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Quantitative Assessments of Cyber Security
from the Perspective of Attacks

Student: Hsin-Yi Tsai Advisor: Dr. Yu-Lun Huang
Institute of Electrical Control Engineering

National Chiao Tung University

Abstract

Assessment of cyber security is a long-standing and great challenge since
multifarious factors and their reeiprocal effects have to be considered in the
meanwhile for the assessment. Due to its complexity, assessment of cyber se-
curity should be performed with multiple aspects.. This dissertation presents
the quantitative assessments from the perspectives of both external and inter-
nal attacks. Regardingrassessing cyber security in terms of external attacks,
we propose a wireless risk assessment method“which consists of a risk model
and an assessment measure. The risk model is in charge of modeling wireless
network risk, and the assessment measure is an algorithm of determining
the risk value per the risk model. As for internal attacks, we introduce a
novel framework to evaluate software robustness in terms of control-flow ob-
fuscating transformations. On the basis of this framework, we propose new
metrics for quantifying the protection effect yielded by a control-flow obfus-
cating transformation. Moreover, we conduct the case studies to validate the
proposed assessment methods. We believe that our methods are helpful for
a system administrator to evaluate and manage the cyber security in a more

effective way.
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Chapter 1

Introduction

Assessment of cyber security is impertant since we cannot improve what we
cannot measure [1]. The assessment results are helpfulfor system administra-
tors and users to understand system security easily. Then, the administrators
are capable of designating countermeasures, applying protection mechanisms,
or modifying system configurations to increase security according to the as-
sessment results. Nevertheless, assessment of eyber security is critical since
various factors (such as security countermeasures, system configurations, vul-
nerabilities and realistic attacks) are involved to pose individual effects on
cyber security and yield different levels of security risk. It is thus difficult
to assess cyber security from a holistic perspective because the multifarious
factors and their reciprocal effects have to be considered in the meanwhile.
Cyber security can be compromised in many ways. Security mechanisms
and configurations are designed and applied to fortify against different at-
tacks. Hence, to plausibly assess security, the assessment should be per-

formed from the aspect of attacks that attack targets, prerequisite config-



urations of an attack and attack impacts are involved. Cyber attacks take
various forms and are coarsely classified into two types: external and inter-
nal attacks. An external attack is launched by an adversary outside a victim
system. An internal attack is started by an attacker who is a legal user of
the victim system. Upon attacking a network, an external attacker intends
to gather information concerning the network system from the outside and
then launches attacks accordingly, while an internal attacker, accessible to a
victim, can control the system and assault the victim’s data and programs.
Security of a network system hence should be evaluated from both the ex-
ternal and internal aspects_to better reflect the realistic situations.

There are many implementations of external attacks, such as penetration
attacks, Denial-of-Service (DoS) attacks and eavesdropping attacks. Accord-
ing to the variations of attacks, various methods of assessing cyber security
in terms of external attacks have been proposed. The methods include at-
tack graph-based methods [2;.3, 4, 5, 6, 7, 8] and analytic hierarchy process
(AHP)-based methods [9, 10, 11, 12, 13]. " An attack graph-based method
assesses the security of a network system based on analyzing the system’s
attack graph, which is drawn mainly from the aspect of penetration attacks.
The attack graph-based methods are widely used in assessing security of
wired networks, but they are not that appropriate for a dynamic network
environment. The whole attack graph needs to be re-generated once the
topology or configurations of a network system change. Such re-generation
could cause a heavy load for assessing the cyber security due to the frequent
change of a dynamic environment. The AHP is a structured technique for

decision making problems [14, 15]. It has been applied to several realms, such



as planning, system designing and risk assessment. Zhao et al. applied the
concept of AHP to modeling and assessing network security risk [9, 10, 11].
However, Zhao et al. developed a 3-layer hierarchical structure which is not
sufficient to discuss the security impacts resulting from the incorrect con-
figurations. [12] and [13] concentrate on the design of the methodology for
risk assessment based on the AHP, but their focus does not lay in the design
of the risk model to better represent the real security situation. Therefore,
there is a need to establish a feasible risk model and design a practical risk
assessment method which meets the ground truth.

Unlike an external attacker. an“internal adversary obtains the privilege
prior to launching an attack so-that.the adversary is authorized to manipulate
the stored data and programs. Factors critical for assessing cyber security
against external attacks may not be as crucial for the assessment from the
internal attack perspective. In comparison, evaluating robustness of data
and programs against internal attacks is the‘core of security assessment.
Much research has been proposed to evaluate capabilities of data protection
mechanisms, such as data encryption and digital watermarking. As for the
protection of programs, comparatively little attention has been received in
evaluating the program protection mechanisms like software obfuscation and
software tamperproofing [16].

To distinguish the existing security assessment methods, this disserta-
tion offers solutions to assessing cyber security in different scenarios and test
cases. We present several quantitative assessments of cyber security in terms
of both external and internal attacks. We develop a wireless risk assessment

method, which is composed of a risk model and an assessment measure. The



risk model is in charge of modeling wireless network risk from the aspects of
the security requirements, the wireless attacks and the configurations, where
the wireless attacks fall into the category of the external attacks. The assess-
ment measure is an algorithm for determining the risk value based on the
risk model. To complement the deficiencies of the existing methods (attack
graph-based and AHP-based methods), we extend an existing 3-layer AHP
hierarchy into four layers with the considerations of device configurations.
An additional layer is constructed to consider the impacts from incorrect
configurations and to deal with the frequently changing configuration of a
wireless network.

Our 4-layer hierarchy consists-of the risk layer (1% layer), the requirement
layer (2" layer), the attack layer (8"%layer) and the configuration layer (4"
layer) such that the vulnerabilities, the wireless attacks and the attack targets
within a wireless network are considered by our method. The separate layers
are advantageous to incorporating the dynamie configurations since only the
4% Tayer is re-built on detecting the changes of the configurations. Further,
since our hierarchy is developed per device, we can easily establish or remove
a corresponding hierarchy when a device joins or leaves the network. Only
the related hierarchy needs to be developed or removed, instead of all the
hierarchies within the network. Therefore, the computing load, resulting
from the dynamics of the network, can be reduced. On the basis of the
hierarchy per device, we propose an assessment measure to calculate the
value for wireless network risk.

In regard of program protection against the internal attacks, it is expected

that after applying the protection mechanism, a program is more robust



against being understood or modified by attackers. Software obfuscation is
a technique to shield a program from reverse engineering [17, 18, 19, 20, 21].
Collberg et al. [17, 22] classified software obfuscation and proposed several
approaches. One approach is control-flow obfuscation, which tries to disguise
the real control flow of an original program by re-ordering and obscuring its
execution paths. Then, an obfuscated program with higher robustness than
the original one is produced. Additionally, software tamperproofing is an-
other well-known program protection mechanism. It not only aims at making
tampering difficult but also tries to detect and respond to the modification
as well [23]. Obfuscation is beneficial to tamperproofing, since an obfuscated
program which is harder to understand increases the difficulty for an adver-
sary to discover the exact software instructions that he would like to tamper.
Tamperproofing is usually combined with obfuscation.in practice. Therefore,
this dissertation focuses on evaluating software obfuscation to analyze its ef-
fects upon software robustness. Then the evaluation result can lead to the
further measurement of software robustness enhanced by a tamperproofing
mechanism.

To evaluate various control-flow obfuscating transformations, we present
an abstract framework for formalizing and modeling them. We describe
a control-flow obfuscating transformation as a transformation on program
control flow graphs (CFG) in this framework. A control-flow obfuscating
transformation can be viewed as a function that accepts the original pro-
gram’s CFG as input and yields a modified CFG. By analyzing many ex-
isting transformations, we observed that many of them can be decomposed

into a sequence of basic building blocks. Thus, we identify a set of atomic



operators for graph transformations that are guaranteed to preserve the func-
tional behavior of the program and hence can be used as building blocks of
a control-flow obfuscating transformation. By composing instances of these
atomic operators in sequence, we can build many kinds of control-flow ob-
fuscating transformations. This helps to understand and classify many prior
control-flow obfuscation proposals and may help in devising new candidate
obfuscating transformations.

On the basis of the formal representation of a transformation, we propose
metrics that we conjecture may be related to software robustness of an ob-
fuscated program, in comparison with the-original program, against reverse
engineering. Our framework with-such metrics helps to statistically analyze
and evaluate software.robustness-in terms of control-flow obfuscating trans-
formations, while it does not support dynamic analysis of reverse engineering.
In addition, we explain_how to evaluate the overhead.on code size introduced
by a control-flow obfuscating transformation on the basis of our framework.
Our approach works by characterizing the space penalty of each individual
atomic operator. Then, we are able to estimate the overheads an obfuscating
transformation yields according to the formalization of the transformation
with ease.

The novel contributions of this dissertation are:

e We propose assessment methods of cyber security. The assessment

methods concern the scenarios of both external and internal attacks.

e We present an extended AHP-based method for wireless risk assess-

ment. The method models the wireless risk according to the widely



adopted definition of risk, the realistic attacks and the current system
configurations. In addition, the method addresses the computing loads

caused by the dynamics of a wireless network.

e We show a framework to evaluate software robustness enhanced by
control-flow obfuscation. The framework can not only formalize exist-
ing control-flow obfuscating transformations but is also flexible enough
to express new ones. In addition, our framework is helpful in evalu-
ating not only software robustness but also space penalty caused by

obfuscation at the design stage.

e We propose metrics:that we conjecture they may be helpful in measur-
ing wireless risk ‘and capability of control-flow obfuscation. We reason
the small risk values and the large capability values derived by our met-
rics are necessary but not sufficient - for security.“Then, the metrics can
be a useful index for administrators to adjust network configurations

or select proper protection mechanisms.

