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A Clustering Algorithm Based on Fuzzy-Type Linear Discriminant
Analysis and Spatial-Contextual Support Vector Machines

Student: Cheng-Hsuan Li Advisors: Dr. Chin-Teng Lin

Institute of Electrical Control Engineering
National Chiao Tung University

ABSTRACT
Statistical learning 1s trying to developcomputer algorithms to recognize

complex patterns and make decisions based on empirical data automatically.
Two major issues are clustering and classification. Clustering organizes
patterns into sensible clusters for patterns in the same cluster to be similar
in a sense, whereas classification identifies the categories to which new
patterns belong based on an available training set of data containing
patterns of known categories. This thesis introduces a fuzzy-based
clustering and a spatial-contextual classifier. Fuzzy-based -clustering
defines within- and between-cluster.scatter matrices of a fuzzy-type linear
discriminant analysis, and the clustering results are based on the Fisher
criterion. The proposed clustering algorithm minimizes the within-cluster
information and simultaneously maximizes the between-cluster information.
For the classification part, a spatial-contextual term was used to modify the
decision function and constraints of a support vector machine.
Experimental results show that the proposed methods achieve good
clustering and classification performance on famous real data sets.



BABROR My R RS L R AL ALY Y < &
TRy E L S R R ERAT - F
PHEP S L EELFERTEY FE 2B OFER > A AT
pBALFED S e o RAGIPE EY JEZ BR o XEFHF R BT |

SN S

RREVF L N a2 B

?\TF
%
o
.ms\ri‘\
F_L
&
T
.ﬂm
7

=
|3\
T
K3
% -
ﬁn
R
P

R M IEA Eehd ERE AT - Henk f o L Qp EenEE > £

Beis— BEYAEY BB AREH - RN AN B (T2 TR

EANES S INN 1]‘%‘ ’ ggé\‘. o i"?ﬂ '_é‘_}é»t%l“ .]%‘-ﬂqa%‘_g — = Fhep 3 o

ﬁ}\%; ’?\;i,l‘j‘ll-l‘?‘}%l{_‘z‘é\';\“%r‘é ﬁj’\}%\#%{?_&l%p* o



Contents

ChiNESE ADSTIACT ....eouvieiieiieiie ettt 1
English @bStract........cccoviiiiiiiiiiiiie e e 1
ACKNOWIEAZEMENL......ccuviiieiiieciie et et e 11
COMNLEINES ...ttt ettt ettt e st e st e et e e bt e e st e e sabeesabeeenee v
LSt Of taDIES ..o vi
LISt OF fIGUIES ..eeeeniiiie et viil
LiSt Of SYMDOIS .....vviiiiiiii e i et i xii
L. INtrOdUCHION ...ttt oi s e e et e e e aa e e e naaeeensreeeens 1
2. Literature Review of Fuzzy-based Clustering Algorithms..................... 10
2.1 Fuzzy C-means Clustering Algorithm..............cc.ooooiiiiiiee 10
2.2 Gustafson-Kessel algorithm...........cccccoooi it i, 11
2.3 Fuzzy Compactness and Separation ..................cceeiiiieeeenveeeneennnen. 13
2.4 Other FCM-type Clustering Algorithms...........oco..oooniiininnnnen. 15
3. LDA-based Clustering Algorithm................ooiiiiinitenniieecee e, 16
3.1 Review of LDA .. i i iiisms sttt bt ettt 16
3.2 FLDC AIGOTItRM......ccviiiiiiiiiiecieeciee et 17
3.3 EXPEIIMENLS ...oeieiiiieiiiiieeeiiiee et e et e et e s tae e eveeeeareeeeeaaeeeaenaeeas 20
3.3.1 Experimental Data and Designs ...........cccceeeveeeeciireniieeenneen. 20
3.3.2 Experimental Results..........cccccvvveeiiiiieciiieeiieceee e, 23

4. The Support Vector Machine and Its Spectral-Spatial Classification
SCREMES.....coniieiie et 34
4.1 Support Vector Maching..........cccveeeiiiiieiiiieeiieecieee e 34



4.2 Spectral-Spatial Classification Scheme Based on Partitional

Clustering TeChNIQUES .........ceeveviiieiiiieeeiiee e 37

4.3 Context-Sensitive Semi-supervised SVM .......ccccooviiiiviiiieeniinnnne. 40

5. Spatial-Contextual Support Vector Machines ...........cccceeveevveerveennnnnne. 43
5.1 A Spatial-contextual Support Vector Machine in the Original Space
............................................................................................................... 43

5.2 A Spatial-Contextual Support Vector Machine in the Feature Space
............................................................................................................... 49

5.3 Classification System of SCSVM and SCSVMF .........cccovveennenn. 50

5.4 EXPETIMENLS .....cceturiaieiuiaeainrarssesteasinnssesedbaeeessseeesssseesssseesassseeessseeens 52
5.4.1 Experimental Data and Designs......cccoieioiieeeecieeenciieeeeieennns 52

5.4.2 Experimental ReSultS ..o...covveiiieiiiie it 56

6. Conclusion. Ml et - I S RRR 75
References..... Rl -..........- ST 0w . ... () FES ... 78



List of tables

Table 1 Descriptions of Three Real Data Sets.........ccccceeeevveeeeciieeenieeeenee. 23

Table 2 The Mean, Standard Deviation, Maximum, and Minimum
Accuracy of Clustering for Three Real Data sets. .......c.ccccecvveeervieeeninennee, 33

Table 3 The Mean, Standard Deviation, Maximum, and Minimum
Accuracy of Clustering for Three Real Data sets of FMSFA, Where LD
Represents the Latent DIimension ..........cccceeeceeeiecieeieciieecciee e, 33

Table 4 Sixteen Categories and Corresponding Number of Pixels in the
Indian Pine Site IMage .........ceevvieeeeiiieeiieeee e 53

Table 5 The Overall Accuracies in-Percentages of SCSVM (OAA, M),
SCSVM (OAO, M), SCSVMF (OAA, M), and SCSVMF (OAO, M) with
Different Parameters M, the Size of the Neighborhood System, and » in

the IPS Data sct s ...l 1 L. . B .0 . % .. 58

Table 6 The Overall Accuracies, Kappa Coefficients, and Average
Accuracies in Percentages of the Experimental Classifiers for the [PS Data

Table 8 The Overall Accuracies in Percentages of SCSVM (OAA, M),
SCSVM (OAO, M), SCSVMF (OAA;, M), and SCSVMF (OAO, M) with
Different Parameters M, the Size of the Neighborhood System, and y in

Washington D.C. Mall Data set (Case 1).......cccceeveiiieerciiieeniieeeiieeeieee e 64

Table 9 The Overall Accuracies in Percentages of SCSVM (OAA, M),
SCSVM (OAO, M), SCSVMF (OAA, M), and SCSVMF (OAO, M) with
Different Parameters M, the Size of the Neighborhood System, and y in

Washington D.C. Mall Data set (Case 2).......ccceeevvireerireeeeiieeecieee e, 66

Table 10 The Overall Accuracies in Percentages of SCSVM (OAA, M),
SCSVM (OAO, M), SCSVMF (OAA, M), and SCSVMF (OAO, M) with
Different Parameters M, the Size of the Neighborhood System, and y in

Washington D.C. Mall Data set (Case 3)......ccccceeevireriieniiieeiieeieeneeeeiens 67

-Vi-



Table 11 The Overall Accuracies, Kappa Coefficients, and Average
Accuracies in Percentages of the Experimental Classifiers for the
Washington D.C. Mall Data set (Casel).......ccccceeevuiieiniiieeciiiieeciieeeieee e, 68

Table 12 The Class-Specific Accuracies in Percentages for the Washington
D.C. Mall Data set in Case 1......c.ceeeviriiiiiieeiie e 68

Table 13 The Overall Accuracies, Kappa Coefficients, and Average
Accuracies in Percentages of the Experimental Classifiers for the
Washington D.C. Mall Data set (Case 2).......cccceeevvieeeniieeeniieeeieee e, 68

Table 14 The Class-Specific Accuracies in Percentages for the Washington
D.C. Mall Data set in CaS€ 2........ceeeeuvieieieiieeeieeeeiieeeetieeesvreeeseveeeesevee e 69

Table 15 The Overall Accuracies,” Kappa Coefficients, and Average
Accuracies in Percentages of the Experimental Classifiers for the
Washington D.C. Mall Data set (Case 3)cue.ciivievveiioriensitenneeeenieenieeeieeeneee. 69

Table 16 The Class-Specific Accuracies in Percentages for the Washington
D.C. Mall Data 8t 10 CaS€ 3. iiuueeiiiieeiiireaiiontienneeeeeeseasiiteeeeeevreeesereeeennns 70

-Vii-



List of figures

Figure 1. The spectral values obtained from the Indian Pine Site data set.
The purple represents the Soybeans-min till patterns and the yellow
represents the Corn-no till patterns. These two classes have similar spectral
J L8] 015 43 TS TSP 5

Figure 2. The support vector machine (SVM) classification results of the
Indian Pine Site image, containing speckle-like errors...........ccccceevveeeennenne. 6

Figure 3. (a) The “x” remarks 50 random samples chosen from the
multivariate normal distribution with mean [0.5,0] and covariance
[0.8 0.7

07 08}’ and the “0” remarks 50. random samples chosen from the

multivariate normal distribution with mean [-0.50] and covariance
(0.8 -0.7
-07 08

} (b) The clustering results of (a) applying FCM; (c) the
clustering results of (a) applying GK algorithm. ..............cccoooii, 12

Figure 4. Ten artificial data sets [53]-[54] were used in this study. The first
three data sets-were generated with 10 additional noise features. The
number of clusters appears in parentheses. . ..ot ..o ieieenieerieeeiee e 22

Figure 5. The results of clustering the “Four gauss” data set using twelve
clustering algorithms. The best clustering results from applying GG and
GGD were chosen for comparison. This figure also shows the best results
of clustering FSMM and FSMMD for comparison. ..........cccccceeeveeeeueeennnnns 26

Figure 6. The results of clustering the “Easy doughnut” data set using
twelve clustering algorithms. The best clustering results from applying GG
and GGD were chosen for comparison. This figure also shows the best
results of clustering FSMM and FSMMD for comparison.............ccc.ce...... 27

Figure 7. The results of clustering the “Difficult doughnut” data set using
twelve clustering algorithms. The best clustering results from the
application of GG and GGD were chosen for comparison. This figure also
shows the best results of clustering FSMM and FSMMD for comparison.28

Figure 8. The results of clustering the “Boat” data set using twelve
clustering algorithms. The best clustering results from applying GG and

-viii-



GGD were chosen for comparison. This figure also shows the best results
of clustering FSMM and FSMMD for comparison. ..........ccccceevcveernueennnnenns 29

Figure 9. The results of clustering the “Noisy lines” data set using twelve
clustering algorithms. The best clustering results from applying GG and
GGD were chosen for comparison. This figure also shows the best results
of clustering FSMM and FSMMD for comparison. ...........cccecvveeevveeenneen. 30

Figure 10. The results of clustering the “Petals” data set using twelve
clustering algorithms. The best clustering results from applying GG and
GGD were chosen for comparison. This figure also shows the best results
of clustering FSMM and FSMMD for comparison. ...........c.ccceeeveeeeuveennnenns 30

Figure 11. The results of clustering the “Saturn” data set using twelve
clustering algorithms. The best clustering results from applying GG and
GGD were chosen for comparison. This figure also shows the best results
of clustering FSMM and FSMMD for comparison. w.......c....cccceevvervennnenne 31

Figure 12. The results of clustering the “Regular” data set using twelve
clustering algorithms. The best clustering results from applying GG and
GGD were chosen for comparison. This figure also shows the best results

of clustering FSMM and FSMMD for comparison. .........cceeeeerveeeueennnenns 32
Figure 13. Flowchart of the SVM+EM [31]. ...cooviiniiiiiiiiin e, 37
Figure 14. Example of SVM+EM classification [31].cc.cccvvveeiieniieninnnnee. 39

Figure 15. The left and right images represent the first-order and
second-order neighborhood systems in the original space, respectively.... 41

Figure 16. Example of training and related context patterns in the feature
SPACE [32]. coeiiiiie ettt e e e e e e et e e e e e araaaeeeaneas 41

Figure 17. The pixels enclosed by bold lines represent the first-order
neighborhood system used in SCSVM. .......oooiiiiiiiiiiiieceeeeeeeee e, 43

Figure 18. An example of the spatial-contextual information with the
second-order neighborhood system of pattern x, in the original space....45

Figure 19. The left panel shows the decision boundary (solid black line)
obtained by SVM. The center panel shows the semi-labels of the patterns in



the second-order neighborhood system of x;. The right panel shows the
decision boundary (solid red line) obtained of SCSVM.........ccccccevveenneen. 46

Figure 20. A multiclass case of the spatial contextual information defined
by the OAO strategy (class 1 versus class 2) for pattern x, in the

neighborhood system ox”. The labels of class 1 and class 2 are defined as

+1 and -1, 1€SPECtIVELY. .oooouviiiiiiieeeeee e 47

Figure 21. A multiclass case of the spatial contextual information defined
by the OAA strategy (class 1 versus all others) for pattern x, in the

neighborhood system ox?. The label of class 1 is defined as +1 and the

labels of the remaining classes (class 2 and class 3) are defined as -1....... 48
Figure 22. SCSVM and SCSVMF classification systems. ............ccccueenneee. 51
Figure 23. A portion of the Indian pine site image measuring 145x145
pixels. ...............ff.. . D P D .. NP . 52
Figure 24. The ground truth-of the Indian pine site data set....................... 52

