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從從從攻攻攻擊擊擊角角角度度度定定定量量量評評評估估估資資資訊訊訊系系系統統統安安安全全全性性性

研究生: 蔡欣宜 指導教授: 黃育綸博士

國立交通大學電控工程研究所

摘摘摘要要要

資訊安全評估機制可以提供資訊系統的安全評估結果，協助系統管理者有效

地瞭解系統之安全性，並成為系統管理者管理該系統之參考依據。由於一個系統

的安全性涉及許多因素，諸如系統設定、安全機制、現有攻擊方式等等，因此資

訊安全的評估不能僅考慮單一面向，而必須要能同時考慮多項因素所造成的影

響。本文分別由系統外部與內部攻擊的角度出發，探討資訊安全評估方法之設

計，及其所能提供的評估結果。在外部攻擊方面，本文提出一個無線網路風險評

估方法；該方法首先考慮網路系統的安全條件、攻擊手法與系統設定，以建立風

險模型，接著本文再提出一套量測準則，藉以量化風險數值。在內部攻擊方面，

本文提出一套量化分析軟體控制流程模糊化之方法，以評估控制流程模糊化對軟

體強韌度之影響。該方法基於控制流程圖之概念，將控制流程模糊化轉換為正規

表示式。以此正規表示式為基礎，本文進一步提出新的量測準則，以計算軟體控

制流程模糊化所提供的保護能力。最後，本文利用數個範例，說明並驗證本文所

提方法之可行性。我們相信本文所提之方法能提供系統管理者更全面的資訊安全

評估結果，並進一步地協助系統管理者管理該系統。
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Abstract

Assessment of cyber security is a long-standing and great challenge since

multifarious factors and their reciprocal effects have to be considered in the

meanwhile for the assessment. Due to its complexity, assessment of cyber se-

curity should be performed with multiple aspects. This dissertation presents

the quantitative assessments from the perspectives of both external and inter-

nal attacks. Regarding assessing cyber security in terms of external attacks,

we propose a wireless risk assessment method which consists of a risk model

and an assessment measure. The risk model is in charge of modeling wireless

network risk, and the assessment measure is an algorithm of determining

the risk value per the risk model. As for internal attacks, we introduce a

novel framework to evaluate software robustness in terms of control-flow ob-

fuscating transformations. On the basis of this framework, we propose new

metrics for quantifying the protection effect yielded by a control-flow obfus-

cating transformation. Moreover, we conduct the case studies to validate the

proposed assessment methods. We believe that our methods are helpful for

a system administrator to evaluate and manage the cyber security in a more

effective way.
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Chapter 1

Introduction

Assessment of cyber security is important since we cannot improve what we

cannot measure [1]. The assessment results are helpful for system administra-

tors and users to understand system security easily. Then, the administrators

are capable of designating countermeasures, applying protection mechanisms,

or modifying system configurations to increase security according to the as-

sessment results. Nevertheless, assessment of cyber security is critical since

various factors (such as security countermeasures, system configurations, vul-

nerabilities and realistic attacks) are involved to pose individual effects on

cyber security and yield different levels of security risk. It is thus difficult

to assess cyber security from a holistic perspective because the multifarious

factors and their reciprocal effects have to be considered in the meanwhile.

Cyber security can be compromised in many ways. Security mechanisms

and configurations are designed and applied to fortify against different at-

tacks. Hence, to plausibly assess security, the assessment should be per-

formed from the aspect of attacks that attack targets, prerequisite config-
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urations of an attack and attack impacts are involved. Cyber attacks take

various forms and are coarsely classified into two types: external and inter-

nal attacks. An external attack is launched by an adversary outside a victim

system. An internal attack is started by an attacker who is a legal user of

the victim system. Upon attacking a network, an external attacker intends

to gather information concerning the network system from the outside and

then launches attacks accordingly, while an internal attacker, accessible to a

victim, can control the system and assault the victim’s data and programs.

Security of a network system hence should be evaluated from both the ex-

ternal and internal aspects to better reflect the realistic situations.

There are many implementations of external attacks, such as penetration

attacks, Denial-of-Service (DoS) attacks and eavesdropping attacks. Accord-

ing to the variations of attacks, various methods of assessing cyber security

in terms of external attacks have been proposed. The methods include at-

tack graph-based methods [2, 3, 4, 5, 6, 7, 8] and analytic hierarchy process

(AHP)-based methods [9, 10, 11, 12, 13]. An attack graph-based method

assesses the security of a network system based on analyzing the system’s

attack graph, which is drawn mainly from the aspect of penetration attacks.

The attack graph-based methods are widely used in assessing security of

wired networks, but they are not that appropriate for a dynamic network

environment. The whole attack graph needs to be re-generated once the

topology or configurations of a network system change. Such re-generation

could cause a heavy load for assessing the cyber security due to the frequent

change of a dynamic environment. The AHP is a structured technique for

decision making problems [14, 15]. It has been applied to several realms, such
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as planning, system designing and risk assessment. Zhao et al. applied the

concept of AHP to modeling and assessing network security risk [9, 10, 11].

However, Zhao et al. developed a 3-layer hierarchical structure which is not

sufficient to discuss the security impacts resulting from the incorrect con-

figurations. [12] and [13] concentrate on the design of the methodology for

risk assessment based on the AHP, but their focus does not lay in the design

of the risk model to better represent the real security situation. Therefore,

there is a need to establish a feasible risk model and design a practical risk

assessment method which meets the ground truth.

Unlike an external attacker, an internal adversary obtains the privilege

prior to launching an attack so that the adversary is authorized to manipulate

the stored data and programs. Factors critical for assessing cyber security

against external attacks may not be as crucial for the assessment from the

internal attack perspective. In comparison, evaluating robustness of data

and programs against internal attacks is the core of security assessment.

Much research has been proposed to evaluate capabilities of data protection

mechanisms, such as data encryption and digital watermarking. As for the

protection of programs, comparatively little attention has been received in

evaluating the program protection mechanisms like software obfuscation and

software tamperproofing [16].

To distinguish the existing security assessment methods, this disserta-

tion offers solutions to assessing cyber security in different scenarios and test

cases. We present several quantitative assessments of cyber security in terms

of both external and internal attacks. We develop a wireless risk assessment

method, which is composed of a risk model and an assessment measure. The
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risk model is in charge of modeling wireless network risk from the aspects of

the security requirements, the wireless attacks and the configurations, where

the wireless attacks fall into the category of the external attacks. The assess-

ment measure is an algorithm for determining the risk value based on the

risk model. To complement the deficiencies of the existing methods (attack

graph-based and AHP-based methods), we extend an existing 3-layer AHP

hierarchy into four layers with the considerations of device configurations.

An additional layer is constructed to consider the impacts from incorrect

configurations and to deal with the frequently changing configuration of a

wireless network.

Our 4-layer hierarchy consists of the risk layer (1st layer), the requirement

layer (2nd layer), the attack layer (3rd layer) and the configuration layer (4th

layer) such that the vulnerabilities, the wireless attacks and the attack targets

within a wireless network are considered by our method. The separate layers

are advantageous to incorporating the dynamic configurations since only the

4th layer is re-built on detecting the changes of the configurations. Further,

since our hierarchy is developed per device, we can easily establish or remove

a corresponding hierarchy when a device joins or leaves the network. Only

the related hierarchy needs to be developed or removed, instead of all the

hierarchies within the network. Therefore, the computing load, resulting

from the dynamics of the network, can be reduced. On the basis of the

hierarchy per device, we propose an assessment measure to calculate the

value for wireless network risk.

In regard of program protection against the internal attacks, it is expected

that after applying the protection mechanism, a program is more robust

4



against being understood or modified by attackers. Software obfuscation is

a technique to shield a program from reverse engineering [17, 18, 19, 20, 21].

Collberg et al. [17, 22] classified software obfuscation and proposed several

approaches. One approach is control-flow obfuscation, which tries to disguise

the real control flow of an original program by re-ordering and obscuring its

execution paths. Then, an obfuscated program with higher robustness than

the original one is produced. Additionally, software tamperproofing is an-

other well-known program protection mechanism. It not only aims at making

tampering difficult but also tries to detect and respond to the modification

as well [23]. Obfuscation is beneficial to tamperproofing, since an obfuscated

program which is harder to understand increases the difficulty for an adver-

sary to discover the exact software instructions that he would like to tamper.

Tamperproofing is usually combined with obfuscation in practice. Therefore,

this dissertation focuses on evaluating software obfuscation to analyze its ef-

fects upon software robustness. Then the evaluation result can lead to the

further measurement of software robustness enhanced by a tamperproofing

mechanism.

To evaluate various control-flow obfuscating transformations, we present

an abstract framework for formalizing and modeling them. We describe

a control-flow obfuscating transformation as a transformation on program

control flow graphs (CFG) in this framework. A control-flow obfuscating

transformation can be viewed as a function that accepts the original pro-

gram’s CFG as input and yields a modified CFG. By analyzing many ex-

isting transformations, we observed that many of them can be decomposed

into a sequence of basic building blocks. Thus, we identify a set of atomic
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operators for graph transformations that are guaranteed to preserve the func-

tional behavior of the program and hence can be used as building blocks of

a control-flow obfuscating transformation. By composing instances of these

atomic operators in sequence, we can build many kinds of control-flow ob-

fuscating transformations. This helps to understand and classify many prior

control-flow obfuscation proposals and may help in devising new candidate

obfuscating transformations.

On the basis of the formal representation of a transformation, we propose

metrics that we conjecture may be related to software robustness of an ob-

fuscated program, in comparison with the original program, against reverse

engineering. Our framework with such metrics helps to statistically analyze

and evaluate software robustness in terms of control-flow obfuscating trans-

formations, while it does not support dynamic analysis of reverse engineering.

In addition, we explain how to evaluate the overhead on code size introduced

by a control-flow obfuscating transformation on the basis of our framework.

Our approach works by characterizing the space penalty of each individual

atomic operator. Then, we are able to estimate the overheads an obfuscating

transformation yields according to the formalization of the transformation

with ease.

The novel contributions of this dissertation are:

• We propose assessment methods of cyber security. The assessment

methods concern the scenarios of both external and internal attacks.

• We present an extended AHP-based method for wireless risk assess-

ment. The method models the wireless risk according to the widely
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adopted definition of risk, the realistic attacks and the current system

configurations. In addition, the method addresses the computing loads

caused by the dynamics of a wireless network.

• We show a framework to evaluate software robustness enhanced by

control-flow obfuscation. The framework can not only formalize exist-

ing control-flow obfuscating transformations but is also flexible enough

to express new ones. In addition, our framework is helpful in evalu-

ating not only software robustness but also space penalty caused by

obfuscation at the design stage.

• We propose metrics that we conjecture they may be helpful in measur-

ing wireless risk and capability of control-flow obfuscation. We reason

the small risk values and the large capability values derived by our met-

rics are necessary but not sufficient for security. Then, the metrics can

be a useful index for administrators to adjust network configurations

or select proper protection mechanisms.

Synopsis Chapter 2 introduces the related work of cyber security assess-

ment, including network risk assessment and evaluation of software obfus-

cation. Chapter 3 explains our risk assessment method which is designed

based on the analytic hierarchy process. We also present metrics and a mea-

sure algorithm for assessing wireless network risk. In Chapter 4, we first

review the background of CFGs, and describe the proposed atomic operators

for formalizing control-flow obfuscation. The formalization of control-flow

obfuscating transformations is specified in this chapter. Chapter 5 describes

7



the metrics for evaluating control-flow obfuscation. The metrics are devised

based on the proposed formalization. Chapter 6 gives examples to illustrate

our assessment methods and to validate our methods. Finally, the last chap-

ter states the conclusions of this dissertation.
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Chapter 2

Related Work

We review the existing methods of assessing cyber security in this chapter.

We also discuss the advantages and insufficiencies of these methods to clarify

the motivation of this dissertation again.

2.1 Security Assessment in terms of External

Attacks

In most situations, an adversary has no access to a victim system. The at-

tacker needs to start attacking without a given privilege. He may try to

gather useful information by external exploration and to exploit vulnerabil-

ities to gain a privilege illicitly. Attack graph-based methods assess cyber

security based on analyzing potential or possible attack paths existing in a

network. AHP-based methods focus on modeling security risk yielded by

multifarious factors, including various kinds of attacks, system configura-

tions, and so on.
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2.1.1 Attack Graph-Based Assessment Methods

Traditionally, tree-based analyses such as event-tree analysis and fault-tree

analysis are used in a quantitative risk assessment [24, 25]. The event-tree

analysis produces a sequence of outcomes which may arise after the occur-

rence of a selected initiating event. In the fault-tree analysis, an undesired

event is assigned as the root of a fault tree. Administrators deduce bottom

events that may trigger the undesired event from top to down, and build a

fault tree composed of the events. By traversing the event tree or the fault

tree, we can ascertain the probability of occurrence of an undesired event.

Both event-tree and fault-tree analyses, while useful, are less than satisfac-

tory since they are not appropriate for assessing risk resulting from multiple

criteria. That is because an administrator can select only one undesired event

(initiating event) when build up a fault tree (an event tree). Therefore, the

risk value deduced from the tree concerns a single criteria simply.

To improve the deficiencies of the tree-based methods, in 1999 Phillips

et al. proposed an approach to modeling network risk based on an attack

graph [2], which draws paths that may lead to an unexpected state of a net-

work from various initial states. A node in a graph indicates a system state,

and an edge is an action of transition from one state to another. An attack

graph is generally developed with attack templates, system configurations

and attack capabilities [2, 26, 27]. Attack templates mainly describe the pre

and post conditions of attacks. The conditions may contain the information

of user level, vulnerabilities, capabilities, etc. System configurations indicate

the details of the network system. A configuration file should have the fol-
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lowing information: machine type, operating system, ports opened, services,

network type, and so on. In an attack graph, attack capabilities can be rep-

resented as the initial states. The attack capabilities are one of the factors

leading to the probability of success of an attack.

Since attack graphs can provide thoroughly possible attack paths within

a network, many researchers and professionals have proposed attack graph-

based network security measures. Wang et al. [7, 6] presented a generic

framework which considers disjunctive and conjunctive dependency relation-

ship between exploits in an attack graph. An attack resistance metric has

been proposed to calculate and compare the security of different network con-

figurations based on the generic framework. In [4], Mehta et al. presented

two algorithms of ranking attack graphs to determine the probability of an

attacker reaching the goal states. The first algorithm is similar to Google’s

PageRank algorithm to determine the importance of webpages on the World

Wide Web [28]. The authors modified Google’s algorithm to find out the

probability to reach a certain system state from the initial state. The second

algorithm ranks individual states of an attack graph in a random simulation

that the transition probability from state si to sj equals the reciprocal of the

number of successors of the state si.

[3] and [26] presented an analysis method of determining a minimal set of

attacks that need to be prevented, otherwise the goal state will be reached.

They also explained how to interpret an attack graph as a Markov Deci-

sion Process to perform quantitative reliability analysis. A number of re-

searchers have proposed risk assessment and security analysis methods based

on Bayesian network-based attack graphs [8, 29, 30]. Bayesian networks en-
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able system administrators to determine the probability of a particular attack

being executed from a given initial system state according to the conditional

dependencies among passed states. Dantu et al. [31, 32] also used a Bayesian

network-based attack graph for security risk management. The authors inte-

grated behavior-based profiles with the Bayesian network-based attack graph

to estimate the risk level based on an attacker’s behavior.

The attack graph-based methods are widely used in network security

analysis and assessment since an attack graph provides elaborate information

about attacks which exploit vulnerabilities existing in a network. However,

generation of an attack graph requires high time complexity. In [33], Ou

et al. pointed out the complexity of the attack graph generation algorithm

of Ammann et al. [34] is O(N6) in terms of network size. Ou’s algorithm

has O(N2) complexity under the assumption of constant table look-up time.

In 2005, Ammann et al. [35] proposed an algorithm to track only “good”

attack paths, instead of all possible attack paths. The algorithmic complexity

is polynomial in the size of the network.

According to the discussion in the literature, complexity of generating an

attack graph is a critical issue for the attack graph-based assessment methods.

To assess security of a dynamic network environment, redrawing the whole

attack graph is required because the paths of an attack graph are tightly

dependent on the exploited vulnerabilities and on the nodes. Periodically

redrawing an attack graph of a dynamic network, like wireless networks,

could lead to a heavy load because topologies and configurations usually

change in high frequency.
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2.1.2 AHP-Based Assessment Methods

The AHP is a structured approach for solving decision-making problems. It

is appropriate for complex decisions which involve various decision elements

that are difficult to quantify. The AHP contains the steps in developing

a hierarchy of decision elements and constructing the relationship between

the elements. A weight is set for each element as the representation of the

relationship. The AHP has been applied for many realms, including network

risk assessment [9, 10, 11, 12, 13].

Wang and Zeng [12] presented a method of assessing information security

risk based on the AHP. They quantified the security risk by integrating the

AHP with the fuzzy mathematics and the artificial neural network. Zhang et

al. [13] proposed an AHP-based risk assessment method for information secu-

rity. They adopted a group decision making method to combine the assessing

results from individual experts. [12] and [13] concentrate on the design of

the methodology and does not mention much about the development of the

risk model upon the AHP.

In [9, 10, 11], Zhao et al. constructed 3-layer hierarchical structures based

on the AHP to model wireless network risk. The top layer of their structure

is the goal of the risk assessment. The middle layer introduces the rules for

weighting the risk factors with the aspects of probability, impact severity, and

uncontrollability. The combination of these factors leads to a potential risk

value of the network. Illegal actions and system faults which may influence

the above elements are listed in the bottom layer. In [9], the entropy theory

was introduced to determine the coherence of expert experiences. In 2007,
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Zhao et al. extended their previous risk assessment method, which was pro-

posed in 2005 [9], by including mobile IP security and wireless interferences

in the bottom layer to assess security risk of a wireless network [11].

Compared to the attack graph-based methods, the AHP-based methods

require lower time complexity to generate a network risk model. Thus, the

AHP could be a convincing candidate basis for modeling and assessing secu-

rity of a wireless network with changing configurations and dynamic topolo-

gies. Moreover, these hierarchical structures, composed of critical elements

for the wireless network risk assessment, are useful to systematically mea-

sure network security. However, the existing work ([9], [10] and [11]) simply

discusses how the risk factors affect network security without considering the

impacts resulting from the practical configurations and network topologies.

Because incorrect configuration is the main reason for system vulnerabil-

ity for both wired and wireless networks, the existing 3-layer structures are

deficient in modeling network risk.

2.2 Security Assessment in terms of Internal

Attacks

Since an internal adversary has access to a victim system, most security

mechanisms cannot forbid the adversary from reaching or stealing contents

like data or software within the system. Nevertheless, there are some mecha-

nisms which try to obstruct an adversary from understanding, interpreting or

modifying the contents even the adversary obtains the contents. Therefore,
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security assessment in terms of internal attacks should concern on security

evaluation of the corresponding protection mechanisms. Software protection

has received comparatively little attention, compared to data protection and

evaluation of data protection. This dissertation aims at providing holistic se-

curity assessments that we concentrate on devising the evaluation of software

protection.

Various software protection mechanisms have been proposed to accom-

plish distinct objectives. The mechanisms and their objectives are described

as follows.

