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基於模糊線性區別分析之模糊分群法與結合空間資訊之支撐向量機

學生：李政軒 指導教授：林進燈 博士 

 

Chinese abstract 

國立交通大學電控工程研究所博士班 

摘 要       

統計學習演算法自動利用觀察資料來辨識複雜的樣本並進行決策。統

計學習領域中有兩大主要議題：叢集分析與分類器設計。叢集分析演

算法會將相似的樣本組織成同一個叢集；分類器則會利用現有的訓練

樣本來決定新的未知樣本之類別。在本論文中，將提出模糊的分群演

算法與融合空間資訊的分類器。在分群演算法方面，本文提出模糊線

性區別分析之組間與組內分散矩陣，再搭配 Fisher準則進行分群，此

方法同時最小化群內資訊與最大化組間資訊。針對分類器的部分，透

過空間資訊來調整支撐向量機的決策函數與限制式。利用真實資料的

實驗結果顯示，本論文提出的方法可以有效地增加分群與分類的效

能。 
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A Clustering Algorithm Based on Fuzzy-Type Linear Discriminant 
Analysis and Spatial-Contextual Support Vector Machines 

English abstract 

 
Student: Cheng-Hsuan Li 

 

Advisors: Dr. Chin-Teng Lin 
 

 

Institute of Electrical Control Engineering 

National Chiao Tung University 

ABSTRACT 
Statistical learning is trying to develop computer algorithms to recognize 
complex patterns and make decisions based on empirical data automatically. 
Two major issues are clustering and classification. Clustering organizes 
patterns into sensible clusters for patterns in the same cluster to be similar 
in a sense, whereas classification identifies the categories to which new 
patterns belong based on an available training set of data containing 
patterns of known categories. This thesis introduces a fuzzy-based 
clustering and a spatial-contextual classifier. Fuzzy-based clustering 
defines within- and between-cluster scatter matrices of a fuzzy-type linear 
discriminant analysis, and the clustering results are based on the Fisher 
criterion. The proposed clustering algorithm minimizes the within-cluster 
information and simultaneously maximizes the between-cluster information. 
For the classification part, a spatial-contextual term was used to modify the 
decision function and constraints of a support vector machine. 
Experimental results show that the proposed methods achieve good 
clustering and classification performance on famous real data sets. 
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1. Introduction 

Researchers have developed numerous statistical learning algorithms 

for applications in various areas of science, finance, and industry in recent 

years. Statistical learning comprises several different paradigms such as 

classification, regression, feature extraction, dimensionality reduction and 

density estimation [3]. The basic idea of classification methods for feature 

space data is to partition up the entire feature space into L exhaustive, 

nonoverlapping regions, where L is the number of classes present in the 

scene, so that every point in the feature space is uniquely associated with 

one of the L classes [22]. 

The classification algorithms can be divided into two main categories 

according to the learning process. Supervised classification, or simply 

classification, is the learning process of inferring a function to classify 

unknown patterns using the training data to train the rule [66], i.e., a set of 

training samples is available and the classifier exploits this a priori known 

information [2].  

The other type of learning process is called unsupervised classification, 

or simply clustering. It is referred to as unsupervised because it does not 

use training samples [22]. Clustering assesses the relationships among 

samples of a data set by organizing the patterns into different groups. After 

clustering, patterns in one group show greater similarity to each other than 

those belonging to different groups without any prior known information 

[1]. Clustering analysis can detect underlying structures within data, for 

classification and pattern recognition, and for model reduction and 

optimization [2], [4]-[5]. 

Clustering algorithms are most commonly used as an aid to selecting a 

class list and training samples for the classes in that list. That is, clustering 
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may be a means of preprocessing the data for a supervised classification 

procedure. A clustering scheme may be applied to the data for each class 

separately and representative samples for each group within the class used 

as the prototypes for that class [66]. Fundamentally, to be optimally useful, 

a classification must have classes that are (simultaneously) “of information 

value, exhaustive, and separable.” The training samples for supervised 

learning generally are selected with emphasis on the former one. Clustering 

is a useful tool of the training process to achieve the latter two. It can be a 

useful procedure, though, in defining spectral classes and training for them 

by breaking up the distribution of pixels in feature space into subunits so 

that one can observe what is likely to be separable from what. It allows one 

to locate the prevailing modes in the feature space, if any prevalence exists 

[22]. 

Recent statistical learning algorithms [17]-[19] use both labeled and 

unlabeled samples for training. These algorithms are called 

semi-supervised learning process, and fall between unsupervised pattern 

recognition and supervised recognition. The aim of this thesis is to develop 

an unsupervised clustering algorithm and a semi-supervised classification 

algorithm. The former one is a fuzzy-based clustering which considers both 

within- and between-information of clusters, and the latter one is a 

semi-supervised classification algorithm which takes into account both 

spectral and spatial information. 

Fuzzy-based clustering, which determines if a vector belongs to a 

specific cluster to a certain degree, have been the subject of intensive 

research in the past three decades [2], [4]-[8]. Fuzzy c-means (FCM) 

clustering is one of the most well-known clustering methods [7]-[8], and 

researchers have developed many advanced FCM-type clustering 

algorithms. The Gustafson-Kessel (GK) algorithm [9] is a well-known 
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algorithm in this category. This algorithm employs an adaptive distance 

norm to detect clusters of different geometrical shapes in one data set [2]. 

Krishnapuram and Keller [52] proposed a new clustering model, called 

possibilistic c-means (PCM), which relaxes the following constraint: “the 

sum of the membership values of every sample to all clusters is 1.” This 

approach avoids the outliers belonging to one or more clusters. In 1997, the 

fuzzy-possibilistic c-means (FPCM) [10] was proposed to generate both 

possibility and membership values. However, the possibility values 

generated by FPCM become very small as the size of the data set increases. 

To eliminate the problem of FPCM and take advantage of the benefits of 

FCM and PCM, the possibilistic fuzzy c-means (PFCM) was proposed in 

2005 [11]. 

Some FCM-type algorithms, such as the Gath-Geva (GG) algorithm, 

employ an adaptive distance norm based on the fuzzy maximum likelihood 

estimates [5], [12]. Chatzis and Varvarigou [13] proposed a robust fuzzy 

clustering algorithm based on the fuzzy treatment of finite mixtures of 

multivariate Student’s t-distributions (FSMM). This approach uses finite 

mixtures of multivariate Student’s t distributions instead of finite Gaussian 

mixture models (GMMs). Chatzis and Varvarigou [56] combined the 

advantages of factor analysis and proposed a fuzzy mixture of Student’s t 

factor analyzers (FMSFA). FMSFA provides a well-established 

observation space dimensionality reduction framework for fuzzy clustering 

algorithms based on factor analysis. This simultaneously achieves fuzzy 

clustering and a reduction in local dimensionality within each cluster. Their 

experimental results show that FMSFA outperforms finite mixtures of 

Student’s t-factor analyzers (tMFA) [57], a modification of the fuzzy 

c-varieties algorithm with regularization by Kullback–Leibler information 

(KLFCV) [58], and the mixture of factor analyzers (MFA) model [59]. 
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Most fuzzy-based clustering algorithm by minimizing a cost function, 

only based on the sum of distances between samples to their cluster centers 

[2], which is equal to the trace of the within-cluster scatter matrix [14]-[15]. 

Researchers have recently used linear discriminant analysis (LDA) [14] for 

dimensional reduction in supervised classification problems. LDA uses the 

mean vector and covariance matrix of each class to formulate within-class, 

between-class, and mixture-class scatter matrices. Two similar fuzzy-based 

clustering algorithms based on fuzzy within-cluster, between-cluster, and 

total scatter matrices are proposed in [15] and [16]. The objective function 

of fuzzy compactness and separation (FCS) [15] is based on the difference 

of fuzzy within- and between-cluster scatter matrices. This minimizes the 

measurement of compactness, but simultaneously maximizes the separation 

measure. However, the within- and between-class scatter matrices of LDA 

are not the special case of the proposed fuzzy within- and between-cluster 

scatter matrices in the supervised learning problem. Moreover, based on the 

Fisher criterion, the LDA method finds features such that the ratio of the 

between-class scatter to the average within-class scatter is maximized in a 

lower dimensional space. Of the concept of class scattering to class 

separation, the Fisher criterion takes the large values from samples when 

they are well clustered around their mean within each class, and the clusters 

of the different classes are well separated [2]. The Fisher criterion is 

formulated as a function of class statistics. For these reasons, this thesis 

proposes a clustering algorithm based the Fisher criterion [4]. 

The first part of the thesis is to propose a fuzzy-based clustering which 

is based on the fuzzy-based within- and between-cluster scatter matrices. In 

addition, the Fisher criterion is used to form the objective function. This 

means that the proposed clustering algorithm take into account not only the 

within- and between-information of the distribution of data but also the 
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interaction of the within- and between-information. Chapters 2-3 present 

the fuzzy-based clustering algorithm. Chapter 2 introduces some recently 

proposed fuzzy-based clustering algorithms. Chapter 3 details the proposed 

clustering algorithm based on both within- and between-cluster scatter 

matrices, extended from linear discriminant analysis (LDA) [4]. 

 

Figure 1. The spectral values obtained from the Indian Pine Site data set. The purple 

represents the Soybeans-min till patterns and the yellow represents the Corn-no till 

patterns. These two classes have similar spectral properties. 

 

In hyperspectral image classification, spectral-domain based classifiers 

often lead to imprecise estimation of different land-cover classes that have 

very similar spectral properties, which makes it difficult to distinguish 

unlabeled patterns [20]-[21]. Fig. 1 shows the spectral values obtained from 

patterns of two categories in the Indian Pine Site data set: Soybeans-min till 

(purple color) and Corn-no till (yellow color) [22]. These two different 

classes have very similar spectral properties. Hence, employing these 

classes to train conventional classifiers (e.g., maximum likelihood classifier 

(ML) [2], [15], k-nearest neighbor classifier (k-NN) [2], [15], and support 

vector machine (SVM) [23]-[24]) leads to poor classification performance, 

producing a speckle-like classification map [20]-[21], [25]. Fig. 2 shows 
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that the support vector machine (SVM) classification map of Indian Pine 

Site includes a number of speckle-like errors. 

 

Figure 2. The support vector machine (SVM) classification results of the Indian Pine 

Site image, containing speckle-like errors. 

 

Considering both spectral and spatial-contextual information, using a 

semi-supervised learning algorithm is an effective way to decrease 

speckle-like errors when interpreting a hyperspectral image. There are two 

main methods for combining spectral and spatial-contextual information. 

The graph-based technique [18]-[19], [26]-[32] uses the typical method of 

performing a regularization in which “similar” features belong to the same 

class. This method associates the vertices of a graph with the complete set 

of samples, and then builds the regularization depending on the variables 

defined on the vertices [18]. The other approach is to use 

fixed-window-based methods, such as Markov random fields [20]-[21], 

morphological filtering [28], or morphological leveling [29]-[30]. This 

approach improves the classification performance of hyperspectral images 

compared to pixel-wise methods [31]. 

Jackson and Landgrebe [20] applied a Gaussian function to the 

Bayesian decision rule with Markov random fields (MRF), Bayesian 

contextual classifier based on MRF (ML_MRF), to mitigate the 
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speckle-like errors. Their method achieves improved performance in 

classification maps. Another study suggests applying similar concepts to 

develop a MRF-based k-nearest neighbors classifier and Parzen classifier 

[21]. However, MRF-based classifiers are still constrained by statistical 

estimation (e.g., the covariance matrix of ML based on a Gaussian 

distribution) or the amount of learning data. 

The support vector machine [23] is a pattern classification technique 

proposed by Vapnik et al. Unlike traditional methods, which minimize 

empirical training errors, SVM attempts to minimize the upper bound of 

the generalization error by maximizing the margin between the separating 

hyperplane and the training data. Hence, SVM is a distribution-free 

algorithm that can overcome the problem of poor statistical estimation. 