Figure 25. The false-color IR image of a portion of Washington D.C. Mall
image measuring 205 307 pixels. There are seven categories: grass, tree,
roof, water, road, trail, and ShadOW. ........ceeeeemmmmmmsennnnneivmieiiieneeeieieeeieeneennnns 54

Figure 26. The overall accuracies in percentages of the experimental
classifiers, SCSVM and SCSVMF, for the IPS data set...............c............. 57

Figure 27. The classification maps of the IPS data set by the highest
performance of each type classifier. ........cccceeeeiviiiiiiieciieee e, 62

Figure 28. The overall accuracies in percentages of the experimental
classifiers, SCSVM and SCSVMF, for the Washington D.C. Mall data set
11 o1 1S USSR 64

Figure 29. The overall accuracies in percentages of the experimental
classifiers, SCSVM and SCSVMF, for the Washington D.C. Mall data set
TN CASE 2. evvieeeiieeeiteeeeitteeeetteeesteeeestreeessseeessseeesssseeesssseessseaeanssaeenssseeensseeas 66

Figure 30. The overall accuracies in percentages of the experimental
classifiers, SCSVM and SCSVMF, for the Washington D.C. Mall data set
TN CASE 3. ouiiieiiiiiieeiiee e et e e et e e e s tte e e treeestbeeeesbeeesssseeesasaeeensseaeenssaeeassaeeennseens 67



Figure 31. The classification maps of a portion of the Washington D.C.
data set (case 3) by the highest performance of each type classifier. ......... 73

Figure 32. The classification maps of a portion of the Washington D.C.
data set (case 3) of SCSVM (OAO) and SCVM (OAA) with M=4 and
different parameters y=0, 0.1, and 0.3. .......cceeeeriiiriiiieee e, 74

-Xi-



List of symbols

L the number of clusters or classes

N the number of samples

n . the number of training samples

M © the number of samples in the neighborhood system
X ¢ A hyperspectral d-dimensional image of size IxJ pixels
D ! the training data set

H, ' the set of samples in class i

H . aHilbert space

N;  * the number of samples.in class i

R the setof real numbers

R? ' the d dimensional Euclidean space

R* ‘- the setof positive real numbers
ox? ¢ aneighborhood system w.r.t. -x, “in the original space
ox;  + aneighborhood system w.r.t. x, in the feature space

X I anunlabeled pattern

x, * thej-th sample

x{" 1t the j-th sample in class i

X; * thej-th sample in the neighborhood system ox,

c, - the center of the cluster 7 or class i

¢ . the total mean of samples

v - the s-th large eigenvector

-Xii-



- a normal vector to the decision hyperplane of support vector

machine

. the vector whose elements are slack variables of the support

vector machine

. the vector whose elements are slack wvariables of the

context-sensitive semi-supervised support vector machine

. the weights of the importances of context patterns in the

context-sensitive semi-supervised support vector machine

. the vector with elements that are Lagrange multipliers
. the dimensionality of the original space

. the weighting exponent

- the dimensionality of the reduced space

. the regularization-parameter of LDA-based clustering
. the s-th large eigenvalue

. the membership grade of the j-th sample in cluster i

. the tradeoff parameter of fuzzy compactness and separation
. the parameter to control 7,

. the class label w.r.t. the training sample x,

: the semi-label of X,

- a constant to control the decision hyperplane of the support vector

machine

. a slack variable of the support vector machine w.r.t. x,
. a penalty parameter of the support vector machine
. a Lagrange multiplier

 a nonnegative parameter that controls the effect of spatial-

contextual information

Xiii-



f SVM

fSCSVM

. the fuzzy within-cluster scatter matrix
. the fuzzy between-cluster scatter matrix

. the with-class scatter matrix of linear discriminant analysis

- the between-class scatter matrix of linear discriminant analysis
- the with-class scatter matrix of LDA-based clustering

. the between-class scatter matrix of LDA-based clustering

. a kernel matrix

 a positive semi-definite ~matrix for computing an adaptive

distance norm of Gustafson-Kessel algorithm

- the fuzzy covariance matrix of Gustafson-Kessel algorithm
. the cost function-of fuzzy c-means

- the cost function of Gustafson-Kessel algorithm

- the cost function of fuzzy compactness and separation

. the objective function of linear discriminant analysis

- the objective function of LDA-based clustering

. a nonlinear feature mapping
- a kernel function
. the decision function of the support vector machine

. the decision function of the spatial-contextual support vector

machine

- the function with the output being the number of pixels in the

neighbor system belonging to class +1

- the function with the output being the number of pixels in the

neighbor system belonging to class -1

-Xiv-



1. Introduction

Researchers have developed numerous statistical learning algorithms
for applications in various areas of science, finance, and industry in recent
years. Statistical learning comprises several different paradigms such as
classification, regression, feature extraction, dimensionality reduction and
density estimation [3]. The basic idea of classification methods for feature
space data is to partition up the entire feature space into L exhaustive,
nonoverlapping regions, where L is the number of classes present in the
scene, so that every point in the feature space is uniquely associated with

one of the L classes [22].

The classification algorithms can be divided mto two main categories
according to the learning process. Supervised classification, or simply
classification, is the learning process of inferring a function to classify
unknown patterns using the training data to train the rule [66], i.e., a set of
training samples is available and the classifier exploits this a priori known

information [2].

The other type of learning process is called unsupervised classification,
or simply clustering. It is referred to-as unsupervised because it does not
use training samples [22]. Clustering assesses the relationships among
samples of a data set by organizing the patterns into different groups. After
clustering, patterns in one group show greater similarity to each other than
those belonging to different groups without any prior known information
[1]. Clustering analysis can detect underlying structures within data, for
classification and pattern recognition, and for model reduction and

optimization [2], [4]-[5].

Clustering algorithms are most commonly used as an aid to selecting a
class list and training samples for the classes in that list. That is, clustering
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may be a means of preprocessing the data for a supervised classification
procedure. A clustering scheme may be applied to the data for each class
separately and representative samples for each group within the class used
as the prototypes for that class [66]. Fundamentally, to be optimally useful,
a classification must have classes that are (simultaneously) “of information
value, exhaustive, and separable.” The training samples for supervised
learning generally are selected with emphasis on the former one. Clustering
1s a useful tool of the training process to achieve the latter two. It can be a
useful procedure, though, in defining spectral classes and training for them
by breaking up the distribution of pixels in feature space into subunits so
that one can observe what is likely to be separable from what. It allows one
to locate the prevailing modes in the feature space, if any prevalence exists

[22].

Recent statistical learning algorithms [17]-[19] use both labeled and
unlabeled samples for = training. -~ These algorithms are called
semi-supervised learning process, and fall between unsupervised pattern
recognition and supervised recognition. The aim of this thesis is to develop
an unsupervised clustering algorithm and a semi-supervised classification
algorithm. The former one 1s a fuzzy-based clustering which considers both
within- and between-information of clusters, and the latter one is a
semi-supervised classification algorithm which takes into account both

spectral and spatial information.

Fuzzy-based clustering, which determines if a vector belongs to a
specific cluster to a certain degree, have been the subject of intensive
research in the past three decades [2], [4]-[8]. Fuzzy c-means (FCM)
clustering is one of the most well-known clustering methods [7]-[8], and
researchers have developed many advanced FCM-type clustering

algorithms. The Gustafson-Kessel (GK) algorithm [9] is a well-known

-2-



algorithm in this category. This algorithm employs an adaptive distance
norm to detect clusters of different geometrical shapes in one data set [2].
Krishnapuram and Keller [52] proposed a new clustering model, called
possibilistic c-means (PCM), which relaxes the following constraint: “the
sum of the membership values of every sample to all clusters is 1.” This
approach avoids the outliers belonging to one or more clusters. In 1997, the
fuzzy-possibilistic c-means (FPCM) [10] was proposed to generate both
possibility and membership values. However, the possibility values
generated by FPCM become very small as the size of the data set increases.
To eliminate the problem of FPCM and take advantage of the benefits of
FCM and PCM, the possibilistic fuzzy c-means (PFCM) was proposed in
2005 [11].

Some FCM-type algorithms, such as the Gath-Geva (GQG) algorithm,
employ an adaptive distance norm based on the fuzzy maximum likelithood
estimates [5], [12]. Chatzis and Varvarigou [13] proposed a robust fuzzy
clustering algorithm based on the fuzzy treatment of finite mixtures of
multivariate Student’s z-distributions (FSMM). This approach uses finite
mixtures of multivariate Student’s ¢ distributions instead of finite Gaussian
mixture models (GMMs). Chatzis and Varvarigou [56] combined the
advantages of factor analysis and proposed a fuzzy mixture of Student’s ¢
factor analyzers (FMSFA). FMSFA provides a well-established
observation space dimensionality reduction framework for fuzzy clustering
algorithms based on factor analysis. This simultaneously achieves fuzzy
clustering and a reduction in local dimensionality within each cluster. Their
experimental results show that FMSFA outperforms finite mixtures of
Student’s t-factor analyzers (fMFA) [57], a modification of the fuzzy
c-varieties algorithm with regularization by Kullback—Leibler information

(KLFCV) [58], and the mixture of factor analyzers (MFA) model [59].



Most fuzzy-based clustering algorithm by minimizing a cost function,
only based on the sum of distances between samples to their cluster centers
[2], which is equal to the trace of the within-cluster scatter matrix [14]-[15].
Researchers have recently used linear discriminant analysis (LDA) [14] for
dimensional reduction in supervised classification problems. LDA uses the
mean vector and covariance matrix of each class to formulate within-class,
between-class, and mixture-class scatter matrices. Two similar fuzzy-based
clustering algorithms based on fuzzy within-cluster, between-cluster, and
total scatter matrices are proposed in [15] and [16]. The objective function
of fuzzy compactness and separation (FCS) [15] is based on the difference
of fuzzy within- and between-cluster scatter matrices. This minimizes the
measurement of compactness, but simultaneously maximizes the separation
measure. However, the within- and between-class scatter matrices of LDA
are not the special case of the proposed fuzzy within- and between-cluster
scatter matrices in the supervised learning problem. Moreover, based on the
Fisher criterion, the LDA method finds features such that the ratio of the
between-class scatter to the average within-class scatter is maximized in a
lower dimensional space. Of the concept of class scattering to class
separation, the Fisher criterion takes the-large values from samples when
they are well clustered around their mean within each class, and the clusters
of the different classes are well separated [2]. The Fisher criterion is
formulated as a function of class statistics. For these reasons, this thesis

proposes a clustering algorithm based the Fisher criterion [4].

The first part of the thesis is to propose a fuzzy-based clustering which
is based on the fuzzy-based within- and between-cluster scatter matrices. In
addition, the Fisher criterion is used to form the objective function. This
means that the proposed clustering algorithm take into account not only the

within- and between-information of the distribution of data but also the



interaction of the within- and between-information. Chapters 2-3 present
the fuzzy-based clustering algorithm. Chapter 2 introduces some recently
proposed fuzzy-based clustering algorithms. Chapter 3 details the proposed
clustering algorithm based on both within- and between-cluster scatter

matrices, extended from linear discriminant analysis (LDA) [4].
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Figure 1. The spectral values obtained from the Indian Pine Site data set. The purple
represents the Soybeans-min till patterns and the yellow represents the Corn-no till

patterns. These two classes have similar spectral properties.

In hyperspectral image classification, spectral-domain based classifiers
often lead to imprecise estimation of different land-cover classes that have
very similar spectral properties, which makes it difficult to distinguish
unlabeled patterns [20]-[21]. Fig. 1 shows the spectral values obtained from
patterns of two categories in the Indian Pine Site data set: Soybeans-min till
(purple color) and Corn-no till (yellow color) [22]. These two different
classes have very similar spectral properties. Hence, employing these
classes to train conventional classifiers (e.g., maximum likelihood classifier
(ML) [2], [15], k-nearest neighbor classifier (k-NN) [2], [15], and support
vector machine (SVM) [23]-[24]) leads to poor classification performance,

producing a speckle-like classification map [20]-[21], [25]. Fig. 2 shows



that the support vector machine (SVM) classification map of Indian Pine

Site includes a number of speckle-like errors.

_,r"p"'\.

Figure 2. The support vector machine (SVM) classification results of the Indian Pine

Site image, containing speckle-like errors.

Considering both spectral and spatial-contextual information, using a
semi-supervised learning algorithm is an effective way to decrease
speckle-like errors when interpreting a hyperspectral image. There are two
main methods for combining spectral and spatial-contextual information.
The graph-based technique [18]-[19], [26]-[32] uses the typical method of
performing a regularization in which “similar” features belong to the same
class. This method associates the vertices of a graph with the complete set
of samples, and then builds the regularization depending on the variables
defined on the vertices [18]. The other approach is to use
fixed-window-based methods, such as Markov random fields [20]-[21],
morphological filtering [28], or morphological leveling [29]-[30]. This
approach improves the classification performance of hyperspectral images

compared to pixel-wise methods [31].

Jackson and Landgrebe [20] applied a Gaussian function to the
Bayesian decision rule with Markov random fields (MRF), Bayesian

contextual classifier based on MRF (ML MRF), to mitigate the
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speckle-like errors. Their method achieves improved performance in
classification maps. Another study suggests applying similar concepts to
develop a MRF-based k-nearest neighbors classifier and Parzen classifier
[21]. However, MRF-based classifiers are still constrained by statistical
estimation (e.g., the covariance matrix of ML based on a Gaussian

distribution) or the amount of learning data.