• Software watermarking targets on discouraging the intellectual prop-

erty theft or proving the ownership of the software when the theft

occurs by embedding a watermark into the software.

• Software tamperproofing tries to increase difficulty in tampering soft-

ware and is able to detect changes if the software is tampered.

• Software obfuscation aims at obscuring software to protect the software

from being understood or reverse engineering.

Software watermarking and software tamperproofing are generally combined

with software obfuscation since an obfuscated program which is harder to

understand increases the difficulty for an adversary to figure out the em-

bedded watermarks, or to discover the exact software instructions that he

would like to tamper. Therefore, the result of evaluating obfuscation can not

only indicate the capability of software obfuscation but also be introduced to

further security assessment of software watermarking and tamperproofing.
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It is crucial to dive in the evaluation of software protection starting from

evaluating obfuscation.

2.2.1 Evaluation of Software Obfuscation

Software obfuscation increases difficulty in reverse engineering by transform-

ing an original program into an obfuscated one which thwarts reverse engi-

neering but preserves the original functionality [17]. Despite the theoretic

proof of the impossibility of omnipotent obfuscation [36], obfuscation is still

able to reach positive results in specific situations [37] and implementation

of obfuscation have been widely discussed [17, 18, 19, 20, 21]. According

to [17], obfuscation is classified into three types: control-flow obfuscation,

data obfuscation and layout obfuscation. Control-flow obfuscation disguises

the real execution under scrambled control flow of a program to make re-

verse engineering difficult. Various implementations have been introduced

to accomplish control-flow obfuscation [18, 38, 39, 40]. Data obfuscation

transforms data and data structures in a program without modifying the

original functionality. [21] and [41] presented obfuscating transformations

by extending the concept of data obfuscation. Layout obfuscation removes

the information that an attacker can seize from the program. Most of the

commercial obfuscators such as Dotfuscator [42], DashO [43], Zelix [44] and

ProGuard [45] adopt the basic idea of layout obfuscation.

Each type of obfuscation provides effective though limited resistance against

malicious reverse engineering. In recent years, many researchers proposed

various evaluation methods to assess the effectiveness of an obfuscating trans-
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formation. The methods are mostly based on empirical analysis, which eval-

uates an obfuscating transformation by running practical experiments to ob-

serve how much the obfuscated program resists against deobfuscators or how

much time a human subject takes to interpret it [46, 47, 48, 49, 50, 51].

Udupa et al. [52] examined control flow flattening, a control-flow ob-

fuscating transformation, by measuring the time required by automatic de-

obfuscation. Anckaert et al. [47] introduced a framework to evaluate an

obfuscating transformation based on software complexity metrics, which cal-

culate the complexity with respect to instructions, control flow, data flow

and data. The authors implemented three obfuscating transformations (con-

trol flow flattening, static disassembly thwarting and binary opaque predi-

cates) and applied the transformations to eleven C programs of the SPECint

2000 benchmark suite, and the obfuscated programs were produced from the

benchmark suite. The results of the complexity analysis show that all of the

three transformations can provide non-negative effects, but the transforma-

tion, binary opaque predicates, is less potent than two others. Majumdar

et al. [48, 53] considered a specific reverse-engineering technique, slicing,

and developed metrics to evaluate the capability of obfuscation against that

technique. [48] and [53] presented three obfuscating transformations (bogus

predicate, adding to a while loop, and variable encoding) and applied them

to five example programs to derive the values by the defined metrics. The

metric values imply that these transformations significantly make reverse

engineering difficult.

Ceccato et al. [49, 50] assessed the difficulty an attacker would encounter

in examining identifier renaming, one of the obfuscation techniques, by ques-
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tionnaires. The authors asked human subjects to interpret the original and

obfuscated programs and to fulfill a comprehension task. The subjects were

also asked to fill in a post-task survey questionnaire to describe their behav-

ior during the task and the confidence about it. Certain types of statistical

tests, such as the Mann-Whitney test and the Wilcoxon test, were adopted

to analyze the task results and the questionnaires. The analysis results point

out that identifier renaming effectively reduces the capability of the subjects

to understand the source code.

The existing work [47, 48, 49, 50, 52] evaluated the effectiveness of obfus-

cation by empirical studies. Practical experiments were performed to mea-

sure individual obfuscating transformations according to the defined met-

rics or the perception of human subjects. These experiment results indicate

the relation specifically between a designated original program and a sin-

gle obfuscating transformation. While the same obfuscating transformation

is intended to be applied to another program, the experiment results may

not be applicable to determine the capability of that transformation in the

case. In addition, the existing experiment results of evaluating individual

transformations cannot help determine the effectiveness of a compound ob-

fuscating transformation, which comprises several separate transformations.

It thus requires a formal method for evaluating obfuscating transformations

in a high-level of abstraction.

Preda and Giacobazzi [54] proposed a formal method for analyzing the

effect of a control-flow obfuscating transformation based on program seman-

tics. They considered a specific control-flow obfuscating transformation,

which obscures the control flow by inserting opaque predicates. They eval-
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uated the transformation by analyzing the effects of the opaque predicates

inserted. They also modeled attackers for comparing obfuscating transfor-

mations. Their method is the closest to ours, which evaluates control-flow

obfuscating transformations based on formal analysis as well. However, our

method can formalize and evaluate more types of control-flow obfuscating

transformations, not limited to the type of inserting opaque predicates.

2.3 Summary

We reviewed and analyzed the attack graph-based and the AHP-based meth-

ods for network risk assessment in terms of external attacks. The analysis

showed that there is a need to propose a new risk assessment method, which

can represent the risk in the real-world and is capable of addressing the dy-

namics of a network. We also discussed the existing methods of evaluating

obfuscation. Most of them are empirical-based and examine the effects of

obfuscating transformations by experiments; however, a formal method is

necessary to help system administrators systematically and effectively assess

the capability of obfuscation.
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Chapter 3

Risk Assessment of Wireless

Networks

Risk assessment is critical for risk mitigation and security enhancement. It

can be applied to several different realms to address risk management, such

as information technology, chemical industry and financial industry. Despite

variation in the application realms, risk assessment takes into account cal-

culations of two components of risk, the magnitude of the potential loss and

the probability that the loss will occur. Then the assessment result is used

as a reference for identifying proper controls in treating or eliminating risk

during the following process, such as risk treatment and risk mitigation, in

a security risk management standard [55, 56, 57].

The dynamics of wireless networks make network security evaluation and

management a critical challenge. To help a network administrator effectively

manage wireless network security, it is essential to design a risk assessment

method which derives a risk value for the administrator to easily understand
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the security of the managed network. A feasible risk assessment method

has to reasonably model wireless network risk and measure the risk value

according to the characteristics of the network. Network risk is defined as

“a function of the likelihood of a given threat-source’s exercising a particular

potential vulnerability, and the resulting impact of that adverse event on

the organization” [55]. According to the definition, network risk can be

interpreted as the resulting impact which results from the likelihood, the

threat sources and the vulnerabilities.

To fulfill the definition, we propose a risk model (4-RAH), shown in Fig-

ure 3.1, to describe the wireless network risk. The top layer of our model

represents the impact severity which threatens the security requirements (2nd

layer) of a wireless network. The impact severity is determined in terms of

the factors: likelihood, threat sources and vulnerabilities by the definition.

Our model introduces the attack layer (3rd layer) and the configuration layer

(4th layer) to indicate the threat sources and the vulnerabilities, respectively,

where the edges between the layers represent the likelihood mentioned in the

definition. We construct a hierarchy for each device, and then based on the

hierarchy, we propose an assessment measure which contains a newly defined

historical vulnerability metric and an algorithm to determine the network

risk value. Our risk assessment takes the real-world situation into account

and the evaluated result helps an administrator understand a network’s weak

points and their impacts. Therefore, our risk assessment can be a useful ref-

erence in designating security policy and improving network security.
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Figure 3.1: The proposed hierarchy per device: general case
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3.1 Preliminaries

This section defines the symbols used in Chapter 3.

αi Severity of the ith vulnerability

β Decaying speed of the exponential function

λi Age of the ith vulnerability

Aapi ith attack targeting on an access point (AP)

Astai ith attack targeting on a wireless station (STA)

ahvm(devi) Value of the ith device (devi), determined by the ag-

gregated historical vulnerability measure (AHVM)

D Degree matrix of a given device. The matrix dimen-

sion is na-by-nr. The entry dij is used to represent

the impact that the ith attack Ai imposes on the jth

security requirement.

hvm(seri) Value of the ith service, determined by the historical

vulnerability measure (HVM)

hvm(seri) Normalized hvm(seri)

I Impact severity upon a device

ihvm(devi) Value of the ith device, determined by the integrated

historical vulnerability metric (IHVM)

ihvm(devi) Normalized ihvm(devi)

na Number of attacks

napa Number of attacks targeting on APs

nstaa Number of attacks targeting on STAs

nd Number of wireless devices in a network

napd Number of APs in a network
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nstad Number of STAs in a network

ng Number of configurations

nr Number of security requirements

ns Number of services running on a device

nv Number of vulnerabilities of a service

p̂ Probability vector. The ith entry pi denotes the prob-

ability of acquiring the ith configuration.

r̂ Risk level vector. The ith entry ri reflects the help that

a captured configuration may offer to an attacker.

T Total impact severity upon a wireless network

ŵg Weight vector of configurations, an na-dimension col-

umn vector. The ith entry wgi reveals the impact lead-

ing to the ith attack Ai, where the impact varies with

the configurations of a wireless system.

ŵr Weight vector of requirements. The vector is an nr-

dimension column vector. The ith entry wri represents

the weight of the ith security requirement when deriv-

ing the total impact severity.

3.2 Risk Model: Four-Layer Risk Analytic

Hierarchy

To accomplish the definition of network risk [55], 4-RAH is proposed to

model the wireless network risk with four layers: risk, requirements, attacks

and configurations, respectively.
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3.2.1 Risk Layer

The first layer (risk layer) only contains a root node, representing the impact

severity of a wireless network as the security requirements of the network are

not achieved.

3.2.2 Requirement Layer

We introduce the credible network security requirements, confidentiality, in-

tegrity and availability, into the 2nd layer of 4-RAH.

• Confidentiality is imperiled when information is available or disclosed

to unauthorized users. Different attacks aim for different targets. For

instance, an eavesdropping attack launches impacts on network traffic

confidentiality, while a penetration attack causes damage to memory

data confidentiality. In this paper, loss of confidentiality can occur in

multifarious targets according to the types of attacks.

• Integrity is damaged if data or messages are executed, modified, sus-

pended, copied, replayed or deleted by an illicit user. Because attackers

may be interested in attacking different targets such as network traf-

fic or memory data, the integrity mentioned in this dissertation varies

with the types of attacks.

• Availability mainly focuses on whether a service operation is affected by

an attack, or whether an authorized user can access a network service

they should. The availability mentioned in this dissertation is endan-

gered if the service or server is spoofed, penetrated, or suspended, and
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cannot operate as expected.

3.2.3 Attack Layer

In 4-RAH, the third layer (attack layer) represents attacks which may dam-

age the security requirements listed in the second layer. An attack may pose

different impacts on different security requirements, which have specific con-

cerns on various targets, such as bandwidth, network traffic, programs, or

computers. The targets may suffer different risks even though they are under

the same attack. Taking a beacon flood attack as an example, the attack

succeeds when targeting on the bandwidth, but fails if it intends to attack

a program. In our model, the attack layer analyses the attacks, not only

in terms of their behavior, but also the impacts with respect to the attack

targets, and the security requirements. In addition, the impact varies with

the sequence of attacks. Because the impacts of attacks are dependent on

the sequence in which they are carried out, we define two types of impacts

to express the relationship in the attacking sequence: direct, and indirect.

• Direct impact: the impact lays on the security requirements initially

targeted by an attack.

• Indirect impact: the impact is a side effect accompanied by the direct

impact from the previous attack.

For example, an eavesdropping attack imperils traffic confidentiality by ma-

liciously sniffing wireless network packets. It poses the direct impact upon

traffic confidentiality, and no direct impact on other targets, such as a file or a

program. The packets sniffed by an eavesdropper can become a requirement
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for a subsequent attack, such as a replay attack, and thus further endangers

traffic integrity. Hence, an eavesdropping attack results in the indirect im-

pact on traffic integrity. When evaluating the impacts caused by an attack,

the union of direct and indirect impacts should be considered.

After analyzing the existing wireless attacks, we categorize wireless at-

tacks into five types, including scan or monitor, masquerade, Denial of Service

(DoS), key cracking, and penetration attacks, with respect to their behavior

and intentions.

• Type I: Scan or Monitor attacks

Scan attacks intend to search for accessible wireless networks. The

monitor attacks aim at gaining useful, critical information of a victim

network by intercepting aerial packets, and analyzing network traffic.

Such kind of attacks includes war driving, eavesdropping, active scan

attacks, etc. Because Type I tries to obtain critical information, most of

the attacks of this type directly impact network traffic confidentiality.

• Type II: Masquerade attacks

An attacker masquerades as a legitimate user to access a wireless net-

work, or as a legitimate device to pirate network traffic or disable a

functioning access point (AP). Once the attacker has snatched the

identity of a victim successfully, the victim can no longer access the

network, or the attacker can then provide network service to other il-

licit users. Thus this type of attack directly impacts availability. With

the counterfeit identity, the masqueraded user can easily capture or

reach private information so that confidentiality and integrity are usu-
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ally threatened as well.

• Type III: DoS attacks

Denial of Service (DoS) attacks aim at making computers or network

resources unavailable to legitimate users. Attackers take advantage of

the paralysis period to launch other attacks. Then, they can devastate

the network security severely. Because service requests are denied under

this type of attack, the direct impact is against availability.

• Type IV: Key cracking

Key cracking attacks try to recover WEP [58, 59] or WPA [60] keys

by analyzing numerous packets. After cracking the protection keys, all

requirements (confidentiality, integrity, and availability) are harmed.

• Type V: Penetration attack

This kind of attack attempts to penetrate a victim system through

system vulnerabilities. After the success of the attack, the attacker

can control the files, the programs, even the computer such that data

confidentiality, data integrity, or service availability may be destroyed.

All three security requirements are threatened under this type of attack.

3.2.4 Configuration Layer

To launch some attacks toward a wireless network, an attacker needs to

obtain certain network information or device configurations, such as IP ad-

dresses of wireless stations (STA) or APs, Multimedia Access Control (MAC)

addresses of STAs or APs, Service Set Identifiers (SSIDs), wireless channels,
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OS versions, running services, etc. In 4-RAH, the 4th layer (configuration

layer) exhibits configurations of wireless devices and wireless networks. The

following paragraphs discuss some configurations required to launch certain

attacks. More configurations can be added to this layer when needed.

• IP address is one of the prerequisite configurations for an attacker to

identify a victim in an IP network. Attacks of Type II, III, and V

require such a configuration.

• MAC address is one of the configurations required to identify the phys-

ical address of a victim. Attacks of Type II, III, and IV require this

configuration.

• SSID is one of the prerequisite configurations when an attacker at-

tempts to connect or scan a specific wireless local area network. Attacks

of Type II, III, and IV need this configuration.

• Wireless channel is one of the configurations required to launch key

cracking attacks. Attacks of Type IV require such a configuration.

• OS version is one of the configurations required to obtain the possible

vulnerabilities of a victim. Type V attacks require this configuration.

• Running services and open ports are useful configurations to penetrate

a victim. Type V attacks need this configuration.

Table 3.1 lists the five attack types, and the relations with the security

requirements and prerequisite configurations. Note that an attacker can start

Type I attacks without prerequisite configurations, though the performance
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Table 3.1: Types of Attacks

Types
Impacts

Prerequisite Attacks
Direct Indirect configurations

I C I, A None War driving, eavesdrop-
ping, etc

II C, I, A - STA IP, AP IP, STA
MAC, SSID, etc

Evil twin, IP spoofing,
TCP hijacking, etc

III A - STA MAC, AP MAC,
SSID, etc

Beacon flood, association
flood, etc

IV C, I, A - AP MAC, SSID, chan-
nel, etc

WEP/WPA key cracking

V C, I, A - STA IP, ports, running
services, etc

Penetration attack, etc

C: confidentiality I: integrity A: availability

of the attacks can be enhanced if the attacker obtains more network config-

urations.

3.3 Integrated Historical Vulnerability Met-

ric

In our risk assessment method, we define an integrated historical vulnera-

bility metric (abbreviated to IHVM), evolving from the historical vulnera-

bility measure (HVM) and the aggregated historical vulnerability measure

(AHVM) proposed in [61], to determine the risk value of a device based on

existing vulnerabilities.
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3.3.1 HVM and AHVM

HVM measures the risk level of a service imposed by vulnerabilities of the ser-

vice, and weights the vulnerabilities in terms of their ages [61]. The authors

of [61] assumed that a vulnerability discovered a long time ago should take a

small weight because the vulnerability may be understood and patched with

a high probability as time passes by. Therefore, the age of a vulnerability is

introduced in the decaying function of Eq. 3.1. [61] showed that hvm(ser)

can imply the probability that service ser will become vulnerability-prone in

the future.

hvm(ser) = ln

(
1 +

nv∑
i=1

αi × exp (−β × λi)

)
. (3.1)

αi and λi indicate the severity and the age of the ith vulnerability, and β

denotes the decaying speed of the exponential function.

Not all of the vulnerabilities of service ser should be counted because

the vulnerability effect usually declines with age, approaching zero. If only

the latest n vulnerabilities of service ser are considered, then we can derive

hvm(ser) by hvm(ser), as represented in (3.2).

hvm(ser) =
hvm(ser)

ln (1 + 10× n)
, where 0 ≤ hvm(ser) ≤ 1. (3.2)

A combination of hvm(seri) for all services running on a device dev is

defined by the AHVM [61]. AHVM is useful in calculating the vulnerability
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threats that a device dev faces.

ahvm(dev) = ln

(
ns∑
i=1

exp (hvm (seri))

)
, for all services seri running on dev.

(3.3)

However, if there is no vulnerability detected in dev, AHVM outputs an

undefined value, ln 0. To address such an error, a new metric (IHVM) is

proposed with our four-layer risk assessment model.

3.3.2 IHVM

IHVM is proposed to ensure the existence of the boundary values. In this

metric, the notation ihvm(dev) represents the value for a device dev, calcu-

lated by IHVM, while ihvm(dev) stands for the normalized ihvm(dev).

ihvm(dev) = ln

(
1 +

ns∑
i=1

exp
(
hvm (seri)

))
. (3.4)

All services seri running on the device dev contribute to ihvm(dev). The

number of services is denoted by ns. The higher ihvm(dev) implies that the

running services may contribute more severity to the device dev. If no service

is running on dev, then ihvm(dev) will be set to 0.

After sorting hvm(seri), ∀ service seri running on dev, if we only con-

sider the top m highest hvm(seri), then the maximum ihvm(dev) becomes

ln (1 +m× exp (1)). So, we can obtain the risk level of a single device

ihvm(dev) according to the service vulnerabilities by Eq. 3.5.
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ihvm(dev) =
ihvm(dev)

ln(1 +m× exp(1))
. (3.5)

As a result, ihvm(dev) falls into the range [0, 1].