SVM also achieves greater empirical accuracy and better generalization 

capabilities than other standard supervised classifiers [3] [34]-[35]. In 

particular, SVM performs well for high-dimensional data classification 

with a few training samples [37]-[38], and is robust to the Hughes 

phenomenon [32]-[33], [35], [37]-[38]. 

Moreover, many studies [30]-[33] show that support vector machines 

with both spectral and spatial information achieve effective and stable 

hyperspectral image classification. A context-sensitive semi-supervised 

support vector machine (CS4VM) [32] uses the context of neighborhood 

patterns as semi-patterns to solve the problem of noisy training patterns. In 

this case, noisy training patterns are mislabeled patterns that introduce 

distorted information to a classifier. CS4VM is a semi-learning approach in 

which the computational cost increases as the number of semi-samples 

increases. 

Tarabalka et al. [31] presented a spectral-spatial classification scheme 

based on partitional clustering techniques (SVM+EM). This approach 
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segments an image into more homogeneous regions and combines the 

results of these regions using pixel-wise SVM classification. A spatial 

post-regularization (PR) of the classification map reduces the noise. This 

approach is particularly suitable for classifying images with large spatial 

structures, when spectral responses of different classes are dissimilar, and 

when classes contain a comparable number of pixels. If the spectral 

responses are not significantly different, this approach may result in 

misclassification [31]. 

The second part of this thesis uses two neighborhood systems, that one 

is in the original space and the other one is in the feature space, to modify 

the constrain and decision rule of the support vector machine, and proposes 

a spatial-contextual support vector machine to overcome the speckle-like 

errors. Chapters 4-5 focus on the spectral-spatial classification schemes. 

Chapter 4 introduces the SVM and some recently spectral-spatial 

classification algorithms. Chapter 5 describes two spatial-contextual 

support vector machine classification algorithms (SCSVMs) [39] that 

modifies the decision function and constraints of a support vector machine 

(SVM) using a spatial-contextual term in the original space or in the feature 

space, which are based on the concept of the Markov random fields in the 

original space or k-nearest neighborhoods in the feature space, respectively. 

The thesis is devoted to fuzzy-based clustering algorithm, fuzzy linear 

discriminant clustering (FLDC), and semi-supervised image classification, 

spatial-contextual support vector machine. First, in Chapter 3, fuzzy-based 

within- and between-cluster scatter matrices extended from the within- and 

between-class scatter matrices of LDA are introduced. Furthermore, the 

Fisher criterion composed by the fuzzy-based scatter matrices is used to 

form the objective function. FLDC considers not only the within- and 

between-information of the data distribution but also the interaction of the 
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within- and between-information. The results of experiments on both 

synthetic and real data show that the proposed clustering algorithm can 

generate similar or better clustering results than eleven popular clustering 

algorithms: K-means, K-medoid, FCM, the Gustafson-Kessel, Gath-Geva, 

possibilistic c-means, fuzzy-possibilistic c-means, possibilistic fuzzy 

c-means, fuzzy compactness and separation, a fuzzy clustering algorithm 

based on a fuzzy treatment of finite mixtures of multivariate Student’s-t 

distributions algorithms, and a fuzzy mixture of Student’s t factor analyzers 

model.  

Then, in Chapter 5, two neighborhood systems is used to overcome the 

similar spectrum problem in support vector machine. Two semi-supervised 

classifiers, spatial-contextual support vector machines (SCSVMs), are 

proposed by modifying the constrain and the decision function of support 

vector machine. To evaluate the effectiveness of SCSVM, the experiments 

in this study compare the performances of other classifiers: a support vector 

machine (SVM), context-sensitive semi-supervised support vector machine 

(CS4VM), maximum likelihood classifier (ML), Bayesian contextual 

classifier based on Markov random fields (ML_MRF), and 

k-nearest-neighbor classifier (k-NN). Experimental results show that the 

proposed method achieves good classification performance on famous 

hyperspectral images (the Indian Pine site and the Washington, D.C. Mall 

data sets). The overall classification accuracy of for the hyperspectral 

image of the Indian Pine site dataset with 16 classes is 95.5%. The kappa 

accuracy is up to 94.9%, and the average accuracy of each class is up to 

94.2%. 
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2. Literature Review of Fuzzy-based Clustering 

Algorithms 

The aim of clustering algorithms is to identify unknown data structures, 

such as natural groups or clusters, by measuring the similarities between 

samples. The samples within a cluster or group are more similar to each 

other than those pixels belonging to other clusters [3], [40]. This section 

reviews some well-known fuzzy-based clustering algorithms. 

2.1 Fuzzy C-means Clustering Algorithm 

Fuzzy c-mean clustering (FCM) is the fuzzy equivalent of the nearest 

mean “hard” clustering algorithm [1]-[2], [5]-[6], [41], and minimizes the 

cost function 
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with respect to membership grade iju  and ic , the center of fuzzy cluster i, 

where d
j Rx , N is the number of samples, L>1 is the number of clusters, 

and m ),1(   is a weighting exponent. 

The FCM algorithm assigns the memberships to jx . These 

memberships are inversely related to the relative distance of jx  to the L 

cluster centers }c{ i . The formulation of criterion FCMJ  could be regarded 

as the trace of the fuzzy within-cluster scatter matrix FWS  [2], which is 

defined as 
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Equation above is similar to the within-class scatter matrix of LDA in 

that this criterion only considers the within-cluster scatter matrix. A 

consideration the within-cluster similarity is the only criterion. Based on 

previous suggestions [34], the division into clusters should be characterized 

by within-cluster similarity and between-cluster (external) dissimilarity. 

This is the reason why this study applies the Fisher criterion. 

2.2 Gustafson-Kessel algorithm 

The Gustafson-Kessel (GK) algorithm [9] is a well-known example of 

FCM-type clustering algorithms. The GK algorithm employs an adaptive 

distance norm to detect clusters of different geometrical shapes in one data 

set [5]. FCM is suitable for clusters with similar distributions. If clusters 

with very different distributions like Fig. 3(a), the “x” remarks 50 random 

samples chosen from the multivariate normal distribution with mean 

T]0,5.0[  and covariance 







8.07.0

7.08.0
, and the “o” remarks 50 random 

samples chosen from the multivariate normal distribution with mean 

T]0,5.0[  and covariance 










8.07.0

7.08.0
, the clustering results of FCM 

(Fig. 3(b)) are frequently wrong, especially, on the left-bottom part of 

cluster 1 and the right-bottom part of cluster 2. The Gustafson-Kessel (GK) 

algorithm defines the fuzzy covariance matrices, which are used to 

compute generalized squared Mahalanobis distances, to solve this problem. 

Fig. 3(c) shows the clustering results of GK algorithm which is more 

similar to Fig. 3(a) than FCM. That is, the GK algorithm can detect clusters 

of different geometrical shapes in one data set. 

The objective function of GK algorithm [9] is defined as 


 


L

i

N

j
iji

T
ij

m
ijiiijGK uuJ

1 1

)c(x)c(x)(),c,(  



 

‐12‐ 

where the matrices i , which adapt the distance norm to the local 

topological structure of the data [5], serve as optimization variables. Since 

i  should be a positive definite matrix, the common approach is to 

constrain the determinant of i  (i.e., ii  )det( , 0i , Li ,...,1 ). 
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(c) 

Figure 3. (a) The “x” remarks 50 random samples chosen from the multivariate normal 

distribution with mean T]0,5.0[  and covariance 







8.07.0

7.08.0
, and the “o” remarks 50 

random samples chosen from the multivariate normal distribution with mean T]0,5.0[

and covariance 










8.07.0

7.08.0
; (b) The clustering results of (a) applying FCM; (c) the 

clustering results of (a) applying GK algorithm. 



 

‐13‐ 

Using the Lagrange multiplier method, i  is obtained by 

1/1))det((  i
d

iii FF , 

where iF  is the fuzzy covariance matrix [5], [9] of the i-th cluster defined 

by: 
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2.3 Fuzzy Compactness and Separation 

Previous studies [15], [16] have proposed two similar fuzzy-based 

clustering algorithms based on fuzzy within-cluster, between-cluster, and 

total scatter matrices. The objective function of the fuzzy compactness and 

separation (FCS) [15] is based on fuzzy between- and within-cluster scatter 

matrices. This approach minimizes the measurement of compactness, and 

simultaneously maximizes the separation measure. 

The fuzzy between-cluster scatter matrix FBS  and within-cluster 

scatter matrix FWS  are defined as 
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By minimizing FCSJ , the proposed method uses the following equations 

to mutually update each other: 
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where the parameter i  could be set up with  
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and ]1,0[  is the parameter to be pre-determined. The objective 

function proposed by Yin et al. [43] is a special case of FCS in which the 

parameters i  are all set to ))1(/(1 LL . 

The Fisher criterion, the trace of the product of the inverse of the 

within-class scatter matrix and the between-class scatter matrix, takes large 

values when samples are well clustered, around their mean within each 

class, and the clusters of the different classes are well separated [2].This 

approach is widely used in different applications [42], [43]-[44]. The 

following discussion introduces new definitions of unsupervised cluster 

scatter matrices. The corresponding objective function is based on the 

Fisher criterion including the interaction of cluster scatter matrices. 
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2.4 Other FCM-type Clustering Algorithms 

Krishnapuram and Keller [52] proposed a new clustering model, called 

possibilistic c-means (PCM), that relaxes a constraint (“the sum of the 

membership values of every sample to all clusters is 1”) to interpret the 

membership function or degree of typicality in a possibilistic sense [45]. 

The fuzzy-possibilistic c-means (FPCM) [10] was proposed in 1997 to 

generate both possibility and membership values. However, the possibility 

values generated by FPCM become very small as the size of the data set 

increases. To eliminate the problem of FPCM and take advantage of the 

benefits of FCM and PCM, the possibilistic fuzzy c-means (PFCM) was 

proposed in 2005 [46]. 

Some FCM-type algorithms, such as the Gath-Geva (GG) algorithm, 

employ an adaptive distance norm based on the fuzzy maximum likelihood 

estimates [2], [30]. Chatzis and Varvarigou [27] proposed a robust fuzzy 

clustering algorithm based on a fuzzy treatment of finite mixtures of 

multivariate Student’s-t distributions (FSMM). This approach uses finite 

mixtures of multivariate Student’s t distributions instead of finite Gaussian 

mixture models (GMMs). 
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3. LDA-based Clustering Algorithm 

This chapter introduces a novel clustering algorithm, called fuzzy 

linear discriminant clustering (FLDC), that accounts both within- and 

between-cluster information [4]. Since the scatter matrices are extended 

from the LDA, Section 3.1 reviews the LDA. 

3.1 Review of LDA 

LDA is often used for dimension reduction in classification problems. 

Because it uses the mean vector and covariance matrix of each class, LDA 

is often referred to as the parametric feature extraction method [14]. 

Within-class, between class, and mixture scatter matrices are frequently 

used to formulate the criterion of class separability. 

Suppose that di
N
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1  are the set of samples in class i, 

iN  is the number of samples in class i, Li ,...,1 , and LNNN  1  is 

the number of all training samples. LDA defines the between-class scatter 

matrix LDA
bS  and the within-class scatter matrix LDA

wS  as  
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The optimal features are determined by optimizing the Fisher criterion 

1JJLDA   given by 

])[(tr 1 LDA
b

LDA
wLDA SSJ  . 

This is equivalent to solving the generalized eigenvalue problem, 

s
LDA
wss

LDA
b SS vv  , ds ,,1   with d  21 , 

where the extracted eigenvectors form the transformation matrix of LDA. 

In other words, the transformation matrix from the original space to the 

reduced subspace is defined by 

]v,,v,[v 21 pA  . 

The Fisher criterion LDAJ  can detect the separability of the transformed 

training samples, but LDA is a supervised feature extraction. The following 

section proposes the between- and within-cluster scatter matrices of an 

unsupervised LDA based on the concept of membership values and cluster 

means of FCM as a clustering algorithm and an unsupervised feature 

extraction.  