The support vector machine [23] is a pattern classification technique
proposed by Vapnik et al. Unlike traditional methods, which minimize
empirical training errors, SVM attempts to minimize the upper bound of
the generalization error by maximizing the margin between the separating
hyperplane and the training data. Hence, SVM .is a distribution-free
algorithm that can overcome the problem of poor statistical estimation.
SVM also achieves greater-empirical accuracy and better generalization
capabilities than other standard supervised classifiers [3] [34]-[35]. In
particular, SVM performs well for high-dimensional data classification
with a few tramning samples [37]-[38], and is robust to the Hughes
phenomenon [32]-[33], [35], [37]-[38].

Moreover, many studies [30]-[33] show that support vector machines
with both spectral and spatial information achieve effective and stable
hyperspectral image classification. A context-sensitive semi-supervised
support vector machine (CS*VM) [32] uses the context of neighborhood
patterns as semi-patterns to solve the problem of noisy training patterns. In
this case, noisy training patterns are mislabeled patterns that introduce
distorted information to a classifier. CS*VM is a semi-learning approach in
which the computational cost increases as the number of semi-samples

increases.

Tarabalka et al. [31] presented a spectral-spatial classification scheme
based on partitional clustering techniques (SVM+EM). This approach

-7-



segments an image into more homogeneous regions and combines the
results of these regions using pixel-wise SVM classification. A spatial
post-regularization (PR) of the classification map reduces the noise. This
approach is particularly suitable for classifying images with large spatial
structures, when spectral responses of different classes are dissimilar, and
when classes contain a comparable number of pixels. If the spectral
responses are not significantly different, this approach may result in

misclassification [31].

The second part of this thesis uses two neighborhood systems, that one
is in the original space andthe other one is in the feature space, to modify
the constrain and decision rule of the support vector machine, and proposes
a spatial-contextual support vector machine to overcome the speckle-like
errors. Chapters 4-5 focus-on- the :spectral-spatial classification schemes.
Chapter 4 introduces the SVM and some recently  spectral-spatial
classification .algorithms. Chapter 5 describes two spatial-contextual
support vector machine classification algorithms (SCSVMs) [39] that
modifies the decision function and constraints of a support vector machine
(SVM) using a spatial-contextual term in the original space or in the feature
space, which are based on the concept of the Markov random fields in the

original space or k-nearest neighborhoods in the feature space, respectively.

The thesis 1s devoted to fuzzy-based clustering algorithm, fuzzy linear
discriminant clustering (FLDC), and semi-supervised image classification,
spatial-contextual support vector machine. First, in Chapter 3, fuzzy-based
within- and between-cluster scatter matrices extended from the within- and
between-class scatter matrices of LDA are introduced. Furthermore, the
Fisher criterion composed by the fuzzy-based scatter matrices is used to
form the objective function. FLDC considers not only the within- and

between-information of the data distribution but also the interaction of the



within- and between-information. The results of experiments on both
synthetic and real data show that the proposed clustering algorithm can
generate similar or better clustering results than eleven popular clustering
algorithms: K-means, K-medoid, FCM, the Gustafson-Kessel, Gath-Geva,
possibilistic c-means, fuzzy-possibilistic c-means, possibilistic fuzzy
c-means, fuzzy compactness and separation, a fuzzy clustering algorithm
based on a fuzzy treatment of finite mixtures of multivariate Student’s-¢
distributions algorithms, and a fuzzy mixture of Student’s t factor analyzers

model.

Then, in Chapter 5, two neighborhood systems is used to overcome the
similar spectrum problem in support vector machine. Two semi-supervised
classifiers, spatial-contextual support vector machines (SCSVMs), are
proposed by modifying the constrain and the decision function of support
vector machine. To evaluate the effectiveness of SCSVM, the experiments
in this study compare the performances of other classifiers: a support vector
machine (SVM), context-sensitive semi-supervised support vector machine
(CS4VM), maximum likelithood classifier (ML), Bayesian contextual
classifier based -on Markov random fields: (ML MRF), and
k-nearest-neighbor classifier (&-NN). Experimental results show that the
proposed method achieves good classification performance on famous
hyperspectral images (the Indian Pine site and the Washington, D.C. Mall
data sets). The overall classification accuracy of for the hyperspectral
image of the Indian Pine site dataset with 16 classes is 95.5%. The kappa
accuracy is up to 94.9%, and the average accuracy of each class is up to

94.2%.



2. Literature Review of Fuzzy-based Clustering

Algorithms

The aim of clustering algorithms is to identify unknown data structures,
such as natural groups or clusters, by measuring the similarities between
samples. The samples within a cluster or group are more similar to each
other than those pixels belonging to other clusters [3], [40]. This section

reviews some well-known fuzzy-based clustering algorithms.

2.1 Fuzzy C-means Clustering Algorithm

Fuzzy c-mean clustering (FCM)- is the fuzzy equivalent of the nearest
mean “hard” clustering algorithm [1]-[2], [5]-[6], [41], and minimizes the

cost function

L N L
S ren (Uy5,) =ZZ(“u)mH - H

=
with respect to'membership grade %, and c;, the center of fuzzy cluster i,
where X € R, Nis the number of samples, L>1 is the number of clusters,
and me (1,0) is a weighting exponent.
The FCM algorithm = assigns the memberships to x, . These
memberships are inversely related to the relative distance of x; to the L

cluster centers {c,}. The formulation of criterion J,,, could be regarded

as the trace of the fuzzy within-cluster scatter matrix S, [2], which is
defined as

L N r
Sew = ZZ(UU)m(X] _Ci)(Xj —c) .

i=l j=1
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Equation above is similar to the within-class scatter matrix of LDA in
that this criterion only considers the within-cluster scatter matrix. A
consideration the within-cluster similarity is the only criterion. Based on
previous suggestions [34], the division into clusters should be characterized
by within-cluster similarity and between-cluster (external) dissimilarity.

This is the reason why this study applies the Fisher criterion.

2.2 Gustafson-Kessel algorithm

The Gustafson-Kessel (GK) algorithm [9] is a well-known example of
FCM-type clustering algorithms. The GK algorithm employs an adaptive
distance norm to detect clusters of different geometrical shapes in one data
set [5]. FCM is suitable for clusters with similar distributions. If clusters
with very different distributions like Fig. 3(a), the “x” remarks 50 random
samples chosen. from the multivariate normal distribution with mean

0.8 0.7

07 0.8} ,-and the “o”’ remarks 50 random

[0.5,0]" and covariance {

samples chosen from the multivariate normal distribution with mean

08 0.7

_07 08 ] the clustering results of FCM

[-0.5,0]" and covariance {

(Fig. 3(b)) are frequently wrong, especially, on the left-bottom part of
cluster 1 and the right-bottom part of cluster 2. The Gustafson-Kessel (GK)
algorithm defines the fuzzy covariance matrices, which are used to
compute generalized squared Mahalanobis distances, to solve this problem.
Fig. 3(c) shows the clustering results of GK algorithm which is more
similar to Fig. 3(a) than FCM. That is, the GK algorithm can detect clusters

of different geometrical shapes in one data set.

The objective function of GK algorithm [9] is defined as

L N
Jox (Uy,¢,, %) = ZZ(uy)m(Xj _Ci)TZ[(Xj —c;)
i=1 j=1
11-



where the matrices X,, which adapt the distance norm to the local

topological structure of the data [5], serve as optimization variables. Since

%, should be a positive definite matrix, the common approach is to

1

constrain the determinant of X, (i.e., det(Z,)=p,, p,>0, i=1..,L).
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Figure 3. (a) The “x” remarks 50 random samples chosen from the multivariate normal

0.8 0.7

distribution with mean [0.5,0]" and covariance [O 7 08

}, and the “0” remarks 50

random samples chosen from the multivariate normal distribution with mean [-0.5,0]"

08 -0.7

and covariance
[— 07 0.8

}; (b) The clustering results of (a) applying FCM; (c) the
clustering results of (a) applying GK algorithm.
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Using the Lagrange multiplier method, X, is obtained by
z, =(p,det(F)"F,

where F; is the fuzzy covariance matrix [5], [9] of the i-th cluster defined

by:

Zj[:] (uz])m (Xj - Ci)(Xj — ci)T
Zjil (“g/ )" .

2.3 Fuzzy Compactness and Separation

F =

Previous studies [15], [16] have proposed two similar fuzzy-based
clustering algorithms based on fuzzy within-cluster, between-cluster, and
total scatter matrices. The objective function of the fuzzy compactness and
separation (FCS) [15] is based on fuzzy between- and within-cluster scatter
matrices. This‘approach minimizes the measurement of compactness, and

simultaneously maximizes the separation measure.

The fuzzy between-cluster scatter matrix S, and within-cluster

scatter matrix S, are defined as

Sus = 3 Y )" () ~e)x, <)’

i=1 j=I

and

[9)
N

S =YY ()" (x, —c)(x, —¢,)’

1
where ¢= FZX ;- The objective function of FCS is defined as

i=1

I res (Ug,- 1) =t (Spy ) — tr(Spp)
=3, e [ -2,

i=1 j=1 i=l j=

2
-
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By minimizing J . , the proposed method uses the following equations

to mutually update each other:

“1/m—-
(%, —c; I =, [l e, —c )™

: - —
Zkzl(” X, —C ||2 =/ || c, —C ||2) 1/(m-1)

ij

and

.- ZL (u,)"x; - niz; (u,)"c
i N m n m s

where the parameter 7, could be set up with

2
||Ci_'cﬂ||

i'#i

~(B/4)min
max, [|¢, —c|’

i 2,

and p<€[0,]1] .is the parameter to be pre-determined. The objective
function proposed by Yin et al. [43] is a special case of FCS in which the
parameters 7,are all set to 1/(L(L—1)).

The Fisher criterion, the trace of the product of the inverse of the
within-class scatter matrix and the between-class scatter matrix, takes large
values when samples are well clustered, around their mean within each
class, and the clusters of the different classes are well separated [2].This
approach is widely used in different applications [42], [43]-[44]. The
following discussion introduces new definitions of unsupervised cluster
scatter matrices. The corresponding objective function is based on the

Fisher criterion including the interaction of cluster scatter matrices.
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2.4 Other FCM-type Clustering Algorithms

Krishnapuram and Keller [52] proposed a new clustering model, called
possibilistic c-means (PCM), that relaxes a constraint (“the sum of the
membership values of every sample to all clusters is 1) to interpret the
membership function or degree of typicality in a possibilistic sense [45].
The fuzzy-possibilistic c-means (FPCM) [10] was proposed in 1997 to
generate both possibility and membership values. However, the possibility
values generated by FPCM become very small as the size of the data set
increases. To eliminate the problem of FPCM and take advantage of the
benefits of FCM and PCM, the possibilistic fuzzy c-means (PFCM) was
proposed in 2005 [46].

Some FCM-type algorithms, such as the Gath-Geva (GG) algorithm,
employ an adaptive distance norm based on the fuzzy maximum likelithood
estimates [2], [30]. Chatzis and Varvarigou [27] proposed a robust fuzzy
clustering algorithm based on a fuzzy treatment of finite mixtures of
multivariate Student’s-¢ distributions (FSMM). This approach uses finite
mixtures of multivariate Student’s ¢ distributions instead of finite Gaussian

mixture models (GMMs).
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3. LDA-based Clustering Algorithm

This chapter introduces a novel clustering algorithm, called fuzzy
linear discriminant clustering (FLDC), that accounts both within- and
between-cluster information [4]. Since the scatter matrices are extended

from the LDA, Section 3.1 reviews the LDA.

3.1 Review of LDA

LDA is often used for dimension reduction in classification problems.
Because it uses the mean vector and covariance matrix of each class, LDA
is often referred to as the parametric feature extraction method [14].
Within-class, between class, and mixture scatter matrices are frequently

used to formulate the criterion of class separability.
Suppose that H;={x{",...x{} © R* are the set of samples in class i,
N, is the number of samples in class i, i=1,..,L,and N=N, +---+ N, is

1

the number of all training samples. LDA defines the between-class scatter

matrix S, andthe within-class scatter matrix S.”' as

5N
Sit= S Mooy oy
i<l N
and
SLDA (z) —c. )(X(l) ‘)T
320
1 i i
where ¢, i1s the class mean defined by C,<=V2jllx(,-) and

:_Z, 12 - , represents the total mean.
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The optimal features are determined by optimizing the Fisher criterion

J.ps=J, given by

Jips = tr[(SVLVDA )_1 SbLDA ].

This is equivalent to solving the generalized eigenvalue problem,

SV =ASE v s=1,...,d with 4, >4, >-->1,,

s

where the extracted eigenvectors form the transformation matrix of LDA.
In other words, the transformation matrix from the original space to the

reduced subspace is defined by

A=[v,,vy,..,V,].

The Fisher criterion J,,, can detect the separability of the transformed
training samples, but LDA is a supervised feature extraction. The following
section proposes the between--and within-cluster scatter matrices of an
unsupervised LDA based on the concept of membership values and cluster
means of FCM as a clustering algorithm and an unsupervised feature

extraction.

3.2 FLDC Algorithm

The proposed method derives two fuzzy between and within-cluster

scatter matrices from the scatter matrices of LDA, and uses them to
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formulate FLDC. The fuzzy between-cluster scatter matrix S, and the

FLDA
S w

fuzzy within-cluster scatter matrix are defined as

SFLDA ZL: Z
b

i=1

5 Y e o~
and

Syt = ZZ Y -, -

i=l j=1
where

N
- z T —
¢ = N Vi

J=1 k=1 uik

: .. B s
1s the class mean, which is the same as FCM, and ¢ =NZX ; represents
i=1

the total mean. The following theorem shows that the between- and

within-class scatter matrices of LDA are special cases of the proposed

FLDA .
S and ST respectively.

