, we need an iteration. Iterate this step over i = 3, 5, 7, · · · , n − 2.

Choose unit vectors ui and ui+1, which form a sub-basis of (u1,u2, · · · ,ui−1, f)
⊥ and

cTui 6= 0. Therefore we have Hi+1 · · ·H2H1x = f , and by Lemma 5.6, that the eigenvec-

tors of Hi−1 · · ·H2H1 corresponding to span(u1,u2, · · · ,ui−1) will still be eigenvectors of

Hi+1 · · ·H2H1. If i = n−2, we also require that cT 6∈ span(u1,u2, · · · ,un−1). Moreover, if

fTx ≤ 0, then we require that |uT
i+1ui| = ξ(i+1,i) >

1√
2
and ξ(i+1,i) 6= ξ(i,i−1) 6= · · · 6= ξ(2,1);

else, we require that |uT
i+1ui| = ξ(i+1,i) <

1√
2
and ξ(i+1,i) 6= ξ(i,i−1) 6= · · · 6= ξ(2,1), else if

i = n− 2, we also require that b 6∈ span(u1,u2, · · · ,un−1). As all iterations are done, we

still need the final step to fully construct A. If fTx ≤ 0, then A = −Hn−1 · · ·H2H1, where

Hj = I − 2uju
T
j , ∀j = 1, 2, · · · , n− 1. By Lemma 5.6, we have all eigenvalues of A having

negative real parts, which implies that A is stabilizable. On the other hand, since ui 6∈ c⊥,
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by Lemma 5.6 and Corollary 5.3, we have the n-1 eigenvectors of A corresponding to

eigenvalues(6= −1) not perpendicular to cT . Moreover, since cT 6∈ span(u1,u2, · · · ,un−1),

the right eigenvector of A corresponding to eigenvalue -1 will not be perpendicular to cT ,

which means A is observable; else, we let A = Hn−1 · · ·H2H1. Therefore A is stabilizable

since the left eigenvector corresponding to the only eigenvalue of positive real part, which

equals 1 and this left eigenvector is perpendicular to span(u1,u2, · · · ,un−1), is not per-

pendicular to b. On the other hand, A is observable by same reason as the other case of

fTx ≤ 0.

(ii)Let k and u1 as given in (i). Then choose an unit vector u2 ∈ IRn such that u2 ∈ f⊥

and u2 6∈ c⊥. Since u2 ∈ f⊥, we have H2H1x = f , where H2 = I − 2u2u2
T . If fTx ≤ 0,

we require that |uT
2 u1| = ξ(2,1) >

1√
2
, and by Lemma 5.6, the two eigenvalues (6= 1) of

H2H1 will have positive real parts; else, we require that |uT
2 u1| = ξ(2,1) <

1√
2
, hence the

eigenvalues(6= 1) of H2H1 have negative real parts.

When n = 4, we choose an unit vector u3 ∈ {u1,u2, f}⊥ and require that cT 6∈

span(u1,u2, f), which implies cTu3 6= 0. Finally, we can construct A. If fTx ≤ 0, then

A = −H2H1, hence all eigenvalues of A have negative real parts, which implies that A is

stabilizable. On the other hand, since u2 6∈ c⊥ and cTu3 6= 0, by Lemma 5.6 and Corollary

5.3, we know that the three right eigenvectors of A corresponding to eigenvalues (6= −1)

is not perpendicular to cT . Moreover, since the right eigenvector of A corresponding to

eigenvalue -1 is perpendicular to span{u1,u2,u3} and {x, f , c} are LI, we obtain that

{u1, c} are LI and therefore this right eigenvector is not perpendicular to c, which means

A is observable; else, we let A = H2H1. By similar derivation of c, we conclude that the

right eigenvector corresponding to eigenvalue 1 is not perpendicular to b. Therefore A is

stabilizable since the left eigenvector corresponding to the only eigenvalue of real parts

(equals 1) is not perpendicular to b. On the other hand, A is observable by same reason

as the other case of fTx ≤ 0.

When n 6= 4, we need an iteration. Iterate this step over i = 3, 5, · · · , n − 3.