Synopsis Chapter 2 introduces the related work of cyber security assess-
ment, including network risk assessment and evaluation of software obfus-
cation. Chapter 3 explains our risk assessment method which is designed
based on the analytic hierarchy process. We also present metrics and a mea-
sure algorithm for assessing wireless network risk. In Chapter 4, we first
review the background of CFGs, and describe the proposed atomic operators
for formalizing control-flow obfuscation. The formalization of control-flow

obfuscating transformations is specified in this chapter. Chapter 5 describes



the metrics for evaluating control-flow obfuscation. The metrics are devised
based on the proposed formalization. Chapter 6 gives examples to illustrate
our assessment methods and to validate our methods. Finally, the last chap-

ter states the conclusions of this dissertation.




Chapter 2

Related Work

We review the existing methods of assessing cyber security in this chapter.
We also discuss the advantages and insufficiencies of these methods to clarify

the motivation of this.dissertation again.

2.1 Security Assessment in-terms of External

Attacks

In most situations, an adversary has no access to a victim system. The at-
tacker needs to start attacking without a given privilege. He may try to
gather useful information by external exploration and to exploit vulnerabil-
ities to gain a privilege illicitly. Attack graph-based methods assess cyber
security based on analyzing potential or possible attack paths existing in a
network. AHP-based methods focus on modeling security risk yielded by
multifarious factors, including various kinds of attacks, system configura-

tions, and so on.



2.1.1 Attack Graph-Based Assessment Methods

Traditionally, tree-based analyses such as event-tree analysis and fault-tree
analysis are used in a quantitative risk assessment [24, 25]. The event-tree
analysis produces a sequence of outcomes which may arise after the occur-
rence of a selected initiating event. In the fault-tree analysis, an undesired
event is assigned as the root of a fault tree. Administrators deduce bottom
events that may trigger the undesired event from top to down, and build a
fault tree composed of the events. By traversing the event tree or the fault
tree, we can ascertain the probability of-occurrence of an undesired event.
Both event-tree and fault-tree analyses, while useful, are less than satisfac-
tory since they are not.appropriate for assessing risk resulting from multiple
criteria. That is because an administrator can select only one undesired event
(initiating event) when build up a fault tree (an event tree). Therefore, the
risk value deduced from the tree concerns a single criteria simply.

To improve the deficiencies of the tree-based methods, in 1999 Phillips
et al. proposed an approach to modeling network risk based on an attack
graph [2], which draws paths that may lead to an unexpected state of a net-
work from various initial states. A node in a graph indicates a system state,
and an edge is an action of transition from one state to another. An attack
graph is generally developed with attack templates, system configurations
and attack capabilities [2, 26, 27]. Attack templates mainly describe the pre
and post conditions of attacks. The conditions may contain the information
of user level, vulnerabilities, capabilities, etc. System configurations indicate

the details of the network system. A configuration file should have the fol-
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lowing information: machine type, operating system, ports opened, services,
network type, and so on. In an attack graph, attack capabilities can be rep-
resented as the initial states. The attack capabilities are one of the factors
leading to the probability of success of an attack.

Since attack graphs can provide thoroughly possible attack paths within
a network, many researchers and professionals have proposed attack graph-
based network security measures. Wang et al. [7, 6] presented a generic
framework which considers disjunctive and conjunctive dependency relation-
ship between exploits in an attack graph. An attack resistance metric has
been proposed to calculate and compare the security of different network con-
figurations based on the generic-framework. In [4],-Mehta et al. presented
two algorithms of ranking attack graphs to-determine the probability of an
attacker reaching the goal states. The first algorithm is similar to Google’s
PageRank algorithm to determine the importance of webpages on the World
Wide Web [28]. The authors, modified Google’s algorithm to find out the
probability to reach a certain system state from the initial state. The second
algorithm ranks individual states of an attack graph in a random simulation
that the transition probability from state s; to s; equals the reciprocal of the
number of successors of the state s;.

[3] and [26] presented an analysis method of determining a minimal set of
attacks that need to be prevented, otherwise the goal state will be reached.
They also explained how to interpret an attack graph as a Markov Deci-
sion Process to perform quantitative reliability analysis. A number of re-
searchers have proposed risk assessment and security analysis methods based

on Bayesian network-based attack graphs [8, 29, 30]. Bayesian networks en-
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able system administrators to determine the probability of a particular attack
being executed from a given initial system state according to the conditional
dependencies among passed states. Dantu et al. [31, 32] also used a Bayesian
network-based attack graph for security risk management. The authors inte-
grated behavior-based profiles with the Bayesian network-based attack graph
to estimate the risk level based on an attacker’s behavior.

The attack graph-based methods are widely used in network security
analysis and assessment since an attack graph provides elaborate information
about attacks which exploit vulnerabilities existing in a network. However,
generation of an attack graph requires high time complexity. In [33], Ou
et al. pointed out the complexity-of the attack graph generation algorithm
of Ammann et al. [34] is O(N%} in terms of network size. Ou’s algorithm
has O(N?) complexity under the assumption of constant table look-up time.
In 2005, Ammann et al. [35] proposed an algorithm to track only “good”
attack paths, instead of all'possible attack paths. The algorithmic complexity
is polynomial in the size of the'network.

According to the discussion in the literature, complexity of generating an
attack graph is a critical issue for the attack graph-based assessment methods.
To assess security of a dynamic network environment, redrawing the whole
attack graph is required because the paths of an attack graph are tightly
dependent on the exploited vulnerabilities and on the nodes. Periodically
redrawing an attack graph of a dynamic network, like wireless networks,
could lead to a heavy load because topologies and configurations usually

change in high frequency.
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2.1.2 AHP-Based Assessment Methods

The AHP is a structured approach for solving decision-making problems. It
is appropriate for complex decisions which involve various decision elements
that are difficult to quantify. The AHP contains the steps in developing
a hierarchy of decision elements and constructing the relationship between
the elements. A weight is set for each element as the representation of the
relationship. The AHP has been applied for many realms, including network
risk assessment [9, 10, 11, 12, 13].

Wang and Zeng [12] presented a method of assessing information security
risk based on the AHP. They quantified the security risk by integrating the
AHP with the fuzzy mathematics-and the artificial neural network. Zhang et
al. [13] proposed an AHP-based risk assessment method for information secu-
rity. They adopted a group decision making method to combine the assessing
results from individual experts. [12] and {13] concentrate on the design of
the methodology and doesmot, mention muech about the development of the
risk model upon the AHP.

In [9, 10, 11], Zhao et al. constructed 3-layer hierarchical structures based
on the AHP to model wireless network risk. The top layer of their structure
is the goal of the risk assessment. The middle layer introduces the rules for
weighting the risk factors with the aspects of probability, impact severity, and
uncontrollability. The combination of these factors leads to a potential risk
value of the network. Illegal actions and system faults which may influence
the above elements are listed in the bottom layer. In [9], the entropy theory

was introduced to determine the coherence of expert experiences. In 2007,
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Zhao et al. extended their previous risk assessment method, which was pro-
posed in 2005 [9], by including mobile IP security and wireless interferences
in the bottom layer to assess security risk of a wireless network [11].
Compared to the attack graph-based methods, the AHP-based methods
require lower time complexity to generate a network risk model. Thus, the
AHP could be a convincing candidate basis for modeling and assessing secu-
rity of a wireless network with changing configurations and dynamic topolo-
gies. Moreover, these hierarchical structures, composed of critical elements
for the wireless network risk assessment, are useful to systematically mea-
sure network security. However, the existing work ([9], [10] and [11]) simply
discusses how the risk factors affect-network security.-without considering the
impacts resulting from the practical configurations and network topologies.
Because incorrect configuration is the main reason for system vulnerabil-
ity for both wired and wireless networks; the existing 3-layer structures are

deficient in modeling network.risk.

2.2 Security Assessment in terms of Internal

Attacks

Since an internal adversary has access to a victim system, most security
mechanisms cannot forbid the adversary from reaching or stealing contents
like data or software within the system. Nevertheless, there are some mecha-
nisms which try to obstruct an adversary from understanding, interpreting or

modifying the contents even the adversary obtains the contents. Therefore,
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security assessment in terms of internal attacks should concern on security
evaluation of the corresponding protection mechanisms. Software protection
has received comparatively little attention, compared to data protection and
evaluation of data protection. This dissertation aims at providing holistic se-
curity assessments that we concentrate on devising the evaluation of software
protection.

Various software protection mechanisms have been proposed to accom-
plish distinct objectives. The mechanisms and their objectives are described

as follows.

e Software watermarking targets on discouraging the intellectual prop-
erty theft or proving the-ownership of the software when the theft

occurs by embedding a watermark imto the software.

e Software tamperproofing tries to-increase difficulty in tampering soft-

ware and is able to'detect changes if the software is tampered.

e Software obfuscation aims at'obscuring software to protect the software

from being understood or reverse engineering.

Software watermarking and software tamperproofing are generally combined
with software obfuscation since an obfuscated program which is harder to
understand increases the difficulty for an adversary to figure out the em-
bedded watermarks, or to discover the exact software instructions that he
would like to tamper. Therefore, the result of evaluating obfuscation can not
only indicate the capability of software obfuscation but also be introduced to

further security assessment of software watermarking and tamperproofing.
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It is crucial to dive in the evaluation of software protection starting from

evaluating obfuscation.