3.4 Risk Assessment Algorithm

This section explains the algorithm of our assessment measure and represents

a step-by-step progress toward the wireless network risk.

Step 1. Establish risk model.

Initially, an administrator needs to build up a 4-RAH, and generate de-

gree matrices (D) of devices within a wireless network by investigating

possible attacks.

Step 2. Develop experience mapping tables.

Because mobile wireless devices have certain sociological orbit, the se-

curity requirements and risks may differ by the position of a sociological

orbit. This step intends to introduce expert experiences to adjust fac-

tors, and to achieve scenario-adaptive assessment.

To provide a fair or even close to fair assessment, multiple experts

could be consulted, and several databases can be imported. In 2005,

Zhao et al. proposed a method to evaluate the consistency of expert

opinions by the entropy theory [9] . In our method, once an administra-

tor develops the experience mapping tables, experts could be consulted
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to approve the experiences shown in the tables. Because the degrees

of approval may be categorized into several levels, the consistency of

the degrees should be further evaluated. If all the experts show the

same degree level of approval, the consistency reaches the maximum.

On the contrary, the consistency reaches the minimum if the degree

levels distribute equally. In the end, an administrator can obtain the

weighted importance from the consistency.

Step 3. Assess network risk.

This step can be further decomposed into several sub-steps.

1. Specify probability vector p̂, and risk level vector r̂.

According to network configurations, expert experiences, and vul-

nerability databases, we obtain p̂, and r̂, where p̂ relies on the

encryption method used in a wireless network, and r̂ is deter-

mined with three aspects: 1) adoption of a default value of the

configuration, 2) the number of attacks that view the configura-

tion as a prerequisite, and 3) the ihvm value for the configuration

of “running services.”

2. Determine weight vector of configurations ŵg.

We can obtain the ith entry of ŵg by Eq. 3.6. Each entry wgi

reveals the impact leading to the ith attack Ai, where the impact
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varies with the configurations of a wireless system.

wgi =

n∑
j=1

rj × pj

n
. (3.6)

where n indicates the number of configurations. If no prerequisite

configuration is required, wgi is set to 1, which is the maximum

weight.

3. Determine weight vector of requirements ŵr.

We determine the value of each entry of ŵr in terms of the func-

tionalities of a device. For example, the “availability” of an access

point should have a heavier weight than “confidentiality” and “in-

tegrity” because the AP is in charge of providing Internet access

for wireless devices. ŵr =

[
1
4

1
4

1
2

]T
.

4. Determine impact severity upon a device I.

Because the security of a device may suffer more as the number

of attacks that pose interests to the device raises, the range of

the impact severity upon a device (I) is designed based on the

number of attacks (na) targeting on a device dev. We then obtain

the impact severity of the device as

I = ŵg
T ×D × ŵr. (3.7)

Because entries of ŵg, D, and ŵr all fall within [0, 1], and the
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summation of all entries of ŵr equals 1, I falls within [0, na].

5. Calculate total impact severity upon a wireless network T .

Because any device in a network may jeopardize the network se-

curity, we accumulate the contribution of each device towards the

total impact severity (T ) by Eq. 3.8.

T = log10

(
nd∑
i=1

10I
devi

)
(3.8)

Because a compromised device or a device with weak configura-

tions is usually viewed as a stepping stone by an attacker to prop-

agate attacks, the maximum I dominates the result of Eq. 3.8

while the other smaller values are also introduced. We conjecture

that the value of T increases as the network becomes risky.

T , which depends on the number of devices and their configu-

rations, varies with different network topologies. If there are more

devices within a network, the possible maximum value of T be-

comes larger. If there are napd APs and nstad STAs in a wireless

network, T then falls within

[log10(n
ap
d + nstad ), log10

(
napd × 10n

ap
a + nstad × 10n

sta
a
)
].

It might be difficult for an administrator to interpret a linguistic

meaning from a numerical value of T since T is dynamic with the

variation of napd , nstad , napa , and nstaa . In spite of the dynamics in a

possible value of T , the range of T offers a scale to help grasp the

linguistic meaning. An administrator may be able to comprehend
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the level of risk (relatively) easily if there is additional information

about the scale. Therefore, T

[log10(n
ap
d +nsta

d ),log10 (nap
d ×10n

ap
a +nsta

d ×10n
sta
a )]

could be a solider index of risk.

Besides, we also devise a referable mapping table between a

linguistic meaning and a numerical value of T . We first calculate

the maximum impact severity of devices in a network, and then

define the thresholds for low, medium, and high threats. If all the

devices have their impact severity with the maximum value, then

we conjecture in such a situation that the network is undoubtedly

unreliable, and absolutely insecure. However, not all the networks

require such a strict condition. If a very strict condition is set, an

administrator may over-ignore unexpected events, and may not

deal with the wrong configurations in real-time. Hence, both the

ratio of the maximum value of the total impact severity and the

ratio of the number of all the devices have to be contemplated

for a plausible mapping. The mapping between the numerical

risk values and the semantic risk levels is suggested as shown in

Table 3.2. The numerical thresholds can be adjusted according to

an administrator’s expertise, experience, or sociological orbits if

needed.

6. Refresh the topology snapshot.

If new devices or new configurations are detected, the topology

snapshot should be refreshed. In our method, it is not neces-

sary to re-calculate the corresponding values of all devices. An
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Table 3.2: Numerical Impact Severity vs. Linguistic Meanings

Numerical impact severity (T ) Linguistic
meanings
(Threats)[

log10

(
2nap

d
3 · 10

n
ap
a
2 +

2nsta
d
3 · 10

nsta
a
2

)
, log10

(
napd · 10n

ap
a + nstad · 10n

sta
a

)] High (in-
secure)[

log10

(
nap
d
3 · 10

n
ap
a
2 +

nsta
d
3 · 10

nsta
a
2

)
, log10

(
2nap

d
3 · 10

n
ap
a
2 +

2nsta
d
3 · 10

nsta
a
2

))
Medium

[
log10

(
napd + nstad

)
, log10

(
nap
d
3 · 10

n
ap
a
2 +

nsta
d
3 · 10

nsta
a
2

))
Low (se-
cure)

administrator simply executes the sub-steps 3.1 through 3.5 to

determine the impact severity upon changing devices, such as the

device newly entering the network, and the device whose config-

urations have been changed. Then, sub-step 3.6 is performed to

re-calculate the total risk of the wireless network.

3.5 Summary

In Chapter 3, we presented a risk assessment method for wireless networks.

We described the design of a risk model and explained a newly proposed

metric (IHVM). We also introduced a risk assessment algorithm to measure

the risk value of a network. The risk model and the algorithm are designed

to address the dynamics of a wireless network. Not all layers of the risk

model or not all steps of the algorithm are re-generated and re-calculated

when changes occur in the network. The idea underlying our risk assessment
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method help produce a real-time reference for a system administrator to

manage network security.
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Chapter 4

Formalization of Control-Flow

Obfuscation

This chapter presents an abstract framework for formalizing and modeling

many kinds of control-flow obfuscating transformations. In this framework,

we first parse a program into a defined control flow graph. Then we identify

a set of atomic operators for graph transformations that are guaranteed to

preserve the functional behavior of the program. These operators can thus

be used as building blocks of a control-flow obfuscating transformation. By

composing instances of these atomic operators in sequence, we can formalize

many kinds of existing control-flow obfuscating transformations and devise

new candidate obfuscating transformations.

4.1 Preliminaries

This section defines the notations used in Chapter 4.
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Notations

ξ(Ci) Equivalent block of the ith code block Ci

τ Control-flow obfuscating transformation

φ Termination block

ψ Parsed program

Bi The ith branch

Bij The jth piece split from the branch Bi

Ci The ith code block. A code block can be a branch, a

fork, a join or a simple block.

CE The entry point of a parsed program

Cij The jth piece split from the code block Ci

CA Any code block

CD Dummy code block

CFalse False target of a branch

CT Target code block of an atomic operator

CTrue True target of a branch

E Edge set of a directed graph

Fi The ith fork

G Directed graph

Ji The ith join

O Atomic operator for control-flow obfuscation

OLD Atomic operator of inserting dummy loops

OSD Atomic operator of inserting dummy simple blocks

OE Atomic operator of replacing a code block with its

equivalent code
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OnF Atomic operator of inserting folks, where n represents

the number of code blocks expected to be run in par-

allel

OG Atomic operator of inserting folk edges

OFOp Atomic operator of inserting type I opaque predicates

OTOp Atomic operator of inserting type II opaque predicates

O?
Op Atomic operator of inserting type III opaque predi-

cates

OR Atomic operator of reordering code blocks

OS,nS Atomic operator of splitting a simple block into n

pieces

OB,nS Atomic operator of splitting a branch into n pieces

PF Type I opaque predicate. It is an obscure branch,

which always evaluates false.

P T Type II opaque predicate. It is an obscure branch,

which always evaluates true.

P ? Type III opaque predicate. It is an obscure branch,

which sometimes evaluates false and sometimes true.

Si The ith simple block

Sij The jth piece split from the simple block Si

V Vertex set of a directed graph

4.2 Control Flow Graphs

Control flow graphs (CFGs) were developed by Cota et al. [62, 63] as a repre-

sentation of the control flow structure of a program, thus can help an analyzer
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understand the program easily [64, 65]. In this dissertation we use CFGs to

facilitate the formalization of control-flow obfuscating transformations. As a

high-level abstraction, a program can be parsed into a directed graph whose

vertices are code blocks of the program. There is an edge between two code

blocks if the second code block can be executed immediately after the first.

This dissertation considers both sequential and parallel programs, so a

code block in a CFG can be defined by our program parser as one of the

followings:

• Branch: A branch refers to an instruction that can cause execution

to transfer, either conditionally or unconditionally, to some statement

other than the immediately following statement. In high-level pro-

gramming languages, branch instructions may be found in for, while,

do-while, if-else, and goto statements.

• Fork: A fork is the code block that creates parallel execution. The

immediate successors of a fork can run concurrently until the paths

converge.

• Join: A join is the code block at which parallel execution paths con-

verge.

• Simple block: A simple block is defined as an ordered sequence of state-

ments with no outgoing or incoming branch, fork or join instructions

inside this code block.

We use the following notations for several special kinds of code blocks.
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• Equivalent block (ξ(Ci)): a code block that is functionally equivalent

to the code block Ci.

• Termination block (φ): the exit point of a source program.

The edges in a CFG represent possible execution paths that the program

may take. Our program parser also specifies the following types of edges.

• Sequential edge: A sequential edge, denoted by (Ci, Cj), exists between

two code blocks Ci and Cj. Here, Ci can be only a simple block or a

join.

• Branch edge: Since a branch Bi may jump to either its true or false

target, there are two code blocks that could be executed immediately

after the branch. The two branch edges leaving Bi are denoted by(
Bi, C

True
)T

and
(
Bi, C

False
)F

. Cj is executed while Bi evaluates to

true, so CTrue represents the true target of Bi. Similarly, CFalse is the

false target of Bi.

• Fork edge: Since several code blocks can be executed concurrently right

after a fork Fi, there may be several code blocks as the immediate

successors of Fi. A fork edge is represented as (Fi, Cj), and Cj can be

a simple block, a branch or a fork.

With the definitions of the code blocks and the edges, we represent a

directed graph by the pair (V,E) where V is the vertex set and E is the edge

set. V contains all the code blocks of a program, including simple blocks,

branches, forks, joins and a termination. E is composed of sequential edges,

branch edges and fork edges. Then, a parsed program ψ is a pair of an entry
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S1

F1

B1 S4

S2

S3

J1

Φ

T

F

Figure 4.1: Example of the formalization of a parsed program

block of a directed graph and the graph. Figure 4.1 shows an example of a

CFG of ψ. The CFG contains four simple blocks, one branch, one fork and

one join. A rectangular indicates a simple block; a diamond denotes a branch;

a base-down triangular and a base-up triangular represent a fork and a join,

respectively. In Figure 4.1, S1 is the entry block, so we obtain a parsed pro-

gram ψ = (S1, G), where G = (V,E), V = {S1, S2, S3, S4, B1, F1, J1, φ}, and

E = {(S1, F1), (F1, B1), (F1, S4), (B1, S2)
T , (B1, S3)

F , (S2, S3), (S3, J1), (S4, J1), (J1, φ)}.

φ is an indication of the end of execution path without code existing in this

vertex. Hence, this type is not counted into the number of vertex set V .
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4.3 Atomic Operators

A program graph is a complete representation of a source program. Obfus-

cating control flow of a program can be viewed as converting one program

graph to another. For graph conversion, we can use deletion, insertion and

update. With deletion, a vertex or an edge is removed. As deletion always al-

ters the functionality of the original code if there is no other following action

(insertion and update), we do not use deletion for program obfuscation. Ad-

dition inserts additional edges or vertices, and update means to modify the

existing vertices or edges in the graph. Although addition and update may

also change the execution result, dummy or redundant codes can be used to

maintain the original functionality. Therefore, control-flow obfuscation may

involve two classes of operators: insertion and update. We describe these two

sets of atomic operators, called “operators” and denoted by “O” hereafter.

Since a control flow graph consists of nodes and edges, the sets of atomic

operators can be further classified into four categories: insertion of nodes,

insertion of edges, update of nodes and update of edges. These categories

cover all the possible atomic operators for control-flow obfuscation.

4.3.1 Insertion

Insertion of Nodes

Here we define four operators of insertion according to the types of the code

blocks. To insert simple blocks without affecting the original functionality,

we can insert dummy blocks that do nothing but resemble real code. Insert-

ing branches can be realized by inserting opaque predicates. Regarding the
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operator of inserting forks, a pair of a fork and a join is inserted. We also

devise an additional operator of inserting dummy loops to help generate a

more obscure control flow easily.

Insert Dummy Simple Blocks The insertion of dummy code blocks

changes the control flow of a source program. Figure 4.2 exhibits the op-

erator OSD representing the insertion of a dummy simple block CD in front

of the target code block CT . The graph on the right-hand side is the obfus-

cated CFG, which represents a result after applying OSD(ψ,CT ) to CT in ψ.

In ψ, all edges whose successor or true/false target is CT would be replaced.

An additional sequential edge (CD, CT ) is also inserted to the edge set E.

Algorithm A.1 describes the steps to achieve OS
D(ψ,CT ).

Algorithm A.1

Inert Dummy Simple Blocks, OS
D(ψ,CT )

V ← V ∪ {CD};
IF CT is the entry point THEN

Replace the entry point with CD;

END IF;

Replace edges (CT , Ci) with (CD, Ci) ∀i;

Insert (CD, CT ) to E; 2

Insert Opaque Predicates An opaque predicate is a Boolean valued ex-

pression whose value is known a priori to an obfuscator but is difficult for a

deobfuscator to deduce [17, 66]. These opaque predicates can be categorized

into three types [17]: a type I opaque predicate always evaluates to false; a
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S(Ψ,CT)
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Ψ'

CT
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Figure 4.2: Atomic operator of inserting a dummy simple block. After insertion, E be-
comes {(Cx, CD

1 ), (CD
1 , C

T ), (CT , Cy)}.

Cx
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F(Ψ,CT)

Ψ

CT

Cy
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Ψ'

CT

Cy
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CA

F
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(a)

Cx

OOp
T(Ψ,CT)

Ψ

CT

Cy

Cx

Ψ'

CT

Cy

PT

CA

T

F

(b)

Cx

OOp
?(Ψ,CT)

Ψ

CT

Cy

Cx

Ψ'

CT

Cy

P?

x(CT)

T

F

(c)

Figure 4.3: Atomic operators of inserting opaque predicates: (a) Type I, (b) Type II, and
(c) Type III

type II predicate always evaluates to true; and a type III predicate can some-

times evaluate to true and sometimes to false. In this dissertation, we denote

these predicates by PF , P T , and P ?, respectively. The opaque predicates can

be applied in inserting branches for obfuscation to preserve the same execu-

tion result. The insertion can be accomplished by inserting the three types

of opaque predicates to hide the real control flow of a source program. OFOp,

OTOp and O?
Op represent the three types of insertion, respectively.
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• OFOp: As PF is inserted in front of the target block CT , CT should be

moved to the false target of PF to maintain the same functionality (see

Figure 4.3(a)). Since the execution result of PF is always false, any

code block CA may be specified as the true target of PF . CA can be

an existing or a dummy code block by applying the operator OD.

• OTOp: The procedure for inserting P T is similar to that for PF (see

Figure 4.3(b)). Since P T always evaluates to true, CT is placed as the

true target of P T . CA, any code block, can be its never-reached false

target.

• O?
Op: Figure 4.3(c) shows the actions of O?

Op. To ensure the same

functionality, the equivalence of CT is placed on one of the targets of

P ?.

The algorithms are explained in Algorithm A.2, A.3 and A.4.

Algorithm A.2

Insert Type I Opaque Predicates, OF
Op(ψ,C

T )

V ← V ∪ {PF };
IF CT is the entry point THEN

Replace the entry point with PF ;

END IF;

Replace edges (CT , Ci) with (PF , Ci) ∀i;

Insert (PF , CA)T and (PF , CT )F to E; 2

Algorithm A.3

Insert Type II Opaque Predicates, OT
Op(ψ,C

T )

V ← V ∪ {PT };
IF CT is the entry point THEN
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Replace the entry point with PT ;

END IF;

Replace edges (CT , Ci) with (PT , Ci) ∀i;

Insert (PT , CA)T and (PT , CT )F to E; 2

Algorithm A.4

Insert Type III Opaque Predicates, O?
Op(ψ,C

T )

V ← V ∪ {P ?, ξ(CT )};
IF CT is the entry point THEN

Replace the entry point with P ?;

END IF;

Replace edges (CT , Ci) with (P ?, Ci) ∀i;

Insert (P ?, CT )T and (P ?, ξ(CT ))F to E;

Find (CT , Cj), insert (ξ(CT ), Cj) to E; 2

Insert Forks Figure 4.4 shows the concept of inserting a fork. The in-

sertion of a fork denoted by On
F

(
ψ,CT

)
indicates that a fork is inserted as

the immediate predecessor of the code blocks, CT and CT ’s following n − 1

code blocks. Assume CT and the following code blocks are the indexed code

blocks Ck – Ck+n−1. Ck – Ck+n−1 are executed in parallel immediately after

Cx. In addition to inserting a fork, we should also insert a join to guarantee

that the execution of these parallel code blocks is completed before Cy to

maintain the original functionality. The execution does not continue until

the concurrent paths converge at a join. Before applying OF , the execution

dependency between CT and its successors should be checked. If dependency

exists, OF may result in an incorrect execution. Since the immediate succes-

sors of a fork, a join or a branch cannot be executed when these code blocks
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Cx

Ck

Ck+1

Ck+n-1

Cy

•
•
•

F1

J1

• • •

Cx

Ck Ck+1 Ck+n-1

Cy

OF
n(Ψ,Ck)

Ψ Ψ'

Figure 4.4: Atomic operator of inserting a fork. After insertion, E becomes
{(Cx, F1), (F1, Ck), (F1, Ck+1), ..., (F1, Ck+n−1), (Ck, J1), (Ck+1, J1), ..., (Ck+n−1, J1), (J1, Cy)}.

are not finished, i.e. execution dependency exists, the target of the operator

OF cannot be either a fork, a join nor a branch.