Choose unit vectors ui and ui+1, which form a sub-basis of (u1,u2, · · · ,ui−1, f)
⊥ and

cTui 6= 0. Therefore we have Hi+1 · · ·H2H1x = f , and by Lemma 5.6, that the eigen-

vectors of Hi−1 · · ·H2H1 corresponding to span(u1,u2, · · · ,ui−1) are still eigenvectors of
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Hi+1 · · ·H2H1. If i = n−3, we also require that cT 6∈ span(u1,u2, · · · ,un−2, f). Moreover,

if fTx ≤ 0, then we require that |uT
i+1ui| = ξ(i+1,i) >

1√
2
and ξ(i+1,i) 6= ξ(i,i−1) 6= · · · 6= ξ(2,1),

; else, we require that |uT
i+1ui| = ξ(i+1,i) <

1√
2
and ξ(i+1,i) 6= ξ(i,i−1) 6= · · · 6= ξ(2,1). As all

iterations are done, we choose unit vector un−1 ∈ {u1,u2, · · · ,un−2, f}⊥. Finally, we

can construct A. If fTx ≤ 0, then A = −Hn−1 · · ·H2H1, where Hj = I − 2uju
T
j , ∀j =

1, 2, · · · , n − 1. By Lemma 5.6, we have all eigenvalues of A having negative real parts,

which implies that A is stabilizable. On the other hand, since ui 6∈ c⊥ and cT 6∈

span(u1,u2, · · · ,un−2, f), by Lemma 5.6 and Corollary 5.3, we have the n-1 eigenvectors of

A corresponding to eigenvalues (6= −1) not perpendicular to cT . Moreover, since this right

eigenvector of A corresponding to eigenvalue -1 is perpendicular to span(u1, · · · ,un−1) and

{x, f , c} are LI, we have {u1, c} are LI and thus this eigenvector is not perpendicular to

c, which means A is observable; else, we let A = Hn−1 · · ·H2H1. By similar derivation of

c, we conclude that the right eigenvector corresponding to eigenvalue 1 is not perpendic-

ular to b. Therefore A is stabilizable since the left eigenvector corresponding to the only

eigenvalue of positive real part (equals 1) is not perpendicular to b. On the other hand,

A is observable by same reason as the other case of fTx ≤ 0.

5.4 Algorithm

Prerequisite: {x, f} are LI or Cx 6= 0.

Case 1: {x, f} are LI, and {cT , f} are LI. (n = 3, 5, 7, · · ·)

Step.1. Let K = ||f ||
||x|| . If fTx ≤ 0, then let u1 = Kx+f

||Kx+f || ∈ IRn ; else, let u1 = Kx−f
||Kx−f || ∈

IRn .

Step.2. Choose an unit vector u2 ∈ IRn such that u2 ∈ f⊥, and u2 6∈ C⊥. If fTx ≤ 0,

then we require that |uT
2 u1| = ξ(2,1) >

1√
2
; else, we require that |uT

2 u1| = ξ(2,1) <
1√
2
,

else if n = 3, we also require that b 6∈ span(u1,u2). Note that if n = 3, we require

that cT 6∈ span(u1,u2) and then go to Step.4.

Step.3. Iterate this step over i = 3, 5, 7, · · · , n − 2. Choose unit vectors ui and ui+1,

which form a sub-basis of (u1,u2, · · · ,ui−1, f)
⊥ and cTui 6= 0. If i = n− 2, we also

require that cT 6∈ span(u1,u2, · · · ,un−1). Moreover, if fTx ≤ 0, then we require
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that |uT
i+1ui| = ξ(i+1,i) >

1√
2
and ξ(i+1,i) 6= ξ(i,i−1) 6= · · · 6= ξ(2,1); else, we require that

|uT
i+1ui| = ξ(i+1,i) <

1√
2
and ξ(i+1,i) 6= ξ(i,i−1) 6= · · · 6= ξ(2,1), else if i = n− 2, we also

require that b 6∈ span(u1,u2, · · · ,un−1).