2.2.1 Evaluation of Software Obfuscation

Software obfuscation increases difficulty in reverse engineering by transform-
ing an original program into an obfuscated one which thwarts reverse engi-
neering but preserves the original functionality [17]. Despite the theoretic
proof of the impossibility of omnipotent obfuscation [36], obfuscation is still
able to reach positive results in specifi¢ situations [37] and implementation
of obfuscation have been widely discussed {17,718, 19, 20, 21]. According
to [17], obfuscation is classified into three types: control-flow obfuscation,
data obfuscation and layout obfuscation. Control-flow obfuscation disguises
the real execution under scrambled control flow of a program to make re-
verse engineering difficult.. Various implementations have been introduced
to accomplish control-flow:obfuscation [18,-38; 39, 40]. Data obfuscation
transforms data and data structures'in a program without modifying the
original functionality. [21] and [41] presented obfuscating transformations
by extending the concept of data obfuscation. Layout obfuscation removes
the information that an attacker can seize from the program. Most of the
commercial obfuscators such as Dotfuscator [42], DashO [43], Zelix [44] and
ProGuard [45] adopt the basic idea of layout obfuscation.
Each type of obfuscation provides effective though limited resistance against

malicious reverse engineering. In recent years, many researchers proposed

various evaluation methods to assess the effectiveness of an obfuscating trans-
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formation. The methods are mostly based on empirical analysis, which eval-
uates an obfuscating transformation by running practical experiments to ob-
serve how much the obfuscated program resists against deobfuscators or how
much time a human subject takes to interpret it [46, 47, 48, 49, 50, 51].

Udupa et al. [52] examined control flow flattening, a control-flow ob-
fuscating transformation, by measuring the time required by automatic de-
obfuscation. Anckaert et al. [47] introduced a framework to evaluate an
obfuscating transformation based on software complexity metrics, which cal-
culate the complexity with respect to instructions, control flow, data flow
and data. The authors implemented three obfuscating transformations (con-
trol flow flattening, static disassembly thwarting and binary opaque predi-
cates) and applied the.transformations to eleven C programs of the SPECint
2000 benchmark suite, and the obfuscated programs were produced from the
benchmark suite. The'results of the complexity analysis show that all of the
three transformations can provide non-negative effects, but the transforma-
tion, binary opaque predicates, is less potent than two others. Majumdar
et al. [48, 53] considered a specific reverse-engineering technique, slicing,
and developed metrics to evaluate the capability of obfuscation against that
technique. [48] and [53] presented three obfuscating transformations (bogus
predicate, adding to a while loop, and variable encoding) and applied them
to five example programs to derive the values by the defined metrics. The
metric values imply that these transformations significantly make reverse
engineering difficult.

Ceccato et al. [49, 50] assessed the difficulty an attacker would encounter

in examining identifier renaming, one of the obfuscation techniques, by ques-
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tionnaires. The authors asked human subjects to interpret the original and
obfuscated programs and to fulfill a comprehension task. The subjects were
also asked to fill in a post-task survey questionnaire to describe their behav-
ior during the task and the confidence about it. Certain types of statistical
tests, such as the Mann-Whitney test and the Wilcoxon test, were adopted
to analyze the task results and the questionnaires. The analysis results point
out that identifier renaming effectively reduces the capability of the subjects
to understand the source code.

The existing work [47, 48, 49, 50, 52] evaluated the effectiveness of obfus-
cation by empirical studies.«Practical experiments were performed to mea-
sure individual obfuscating transformations according to the defined met-
rics or the perception .of human subjects: These experiment results indicate
the relation specifically between a designated original program and a sin-
gle obfuscating transformation.” While the same obfuscating transformation
is intended to be applied to another programs the experiment results may
not be applicable to determine the capahility of that transformation in the
case. In addition, the existing experiment results of evaluating individual
transformations cannot help determine the effectiveness of a compound ob-
fuscating transformation, which comprises several separate transformations.
It thus requires a formal method for evaluating obfuscating transformations
in a high-level of abstraction.

Preda and Giacobazzi [54] proposed a formal method for analyzing the
effect of a control-flow obfuscating transformation based on program seman-
tics. They considered a specific control-flow obfuscating transformation,

which obscures the control flow by inserting opaque predicates. They eval-
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uated the transformation by analyzing the effects of the opaque predicates
inserted. They also modeled attackers for comparing obfuscating transfor-
mations. Their method is the closest to ours, which evaluates control-flow
obfuscating transformations based on formal analysis as well. However, our
method can formalize and evaluate more types of control-flow obfuscating

transformations, not limited to the type of inserting opaque predicates.

2.3 Summary

We reviewed and analyzed the attack graph-based and the AHP-based meth-
ods for network risk assessment in terms of extermal attacks. The analysis
showed that there is ameed to propose a new risk assessment method, which
can represent the risk-in the real-world and is capable-of addressing the dy-
namics of a network. We also discussed. the existingsmethods of evaluating
obfuscation. Most of them are empirical-based and examine the effects of
obfuscating transformations by experiments; however, a formal method is
necessary to help system administrators systematically and effectively assess

the capability of obfuscation.
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Chapter 3

Risk Assessment of Wireless

Networks

Risk assessment is critical for risk mitigation and security enhancement. It
can be applied to several different realms to address risk management, such
as information technology, chemical industry and financial industry. Despite
variation in the application realms, risk assessment takes into account cal-
culations of two components of risk, the magnitude of the potential loss and
the probability that the loss will occur. Then the assessment result is used
as a reference for identifying proper controls in treating or eliminating risk
during the following process, such as risk treatment and risk mitigation, in
a security risk management standard [55, 56, 57].

The dynamics of wireless networks make network security evaluation and
management a critical challenge. To help a network administrator effectively
manage wireless network security, it is essential to design a risk assessment

method which derives a risk value for the administrator to easily understand
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the security of the managed network. A feasible risk assessment method
has to reasonably model wireless network risk and measure the risk value
according to the characteristics of the network. Network risk is defined as
“a function of the likelihood of a given threat-source’s exercising a particular
potential vulnerability, and the resulting impact of that adverse event on
the organization” [55]. According to the definition, network risk can be
interpreted as the resulting impact which results from the likelihood, the
threat sources and the vulnerabilities.

To fulfill the definition, we propose a risk model (4-RAH), shown in Fig-
ure 3.1, to describe the wireless network risk. ~The top layer of our model
represents the impact severity which threatens the security requirements (2"¢
layer) of a wireless network. The impact severity is determined in terms of
the factors: likelihood, threat sources and vulnerabilities by the definition.
Our model introduces the attack layer (3"%layer) and the configuration layer
(4" layer) to indicate the threat sources and thé sulnerabilities, respectively,
where the edges between the layers represent the likelihood mentioned in the
definition. We construct a hierarchy for each device, and then based on the
hierarchy, we propose an assessment measure which contains a newly defined
historical vulnerability metric and an algorithm to determine the network
risk value. Our risk assessment takes the real-world situation into account
and the evaluated result helps an administrator understand a network’s weak
points and their impacts. Therefore, our risk assessment can be a useful ref-

erence in designating security policy and improving network security.
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22



3.1 Preliminaries

This section defines the symbols used in Chapter 3.

(&7}

5

i
AP
Asta

ahvm(dev;)

hvm(ser;)

hvm(ser;)
1
ihvm(dev;)

ihvm(dev;)

Severity of the i** vulnerability

Decaying speed of the exponential function

Age of the i'" vulnerability

ith attack targeting on an access point (AP)

ith attack targeting on a wireless station (STA)
Value of the i*" device (dev;), determined by the ag-
gregated historical. vulnerability measure (AHVM)
Degree matrix of a given device. The matrix dimen-
sion is-mg-by-n,. The entry d;; is used to represent
the impact that the ¢ attack A; imposes on the j*
security requirement.

Value of the i service, determined by the historical
vulnerability measure (HVM)

Normalized hvm(ser;)

Impact severity upon a device

Value of the it" device, determined by the integrated
historical vulnerability metric (IHVM)

Normalized ihvm(dev;)

Number of attacks

Number of attacks targeting on APs

Number of attacks targeting on STAs

Number of wireless devices in a network

Number of APs in a network
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Ty

Ns

Ty

o>

4>

Number of STAs in a network

Number of configurations

Number of security requirements

Number of services running on a device

Number of vulnerabilities of a service

Probability vector. The it" entry p; denotes the prob-
ability of acquiring the i*" configuration.

Risk level vector. The i*" entry r; reflects the help that
a captured configuration may offer to an attacker.
Total impact severity upon a wireless network
Weight vector of configurations, an n,-dimension col-
umn vector. “The i™ entry wy, reveals the impact lead-
ing to the i" attack A;, wherethe impact varies with
the configurations of a wireless system.

Weight vector of requirements. The vector is an n,-
dimension column veetor.. The i" entry w,, represents
the weight of the i security requirement when deriv-

ing the total impact severity.

3.2 Risk Model: Four-Layer Risk Analytic

Hierarchy

To accomplish the definition of network risk [55], 4-RAH is proposed to

model the wireless network risk with four layers: risk, requirements, attacks

and configurations, respectively.
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3.2.1 Risk Layer

The first layer (risk layer) only contains a root node, representing the impact
severity of a wireless network as the security requirements of the network are

not achieved.