Theorem 1: In the supervised situation, if

1if x,€eH,
Uy =

1<i<L 1<j<N,
0if x, ¢ forall i and J

then, the proposed S/™™ and SI"™ are the same as S;™ and S,

respectively.
Proof:
Suppose there are N; samples i H, for i=1,...,L , and

1

Zkl u, = N,. Then,
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N N;
_ _ (i)
R
j=1 Zk lulk x;eH; l Jj=1

is the same as the class mean in LDA and the fuzzy between-cluster scatter

matrix

S ;‘ LDA Z

i=1

L 2: L N
j=1 J i T LDA
—C c—c — (¢, —c)(c,—c) =8,7.

N ) ,§1N ), —¢) b

The fuzzy within-cluster scatter matrix is then

AN ZZ % (x; —c)(%; —cy)" ZZ Y (x —c)(X; —c,)’

zl]l i=l x;eH;

=33 LR x0 o) = ST
SN !

[]

Based on this theorem and the objective function of LDA, the general
objective function of FLDC is defined by

b

Trpdlty) = 2l (S5 D2°8,

FLDA FLDA
S b SW

including the interaction of and . This study considers the

interaction of the fuzzy between- and within-cluster scatter matrices in the
Fisher criterion. Results for artificial data sets show that FLDC can detect

the clusters with the largest between-cluster separability.

To reduce the effects of the cross products of within-class distances
and prevent singularity, some regularized techniques [47]-[48] can be
applied to the fuzzy within-cluster scatter matrix. In FLDC, the fuzzy

within-cluster scatter matrix is regularized by

SIPA =y ST 4 (1-r)diag(SE")
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where diag(S."”") is the diagonal parts of matrix S."> and r €[0,1] is

a regularization parameter.

The proposed clustering algorithm defines the optimization problem as

follows:

FLDAN-1 QFLDA
Uspipe = argllj’naX J ripe (uij) = arglljnax [(S,, ) S, 7]

L
which constrains ) u; =1, j=1,...,N . Because the optimization problem
i=1

is nonlinear and non-convex, several popular optimization algorithms
[49]-[50] can be applied to solve this problem: “interior-point,”
“active-set,” and _ “trust-region-reflective.” In _.implementing these
algorithms, the “active-set”-algorithm has a lower cost time than the other
two algorithms, but it 1s sensitive to the' initial value. Hence, the

“interior-point’algorithm 1s used to find the optimizer Uy, in this study.

However, the “interior-point” algorithm has the highest corresponding time

cost.
The decision rule, i.e., the defuzzification process, for the sample j is

i =argmaxiu, .
k

3.3 Experiments

3.3.1 Experimental Data and Designs

The experiments in this study validate the performance of the proposed
FLDC using ten artificial data sets and three real data sets. This section
compares the results of several algorithms on artificial and real data sets.
These algorithms include the clustering FLDC, K-means (KMS), and
K-medoid (KMD), FCM, Gustafson-Kessel (GK), Gath-Geva (GG) [5],
possibilistic c-means (PCM) [52], fuzzy-possibilistic c-means (FPCM) [10],
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possibilistic fuzzy c-means (PFCM) [11], fuzzy compactness and
separation (FCS) [15], FSMM [13], and FMSFA [56] algorithms. The
parameters » in FLDC and £ in FCS were set to 0.5. The weighting
exponents of FCM, GK, GG, and PCM were set to me{2,4}. The
weighting exponents of FPCM and PFCM were set to me{2,4} and
n €{2,4}. The FSMM parameters were set to the default values in [51].

The FMSFA clustering results were the best results within the given set

{0.5,1,1.5} of the model’s degrees of fuzziness of the fuzzy membership

values.

To avoid the influence of initialization, all clustering algorithms were
evaluated based on 3 real data sets and 100 randomly generated initial
values for each data set. This study calculates and compares the mean,
standard deviation, maximum, and minimum accuracy of the 100 clustering
accuracy. The accuracy of the clustering is the proportion of correctly
clustered data in the data set (i.e., clustering accuracy=(the number of

correctly clustered data)/(the number of all samples)).

Fig. 4 shows 10 artificial data sets [53]:“Four-gauss data” (4 clusters),
“Easy doughnut data™ (2 clusters), “Difficult doughnut data” (2 clusters),
“Boat data” (3 clusters), “Noisy lines data” (2 cluster), “Petals data”, (4
clusters), “Saturn data” (2 clusters), “Regular data” (16 clusters),
“Half-ring data” (2 cluster), and “Spirals data” (2 clusters). These data sets
can be downloaded from [54]. All data sets were created in two dimensions
to present challenges in varying degrees. Ten dimensions of uniformly
random noise were appended to each of the first three data sets (four gauss,
easy doughnut, and difficult doughnut), while the other seven data sets
were kept as two-dimensional. The last two data sets were omitted because

the clustering results obtained of all clustering algorithms are similar.
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Table 1 presents the real data sets used in this study: “Wine,” “Iris,”
and “Breast Cancer Wisconsin (Diagnostic)” (WDBC). The Wine data set
is a collection of data from three classes of wine from various locations in
Italy. The Iris data set contains three classes of Iris flowers collected from
Hawaii: Iris Setosa, Iris Versicolour, and Iris Virginica. There are two
classes, benign and malignant, in the WDBC data set. These data sets are

available from the FTP server of the UCI [55] data repository.

Table 1 Descriptions of Three Real Data Sets

Data set Classes Number of Samples Features
Wine 3 178 13
Iris 3 150 4
WDBC P 569 30

3.3.2 Experimental Results

Figs. 5-12 show the results of clustering on the artificial data sets. The
covariance matrices of two density-based methods, GG and FSMM, are
near-singular. Hence, the proposed method uses the GG and FSMM with
diagonal covariance matrices for the Gaussian distributions (GGD) and the
Student’s-¢ distributions (FSMMD), respectively. The best clustering
results from the application of GG and GGD in different data sets were
chosen for Fig. 5-12. These figures also show the best results of clustering
FSMM and FSMMD. A comparison of Fig. 5-12 reveals the following

points:

1. The FLDC clustering method significantly outperformed other
methods for the normal-like distribution of data (e.g., the four-gauss,

easy doughnut, difficult doughnut, boat, and petals data sets) because it
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considers the interaction of the between- and within-cluster scatter
matrices. For the easy doughnut and difficult doughnut data sets, all

algorithms had poor clustering results except FLDC.

2. The FLDC achieved the best performance with regular and noisy lines

data sets.

3. KMS, KMD, FCM, FPCM, PFCM, and FCS only performed well on

the four gauss and petals data sets.
4. PCM performs well only on the petals and noisy lines data sets.

5. GK employed an adaptive norm that estimates covariance matrices for
each cluster. Hence, the GK algorithm can detect clusters with different
geometrical shapes. and performed well on the boat and noisy lines
data sets. However, its performance was dismal for the four gauss, easy

doughnut, and difficult doughnut data sets.

6. Although FLDC performed poorly on the Saturn, half rings, and two
spirals data sets, it was able to detect the clusters with the largest
between-cluster separability in the Saturn data set. FLDC was
unsuitable for the Saturn, half rings, and twe spirals data, as these were
complex nonlinear problems. The kernel method may be a way to

solve these types of data sets.

7. The distribution-based clustering algorithms, including GG, FSMM,
and FMSFA, performed poorly on the four gauss, easy doughnut,
petals, and regular data sets because the covariance matrices of the

density-based methods are near-singular.

8. FSMMD was able to improve the performance of FSMM on the boat

and noisy lines data sets.

Table 2 shows the clustering accuracy in real data sets. The highest

mean clustering accuracy for each data set (in rows) is shaded. Table 2
-24-



shows that the highest mean accuracies among all methods were 0.927,
0.966, and 0.940. All of these results were obtained by performing FLDC.
Table 3 shows the accuracy of the three real data sets after applying
FMSFA. The maximum accuracies of these data sets were 1, 0.980, and
0.949, respectively. However, it is very sensitive to the initial value. Hence,
the highest average accuracies in every column were only 0.945, 0.774, and
0.882. The FSMM is more stable than FMSFA because it uses the results of

clustering KMS as the initial value.
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Figure 5. The results of clustering the “Four gauss” data set using twelve clustering
algorithms. The best clustering results from applying GG and GGD were chosen for
comparison. This figure also shows the best results of clustering FSMM and FSMMD

for comparison.
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Figure 8. The results of clustering the “Boat” data set using twelve clustering
algorithms. The best clustering results from applying GG and GGD were chosen for
comparison. This figure also shows the best results of clustering FSMM and FSMMD

for comparison.

-29-



FLDC, GK, PCM

KMS

o o e 1 R PG o000 0 : 0 o P EOWPA Y v s
wre, e b e A s 08 Cogp FRPARA e "
KMD FCM, FPCM, PFCM, FCS
]
; R K ) L T
o gt B @RS o o B s o T FLI
GG FSMMD, FMSFA
;
: o o BRSSP amexo-® o o Pt GEAPHEE w5000 o
q 08 oo TR RSO - - g, T 3 A A S S

R T g i

Figure 9. The results of clustering the “Noisy lines” data set using twelve clustering
algorithms. The best clustering results from applying GG and GGD were chosen for
comparison. This figure also shows the best results of clustering FSMM and FSMMD

for comparison.

FLDC, KMS, KMD, FCM, PCM,
FPCM, PFCM, FCS

GG, FSMM, FMSFA

Figure 10. The results of clustering the “Petals” data set using twelve clustering
algorithms. The best clustering results from applying GG and GGD were chosen for
comparison. This figure also shows the best results of clustering FSMM and FSMMD

for comparison.
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Figure 11. The results of clustering the “Saturn” data set using twelve clustering
algorithms. The best clustering results from applying GG and GGD were chosen for
comparison. This figure also shows the best results of clustering FSMM and FSMMD

for comparison.
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Figure 12. The results of clustering the “Regular” data set using twelve clustering
algorithms. The best clustering results from applying GG and GGD were chosen for
comparison. This figure also shows the best results of clustering FSMM and FSMMD

for comparison.
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Table 2 The Mean, Standard Deviation, Maximum, and Minimum Accuracy of Clustering

for Three Real Data sets.

Wine Iris WDBC
mean/std/max/min mean/std/max/min mean/std/max/min
(mean of cputimeins.) (mean of cputimeins.) (mean of cpu time in s.)
FLDC 0.927/0.003/0.949/0.916  0.966/0.001/0.967/0.960  0.940/0.001/0.946/0.938
(106.628) (43.871) (2099.937)

KMS 0.677/0.051/0.702/0.567  0.849/0.109/0.893/0.580  0.854/0.000/0.854/0.854
(0.006) (0.009) (0.009)

KMD 0.667/0.062/0.708/0.556  0.835/0.141/0.947/0.513  0.851/0.006/0.854/0.837
(0.004) (0.006) (0.008)

FCM 0.691/0.000/0.691/0.691  0.907/0.000/0.907/0.907  0.861/0.000/0.861/0.861
(0.119) (0.002) (0.108)

GK 0.607/0.000/0.607/0.607  0.900/0.000/0.900/0.900  0.821/0.000/0.821/0.821
(1.726) (0.058) (0.254)

GG 0.742/0.000/0.742/0.742  0.733/0.000/0.733/0.733  0.510/0.000/0.510/0.510
(0.218) (0.135) (0.113)

PCM 0.697/0.000/0.697/0.697  0.933/0.000/0.933/0.933.  0.856/0.000/0.856/0.856
(0.015) (0.014) (0.033)

FPCM 0.719/0.000/0.719/0.719-0.907/0.000/0.907/0.907 - 0.877/0.000/0.877/0.877
(0.027) (0.017) (0.036)

PFCM 0.691/0.000/0.691/0.691  0.920/0.000/0.920/0.920 = 0.861/0.000/0.861/0.861
(0.060) (0.027) (0.046)

FCS 0.697/0.000/0.697/0.697  0.893/0.000/0.893/0.893  0.851/0.000/0.851/0.851
(0.249) (0.112) (0.321)

FSMM 0.846/0.117/0.899/0.573 . 0.875/0.170/0.973/0.527 = 0.935/0.000/0.935/0.935
(0.583) (0.066) (0.299)

Table 3 The Mean, Standard Deviation, Maximum, and Minimum Accuracy of Clustering

for Three Real Data sets of FMSFA, Where LD Represents the Latent Dimension

Wine

Iris

WDBC

mean/std/max/min

mean/std/max/min

mean/std/max/min

FMSFA
LD=1
FMSFA
LD=2
FMSFA
LD=3

0.898/0.085/0.955/0.854  0.774/0.154/0.980/0.333  0.813/0.005/0.821/0.803

0.945/0.069/0.966/0.579  0.768/0.127/0.967/0.333  0.882/0.000/0.882/0.882

0.891/0.143/1.000/0.539  0.704/0.105/0.967/0.333  0.865/0.027/0.949/0.715
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4. The Support Vector Machine and Its Spectral-Spatial

Classification Schemes

The support vector machine [23] attempts to minimize the upper bound
of the generalization error by maximizing the margin between the
separating hyperplane and the training data. Hence, SVM is a
distribution-free algorithm that can overcome the problem of poor
statistical estimation. Many studies [30]-[33] have shown that support
vector machines with both spectral. and spatial information achieve
effective and stable hyperspectral “1image classification. For example,
Tarabalka et al. [31] presented a spectral-spatial classification scheme
based on partitional clustering techniques (SVM+EM). A context-sensitive
semi-supervised support vector machine (CS'VM) [32] uses the context of
neighborhood patterns as semi-patterns to solve the problem of noisy
training patterns. This chapter reviews the literature on traditional SVM,

SVM-+EM, and CS*VM.