3.2 FLDC Algorithm 

The proposed method derives two fuzzy between and within-cluster 

scatter matrices from the scatter matrices of LDA, and uses them to 
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formulate FLDC. The fuzzy between-cluster scatter matrix FLDA
bS  and the 

fuzzy within-cluster scatter matrix FLDA
wS  are defined as 
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the total mean. The following theorem shows that the between- and 

within-class scatter matrices of LDA are special cases of the proposed 

FLDA
bS  and FLDA

wS , respectively. 

Theorem 1: In the supervised situation, if 
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 for all Li 1  and Nj 1 , 

then, the proposed FLDA
bS  and FLDA

wS  are the same as LDA
bS  and LDA

wS , 

respectively. 

Proof: 

Suppose there are iN  samples in iH  for Li ,,1  , and 
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is the same as the class mean in LDA and the fuzzy between-cluster scatter 
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□ 

Based on this theorem and the objective function of LDA, the general 

objective function of FLDC is defined by 

])[(tr)( 1 FLDA
b

FLDA
wijFLDC SSuJ  , 

including the interaction of FLDA
bS  and FLDA

wS . This study considers the 

interaction of the fuzzy between- and within-cluster scatter matrices in the 

Fisher criterion. Results for artificial data sets show that FLDC can detect 

the clusters with the largest between-cluster separability. 

To reduce the effects of the cross products of within-class distances 

and prevent singularity, some regularized techniques [47]-[48] can be 

applied to the fuzzy within-cluster scatter matrix. In FLDC, the fuzzy 

within-cluster scatter matrix is regularized by 
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where )(diag FLDA
wS  is the diagonal parts of matrix FLDA

wS  and ]1,0[r  is 

a regularization parameter. 

The proposed clustering algorithm defines the optimization problem as 

follows: 

])[(maxarg)(maxarg 1 FLDA
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ijFLDC
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which constrains Nju
L

i
ij ,,1,1

1




. Because the optimization problem 

is nonlinear and non-convex, several popular optimization algorithms 

[49]-[50] can be applied to solve this problem: “interior-point,” 

“active-set,” and “trust-region-reflective.” In implementing these 

algorithms, the “active-set” algorithm has a lower cost time than the other 

two algorithms, but it is sensitive to the initial value. Hence, the 

“interior-point” algorithm is used to find the optimizer FLDCU  in this study. 

However, the “interior-point” algorithm has the highest corresponding time 

cost.  

The decision rule, i.e., the defuzzification process, for the sample j is 

kj
k

ui maxarg . 

3.3 Experiments 

3.3.1 Experimental Data and Designs 

The experiments in this study validate the performance of the proposed 

FLDC using ten artificial data sets and three real data sets. This section 

compares the results of several algorithms on artificial and real data sets. 

These algorithms include the clustering FLDC, K-means (KMS), and 

K-medoid (KMD), FCM, Gustafson-Kessel (GK), Gath-Geva (GG) [5], 

possibilistic c-means (PCM) [52], fuzzy-possibilistic c-means (FPCM) [10], 
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possibilistic fuzzy c-means (PFCM) [11], fuzzy compactness and 

separation (FCS) [15], FSMM [13], and FMSFA [56] algorithms. The 

parameters r  in FLDC and   in FCS were set to 0.5. The weighting 

exponents of FCM, GK, GG, and PCM were set to }4,2{m . The 

weighting exponents of FPCM and PFCM were set to }4,2{m  and 

}4,2{ . The FSMM parameters were set to the default values in [51]. 

The FMSFA clustering results were the best results within the given set 

}5.1,1,5.0{  of the model’s degrees of fuzziness of the fuzzy membership 

values. 

To avoid the influence of initialization, all clustering algorithms were 

evaluated based on 3 real data sets and 100 randomly generated initial 

values for each data set. This study calculates and compares the mean, 

standard deviation, maximum, and minimum accuracy of the 100 clustering 

accuracy. The accuracy of the clustering is the proportion of correctly 

clustered data in the data set (i.e., clustering accuracy=(the number of 

correctly clustered data)/(the number of all samples)). 

Fig. 4 shows 10 artificial data sets [53]:“Four-gauss data” (4 clusters), 

“Easy doughnut data” (2 clusters), “Difficult doughnut data” (2 clusters), 

“Boat data” (3 clusters), “Noisy lines data” (2 cluster), “Petals data”, (4 

clusters), “Saturn data” (2 clusters), “Regular data” (16 clusters), 

“Half-ring data” (2 cluster), and “Spirals data” (2 clusters). These data sets 

can be downloaded from [54]. All data sets were created in two dimensions 

to present challenges in varying degrees. Ten dimensions of uniformly 

random noise were appended to each of the first three data sets (four gauss, 

easy doughnut, and difficult doughnut), while the other seven data sets 

were kept as two-dimensional. The last two data sets were omitted because 

the clustering results obtained of all clustering algorithms are similar. 
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Four gauss (4) Easy doughnut (2) 

Difficult doughnut (2) Boat (3) 

Noisy lines (2) 

 

Petals (4) 

Saturn (2) Regular (16) 

Half rings (2) Two spirals (2) 

Figure 4. Ten artificial data sets [53]-[54] were used in this study. The first 

three data sets were generated with 10 additional noise features. The 

number of clusters appears in parentheses. 
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Table 1 presents the real data sets used in this study: “Wine,” “Iris,” 

and “Breast Cancer Wisconsin (Diagnostic)” (WDBC). The Wine data set 

is a collection of data from three classes of wine from various locations in 

Italy. The Iris data set contains three classes of Iris flowers collected from 

Hawaii: Iris Setosa, Iris Versicolour, and Iris Virginica. There are two 

classes, benign and malignant, in the WDBC data set. These data sets are 

available from the FTP server of the UCI [55] data repository. 

 

Table 1 Descriptions of Three Real Data Sets 

Data set Classes Number of Samples Features 

Wine 3 178 13 

Iris 3 150 4 

WDBC 2 569 30 

 

3.3.2 Experimental Results 

Figs. 5-12 show the results of clustering on the artificial data sets. The 

covariance matrices of two density-based methods, GG and FSMM, are 

near-singular. Hence, the proposed method uses the GG and FSMM with 

diagonal covariance matrices for the Gaussian distributions (GGD) and the 

Student’s-t distributions (FSMMD), respectively. The best clustering 

results from the application of GG and GGD in different data sets were 

chosen for Fig. 5-12. These figures also show the best results of clustering 

FSMM and FSMMD. A comparison of Fig. 5-12 reveals the following 

points: 

1. The FLDC clustering method significantly outperformed other 

methods for the normal-like distribution of data (e.g., the four-gauss, 

easy doughnut, difficult doughnut, boat, and petals data sets) because it 



 

‐24‐ 

considers the interaction of the between- and within-cluster scatter 

matrices. For the easy doughnut and difficult doughnut data sets, all 

algorithms had poor clustering results except FLDC. 

2. The FLDC achieved the best performance with regular and noisy lines 

data sets. 

3. KMS, KMD, FCM, FPCM, PFCM, and FCS only performed well on 

the four gauss and petals data sets. 

4. PCM performs well only on the petals and noisy lines data sets. 

5. GK employed an adaptive norm that estimates covariance matrices for 

each cluster. Hence, the GK algorithm can detect clusters with different 

geometrical shapes. and performed well on the boat and noisy lines 

data sets. However, its performance was dismal for the four gauss, easy 

doughnut, and difficult doughnut data sets. 

6. Although FLDC performed poorly on the Saturn, half rings, and two 

spirals data sets, it was able to detect the clusters with the largest 

between-cluster separability in the Saturn data set. FLDC was 

unsuitable for the Saturn, half rings, and two spirals data, as these were 

complex nonlinear problems. The kernel method may be a way to 

solve these types of data sets. 

7. The distribution-based clustering algorithms, including GG, FSMM, 

and FMSFA, performed poorly on the four gauss, easy doughnut, 

petals, and regular data sets because the covariance matrices of the 

density-based methods are near-singular. 

8. FSMMD was able to improve the performance of FSMM on the boat 

and noisy lines data sets. 

Table 2 shows the clustering accuracy in real data sets. The highest 

mean clustering accuracy for each data set (in rows) is shaded. Table 2 
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shows that the highest mean accuracies among all methods were 0.927, 

0.966, and 0.940. All of these results were obtained by performing FLDC. 

Table 3 shows the accuracy of the three real data sets after applying 

FMSFA. The maximum accuracies of these data sets were 1, 0.980, and 

0.949, respectively. However, it is very sensitive to the initial value. Hence, 

the highest average accuracies in every column were only 0.945, 0.774, and 

0.882. The FSMM is more stable than FMSFA because it uses the results of 

clustering KMS as the initial value.
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Figure 5. The results of clustering the “Four gauss” data set using twelve clustering 

algorithms. The best clustering results from applying GG and GGD were chosen for 

comparison. This figure also shows the best results of clustering FSMM and FSMMD 

for comparison. 
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Figure 6. The results of clustering the “Easy doughnut” data set using twelve clustering 

algorithms. The best clustering results from applying GG and GGD were chosen for 

comparison. This figure also shows the best results of clustering FSMM and FSMMD 

for comparison. 
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Figure 7. The results of clustering the “Difficult doughnut” data set using twelve 

clustering algorithms. The best clustering results from the application of GG and GGD 

were chosen for comparison. This figure also shows the best results of clustering 

FSMM and FSMMD for comparison. 
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Figure 8. The results of clustering the “Boat” data set using twelve clustering 

algorithms. The best clustering results from applying GG and GGD were chosen for 

comparison. This figure also shows the best results of clustering FSMM and FSMMD 

for comparison. 
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Figure 9. The results of clustering the “Noisy lines” data set using twelve clustering 

algorithms. The best clustering results from applying GG and GGD were chosen for 

comparison. This figure also shows the best results of clustering FSMM and FSMMD 

for comparison. 
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Figure 10. The results of clustering the “Petals” data set using twelve clustering 

algorithms. The best clustering results from applying GG and GGD were chosen for 

comparison. This figure also shows the best results of clustering FSMM and FSMMD 

for comparison. 
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Figure 11. The results of clustering the “Saturn” data set using twelve clustering 

algorithms. The best clustering results from applying GG and GGD were chosen for 

comparison. This figure also shows the best results of clustering FSMM and FSMMD 

for comparison. 
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Figure 12. The results of clustering the “Regular” data set using twelve clustering 

algorithms. The best clustering results from applying GG and GGD were chosen for 

comparison. This figure also shows the best results of clustering FSMM and FSMMD 

for comparison. 



 

‐33‐ 

Table 2 The Mean, Standard Deviation, Maximum, and Minimum Accuracy of Clustering 

for Three Real Data sets.  

 
Wine Iris WDBC 

mean/std/max/min 
(mean of cpu time in s.) 

mean/std/max/min 
(mean of cpu time in s.) 

mean/std/max/min 
(mean of cpu time in s.) 