3.2.2 Requirement Layer

We introduce the credible network security requirements, confidentiality, in-

tegrity and availability, into the 2" layer of 4-RAH.

o Confidentiality is imperiled when information is available or disclosed
to unauthorized users. Different attacks aim for different targets. For
instance, an eavesdropping attack launches impacts on network traffic
confidentiality, while a penetration attack causes damage to memory
data confidentiality. In this paper, loss of confidentiality can occur in

multifarious targets.according to the types of attacks.

e [ntegrity is damaged if data or messages are executed, modified, sus-
pended, copied, replayed or deleted by an illicit user. Because attackers
may be interested in attacking different targets such as network traf-
fic or memory data, the integrity mentioned in this dissertation varies

with the types of attacks.

o Availability mainly focuses on whether a service operation is affected by
an attack, or whether an authorized user can access a network service
they should. The availability mentioned in this dissertation is endan-

gered if the service or server is spoofed, penetrated, or suspended, and
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cannot operate as expected.

3.2.3 Attack Layer

In 4-RAH, the third layer (attack layer) represents attacks which may dam-
age the security requirements listed in the second layer. An attack may pose
different impacts on different security requirements, which have specific con-
cerns on various targets, such as bandwidth, network traffic, programs, or
computers. The targets may suffer different risks even though they are under
the same attack. Taking a beacon flood attack as an example, the attack
succeeds when targeting on the bandwidth; -but fails if it intends to attack
a program. In our model, the attack layer analyses the attacks, not only
in terms of their behavior; but also the impacts with respect to the attack
targets, and the security requirements: In addition, the impact varies with
the sequence of attacks. Because the impacts of attacks are dependent on
the sequence in which they are.carried out, we define two types of impacts

to express the relationship in the attacking sequence: direct, and indirect.

e Direct impact: the impact lays on the security requirements initially

targeted by an attack.

e [ndirect impact: the impact is a side effect accompanied by the direct

impact from the previous attack.

For example, an eavesdropping attack imperils traffic confidentiality by ma-
liciously sniffing wireless network packets. It poses the direct impact upon
traffic confidentiality, and no direct impact on other targets, such as a file or a

program. The packets sniffed by an eavesdropper can become a requirement
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for a subsequent attack, such as a replay attack, and thus further endangers
traffic integrity. Hence, an eavesdropping attack results in the indirect im-
pact on traffic integrity. When evaluating the impacts caused by an attack,
the union of direct and indirect impacts should be considered.

After analyzing the existing wireless attacks, we categorize wireless at-
tacks into five types, including scan or monitor, masquerade, Denial of Service
(DoS), key cracking, and penetration attacks, with respect to their behavior

and intentions.

e Type I: Scan or Monitor attacks
Scan attacks intend. to search for accessible wireless networks. The
monitor attacks aim at gaining-useful, critical.information of a victim
network by intereepting aerial packets, and analyzing network traffic.
Such kind of attacks includes war driving, eavesdropping, active scan
attacks, etc. Because T'ype [ tries to obtain critical information, most of

the attacks of this type directly impaet network traffic confidentiality.

e Type II: Masquerade attacks
An attacker masquerades as a legitimate user to access a wireless net-
work, or as a legitimate device to pirate network traffic or disable a
functioning access point (AP). Once the attacker has snatched the
identity of a victim successfully, the victim can no longer access the
network, or the attacker can then provide network service to other il-
licit users. Thus this type of attack directly impacts availability. With
the counterfeit identity, the masqueraded user can easily capture or

reach private information so that confidentiality and integrity are usu-
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ally threatened as well.

Type III: DoS attacks

Denial of Service (DoS) attacks aim at making computers or network
resources unavailable to legitimate users. Attackers take advantage of
the paralysis period to launch other attacks. Then, they can devastate
the network security severely. Because service requests are denied under

this type of attack, the direct impact is against availability.

Type IV: Key cracking
Key cracking attacks try to recover WEP [58, 59] or WPA [60] keys
by analyzing numerous packets. After cracking the protection keys, all

requirements (confidentiality, integrity, and availability) are harmed.

Type V: Penetration attack

This kind of attack attempts to penetrate a victim system through
system vulnerabilities. =~ After the success of the attack, the attacker
can control the files, the programs, even the computer such that data
confidentiality, data integrity, or service availability may be destroyed.

All three security requirements are threatened under this type of attack.

3.2.4 Configuration Layer

To launch some attacks toward a wireless network, an attacker needs to

obtain certain network information or device configurations, such as IP ad-

dresses of wireless stations (STA) or APs, Multimedia Access Control (MAC)

addresses of STAs or APs, Service Set Identifiers (SSIDs), wireless channels,
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OS versions, running services, etc. In 4-RAH, the 4" layer (configuration
layer) exhibits configurations of wireless devices and wireless networks. The
following paragraphs discuss some configurations required to launch certain

attacks. More configurations can be added to this layer when needed.

e [P address is one of the prerequisite configurations for an attacker to
identify a victim in an IP network. Attacks of Type II, III, and V

require such a configuration.

e MAC address is one of the configurations required to identify the phys-
ical address of a victim. -Attacks of Type II, I1I, and IV require this

configuration.

e SSID is one of .the prerequisite configurations-when an attacker at-
tempts to connect or scan a specific wireless local.area network. Attacks

of Type II, III, and IV need this configuration.

e Wireless channel is one' of the configurations required to launch key

cracking attacks. Attacks of Type IV require such a configuration.

e OS version is one of the configurations required to obtain the possible

vulnerabilities of a victim. Type V attacks require this configuration.

e Running services and open ports are useful configurations to penetrate

a victim. Type V attacks need this configuration.

Table 3.1 lists the five attack types, and the relations with the security
requirements and prerequisite configurations. Note that an attacker can start

Type I attacks without prerequisite configurations, though the performance
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Table 3.1: Types of Attacks

Impacts ..
Types Direct | Indirect gggﬁ%%‘%g Jlﬂgns Attacks
I C I A None War driving, eavesdrop-
ping, etc

II C, LA |- STA 1P, AP IP, STA | Evil twin, IP spoofing,
MAC, SSID, etc TCP hijacking, etc

111 A - STA MAC, AP MAC, | Beacon flood, association
SSID, etc flood, etc

v C,LA|- AP MAC, SSID, chan- | WEP/WPA key cracking
nel, etc

A% C, 1A |- STA IP, ports, running | Penetration attack, etc
services, etc

C: confidentiality I: integrity A:availability

of the attacks can be enhanced-if-the attacker obtains more network config-

urations.

3.3 Integrated Historical Vulnerability Met-

ric

In our risk assessment method, we define an integrated historical vulnera-

bility metric (abbreviated to IHVM), evolving from the historical vulnera-

bility measure (HVM) and the aggregated historical vulnerability measure

(AHVM) proposed in [61], to determine the risk value of a device based on

existing vulnerabilities.

30



3.3.1 HVM and AHVM

HVM measures the risk level of a service imposed by vulnerabilities of the ser-
vice, and weights the vulnerabilities in terms of their ages [61]. The authors
of [61] assumed that a vulnerability discovered a long time ago should take a
small weight because the vulnerability may be understood and patched with
a high probability as time passes by. Therefore, the age of a vulnerability is
introduced in the decaying function of Eq. 3.1. [61] showed that hvm(ser)
can imply the probability that service ser will become vulnerability-prone in

the future.

=1

hvm(ser)='n <1 + iai X exp (= x A,)) . (3.1)

a; and )\; indicate the severity and the age of the i’ vulnerability, and j3
denotes the decaying speed of the exponential function.

Not all of the vulnerabilities of service ser should be counted because
the vulnerability effect usually declines with age, approaching zero. If only
the latest n vulnerabilities of service ser are considered, then we can derive

hvm(ser) by hum(ser), as represented in (3.2).

hvm(ser) —
= h < <1 2
hvm(ser) (1 £10 % 7)’ where 0 < hvm(ser) < (3.2)

A combination of hvm(ser;) for all services running on a device dev is

defined by the AHVM [61]. AHVM is useful in calculating the vulnerability
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threats that a device dev faces.

ahvm(dev) = In (Z exp (hvm (seri))>, for all services ser; running on dev.

=1

(3.3)

However, if there is no vulnerability detected in dev, AHVM outputs an
undefined value, In0. To address such an error, a new metric (IHVM) is

proposed with our four-layer risk assessment model.

3.3.2 IHVM

IHVM is proposed to ensure the existence of the boundary values. In this

metric, the notation thvm(dev) represents the value for a device dev, calcu-

lated by IHVM, while thum(dev) stands for the normalized ihvm(dev).

ihvm(dev) =In (1 + ZS: exp (hum (seri))) . (3.4)

i=1

All services ser; running on the device dev contribute to thvm(dev). The
number of services is denoted by n,. The higher thvm(dev) implies that the
running services may contribute more severity to the device dev. If no service
is running on dev, then ihvm(dev) will be set to 0.

After sorting hvm(ser;), V service ser; running on dev, if we only con-
sider the top m highest hvm(ser;), then the maximum ihvm(dev) becomes
In(14+m xexp(l)). So, we can obtain the risk level of a single device

ihvm(dev) according to the service vulnerabilities by Eq. 3.5.
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ihvm(dev)

ihvm(dev) = In(1+m x exp(1))

(3.5)

As a result, thum(dev) falls into the range [0, 1].

3.4 Risk Assessment Algorithm

This section explains the algorithm of our assessment measure and represents

a step-by-step progress toward the wireless network risk.