Step.4. If fTx ≤ 0, then A = −Hn−1 · · ·H2H1; else A = Hn−1 · · ·H2H1, where Hi =

I − 2uiu
T
i , ∀i = 1, 2, · · · , n− 1.

Case 1: (n = 4, 6, 8, · · ·)

Prerequisite: {x, f , cT} are LI. If fTx ≤ 0, we also require that {x, f ,b} are LI.

Step.1. Let K = ||f ||
||x|| . If fTx ≤ 0, then let u1 = Kx+f

||Kx+f || ∈ IRn ; else, let u1 = Kx−f
||Kx−f || ∈

IRn .

Step.2. Choose an unit vector u2 ∈ IRn such that u2 ∈ f⊥, and u2 6∈ C⊥. If fTx ≤ 0,

then we require that |uT
2 u1| = ξ(2,1) >

1√
2
; else, we require that |uT

2 u1| = ξ(2,1) <
1√
2
.

Note that if n = 4, we require that cT 6∈ span(u1,u2, f) and then go to Step.4.

Step.3. Iterate this step over i = 3, 5, 7, · · · , n − 3. Choose unit vectors ui and ui+1,

which form a sub-basis of (u1,u2, · · · ,ui−1, f)
⊥ and cTui 6= 0. If i = n− 3, we also

require that cT 6∈ span(u1,u2, · · · ,un−2, f). Moreover, if fTx ≤ 0, then we require

that |uT
i+1ui| = ξ(i+1,i) >

1√
2
and ξ(i+1,i) 6= ξ(i,i−1) 6= · · · 6= ξ(2,1); else, we require that

|uT
i+1ui| = ξ(i+1,i) <

1√
2
and ξ(i+1,i) 6= ξ(i,i−1) 6= · · · 6= ξ(2,1).

Step.4. Choose an unit vector un−1 ∈ {u1,u2, · · · ,un−2, f}⊥.

Step.5. If fTx ≤ 0, then A = −Hn−1 · · ·H2H1; else A = Hn−1 · · ·H2H1, where Hi =

I − 2uiu
T
i , ∀i = 1, 2, · · · , n− 1.

Case 2: {x, f} are LI, and {cT , f} are LD. (n > 2)

(As case 1 of Theorem.5.1 describes)

Step.1. Choose λi ∈ IR− such that {λix − f} are all distinct and cT (λix − f) 6= 0

∀i = 1, 2, · · · , n.
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Step.2. Choose qT
i ∈ (λix− f)⊥, 1 ≤ i ≤ n− 2, satisfying qT

1 6∈ (λn−1x− f)⊥, qT
1 (λnx−

f) > 0, qT
i (λnx− f) ≥ 0 ∀i = 2, 3, · · · , n− 2 and {q1, · · · ,qn−2, c

T} are LI.

Step.3. Find qT
n−1 ∈ (λn−1x−f)⊥ such that {qT

1 , · · · ,qT
n−1, c

T} are LI and qT
n−1(λnx−f) ≥

0.

Step.4. Define qT
n = αcT +

∑n−1
i=1 qT

i , where α =
−[
∑n−1

i=1
qT
i
(λnx−f)]

[cT (λnx−f)]
.

Case 2: (n = 2)

We choose qT
1 ∈ (λ1x− f)⊥ such that qT

1 (λ2x− f) > 0. Furthermore, λ1, λ2 and qT
2 can

be chosen by the above algorithm(case n > 2).

Case 3: {x, f} are LD, and cT f 6= 0.

(As case 3 of Theorem.5.1 describes)

Step.1. Choose distinct λi ∈ IR− and LI row vectors qT
i ∈ x⊥, ∀i = 1, 2, · · · , n− 1.

Step.2. If {x,b} are LD, choose any α ∈ IR 6= 0; else, we additionally require that

qT
1 b > 0 and qT

j b ≥ 0, ∀j = 2, 3, · · · , n − 1. Moreover, we choose α such that

(αcT +
∑n−1

i=1 qT
i )b 6= 0.

Step.3. qT
n := αcT +

∑n−1
i=1 qT

i .