4.1 Support Vector Machine

Let X be a hyperspectral d-dimensional image of size /xJ pixels.

Assume that a set of training data set
D={x, ‘ X, eXcR'i=12,...n}

is available and { y, € {+1,-1} }/, is the corresponding label set. SVM tries

to find a separating hyperplane in the feature space, a Hilbert space H, for a
binary classification problem [23]. The soft-margin SVM algorithm is

based on the following constrained minimization optimal problem:
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rfvlién %WTW+CZ§[
= 4.1)

subject to y,(Wd(x,)+b)=1-&, £ >0, i=12,...,n

where w is a vector normal to the hyperplane, b is a constant such that

b/|w|| represents the distance between hyperplane from the origin,
¢:R’ — H is a nonlinear mapping function, ¢&’s are slack variables to

control the training errors, &=[&,....¢, ], and CeR’ is a penalty

parameter for tuning the generalization capability. Trying to solve this
optimal problem with inequality constraints is generally a difficult task.
However, the original —optimal problem has an equivalent dual
representation using the Lagrange optimization method. The corresponding

dual Lagrange function is defined as

max Zn:a" _%Z Z 0,0, 7,9(x,) (x )
’ 4.2)

subjectto Yy, =0, 0<a, <C, i=12,....,n
i=1

where the artificial variables, & , are Lagrange multipliers, and

1

o=[a,....a,l] .

The kernel trick uses a kernel function «:R?xR? — R to implicitly
map the data from the original space R’ to H without knowing the
feature mapping ¢ . The inner product of samples in the feature space can
be computed directly from the original data items using a kernel function.
This is because a kernel function x satisfies Mercer’s theorem [34]. In
other words, there is a feature map ¢ into a Hilbert space H such that
k(x,z) = ¢(x)" #(z), where x,ze R, if and only if x is a symmetric
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function for which the matrices K =[x(x;,X )], ., formed by restriction

to any finite subset {x,,...,x,} ofthe space R“ are positive semi-definite.
Hence, the kernel trick makes it possible to rewrite Eq. (4.2) as the
following Eq. (4.3). Since, for a kernel function, the corresponding kernel
matrix is positive semi-definite for all training sets, this in turn means that

the optimization problem of (4.3) is always convex [34].

n 1 n n
max 2.4 —gzz%%%yj'f(xf,xj)
i=1 =1 j-l

(4.3)

subject to Za,y,-:(), 0<a,=<C,i=12.,n

i=1
After determining - the values of the ¢;’s, the decision function for an

unlabeled pattern X is defined as

Ssvm (X) = Zyiai’((xiﬂx) +0,
i=1

where b is choesen so  that yj(z yiouk(X;,x;)+b)=1"for any x; with

i=1

0<a; <C, and a corresponding forecasting label is. sgn( /sy (X)).
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4.2 Spectral-Spatial Classification Scheme Based on Partitional

Clustering Techniques

Fig. 13 shows a flowchart of the spectral—spatial classification scheme
based on partitional clustering techniques (SVM+EM) [31]. The majority

vote rule is used to determine the final decision in a partition.

Hyperspectral image

(B bands)

iSegmentation [{ """ 1
]

1
i ; Pixel-wise
! Clustering | classification
[ } (by SVM)
1 1
R : L
: Labeling of : Spectral-spatial

e

" connected I, | classification
! components ; (by majarity voting)

. . u

Post-regularization

Final classification
map

Figure 13. Flowchart of the SVM+EM [31].

SVM+EM combines the unsupervised segmentation technique and
supervised pixel wise classification results, and consists of the following

steps (Fig. 13 and 14).

1. Segmentation. The expectation maximization (EM) clustering

algorithm segments a hyperspectral image into homogeneous regions.

2. Pixel wise classification: An SVM classifier with the Gaussian radial

basis function (RBF) kernel is performed independently of the
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segmentation procedure. The SVM parameters are determined by

k-fold cross validation.

3. Spectral-spatial classification: The majority rule is used for every
region in the segmentation map. All samples in the same region are

assigned to the most frequent class within this region.

4. Spatial postregularization (PR) step: Finally, the spatial PR of the

classification map reduces the noise in the classification map.

SVM+EM segments an image into homogeneous regions and
combines the results of these regions using pixel-wise SVM classification.
The spatial post regularization (PR) of the classification map reduces the
noise. This approach is particularly. suitable for classifying images with
large spatial structures, when- spectral responses of different classes are
dissimilar, and the classes contain a similar number of pixels. If the spectral
responses are.not significantly different, this approach. may result in

misclassification [31].
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changes the class
of one pixel only

Final result
(classification
map after post-
regularization)

Figure 14. Example of SVM+EM classification [31].
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4.3 Context-Sensitive Semi-supervised SVM

The context-sensitive semi-supervised SVM (CS*VM) classifier
improves robustness to possible mislabeled training patterns by exploiting
the contextual information of the pixels belonging to the neighborhood

system of each training sample in the learning phase [32]. Let

ox; ={X;|j=1...,M} represent a neighborhood system of the pixel x,

in the original space, where M is 4 or 8 to indicate that Ox; is a

first-order or second-order neighborhood system, respectively (Fig. 15).

After performing the standard SVM, CS*VM can obtain the semi-labels of

M

0x, , which is equal to 0x? and denote them as itia

1

(i.e.,
Y, =sgn(foyu (X)) i =1,..sn,j=1,...,M ). The cost function of CS*VM for
the learning of the classifier-is

X 1 n n M
- R, T

i=l j=1

PO gx ) +b)21-¢€, (4.4)
subject to ¥, (W ¢(X,) +b) 21—y,
S, 200 =L2,....n, j =120 .M

where w,’s are context slack variables and «; € R U {0} are parameters

that make it possible to weight the importance of context patterns (Fig. 16).
The aim of the cost function of CS*VM is to regularize the learning process
with respect to the behavior of the context patterns in the neighborhood of
the training pattern under consideration. This term helps balance the
contribution of possibly mislabeled training samples according to the

semi-labeled pixels of the neighborhood [32].
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Figure 15. The left and right images represent the first-order and second-order

neighborhood systems in the original space, respectively.

:_- Lili:lt’:l:f

¢ | e o Training patterns P

‘-‘.-:‘:'.4 @ & Context patterns ?

Figure 16. Example oﬂ?ath@ ant'P‘r"
Ny

TR
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"'l I

2 _.1r___ |-II Tﬂ

i { F =
The context slack Varlables w,] are deﬁned as

w,; =max{0,1- ylj(w PX;)+b)}, Vi=12,..n, Vj=12,....M .

The parameters «, weight the context patterns X, depending on the

agreement of their semi-labels y; with that of the related label y, of the
training sample X,. The hypothesis at the basis of the weighting system of

the context patterns is that the pixels in the same neighborhood system are

likely to be associated with the same information class (i.e., the labels of
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the pixels are characterized by high spatial correlation). In particular, x;’s
are defined as
K if YVi=DVy
K, = _
K, if Vi Vy ’
where x; and «, are chosen by the user to define the importance of the

context patterns. It is very important to define the ratios C/k;,i=1,2,
which tune the weight of context patterns w.r.t. the patterns of the original
training set. The selection of x;, and x, can be simplified by fixing a
priori the ratio «,/x, =K. This focuses attention only on x;, or on the

ratio C/x, [32].

CS*VM uses the context of neighborhood patterns as semi-patterns to
solve the problem of noisy training patterns. In this case, noisy training
patterns are mislabeled patterns that introduce distorted information to the
classifier [32]. However, CS*VM is a semi-learning approach in which the

computational cost increases as the number of semi-samples increases.
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5. Spatial-Contextual Support Vector Machines

The two sections of this chapter introduce two kinds of
spatial-contextual support vector machines with different neighborhood
systems: the original space (SCSVM) and the feature space (SCSVMF)
[39]. The learning process of the proposed SCSVM classification system
includes three steps: 1) learning the standard SVM to classify the image, i1)
learning SCSVM/SCSVMF with both spectral and spatial-contextual
information, and iii) repeating (ii) to update the unlabeled patterns until

convergence.

5.1 A Spatial-contextual Support Vector Machine in the Original

Space

G 22

Spectral domain (d-dim.)

Jj-th column

i-th row

Figure 17. The pixels enclosed by bold lines represent the first-order neighborhood
system used in SCSVM.

In SCSVM, spatial information exploits the semi-labels for the pixels
belonging to the neighborhood system in the original space (Fig. 17) of
each sample from the preceding discriminated process of standard SVM to
overcome similar spectral properties. SCSVM can achieve good

generalization, especially for pixels with similar spectral attributes but
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located in different regions. This approach decreases speckle-like errors

and  significantly = improves  classification  performance.  Let
ox; ={X,|j=1L...,M} represent a neighborhood system of the pixel x,
in the original space, where M is 4 or 8 to represent that ox” is a

first-order or second-order neighborhood system, respectively.

After performing the standard SVM, SCSVM can obtain the

semi-labels of 0x,, which is equal to ox, and denote them as {yi].}]]‘i1
(e., y;=sen(foyu(X)).i=1,...,n,j=1...,M ). The constrained

minimization problem associated with SCSVMs accounts for the

semi-labels of the whole image, and is defined as follows:

min %WTW +OYE
i=1

(5.1)
yi(wrgé(xl.)+b+}/(m+(xl.)—m_(xl.))) 2 1_51"

subject to
) £20, i =12, hn

where y €[0,00) is a nonnegative parameter that controls the effects of
spatial-contextual information. m'(x,) and m (x;) represent the number
of pixels in the neighbor system-0x, . that belongs to class +1 and class -1,
respectively. Fig. 18 illustrates the spatial-contextual information of the
pattern x, with the second-order neighborhood system 0x, =0x!
employed in the spatial domain.

The SCSVM cost function does not require modification, and
maintains the property of convex property. Because the objective function
of the minimization problem of the SCSVM only contains training samples,
and no semi-label samples, the decision hyperplane is not influenced by

samples with similar spectra. The computational costs of each iteration in

SCSVM are also similar to that of SVM.
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yisl =+l [ yp=-1]yy=-1

m'(x;)=6
m(x,)=2

i

s

y;s =+1 Vi Vg =+1

V=41 | yig=+1| yis=+1

Figure 18. An example of the spatial-contextual information with the second-order

neighborhood system of pattern x, in the original space.

According to Lagrange’s theorem, the corresponding dual problem is
as follows:
z (1= yy(m=(x;) =m” (X)),

max -

o

—lZn:Zn:a.a‘y.y.x(x.x.)
2 I A ey 7, (52)

=l j=I

subjectto D @y, =0, 0, £C, i=12,..n

i=l

when ¢,, i=1,...,n are determined, the decision function for an unlabeled

pattern x is defined as

Sscsym (X) = ZyiaiK(Xia X)+b+y(m*(x)—m (x)). (5.3)
i=1
Any generic pattern belonging to the investigated image can then be

classified according to

sgN( fscsym (X)) -

If some training patterns appear in the margin, they may produce similar

spectral properties. Hence, these patterns may be noisy patterns in standard

-45-



SVM learning. To overcome this problem, the constraints and the decision

unction of SCSVM include spatial terms. If

m'(x,)—m (x;)>0 and m'(x;)-m (x,;)<0,

then fiesum(x,)> fo(x;) and  foesum (X)) < foym(X;) , respectively. This
means that if the semi-labels of most patterns in the neighborhood system
Ox ; are +1, then the signed distance from x; to the decision hyperplane
of SCSVMS will tend to be positive. If the semi-labels of most patterns in
the neighborhood system 0x; are -1, then the signed distance from x; to

the decision hyperplane of SCSVM will tend to be negative. The parameter

y controls the effect of the spatial-contextual information (i.e., the term,
m'(x;)—m (x;) ). If 'y lis—set to 0, then SCSVM degenerates to the
standard SVM. When y -increases, the effect of neighborhood points
(spatial information) increases. If 7 approaches oo, then the semi-label of
x, is determined by 'the sign of m'(x,)-m(x;) (ie., the

spatial-contextual information).

. Class +1
& g o

I+

Class -1 O O
Class -1 ) O

Figure 19. The left panel shows the decision boundary (solid black line) obtained by

SVM. The center panel shows the semi-labels of the patterns in the second-order

neighborhood system of x ;. The right panel shows the decision boundary (solid red

line) obtained of SCSVM.
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Fig. 19 shows the effects of applying SCSVM. The left panel shows
the decision boundary (solid black line) obtained of standard SVM. The

training sample x, with y, =+l is in the opposite area (class -1) but in
the area between margins. After performing standard SVM,
m'(x;)—m (x;)=4>0. The spatial-contextual information in the center
panel of Fig. 20 shows that the training sample x; should be in the area in
which sample labels are 1. If foequm(X;) > fsym(X;), then x; would be in
the expected area (class +1), as shown in the right panel of Fig. 19.