Step 1.  Establish risk model.
Initially, an administratorneeds to-build up a 4-RAH, and generate de-
gree matrices (D) of devices within a wireless network by investigating

possible attacks.

Step 2.  Develop experience mapping tables:
Because mobile wireless devices have certain sociological orbit, the se-
curity requirements and risks may differ by the position of a sociological
orbit. This step intends to introduce expert experiences to adjust fac-

tors, and to achieve scenario-adaptive assessment.

To provide a fair or even close to fair assessment, multiple experts
could be consulted, and several databases can be imported. In 2005,
Zhao et al. proposed a method to evaluate the consistency of expert
opinions by the entropy theory [9] . In our method, once an administra-

tor develops the experience mapping tables, experts could be consulted
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to approve the experiences shown in the tables. Because the degrees
of approval may be categorized into several levels, the consistency of
the degrees should be further evaluated. If all the experts show the
same degree level of approval, the consistency reaches the maximum.
On the contrary, the consistency reaches the minimum if the degree
levels distribute equally. In the end, an administrator can obtain the

weighted importance from the consistency.

Step 3.  Assess network risk.

This step can be further decomposed.into several sub-steps.

1. Specify probability vector p;and risk level vector r.
According tonetwork configurations, expert experiences, and vul-
nerability databases, we obtain p, and r, where p relies on the
encryption method used in a.wireless network, and r is deter-
mined with three.aspects: 1) adoption of a default value of the
configuration, 2) the number of attacks that view the configura-
tion as a prerequisite, and 3) the ihvm value for the configuration

of “running services.”

2. Determine weight vector of configurations wg.
We can obtain the i entry of wy by Eq. 3.6. Each entry w,,

reveals the impact leading to the i** attack A;, where the impact
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varies with the configurations of a wireless system.

n
E :7“3' X Pj
7j=1

= (3.6)

n

w

where n indicates the number of configurations. If no prerequisite
configuration is required, w,, is set to 1, which is the maximum

weight.

. Determine weight: vector-of requirements w,.

We determine the value of each entry .of w, in terms of the func-
tionalities of a device.-For-example, the “availability” of an access
point should have a heavier weight than “confidentiality” and “in-
tegrity” because the AP isin charge of providing Internet access

i
for wireless déeviees. w, = [ % % % } .

. Determine impact severity upon a device 1.

Because the security of a device may suffer more as the number
of attacks that pose interests to the device raises, the range of
the impact severity upon a device (I) is designed based on the
number of attacks (n,) targeting on a device dev. We then obtain

the impact severity of the device as
[ =Wg' XD X Wy (3.7)

Because entries of wWg, D, and W, all fall within [0,1], and the
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summation of all entries of w, equals 1, I falls within [0, n,].

. Calculate total impact severity upon a wireless network 7.
Because any device in a network may jeopardize the network se-
curity, we accumulate the contribution of each device towards the

total impact severity (T') by Eq. 3.8.

ng
T = logy, <Z 10”’”@') (3.8)
=1

Because a compromised device or a device with weak configura-
tions is usually viewed as-astepping stone by an attacker to prop-
agate attacks; the maximum [ dominates the result of Eq. 3.8
while the other smaller values-are also introduced. We conjecture

that the value of T"increases as the network becomes risky.

T, which depends on the number of devices and their configu-
rations, varies with.different network topologies. If there are more
devices within a network, the possible maximum value of 7" be-

sta

comes larger. If there are nj” APs and n/* STAs in a wireless

network, 71" then falls within
[loglo(nip +ny?), logy, (ng” x 10m" + ngte x 10”3ta)].

It might be difficult for an administrator to interpret a linguistic
meaning from a numerical value of T" since T is dynamic with the
variation of nj’, n%® n and n'*. In spite of the dynamics in a

possible value of T', the range of T offers a scale to help grasp the

linguistic meaning. An administrator may be able to comprehend
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the level of risk (relatively) easily if there is additional information

T

about the scale. Therefore
" llog1g(ng” ') Joggg (ng” x 107" e x 1076 )]

could be a solider index of risk.

Besides, we also devise a referable mapping table between a
linguistic meaning and a numerical value of T'. We first calculate
the maximum impact severity of devices in a network, and then
define the thresholds for low, medium, and high threats. If all the
devices have their impact severity with the maximum value, then
we conjecture in such a situation that the network is undoubtedly
unreliable, and absolutely insecure. However, not all the networks
require such a strict-condition. If a very strict condition is set, an
administrater may over-ignore unexpected events, and may not
deal with the wrong configurations in real-time. Hence, both the
ratio of the maximum<value of the total impact severity and the
ratio of the number of all the devices have to be contemplated
for a plausible mapping. The mapping between the numerical
risk values and the semantic risk levels is suggested as shown in
Table 3.2. The numerical thresholds can be adjusted according to
an administrator’s expertise, experience, or sociological orbits if

needed.

. Refresh the topology snapshot.
If new devices or new configurations are detected, the topology
snapshot should be refreshed. In our method, it is not neces-

sary to re-calculate the corresponding values of all devices. An
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Table 3.2: Numerical Impact Severity vs. Linguistic Meanings

Numerical impact severity (7') %%g%ggsc
(Threats)

_loglo <n§p . 10# + n%m . 10ng;a> ,logyg (2”3317 . 10# 4 2”§im . 10"?)) Medium

:10g10 (”gp + ”flta) ,logig (nz%p : 10@ + n%ta ) 10n%m>> £§l> (se-

administratortsimply executes the sub-steps 3.1 through 3.5 to
determine the impaet-severity upon:changing devices, such as the
device newly entering the network, and the device whose config-
urations have been changed...Then; sub-step 3.6 is performed to

re-calculate the total risk of the wireless network.

3.5 Summary

In Chapter 3, we presented a risk assessment method for wireless networks.

We described the design of a risk model and explained a newly proposed

metric (IHVM). We also introduced a risk assessment algorithm to measure

the risk value of a network. The risk model and the algorithm are designed

to address the dynamics of a wireless network. Not all layers of the risk

model or not all steps of the algorithm are re-generated and re-calculated

when changes occur in the network. The idea underlying our risk assessment
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method help produce a real-time reference for a system administrator to

manage network security.
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Chapter 4

Formalization of Control-Flow

Obfuscation

This chapter presentswan abstract framework for formalizing and modeling
many kinds of control-flow obfuscating transformations. In this framework,
we first parse a program«into a defined control flow 'graph. Then we identify
a set of atomic operators for graph transformations that are guaranteed to
preserve the functional behavior of the program. These operators can thus
be used as building blocks of a control-flow obfuscating transformation. By
composing instances of these atomic operators in sequence, we can formalize
many kinds of existing control-flow obfuscating transformations and devise

new candidate obfuscating transformations.

4.1 Preliminaries

This section defines the notations used in Chapter 4.
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Notations

£(Cy) Equivalent block of the i** code block C;
T ontrol-flow obfuscating transformation
C 1-fl bf ing f i
ermination bloc
1) Termination block
P Parsed program
B; The " branch
B;j The j** piece split from the branch B;
C; The i** code block. A code block can be a branch, a
fork, a join.or a simple block.
cFE The entry point of‘a parsed program
Cij The;j* piece split from thecode block C;
cA Any code block
cP Dummy code block
CFalse False target of a branch
cT Target code block of an”atomic operator
CTrue True target of a-branch
E Edge set of a directed graph
F; The " fork
G Directed graph
J; The " join
0] Atomic operator for control-flow obfuscation
Oj% Atomic operator of inserting dummy loops
O% Atomic operator of inserting dummy simple blocks
Og Atomic operator of replacing a code block with its

equivalent code
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O% Atomic operator of inserting folks, where n represents

the number of code blocks expected to be run in par-

allel
O¢ Atomic operator of inserting folk edges
ng Atomic operator of inserting type I opaque predicates
O(T)p Atomic operator of inserting type Il opaque predicates
Oép Atomic operator of inserting type III opaque predi-
cates
Or Atomic operator of reordering code blocks
Og’n Atomic operator ofrsplitting a simple block into n
pieces
Og’n Atomic-operator of splitting/a branch into n pieces
pr Type I opaque predicate. ' It=is an obscure branch,

which always evaluates false.

pT Type II opaque predicate. It is an obscure branch,
which.always evaluates true.

P’ Type Il ‘'opaque predicate. It is an obscure branch,

which sometimes evaluates false and sometimes true.

S; The i*" simple block
Sij The j*" piece split from the simple block S;
% Vertex set of a directed graph

4.2 Control Flow Graphs

Control flow graphs (CFGs) were developed by Cota et al. [62, 63] as a repre-

sentation of the control flow structure of a program, thus can help an analyzer
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understand the program easily [64, 65]. In this dissertation we use CFGs to
facilitate the formalization of control-flow obfuscating transformations. As a
high-level abstraction, a program can be parsed into a directed graph whose
vertices are code blocks of the program. There is an edge between two code
blocks if the second code block can be executed immediately after the first.

This dissertation considers both sequential and parallel programs, so a
code block in a CFG can be defined by our program parser as one of the

followings:

e Branch: A branch refers_toran instruction that can cause execution
to transfer, either conditionally or unconditionally, to some statement
other than the immediately following statement. In high-level pro-
gramming languages, branch instructions may be found in for, while,

do-while, if-else, and goto statements.

e Fork: A fork is the code block that creates parallel execution. The
immediate successors of a fork can tun concurrently until the paths

converge.

e Join: A join is the code block at which parallel execution paths con-

verge.

e Simple block: A simple block is defined as an ordered sequence of state-
ments with no outgoing or incoming branch, fork or join instructions

inside this code block.