FLDC 
0.927/0.003/0.949/0.916

(106.628) 
0.966/0.001/0.967/0.960

(43.871) 
0.940/0.001/0.946/0.938

(2099.937) 

KMS 
0.677/0.051/0.702/0.567

(0.006) 
0.849/0.109/0.893/0.580

(0.009) 
0.854/0.000/0.854/0.854

(0.009) 

KMD 
0.667/0.062/0.708/0.556

(0.004) 
0.835/0.141/0.947/0.513

(0.006) 
0.851/0.006/0.854/0.837

(0.008) 

FCM 
0.691/0.000/0.691/0.691

(0.119) 
0.907/0.000/0.907/0.907

(0.002) 
0.861/0.000/0.861/0.861

(0.108) 

GK 
0.607/0.000/0.607/0.607

(1.726) 
0.900/0.000/0.900/0.900

(0.058) 
0.821/0.000/0.821/0.821

(0.254) 

GG 
0.742/0.000/0.742/0.742

(0.218) 
0.733/0.000/0.733/0.733

(0.135) 
0.510/0.000/0.510/0.510

(0.113) 

PCM 
0.697/0.000/0.697/0.697

(0.015) 
0.933/0.000/0.933/0.933

(0.014) 
0.856/0.000/0.856/0.856

(0.033) 

FPCM 
0.719/0.000/0.719/0.719

(0.027) 
0.907/0.000/0.907/0.907

(0.017) 
0.877/0.000/0.877/0.877

(0.036) 

PFCM 
0.691/0.000/0.691/0.691

(0.060) 
0.920/0.000/0.920/0.920

(0.027) 
0.861/0.000/0.861/0.861

(0.046) 

FCS 
0.697/0.000/0.697/0.697

(0.249) 
0.893/0.000/0.893/0.893

(0.112) 
0.851/0.000/0.851/0.851

(0.321) 

FSMM 
0.846/0.117/0.899/0.573

(0.583) 
0.875/0.170/0.973/0.527

(0.066) 
0.935/0.000/0.935/0.935

(0.299) 

 

Table 3 The Mean, Standard Deviation, Maximum, and Minimum Accuracy of Clustering 

for Three Real Data sets of FMSFA, Where LD Represents the Latent Dimension 

 
Wine Iris WDBC 

mean/std/max/min mean/std/max/min mean/std/max/min 
FMSFA 
LD=1 

0.898/0.085/0.955/0.854 0.774/0.154/0.980/0.333 0.813/0.005/0.821/0.803

FMSFA 
LD=2 

0.945/0.069/0.966/0.579 0.768/0.127/0.967/0.333 0.882/0.000/0.882/0.882

FMSFA 
LD=3 

0.891/0.143/1.000/0.539 0.704/0.105/0.967/0.333 0.865/0.027/0.949/0.715
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4. The Support Vector Machine and Its Spectral-Spatial 

Classification Schemes 

The support vector machine [23] attempts to minimize the upper bound 

of the generalization error by maximizing the margin between the 

separating hyperplane and the training data. Hence, SVM is a 

distribution-free algorithm that can overcome the problem of poor 

statistical estimation. Many studies [30]-[33] have shown that support 

vector machines with both spectral and spatial information achieve 

effective and stable hyperspectral image classification. For example, 

Tarabalka et al. [31] presented a spectral-spatial classification scheme 

based on partitional clustering techniques (SVM+EM). A context-sensitive 

semi-supervised support vector machine (CS4VM) [32] uses the context of 

neighborhood patterns as semi-patterns to solve the problem of noisy 

training patterns. This chapter reviews the literature on traditional SVM, 

SVM+EM, and CS4VM. 

4.1 Support Vector Machine 

Let X  be a hyperspectral d-dimensional image of size JI   pixels. 

Assume that a set of training data set 

},,2,1,xx{ niRXD d
ii   

is available and n
iiy 1}}1,1{{   is the corresponding label set. SVM tries 

to find a separating hyperplane in the feature space, a Hilbert space H, for a 

binary classification problem [23]. The soft-margin SVM algorithm is 

based on the following constrained minimization optimal problem: 
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where w  is a vector normal to the hyperplane, b  is a constant such that 

w/b  represents the distance between hyperplane from the origin, 

HRd :  is a nonlinear mapping function, i ’s are slack variables to 

control the training errors, T
n ],,[ξ 1   , and  RC  is a penalty 

parameter for tuning the generalization capability. Trying to solve this 

optimal problem with inequality constraints is generally a difficult task. 

However, the original optimal problem has an equivalent dual 

representation using the Lagrange optimization method. The corresponding 

dual Lagrange function is defined as  
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where the artificial variables, i , are Lagrange multipliers, and 

T
n ],,[α 1   . 

The kernel trick uses a kernel function RRR dd :  to implicitly 

map the data from the original space dR  to H  without knowing the 

feature mapping  . The inner product of samples in the feature space can 

be computed directly from the original data items using a kernel function. 

This is because a kernel function   satisfies Mercer’s theorem [34]. In 

other words, there is a feature map   into a Hilbert space H  such that 

)z()x()z,x(  T , where dRz,x , if and only if   is a symmetric 
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function for which the matrices njijiK  ,1)]x,x([  formed by restriction 

to any finite subset }x,,x{ 1 n  of the space dR  are positive semi-definite. 

Hence, the kernel trick makes it possible to rewrite Eq. (4.2) as the 

following Eq. (4.3). Since, for a kernel function, the corresponding kernel 

matrix is positive semi-definite for all training sets, this in turn means that 

the optimization problem of (4.3) is always convex [34]. 

α
max  
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After determining  the values of the i ’s, the decision function for an 

unlabeled pattern x  is defined as 

byf
n

i
iii  

1
SVM )x,x()x(  , 

where b  is chosen so that 1))x,x((
1




byy
n

i
jiiij   for any jx  with 

Cj 0 , and a corresponding forecasting label is ))x(sgn( SVMf . 
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4.2 Spectral-Spatial Classification Scheme Based on Partitional 

Clustering Techniques 

Fig. 13 shows a flowchart of the spectral–spatial classification scheme 

based on partitional clustering techniques (SVM+EM) [31]. The majority 

vote rule is used to determine the final decision in a partition. 

 
Figure 13. Flowchart of the SVM+EM [31]. 

 

SVM+EM combines the unsupervised segmentation technique and 

supervised pixel wise classification results, and consists of the following 

steps (Fig. 13 and 14). 

1. Segmentation: The expectation maximization (EM) clustering 

algorithm segments a hyperspectral image into homogeneous regions. 

2. Pixel wise classification: An SVM classifier with the Gaussian radial 

basis function (RBF) kernel is performed independently of the 
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segmentation procedure. The SVM parameters are determined by 

k-fold cross validation. 

3. Spectral–spatial classification: The majority rule is used for every 

region in the segmentation map. All samples in the same region are 

assigned to the most frequent class within this region. 

4. Spatial postregularization (PR) step: Finally, the spatial PR of the 

classification map reduces the noise in the classification map. 

SVM+EM segments an image into homogeneous regions and 

combines the results of these regions using pixel-wise SVM classification. 

The spatial post regularization (PR) of the classification map reduces the 

noise. This approach is particularly suitable for classifying images with 

large spatial structures, when spectral responses of different classes are 

dissimilar, and the classes contain a similar number of pixels. If the spectral 

responses are not significantly different, this approach may result in 

misclassification [31]. 
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Figure 14. Example of SVM+EM classification [31]. 
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4.3 Context-Sensitive Semi-supervised SVM 

The context-sensitive semi-supervised SVM (CS4VM) classifier 

improves robustness to possible mislabeled training patterns by exploiting 

the contextual information of the pixels belonging to the neighborhood 

system of each training sample in the learning phase [32]. Let 

},,1|x{x Mjij
o
i   represent a neighborhood system of the pixel ix  

in the original space, where M  is 4 or 8 to indicate that O
ix  is a 

first-order or second-order neighborhood system, respectively (Fig. 15). 

After performing the standard SVM, CS4VM can obtain the semi-labels of 

ix , which is equal to O
ix  and denote them as M

jijy 1}{   (i.e., 

Mjnify ijij ,,1,,,1)),x(sgn( SVM   ). The cost function of CS4VM for 

the learning of the classifier is 
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where ij ’s are context slack variables and }0{ Rij  are parameters 

that make it possible to weight the importance of context patterns (Fig. 16). 

The aim of the cost function of CS4VM is to regularize the learning process 

with respect to the behavior of the context patterns in the neighborhood of 

the training pattern under consideration. This term helps balance the 

contribution of possibly mislabeled training samples according to the 

semi-labeled pixels of the neighborhood [32]. 
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Figure 15. The left and right images represent the first-order and second-order 

neighborhood systems in the original space, respectively. 

 

 
Figure 16. Example of training and related context patterns in the feature space [32]. 

 

The context slack variables ij  are defined as 

Mjniby ij
T

ijij ,,2,1,,2,1)},)x(w(1,0max{    . 

The parameters ij  weight the context patterns ijx  depending on the 

agreement of their semi-labels ijy  with that of the related label iy  of the 

training sample ix . The hypothesis at the basis of the weighting system of 

the context patterns is that the pixels in the same neighborhood system are 

likely to be associated with the same information class (i.e., the labels of 
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the pixels are characterized by high spatial correlation). In particular, ij ’s 

are defined as  








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iji

ij yy

yy
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if
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1




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where 1  and 2  are chosen by the user to define the importance of the 

context patterns. It is very important to define the ratios ,2,1,/ iC i  

which tune the weight of context patterns w.r.t. the patterns of the original 

training set. The selection of 1  and 2  can be simplified by fixing a 

priori the ratio K21 / . This focuses attention only on 1  or on the 

ratio 1/C  [32]. 

CS4VM uses the context of neighborhood patterns as semi-patterns to 

solve the problem of noisy training patterns. In this case, noisy training 

patterns are mislabeled patterns that introduce distorted information to the 

classifier [32]. However, CS4VM is a semi-learning approach in which the 

computational cost increases as the number of semi-samples increases. 



 

‐43‐ 

5. Spatial-Contextual Support Vector Machines 

The two sections of this chapter introduce two kinds of 

spatial-contextual support vector machines with different neighborhood 

systems: the original space (SCSVM) and the feature space (SCSVMF) 

[39]. The learning process of the proposed SCSVM classification system 

includes three steps: i) learning the standard SVM to classify the image, ii) 

learning SCSVM/SCSVMF with both spectral and spatial-contextual 

information, and iii) repeating (ii) to update the unlabeled patterns until 

convergence. 

5.1 A Spatial-contextual Support Vector Machine in the Original 

Space 
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Figure 17. The pixels enclosed by bold lines represent the first-order neighborhood 

system used in SCSVM. 

 

In SCSVM, spatial information exploits the semi-labels for the pixels 

belonging to the neighborhood system in the original space (Fig. 17) of 

each sample from the preceding discriminated process of standard SVM to 

overcome similar spectral properties. SCSVM can achieve good 

generalization, especially for pixels with similar spectral attributes but 
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located in different regions. This approach decreases speckle-like errors 

and significantly improves classification performance. Let 

},,1|x{x Mjij
o
i   represent a neighborhood system of the pixel ix  

in the original space, where M  is 4 or 8 to represent that O
ix  is a 

first-order or second-order neighborhood system, respectively. 

After performing the standard SVM, SCSVM can obtain the 

semi-labels of ix , which is equal to O
ix , and denote them as M

jijy 1}{   

(i.e., Mjnify ijij ,,1,,,1)),x(sgn( SVM   ). The constrained 

minimization problem associated with SCSVMs accounts for the 

semi-labels of the whole image, and is defined as follows: 
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where ),0[   is a nonnegative parameter that controls the effects of 

spatial-contextual information. )x( im  and )x( im  represent the number 

of pixels in the neighbor system ix  that belongs to class +1 and class -1, 

respectively. Fig. 18 illustrates the spatial-contextual information of the 

pattern ix  with the second-order neighborhood system O
ii xx   

employed in the spatial domain. 

The SCSVM cost function does not require modification, and 

maintains the property of convex property. Because the objective function 

of the minimization problem of the SCSVM only contains training samples, 

and no semi-label samples, the decision hyperplane is not influenced by 

samples with similar spectra. The computational costs of each iteration in 

SCSVM are also similar to that of SVM. 
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Figure 18. An example of the spatial-contextual information with the second-order 

neighborhood system of pattern ix  in the original space.  

 

According to Lagrange’s theorem, the corresponding dual problem is 

as follows: 

α
max  





 









n

i

n

j
jijiji

n

i
iiii

yy

mmy

1 1
,

1

)xx(
2

1

)))x()x((1(





 

(5.2)

subject to niCy i

n

i
ii ,,2,1,0,0

1





 

when nii ,,1,   are determined, the decision function for an unlabeled 

pattern x  is defined as 

))x()x(()x,x()x(
1

SCSVM




  mmbyf
n

i
iii  . (5.3)

Any generic pattern belonging to the investigated image can then be 

classified according to 

))x(sgn( SCSVMf . 