As mentioned, SCSVM depends on the. spectral information and the
spatial-contextual information, which is based on the neighborhood system
in the original system. Hence, the problem of similar spectral properties can

be solved of SCSVM. SCSVM applies the spatial-contextual information to

emphasize the effects of this pattern on the learning phase.

ya=l | =3 | va=2 yy=+1 0 yip= -1

yi=1 Vi S, =4 Ak ¥ 3, =+1 m'(x,)=5
m(x,)=1

yio=l | ye=3 | ys=l yi=+1 0 v =+1

Figure 20. A multiclass case of the spatial contextual information defined by the OAO
strategy (class 1 versus class 2) for pattern x, in the neighborhood system ox?. The

labels of class 1 and class 2 are defined as +1 and -1, respectively.

To address the multiclass classification problem, the following
paragraphs describe the two types of SCSVM for multiclass strategies: the
one-against-one (OAO) strategy [60]-[62] and the one-against-all (OAA)
strategy [62]. The OAO strategy separates each pair of classes. Thus, for a
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classification problem with L classes, L(L—-1)/2 SCSVMs are trained to

distinguish the samples of one class from the samples of another class. The
classification results of an unlabeled pattern are based on the maximum
vote, where each SCSVM votes for one class. When an SCSVM is trained
by two classes of training data, it ignores the spatial-contextual information

of other classes to avoid misjudgments in training process.

Fig. 20 shows the OAO strategy for computing m™(x;) and m (X,)

in the neighborhood system 0x; of x,. Suppose there are 3 classes and
SCSVM is trained by the training.:samples in class 1 and class 2. Thus, all

semi-labels equal to 3 will be omitted. Since y, =3 and y, =3, these

spatial-contextual “information are ignored and, hence, m'(x,)=5 and

m (x;)=1.
=1 V=3 V=2 Vi =+l Vi =71 Viz. =1
m(x,) =5
y:le Vi y}szt:l yffs:+l Vi y:4:+1 m (x,)=3
ﬁ
v =1 Vie =3 yis=1 Vi =+l Vig— =1 Vis =+l

Figure 21. A multiclass case of the spatial contextual information defined by the OAA
strategy (class 1 versus all others) for pattern x, in the neighborhood system ox?.

The label of class 1 is defined as +1 and the labels of the remaining classes (class 2 and

class 3) are defined as -1.

The one-against-all (OAA) multiclass strategy trains L SCSVMs, one

per class, using members of all other classes as negative examples if there

are L classes. Fig. 21 shows the OAA strategy for computing m"(x;)

and m (x;) in the neighborhood system of the pattern x,. When the k-th
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OAA SCSVM is trained, the class k is set as the positive class and other

classes are all set as negative class. Fig. 21 shows m'(x,)=5 and

m~(x,) =3 for the example by considering the neighborhood system 0x, .

5.2 A Spatial-Contextual Support Vector Machine in the Feature
Space

The SCSVMF approach uses the same concept as SCSVM except that
the neighborhood system 0x, = 0x; , which contains M nearest neighbors

in the feature space:
ox; ={X, [ 4(x)) — g IS d(x)) - $(2) ||, VzeX, 2% x,, 2% X, j =1,....M}.

Similar spectral properties cannot be solved efficiently of SCSVMF

because the nearest neighbors in the feature space are used in the
neighborhood system ox; . Hence, being neighborhoods of a given point in

feature space is-caused by the similar spectra. These neighborhood points
may not have geographic relationship. The classification accuracy may also
decrease when the neighborhood points in feature space are from different

classes.

When SCSVMF is trained by 'the training samples in class & and
class s, the OAO strategy ignores the semi-labels of samples in 0x; that
are not equal to & and s in the multiclass classification problem. The
OAA multiclass strategy sets the semi-labels of samples in 0x; that
belong to class k as the positive class and other semi-labels of samples in
Ox! as negative classes when training the k-th OAA SCSVM. Similarly, if
y 1s set to 0, then SCSVMF degenerates to the standard SVM.
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5.3 Classification System of SCSVM and SCSVMF

Based on these descriptions and definitions, Fig. 22 illustrates the

proposed SCSVM and SCSVMF classification systems.

Step 1:

Step 2:

Step 3:

Step 4:

Step 35:

Obtain the classification image with semi-labels from the standard

SVM.

Acquire the spatial-contextual information for each training pattern
with OAO or OAA multiclass architecture from the preceding

classification result.

Train the proposed SCSVM (SCSVMF) with the spatial-contextual
information from Step 2, and get another classification image with

the semi-labels obtained from SCSVM (SCSVMF).

Repeat Steps 2 and 3-1f an iteration is requested. The iteration may
terminate when the difference of semi-labels in this iteration step
and the previous iteration step is smaller than a certain tolerance

value.

Perform the spatial post regularization (PR) of the classification
map for SCSVM [31]. This PR step-attempts to reduce the noise in

the classification map after the majority vote procedure.

Fig. 22 shows the framework of the SCSVM (SCSVMF) algorithm.
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Figure 22. SCSVM and SCSVMF classification systems.
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5.4 Experiments

5.4.1 Experimental Data and Designs

The experiments in this study use two real data sets to evaluate the
classification performance of the proposed SCSVM and SCSVMEF: the
Indian Pine Site (IPS), a mixed forest/agricultural site in Indiana [22], and a

hyperspectral image of the Washington D.C. Mall [22] as an urban site.

Figure 23. A portion of the Indian ne site image measurng 145x 145 pixels.

B Background
All r . . . Alfalfa
mCorn-no till
mSoybeans-no till

. . #Corn-min till
i. l I mSoybeans-min till
||
I

uCorn
mHay-windowed
mGrass/trees
mSoybeans-clean till
G
e mWoods
Bldg-Grass-Tree-Drives
Stone-steel towers

mGrass/pasture-mowed
mGrass/pasture
mOats

Figure 24. The ground truth of the Indian pine site data set.
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The IPS data set was gathered by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS). This data set was obtained from an
aircraft operated by the NASA/Jet Propulsion Laboratory flying at an
altitude of 65000 ft. Each images measures 145x%145 pixels, with 220
spectral bands measuring approximately 20 m across the ground. Figs. 23
and 24 show the grayscale IR image and ground truth of IPS, respectively.
The original ground-truth image contains 16 different land-cover classes.
This study uses sixteen categories: Alfalfa (class 1), Corn-no till (class 2),
Corn-min till (class 3), Corn (class 4), Hay-windowed (class 5), Grass/trees
(class 6), Grass/pasture-mowed (class 7), Grass/pasture (class 8), Oats
(class 9), Soybeans-no till (class 10), Soybeans-min till (class 11),
Soybeans-clean till (class 12), Wheat (class 13), Woods (class 14),
Bldg-Grass-Tree-Drives (class-15), and Stone-steel towers (class 16). Table

4 lists the number of pixels of each class.

Table 4 Sixteen Categories and Corresponding Number of Pixels in the Indian Pine Site

Image
No. Category. #(pixels) | No. Category #(pixels)
1 Alfalfa 46 9 Oats 20
2 Corn-no till 1428 10 Soybeans-no till 972
3 Corn-min till 830 11 Soybeans-min till 2455
4 Corn 237 12 Soybeans-clean till 593
5 Hay-windowed 483 13 Wheat 205
6 Grass/trees 730 14 Woods 1265
7  Grass/pasture-mowed 28 15  Bldg-Grass-Tree-Drives 386
8 Grass/pasture 478 16 Stone-steel towers 93

This experiment randomly chose ten percent of the samples for each
class from the IPS reference data as training samples, following the method
in [31]. The samples in the whole image served as the testing set to

evaluate the performance of the proposed algorithm.
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The second data set, the Washington D.C. Mall, was obtained in a
Hyperspectral Digital Imagery Collection Experiment (HYDICE). Images
were acquired from an airborne hyperspectral data flightline over
Washington D.C. In total, 210 bands were collected in the 0.4-2.4 pm
region of the visible and infrared spectrum. Some water absorption
channels were discarded, resulting in 191 channels. This data set is
available in the student CD-ROM of [22]. The second experiment in this
study used 7 classes: grass (class 1), tree (class 2), roof (class 3), water
(class 4), road (class 5), trail (class 6), and shadow (class 7). Fig. 25 shows
the grayscale IR image of a portion of the image and the seven

corresponding categories.

No. Category
1 QGrass
2 Tree
3 Roof
4 Water
5 Road
6 Trail
7 Shadow

Figure 25. The false-color IR image of a portion. of Washington D.C. Mall image
measuring 205 307 pixels. There are seven categories: grass, trec, roof, water, road, trail,

and shadow.

This study uses three distinct subsets, N=20 < N < d (case 1), N; =40 <
d < N (case 2), and d < N; =300 < N (case 3), to investigate the influence of
training sample size on the dimensionality of the Washington D.C.
hyperspectral image data set. In case 1, N; =20 < N =180 <d = 191 is an
ill-posed classification situation, which means data dimensionality exceeds
the number of independent training samples in every class. In case 2, N; =
40 < d = 191< N = 360 is a poorly posed classification situation, which
means that data dimensionality is greater than or comparable to the number
of (independent) per-class representative training samples, but smaller than
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the total number of representative samples. In case 3, there are enough
independent training samples. MultiSpec [22] was used to randomly select
training and testing samples (100 testing samples per class) in all

experiments [63]-[65].

This study compares the classification performance of the proposed
SCSVM and SCSVMF with OAO and OAA multiclass strategies and other
reference classification algorithms: ML classifier [2], ML MREF classifier
[20], A-NN classifier [2], standard SVM with OAO and OAA multiclass
strategies, CS*VM (which is based on the OAA multiclass strategy) [32],
and SVM+EM [31]. This experiment also compares the classification
performance of SVM+EM and SCSVM with the PR step using a 3x3 mask

and without the PR step. The SVM-based classifiers, including SVM,
CS*VM, and SCSVM, employ the'RBF kernél (i.c., the: Gaussian Radial
Basis Function kernel). Both the IPS and the Washington D.C. Mall
hyperspectral data sets were normalized to the range [0,1]. A grid search
with k-fold cross validation was used to find the proper 2o’ within a
range [107,10] for the RBF kernel (as suggested by [32]) and parameter
C within a given set: {0.1,1,10, 20, 60,100, 160,200,1000} . For CS4VM, the
value of «,/x, was set to 2 and C/k €{2,4,6,8,10,12,14} following
[32]. Because the semi-samples were used to train CS*VM, only a
first-order neighborhood system ©x{ was considered for the context
patterns to avoid spending too much time training CS*VM. For SCSVM,
only the decision function and constraints contain the spatial-contextual
information of the neighborhood system. Thus, the SCSVM training time
increases a little for each iteration. The size of the neighborhood system M
was set to 4 and 8 in SCSVM for comparison. The term p was set to 0.05,
0.1, 0.3,0.5, 1, 10, 100, 500, 1000, and 10000 to determine its influence on

spectral and spatial information.
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The Gaussian function was adopted as the likelihood function of the
Bayesian decision rule for the ML classifier and ML MREF classifier [20].
Several trials were carried out for the k~-NN classifier, varying the value of
k from 1 to 20 to identify the value that maximizes the accuracy. For
simplicity, the model selection for the A-NN classifier was based on the

accuracy of the testing data set.

This study employs the following measures of classification accuracy
to investigate classifier performance: 1) overall classification accuracy (the
percentage of correctly classified samples for all classes); 2) overall kappa
coefficient (the percentage of the kappa coefficient for all classes); and 3)
average accuracy (the average percentage of correctly classified samples
for each class). Because the amount of testing data is the same for every
class (i.e., N=100) in the Washington D.C. hyperspectral image data set. In
this case, the overall classification accuracy and the average accuracy are
identical. In the TIPS data set, the overall classification accuracy and the
average accuracy are not identical because of the unequal testing sample

sizes between classes.

5.4.2 Experimental Results

This study compares the multiclass-classification performance of an
ML classifier, ML MRF classifier, A-NN classifier, SVM, CS*VM,
SVM+EM, and SCSVM. The following section presents the experimental
results for the IPS data set and the Washington D.C. Mall data set.

A. Indian Pine Site

According to the experimental design for IPS, ten percent of the
samples for each class were chosen as the training set. ML-based classifiers
(ML and ML_MRF) must estimate the covariance matrices of the classes

before classifying all samples in the IPS hyperspectral image. These
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classifiers encounter the problem of covariance matrices and poor
estimations because the number of training samples in each class is less
than the dimensionality. Hence, the ML and ML MRF performance in the

IPS experiment should not be compared, and is denoted as N/A.

To investigate the effects of the neighborhood systems and parameters,

M and y, Table 5 and Fig. 26 show the overall accuracies of the SCSVM
and SCSVMF with the grids of M {4,8} and

¥ €40,0.05,0.1,0.3,0.5,1,10,100, 500, 1000, 10000} .

Figure 26. The overall accuracies in percentages of the experimental classifiers,

SCSVM and SCSVME, for the IPS data set.