Step.4. Choose λn ∈ IR such that qT
n (λnx− f) = 0.

5.5 Illustrative Example

- 2-Dim Single-Input Affine System

Consider the single-input affine system [2]

ẋ1 = u (5.2)

ẋ2 = x2 − x31. (5.3)

Let state vector x = (x1, x2)
T . For demonstrating, we choose the performance index

to be: J =
∫∞
0

[

xTQx+ u2
]

dt, where Q =

(

1 −1
−1 1

)

≥ 0, and the initial condition is
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x = (0.5, 1)T . We adopt two approaches to simulate and then compare their performance.

One is a continuous stabilizer concerning center manifold (CM) as given in [1],[2], uCM =

−x2 + x1 +
4
3
x

1

3

1 − x32; the other adopts SDRE to obtain the feedback controller, uSDRE.

For both approaches, it can seen from Fig. 5.1 that the system state can be stabilized.

On the other hand, we attempt to use the SDRE approach and see what might happen.

At first, we try the fixed factorization of A(x, t) =

(

1 −x22
0 0

)

, feed this factorization

into the associated Riccati equation and obtain the control law. However, we find that

the associated Riccati equation fails to give a positive semi-definite solution since (A,C)

is not detectable for x2 = 1 [24]. As a result, we resort to a different factorization of

A near (0.5,1) as described in previous sections. Note that f(1, 1) = 0, thus {x, f} are

LI. By Theorem 5.1, we know that Problem A is solvable. After adopting this different

factorization of A near (0.5,1) once, we still use the original fixed factorization to obtain

the control law. From Fig. 5.1, it can be seen that the system state will finally also be

stabilized.

From Table. 5.1, the SDRE approach is found to results better performance than the

given stabilizer in quadratic performance
∫

xTQ(x)x + u2, energy consumption
∫

u2 and

the convergence time.

Table 5.1. Comparison of performance
Performance Index

Controller ||x(t)||t→∞ < 10−3
∫

u2
∫

(xTx + u2) |u|∞ Convergence time

CM 2.567 6.182 0.735 140
SDRE

Yes
0.149 2.176 1.086 55
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CHAPTER SIX

CONCLUSIONS AND

SUGGESTIONS FOR FURTHER RESEARCH

6.1 Conclusions

In this thesis, we have investigated several interesting issues. In Chapter 3, we show

from simulation that SDRE is not a robust scheme, but when incorporating with ISMC,

the robustness performance can be greatly improved. In Chapter 4, we also consider

the reliability issue of SDRE. By using the same dynamical system as in Chapter 3, we

show that SDRE is not a reliable design, either. Again, we resort to ISMC and organize

a reliable controller that can tolerate some actuators’ outage. After encountering some

difficulties during the design using SDRE, e.g.,

• hard to symbolicly check the conditions for the existence of the unique positive

definite solution of the related Riccati equation

• no guidelines existed to factorize the drift term to satisfy some design criterion

we present an alternative approach to ease the implementation of traditional SDRE design.

In Chapter 5, we formulate an alternative approach to factorize the drift term in SDRE

scheme and give a necessary and sufficient condition (Theorem 5.1) that is much easier

to check whether Problem A is solvable than the fixed factorization of the traditional

SDRE. If Problem A is solvable, we give an alternative approach to construct the SDC

matrix instead of using the fixed factorization of the traditional SDRE. By an illustrative

example (Section 5.5), we demonstrate that while the traditional SDRE fails at some

state, we still can resort to this alternative approach for a small deviation from this state

and then adopts the original fixed factorization.
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6.2 Suggestions for Further Research

There are still many interesting topics related to this thesis that are worth further

studying, as listed below:

1. Try to parameterize all the SDC matrices satisfying the necessary and sufficient

condition (Theorem 5.1).

2. Among all the parameterizations for a specific state, try to formulate an algorithm

to find the (local) optimal solution at every state in the sense of minimizing the

corresponding performance index.

3. Try to extend local optimum to global optimum (Dynamic programming [25] may

be a possible direction to solve this problem).
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