We use the following notations for several special kinds of code blocks.
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e Equivalent block (£(C;)): a code block that is functionally equivalent

to the code block C;.
e Termination block (¢): the exit point of a source program.

The edges in a CFG represent possible execution paths that the program

may take. Our program parser also specifies the following types of edges.

e Sequential edge: A sequential edge, denoted by (C;, C;), exists between
two code blocks C; and C;. Here, C; can be only a simple block or a

join.

e Branch edge: Sincesa branch B; may jump-to either its true or false
target, there are two code blocks that could be executed immediately
after the branch. The two branch edges leaving B; are denoted by
(B, CT”‘G)T and-(B;, CF alse)F. C} is executed-while B; evaluates to
true, so CT"% represents the true target of ‘B;. Similarly, C¥e¢ is the

false target of B;.

e Fork edge: Since several code blocks can be executed concurrently right
after a fork Fj, there may be several code blocks as the immediate
successors of F;. A fork edge is represented as (F;, C;), and C; can be

a simple block, a branch or a fork.

With the definitions of the code blocks and the edges, we represent a
directed graph by the pair (V, E') where V' is the vertex set and F is the edge
set. V contains all the code blocks of a program, including simple blocks,
branches, forks, joins and a termination. E is composed of sequential edges,

branch edges and fork edges. Then, a parsed program 1 is a pair of an entry
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Figure 4.1: Bxample of the formalization of a parsed program

block of a directed graph and the graph. Figure 4.1 shows an example of a

CFG of . The CFG contains four.simple-blocks, one branch, one fork and

one join. A rectangular indicates a simple block; a diamond denotes a branch;

a base-down triangular and a base-up triangular represent a fork and a join,
respectively. In Figure 4.1, S is the entry block, so we obtain a parsed pro-

gram ¢ = (51,G), where G = (V, E), V = {51, 52, S3, S4, By, F1, J1, ¢}, and

E = {(S1, F1), (F1, B1), (F1, S4), (B1,S5)", (B1, S3)", (52, S3), (S3, J1), (Sa, 1), (J1,0)}-
¢ is an indication of the end of execution path without code existing in this

vertex. Hence, this type is not counted into the number of vertex set V.
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4.3 Atomic Operators

A program graph is a complete representation of a source program. Obfus-
cating control flow of a program can be viewed as converting one program
graph to another. For graph conversion, we can use deletion, insertion and
update. With deletion, a vertex or an edge is removed. As deletion always al-
ters the functionality of the original code if there is no other following action
(insertion and update), we do not use deletion for program obfuscation. Ad-
dition inserts additional edges or vertices, and update means to modify the
existing vertices or edges in the graph. Although addition and update may
also change the executionwesult, dummy or redundant codes can be used to
maintain the original functionality. Therefore, control-flow obfuscation may
involve two classes of operators: insertion and update.”We describe these two
sets of atomic operators, called “operators” and denoted by “O” hereafter.
Since a control flow graph consists of nodes-and edges, the sets of atomic
operators can be further classified.into _four categories: insertion of nodes,
insertion of edges, update of nodes and update of edges. These categories

cover all the possible atomic operators for control-flow obfuscation.

4.3.1 Insertion

Insertion of Nodes

Here we define four operators of insertion according to the types of the code
blocks. To insert simple blocks without affecting the original functionality,
we can insert dummy blocks that do nothing but resemble real code. Insert-

ing branches can be realized by inserting opaque predicates. Regarding the
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operator of inserting forks, a pair of a fork and a join is inserted. We also
devise an additional operator of inserting dummy loops to help generate a

more obscure control flow easily.

Insert Dummy Simple Blocks The insertion of dummy code blocks
changes the control flow of a source program. Figure 4.2 exhibits the op-
erator Op representing the insertion of a dummy simple block CP in front
of the target code block C*. The graph on the right-hand side is the obfus-
cated CFG, which represents a result after applying O (1, CT) to CT in 1.
In 1, all edges whose successor ‘or true/false target is Cr would be replaced.
An additional sequential.edge (CP €7T) is-also inserted to the edge set E.

Algorithm A.1 describes the steps to-achieve O2 (1, GT).

Algorithm A.1
Inert Dummy Simple Blocks, O%(w,CT)

V«Vvu{CcPl
IF C7T is the entry point THEN

Replace the entry point with CP;
END IF;
Replace edges (CT, C;) with (CP, C;) Vi;
Insert (CP,CT) to E; O

Insert Opaque Predicates An opaque predicate is a Boolean valued ex-
pression whose value is known a priori to an obfuscator but is difficult for a
deobfuscator to deduce [17, 66]. These opaque predicates can be categorized

into three types [17]: a type I opaque predicate always evaluates to false; a
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Figure 4.2: Atomic operator of inserting a dummy simple block. After insertion, F be-
comes {(Cy,CP),(CP,CT),(CT,Cy)}.
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Figure 4.3: Atomic operators of inserting.opaque-predicates: (a) Type I, (b) Type II, and
(¢) Type IIT

type II predicate always evaluates to true; and a type III predicate can some-
times evaluate to true and sometimes to false. In this dissertation, we denote
these predicates by P¥', PT, and P’, respectively. The opaque predicates can
be applied in inserting branches for obfuscation to preserve the same execu-
tion result. The insertion can be accomplished by inserting the three types
of opaque predicates to hide the real control flow of a source program. ng,

ng and OZ)p represent the three types of insertion, respectively.
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e Of,: As PF is inserted in front of the target block C*', C*' should be
moved to the false target of P¥" to maintain the same functionality (see
Figure 4.3(a)). Since the execution result of P is always false, any
code block C4 may be specified as the true target of P¥. C4 can be

an existing or a dummy code block by applying the operator Op.

e 05, The procedure for inserting P* is similar to that for P* (see
Figure 4.3(b)). Since PT always evaluates to true, C7 is placed as the
true target of PT. C4, any code block, can be its never-reached false

target.

e 0}, Figure 4.3(c) shows the actions of Of,. To ensure the same
functionality, théequivalence of €7 is placed on one of the targets of

P?

The algorithms are explained in Algorithm A.2, A3 and A.4.

Algorithm A.2
Insert Type I Opaque Predicates, ng(w,CT)

V « VUu{PFy
IF CT is the entry point THEN

Replace the entry point with P¥;
END IF;
Replace edges (CT, C;) with (PF, C;) Vi;
Insert (PF,C4T and (PF,CT)F to E; m]

Algorithm A.3
Insert Type II Opaque Predicates, ng(w,CT)

V<« Vu{pPTy
IF C7 is the entry point THEN
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Replace the entry point with PT;
END IF;
Replace edges (CT, C;) with (PT, C;) Vi;

Insert (PT,CT and (PT,CT)F to E; O

Algorithm A.4

Insert Type III Opaque Predicates, ng(z/;,CT)

V<« VU{P"¢CT}
IF C7T is the entry point THEN

Replace the entry point with P’;
END IF;
Replace edges (C7T, C;) with (P?,.C}) Vi;
Insert (P?,CT)T and (P’,¢(CT))F to E;
Find (CT,Cj), insert (£(CT),Cy) to-E; m]

Insert Forks Figure 4.4 shows the-concept: of inserting a fork. The in-
sertion of a fork denoted by O% (@/}, C’T) indicates that a fork is inserted as
the immediate predecessor of the code blocks, C* and C7’s following n — 1
code blocks. Assume C7 and the following code blocks are the indexed code
blocks Cy — Cyin_1. Cx — Crin_1 are executed in parallel immediately after
C.. In addition to inserting a fork, we should also insert a join to guarantee
that the execution of these parallel code blocks is completed before C, to
maintain the original functionality. The execution does not continue until
the concurrent paths converge at a join. Before applying Op, the execution
dependency between C? and its successors should be checked. If dependency
exists, Op may result in an incorrect execution. Since the immediate succes-

sors of a fork, a join or a branch cannot be executed when these code blocks
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Crs1 Cy Crs1 oo Cien1

Figure 4.4: Atomic operator of-inserting -a fork. After insertion, E becomes
{(Cﬂchl)v(Flvck)7(F170k+1)7-“7(F170k‘+n—1)a(Ck‘aJ1)7(ck+1aJl):--'a(ck+n—17J1)v(lecy)}'

are not finished, i.e. execution dependency exists, the target of the operator
Op cannot be either a fork, a‘join nor a branch.

Algorithm A.5
Insert forks, O’Ié(w,CT), CT =y

EV ~—Vu EF, é} )
= EU{(F.CR), (F.Cs1), . (F.Crgn—1)}3
Find (Cyyn_1,C4) and insert (J,C4) to E;
IF C7 is the entry point THEN
Replace the entry point with F’}
END IF;
Replace edges (C;,CT) with (C;, F) Vi;
Replace edges (C;, C;) with (C;, J)VC; € {C,Crt1,-+ s Chan—1}; m]

Insert Dummy Loops A loop can be achieved by combining simple blocks

and branches. The operator OF inserts an extra loop, composed of a dummy
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Figure 4.5: Atomic operator of inserting a dummy loop. After insertion, £ =
{(szcQD)’(C2Dvch)T7(CQD7CT)Fa(CID702D)7(CT707J)}

simple block (CP) and a dummy branch (G£), in front of the target block
CT as shown in Figure 4.5. 'If C7 is the successor of a sequential edge or
the true/false target of a branch edge, it will be replaced by the dummy
branch. Then a new.sequential edge (CP;0P) and two additional branch
edges (CP, oY (CP,€T)F are‘inserted into the edge set where CP is a
dummy simple block. Tn this way, a loop composed of CP and C¥ is con-

structed.