Tables 6 and 7 present the validation measures of all samples in the
IPS and class-specific accuracies from the best performance of A-NN
classifier (k=1), SVM (OAO and OAA multiclass strategy), CS*VM,
SVM+EM with and without PR step, and SCSVM, which has the highest
accuracy in Table 5, with and without PR step, respectively. The best
overall accuracy, kappa coefficient, and average accuracy are highlighted
in gray. The term “BPR” means that the performance of the classifier does
not include the PR step, and “APR” means that the performance of the
classifier includes the PR step.
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Table 5 The Overall Accuracies in Percentages of SCSVM (OAA, M), SCSVM (OAO,
M), SCSVMF (OAA, M), and SCSVMF (OAO, M) with Different Parameters M, the Size
of the Neighborhood System, and y in the IPS Data set.

y 0 005 01 03 05 1 10 100 500 1000 10000
SCSVM

(OAA.4) 565 890 902 9241925 925 917 89.1 919 916 888
SCSVM
(OAA, 8)
SCSVM
(OAO, 4)
SCSVM
(OAO, 8)
SCSVMF
(OAA, 4)
SCSVMF
(OAA, 8)
SCSVMF
(OAO, 4)
SCSVMF
(OAO, 8)

86.5 915 933 947 952 954 948 947 94.6 943 93.7

84.4 869 89.6 90.1 873 84.0 840 84.0 843 842 842

84.4 90.1 929 883 865 8.0 870 873 &7.1 87.0 8&7.0

86.5 884 883 86.6 8.2 835 794 780 77.8 778 7T7.8

86.5 883 87.6 846 836 823 785 778 778 778 T7.8

84.4 85.1 85.1 84.0 84.0 84.0 840 84.0 84.0 84.0 84.0

84.4 853 844 840 840 84.0 840 84.0 84.0 84.0 84.0

Table 6 The Overall Accuracies, Kappa Coefficients, and Average Accuracies in

Percentages of the Experimental Classifiers for the IPS Data set

Overall Accuracy  Kappa Coefficient . Average Accuracy

Classifier (%) %) (%)
ML N/A N/A N/A

ML MRF N/A N/A N/A
k-NN 75.5 721 74.6
SVM (OAO) 84 .4 82.3 85.5
SVM (OAA) 86.5 84.6 83.8
CS'VM 28.0 86.3 85.0
BPR 913 90.0 81.6

SVMFEM pr 92.8 91.8 82.5
SCSVM __ BPR 95.4 947 942
(OAA, M=8, y=1) APR 95.5 94.9 94.1

Because SCSVM is a generalized version of SVM, it reverts to the
original SVM when y =0. These results show that SCSVM (OAA) can

obtain a higher overall accuracy than SCSVM (OAO) in the IPS data set

regardless of M and y. Fig. 26 shows that using neighbor system ox!

generally yields better performance than using 0x; . SCSVM with M=8, a
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second-order neighborhood system, outperforms M=4, a first-order
neighborhood system, because the IPS is a larger spatial structure image in
the original space. In hyperspectral image classification, many samples
from different land-cover classes with similar spectral properties [20]-[21]
affect the performance of SCSVME. Specifically, SCSVMF performance
increases only a little, and is even worse than SVM performance when y
exceeds a threshold. The highest overall SCSVM accuracy of 95.4%
occurred at M=8 and y =1 with the OAA multiclass strategy and the

neighborhood system ox/ .

Table 7 The Class-specific Accuracies in Percentages for the IPS Data set

SCSVM
Class SVM SVM ] SVM+EM (OAA, M=8, 7 =1)
Sample | (OAD)—(OA#AY |5 VM
No. TII;E ¢ BPR -APR | BPR  APR
1 46 783 913 957 957 | 935 935 935 | 100.0
2 1428 7648 788 863 - 889 |866 89.0| 824 864
3 830 628 824 798 814 892 901 | 930 | 941
4 237 549 954 772 797 1979 [1000| 97.0 = 100.0
5 483 892~ 909 911 911 1936 946 | 954 | 959
6 730 949 938 945 938 | 971 985 | 959  97.0
7 28 857 964 857 857 |00 0.0 [ 1000 1000
8 478 96.0 847 973 975 979 983 | 862 883
9 20 400 600 450 450 | 50 00 | 950 | 100.0
10 972 744 898 858 857 | 875 902 | 97.1 = 984

11 2455 76.7 79.6 86.6 88.7 | 927 94.2 94.4 96.4
12 593 50.8 1.7 75.4 82.6 | 926 929 90.2 91.2
13 205 98.0 99.5 99.5 99.5 |1 99.0 99.0 | 995 100.0
14 1265 89.7 91.8 92.6 926 | 933 938 95.9 97.3
15 386 48.7 69.4 66.8 67.6 | 83.7 883 97.2 99.2
16 93 89.2 87.1 81.7 83.9 [ 957 968 98.9 100.0

Table 7 shows the classification maps with highest accuracies of each
types of classifier for comparison. Figs. 27(a) to 27(h) show the
classification maps of IPS hyperspectral image by A-NN (k&=1), SVM
(OAO), SVM (OAA), CS*VM, SVM+EM, and SCSVM (OAA) with M=8
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and y =0.1, respectively. To conveniently compare performance, Fig. 27 (i)

shows the ground truth of the IPS image.

The classification results from Table 6, Table 7, and Fig. 27 present the

following findings:

1. In terms of accuracy, SCSVM (OAA) with the PR step obtained the
highest overall accuracy and kappa coefficient of 95.5% and 94.9%,
respectively (Table 6). However, SCSVM (OAA) without the PR step
obtained the highest average accuracy of 94.2%.

2. Ten percent of each sample was selected randomly from the reference
data set to serve as the training set for each class. Therefore, some
classes were represented by only few training samples (i.e., there are
only 3 and 2 samples for class 7 (Grass/pasture-mowed) and class 9
(Oats), respectively). This may provide an unfair representation of this
class in the training process. Table 7 shows that the classification
performance for class 7 with SCSVM (OAA) was better than that with
k-NN, SVM (OAA), SVM (OAO), CS*VM, and SVM+EM. Moreover,
SCSVM (OAA) achieved better performance than other classifiers in
class 9. This situation was.improved by SCSVM (OAA), even without
the PR step, and the classification accuracies of class 7 and 9 with the

PR step were 100%.

3. The classifiers with the PR step efficiently reduced some noise in the

classification map, and slightly increased classification accuracy.

4. Table 6 and the classification maps in Fig. 27 based on spatial based
classifiers (SVM+EM, CS*VM, and SCSVM) show much better results
than the classifiers based on only spectral information (k~-NN, SVM
(OAO), and SVM (OAA)). The spatial-contextual based classifiers

reduced the number of speckle-like errors, especially in areas of
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Soybeans-min till, Soybeans-no till, and Corn-no till, which were the
most difficult parts to classify accurately. SCSVM (OAA) achieved a
great improvement in the classification map. The SCSVM (OAA)
classification map (Fig. 27 (h)) was similar to the ground truth (Fig. 27
(1)) of the IPS.

SVM+EM also achieved sound performance on the classification maps,
obtaining a 92.8% overall classification accuracy. However, this
scheme relies on partitional clustering results. Hence, if the partitional
clustering technique cannot accurately partition these areas, which
have similar spectral properties from different classes or come from the
small sample size classes (i.e., class 7 (Grass/pasture-mowed) and class
9 (Oats)), then the clustering technique will misclassify these areas into
the same class (Fig. 27 (f)). Af the partitional clustering technique
works very well, but the standard SVM classifier cannot sensitively
distinguish the pixels (e.g., different classes have similar spectral
properties), then these areas will be sacrificed. Table 7 shows that
SVM+EM achieved either 0% (c.g., class 7 and class 9 or low

classification accuracies for small classes.

Since CS*VM is based on- the-OAA multiclass strategy [32], the
class-specific accuracies for applying CS*VM are higher than or

similar to those for applying SVM (OAA).
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(b) SVM (OAO)
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(c) SVM (OAA)
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.F.IIIII

(e) SVM+EM ¢ SVM+EM (PR)

AT il wre 'S

.F.I“I. I.F.Im.

(g) SCSVM (h) SCSVM
(OAA, M=8, 7=1) (OAA, M=8, 7=1 PR)
Alfalfa mOats
mCorn-no till mSoybeans-no till
mCorn-min till mSoybeans-min till
mCormn mSoybeans-clean till
mHay-windowed mWheat
mGrass/trees mWoods
mGrass/pasture-mowed  Bldg-Grass-Tree-Drives
mGrass/pasture Stone-steel towers

(i) ground truth
Figure 27. The classification maps of the IPS data set by the highest performance of

each type classifier.
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B. Washington D.C. Mall

The experiments in this study used three cases to investigate the effects
of sample size on the dimensionality in the Washington D.C. Mall data set.
The sample covariance matrices of ML-based classifiers, ML and
ML MREF, of case 1 and 2 will be singular. Hence, ML-based classifiers
are unsuitable for case 1 and case 2, and the performance of ML-based

classifiers is marked as N/A for these cases.

Similar to the IPS data set, Tables 8-10 and Fig. 28-30 respectively
show the overall accuracies of SCSVM (OAA, OAO) and SCSVMF (OAA,
OAOQO) with grids of M €{4,8} and

y €{0,0.05,0.1,0.3,0.5,1,10,100,500,1000,10000}

to investigate the influence of the parameters 44 and 7 in three cases. In
case 1, the highest accuracy of 91.9% occurred at M=4 and y =0.05 with
the neighborhood system in the original space (SCSVM) using the OAA
multiclass strategy. However, SCSVM (OAO, 4) achieved a similar
accuracy of 91.7%. The highest accuracy in case 2is 94.1% at M=8 and
y=0.1 with neighborhood system in the original space (SCSVM) and
OAO multiclass strategy. However, SCSVM (OAO, 4) has a similar
accuracy, at 94.0%. In case 3, the highest accuracy of 98.6% occurred at
M=4 and y=0.3 with the neighborhood system in the original space
(SCSVM) using the OAO multiclass strategy. The SCSVM (OAO)
performance was generally better than or similar to that of SCSVM (OAA)
in all three cases. Furthermore, SCSVM with M=4 achieved better
performance than (or similar performance to) SCSVM with M=8. This is
because the Washington D.C. Mall is an urban site without large spatial

structures.
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Table 8 The Overall Accuracies in Percentages of SCSVM (OAA, M), SCSVM (OAO,
M), SCSVMF (OAA, M), and SCSVMF (OAO, M) with Different Parameters M, the
Size of the Neighborhood System, and » in Washington D.C. Mall Data set (Case 1).

7 0 005 01 03 05 1 10 100 500 1000 10000
(%(fzhf) 869 919 913 897 90.0 90.0 911 91.0 910 91.0 910
(%(jfxl\g) 869 904 90.6 90.6 90.6 90.6 90.6 90.6 90.6 90.6 90.6
(%isgihf) 86.9 910 917 90.1 904 909 89.6 89.6 89.6 89.6 89.6
(%(5\83/’1\2/3[) 869 90.7 913 907 91.0 90.7 904 90.6 90.6 90.6 90.6
?gixl’vg 869 883 883 88.1 880 881 87.6 877 87.7 877 877
?gixl’\g 86.9 877 879 880 879 879 876 87.6 87.6 876 87.6
?gi\g’vil; 869 866 866 866 864 859 864 864 864 864 864
?gi\(;l,\g 86.9 857 857 857 857 860 860 857 857 857 857

Figure 28. The overall accuracies in percentages of the experimental classifiers,

SCSVM and SCSVMF, for the Washington D.C. Mall data set in case 1.

Figs. 29-31 show that the overall accuracy increases as the training

sample size increases. Similar to the IPS data set, using many samples from
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different land-cover classes, but that have similar spectral properties
[20]-[21], negatively affects SCSVMF performance. That is, SCSVMF
performance increases only a little, or even becomes worse than the

performance of SVM, when p» exceeds a certain threshold. The

performance of SCSVMF (OAO) is much worse than that of SVM (OAO).

Tables 11, 13, and 15 show the overall accuracies, kappa coefficients,
and average accuracies of k-NN classifier with £ = 1, which has the best
classification performance of testing set, and SVM (OAO and OAA),
CS*VM, SVM+EM with and without the PR step, SCSVM with and
without PR step for all three cases of the Washington D.C. Mall data set.
Tables 12, 14, and 16 display the class-specific. accuracies of these
classifiers. Because the number-of testing samples is the same for every
class in the Washington D.C. hyperspectral image data set (i.e., equal to
100), the overall classification accuracy and the average accuracy are
identical in Tables 11, 13, and 15, and the first decimal points are all 0 in

Tables 12, 14, and 16.

Similar to the IPS data set, Tables 11, 13, and 15, and Tables 12, 14,
and 16, respectively compare the validation measures of SCSVM with

different parameters, M and y. These have the highest accuracies in Tables
8, 9, and 10. Fig. 31 shows a comparison of the classification maps with

highest accuracies of each types of classifier in case 3.
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Table 9 The Overall Accuracies in Percentages of SCSVM (OAA, M), SCSVM (OAO,
M), SCSVMF (OAA, M), and SCSVMF (OAO, M) with Different Parameters M, the
Size of the Neighborhood System, and » in Washington D.C. Mall Data set (Case 2).

7 0 005 01 03 05 1 __ 10 100 500 1000 10000
(%(fxl\f) 89.0 934 933 934 937 (937 934 933 931 931 93.I
(%(f/zl\g) 89.0 919 927 931 929 930 929 924 924 924 924
(f)isc‘)” l\f) 88.6 924 93.6 (940 937 924 910 904 904 904 907
(%(jfg’ “g) 88.6 93.0 941 924 926 924 920 919 919 919 919
?gixl’vg 89.0 889 889 89.1 893 893 89.1 893 893 893 893
fgixl,\g 89.0 889 887 887 889 89.0 889 889 889 889 88.9
fgi(vfﬁ 88.6 88.6 88.6 889 889 883 880 881 880 881 88.1
?SEX,M;; 886 881 883 883 881 879 880 880 880 880 880

Figure 29. The overall accuracies in percentages of the experimental classifiers,

SCSVM and SCSVMF, for the Washington D.C. Mall data set in case 2.
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Table 10 The Overall Accuracies in Percentages of SCSVM (OAA, M), SCSVM (OAO,
M), SCSVMF (OAA, M), and SCSVMF (OAO, M) with Different Parameters M, the
Size of the Neighborhood System, and y in Washington D.C. Mall Data set (Case 3).