Algorithm A.5

Insert forks, On
F (ψ,CT ), CT = Ck

V ← V ∪ {F, J};
E ← E ∪ {(F,Ck), (F,Ck+1), · · · , (F,Ck+n−1)};

Find (Ck+n−1, C
A) and insert (J,CA) to E;

IF CT is the entry point THEN

Replace the entry point with F ;

END IF;

Replace edges (Ci, C
T ) with (Ci, F ) ∀i;

Replace edges (Ci, Cj) with (Ci, J)∀Ci ∈ {Ck, Ck+1, · · · , Ck+n−1}; 2

Insert Dummy Loops A loop can be achieved by combining simple blocks

and branches. The operator OLD inserts an extra loop, composed of a dummy
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CT
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Figure 4.5: Atomic operator of inserting a dummy loop. After insertion, E =

{(Cx, CD
2 ), (CD

2 , C
D
1 )T , (CD

2 , C
T )F , (CD

1 , C
D
2 ), (CT , Cy)}.

simple block (CD1 ) and a dummy branch (CD2 ), in front of the target block

CT as shown in Figure 4.5. If CT is the successor of a sequential edge or

the true/false target of a branch edge, it will be replaced by the dummy

branch. Then a new sequential edge (CD1 , C
D
2 ) and two additional branch

edges (CD2 , C
D
1 )T , (CD2 , C

T )F are inserted into the edge set where CD1 is a

dummy simple block. In this way, a loop composed of CD1 and CD2 is con-

structed.

Algorithm A.6

Insert Dummy Loops, OL
D(ψ,CT )

V ← V ∪ {CD
1 , C

D
2 };

IF CT is the entry point THEN

Replace the entry point with CD
2

END IF;

Replace edges (CT , Ci) with (CD
2 , Ci) ∀i;

Insert (CD
1 , C

D
2 ) to E;

Insert (CD
2 , C

D
1 )T and (CD

2 , C
T )F to E; 2
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Insertion of Edges

In a simple control flow graph of a sequential program, it is infeasible to

insert an edge because each node has only one outgoing edge for a sequential

program. On the contrary, the operator of inserting an edge may be able

to be applied to the control flow graph of a parallel program because there

are multiple edges outgoing from a folk, and an additional folk edge can be

inserted in this case.

Insert Fork Edges The operator OG inserts a folk edge between the first

target CT
1 , which has to be a folk, and the second target code block CT

2 . Note

that dependency between the two targets and other successors of CT
1 should

be checked before the insertion. If dependency exists, incorrect execution

may occur.

Algorithm A.7

Insert Fork Edges, OG(ψ,CT
1 , C

T
2 )

IF dependency exists THEN
BREAK;

END IF;

IF CT
1 ∈ F THEN

E ← E ∪ {(CT
1 , C

T
2 )}; 2

END IF;
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4.3.2 Update

Update of Nodes

The operators in this category modify the existing nodes and change the

contents of the nodes. We introduce two specific operators here:split code

blocks and replace code blocks.

Split Code Blocks Splitting a code block into pieces increases the number

of vertices in the CFG. The split pieces are advantageous to creating more

variations of the control flow. Combining the splitting operator with other

operators helps implement more complex obfuscating transformations. In the

following, the actions of the operators of splitting simple blocks and splitting

branches are explained.

• OS,nS : The operator splits a simple block into n pieces. In Figure 4.6,

OS,nS (ψ,CT ) splits CT into n pieces. Assume that CT is originally in-

dexed as Ck. Then the newly split pieces are denoted by Ck1 – Ckn,

where n is limited to the instruction count of CT . Algorithm A.8 shows

the algorithm for this operator.

• OB,nS : The operator splits a target branch into smaller pieces. Similarly,

the parameter n is limited to the numbers of condition expressions in

CT . We take Figure 4.7 as an example that CT is expressed as

cond1 AND ((cond2 AND cond3) OR cond4).

Since there are four condition expressions in CT , n is limited to 4.

After splitting CT , the original CFG is then converted to the CFG on
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Cx

OS
S,n(Ψ,Ck)

Ψ

Ck

Cy

Cx

Ψ'

Ckn

Cy

Ck1

Ck2

Figure 4.6: Atomic operator of splitting a simple block. Assume CT = Ck. After splitting,
E = {(Cx, Ck1), (Ck1, Ck2), · · · , (Ck(n−1), Ckn), (Ckn, Cy)}.

the right-hand side, where Cki represents condi with the assumption

that CT is indexed as Ck.

Algorithm A.8 and A.9 are the algorithms for splitting code blocks. In

Algorithm A.9, the condition expressions in a branch are first parsed and

converted to postfix orders. Each parsed element is denoted by itemi.

Algorithm A.8

Split Simple Blocks, OS,n
S (ψ,CT ), CT = Ck

IF Ck ∈ B THEN
BREAK;

END IF;

IF n > instruction count of Ck OR n < 2 THEN

BREAK;

END IF;

IF Ck is the entry point THEN

Replace the entry point with Ck1;

END IF;

V ← V − {Ck};
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Figure 4.7: Atomic operator of splitting a branch. The example
splits CT into four pieces. Assume CT = Ck. After splitting, E =

{(Cx, Ck1), (Ck1, Ck2)
T , (Ck1, C

False)F , (Ck2, Ck3)
T , (Ck2, Ck4)

F , (Ck3, C
True)T , (Ck3, Ck4)

F ,

(Ck4, C
True)T , (Ck4, C

False)F }.

V ← V ∪ {Cki|∀i, 1 ≤ i ≤ n};

FOR edges (Cx, Cy) DO

IF Cx = Ck THEN

Replace (Ck, Cy) with (Ckn, Cy);

ELSE IF Cy = Ck THEN

Replace (Cx, Cy) with (Cx, Ck1);

END IF;

E ← E ∪ {(Ck1, (Ck2), ((Ck2, (Ck3), . . . , (Ck(n−1), Ckn)}; 2

Algorithm A.9

Split Branches, OB,n
S (ψ,CT ), CT = Ck

m← 1; k ← 0; n← 0;
N ← number of condition expressions in Ck;

IF Ck is the entry point THEN

Replace the entry point with Ck1;

END IF;
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V ← V − {Ck};

V ← V ∪ {Ckj |∀j, 1 ≤ j ≤ N};

FOR m ≤ 2N − 1 DO

IF itemm is a condition THEN

n← n+ 1; m← m+ 1;

stackn ← itemm;

ELSE IF itemm is an operator THEN

m← m+ 1;

IF n ≥ 2 THEN

tmp1 ← stackn−1; tmp2 ← stackn;

stackn−1 ← NULL; stackn ← NULL;

Ckj ← tmp1; Ck(j+1) ← tmp2;

SWITCH itemm

CASE AND:

tmpE = tmpE ∪

{(Ckj , Ck(j+1))
T , (Ckj , C

False)F ,

(Ck(j+1), C
True)T , (Ck+1, C

False)F };

CASE OR:

tmpE = tmpE ∪

{(Ckj , C
True)T , (Ckj , tmp2)

F ,

(Ck(j+1), C
True)T , (Ck(j+1), C

False)F };

END SWITCH;

n← n− 2; j ← j + 2;

ELSE IF n = 1 THEN

tmp1 ← stackn; tmp2 ← NULL;

stackn ← NULL; Ckj ← tmp1;

SWITCH itemm

CASE AND:

Replace CTrue with tmp1;

CASE OR:

Replace CFalse with tmp1;

END SWITCH;

tmpE = tmpE ∪{(Ckj , C
True)T , (Ckj , C

False)F };

n← n− 1; j ← j + 1;

ELSE IF n = 0 THEN

SWITCH itemm

CASE AND:
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Replace CTrue with tmp1;

CASE OR:

Replace CFalse with tmp1;

END SWITCH;

END IF;

END IF;

END FOR;

Replace (Cx, Ck) with (Cx, Ck1);

E ← E − {(Ck, C
True)T , (Ck, C

False)F };

E ← E∪ tmpE; 2

Replace with Equivalent Codes Equivalent codes are those with the

same execution result as the origins while their implementations are different.

The equivalent codes conduce to confuse reverse engineers. The operator

OE(ψ,CT ) replaces CT in ψ with its equivalent code ξ(CT ).

Algorithm A.10

Replace with Equivalent Codes, OE(ψ,CT )

V ← V ∪ {ξ(CT )};
V ← V − {CT };
IF CT is the entry point THEN

Replace the entry point with ξ(CT );

END IF;

Replace CT with ξ(CT ); 2

Update of Edges

The category focuses on modifying edges without affecting the existing code

blocks and their contents.
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Ck

OR(Ψ,Ck)

Ψ

Ck+1

Ck+1

Ψ'

Ck

Figure 4.8: Atomic operator of reordering code blocks. Assume CT = Ck. After reorder-
ing, {(Ck, Ck+1)} is replaced with {(Ck+1, Ck)}.

Reorder Code Blocks Randomizing the placement of instructions helps

to hide the original execution logics from being reversely engineered. The

reordering operator OR then becomes one of the operators in obfuscating

programs (see Figure 4.8). Assume that the target code block CT is also

indexed as Ck. Before applying OR, the execution dependency between Ck

and its immediate successor Ck+1 should be checked. If dependency exists,

then OR may result in an incorrect execution.

Here is the algorithm for the reordering operator.

Algorithm A.11

Reorder Code blocks, OR(ψ,CT ), CT = Ck

IF Ck is a branch THEN
BREAK;

END IF;

FOR edges (Ck, Ci) DO

IF Ci is a branch THEN

BREAK;

END IF;

IF dependency exists between Ck and Ci,

BREAK;

END IF;

Replace edge (Ck, Ci) with (Ci, Ck);

END FOR; IF Ck is the entry point THEN

Replace the entry point with Ck+1;

END IF; 2
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4.4 Formalization of Obfuscating Transforma-

tions

A control-flow obfuscating transformation T can be decomposed into a se-

quence of operators. Different sequences of operators lead to different trans-

formations. Even with the same sequence, specifying different target blocks

to these operators may obtain different results. Hence we represent a trans-

formation T = 〈f1, f2, · · · , fm〉 as the composition of m operators f1, . . . , fm,

where fx ∈ {OFOp(·, Ca), OTOp(·, Cb), O?
Op(·, Cc), OE(·, Cd), OS,nS (·, Ce), OB,nS (·, Cf ),

OLD(·, Cg), OSD(·, Ch), OR(·, Ci), OnF (·, Cj), OG(·, Ck, Cl)}, for x = 1, . . . ,m. Note

that 〈〉 stands for an ordered set of functional composition, where 〈f1, f2, . . . , fm〉

represents the function g defined by g(x) = fm(. . . f2((f1(x)) . . . ). Ca, Cb, . . . , Cl

represent code blocks, specified as targets of the operators, from the source

program.

This formal model can be used to describe many existing control flow

transformations [17, 18, 20, 38, 39, 67, 68], according to their algorithms.

Decomposing these transformations into a sequence of operators also enables

further analysis. Table 4.1 classifies 17 existing transformations according to

whether they can be represented as a functional composition of our opera-

tors. As the table shows, twelve transformations can be decomposed into a

sequence of the proposed operators, but five of them cannot. In this section,

we explain the decomposition, justify each entry in the table, and interpret
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Table 4.1: Feasibility of Decomposition

Control-Flow Obfuscating Transformations Decomposable?
Basic Block Fission Obfuscation [38] Y
Intersecting Loop Obfuscation [38] Y
Replacing goto Obfuscation [38] Y
Branch Insertion Transformation [17] Y
Loop Condition Extension Transformation [17] Y
Language-Breaking Transformation [17] Y
Parallelize Code [17] Y
Add Redundant Operands [17] Y
Aggregation Transformations [17] N
Ordering Transformations [17] Y
Remove Library Calls and Programming Idioms [17] Y
Table interpretation [17] N
Degeneration of control flow [18] Y
Obfuscation Scheme Using Random Numbers [67] Y
Obfuscating C++ Programs via Flattening [39] N
Control Flow Based Obfuscation [68] N
Binary Obfuscation Using Signals [20] N

Y: can be expressed N: cannot be expressed

these results.

Basic Block Fission Obfuscation [38]

This obfuscation tries to subvert the structures of programs such that decom-

piling the transformed programs would be unsuccessful. This transformation

splits the chosen code blocks into more pieces, and inserts opaque predicates

and goto instructions into these pieces. In the example presented in [38], to

protect the original program against the decompilation attack, a few more

blocks were generated and inserted after splitting the chosen code blocks.

Then, a type I opaque predicate was inserted to make sure the unreachabil-
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ity of the newly inserted code blocks, and thus functionality of the original

program was preserved.

In this case, according to the type of the chosen code blocks, we can apply

OS,nS to a simple block or OB,nS to a branch. Moreover, OSD and OLD can be used

to insert dummy code blocks. Type II opaque predicates are used to perform

the functionality of goto instructions while any one of three OOp operators

can be inserted as opaque predicates to realize the basic block fission ob-

fuscation. Thus, this transformation can be expressed as T = 〈f1, f2, f3, f4〉,

where f1 ∈ {OS,nS , OB,nS }, f2 ∈ {OSD, OLD}, f3 = OTOp and f4 ∈ {OFOp, OTOp, O?
Op}.

Intersecting Loop Obfuscation [38]

This obfuscation inserts two intersected loops to a source program to make

control flows unrecognizable for decompilers. Also, a type I opaque predicate

is inserted to skip the newly inserted intersected loops and to avoid any influ-

ence upon the original execution. Since a loop consists of a simple block and a

branch, we use two simple blocks and two opaque predicates to create the two

intersected loops. To preserve the same execution, the newly inserted loops

are followed by a type I opaque predicate. Hence, this transformation can

be expressed as T = 〈OSD, OSD, OOp, OOp, OFOp〉, where OOp ∈ {OFOp, OTOp, O?
Op}.

Replacing goto Obfuscation [38]

This obfuscation replaces goto instructions with conditional branch instruc-

tions that do not influence the original control flow. This can be realized

by replacing the goto instructions with their equivalent codes. The trans-
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formation can be represented as T = 〈f1, f2, . . . , fm〉, where fx = OE for

x = 1, . . . ,m.

Branch Insertion Transformation [17]

This transformation is designed based on one of the three opaque predi-

cate insertion operators, OFOp, O
T
Op and O?

Op. It can be expressed as T =

〈O2
S , OOp, [OD]〉. The target block is first split into two pieces by O2

S ∈ {O
S,2
S , OB,2S }.

The second step is to apply OOp to the split pieces, where OOp ∈ {OFOp, OTOp, O?
Op}.

Finally, the insertion of dummy codes OD ∈ {OSD, OLD} is optional in this

transformation.

Loop Condition Extension Transformation [17]

A loop can be obfuscated by complicating the loop condition. The idea is

to extend the loop condition using opaque predicates that do not affect the

iterations when the loop is executed. The targets of opaque predicates are

the branch blocks forming the loop condition. These opaque predicates are

inserted immediately in front of the branch blocks. Optionally, a dummy

code block can also be placed in its never-reached target. The formal rep-

resentation of this transformation can be defined as T = 〈OOp, [OD]〉, where

OOp ∈ {OFOp, OTOp, O?
Op} and OD ∈ {OSD, OLD} (optional).

Language-Breaking Transformation [17]

This transformation converts a reducible flow graph to a non-reducible one

by turning a structured loop into a loop with multiple headers. For obscurity,
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the loop body is split into two pieces. A type I or type II opaque predicate is

inserted in front of the original loop to make a never-executed jump into the

second split piece. Since it is a never-executed jump, the second split piece

is placed on the never-executed target of the inserted opaque predicate. The

expression in terms of the operators is defined as T = 〈O2
S , OOp, [OD]〉 where

O2
S is the operator to split a code block into two halves, OOp ∈ {OFOp, OTOp},

and OD ∈ {OSD, OLD} is optional.

Parallelize Code [17]

A reverse engineer may find a parallel program more difficult to understand

than a sequential one. To increase parallelism for obscuring the control flow

of a program, we can either create dummy processes or split a code block

into multiple data-independent blocks executed in parallel. According to our

formalization framework, the expression in terms of the operators is defined

as T = 〈OSD, OS , OF 〉. We first insert dummy simple code blocks or split a

block into several pieces. Then we make them run in parallel by the atomic

operator of inserting forks.

Add Redundant Operands [17]

Algebraic laws can be used to add redundant operands to arithmetic ex-

pressions. The logic of the original expression is modified, and the oper-

ation becomes more complex. The transformation is formalized by T =

〈f1, f2, . . . , fm〉, where fx = OE for x = 1, . . . ,m. Only the method “add re-

dundant codes” can be used as the technique of creation of equivalent codes
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for the operator OE.

Aggregation Transformations [17]

This transformation falls into two categories. One is to break up codes which

programmers aggregated them into a method and scatter the codes over the

program. The other is to aggregate the codes which seem not to belong

together into one method. Since operators are mainly applied to code blocks,

this transformation with the basis of methods cannot be represented using

our operators.

Ordering Transformations [17]

To eliminate useful spatial clues to understanding the execution logics of

a program, ordering obfuscation was proposed to randomize the placement

of any code block in a source program. The operator OR(ψ,CT ) is used to

express the ordering transformations in the form T = 〈f1, f2, . . . , fm〉 where

fx = OR for x = 1, . . . ,m. Note that OR exchanges the two target blocks if

no dependency exists between them.

Remove Library Calls and Programming Idioms [17]

It is known that in some programming languages like Java, the standard

library calls may provide useful clues to reverse-engineers. To impede this

problem from being exacerbated, an obfuscator may provide its own versions

of the standard libraries. The versions can be generated by applying the

operator OE to the code blocks of the libraries. Therefore, T = 〈f1, f2, . . . , fm〉
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where fx = OE for x = 1, . . . ,m.

Table Interpretation [17]

This transformation converts a code block into different virtual machine code

which is then executed by a virtual machine interpreter within the obfuscated

program. Since we do not talk about interpreters in this dissertation, it fails

to formalize this transformation with the proposed operators.

Degeneration of Control Flow [18]

This transformation converts high-level control structures into equivalent if-

then-goto constructs. Then, goto statements are modified such that the tar-

get addresses of the goto statements are computed at runtime. In the first

step, the expected construct can be developed according to the proposed

CFG. Since the transformation replaces control flow with computed-goto

statements, equivalence techniques can be used to generate the target blocks

of the goto statements. Subsequently, OE can be applied to branches of

the construct to dynamically determine the target address of the goto in-

structions. Thus, the transformation can be expressed as T = 〈f1, f2, . . . , fm〉,

where fx = OE for x = 1, . . . ,m.

Obfuscation Scheme Using Random Numbers [67]

In this transformation, a dispatcher uses a random number (RN) to determine

its target method while a method point (MP) is used to check whether the

selected target method should be executed or not. If RN 6= MP, the selected
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method is not executed. The transformation regenerates a random number

to select another method until RN matches MP.

The concept of using a dispatcher and a random number can be accom-

plished by the obscurity and randomness of type III opaque predicates. Here,

a type III opaque predicate is inserted in front of each method designated as

the true target of the predicate. If the predicate evaluates to true, its corre-

sponding method is reached; otherwise, the execution jumps to another predi-

cate with the same functionality as the former. Since MP is used to determine

the accurate execution path, we insert other type III opaque predicates for

each method, where the newly inserted predicates play the same role as MP.