If some training patterns appear in the margin, they may produce similar 

spectral properties. Hence, these patterns may be noisy patterns in standard 
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SVM learning. To overcome this problem, the constraints and the decision 

unction of SCSVM include spatial terms. If  

0)x()x(  
jj mm  and 0)x()x(  

jj mm , 

then )x()x( SVMSCSVM jj ff   and )x()x( SVMSCSVM jj ff  , respectively. This 

means that if the semi-labels of most patterns in the neighborhood system 

jx  are +1, then the signed distance from jx  to the decision hyperplane 

of SCSVMS will tend to be positive. If the semi-labels of most patterns in 

the neighborhood system jx  are -1, then the signed distance from jx  to 

the decision hyperplane of SCSVM will tend to be negative. The parameter 

  controls the effect of the spatial-contextual information (i.e., the term, 

)x()x( jj mm   ). If   is set to 0, then SCSVM degenerates to the 

standard SVM. When   increases, the effect of neighborhood points 

(spatial information) increases. If   approaches  , then the semi-label of 

jx  is determined by the sign of )x()x( jj mm    (i.e., the 

spatial-contextual information).  

Figure 19. The left panel shows the decision boundary (solid black line) obtained by 

SVM. The center panel shows the semi-labels of the patterns in the second-order 

neighborhood system of jx . The right panel shows the decision boundary (solid red 

line) obtained of SCSVM.  
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Fig. 19 shows the effects of applying SCSVM. The left panel shows 

the decision boundary (solid black line) obtained of standard SVM. The 

training sample jx  with 1jy  is in the opposite area (class -1) but in 

the area between margins. After performing standard SVM, 

04)x()x(  
jj mm . The spatial-contextual information in the center 

panel of Fig. 20 shows that the training sample jx  should be in the area in 

which sample labels are 1. If )x()x( SVMSCSVM jj ff  , then jx  would be in 

the expected area (class +1), as shown in the right panel of Fig. 19. 

As mentioned, SCSVM depends on the spectral information and the 

spatial-contextual information, which is based on the neighborhood system 

in the original system. Hence, the problem of similar spectral properties can 

be solved of SCSVM. SCSVM applies the spatial-contextual information to 

emphasize the effects of this pattern on the learning phase. 
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Figure 20. A multiclass case of the spatial contextual information defined by the OAO 

strategy (class 1 versus class 2) for pattern ix  in the neighborhood system O
ix . The 

labels of class 1 and class 2 are defined as +1 and -1, respectively.  

 

To address the multiclass classification problem, the following 

paragraphs describe the two types of SCSVM for multiclass strategies: the 

one-against-one (OAO) strategy [60]-[62] and the one-against-all (OAA) 

strategy [62]. The OAO strategy separates each pair of classes. Thus, for a 
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classification problem with L  classes, 2/)1( LL  SCSVMs are trained to 

distinguish the samples of one class from the samples of another class. The 

classification results of an unlabeled pattern are based on the maximum 

vote, where each SCSVM votes for one class. When an SCSVM is trained 

by two classes of training data, it ignores the spatial-contextual information 

of other classes to avoid misjudgments in training process. 

Fig. 20 shows the OAO strategy for computing )x( im  and )x( im  

in the neighborhood system o
ix  of ix . Suppose there are 3 classes and 

SCSVM is trained by the training samples in class 1 and class 2. Thus, all 

semi-labels equal to 3 will be omitted. Since 32 iy  and 36 iy , these 

spatial-contextual information are ignored and, hence, 5)x( 
im  and 

1)x( 
im .  
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Figure 21. A multiclass case of the spatial contextual information defined by the OAA 

strategy (class 1 versus all others) for pattern ix  in the neighborhood system O
ix . 

The label of class 1 is defined as +1 and the labels of the remaining classes (class 2 and 

class 3) are defined as -1. 

 

The one-against-all (OAA) multiclass strategy trains L  SCSVMs, one 

per class, using members of all other classes as negative examples if there 

are L  classes. Fig. 21 shows the OAA strategy for computing )x( im  

and )x( im  in the neighborhood system of the pattern ix . When the k-th 
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OAA SCSVM is trained, the class k is set as the positive class and other 

classes are all set as negative class. Fig. 21 shows 5)x( 
im  and 

3)x( 
im  for the example by considering the neighborhood system ix . 

5.2 A Spatial-Contextual Support Vector Machine in the Feature 

Space 

The SCSVMF approach uses the same concept as SCSVM except that 

the neighborhood system F
ii xx  , which contains M  nearest neighbors 

in the feature space: 

}.,,1,xz,xz,z||,)z()x(||||)x()x(|||x{x MjX ijiiijiij
F
i    

Similar spectral properties cannot be solved efficiently of SCSVMF 

because the nearest neighbors in the feature space are used in the 

neighborhood system F
ix . Hence, being neighborhoods of a given point in 

feature space is caused by the similar spectra. These neighborhood points 

may not have geographic relationship. The classification accuracy may also 

decrease when the neighborhood points in feature space are from different 

classes.  

When SCSVMF is trained by the training samples in class k  and 

class s , the OAO strategy ignores the semi-labels of samples in F
ix  that 

are not equal to k  and s  in the multiclass classification problem. The 

OAA multiclass strategy sets the semi-labels of samples in F
ix  that 

belong to class k as the positive class and other semi-labels of samples in 

F
ix  as negative classes when training the k-th OAA SCSVM. Similarly, if 

  is set to 0, then SCSVMF degenerates to the standard SVM. 
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5.3 Classification System of SCSVM and SCSVMF 

Based on these descriptions and definitions, Fig. 22 illustrates the 

proposed SCSVM and SCSVMF classification systems. 

Step 1:  Obtain the classification image with semi-labels from the standard 

SVM. 

Step 2:  Acquire the spatial-contextual information for each training pattern 

with OAO or OAA multiclass architecture from the preceding 

classification result. 

Step 3:  Train the proposed SCSVM (SCSVMF) with the spatial-contextual 

information from Step 2, and get another classification image with 

the semi-labels obtained from SCSVM (SCSVMF). 

Step 4:  Repeat Steps 2 and 3 if an iteration is requested. The iteration may 

terminate when the difference of semi-labels in this iteration step 

and the previous iteration step is smaller than a certain tolerance 

value. 

Step 5:  Perform the spatial post regularization (PR) of the classification 

map for SCSVM [31]. This PR step attempts to reduce the noise in 

the classification map after the majority vote procedure. 

Fig. 22 shows the framework of the SCSVM (SCSVMF) algorithm. 
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Training samples 

Standard SVM 

Get the spatial-contextual information from the 

performance of the standard SVM 

SCSVM/SCSVMF

Input image 

Get the spatial-contextual 
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Classified Image and Evaluation 

SCSVM
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Figure 22. SCSVM and SCSVMF classification systems.  
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5.4 Experiments 

5.4.1 Experimental Data and Designs 

The experiments in this study use two real data sets to evaluate the 

classification performance of the proposed SCSVM and SCSVMF: the 

Indian Pine Site (IPS), a mixed forest/agricultural site in Indiana [22], and a 

hyperspectral image of the Washington D.C. Mall [22] as an urban site. 

Figure 23. A portion of the Indian pine site image measuring 145145 pixels.  

 

 

■ Background 
■ Alfalfa 
■Corn-no till 
■Corn-min till 
■Corn 
■Hay-windowed 
■Grass/trees 
■Grass/pasture-mowed 
■Grass/pasture 
■Oats 
■Soybeans-no till 
■Soybeans-min till 
■Soybeans-clean till 
■Wheat 
■Woods 
■Bldg-Grass-Tree-Drives 
■Stone-steel towers 

Figure 24. The ground truth of the Indian pine site data set.  
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The IPS data set was gathered by the Airborne Visible/Infrared 

Imaging Spectrometer (AVIRIS). This data set was obtained from an 

aircraft operated by the NASA/Jet Propulsion Laboratory flying at an 

altitude of 65000 ft. Each images measures 145×145 pixels, with 220 

spectral bands measuring approximately 20 m across the ground. Figs. 23 

and 24 show the grayscale IR image and ground truth of IPS, respectively. 

The original ground-truth image contains 16 different land-cover classes. 

This study uses sixteen categories: Alfalfa (class 1), Corn-no till (class 2), 

Corn-min till (class 3), Corn (class 4), Hay-windowed (class 5), Grass/trees 

(class 6), Grass/pasture-mowed (class 7), Grass/pasture (class 8), Oats 

(class 9), Soybeans-no till (class 10), Soybeans-min till (class 11), 

Soybeans-clean till (class 12), Wheat (class 13), Woods (class 14), 

Bldg-Grass-Tree-Drives (class 15), and Stone-steel towers (class 16). Table 

4 lists the number of pixels of each class. 

 

 

This experiment randomly chose ten percent of the samples for each 

class from the IPS reference data as training samples, following the method 

in [31]. The samples in the whole image served as the testing set to 

evaluate the performance of the proposed algorithm. 

Table 4 Sixteen Categories and Corresponding Number of Pixels in the Indian Pine Site 

Image 

No. Category #(pixels) No. Category #(pixels)
1 Alfalfa 46 9 Oats 20 
2 Corn-no till 1428 10 Soybeans-no till 972 
3 Corn-min till 830 11 Soybeans-min till 2455 
4 Corn 237 12 Soybeans-clean till 593 
5 Hay-windowed 483 13 Wheat 205 
6 Grass/trees 730 14 Woods 1265 
7 Grass/pasture-mowed 28 15 Bldg-Grass-Tree-Drives 386 
8 Grass/pasture 478 16 Stone-steel towers 93 
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The second data set, the Washington D.C. Mall, was obtained in a 

Hyperspectral Digital Imagery Collection Experiment (HYDICE). Images 

were acquired from an airborne hyperspectral data flightline over 

Washington D.C. In total, 210 bands were collected in the 0.4-2.4 μm 

region of the visible and infrared spectrum. Some water absorption 

channels were discarded, resulting in 191 channels. This data set is 

available in the student CD-ROM of [22]. The second experiment in this 

study used 7 classes: grass (class 1), tree (class 2), roof (class 3), water 

(class 4), road (class 5), trail (class 6), and shadow (class 7). Fig. 25 shows 

the grayscale IR image of a portion of the image and the seven 

corresponding categories. 

No. Category 

 

1 Grass 
2 Tree 
3 Roof 
4 Water 
5 Road 
6 Trail 
7 Shadow 

Figure 25. The false-color IR image of a portion of Washington D.C. Mall image 

measuring 205 307 pixels. There are seven categories: grass, tree, roof, water, road, trail, 

and shadow. 

 

This study uses three distinct subsets, Ni=20 < N < d (case 1), Ni =40 < 

d < N (case 2), and d < Ni =300 < N (case 3), to investigate the influence of 

training sample size on the dimensionality of the Washington D.C. 

hyperspectral image data set. In case 1, Ni = 20 < N =180 < d = 191 is an 

ill-posed classification situation, which means data dimensionality exceeds 

the number of independent training samples in every class. In case 2, Ni = 

40 < d = 191< N = 360 is a poorly posed classification situation, which 

means that data dimensionality is greater than or comparable to the number 

of (independent) per-class representative training samples, but smaller than 
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the total number of representative samples. In case 3, there are enough 

independent training samples. MultiSpec [22] was used to randomly select 

training and testing samples (100 testing samples per class) in all 

experiments [63]-[65]. 