7 0005 01 03 05 1 10 100 500 1000 10000
(%(fzhf) 937 953 956 959 96.1 974 969 957 953 953 953
(%(jle\g) 937 944 946 951 953 953 954 955 044 944 944
(%isgihf) 943 949 973 (986 981 973 961 954 96.1 961 96.1
(%(5\83/’1\2/3[) 943 959 97.3 969 960 960 950 954 951 951 95.1
?gixl’vg 93.7 943 944 943 941 043 949 941 941 941 941
?gixl’\g 037 94.1 944 944 944 946 944 944 944 944 944
?gi\g’vﬂ; 043 937 940 939 93.6 934 934 931 931 931 93l
?gi\(;l,\g 943 939 940 939 937 934 936 934 934 934 934

Figure 30. The overall accuracies in percentages of the experimental classifiers,

SCSVM and SCSVMF, for the Washington D.C. Mall data set in case 3.
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Table 11 The Overall Accuracies, Kappa Coefficients, and Average Accuracies in
Percentages of the Experimental Classifiers for the Washington D.C. Mall Data set
(Casel).

Classifier Overall Accuracy Kappa Coefficient Average Accuracy
ML N/A N/A N/A
ML _MRF N/A N/A N/A
k-NN 85.6 83.2 85.6
SVM (OAO) 86.9 84.7 86.9
SVM (OAA) 86.9 84.7 86.9
CS4VM 87.7 85.7 87.7
BPR 82.0 79.0 82.0
SVM+EM APR 80.3 77.0 80.3
SCSVM BPR 91.9 90.5 91.9
(OAA, M=4, y =0.05) APR 92.0 90.6 92.0

Table 12 The Class-Specific Accuracies in Percentages for the Washington D.C. Mall

Data set in Case 1

Class SVM- SVM SVM+EM SCSVM(OAA,
4 — —
. k-NN (OAD)—(OAA) CS'VM M=4, y =0.05)

No. Sample size BPR  APR BPR APR
1 100 79.0 78.0 81.0 86.0 80.0 83.0 92.0 92.0
2 100 82.0 94.0 93.0 99.0 93.0 92.0 100.0 100.0
3 100 58.0 66.0 60.0 57.0 62.0 60.0 93.0 91.0
4 100 98.0 93.0 94.0 96.0 100.0 100.0 98.0 97.0
5 100 94.0 95.0 95.0 98.0 54.0  51.0 83.0 86.0
6 100 90.0 90.0 91.0 85.0 91.0 83.0 85.0 84.0
7 100 98.0 92.0 94.0 93.0 94.0  93.0 92.0 94.0

Table 13 The Overall Accuracies, Kappa Coefficients, and Average Accuracies in
Percentages of the Experimental Classifiers for the Washington D.C. Mall Data set
(Case 2).

. Overall Kappa Average
Classifier Accuracy Coeffl':cl:)ient Accuragcy
ML N/A N/A N/A
ML MRF N/A N/A N/A
k-NN 87.1 85.0 85.6
SVM (OAO) 88.6 86.7 88.6
SVM (OAA) 89.0 87.2 89.0
CS4VM 89.4 87.7 89.4
BPR 86.7 84.5 86.7
SVM+EM APR 84.6 82.0 84.6
SCSVM BPR 94.1 93.2 94.1
(OAO, M=8, y=0.1) APR 94.1 93.2 94.1
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Table 14 The Class-Specific Accuracies in Percentages for the Washington D.C. Mall

Data set in Case 2.

Class SVM  SVM SVM+EM SCSVM(0AO,

4 = =
NN 0h0) (0AA) CSTVM M=8, y=0.1)
No. Sample size BPR APR BPR APR
1 100 86.0 95.0 95.0 97.0 98.0 | 99.0 98.0 98.0
2 100 84.0 95.0 95.0 100.0 96.0 95.0 100.0 100.0
3 100 66.0 60.0 59.0 54.0 580 56.0 82.0 82.0
4 100 98.0 98.0 98.0 98.0 100.0 100.0 | 100.0 100.0
5 100 96.0 90.0 91.0 98.0 70.0  66.0 98.0 98.0
6 100 87.0 91.0 92.0 85.0 91.0 83.0 84.0 84.0
7 100 93.0 91.0 93.0 94.0 94.0. 93.0 97.0 97.0

Table 15 The Overall Accuracies, Kappa Coefficients, and Average Accuracies in
Percentages of the Experimental Classifiers for the Washington D.C. Mall Data set
(Case 3).

. Kappa Average
Classifier Overall Accuracy Cocfficient Accuracy
ML 94.1 93.2 94.1
ML _MRF 96.7 96.2 96.7
k-NN 94.4 93.5 94.4
SVM (OAO) 943 93.3 94.3
SVM (OAA) 93.7 92.7 93.7
CS4VM 94.1 93.2 94.1
BPR 94.6 93.7 94.6
SVM+EM APR 92.9 91.7 92.9
SCSVM BPR 98.6 98.3 98.6
(OAO, M=4, y=0.3) APR 98.4 98.1 98.4
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Table 16 The Class-Specific Accuracies in Percentages for the Washington D.C. Mall Data set in Case 3

Class SVM+EM SC_SVM_
b (OAO, M=4, y =0.3)
ML ML MRF kNN SVM(OAO) SVM(OAA) CS*'VM
No. sample size BPR  APR BPR APR
! 100 99.0 100.0 95.0 97.0 96.0 99.0 98.0 99.0 99.0 99.0
2 100 99.0 99.0 96.0 99.0 99.0 99.0 93.0 92.0 100.0 100.0
3 100 90.0 94.0 80.0 78.0 75.0 76.0 85.0 85.0 99.0 100.0
4 100 98.0 99.0 100.0 98.0 98.0 98.0 100.0  100.0 99.0 100.0
> 100 93.0 99.0 99.0 100.0 100.0 100.0 98.0 97.0 99.0 100.0
6 100 85.0 90.0 93.0 90.0 90.0 89.0 91.0 83.0 97.0 94.0
7 100 95.0 96.0 98.0 98.0 98.0 98.0 97.0 94.0 97.0 96.0
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The classification results in Tables 11-16 and Fig. 31 reveal the

following findings:

l.

SCSVM obtained the highest classification accuracies of the testing set
in terms of overall accuracy, kappa coefficient, and average
classification for all cases. In case 1, SCSVM (OAA) with M=4,
7 =0.05 and the PR step achieved the best classification accuracy. The

overall accuracy, kappa coefficient, and average classification were
92.0%, 90.6%, and 92.0%, respectively. In case 2, SCSVM (OAA)

with M=8, y=0.1 achieved the best classification accuracy. The

overall accuracy, kappa coefficient, and average classification were

94.1%, 93.2%, and 94.1%, respectively. In case 3, SCSVM (OAO)
with M=4, ‘=03 rand without the PR step achieved the best

classification accuracy.-The overall accuracy, kappa coefficient, and
average classification were 98.6%, 98.3%, and 98.6%, respectively.
The accuracies increased in all classifiers as the training sample size

increased.

Because the Washington D.C. image is an urban site image, some areas
in the image are small spatial structures and some areas are large
spatial structures. The PR step did not work well for small spatial
structure areas (e.g. class 6 (trail) in Fig. 31). Tables 12, 14, and 16
show that the accuracy decreased upon applying the PR step in class 6
(trail). However, the PR step improved some noisy pixels in large
structure areas (e.g., class 4 (water)), with the exception of case 1,

which encountered the small sample size problem.

The image contains too many types of roofs. Hence, when the training
sample size is small (e.g., in class 3 (roof)) some types of roofs may
not be chosen as training samples. For this reason, the classification

accuracies and maps of this class are poor in case 1 and case 2 (Tables
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12 and 14) regardless of the classifier. In the general case (case 3),

these classes are identified more accurately (Table 16).

Fig. 32 shows classified images of SCSVM (OAO) and SCSVM (OAA)
with M=4 and y =0, 0.1, and 0.3. These images reveal the effects of

parameter » on the classified image. As the gamma increased, the

classified image exhibited more homogeneous groups of pixels.

Most of the spatial based classifiers (ML_MRFE, CS*VM, and SCSVM)
achieved better classification performance than the
spectral-information-only-based..classifiers (ML, A-NN, SVM). The
exception here is SVM+EM in-cases 1 and 2, because SVM+EM is
particularly suitable for classifying images with large spatial structures
[31]. The drawback of SVM+EM is that when including spatial
information  from the segmentation map or from the closest
neighborhoods in a classifier, small spatial structures may be
assimilated with larger neighboring structures if the spectral responses
are not significantly different [31]. Hence, SVM+EM is not really
suitable for the small areas of the Washington D.C. image. However,
the classification accuracy and maps of class 4 (water), which is a large

structure, can be improved, and the class-specific accuracy of the class

(water) is 100% (Tables 12, 14, and 16) for all three cases.

The CS*VM classifier is based on the OAA multiclass strategy. This
classifier achieved slightly better classification accuracy than SVM
(OAA) (see Tables 11, 13, and 15), but SCSVM still achieved better
performance than CS*VM. However, the CS*VM distinguished some
areas better than SCSVM.
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Figure 31. The classification maps of a portion of the Washington D.C. data set (case 3)

by the highest performance of each type classifier.
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Figure 32. The classification maps of a portion of the Washington D.C. data set (case 3)
of SCSVM (OAO) and SCVM (OAA) with M=4 and different parameters y =0, 0.1,

and 0.3.
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6. Conclusion

This study proposes a clustering algorithm, called FLDC, and two
kinds of spatial-contextual support vector machines (SCSVMs). FLDC is
based on the Fisher criterion composed of the fuzzy between- and
within-cluster scatter matrices extended from LDA. Experimental results
with both synthetic and real data indicate that the proposed clustering
algorithm outperformed the KMS, KMD, FCM, GK, GG, PCM, FPCM,
PFCM, FCS, FSMM, and FMSFA algorithms.

The results of clustering synthetic data sets reveal that FLDC only
worked well when the distribution of clusters showed a normal distribution.
Hence, future research should extend FLDC using kernel tricks, that is, a
clustering algorithm based on an.unsupervised version of kernel-based

LDA for non-normal data sets.

Another direction for future research is to show that the proposed
optimization problem is non-convex and nonlinear. Although the proposed
methods work well, the optimal solution may fall into a local minimum,
and the interior-point optimization method is time consuming. Thus, it is

necessary to find a more efficient algorithm for solving such problems.

The number of clusters is an important factor in all clustering
algorithms. Future research should develop or choose an appropriate
criterion for FLDC, [Akaike and Bayesian information criteria (AIC and

BIC)], to determine the number of clusters.

For SCSVMs, results show that a SCSVM based on the neighborhood
system in the original space can overcome similar spectral properties.
SCSVM modifies the decision function and the constraints of SVM based
on spatial-contextual information. A PR step consisting of a

fixed-window-based postfiltering was employed to reduce the remaining
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noise in the classification map. The experiments in this study compared and
analyzed the effects of different types of classifiers on the classification
accuracy and classification map of the proposed SCSVM, ML classifier,
ML-MREF classifier, &-NN classifier, a standard supervised SVM, a CS*VM,
and SVM+EM.

The experimental results obtained from two different hyperspectral
image data sets, the Indian Pine site (a mixed forest/agricultural site in
Indiana) and the Washington D.C. Mall hyperspectral image (an urban site
in Washington D.C.), confirm that the proposed SCSVM improves the

classification accuracies and kappa coefficients.
This discussionleads to the following conclusions about SCSVMs.

I. SCSVM (OAA) performs better than or similar to SCSVM (OAO) in
the IPS data set. The classification map of IPS data set obtained from
SCSVM (OAA) with the PR step (Fig. 27 (h)) 1s very close to the
ground truth, and the SCSVM classification accuracy and kappa
coefficient are 95.5% and 94.9%, respectively. However, in the
Washington D.C. Mall data set, SCSVM (OAQ) performs better than
or similar to SCSVM (OAA), and SCSVME (OAA) performs better
than or similar to SCSVMF (OAO).

2. This study shows that selecting a suitable spatial parameter
improves SCSVM performance, and the best choice of y becomes
larger as the training sample size increases. That is, y has a
significant influence on performance, especially for the SCSVM

(OAA).

3. The computational cost of the learning phase in the proposed SCSVM
is slightly higher than that of the standard SVM in each round. From a

theoretical viewpoint, a standard supervised SVM is a special case of
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SCSVM if the parameter » is equal to 0. However, CS*VM requires a
huge semi-sample set from the neighborhoods of each training sample
in the objective function. Hence, the computational cost of the CS*VM
learning phase is slightly higher than that of SCSVM learning phase.
This is because SCSVM only uses the same training sample in the
objective function in each round. For example, in the IPS data set
experiment, the training phase of a supervised SVM (OAA) took about
7.566s on a PC with an Intel Core 2 Duo CPU at 2.4 GHz and a 4-Gb
DDR2 RAM. The training phase of SCSVM (OAA) took about 7.909s
on the same machine, but the training phase of CS*VM required about

185.56s.

The SVM+EM method-is-particularly suitable for classifying images
with large spatial structures (e.g., the IPS image) when the spectral
responses of different classes are dissimilar and the classes contain a
comparable.number of pixels. However, most real data.does not always
satisfy this condition (e.g., the Washington D.C. Mall image). Hence,
SVM+EM is not suitable for all situations. In the SCSVM classifier,
the spatial neighborhood system can be modified according to the

spatial structures of different data sets.
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