Hence, the transformation can be expressed in the form T = 〈f1, f2, . . . , fm〉,

where fx = O?
Op for x = 1, . . . ,m.

Obfuscating C++ Programs via Flattening [39]

The transformation is to firstly break up the function body into several

smaller blocks and then make the blocks in the same nesting level. Be-

sides, a dispatcher determines which equal-leveled blocks are to be executed.

Although we can adopt the same way for the implementation of the dis-

patcher, we cannot carry out the main idea of this transformation that the

split blocks are in the same nesting level. Therefore, it is unable to express

the transformation with the operators.
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Control Flow Based Obfuscation [68]

Two processes, P and M, are used in this transformation. P-process performs

the main functionality and acts as the original program. M-process handles

and saves the control flow information extracted from the original program.

P-process queries M-process for the correct addresses whenever P-process

reaches a point with missing control flow information. Since additional in-

formation is needed to achieve this transformation, we fail to decompose

it.

Binary Obfuscation Using Signals [20]

This transformation replaces an unconditional jump with code, attempting

to access an illegal memory location that raises a signal. The signal handling

routine determines the target address of the original unconditional jump and

takes over the control flow of the program. Since we do not refer to any signals

and signal handling routines, this transformation cannot be expressed with

our operators. However, the idea of using the signal handling routine can be

introduced as an approach to generating an equivalent code block.

4.5 Summary

We defined a control flow graph in this chapter. The control flow graph is

able to represent both a simple and a parallel program. We then identified

atomic operators as the basic building blocks for formalizing control-flow ob-

fuscation based on the control flow graph. We examined the feasibility of the
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formalization method by decomposing the existing control-flow obfuscating

transformations. Twelve of the seventeen transformations can be decom-

posed into the sequence of the operators. The formalization is feasible in

high-level abstraction.
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Chapter 5

Evaluation of Control-Flow

Obfuscation

This chapter describes our method of evaluating the robustness of an ob-

fuscated program and estimating the overhead on code size caused by a

control-flow obfuscating transformation. We propose metrics that we con-

jecture may be related to the robustness of the obfuscated program against

reverse engineering. As for estimating the overhead, our approach works by

characterizing the space penalty of each individual atomic operator based on

the formalization of control-flow obfuscation. We believe that these evalu-

ation techniques can help to analyze the tradeoff between the effectiveness

and the overhead of different obfuscating transformations.

5.1 Preliminaries

Here, we introduce the notations used in Chapter 5.
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Notations

comp(ψ) Complexity of a parsed program ψ

cs(Gi, Gj) Common subgraph of graph Gi and Gj

dis(Gi, Gj) Distance between graph Gi and graph Gj

DP (ψ, τ) Distance-Potency (DP) vector of applying a transfor-

mation τ to a parsed program ψ

max(numi, numj) Maximum of numi and numj

mcs(Gi, Gj) Set of vertices of the maximal common subgraph of

graph Gi and graph Gj

nc Number of condition expressions contained in a branch

pcomp(ψ) Level of parallelism of ψ

pot(ψ,ψ′) Potency, indicating the increment of complexity be-

tween ψ and ψ′

scomp(ψ) Sequential complexity of ψ

scope(ψ) Value, determined by the complexity measure

SCOPE, of ψ

range(ψ,Bi) Set of vertices in the loop led by branch Bi in ψ or

on the paths branching out at Bi in ψ until the paths

converge

range(ψ,Fi) Set of vertices on the parallel execution paths led by

fork Fi in ψ until the paths join

|crange(ψ,Bi)| Size of compound range of Bi in ψ

|edge(Gi)| Number of edges of graph Gi

|Gi| Size of graph Gi, i.e. the number of vertices of Gi

|range(ψ,Bi)| Size of range(ψ,Bi)

|range(ψ, Fi)| Size of range(ψ, Fi)
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C̄ Average size of code block C

5.2 Evaluation Metrics

Reverse engineers generally follow the following process to reverse-engineer

a program [69]:

• Identify the component that will be reverse engineered.

• Observe the execution flow, read manuals, and disassemble the code.

The difficulty of reverse engineering an obfuscated program depends on the

relationship between the original and transformed program. The exact amount

of effort required is difficult to quantify, because it depends upon the ex-

perience and skill level of the reverse engineer: it may take some people

significantly longer than others to reverse engineer the same program.

We propose a measure that tries to eliminate factors varying from person

to person. Our measure does not compare the difficulty of reverse engineering

the same program between different reverse engineers; rather, it is intended

to estimate the difficulty of reversing different obfuscated programs, if we

hold constant the person who is performing the reverse engineering.

To measure the complexity and overhead of obfuscated programs, Coll-

berg et al. [17] proposed several metrics for evaluating an obfuscating trans-

formation, including cost, resilience and potency. The cost metric is defined

to measure the additional run-time resources required to execute an obfus-

cated program. The resilience metric is intended to measure how well an
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obfuscating transformation holds up against attacks from an automatic de-

obfuscator. The potency metric is supposed to be related to the degree to

which an obfuscating transformation confuses a human trying to understand

the obfuscated program. Of these three metrics, only potency is intended

to measure the difficulty for a reverse engineer to compromise and deduce

an obfuscated program. The potency indicates the increment of software

complexity after obfuscation. It is defined as Eq. 5.1 shows.

pot(ψ,ψ′) =
comp(ψ′)

comp(ψ)
− 1. (5.1)

Here comp(ψ) and comp(ψ′) denote the complexity of the original program ψ

and the obfuscated program ψ′.

Potency pot() implies the difficulty in reverse engineering from the per-

spective of depth, i.e. the increments of software complexity. Nevertheless,

for completeness of evaluating robustness of software obfuscation, the diffi-

culty should be assessed from the perspective of width as well. We adopt a

distance metric that determines the degree of disparity between an original

program and an obfuscated program. The degree, offering the proportion

of the original execution paths to the paths of the obfuscated program, in-

dicates the difficulty of reverse engineering. We use both the distance and

potency metrics to evaluate robustness of an obfuscated program compared

with the original one.

5.2.1 Distance Metric

In this subsection, we introduce certain existing metrics for measuring dis-

tance between graphs and discuss their suitability for further implication of
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robustness of obfuscation.

MCS Measure Bunke et al. [70] proposed a distance metric based on the

maximal common subgraph (MCS). A common subgraph Gsub of graph G1

and graph G2 is defined as that if there exists subgraph isomorphisms from

Gsub to G1 and from Gsub to G2. Gsub is the MCS of G1 and G2 if there

exists no other common subgraph G′sub of G1 and G2 that has more nodes

than Gsub. The distance between two graphs is given in terms of the number

of nodes of their MCS:

dis(G1, G2) = 1− |mcs(G1, G2)|
max(|G1| , |G2|)

.

Here |G| is the number of nodes of the graph G, and mcs(G1, G2) represents

the MCS of G1 and G2. This distance metric could be used to measure the

robustness of an obfuscated program obtained from a control-flow obfuscating

transformation by letting G1 denote the CFG of the original program and G2

the CFG of the obfuscated one.

Graph Union Measure Wallis et al. [71] proposed another distance met-

ric:

dis(G1, G2) = 1− |mcs(G1, G2)|
|G1|+ |G2| − |mcs(G1, G2)|

.

We refer to this as the graph union measure, since |G1|+ |G2| − |mcs(G1, G2)|

is loosely related to the size of the graph union. It is exactly the size of the

union, if G1 and G2 have only one common subgraph.

These two metrics (MCS measure and graph union measure) only con-

sider the size of the MCS, and do not reflect any changes in other common
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subgraphs. They may fail to speculate on fine changes that a control-flow

obfuscating transformation produces. As a result, they may not accurately

measure the robustness of obfuscation.

Measure of Graph Edge To measure the robustness of obfuscation in

finer-grained, our distance metric differs from those of earlier work. Our

metric takes all common subgraphs into account, not merely the MCS. In

addition, our metric counts the number of edges in these common subgraphs,

instead of the number of nodes, to deliberate on the impacts upon execution

paths due to control-flow obfuscation. Our metric (Measure of Graph Edge,

MGE) quantifies the distance between two graphs G1 and G2:

dis(G1, G2) = 1−
∑
i

2 |edge(csi(G1, G2))|
|edge(G1)|+ |edge(G2)|

(5.2)

where csi(G1, G2) denotes the ith common subgraph of G1 and G2, edge(G) is

the set of edges within graph G, and |edge(G)| is the number of edges within

G. The minimum value of dis(G1, G2) is “0” if the two graphs are exactly

the same. The maximum value of dis(G1, G2) is “1” if no common subgraph

exists between G1 and G2.

Assume that we know which vertices in G2 correspond to which vertices in

G1, then the common subgraphs can be uniquely identified and the distance

metric is well-defined. Figure 5.1 displays examples of graphs G1 and G2,

both containing 8 nodes and 7 edges. There are two common subgraphs of

G1 and G2. One comprises 1 edge, and the other comprises 3. We obtain

dis(G1, G2) = 3
7 by Eq. 5.2.
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Figure 5.1: Two common subgraphs of G1 and G2 are circled.

5.2.2 Potency Metric

The potency, defined by Eq. 5.1, is the other indicator of robustness of ob-

fuscation. Eq. 5.1 calculates the increment of software complexity due to

obfuscation, so we need an appropriate measure of software complexity to

accomplish the equation. Since our formalization framework considers not

only sequential programs but also parallel ones, the complexity measure needs

to take both of the sequential and parallel program into account.

Sequential Complexity The complexity metric underlying the potency

metric must evaluate complexity from the perspective of obfuscation so that

the derived potency value is able to represent the capability of obfuscation.

In 1981 Harrison and Megal presented the measure SCOPE [72] to calculate

complexity of a control flow graph of a sequential program. The measure

SCOPE determines complexity in terms of the size and the depth of nests

involved in a control flow graph. Since transforming a CFG into another

usually leads to changes of the graph size or the nesting level, the measure

SCOPE can be an appropriate base for the potency metric. The measure
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SCOPE is defined as Eq. 5.3 shows [72].

scope(ψ) =
∑
Bi∈B

|range(ψ,Bi)| (5.3)

where B is the set of branches in ψ and |range(ψ,Bi)|, size of the range of

Bi, stands for the nesting level that Bi contributes. |range(ψ,Bi)| represents

the number of code blocks in the loop led by Bi or on the paths branching

out at Bi until the paths converge. scope increases as the number of nodes in

the nests of a program increases. The complexity of the entire control flow

graph equals the summation of the complexity of each split sub-graph when

the measure SCOPE is introduced. This feature is especially advantageous

to a complicated CFG or a CFG with some changing sub-graphs.

Condition expressions which dominate control flow of a program play a

crucial role in analyzing and understanding the execution logic of the pro-

gram. In addition to the nesting level, the number of condition expressions

within a branch also contributes complexity of a program. The large the

number of condition expressions is, the more effort should be taken to under-

stand the control flow. We extend the measure SCOPE to contemplate the

effects resulting from the number of the condition expressions in a branch.

From a high-level programming perspective, a branch can be treated as

a building block for two types of control flow structures, conditional jump

and loop, which pose individual effects upon software complexity.

• Conditional jump

The fundamental control flow graph of a conditional jump is shown in

Figure 5.2. It contains a branch with two target code blocks which
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are followed by CA. Assume that in this fundamental control flow

graph the branch Bi contains only one condition expression so that

|range(ψ,Bi)| is 2. However, it is with a high possibility that there are

more than one condition expression contained in a branch. We should

further consider the nesting level of a branch in this situation.

While Bi contains nc condition expressions which are connected by

the relation “AND” and “OR,” Bi can be split into nc branches (Bi1

to Bi(nc)), each branch of which involves only one condition expression.

The new flow graph deduced from Figure 5.2 now includes nc branches

and 3 simple code blocks. The nesting level of branch Bi1, in the

deepest nest, is equal to 2 since two code blocks CTrue and CFalse are

on the divergent paths branching out at Bi1. |rang(ψ,Bi1)| also equals

|range(ψ,Bi)|. For branch Bi2, Bi1 is moved to either Bi2’s true or false

target, while Bi1’s true and false targets are unchanged. So, before the

paths which branch out at Bi2 meet, three code blocks (B1, C
True and

CFalse) are likely executed, i.e. |range(ψ,Bi2)| = 3. Similarly, Bi2

is placed as Bi3’s true/false target according to the relation between

them. In this way, |range(ψ,Bi3)| is obtained as 4, while 4 code blocks

(Bi2, Bi1, C
True and CFalse) are included. By induction, for branch

Bij, |range(ψ,Bij)| = |range(ψ,Bi1)|+ j − 1 = |range(ψ,Bi)|+ j − 1.

We define the compound range of Bi to consider the situation that Bi
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Figure 5.2: Control flow graph of a conditional jump

contains nc condition expressions by Eq. 5.4.

|crange(ψ,Bi)| =
nc∑
j=1

|range(ψ,Bij)| (5.4)

=
nc∑
j=1

(|range(ψ,Bi)|+ j − 1)

= nc × |range(ψ,Bi)|+
nc∑
j=2

(j − 1) .

• Loop

In a high-level program, a loop may be generated by for, while and

do-while statements. The control flow graph of a loop is as Figure 5.3

shows, where the graph contains one branch and two simple code blocks.

If Bi in the loop contains only one condition expression, the nesting

level, denoted by |range(ψ,Bi)|, is 2 since 2 code blocks (CTrue and Bi

itself) are on the paths branching out at Bi until the paths converge.

Bi can be further split into nc pieces (Bi1 – Bi(nc)) when Bi contains nc

condition expressions (see Figure 5.4). A new flow graph thus contains

two simple code blocks and nc branches. For each branch in the loop in

Figure 5.4, before its divergent paths meet at CA, all the branches in

the loop and CTrue are executed. That is, the number of the code blocks
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Figure 5.3: Control flow graph of a loop

on the divergent paths is nc + 1. Hence ∀1 ≤ j ≤ nc, |range(ψ,Bij)| =

nc+1 = nc+ |range(ψ,Bi)|−1. The compound range of Bi, containing

nc condition expressions, within a loop is thus derived as

|crange(ψ,Bi)| = nc × (|range(ψ,Bi)|+ nc − 1) (5.5)

Parallel Complexity The measure SCOPE was proposed for a sequential

program, and thus unable to measure complexity of a parallel program. In

1988, Shatz [73] suggested a framework of measuring a distributed program’s

complexity, which is calculated based on complexity of each local task and

complexity stemming from interaction between the tasks. In Shatz’s opinion,

complexity of each local task can be calculated by the existing complexity

measures of sequential programs, while he proposed the number of concur-

rently active rendezvous as a useful measure in deriving the complexity of the

interaction. According to [73], we define the total complexity of a parallel
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Figure 5.4: Extended control flow graph of a loop: Bi contains nc condition expressions

program (ψ) as Eq. 5.6 shows:

comp(ψ) = ws × scomp(ψ) + wp × pcomp(ψ) (5.6)

comp(ψ) is the total complexity of ψ. comp(ψ) involves two parts: scomp(ψ)

and pcomp(ψ), indicating the sequential complexity and the level of paral-

lelism, respectively. ws and wp are adjustable weights. We can use existing

measures, such as SCOPE, to calculate scomp(ψ). However, there has been

little discussion about the metric for calculating pcomp(ψ). Assume that the

number of code blocks executed in parallel in a program contributes the level

of parallelism of the program; we define a metric pcomp(ψ) by extending
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Shatz’s concept. Eq. 5.7 expresses the definition of the level of parallelism.

pcomp(ψ) =
∑
Fi∈F

|range(ψ, Fi)| (5.7)

where F is the set of forks in ψ and |range(ψ, Fi)| represents the parallelism

that the fork Fi is conducive to. |range(ψ, Fi)| indicates the number of code

blocks on the parallel execution paths led by Fi until the paths join. If no

forks exist in ψ, then pcomp(ψ) is zero.

5.2.3 DP Vector

In evaluating the difficulty that a reverse engineer may encounter after obfus-

cation, Collberg et al. proposed the potency metric (Eq. 5.1) as an estimate

of the degree of the difficulty. However, the potency metric, based on the

software complexity metric, fails to detect all changes to execution paths and

may not accurately measure the robustness of some obfuscating transforma-

tions. One way to remedy this kind of shortcoming is to introduce another

metric which measures the difficulty caused by obfuscation from a different

dimension. We devise a special distance metric for quantifying the differ-

ence between two programs after obfuscation. Evaluating the robustness of

obfuscation from both the potency and distance perspectives considers more

factors and can provide a relatively holistic analysis. Therefore, we suggest

using both the potency metric and our distance metric to evaluate the ro-

bustness, namely,

DP (ψ, T ) = (dis(ψ, T (ψ)), pot(ψ, T (ψ))) (5.8)
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where ψ represents the CFG of the original program, T the obfuscating trans-

formation, and T (ψ) the obfuscated CFG. Here dis(ψ, T (ψ)) is computed us-

ing the MGE defined in Eq. 5.2, and pot(ψ, T (ψ))) denotes the potency com-

puted using SCOPE (Eq. 5.3). We expect that larger distance and potency

values are correlated to better robustness against reverse engineering.

5.3 Space Penalty

Control-flow obfuscation uses techniques such as creating buggy loops and

inserting dummy codes to disturb the real execution path. After obfuscat-

ing transformations, a source program can better forbid malicious tampering

and reverse engineering. However, it suffers from space penalty. The more

transformations applied to a program, the more code size overheads are suf-

fered. Thus, estimation of space penalty is important for assurance whether

the increment of code size due to the designated transformations is tolerable.

Through the proposed formal representation, estimation of space penalty

can be efficiently determined in advance such that administrators can decide

whether to apply more transformations or not. In this section we analyze

overheads on code size resulting from each atomic operator.

Assuming that an original parsed program ψ has n code blocks where the

size of the ith block is denoted as zi, ∀i ∈ [1, n], the total code size of ψ is∑n
i=1 zi. After obfuscating transformations, α simple blocks, β branches, γ

forks and δ joins are inserted into ψ where the size of the ith simple block, the

jth branch, kth fork and lth join are respectively indicated as zsi, zbj, zfk and

zjl, ∀i ∈ [1, α], ∀j ∈ [1, β], ∀k ∈ [1, γ] and ∀l ∈ [1, δ]. Now, the total code size of
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the obfuscated program is
∑n

i=1 zi +
∑α

i=1 zsi +
∑β

i=1 zbi +
∑γ

i=1 zfi +
∑δ

i=1 zji

and the space penalty is
∑α

i=1 zsi +
∑β

i=1 zbi +
∑γ

i=1 zfi +
∑δ

i=1 zji.

For simplicity of analysis, the summation of the sizes of all inserted blocks

is replaced with the product of the average size and the number of blocks.

Since the gap between the average size of each type of code blocks may be

too large to be ignored, they should be individually denoted by S̄, B̄, F̄ and

J̄ . The space penalty becomes α · S̄ + β · B̄ + γ · F̄ + δ · J̄ . We describe the

space penalty with respect to each proposed operator in the following, and

Table 5.1 makes the arrangement.

• OFOp or OTOp introduces an extra predicate which results in a space

penalty of B̄.