This study compares the classification performance of the proposed 

SCSVM and SCSVMF with OAO and OAA multiclass strategies and other 

reference classification algorithms: ML classifier [2], ML_MRF classifier 

[20], k-NN classifier [2], standard SVM with OAO and OAA multiclass 

strategies, CS4VM (which is based on the OAA multiclass strategy) [32], 

and SVM+EM [31]. This experiment also compares the classification 

performance of SVM+EM and SCSVM with the PR step using a 3×3 mask 

and without the PR step. The SVM-based classifiers, including SVM, 

CS4VM, and SCSVM, employ the RBF kernel (i.e., the Gaussian Radial 

Basis Function kernel). Both the IPS and the Washington D.C. Mall 

hyperspectral data sets were normalized to the range 1]  [0, . A grid search 

with k-fold cross validation was used to find the proper 22  within a 

range ]10,10[ 2  for the RBF kernel (as suggested by [32]) and parameter 

C  within a given set 1000} 200, 160, 100, 60, 20, 10, 1, {0.1, . For CS4VM, the 

value of 21 /  was set to 2 and }14,12,10,8,6,4,2{/ 1C  following 

[32]. Because the semi-samples were used to train CS4VM, only a 

first-order neighborhood system O
ix  was considered for the context 

patterns to avoid spending too much time training CS4VM. For SCSVM, 

only the decision function and constraints contain the spatial-contextual 

information of the neighborhood system. Thus, the SCSVM training time 

increases a little for each iteration. The size of the neighborhood system M 

was set to 4 and 8 in SCSVM for comparison. The term   was set to 0.05, 

0.1, 0.3, 0.5, 1, 10, 100, 500, 1000, and 10000 to determine its influence on 

spectral and spatial information. 
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The Gaussian function was adopted as the likelihood function of the 

Bayesian decision rule for the ML classifier and ML_MRF classifier [20]. 

Several trials were carried out for the k-NN classifier, varying the value of 

k from 1 to 20 to identify the value that maximizes the accuracy. For 

simplicity, the model selection for the k-NN classifier was based on the 

accuracy of the testing data set. 

This study employs the following measures of classification accuracy 

to investigate classifier performance: 1) overall classification accuracy (the 

percentage of correctly classified samples for all classes); 2) overall kappa 

coefficient (the percentage of the kappa coefficient for all classes); and 3) 

average accuracy (the average percentage of correctly classified samples 

for each class). Because the amount of testing data is the same for every 

class (i.e., Ni=100) in the Washington D.C. hyperspectral image data set. In 

this case, the overall classification accuracy and the average accuracy are 

identical. In the IPS data set, the overall classification accuracy and the 

average accuracy are not identical because of the unequal testing sample 

sizes between classes. 

5.4.2 Experimental Results 

This study compares the multiclass-classification performance of an 

ML classifier, ML_MRF classifier, k-NN classifier, SVM, CS4VM, 

SVM+EM, and SCSVM. The following section presents the experimental 

results for the IPS data set and the Washington D.C. Mall data set. 

A. Indian Pine Site 

According to the experimental design for IPS, ten percent of the 

samples for each class were chosen as the training set. ML-based classifiers 

(ML and ML_MRF) must estimate the covariance matrices of the classes 

before classifying all samples in the IPS hyperspectral image. These 
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classifiers encounter the problem of covariance matrices and poor 

estimations because the number of training samples in each class is less 

than the dimensionality. Hence, the ML and ML_MRF performance in the 

IPS experiment should not be compared, and is denoted as N/A. 

To investigate the effects of the neighborhood systems and parameters, 

M and  , Table 5 and Fig. 26 show the overall accuracies of the SCSVM 

and SCSVMF with the grids of 8} 4,{M  and 

10000} 1000, 500, 100, 10, 1, 0.5, 0.3, 0.1, 0.05, 0,{ . 

 
Figure 26. The overall accuracies in percentages of the experimental classifiers, 

SCSVM and SCSVMF, for the IPS data set.  

 

Tables 6 and 7 present the validation measures of all samples in the 

IPS and class-specific accuracies from the best performance of k-NN 

classifier (k=1), SVM (OAO and OAA multiclass strategy), CS4VM, 

SVM+EM with and without PR step, and SCSVM, which has the highest 

accuracy in Table 5, with and without PR step, respectively. The best 

overall accuracy, kappa coefficient, and average accuracy are highlighted 

in gray. The term “BPR” means that the performance of the classifier does 

not include the PR step, and “APR” means that the performance of the 

classifier includes the PR step. 
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Table 5 The Overall Accuracies in Percentages of SCSVM (OAA, M), SCSVM (OAO, 

M), SCSVMF (OAA, M), and SCSVMF (OAO, M) with Different Parameters M, the Size 

of the Neighborhood System, and   in the IPS Data set. 

  0 0.05 0.1 0.3 0.5 1 10 100 500 1000 10000
SCSVM 
(OAA, 4) 

86.5 89.0 90.2 92.4 92.5 92.5 91.7 89.1 91.9 91.6 88.8

SCSVM 
(OAA, 8) 

86.5 91.5 93.3 94.7 95.2 95.4 94.8 94.7 94.6 94.3 93.7

SCSVM 
(OAO, 4) 

84.4 86.9 89.6 90.1 87.3 84.0 84.0 84.0 84.3 84.2 84.2

SCSVM 
(OAO, 8) 

84.4 90.1 92.9 88.3 86.5 88.0 87.0 87.3 87.1 87.0 87.0

SCSVMF 
(OAA, 4) 

86.5 88.4 88.3 86.6 85.2 83.5 79.4 78.0 77.8 77.8 77.8

SCSVMF 
(OAA, 8) 

86.5 88.3 87.6 84.6 83.6 82.3 78.5 77.8 77.8 77.8 77.8

SCSVMF 
(OAO, 4) 

84.4 85.1 85.1 84.0 84.0 84.0 84.0 84.0 84.0 84.0 84.0

SCSVMF 
(OAO, 8) 

84.4 85.3 84.4 84.0 84.0 84.0 84.0 84.0 84.0 84.0 84.0

 

Table 6 The Overall Accuracies, Kappa Coefficients, and Average Accuracies in 

Percentages of the Experimental Classifiers for the IPS Data set 

Classifier 
Overall Accuracy 

(%) 
Kappa Coefficient 

(%) 
Average Accuracy 

(%) 
ML N/A N/A N/A 

ML_MRF N/A N/A N/A 
k-NN 75.5 72.1 74.6 

SVM (OAO) 84.4 82.3 85.5 
SVM (OAA) 86.5 84.6 83.8 

CS4VM 88.0 86.3 85.0 

SVM+EM 
BPR 91.3 90.0 81.6 
APR 92.8 91.8 82.5 

SCSVM 
(OAA, M=8, 1 ) 

BPR 95.4 94.7 94.2 
APR 95.5 94.9 94.1 

 

Because SCSVM is a generalized version of SVM, it reverts to the 

original SVM when 0 . These results show that SCSVM (OAA) can 

obtain a higher overall accuracy than SCSVM (OAO) in the IPS data set 

regardless of M and  . Fig. 26 shows that using neighbor system O
ix  

generally yields better performance than using F
ix . SCSVM with M=8, a 
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second-order neighborhood system, outperforms M=4, a first-order 

neighborhood system, because the IPS is a larger spatial structure image in 

the original space. In hyperspectral image classification, many samples 

from different land-cover classes with similar spectral properties [20]-[21] 

affect the performance of SCSVMF. Specifically, SCSVMF performance 

increases only a little, and is even worse than SVM performance when   

exceeds a threshold. The highest overall SCSVM accuracy of 95.4% 

occurred at M=8 and 1  with the OAA multiclass strategy and the 

neighborhood system O
ix . 

 

Table 7 The Class-specific Accuracies in Percentages for the IPS Data set 

Class 
k-NN 

SVM 
(OAO)

SVM 
(OAA)

CS4VM
SVM+EM 

SCSVM 
(OAA, M=8, 1 )

No. 
Sample 

size 
BPR APR BPR APR 

1 46 78.3 91.3 95.7 95.7 93.5 93.5 93.5 100.0 
2 1428 64.8 78.8 86.3 88.9 86.6 89.0 82.4 86.4 
3 830 62.8 82.4 79.8 81.4 89.2 90.1 93.0 94.1 
4 237 54.9 95.4 77.2 79.7 97.9 100.0 97.0 100.0 
5 483 89.2 90.9 91.1 91.1 93.6 94.6 95.4 95.9 
6 730 94.9 93.8 94.5 93.8 97.1 98.5 95.9 97.0 
7 28 85.7 96.4 85.7 85.7 0.0 0.0 100.0 100.0 
8 478 96.0 84.7 97.3 97.5 97.9 98.3 86.2 88.3 
9 20 40.0 60.0 45.0 45.0 5.0 0.0 95.0 100.0 
10 972 74.4 89.8 85.8 85.7 87.5 90.2 97.1 98.4 
11 2455 76.7 79.6 86.6 88.7 92.7 94.2 94.4 96.4 
12 593 50.8 77.7 75.4 82.6 92.6 92.9 90.2 91.2 
13 205 98.0 99.5 99.5 99.5 99.0 99.0 99.5 100.0 
14 1265 89.7 91.8 92.6 92.6 93.3 93.8 95.9 97.3 
15 386 48.7 69.4 66.8 67.6 83.7 88.3 97.2 99.2 
16 93 89.2 87.1 81.7 83.9 95.7 96.8 98.9 100.0 

 

Table 7 shows the classification maps with highest accuracies of each 

types of classifier for comparison. Figs. 27(a) to 27(h) show the 

classification maps of IPS hyperspectral image by k-NN (k=1), SVM 

(OAO), SVM (OAA), CS4VM, SVM+EM, and SCSVM (OAA) with M=8 
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and 1.0 , respectively. To conveniently compare performance, Fig. 27 (i) 

shows the ground truth of the IPS image. 

The classification results from Table 6, Table 7, and Fig. 27 present the 

following findings: 

1. In terms of accuracy, SCSVM (OAA) with the PR step obtained the 

highest overall accuracy and kappa coefficient of 95.5% and 94.9%, 

respectively (Table 6). However, SCSVM (OAA) without the PR step 

obtained the highest average accuracy of 94.2%. 

2. Ten percent of each sample was selected randomly from the reference 

data set to serve as the training set for each class. Therefore, some 

classes were represented by only few training samples (i.e., there are 

only 3 and 2 samples for class 7 (Grass/pasture-mowed) and class 9 

(Oats), respectively). This may provide an unfair representation of this 

class in the training process. Table 7 shows that the classification 

performance for class 7 with SCSVM (OAA) was better than that with 

k-NN, SVM (OAA), SVM (OAO), CS4VM, and SVM+EM. Moreover, 

SCSVM (OAA) achieved better performance than other classifiers in 

class 9. This situation was improved by SCSVM (OAA), even without 

the PR step, and the classification accuracies of class 7 and 9 with the 

PR step were 100%. 

3. The classifiers with the PR step efficiently reduced some noise in the 

classification map, and slightly increased classification accuracy. 

4. Table 6 and the classification maps in Fig. 27 based on spatial based 

classifiers (SVM+EM, CS4VM, and SCSVM) show much better results 

than the classifiers based on only spectral information (k-NN, SVM 

(OAO), and SVM (OAA)). The spatial-contextual based classifiers 

reduced the number of speckle-like errors, especially in areas of 
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Soybeans-min till, Soybeans-no till, and Corn-no till, which were the 

most difficult parts to classify accurately. SCSVM (OAA) achieved a 

great improvement in the classification map. The SCSVM (OAA) 

classification map (Fig. 27 (h)) was similar to the ground truth (Fig. 27 

(i)) of the IPS. 

5. SVM+EM also achieved sound performance on the classification maps, 

obtaining a 92.8% overall classification accuracy. However, this 

scheme relies on partitional clustering results. Hence, if the partitional 

clustering technique cannot accurately partition these areas, which 

have similar spectral properties from different classes or come from the 

small sample size classes (i.e., class 7 (Grass/pasture-mowed) and class 

9 (Oats)), then the clustering technique will misclassify these areas into 

the same class (Fig. 27 (f)). If the partitional clustering technique 

works very well, but the standard SVM classifier cannot sensitively 

distinguish the pixels (e.g., different classes have similar spectral 

properties), then these areas will be sacrificed. Table 7 shows that 

SVM+EM achieved either 0% (e.g., class 7 and class 9 or low 

classification accuracies for small classes. 