Algorithm A.6
Insert Dummy Loops, O%(y,CT)

V<« Vu{CcP,cP};
IF C7T is the entzry point THEN

Replace the entry point with C2D
END IF;
Replace edges (CT, C;) with (CP,C;) vi;
Insert (CP,CP) to E;

Insert (CP,CP)T and (CP,CT)F to E; m]
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Insertion of Edges

In a simple control flow graph of a sequential program, it is infeasible to
insert an edge because each node has only one outgoing edge for a sequential
program. On the contrary, the operator of inserting an edge may be able
to be applied to the control flow graph of a parallel program because there
are multiple edges outgoing from a folk, and an additional folk edge can be

inserted in this case.

Insert Fork Edges The operator Og inserts a folk edge between the first
target C', which has to be afolk, and thesecond target code block CY. Note
that dependency between the two-targets and other successors of CY should
be checked before the.insertion. If dependency exists, incorrect execution

may occur.

Algorithm A.7
Insert Fork Edges, Og (v, ClT,CQT)

IF dependency exists THEN
BREAK;

END IF;
IF C¢T € F THEN

E« BU{(Cf,CH} o
END IF;
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4.3.2 Update

Update of Nodes

The operators in this category modify the existing nodes and change the
contents of the nodes. We introduce two specific operators here:split code

blocks and replace code blocks.

Split Code Blocks Splitting a code block into pieces increases the number
of vertices in the CFG. The split pieces are advantageous to creating more
variations of the control flow. Combining the splitting operator with other
operators helps implement. more complex obfuscating transformations. In the
following, the actions of the operators of splitting simple blocks and splitting

branches are explained.

. Og’”: The operator splits a simple block inte n pieces. In Figure 4.6,
05" (¢, CT) splits GT into'n pieces. Asswme that CT is originally in-
dexed as Cj. Then the newly-split pieces are denoted by Cii — Chyp,
where n is limited to the instruction count of C*. Algorithm A.8 shows

the algorithm for this operator.

. Og ™. The operator splits a target branch into smaller pieces. Similarly,
the parameter n is limited to the numbers of condition expressions in

CT. We take Figure 4.7 as an example that CT is expressed as
condy AND ((conds AND conds) OR condy).

Since there are four condition expressions in C7, n is limited to 4.

After splitting C7, the original CFG is then converted to the CFG on
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Figure 4.6: Atomic operator of splitting a simple block:»Assume CT = C},. After splitting,
E ={(Cs,Ck1), (Cr1,Cka)s++ :(Chim—1)sCkn)s (Cin, Cy)}-

the right-hand side, where Cj; represents cond; with the assumption

that C7 is indexed as C}.

Algorithm A.8 and A.9 are the algorithms for splitting code blocks. In
Algorithm A.9, the condition expressions-in-a branch are first parsed and

converted to postfix orders. Each parsed element is denoted by item,.

Algorithm A.8
Split Simple Blocks, 05" (¢,CT), CT = Cy,

IF Cy € B THEN
BREAK;

END IF;

IF n > instruction count of C;, OR n < 2 THEN
BREAK;

END IF;

IF C} is the entry point THEN
Replace the entry point with Ci;

END IF;

V+V—{Cr};
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Figure 4.7:

v y'
Cx C
T F 0s"(w,CY
CTrue CFaIse
A4
cTrue
Atomic woperator——of = -splitting

splits ¢T into four

{(Cz, Ck1), (Ci1, Cr2) T, (Cr1:CF5)E (Cha, Ci3) T, (Cia, Cra) ¥, (Crz, €T74¢) T, (Chs, Cra) ¥,

pieces.

(Cha, CTr)T, (Cpg, CFo150)PY,

V +— VU{C|Vi,1 <i<n}s

FOR edges (Cy,Cy) DO

IF C, = C;, THEN

Assume- CT

Replace (C,Cy) with (Ckyp, Cy);

ELSE IF Cy = C;, THEN

Replace (Cy, Cy) with (Cy, Cr1);

END IF;

E+FEU {(Cklr (Ck2)7 ((Ck'Qr (Ck3)7 cee (Ck(nfl)v Ckn)}a

Algorithm A.9

Split Branches, 05" (¢, CT), CT = Cj,

m < 15 k < 05 n < 0;
N < number of condition expressions in Cy;

IF Cj is the entry point THEN

Replace the entry point with Ciq;

END IF;
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V+V—{Cr};
Ve VU{CyI¥j,1 <j < N}
FOR m <2N —1 DO
IF item., is a condition THEN
n+<—n+l; m+—m4+1;
stacky < itempm;
ELSE IF item,, is an operator THEN
m < m + 1;
IF n > 2 THEN
tmpy < stackn—1; tmpg < stackn;
stackn—1 < NULL;  stack, + NULL;
Crj <= tmp1;  Ciiqr1) < tmpa;
SWITCH item
CASE AND:
tmpE = tmpE U
{(Crj» Crj+1))Ts (Cryy GF alse)F
(Cr(j11)s CTrue)T (Y, CFalse)FY s
CASE O0R:
tmpE = tmpE U
{(C’kj,C’T”‘e)T,(ij,tmpg)F,
(Ck(j+1)’cT'rue)T’ (Ck(j+1)’cFalse)F};
END SWITCH;
n<n—2; j4j+2;
ELSE IF n =1 THEN
tmpy1 < stackp; tmpa < NULL;
stackn < NULL; Cy; < tmpi;
SWITCH item,
CASE AND:

Replace CTrue

with tmp;
CASE O0OR:
Replace CFalse with tmpy;
END SWITCH;
tmpE = tmpE U{(Cj, CTrue)T, (Cyy, CFalse)F);
n<n—1 j<+<j+1;
ELSE IF n =0 THEN
SWITCH item

CASE AND:
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Replace CT74¢ with tmp;
CASE O0R:
Replace CFalse with tmp;
END SWITCH;
END IF;
END IF;
END FOR;
Replace (Cy,Cy) with (Cz, Ci1);
B & B~ {(Cy, CTr)T, (G, OFalse)FY;
E < EU tmpE; ]

Replace with Equivalent. Codes Equivalent codes are those with the
same execution result as the origins while their implementations are different.
The equivalent codes ‘conduce to confuse reverse engineers. The operator

Og(,CT) replaces CTin ¢ with its equivalent code &(CT).

Algorithm A.10
Replace with Equivalent Codes, Op (1), CT)

Loy
IF CT is the entry point THEN
Replace the entry point with ¢£(C7);
END IF;
Replace CT with £(CT); m]

Update of Edges

The category focuses on modifying edges without affecting the existing code

blocks and their contents.
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\

Ck+1 Ck

Figure 4.8: Atomic operator of reordering code blocks. Assume CT = Cj. After reorder-
ing, {(Ck,Cxr+1)} is replaced with {(Cx11,Ck)}.

Reorder Code Blocks Randomizing the placement of instructions helps
to hide the original execution logics from being reversely engineered. The
reordering operator Or then becomes one of the operators in obfuscating
programs (see Figure 4.8). Assume that the target code block CT is also
indexed as Cj. Before applying Og, the execution dependency between Cj
and its immediate successor Cyi1 should be checked.. If dependency exists,
then Or may result in an incorrect execution.

Here is the algorithm for the reordering operator.

Algorithm A.11
Reorder Code blocks, O (¢, GT);. 0T = C),

IF Cj is a branch THEN
BREAK;

)

END IF;
FOR edges (Ci, C;) DO
IF C; is a branch THEN
BREAK;
END IF;

IF dependency exists between C) and C;,
BREAK;
END IF;
Replace edge (Cy,C;) with (C;, Cy);
END FOR; IF C} is the entry point THEN
Replace the entry point with Cj1;
END IF; m]
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4.4 Formalization of Obfuscating Transforma-
tions

A control-flow obfuscating transformation 7 can be decomposed into a se-
quence of operators. Different sequences of operators lead to different trans-
formations. Even with the same sequence, specifying different target blocks
to these operators may obtain different-results..Hence we represent a trans-
formation T = (f1, fo, - "yfm) as the composition of m operators fi,..., fm,
where f, € {05, (- Ca) 108, (-, G500yt Co), Ot C) 057 (-, C.), OB (-, Cy),
OL(-,Cy),0%(-,Ch), Or(:, Ci), O%(-,C1);Oa(-, Cy, Cy) }, for = = 1,...,m. Note
that () stands for an ordered set of functional composition, where (f1, f2, ..., fin)
represents the function gdefined by g(z) = frn (. fo((f1(2))...). Ca,Ch,...,C;
represent code blocks, specified as targets of the operators, from the source
program.