• O?
Op inserts a new predicate and an equivalent block. This operator

yields a space penalty which can be one of the followings depending on

the type of CT : B̄ + S̄, 2 · B̄, B̄ + F̄ or B̄ + J̄ . For example, if CT is a

simple block, then the space penalty is B̄ + S̄.

• OS,nS or OB,nS splits CT into smaller pieces. The space penalty is “0”,

but the number of nodes increases.

• OR adds nothing and has “0” space penalty.

• OE replaces CT with its equivalence ξ(CT ). Since it is a replacement,

there is no space penalty.

• OSD inserts an extra simple block and acquires an space penalty S̄.
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Table 5.1: Space Penalty of Each Atomic Operator

Atomic Operators Space Penalty

Insert type I/II opaque predicates, OFOp/O
T
Op B̄

Insert type III opaque predicates, O?
Op B̄ + S̄ or 2 · B̄ or B̄ + F̄ or B̄ + J̄

Split code blocks, OS,nS /OB,nS 0

Reorder code blocks, OR 0

Replace with equivalent codes, OE 0

Insert dummy simple blocks, OSD S̄

Insert dummy loops, OLD S̄ + B̄

Insert forks, OnF F̄ + J̄

Insert edges, OG 0

• OLD inserts a dummy loop containing a branch and a simple block. Thus

the space penalty is S̄ + B̄.

• OnF inserts a fork and a join to increase the level of parallelism of a

program that leads to a space penalty of F̄ + J̄ .

• OG inserts an edge without any code instructions. Therefore, no space

penalty is produced.

5.4 Summary

In this chapter, we introduced the evaluation of control-flow obfuscation

based on the formalization of control-flow obfuscating transformations. We

85



evaluated a control-flow obfuscating transformation in terms of the robust-

ness and the overhead on code size. We proposed the DP vector, composed

of the distance and the potency metrics, to calculate the robustness of ob-

fuscation. Moreover, we provided a light-weight approach to estimating the

space penalty caused by an obfuscating transformation on the basis of the

formalization in Chapter 4.

We recognize our metrics of the DP vector serve as merely heuristic,

general indicators of security. However these metrics can still be the first

step towards the evaluation of obfuscation. We do not claim that a large

value of our metric implies that the obfuscation will necessarily be secure

against reverse engineering; we expect that large values of this metric are

necessary but not sufficient for security. Our metrics are only intended to

reflect the difficulty of reverse engineering through static analysis – it does

not reflect information that might be gained by running the program and ob-

serving its execution, or by performing some other kind of dynamic analysis.

Nonetheless, we conjecture that the metrics are helpful in comparing differ-

ent approaches to obfuscation. We also realize that the calculation of space

penalty in this dissertation is trivial to some extent. However, we believe

the simplicity of the calculation is indeed advantageous for an administrator

to approximate the overhead, especially in advance of implementing an ob-

fuscated program. Therefore, the DP vector and the space penalty metrics

still offer useful information to determine the balance between the protection

capability and accompanying overheads.
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Chapter 6

Case Studies

We validate our assessment methods of network security by case studies. In

assessing network security from the viewpoint of external attacks, we demon-

strate the effectiveness and feasibility of our wireless risk assessment method

by two examples. In Example I, we assess the risks of two different networks,

and then launch a practical eavesdropping attack against the networks. The

measured risk values are consistent with the realistic attack results. We il-

lustrate how our method handles the wireless dynamics by Example II, in

which configuration snapshots of a wireless network at different timing points

are introduced. In assessing network security from internal attacks, Example

III and Example IV explain how our framework formalizes and evaluates a

control-flow obfuscating transformation. The capability and the overhead of

a control-flow obfuscating transformation can be effectively estimated by our

framework.

The symbols used in this chapter are the same as those defined in Sec-

tion 3.1, Section 4.1 and Section 5.1.
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6.1 Case Study of Wireless Risk Assessment

This section describes two examples for validating our wireless risk assess-

ment method. In these examples, we should first build up a risk analytic

hierarchy, and then develop the experience mapping tables to further deter-

mine the risk levels of configurations, the probabilities of acquiring device

configurations, etc. With the hierarchy and the tables, our assessment algo-

rithm derives the risk values.

6.1.1 Establish Risk Model

To build up a four-layer risk hierarchy, an administrator needs to select and

analyze possible attacks in a wireless network. In the following two exam-

ples, we consider 12 known wireless attacks to establish the hierarchy: war

driving, eavesdropping, active scan, evil twin, MAC spoofing, IP spoofing,

TCP hijacking, beacon flood, association flood, de-authentication flood, key

cracking attacks and penetration attacks [74, 75, 76, 77]. These attacks are

first classified in terms of their types. Then, we analyze their impacts and

prerequisite configurations as listed in Table 6.1. With these analyses, we

finally construct the four-layer risk model accordingly.

Type I: The war driving, eavesdropping and active scan attacks fall into

this category.

1. War driving targets on exposing and locating accessible wireless

networks while driving around a city without a priori information

about the target network. With the exposed locations, illicit users
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can abuse the networks to interfere services for legitimate users.

2. Eavesdropping imperils traffic confidentiality. Even more, the at-

tacker is capable of replaying or deciphering the packets captured

to strike network security violently.

3. After an illicit user actively sends a probe request to a target

AP, the user may receive a response from the AP. The response

provides designate configurations, such as SSID, MAC address and

channel, which can be used to inflict additionally severe damages

to the network security requirements.

Type II: The evil twin, MAC spoofing, IP spoofing and TCP hijacking

attacks are classified as Type II attacks.

1. Masquerade of a physical AP is referred as an evil twin attack. An

attacker sets its SSID to be the same as an AP at a local hotspot.

A user may accidentally connect to this malicious AP (called the

evil twin), allowing the attacker to intercept all the packets which

should be transmitted to the victim AP. Traffic confidentiality,

packet integrity and service availability are all jeopardized.

2. An illicit STA can access a network by replacing its MAC address

with a permitted one. The MAC spoofing attack obstructs granted

access rights and destroys the AP’s service availability.

3. An attacker who alters the source IP address in the packet headers

can cheat a router into forwarding the modified packets. Hence,

the attacker is allowed to access the network.
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4. An attacker utilizes the regularity of SYN and ACK numbers dur-

ing a TCP session and then hijacks the TCP session to eavesdrop

the secrets exchanged between the two communication parties.

Type III: Flooding attacks, such as beacon flood, association flood and

de-authentication flood, are classified as DoS attacks.

1. In a beacon flood attack, a great amount of counterfeit 802.11

beacons are generated to consume wireless resources and to make

legitimate users difficult to access the network. The impact sever-

ity hence suffers from the network unavailability caused by the

attack.

2. In 802.11, the association requests from STAs are kept in the as-

sociation table of an AP. Since the memory size of the association

table is limited, the AP cannot deal with more association re-

quests when the table is full. By taking advantage of the limited

storage capacity of an association table, the impact severity again

suffers from the network unavailability caused by a great amount

of forged association requests.

3. An attacker floods a victim STA with repeatedly masqueraded

de-authentication or disassociation packets to disconnect the STA

from its associated AP. This attack forbids the network availabil-

ity.

Type IV: Key cracking attacks attempt to recover WEP or WPA keys,

which were proposed to protect data confidentiality and data integrity
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Figure 6.1: Example of four-layer risk analytic hierarchies (4-RAH):(a)4-RAH of an access
point (b)4-RAH of a station

and to prevent unauthorized access to APs.

Type V: The penetration attack exploits existing security flaws and vul-

nerabilities in software, which can be but not limited to internet browsers,

drivers or media players. In general, an attacker should possess prereq-

uisite knowledge of the target machine, like its IP address, OS version,

software version and running services, before launching this kind of

attack against a selected software program.

Next, we further analyze the above attacks and list the victim devices

of the above attacks, where Aapi means the ith attack targeting on an access

point and Astai denotes the ith attack aiming at a wireless station. Table 6.1

states the analysis results. Then, we construct the 4-RAH for each type of

device according to Table 6.1. Figure 6.1 shows the 4-RAH for an AP and

that for a station.
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Table 6.1: Attack Analysis

Types Attacks Target
victims

Configurations Direct
impact

Indirect
impact

I

War driving (Aap
1 ) AP None - A

Eavesdropping (Asta
1 ) STA None C I, A

Active scan (Aap
2 ) AP None C I, A

II

Evil twin (Asta
2 ) STA SSID (Conf1) C, I, A -

MAC spoofing (Aap
3 ) AP STA MAC (Conf4) A -

IP spoofing (Aap
4 ) AP STA IP (Conf5) A -

TCP hijacking (Asta
3 ) STA STA IP (Conf5), AP

IP (Conf3), open port
(Conf6)

C, I, A -

III

Beacon flood (Asta
4 ) STA None A -

Association flood
(Aap

5 )
AP SSID (Conf1), AP

MAC (Conf2),
A -

Deauth. flood (Asta
5 ) STA STA MAC (Conf4) A -

IV
WEP/WPA key crack-
ing (Aap

6 ,Asta
6 )

STA, AP SSID (Conf1), AP
MAC (Conf2), chan-
nel (Conf7)

C, I, A -

V
Penetration attack
(Asta

7 )
STA STA IP (Conf5), open

port (Conf6), running
services (Conf8)

C, I, A -

C: confidentiality I: integrity A: availability
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6.1.2 Develop Experience Mapping Tables

Expert experience is mandatory to assess network risk. To derive the risk

value which can be the representative of the practical situation, expertise and

real-world experiences are introduced into our risk assessment method. In

this step we inject expert experiences and dependable databases for 1) con-

verting the expert experiences to crisp numbers, 2) defining the risk level of a

device configuration, 3) defining the probability of acquiring a configuration

and 4) assigning each impact a numeric value.

• Linguistic to numeric conversion

Table 6.2 exhibits an example of the linguistic-to-numeric conversion.

In the conversion table, 9 linguistic terms are mapped to crisp numbers

falling within the range [0, 1]. The crisp numbers assigned in Table 6.2

can be adjusted according to the experience of an administrator or the

sociological orbit.

• Risk levels of device configurations

The risk level of a device configuration is determined according to the

following factors.

1. Configuration management: A device is risky if it adopts default

configuration values. If an administrator adopts the default con-

figuration without changing periodically, then it is easy for an at-

tacker to guess the setting. The configuration is hence viewed as

a risky configuration. In Figure 6.1, configurations Conf1 (SSID),

and Conf6 (open port) are of “High” risk, if default settings are
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taken; otherwise “Low” risk levels are assigned.

2. Number of effective attacks: An attack may require a certain con-

figuration for a successful launch. Such an attack is called an

effective attack of the configuration. The risk level of a config-

uration increases with the number of its effective attacks, which

take this configuration as a prerequisite. In Figure 6.1, the risk

level of Conf1, Conf2, Conf3, Conf4, Conf5, Conf6, and Conf7

is determined by the number of their effective attacks.

Table 6.2 describes an example conversion between the num-

ber of effective attacks and the risk level of a configuration. An

administrator may adjust the conversion between the number of

effective attacks and the risk level of a configuration according to

his or her expert experience and the sociological orbit of a wireless

network.

3. ihvm(dev): ihvm(dev) stands for the risk level of a device dev

caused by the vulnerabilities of services running on dev. Table 6.3

lists the vulnerabilities of some services, the severity of each vul-

nerability, and the age of each vulnerability. We obtain the infor-

mation from NVD (National Vulnerability Database) [78]. Then,

we derive the hvm(ser) by Eq. 3.1 with β = 1. Solving Eq. 3.5,

we finally obtain the risk level stemming from Conf8.

• Probabilities of acquiring configurations

The probability of acquiring a configuration strongly depends on the

encryption method adopted in a wireless network. It takes different
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Table 6.2: Effective Attacks and Risk levels

Number of effective at-
tacks

Risk level in linguistics Risk level in crisp
numbers

0 Absolutely low (AL) 0
0 Very low (VL) 0.1
0 Low (L) 0.2
0 Fairly low (FL) 0.3
1 Medium (M) 0.5
2 – 4 Fairly high (FH) 0.7
5 – 8 High (H) 0.8
9 – 11 Very high (VH) 0.9
12 Absolutely high (AH) 1

Table 6.3: Vulnerabilities of Running Services

Running service (ser) Vulnerabilities∗
Severity Age in year

hvm(ser)
(α) (λ)

Windows Live Messenger

CVE-2010-0278 4.3 0.32

2.3951
CVE-2009-2544 6.8 0.81
CVE-2009-0647 5.0 1.24
CVE-2008-5828 5.0 1.37
CVE-2008-5179 5.0 1.49

Wireshark

CVE-2010-0304 7.5 0.25

3.2299
CVE-2009-4378 4.3 0.37
CVE-2009-4377 4.3 0.37
CVE-2009-4376 9.3 0.37
CVE-2009-4211 9.3 0.42

Skype

CVE-2009-4741 10 0.11

2.8013
CVE-2009-4567 3.5 0.33
CVE-2009-5697 4.2 1.37
CVE-2009-4875 6.8 1.51
CVE-2009-1805 9.3 1.92

FireFtp
CVE-2009-3478 6 0.6

1.7242
CVE-2008-2399 9.30 1.96

∗The vulnerabilities are named by the Common Vulnerabilities and Exposures (CVE)

standard [79].
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Table 6.4: Probability of Acquiring Configurations

Encryption method
Probability

Vulnerable configurations
Linguistic Crisp

No encryption Absolutely high 1 Conf1, Conf2, Conf3,
Conf4, Conf5, Conf6,
Conf7, Conf8

WEP
Absolutely high 1 Conf1, Conf2, Conf4,

Conf7
Medium 0.5 Conf3, Conf5, Conf6,

Conf8

WPA-PSK, WPA2-PSK
Absolutely high 1 Conf1, Conf2, Conf4,

Conf7
Low 0.2 Conf3, Conf5, Conf6,

Conf8
Stronger encryption Absolutely high 1 Conf1, Conf2, Conf4,

Conf7
methods∗ Very low 0.1 Conf3, Conf5, Conf6,

Conf8

∗: WPA-EAP TLS, WPA-EAP AES, etc

efforts to decrypt packets ciphered by different methods. However,

in some cases, the attacker may obtain some configurations that can-

not be protected by the activated encryption method. By analyzing

the configurations displayed in Figure 6.1, we present an example of

probabilities of obtaining configurations under protection by various

encryption methods in Table 6.4.

• Impact level

The impacts on the security requirements can be classified into three

levels: direct, indirect and no impact. According to the expert expe-

rience, an administrator can assign each impact a numeric level. In

this example, we assign 1, 0.5 and 0 to direct, indirect and no impact.

Then, we produce the degree matrices for each type of victim device
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according to Table 6.1. Since 6 attacks target on victim APs, and 7

attacks shoot for stations, a 6-by-3 matrix and a 7-by-3 matrix are

built for an AP and a STA, respectively (see Eq. 6.1). By definition,

each row of a degree matrix represents the impacts against the security

requirements launched by an attack. The number of the elements in a

row relies on the number of the security requirements. The element dij

in an AP’s degree matrix D stands for the level of impact that attack

Aapi launches upon the jth security requirement. Taking “war driving

(Aap1 )” as an example, it only has indirect impact on availability of a

victim AP, so the 1st row of D is [0 0 0.5]. The meaning of each element

in a station’s degree matrix is similar to that in an AP’s.

for AP, D =



0 0 0.5

1 0.5 0.5

0 0 1

0 0 1

0 0 1

1 1 1


(6.1)

for STA, D =



1 0.5 0.5

1 1 1

1 1 1

0 0 1

0 0 1

1 1 1

1 1 1


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6.1.3 Assess Network Risk

Example I: Eavesdropping Attack

In the first example, we design two experiments (Ex1-1, and Ex1-2) with

similar wireless topologies, one AP, and two STAs. STA1 runs Windows

Live Messenger, and STA2 maliciously eavesdrops the conversation of STA1

by running Wireshark. In this example, no security mechanism is applied

in Ex1-1, but WPA2-PSK encryption is introduced in Ex1-2 to protect the

network traffic. Due to the different configurations, STA2 successfully eaves-

drops the traffic of STA1 in Ex1-1, but fails to steal the MSN conversations

of STA1 in Ex1-2. Figure 6.2 shows the scenarios and results in Example I.

In the following, we evaluate the risk values of the two networks by the

proposed method.

1. Derive r̂, and p̂. The rules of calculating the risk levels of different

configurations are mentioned in Section 6.1.2.

(a) For Conf1, and Conf6, their risk levels should be determined by

1) the configuration management, and 2) the number of effec-

tive attacks. In this example, Conf1 does not adopt a default

setting, and hence a “Low” risk level is assigned. In addition,

Conf1 is a prerequisite for three attacks, including “evil twin,”

“association flood,” and “key cracking” attacks. By Table 6.2, a

“fairly high” risk level may be assigned. In the end, we convert

these possible risk levels to crisp numbers, and select a maximum

value, max(0.2, 0.7), for Conf1. Similarly, we acquire the risk
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level of Conf6, max(0.8, 0.7) = 0.8, by assuming a default setting

is adopted for Conf6.

(b) The risk levels of Conf2, Conf3, Conf4, Conf5, and Conf7 depend

on the number of effective attacks. For example, Conf2 is required

by 2 attacks, and its risk level is then set to “fairly high,” where

“fairly high” implies 0.7.

(c) The risk level of Conf8 is determined by the IHVM, as mentioned

in Section 6.1.2. In this example, STA1 is running a service, Win-

dows Live Messenger (ser1), and STA2 is running a service, Wire-

shark (ser2), while no service is run on AP1. According to NVD,

there are 8, and 93 known vulnerabilities of Windows Live Mes-

senger, and Wireshark, respectively. Table 6.3 displays the newest

5 vulnerabilities of each. Assume the administrator concerns only

the latest 5 vulnerabilities of each service, and introduces the high-

est three hvm(seri) to ihvm(dev); according to Eq. 3.1, Eq. 3.2,

Eq. 3.4, and Eq. 3.5, we obtain ihvm(AP1) = 0, and we derive

ihvm(STA1) and ihvm(STA2) by

hvm(ser1)=
2.3951

ln(1+10×5)
=0.6092 # ser1: Windows Live Messenger

ihvm(STA1)=ln(1+exp(hvm(ser1)))=1.0434

ihvm(STA1)=
ihvm(STA1)

ln(1+3×exp(1))
=0.4712

hvm(ser2)=
3.2299

ln(1+10×5)
=0.8215 # ser2: Wireshark

ihvm(STA2)=ln(1+exp(hvm(ser2)))=1.1860

ihvm(STA2)=
ihvm(STA2)

ln(1+3×exp(1))
=0.5356

99



Hence, in both Ex1-1 and Ex1-2, the risk levels of configurations for

AP1, STA1 and STA2 are shown as follows.

AP1 : r̂ =

[
0.7 0.7 0.5 0.7 0.7 0.8 0.5 0

]T
(6.2)

STA1 : r̂ =

[
0.7 0.7 0.5 0.7 0.7 0.8 0.5 0.4712

]T
(6.3)

STA2 : r̂ =

[
0.7 0.7 0.5 0.7 0.7 0.8 0.5 0.5356

]T
(6.4)

We calculate the probability of acquiring configurations (p̂) by analyz-

ing Table 6.2, and Table 6.4.