6. Since CS4VM is based on the OAA multiclass strategy [32], the 

class-specific accuracies for applying CS4VM are higher than or 

similar to those for applying SVM (OAA). 
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(a) k-NN (b) SVM (OAO) 

 
(c) SVM (OAA) (d) CS4VM 

 
(e) SVM+EM (f) SVM+EM (PR) 

 
(g) SCSVM 

(OAA, M=8, 1 ) 
(h) SCSVM 

(OAA, M=8, 1 , PR) 

■Alfalfa 
■Corn-no till 
■Corn-min till 
■Corn 
■Hay-windowed 
■Grass/trees 
■Grass/pasture-mowed
■Grass/pasture 

■Oats 
■Soybeans-no till 
■Soybeans-min till 
■Soybeans-clean till 
■Wheat 
■Woods 
■Bldg-Grass-Tree-Drives
■Stone-steel towers (i) ground truth 

Figure 27. The classification maps of the IPS data set by the highest performance of 

each type classifier. 
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B. Washington D.C. Mall 

The experiments in this study used three cases to investigate the effects 

of sample size on the dimensionality in the Washington D.C. Mall data set. 

The sample covariance matrices of ML-based classifiers, ML and 

ML_MRF, of case 1 and 2 will be singular. Hence, ML-based classifiers 

are unsuitable for case 1 and case 2, and the performance of ML-based 

classifiers is marked as N/A for these cases. 

Similar to the IPS data set, Tables 8-10 and Fig. 28-30 respectively 

show the overall accuracies of SCSVM (OAA, OAO) and SCSVMF (OAA, 

OAO) with grids of 8} 4,{M  and 

10000} 1000, 500, 100, 10, 1, 0.5, 0.3, 0.1, 0.05, 0,{  

to investigate the influence of the parameters M and   in three cases. In 

case 1, the highest accuracy of 91.9% occurred at M=4 and 05.0  with 

the neighborhood system in the original space (SCSVM) using the OAA 

multiclass strategy. However, SCSVM (OAO, 4) achieved a similar 

accuracy of 91.7%. The highest accuracy in case 2is 94.1% at M=8 and 

1.0  with neighborhood system in the original space (SCSVM) and 

OAO multiclass strategy. However, SCSVM (OAO, 4) has a similar 

accuracy, at 94.0%. In case 3, the highest accuracy of 98.6% occurred at 

M=4 and 3.0  with the neighborhood system in the original space 

(SCSVM) using the OAO multiclass strategy. The SCSVM (OAO) 

performance was generally better than or similar to that of SCSVM (OAA) 

in all three cases. Furthermore, SCSVM with M=4 achieved better 

performance than (or similar performance to) SCSVM with M=8. This is 

because the Washington D.C. Mall is an urban site without large spatial 

structures.  
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Table 8 The Overall Accuracies in Percentages of SCSVM (OAA, M), SCSVM (OAO, 

M), SCSVMF (OAA, M), and SCSVMF (OAO, M) with Different Parameters M, the 

Size of the Neighborhood System, and   in Washington D.C. Mall Data set (Case 1). 

  0 0.05 0.1 0.3 0.5 1 10 100 500 1000 10000
SCSVM 
(OAA, 4) 

86.9 91.9 91.3 89.7 90.0 90.0 91.1 91.0 91.0 91.0 91.0 

SCSVM 
(OAA, 8) 

86.9 90.4 90.6 90.6 90.6 90.6 90.6 90.6 90.6 90.6 90.6 

SCSVM 
(OAO, 4) 

86.9 91.0 91.7 90.1 90.4 90.9 89.6 89.6 89.6 89.6 89.6 

SCSVM 
(OAO, 8) 

86.9 90.7 91.3 90.7 91.0 90.7 90.4 90.6 90.6 90.6 90.6 

SCSVMF 
(OAA, 4) 

86.9 88.3 88.3 88.1 88.0 88.1 87.6 87.7 87.7 87.7 87.7 

SCSVMF 
(OAA, 8) 

86.9 87.7 87.9 88.0 87.9 87.9 87.6 87.6 87.6 87.6 87.6 

SCSVMF 
(OAO, 4) 

86.9 86.6 86.6 86.6 86.4 85.9 86.4 86.4 86.4 86.4 86.4 

SCSVMF 
(OAO, 8) 

86.9 85.7 85.7 85.7 85.7 86.0 86.0 85.7 85.7 85.7 85.7 

 

Figure 28. The overall accuracies in percentages of the experimental classifiers, 

SCSVM and SCSVMF, for the Washington D.C. Mall data set in case 1. 

 

Figs. 29-31 show that the overall accuracy increases as the training 

sample size increases. Similar to the IPS data set, using many samples from 
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different land-cover classes, but that have similar spectral properties 

[20]-[21], negatively affects SCSVMF performance. That is, SCSVMF 

performance increases only a little, or even becomes worse than the 

performance of SVM, when   exceeds a certain threshold. The 

performance of SCSVMF (OAO) is much worse than that of SVM (OAO). 

Tables 11, 13, and 15 show the overall accuracies, kappa coefficients, 

and average accuracies of k-NN classifier with k = 1, which has the best 

classification performance of testing set, and SVM (OAO and OAA), 

CS4VM, SVM+EM with and without the PR step, SCSVM with and 

without PR step for all three cases of the Washington D.C. Mall data set. 

Tables 12, 14, and 16 display the class-specific accuracies of these 

classifiers. Because the number of testing samples is the same for every 

class in the Washington D.C. hyperspectral image data set (i.e., equal to 

100), the overall classification accuracy and the average accuracy are 

identical in Tables 11, 13, and 15, and the first decimal points are all 0 in 

Tables 12, 14, and 16. 

Similar to the IPS data set, Tables 11, 13, and 15, and Tables 12, 14, 

and 16, respectively compare the validation measures of SCSVM with 

different parameters, M and  . These have the highest accuracies in Tables 

8, 9, and 10. Fig. 31 shows a comparison of the classification maps with 

highest accuracies of each types of classifier in case 3. 
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Table 9 The Overall Accuracies in Percentages of SCSVM (OAA, M), SCSVM (OAO, 

M), SCSVMF (OAA, M), and SCSVMF (OAO, M) with Different Parameters M, the 

Size of the Neighborhood System, and   in Washington D.C. Mall Data set (Case 2). 

  0 0.05 0.1 0.3 0.5 1 10 100 500 1000 10000
SCSVM 
(OAA, 4) 

89.0  93.4  93.3 93.4 93.7 93.7 93.4 93.3  93.1  93.1 93.1 

SCSVM 
(OAA, 8) 

89.0  91.9  92.7 93.1 92.9 93.0 92.9 92.4  92.4  92.4 92.4 

SCSVM 
(OAO, 4) 

88.6  92.4  93.6 94.0 93.7 92.4 91.0 90.4  90.4  90.4 90.7 

SCSVM 
(OAO, 8) 

88.6  93.0  94.1 92.4 92.6 92.4 92.0 91.9  91.9  91.9 91.9 

SCSVMF 
(OAA, 4) 

89.0  88.9  88.9 89.1 89.3 89.3 89.1 89.3  89.3  89.3 89.3 

SCSVMF 
(OAA, 8) 

89.0  88.9  88.7 88.7 88.9 89.0 88.9 88.9  88.9  88.9 88.9 

SCSVMF 
(OAO, 4) 

88.6  88.6  88.6 88.9 88.9 88.3 88.0 88.1  88.0  88.1 88.1 

SCSVMF 
(OAO, 8) 

88.6  88.1  88.3 88.3 88.1 87.9 88.0 88.0  88.0  88.0 88.0 

 

 

Figure 29. The overall accuracies in percentages of the experimental classifiers, 

SCSVM and SCSVMF, for the Washington D.C. Mall data set in case 2. 



 

‐67‐ 

 

 

Table 10 The Overall Accuracies in Percentages of SCSVM (OAA, M), SCSVM (OAO, 

M), SCSVMF (OAA, M), and SCSVMF (OAO, M) with Different Parameters M, the 

Size of the Neighborhood System, and   in Washington D.C. Mall Data set (Case 3). 

  0 0.05 0.1 0.3 0.5 1 10 100 500 1000 10000
SCSVM 
(OAA, 4) 

93.7  95.3  95.6 95.9 96.1 97.4 96.9 95.7  95.3  95.3 95.3 

SCSVM 
(OAA, 8) 

93.7  94.4  94.6 95.1 95.3 95.3 95.4 95.5  94.4  94.4 94.4 

SCSVM 
(OAO, 4) 

94.3  94.9  97.3 98.6 98.1 97.3 96.1 95.4  96.1  96.1 96.1 

SCSVM 
(OAO, 8) 

94.3  95.9  97.3 96.9 96.0 96.0 95.0 95.4  95.1  95.1 95.1 

SCSVMF 
(OAA, 4) 

93.7  94.3  94.4 94.3 94.1 94.3 94.9 94.1  94.1  94.1 94.1 

SCSVMF 
(OAA, 8) 

93.7  94.1  94.4 94.4 94.4 94.6 94.4 94.4  94.4  94.4 94.4 

SCSVMF 
(OAO, 4) 

94.3  93.7  94.0 93.9 93.6 93.4 93.4 93.1  93.1  93.1 93.1 

SCSVMF 
(OAO, 8) 

94.3  93.9  94.0 93.9 93.7 93.4 93.6 93.4  93.4  93.4 93.4 

 

 

Figure 30. The overall accuracies in percentages of the experimental classifiers, 

SCSVM and SCSVMF, for the Washington D.C. Mall data set in case 3. 
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Table 11 The Overall Accuracies, Kappa Coefficients, and Average Accuracies in 

Percentages of the Experimental Classifiers for the Washington D.C. Mall Data set 

(Case1). 

Classifier Overall Accuracy Kappa Coefficient Average Accuracy
ML N/A N/A N/A 

ML_MRF N/A N/A N/A 
k-NN 85.6 83.2 85.6 

SVM (OAO) 86.9 84.7 86.9 
SVM (OAA) 86.9 84.7 86.9 

CS4VM 87.7 85.7 87.7 

SVM+EM 
BPR 82.0 79.0 82.0 
APR 80.3 77.0 80.3 

SCSVM 
(OAA, M=4, 05.0 ) 

BPR 91.9 90.5 91.9 
APR 92.0 90.6 92.0 

 

Table 12 The Class-Specific Accuracies in Percentages for the Washington D.C. Mall 

Data set in Case 1 

Class 
k-NN 

SVM 
(OAO)

SVM 
(OAA)

CS4VM
SVM+EM 

SCSVM(OAA, 
M=4, 05.0 )

No. Sample size BPR APR BPR APR 
1 100 79.0 78.0 81.0 86.0 80.0 83.0 92.0 92.0 
2 100 82.0 94.0 93.0 99.0 93.0 92.0 100.0 100.0 
3 100 58.0 66.0 60.0 57.0 62.0 60.0 93.0 91.0 
4 100 98.0 93.0 94.0 96.0 100.0 100.0 98.0 97.0 
5 100 94.0 95.0 95.0 98.0 54.0 51.0 83.0 86.0 
6 100 90.0 90.0 91.0 85.0 91.0 83.0 85.0 84.0 
7 100 98.0 92.0 94.0 93.0 94.0 93.0 92.0 94.0 

 

Table 13 The Overall Accuracies, Kappa Coefficients, and Average Accuracies in 

Percentages of the Experimental Classifiers for the Washington D.C. Mall Data set 

(Case 2). 