In Ex1-1 (no security protection), we obtain p̂ for each device:

p̂ =

[
1 1 1 1 1 1 1 1

]T
. (6.5)

In Ex1-2 (the WPA2-PSK encryption is applied), the probabilities of

acquiring the configurations for each device are adjusted according to

the encryption method.

p̂ =

[
1 1 0.2 1 0.2 0.2 1 0.2

]T
. (6.6)

2. Derive the weight vector of configurations (ŵg) of AP1, STA1, and

STA2 by Eq. 3.6.
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In Ex1-1,

for AP1 : ŵg =

[
1 1 0.7 0.7 0.7 0.6333

]T
(6.7)

for STA1 : ŵg =

[
1 0.7 0.6667 1 0.7 0.6333 0.6571

]T
for STA2 : ŵg =

[
1 0.7 0.6667 1 0.7 0.6333 0.6785

]T
.

In Ex1-2,

for AP1 : ŵg =

[
1 1 0.7 0.14 0.7 0.6333

]T
(6.8)

for STA1 : ŵg =

[
1 0.7 0.1333 1 0.7 0.6333 0.1314

]T
for STA2 : ŵg =

[
1 0.7 0.1333 1 0.7 0.6333 0.1357

]T
.

3. Derive the weight vector of requirements (ŵr) for each network de-

vice. For example, “availability” of an access point should have a heav-

ier weight than “confidentiality” and “integrity” because the AP is in

charge of providing Internet access for wireless devices. Hence, in Ex1-1

and Ex1-2, we have

ŵr =

[
1
4

1
4

1
2

]T
for AP1. (6.9)

On the other hand, confidentiality, integrity, and availability could be
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weighted equally for a wireless station, so that for STA1 and STA2

ŵr =

[
1
3

1
3

1
3

]T
(6.10)

4. Derive the impact severity of each device. By Eq. 3.7, Eq. 6.1, Eq. 6.7,

Eq. 6.9, and Eq. 6.10, we obtain the following risk values for devices in

Ex1-1.

AP1 : I = ŵg ×D × ŵr = 2.5583

STA1 : I = ŵg ×D × ŵr = 3.8904

STA2 : I = ŵg ×D × ŵr = 3.9118.

Similarly, we can obtain the impact severity of each device in Ex1-2:

AP1 : I = 2.2783

STA1 : I = 2.8313

STA2 : I = 2.8356.

5. Determine the risk value of the wireless network by Eq. 3.8. We obtain

the risk values T = log10(102.5583 + 103.8904 + 103.9118) = 4.2120 for Ex1-

1, and T = log10(102.2783 + 102.8313 + 102.8356) = 3.1911 for Ex1-2.7.

Ex1-1 is at HIGH risk because the total impact severity of Ex1-1 is

larger than the high threshold 3.6887 based on Table 3.2. Similarly,
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Ex1-2 falls into the LOW category because its total impact severity is

smaller than the medium threshold 3.3877.

According to Table 3.2, the total impact severity in Ex1-1 and Ex1-

2 should fall into the range [0.4771, 7.3222]. The scaling information can

provide more semantic meanings for an administrator, in addition to

the suggested mapping table. Thus, we import the scaling information

into the risk value to better describe the semantics. Therefore, for Ex1-

1, the risk value can be further represented as 4.2120
[0.4771,7.3222]

. Since 4.2120

falls in the upper half of the range, an administrator can reason that

Ex1-1 is at HIGH risk. Similarly, 3.1911
[0.4771,7.3222]

is the implication for the

risk value of Ex1-2. Ex1-2 is at LOW risk because 3.1911 falls in the

lower half.

Such a result is close to the real situation because the derived risk

value for Ex1-1 is larger when the eavesdropping attack succeeds, and

the risk value for Ex1-2 is smaller when the network Ex1-2 can resist

the attack.

Example II: Dynamic Topologies

In the second example, we show how our risk assessment method incorporates

the dynamic topologies of a wireless network. The example presents snap-

shots of a wireless network at times τ1, τ2, and τ3. Initially (at time τ1), the

network contains one AP, and two STAs. Then, a new station STA3 enters

the network at τ2. Finally, STA1 leaves at τ3. Figure 6.3 shows the network

topologies, and the device configurations. With the proposed method, we
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AP1
IP:192.168.0.1

MAC: 00-21-97-6c-e8-cb

SSID: ssidap1

Encryption: None

STA1
IP: 192.168.0.194

MAC: 00-13-02-6f-fa-ae

Associated SSID: ssidap1

Windows Live Messenger

STA2 (eavesdropper)
192.168.0.197

MAC: 00-22-fa-b0-34-be

Associated SSID: ssidap1

Wireshark

Ex1-1  Risk value =    

           4.2120/[0.4771, 7.3222] 

           (HIGH)

STA2 succeeds in 

eavesdropping STA1's 

messages.

AP1
IP:192.168.0.1

MAC: 00-21-97-6c-e8-cb

SSID: ssidap1

Encryption: WPA2-PSK

STA1
IP: 192.168.0.194

MAC: 00-13-02-6f-fa-ae

Associated SSID: ssidap1

Windows Live Messenger

STA2 (eavesdropper)
192.168.0.197

MAC: 00-22-fa-b0-34-be

Associated SSID: ssidap1

Wireshark

Ex1-2  Risk value=

           3.1911/[0.4711, 7.3222]

           (LOW)

STA2 fails to capture most 

packets sent to/from STA1.

Figure 6.2: Example I: No security mechanism is applied in Ex1-1, but the network is
protected by WPA2-PSK in Ex1-2. The eavesdropper (STA2) successfully captures STA1’s
MSN messages in Ex1-1, but fails to sniff the communication session in Ex1-2.
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can assess the network risk efficiently by performing the following steps.

Initially, at time τ1: Ex2-1

Because the two networks in Ex1-2 and Ex2-1 are exactly the same, we derive

the total risk value for Ex2-1 the same as those for Ex1-2, T = 3.1911. The

risk value is represented as 3.1911
[0.4771,7.3222]

in details.

At time τ2: Ex2-2

STA3 joins the wireless network (as shown in Figure 6.3) at time τ2. Because

no changes are made in AP1, STA1, and STA2, we do not need to re-calculate

the corresponding impact severities, but perform the following steps.

1. Derive the risk levels of configurations of STA3. Assume that STA3

runs the services Windows Live Messenger (ser1), Skype (ser3), and

FireFtp (ser4); and the administrator intends to consider the latest five

vulnerabilities of each service. According to the service vulnerabilities

listed in Table 6.3, we derive hvm(seri), i ∈ {1, 3, 4} by Eq. 3.1 and

Eq. 3.2, and solve ihvm(STA3) by Eq. 3.2 and Eq. 3.4.

hvm(ser1)=
2.3951

ln(1+10×5)
=0.6092 # ser1: Windows Live Messenger

hvm(ser3)=
2.8013

ln(1+10×5)
=0.7125 # ser3: Skype

hvm(ser4)=
1.7242

ln(1+10×5)
=0.4385 # ser4: FireFtp

ihvm(STA3)=1.8607

ihvm(STA3)=0.8403
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Hence, we obtain the risk level vector of STA3, i.e.

r̂ =

[
0.7 0.7 0.5 0.7 0.7 0.8 0.5 0.8403

]T
.

Because Ex2-2 uses WPA2-PSK encryption, we acquire

p̂ =

[
1 1 0.2 1 0.2 0.2 1 0.2

]T
.

2. Derive the weight vector of configurations of STA3. By Eq. 3.6, for

STA3,

ŵg =

[
1 0.7 0.1333 1 0.7 0.6333 0.1560

]T
(6.11)

3. Assign the weight vector of requirements. In this example, we apply

the same vector, ŵr, given in Example I.

4. Derive the impact severity of STA3: I = 2.8559.

5. Derive the total risk value for Ex2-2, T , from AP1’s impact severity,

STA1’s impact severity, STA2’s impact severity and STA3’s impact

severity. By Eq. 3.8, T = log10(102.2783 + 102.8313 + 102.8356 + 102.8559) =

3.3561. Since more devices are within the network at time τ2, the range

of T becomes [0.6021, 7.7924]. The risk value can be further represented

as 3.3561
[0.6021,7.7924]

.

Compared with the experiment Ex2-1, there are more devices and vulnera-

bilities in Ex2-2; hence, the total risk value of Ex2-2 is larger than that of

Ex2-1, but the risk still falls into the LOW category.
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AP1

IP:192.168.0.1

MAC: 00-21-97-6c-e8-cb

SSID: ssidap1

Encryption: WPA2-PSK

STA1

IP: 192.168.0.194

MAC: 00-13-02-6f-fa-ae

Associated SSID: ssidap1

Windows Live Messenger

STA2 
192.168.0.197

MAC: 00-22-fa-b0-34-be

Associated SSID: ssidap1

Wireshark

τ1: Ex2-1
Risk value= 

3.1911/[0.4771,7.3222]

AP1

IP:192.168.0.1

MAC: 00-21-97-6c-e8-cb

SSID: ssidap1

Encryption: WPA2-PSK
STA1

IP: 192.168.0.194

MAC: 00-13-02-6f-fa-ae

Associated SSID: ssidap1

Windows Live Messanger
STA2 
192.168.0.197

MAC: 00-22-fa-b0-34-be

Associated SSID: ssidap1

Wireshark STA3

IP: 192.168.0.198

MAC: 00:22:fb:b0:38:be

Associated SSID: ssidap1

Windows Live Messenger

Skype, FireFtp

AP1

IP:192.168.0.1

MAC: 00-21-97-6c-e8-cb

SSID: ssidap1

Encryption: WPA2-PSK

STA2 
192.168.0.197

MAC: 00-22-fa-b0-34-be

Associated SSID: ssidap1

Wireshark

τ3: Ex2-3
Risk value=

3.2020/[0.4771, 7.3222]

STA3

IP: 192.168.0.198

MAC: 00:22:fb:b0:38:be

Associated SSID: ssidap1

Windows Live Messenger

Skype, FireFtp

τ2: Ex2-2
Risk value= 

3.3561/[0.6021,7.7924]

Figure 6.3: Example II: snapshots of a wireless network at different time

At time τ3: Ex2-3

STA1 leaves the network with nothing changed for other devices. We can

easily calculate the risk value at τ3 by re-calculating the total impact severity

of Ex2-3 with the known impact severities of AP1, STA2 and STA3, the same

as those in Ex2-2. As a result, for Ex2-3, T = 3.2020. The current risk value

is 3.2020
[0.4771,7.3222]

.
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6.2 Case Study of Evaluating Control-Flow

Obfuscation

This section states our method of evaluating control-flow obfuscation. We

introduce two examples (Example III and Example IV) to demonstrate the

feasibility and flexibility of our method. Example III models two existing

control-flow obfuscating transformations by the atomic operators and then

evaluates them by the DP vector and the space penalty metric. Example

IV introduces two transformations which are composed of the same sequence

of atomic operators but with different target code blocks. The examples

indicate that our evaluation method are flexible and sensitive enough to

distinguish the differences and to produce fine results.

6.2.1 Graph Conversion

We introduce Program I, a prime number generator, as an original program

used in the examples in this section. We first parse Program I into ψ, and

then we can apply the atomic operators to make ψ obscure. Figure 6.4

displays ψ and the contents of each code block.

/* Program I. Prime number generator */

int _PrimeGen(int tmp) {

int i;

for (i=2; i<=tmp/2; i++)

if (tmp %i == 0)

return 0;

return 1;

}

int main() {

int num, tmp, sum;
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S1

B1

S2

B2

S3

S4

S5

Φ

T

T

F

F

S1 int num, tmp, sum;
int PrimeOrNot=0;
printf(“Insert a number: \n”);
scanf(“%d”,&num);
sum=0;
tmp=2;

B1 tmp <= num

S2 PrimeOrNot = _PrimeGen(tmp);

B2 PrimeOrNot == 1

S3 printf(“%6d”,tmp);

S4 sum += tmp;
                tmp ++;

S5 printf(“\n”);
return 0;

Figure 6.4: CFG of Program I: ψ = (S1, (V,E)),
where V = {S1, S2, S3, S4, S5, B1, B2, φ}, and E =
{(S1, B1), (B1, S2)T , (B1, S5)F , (S2, B2), (B2, S3)T , (B2, S4)F , (S3, S4), (S4, B1), (S5, φ)}.

int PrimeOrNot=0;

printf("insert a number \n");

scanf("%d", &num);

for(sum=0, tmp=2; tmp<=num; tmp++) {

PrimeOrNot = _PrimeGen(tmp);

if( PrimeOrNot == 1)

printf("%6d", tmp);

sum += tmp;

}

printf("\n");

return 0;

}
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6.2.2 Obfuscation Formalization and Evaluation

Example III: Existing Control-Flow Obfuscating Transformations

We apply two control-flow obfuscating transformations, the basic block fis-

sion obfuscation [38] and the branch insertion transformation [17], in the

example:

T1 = 〈OS,2S (·, S1), OSD(·, S11), OTOp(·, B1), O
F
Op(·, CD1 )〉

T2 = 〈OS,2S (·, S1), OFOp(·, S12), OE(·, S12), OSD(·, ξ(S12))〉

Apply the specified basic block fission obfuscation, T1

• Running OS,2S (·, S1):

CE ← S11,

V ←
(
V − {S1}

)
∪ {S11, S12},

E ←
(
E − {(S1, B1)}

)
∪ {(S11, S12), (S12, B1)}.

In this example, S11 is

int num, tmp, sum;

int PrimeOrNot=0;

printf("insert a number \n");

scanf("%d", &num);

and S12 is

sum=0; tmp=2;

Since splitting S1 does not contribute to the nesting level, scope remains

the same as the original so far.
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• Running OD1 (·, S12):

V ←V ∪ {CD
1 },

E ←
(
E − {(S11, S12)}

)
∪ {(S11, C

D
1 ), (CD

1 , S12)}.

We choose sum = num + (tmp%4) as CD1 . Inserting CD1 in front of S12 does

not impose influence on the nesting level, so that scope is not modified

by this operation.

• Running OTOp(·, B1):

V ←V ∪ {PT
1 },

E ←
(
E − {(S4, B1), (S12, B1)}

)
∪

{(S4, P
T
1 ), (S12, P

T
1 ), (PT

1 , B1)
T , (PT

1 , C
D
1 )F }.

We choose (num3 − num)%3 == 0 for P T1 , which only works with an inte-

ger num. After applying this atomic operator, scope raises from 6 to

16.

• Running OFOp(·, CD1 ):

V ←V ∪ {PF
1 },

E ←
(
E − {(S11, C

D
1 ), (PT

1 , C
D
1 )F }

)
∪

{(S11, P
F
2 ), (PF

2 , S12)
T , (PF

2 , C
D
1 )F , (PT

1 , P
F
2 )F }.

We choose 7× tmp2 − 1 == num2 as PF2 .

Applying OFOp(·, CD1 ) to ψ not only results in |range(ψ, P F
2 )| but also produces

the increment of |range(ψ, P T
1 )| and |range(ψ,B1)|, so scope becomes 19.
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Now, we obtain the obfuscated CFG ψ1 after applying T1 and can de-

rive the obfuscated program (Program II) from ψ1, which is displayed in

Figure 6.5.

Apply the specified branch insertion transformation, T2

• Running OS,2S (·, S1) :

CE ← S11,

V ←
(
V − {S1}

)
∪ {S11, S12},

E ←
(
E − {(S1, B2)}

)
∪ {(S11, S12), (S12, B2)}.

Here, we use the same S11 and S12 as those used in T1.

• Running OFOp(·, S12) :

V ←V ∪ {PF
1 },

E ←
(
E − {(S11, S12)}

)
∪ {(S11, P

F
1 ), (PF

1 , B1)
T ,

(PF
1 , S12)

F )}.

We choose 7× tmp2 − 1 == num2 as PF1 . OFOp(·, S12) inserts a branch and

makes scope increased by one.

• Running OE(·, S12):

V ←
(
V − S12

)
∪ {ξ(S12)},

E ←
(
E − {(S12, B1), (P

F
1 , S12)

F }
)
∪ {(ξ(S12), B1),

(PF
1 , ξ(S12))

F }.

Here, ξ(S12) can be generated by several techniques, such as inserting

dummy instructions and creating parallel execution. We assume the

replacement with ξ(S12) in this example does not change scope.
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S12

B1

S2

B2

S3

S4

S5

Φ

T

T

F

F

S11 int num, tmp, sum;
int PrimeOrNot=0;
printf(“Insert a number: \n”);
scanf(“%d”,&num);

P2
F 7＊tmp2-1 == num2

CD
1 sum=num+(tmp\%4);

S12 sum=0;
tmp=2;

P1
T (num3-num)%3 == 0

B1 tmp <= num

S2 PrimeOrNot = _PrimeGen(tmp);

B2 PrimeOrNot == 1

S3 printf(“%6d”,tmp);

S4 sum += tmp;
                tmp ++;

S5 printf(“\n”);
return 0;

C
D

1

S11

P1
T

P2
F

T

F

F

T

Figure 6.5: ψ1: obfuscated result of ψ after applying T1
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• Running OSD(·, ξ(S12)):

V ←V ∪ {CD
1 },

E ←
(
E − {PF

1 , ξ(S12))
F }

)
∪

{(CD
1 , ξ(S12)), (P

F
1 , C

D
1 )F }.

We choose sum = num + (tmp%4) as CD1 . Since CD1 is inserted and located

on a branched path, scope raises from 7 to 8.

Now, we regenerate the obfuscated program (Program III) according to ψ2.

Figure 6.6 shows ψ2 and the instructions in each code block.

Evaluation of Example III Comparing ψ, ψ1, and ψ2, we obtain the

edges of the common subgraphs of ψ, ψ1 and ψ, ψ2:

edge(cs(ψ,ψ1)) ={(B1, S2)
T , (B1, S5)

F , (S2, B2), (B2, S3)
T , (B2, S4)

F , (S3, S4), (S5, φ)}

edge(cs(ψ,ψ2)) ={(B1, S2)
T , (B1, S5)

F , (S2, B2), (B2, S3)
T , (B2, S4)

F , (S3, S4), (S4, B1),

(S5, φ)}

The number of edges in ψ, ψ1 and ψ2 are 9, 15 and 13. The distances between

these graphs are dis(ψ,ψ1) = 5
12 and dis(ψ,ψ2) = 3

11 .

In ψ, there are two branches B1 and B2 with range values 5 and 1. Hence,

scope(ψ) = 6. In ψ1, the range values of P T1 , B1, B2 and PF2 are 8, 9, 1 and

1. So, we obtain scope(ψ1) = 19 and pot(ψ,ψ1) = 13
6 . Similarly, in ψ2, the

range values of PF1 , B1 and B2 are 2, 5 and 1. Therefore, scope(ψ2) = 8 and

pot(ψ,ψ2) = 1
3 .

Positive potency values imply that both T1 and T2 achieve obscurity from

the perspective of the nesting level of a program. With distance computed
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ξ(S12)

B1

S2

B1

S3

S4

S5

Φ

T

T

F

F

S11 int num, tmp, sum;
int PrimeOrNot=0;
printf(“Insert a number: \n”);
scanf(“%d”,&num);

P1
F 7＊tmp2-1 == num2

CD
1 sum=num+(tmp\%4);

ξ(S12) tmp=179653;

sum=num＊(tmp%2)-num;
tmp=2;

B1 tmp <= num

S2 PrimeOrNot = _PrimeGen(tmp);

B2 PrimeOrNot == 1

S3 printf(“%6d”,tmp);

S4 sum += tmp;
                tmp ++;

S5 printf(“\n”);
return 0;

C
D

1

S11

P1
F

F

T

Figure 6.6: ψ2: obfuscated result of ψ after applying T2
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using the proposed MGE, we then acquire two DP vectors, DP (ψ, T1) =

( 5
12 ,

13
6 ) and DP (ψ, T2) = ( 3

11 ,
1
3). Since both distance and potency values of

ψ1 are larger than those of ψ2. We conclude that T1 provides the better

robustness than T2 to the original program ψ.

The space penalty caused by T1 is estimated as (S̄+2·B̄), where OS,2S (·, S1)

results in no overheads, OSD(·, S12) leads to S̄, OTOp(·, B1) and OFOp(·, CD1 ) lead

to 2·B̄ in total. The space penalty resulting from T2 is B̄+S̄, where OS,2S (·, S1)

and OE(·, S12) derives no overheads, but OFOp(·, S12) and OSD(·, ξ(S12)) leads to

B̄ and S̄, respectively.

The metrics tell us that T1 presents better protection to ψ than T2 while

an administrator suffers more space penalty if he decides to adopt T1. An

administrator can make a decision about the balance between the robustness

and the overhead by referring to the evaluation results.

Example IV: Parallel Control-Flow Obfuscating Transformations

We introduce a parallel control-flow obfuscating transformation, proposed in

[38], as an example. The original program used in Example IV is the same

one used in Example III. To formalize the transformation, we first create and

insert a dummy code block into ψ. Then a fork is inserted to generate parallel

execution. Example IV presents two specific transformations with the same

composition and sequence of the atomic operators but with different target

code blocks.

T3 = 〈OSD(·, B2), O
2
F (·, S2)〉

T4 = 〈OSD(·, S3), O2
F (·, CD1 )〉
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Apply the 1st specified parallel control-flow obfuscation, T3

• Running OSD(·, B2):

V ←V ∪ {CD
1 },

E ←
(
E − {(S2, B2)}

)
∪ {(S2, C

D
1 ), (CD

1 , B2)}.

We create a dummy function, kidfunc(), as CD1 , where kidfunc() is

described in the following.

void kidfunc (int* t)

{

int t1=*t;

while(t1-- & (t1%10)!=0);

}

Since CD
1 is placed in the loop led by B1, |range(ψ,B1)| is increased by

1. We obtain comp(ψ) = |range(ψ,B1)|+ |range(ψ,B2)| = 6 + 1 = 7.

• Running O2
F (·, S2):

V ←V ∪ {F1, J1},

E ←
(
E − {(CD

1 , B2), (S2, C
D
1 ), (B1, S2)

T }
)
∪

{(F1, S2), (F1, C
D
1 ), (J1, B2), (B1, F )T , (S2, J1), (C

D
1 , J1)}.

After inserting O2
F (·, S2), S2 and CD

1 are specified as the immediate

successors of the fork F1 such that S2 and CD
1 could be executed

in parallel. Now ψ3 has been generated. By Eq. 5.3 and Eq. 5.7,

scomp(ψ3) = |range(ψ3, B1)| + |range(ψ3, B2)| = 9 and pcomp(ψ3) =

|range(ψ3, F1)| = 2. comp(ψ3) is equal to 11 by summing up scomp(ψ3)
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S1

B1

S2

B2

S3

S4

S5

Φ

T

T

F

S1 int num=4, tmp=7, sum;
int PrimeOrNot=0;
pthread_t kid;
printf(“Insert a number: \n”);
scanf(“%d”,&num);
sum=0;
tmp=2;

B1 tmp <= num

F1                   pthread_create(&kid,NULL,kidfunc,NULL);

S2 PrimeOrNot = _PrimeGen(tmp);

CD
1 kidfunc();

J1            pthread_join(kid,NULL);

B2 PrimeOrNot == 1

S3 printf(“%6d”,tmp);

S4 sum += tmp;

S5 printf(“\n”);
return 0;

C
D

1

F1

F

J1

Figure 6.7: ψ3: obfuscated result of ψ after applying T3

and pcomp(ψ3) according to Eq. 5.6 with ws = 1 and wp = 1. Figure 6.7

shows ψ3 after applying T3 to ψ.

Apply the 2nd specified parallel control-flow obfuscation, T4

• Running OSD(·, S3):

V ←V ∪ {CD
1 },

E ←
(
E − {(B2, S3)

True}
)
∪ {(B2, C

D
1 )True, (CD

1 , S3)}.

The example code of CD
1 here is the same as that of T3. CD

1 is inserted

as the true target of B2 that CD
1 and S3 are in the loop led by B2. Hence
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|range(ψ,B1)| and |range(ψ,B2)| are increased by one, and comp(ψ)

is derived as |range(ψ,B1)|+ |range(ψ,B2)| = 6 + 2 = 8.

• Running O2
F (·, CD1 ):

V ←V ∪ {F1, J1},

E ←
(
E − {(B2, C

D
1 )True, (CD

1 , S3), (S3, S4)}
)
∪

{(F1, C
D
1 ), (F1, S3), (J1, S4), (B2, F1)

True, (CD
1 , J1), (S3, J1)}.

O2
F (·, CD

1 ) makes CD
1 and S3 executed in parallel after F1. The ob-

fuscated CFG (ψ4) after applying T4 is shown in Figure 6.8. The

insertion of F1 contributes the parallelism such that pcomp(ψ4) =

|range(ψ4, F1)| = 2. The total complexity of ψ4 is obtained as |range(ψ4, B1)|+

|range(ψ4, B2)|+ |range(ψ4, F1)| = 8 + 4 + 2 = 14.

Evaluation of Example IV To measure the distance between ψ, ψ3 and

ψ4, we first analyze the edges of their common subgraphs:

edge(cs(ψ,ψ3)) = (S1, B1), (B2, S3)
T , (B2, S4)

F , (S3, S4), (S4, B1), (B1, S5)
F , (S5, φ)

edge(cs(ψ,ψ4)) = (S1, B1), (B1, S2)
T , (B1, S5)

F , (S2, B2), (B2, S4)
F , (S4, B1), (S5, φ)

In this example, |edge(cs(ψ, ψ3))| = |edge(cs(ψ, ψ4))| = 7, and dis(ψ, ψ3) =

dis(ψ, ψ4) = 4
11

, even the common subgraphs of ψ, ψ3 and ψ, ψ4 are not

the same. We then evaluate the robustness of ψ3 and ψ4 from the potency

perspective by Eq. 5.1. We derive the potency that T3 results in: pot(ψ, ψ3) =

11
6
−1 = 5

6
. Similarly, pot(ψ, ψ4) = 14

6
−1 = 4

3
. We obtain DP (ψ, T3) = ( 4

11
, 5
6
)

and DP (ψ, T4) = ( 4
11
, 4
3
). According to the DP vectors, we conjecture that

T4 provides more robust protection to ψ than T3 since the potency value T4
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S1

B1

S2

B2

S4

S5

Φ

T

T

F

F

S3 C
D

1

F1

J1

S1 int num=4, tmp=7, sum;
int PrimeOrNot=0;
pthread_t kid;
printf(“Insert a number: \n”);
scanf(“%d”,&num);
sum=0;
tmp=2;

B1 tmp <= num

F1                   pthread_create(&kid,NULL,kidfunc,NULL);

S2 PrimeOrNot = _PrimeGen(tmp);

CD
1 kidfunc();

J1            pthread_join(kid,NULL);

B2 PrimeOrNot == 1

S3 printf(“%6d”,tmp);

S4 sum += tmp;

S5 printf(“\n”);
return 0;

Figure 6.8: ψ4: obfuscated result of ψ after applying T4
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contributes is larger than that T3 produces, while the two transformations

lead to the same distance value.

Advanced Evaluation of Example IV In the previous paragraphs, we

calculate the DP vectors from a coarse-grained perspective since we view the

called function, kidfunc(), as a single code block without further parsing the

function into a separate sub-CFG. In this way, we may underestimate the

potency that the newly inserted kidfunc() contributes. Here, we present a

relatively fine-grained evaluation of the total complexity of ψ3 by Eq. 5.4,

Eq. 5.5 and Eq. 5.6.

As the steps taken in the previous sections, we first parse kidfunc() into

ψ5 that ψ5 = (CE, (V,E)) where CE = SK1 , V = {SK1 , BK
1 , S

K
2 , φ} and

E = {(SK1 , BK
1 ), (BK

1 , S
K
2 )T , (SK1 , B

K
1 ), (BK

1 , φ)F}. Here, we use a superscript

K to emphasize that the code blocks are parsed from kidfunc() in CD
1 . ψ5

is exhibited in Figure 6.9. Since there are two condition expressions in BK
1 ,

we further consider the complexity that multiple condition expressions yield

by computing the compound range of BK
1 . We obtain |crange(ψ5, B

K
1 )| =

2× (2 + 2− 1) = 6 by Eq. 5.5.

We now integrate the total complexity of ψ5 into the new total complexity

of ψ3. range(ψ3, F1) is {S2, S
K
1 , S

K
2 , B

K
1 } if we parse kidfunc(), contained in

CD
1 , into ψ5 with the code blocks SK1 , SK2 , BK

1 . pcomp(ψ3) thus becomes

4. In addition, |range(ψ3, B1)| increases due to the code blocks of ψ5 that

|range(ψ3, B1)| = 10. Now, scomp(ψ3) = |range(ψ3, B1)|+ |range(ψ3, B2)|+

|crange(ψ5, B
K
1 )| = 10 + 1 + 6 = 17. Hence a fine-grained total complexity

of ψ3, comp(ψ3) = 17 + 4 = 21, has been obtained. pot(ψ, ψ3) is accordingly
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S1
K

B1
K

S2
K

Φ

T S1
K int t1=*t;

B0
K t1!=0 & t1%10!=0

S2
k t1--;

F

Figure 6.9: ψ5: CFG of the function kidfunc()

derived as 21
6
− 1 = 5

2
which is larger than 5

6
described in the paragraph

“Evaluation of Example IV.” The discrepancy implies that the advanced

evaluation adopts more information and derives a distinct result. By the

advanced evaluation, we can measure the effect that a newly inserted dummy

code block causes in more details.

6.3 Summary

This chapter presented several examples to demonstrate our assessment meth-

ods. In Example I and Example II, we clarified the usage and steps of the

proposed method for wireless risk assessment. We conducted several experi-

ments to launch an eavesdropping attack against two different wireless net-

works, Ex1-1 and Ex1-2, where Ex1-1 is unprotected, but Ex1-2 is protected

by WPA2-PSK. The attack succeeds to sniff the communication sessions in

Ex1-1, but fails in Ex1-2. We obtained the total impact severity of Ex1-1

(4.2120, HIGH risk) and of Ex1-2 (3.1911, LOW risk) by our risk assessment
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method. The derived risk values confirm the realistic experiment results.

In addition, we showed the risk value of the entire wireless network can be

calculated without repeating the redundant steps when the topology or the

configuration of the network changes. The examples verified that our wireless

risk assessment method is feasible for the real-world situation.

In Example III and Example IV, we formalized and evaluated control-

flow obfuscating transformations by our method. Example III explained how

our method helps an administrator designate an effective transformation for

protecting a specified program in terms of protection capability and space

penalty. Moreover, we illustrated the evaluation of parallel control-flow ob-

fuscating transformations by Example IV. This example verified the flexi-

bility and distinguishability of our method. Different sequences of atomic

operators and different specified target blocks lead to different transforma-

tions. Therefore, our method can not only formalize existing control-flow

obfuscating transformations but also help design and measure new transfor-

mations.

123



Chapter 7

Conclusions and Future Work

Assessment of cyber security has been a long-standing challenge to the re-

search community. Nevertheless, there is an imperative need for a practical

security assessment method which is supportive of controlling and managing

security. In this dissertation, we showed our first attempt at the quantitative

assessments of cyber security. We proposed assessment methods to assist

an administrator or a developer in assessing cyber security in a methodical

manner, from establishing a formal representation to deriving a numerical

assessment result.

Our assessment methods are separated along two dimensions, external

and internal attacks, to meet specific requirements for distinct scenarios. We

dived into the two dimensions and studied the deficiencies of the existing

security assessment methods; then we presented a wireless risk assessment

method and an evaluation method for estimating software robustness for each

dimension.

Our wireless risk assessment method measures network risk in considera-
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tion of dynamics of a wireless network. We designed a 4-layer risk analytical

hierarchy to model wireless network risk from the perspectives of security re-

quirements, external attacks and configurations. Due to the design of clearly

separated layers and the design of a hierarchy per device, the computing load

of assessing risk of a changing wireless network is reduced since only the re-

lated layers and hierarchies have to be calculated and developed. Our method

diminishes the time complexity in the network assessment at a considerable

sacrifice that wireless risk is assessed from a comparatively coarse-grained

viewpoint. The assessment result can be used as the first perimeter of con-

trolling and managing security of a network, especially a dynamic network.

Then, the administrator can further use other methods to probe potential

attack paths and to mitigate security risk. A holistic security assessment and

management can thus be achieved by combining the existing solutions with

ours.

As for evaluating cyber security in terms of internal attacks, we started

from evaluating software robustness in terms of control-flow obfuscation. We

presented a framework for representing control-flow obfuscating transforma-

tions and evaluating software robustness enhanced by the transformations.

We showed that, with a graph-based representation, many existing control-

flow obfuscating transformations can be represented as a composition of

atomic operators. The atomic operators can not only describe the present

transformations but also help to design and construct new ones which may

offer different levels of software robustness to a program. We have also pro-

posed new metrics (distance and potency) for quantifying the effects of these

transformations upon a program. The metrics has been designed from the
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viewpoint of static analysis, and we recognize they serve merely heuristic,

general indicators of security. However, we view our approach as a first

step towards evaluating the trade-off between the robustness and overheads

caused by control-flow obfuscating transformations. We believe our formal

framework with the metrics is beneficial in avoiding suffering intolerable over-

heads, which can be estimated at the design stage, prior to implementation

of a more robust but too costly version of an obfuscated program.

We evaluated cyber security from multiple aspects and provided practical

metrics for system administrators in a systematic manner. This dissertation

is our first attempt, and we recognize there is still space for improvement

to reach absolutely quantitative assessment. In order to fulfill the require-

ments of realistic security assessment, there are, however, some issues that

are interesting and need to be further explored. We summarize the issues as

follows:

• Coherence of databases. To provide a fair or even close to fair eval-

uation, risk assessment heavily depends on information collected from

multiple databases and experts. A holistic risk assessment method

should be able to consider the discrepancy between databases or expert

opinions. More study is required to evaluate the consistency between

the data, and to integrate the risk value with the consistency.

• Estimation of obfuscation overheads. The side effects of obfuscating a

software program include not only the increased code size but also the

slowed-down execution performance. Therefore, more study is needed

on how best to compromise between security and performance over-
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heads.

• Attacks, scenarios and protection mechanisms. We believe that no sin-

gle security measurement or metric is able to satisfy the requirements

of security control and management in the real world. A thorough

security assessment has to be considered from aspects of different at-

tacks, scenarios and protection mechanisms. In this dissertation, we

simply discussed the evaluation of control-flow obfuscation, while a

formal evaluation method for other types of obfuscation, such as data

obfuscation and layout obfuscation, are also desired. Another interest-

ing direction of future work would be the design of a framework for

combining multiple security measurements or metrics.

• Absolutely quantitative assessment. In this dissertation, the range of a

derived risk value varies with the number of attacks and number of de-

vices because attacks are the threat sources impacting a network and

more devices within a network sensibly imply more potential attack

surfaces. We recognize the current design has not achieved absolutely

quantitative assessment since we need extra information, such as a scale

or a mapping table, to grasp the implication of a numerical risk value

for an individual network. However, this is simply our first attempt

at devising a quantitative and semantic reference for a network ad-

ministrator. Further research on the design of a fixed-range variable

representing risk of various networks could be conducted based on our

present result.

• Human efforts. There is always a hope that system administrators
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easily infer the realistic efforts that an attacker should invest, such as

time and money, from the proposed security measurements and metrics.

The inference is a pressing need for system administrators to designate

security strategies in a more effective way. A solution to determining

the inference is required despite it is still an open issue.
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Ralf Steinmetz, “Threat as a Service? The Impact of Virtualization on
Cloud Security,” accepted by IT Professional, Oct. 2011

2. Hsin-Yi Tsai and Yu-Lun Huang, “An Analytic Hierarchy Process-
Based Risk Assessment Method for Wireless Networks,” accepted by
IEEE Transactions on Reliability, April 2011

3. Yu-Lun Huang, Alvaro Cardenas, Saurabh Amin, Song-Zyun Lin, Hsin-
Yi Tsai and S. Shankar Sastry, “Understanding the Physical and Eco-
nomic Consequences of Attacks on Control Systems,” International
Journal of Critical Infrastructure Protection, vol. 2, no. 3, pp. 73–
83, Oct. 2009

4. Hsin-Yi Tsai, Yu-Lun Huang and David Wagner, “A Graph Ap-
proach to Quantitative Analysis of Control-Flow Obfuscating Transfor-
mations,” IEEE Transactions on Information Forensics and Security,
vol. 4, no. 2, pp. 257–267, June 2009

Conference Papers

1. 蔡蔡蔡欣欣欣宜宜宜, 王繼偉, 陳柏廷, 黃育綸, 謝續平, “基於虛擬裝置之無線網路安全
測試平台,” in Crypotology and Information Security Conference 2010,
Hsinchu, Taiwan

142



2. Zong-Syun Lin, Alvaro Cardenas, Saurabh Amin, Hsin-Yi Tsai, Yu-
Lun Huang and Shankar Sastry, “Security Analysis for Process Control
Systems,” in the 16th ACM Conference on Computer and Communica-
tions Security (CCS 2009), Nov. 9–13, 2009

3. Zong-Syun Lin, Alvaro Cardenas, Hsin-Yi Tsai, Saurabh Amin, Yu-
Lun Huang and S. Shankar Sastry, “Understanding the Physical Con-
sequences of Attacks on Control Systems,” in Proceedings of the 3rd

Annual IFIP Working Group 11.10 International Conference on Critical
Infrastructure Protection, March 22–25, 2009

4. Y. L. Huang, J. D. Tygar, H. Y. Lin, L. Y. Yeh, H. Y. Tsai, K.
Sklower, S. P. Shieh, C. C. Wu, P. H. Lu, S. Y. Chien, Z. S. Lin, L.
W. Hsu, C. W. Hsu, C. T. Hsu, Y. C. Wu, M. S. Leong, “SWOON: A
Testbed for Secure Wireless Overlay Networks,” in USENIX Workshop
on Cyber Security Experimentation and Test (CSET’08), San Jose,
July 28, 2008

5. Y. L. Huang, F. S. Ho, H. Y. Tsai, H. M. Kao, “A Control Flow
Obfuscation Method to Discourage Malicious Tampering of Software
Codes,” in the proceedings of the ACM Symposium on Information,
Computer and Communications Security (ASIACCS’06), March 21–
24, 2006

143