Classifier 
Overall 

Accuracy 
Kappa 

Coefficient 
Average 
Accuracy 

ML N/A N/A N/A 
ML_MRF N/A N/A N/A 

k-NN 87.1 85.0 85.6 
SVM (OAO) 88.6 86.7 88.6 
SVM (OAA) 89.0 87.2 89.0 

CS4VM 89.4 87.7 89.4 

SVM+EM 
BPR 86.7 84.5 86.7 
APR 84.6 82.0 84.6 

SCSVM 
(OAO, M=8, 1.0 ) 

BPR 94.1 93.2 94.1 
APR 94.1 93.2 94.1 
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Table 14 The Class-Specific Accuracies in Percentages for the Washington D.C. Mall 

Data set in Case 2. 

Class 
k-NN 

SVM 
(OAO)

SVM 
(OAA)

CS4VM 
SVM+EM 

SCSVM(OAO, 
M=8, 1.0 ) 

No. Sample size BPR APR BPR APR 
1 100 86.0 95.0 95.0 97.0 98.0 99.0 98.0 98.0 
2 100 84.0 95.0 95.0 100.0 96.0 95.0 100.0 100.0 
3 100 66.0 60.0 59.0 54.0 58.0 56.0 82.0 82.0 
4 100 98.0 98.0 98.0 98.0 100.0 100.0 100.0 100.0 
5 100 96.0 90.0 91.0 98.0 70.0 66.0 98.0 98.0 
6 100 87.0 91.0 92.0 85.0 91.0 83.0 84.0 84.0 
7 100 93.0 91.0 93.0 94.0 94.0 93.0 97.0 97.0 

 

 

 

Table 15 The Overall Accuracies, Kappa Coefficients, and Average Accuracies in 

Percentages of the Experimental Classifiers for the Washington D.C. Mall Data set 

(Case 3). 

Classifier Overall Accuracy
Kappa 

Coefficient 
Average 
Accuracy 

ML 94.1 93.2 94.1 
ML_MRF 96.7 96.2 96.7 

k-NN 94.4 93.5 94.4 
SVM (OAO) 94.3 93.3 94.3 
SVM (OAA) 93.7 92.7 93.7 

CS4VM 94.1 93.2 94.1 

SVM+EM 
BPR 94.6 93.7 94.6 
APR 92.9 91.7 92.9 

SCSVM 
(OAO, M=4, 3.0 ) 

BPR 98.6 98.3 98.6 
APR 98.4 98.1 98.4 
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Table 16 The Class-Specific Accuracies in Percentages for the Washington D.C. Mall Data set in Case 3 

Class 
ML ML_MRF k-NN SVM(OAO) SVM(OAA) CS4VM 

SVM+EM 
SCSVM 

(OAO, M=4, 3.0 ) 

No. Sample size BPR APR BPR APR 

1 100 99.0 100.0 95.0 97.0 96.0 99.0 98.0 99.0 99.0 99.0 

2 100 99.0 99.0 96.0 99.0 99.0 99.0 93.0 92.0 100.0 100.0 

3 100 90.0 94.0 80.0 78.0 75.0 76.0 85.0 85.0 99.0 100.0 

4 100 98.0 99.0 100.0 98.0 98.0 98.0 100.0 100.0 99.0 100.0 

5 100 93.0 99.0 99.0 100.0 100.0 100.0 98.0 97.0 99.0 100.0 

6 100 85.0 90.0 93.0 90.0 90.0 89.0 91.0 83.0 97.0 94.0 

7 100 95.0 96.0 98.0 98.0 98.0 98.0 97.0 94.0 97.0 96.0 
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The classification results in Tables 11-16 and Fig. 31 reveal the 

following findings: 

1. SCSVM obtained the highest classification accuracies of the testing set 

in terms of overall accuracy, kappa coefficient, and average 

classification for all cases. In case 1, SCSVM (OAA) with M=4, 

05.0  and the PR step achieved the best classification accuracy. The 

overall accuracy, kappa coefficient, and average classification were 

92.0%, 90.6%, and 92.0%, respectively. In case 2, SCSVM (OAA) 

with M=8, 1.0  achieved the best classification accuracy. The 

overall accuracy, kappa coefficient, and average classification were 

94.1%, 93.2%, and 94.1%, respectively. In case 3, SCSVM (OAO) 

with M=4, 3.0  and without the PR step achieved the best 

classification accuracy. The overall accuracy, kappa coefficient, and 

average classification were 98.6%, 98.3%, and 98.6%, respectively. 

The accuracies increased in all classifiers as the training sample size 

increased. 

2. Because the Washington D.C. image is an urban site image, some areas 

in the image are small spatial structures and some areas are large 

spatial structures. The PR step did not work well for small spatial 

structure areas (e.g. class 6 (trail) in Fig. 31). Tables 12, 14, and 16 

show that the accuracy decreased upon applying the PR step in class 6 

(trail). However, the PR step improved some noisy pixels in large 

structure areas (e.g., class 4 (water)), with the exception of case 1, 

which encountered the small sample size problem. 

3. The image contains too many types of roofs. Hence, when the training 

sample size is small (e.g., in class 3 (roof)) some types of roofs may 

not be chosen as training samples. For this reason, the classification 

accuracies and maps of this class are poor in case 1 and case 2 (Tables 
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12 and 14) regardless of the classifier. In the general case (case 3), 

these classes are identified more accurately (Table 16). 

4. Fig. 32 shows classified images of SCSVM (OAO) and SCSVM (OAA) 

with M=4 and  0, 0.1, and 0.3. These images reveal the effects of 

parameter   on the classified image. As the gamma increased, the 

classified image exhibited more homogeneous groups of pixels. 

5. Most of the spatial based classifiers (ML_MRF, CS4VM, and SCSVM) 

achieved better classification performance than the 

spectral-information-only-based classifiers (ML, k-NN, SVM). The 

exception here is SVM+EM in cases 1 and 2, because SVM+EM is 

particularly suitable for classifying images with large spatial structures 

[31]. The drawback of SVM+EM is that when including spatial 

information from the segmentation map or from the closest 

neighborhoods in a classifier, small spatial structures may be 

assimilated with larger neighboring structures if the spectral responses 

are not significantly different [31]. Hence, SVM+EM is not really 

suitable for the small areas of the Washington D.C. image. However, 

the classification accuracy and maps of class 4 (water), which is a large 

structure, can be improved, and the class-specific accuracy of the class 

(water) is 100% (Tables 12, 14, and 16) for all three cases. 

6. The CS4VM classifier is based on the OAA multiclass strategy. This 

classifier achieved slightly better classification accuracy than SVM 

(OAA) (see Tables 11, 13, and 15), but SCSVM still achieved better 

performance than CS4VM. However, the CS4VM distinguished some 

areas better than SCSVM. 
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(a) ML classifier (b) ML_MRF (c) k-NN 

 
(d) SVM (OAO) (e) SVM (OAA) (f) CS4VM 

 

(g) SVM+EM (h)SVM+EM (PR) 
(i) SCSVM  

(OAO, M=4, 3.0 ) 

 

■ grass 
■ tree 
■ roof 
■ water 
■ road 
■ trail 
■ shadow 

(j) SCSVM  

(OAO, M=4, 3.0 , PR) 

(k) The false-color IR image 
of the portion of Washington 

D.C. Mall image 
 

Figure 31. The classification maps of a portion of the Washington D.C. data set (case 3) 

by the highest performance of each type classifier. 
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(a) SCSVM (OAO), 0  

 
(b) SCSVM (OAO), 1.0

 
(c) SCSVM (OAO), 3.0

 
(d) SCSVM (OAA), 0  

 
(e) SCSVM (OAA), 1.0

 
(f) SCSVM (OAA), 3.0  

Figure 32. The classification maps of a portion of the Washington D.C. data set (case 3) 

of SCSVM (OAO) and SCVM (OAA) with M=4 and different parameters  =0, 0.1, 

and 0.3. 
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6. Conclusion 

This study proposes a clustering algorithm, called FLDC, and two 

kinds of spatial-contextual support vector machines (SCSVMs). FLDC is 

based on the Fisher criterion composed of the fuzzy between- and 

within-cluster scatter matrices extended from LDA. Experimental results 

with both synthetic and real data indicate that the proposed clustering 

algorithm outperformed the KMS, KMD, FCM, GK, GG, PCM, FPCM, 

PFCM, FCS, FSMM, and FMSFA algorithms. 

The results of clustering synthetic data sets reveal that FLDC only 

worked well when the distribution of clusters showed a normal distribution. 

Hence, future research should extend FLDC using kernel tricks, that is, a 

clustering algorithm based on an unsupervised version of kernel-based 

LDA for non-normal data sets. 

Another direction for future research is to show that the proposed 

optimization problem is non-convex and nonlinear. Although the proposed 

methods work well, the optimal solution may fall into a local minimum, 

and the interior-point optimization method is time consuming. Thus, it is 

necessary to find a more efficient algorithm for solving such problems. 

The number of clusters is an important factor in all clustering 

algorithms. Future research should develop or choose an appropriate 

criterion for FLDC, [Akaike and Bayesian information criteria (AIC and 

BIC)], to determine the number of clusters. 

For SCSVMs, results show that a SCSVM based on the neighborhood 

system in the original space can overcome similar spectral properties. 

SCSVM modifies the decision function and the constraints of SVM based 

on spatial-contextual information. A PR step consisting of a 

fixed-window-based postfiltering was employed to reduce the remaining 
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noise in the classification map. The experiments in this study compared and 

analyzed the effects of different types of classifiers on the classification 

accuracy and classification map of the proposed SCSVM, ML classifier, 

ML-MRF classifier, k-NN classifier, a standard supervised SVM, a CS4VM, 

and SVM+EM. 

The experimental results obtained from two different hyperspectral 

image data sets, the Indian Pine site (a mixed forest/agricultural site in 

Indiana) and the Washington D.C. Mall hyperspectral image (an urban site 

in Washington D.C.), confirm that the proposed SCSVM improves the 

classification accuracies and kappa coefficients. 

This discussion leads to the following conclusions about SCSVMs. 

1. SCSVM (OAA) performs better than or similar to SCSVM (OAO) in 

the IPS data set. The classification map of IPS data set obtained from 

SCSVM (OAA) with the PR step (Fig. 27 (h)) is very close to the 

ground truth, and the SCSVM classification accuracy and kappa 

coefficient are 95.5% and 94.9%, respectively. However, in the 

Washington D.C. Mall data set, SCSVM (OAO) performs better than 

or similar to SCSVM (OAA), and SCSVMF (OAA) performs better 

than or similar to SCSVMF (OAO). 

2. This study shows that selecting a suitable spatial parameter   

improves SCSVM performance, and the best choice of   becomes 

larger as the training sample size increases. That is,   has a 

significant influence on performance, especially for the SCSVM 

(OAA). 

3. The computational cost of the learning phase in the proposed SCSVM 

is slightly higher than that of the standard SVM in each round. From a 

theoretical viewpoint, a standard supervised SVM is a special case of 
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SCSVM if the parameter   is equal to 0. However, CS4VM requires a 

huge semi-sample set from the neighborhoods of each training sample 

in the objective function. Hence, the computational cost of the CS4VM 

learning phase is slightly higher than that of SCSVM learning phase. 

This is because SCSVM only uses the same training sample in the 

objective function in each round. For example, in the IPS data set 

experiment, the training phase of a supervised SVM (OAA) took about 

7.566s on a PC with an Intel Core 2 Duo CPU at 2.4 GHz and a 4-Gb 

DDR2 RAM. The training phase of SCSVM (OAA) took about 7.909s 

on the same machine, but the training phase of CS4VM required about 

185.56s. 

4. The SVM+EM method is particularly suitable for classifying images 

with large spatial structures (e.g., the IPS image) when the spectral 

responses of different classes are dissimilar and the classes contain a 

comparable number of pixels. However, most real data does not always 

satisfy this condition (e.g., the Washington D.C. Mall image). Hence, 

SVM+EM is not suitable for all situations. In the SCSVM classifier, 

the spatial neighborhood system can be modified according to the 

spatial structures of different data sets. 
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