This formal model can be used to describe many existing control flow
transformations [17, 18, 20, 38, 39, 67, 68|, according to their algorithms.
Decomposing these transformations into a sequence of operators also enables
further analysis. Table 4.1 classifies 17 existing transformations according to
whether they can be represented as a functional composition of our opera-
tors. As the table shows, twelve transformations can be decomposed into a
sequence of the proposed operators, but five of them cannot. In this section,

we explain the decomposition, justify each entry in the table, and interpret
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Table 4.1: Feasibility of Decomposition

Control-Flow Obfuscating Transformations Decomposable?
Basic Block Fission Obfuscation [38]

Intersecting Loop Obfuscation [38]

Replacing goto Obfuscation [38]

Branch Insertion Transformation [17]

Loop Condition Extension Transformation [17]
Language-Breaking Transformation [17]

Parallelize Code [17]

Add Redundant Operands [17]

Aggregation Transformations [17]

Ordering Transformations [17]

Remove Library Calls and Programming Idioms [17]
Table interpretation [17]

Degeneration of control flow {18]

Obfuscation Scheme Using Random Numbers [67]
Obfuscating C++ Programs-via Flattening (39
Control Flow Based.Obfuscation [68]

Binary Obfuscation Using Signals [20]

ZZ2Z2< <K Z<K K 2K

Y: can'be expressed .« N: cannot be expressed

these results.

Basic Block Fission Obfuscation [38]

This obfuscation tries to subvert the structures of programs such that decom-
piling the transformed programs would be unsuccessful. This transformation
splits the chosen code blocks into more pieces, and inserts opaque predicates
and goto instructions into these pieces. In the example presented in [38], to
protect the original program against the decompilation attack, a few more
blocks were generated and inserted after splitting the chosen code blocks.

Then, a type I opaque predicate was inserted to make sure the unreachabil-
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ity of the newly inserted code blocks, and thus functionality of the original
program was preserved.

In this case, according to the type of the chosen code blocks, we can apply
05" to a simple block or O™ to a branch. Moreover, 0%, and O} can be used
to insert dummy code blocks. Type II opaque predicates are used to perform
the functionality of goto instructions while any one of three Op, operators
can be inserted as opaque predicates to realize the basic block fission ob-
fuscation. Thus, this transformation can be expressed as T = (f1, fo, f3, f4),

where fi € {03", 05"}, f2 € {03,0%8}, f3 = 0F, and f4 € {0F,, 05 .0 }.

Intersecting Loop Obfuscation [38]

This obfuscation inserts two intersected loops tora source program to make
control flows unrecognizable for decompilers. Also, a type I opaque predicate
is inserted to skip the newly inserted intersected loops and to avoid any influ-
ence upon the original execution. Since a loop‘consists of a simple block and a
branch, we use two simple blocks and two opaque predicates to create the two
intersected loops. To preserve the same execution, the newly inserted loops
are followed by a type I opaque predicate. Hence, this transformation can

be expressed as T = (03, 0%, Oop, Oop, ng>, where Op, € {ng, ng, Og)p}.

Replacing goto Obfuscation [38]

This obfuscation replaces goto instructions with conditional branch instruc-
tions that do not influence the original control flow. This can be realized

by replacing the goto instructions with their equivalent codes. The trans-
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formation can be represented as T = (fi, f2,..., fm), Where f, = Op for

z=1,...,m.

Branch Insertion Transformation [17]

This transformation is designed based on one of the three opaque predi-
cate insertion operators, ng, ng and Oép. It can be expressed as T =
(0%, 00,,[0p]). The target block is first split into two pieces by 0% € {037, 05?}.
The second step is to apply Oo, to the split pieces, where Op,, € {ng, ng, OZ)p}-
Finally, the insertion of dummy_codes-Op € {03,0%} is optional in this

transformation.

Loop Condition"Extension Transformation [17]

A loop can be obfuscated by.complicating the loop eondition. The idea is
to extend the loop condition using opaque predicates that do not affect the
iterations when the loop is executed. The targets of opaque predicates are
the branch blocks forming the loop condition. These opaque predicates are
inserted immediately in front of the branch blocks. Optionally, a dummy
code block can also be placed in its never-reached target. The formal rep-
resentation of this transformation can be defined as 7 = (Oop, [Op]), where

Ooyp € {05,,04,,04,} and Op € {03, 0p} (optional).

Language-Breaking Transformation [17]

This transformation converts a reducible flow graph to a non-reducible one

by turning a structured loop into a loop with multiple headers. For obscurity,
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the loop body is split into two pieces. A type I or type Il opaque predicate is
inserted in front of the original loop to make a never-executed jump into the
second split piece. Since it is a never-executed jump, the second split piece
is placed on the never-executed target of the inserted opaque predicate. The
expression in terms of the operators is defined as 7 = (0%, Oop, [Op]) where
O% is the operator to split a code block into two halves, Oo, € {0§,, 05,},

and Op € {O%,05} is optional.

Parallelize Code [17]

A reverse engineer may find a parallel program more difficult to understand
than a sequential one. To increase parallelism for obscuring the control flow
of a program, we can_either create dummy processes or split a code block
into multiple data-independent blocks executed in parallel. According to our
formalization framework, the expression-in- térms of the operators is defined
as T = (03,0s,0r). We firstinsert dummy simple code blocks or split a
block into several pieces. Then we make them run in parallel by the atomic

operator of inserting forks.

Add Redundant Operands [17]

Algebraic laws can be used to add redundant operands to arithmetic ex-
pressions. The logic of the original expression is modified, and the oper-
ation becomes more complex. The transformation is formalized by T =
(fi, f2,---s fm), where f, = Op for x = 1,...,m. Only the method “add re-

dundant codes” can be used as the technique of creation of equivalent codes
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for the operator Og.

Aggregation Transformations [17]

This transformation falls into two categories. One is to break up codes which
programmers aggregated them into a method and scatter the codes over the
program. The other is to aggregate the codes which seem not to belong
together into one method. Since operators are mainly applied to code blocks,
this transformation with the basis of methods cannot be represented using

our operators.

Ordering Transformations [17]

To eliminate useful spatial clues to understanding the execution logics of
a program, ordering obfuscation was proposed to randomize the placement
of any code block in a source program. The operator Or(y, Cr) is used to
express the ordering transformations in.the form 7 = (fi, fo,..., fm) Where
fz = Og for x = 1,...,m. Note that Or exchanges the two target blocks if

no dependency exists between them.

Remove Library Calls and Programming Idioms [17]

It is known that in some programming languages like Java, the standard
library calls may provide useful clues to reverse-engineers. To impede this
problem from being exacerbated, an obfuscator may provide its own versions
of the standard libraries. The versions can be generated by applying the

operator Og to the code blocks of the libraries. Therefore, T = (f1, fo, .-, fm)
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where f, = Og forx =1,...,m.

Table Interpretation [17]

This transformation converts a code block into different virtual machine code
which is then executed by a virtual machine interpreter within the obfuscated
program. Since we do not talk about interpreters in this dissertation, it fails

to formalize this transformation with the proposed operators.

Degeneration of Control Flow_[18]

This transformation converts high-level control structures into equivalent if-
then-goto constructs. Then, goto statenients are modified such that the tar-
get addresses of the goto statements are computed at runtime. In the first
step, the expected construct .can be developed according to the proposed
CFG. Since the transformation replaces control flow with computed-goto
statements, equivalence techniques.can be-used to generate the target blocks
of the goto statements. Subsequently, Or can be applied to branches of
the construct to dynamically determine the target address of the goto in-
structions. Thus, the transformation can be expressed as T = (f1, f2,-- -, fm),

where f, = Og forz =1,...,m.

Obfuscation Scheme Using Random Numbers [67]

In this transformation, a dispatcher uses a random number (RN) to determine
its target method while a method point (MP) is used to check whether the

selected target method should be executed or not. If RN # MP, the selected
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method is not executed. The transformation regenerates a random number
to select another method until RN matches MP.

The concept of using a dispatcher and a random number can be accom-
plished by the obscurity and randomness of type III opaque predicates. Here,
a type I1I opaque predicate is inserted in front of each method designated as
the true target of the predicate. If the predicate evaluates to true, its corre-
sponding method is reached; otherwise, the execution jumps to another predi-
cate with the same functionality as the former. Since MP is used to determine
the accurate execution path, we insert other type III opaque predicates for
each method, where the newly inserted predicates play the same role as MP.
Hence, the transformation ¢an-be-expressed in the form 7 = (f1, fo, ..., fm),

where f, = 0f, for z =1, ..., m:

Obfuscating C++ Programs via Flattening [39]

The transformation is to firstly break up_the function body into several
smaller blocks and then make the ‘blocks in the same nesting level. Be-
sides, a dispatcher determines which equal-leveled blocks are to be executed.
Although we can adopt the same way for the implementation of the dis-
patcher, we cannot carry out the main idea of this transformation that the
split blocks are in the same nesting level. Therefore, it is unable to express

the transformation with the operators.
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Control Flow Based Obfuscation [68]

Two processes, P and M, are used in this transformation. P-process performs
the main functionality and acts as the original program. M-process handles
and saves the control flow information extracted from the original program.
P-process queries M-process for the correct addresses whenever P-process
reaches a point with missing control flow information. Since additional in-
formation is needed to achieve this transformation, we fail to decompose

it.

Binary Obfuscation Using Signals [20]

This transformation replaces an-unconditional jump with code, attempting
to access an illegal memory location that raises a signal. The signal handling
routine determines the target address of the original unconditional jump and
takes over the control flow of the program. Since we do not refer to any signals
and signal handling routines, this-transformation cannot be expressed with
our operators. However, the idea of using the signal handling routine can be

introduced as an approach to generating an equivalent code block.

4.5 Summary

We defined a control flow graph in this chapter. The control flow graph is
able to represent both a simple and a parallel program. We then identified
atomic operators as the basic building blocks for formalizing control-flow ob-

fuscation based on the control flow graph. We examined the feasibility of the
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formalization method by decomposing the existing control-flow obfuscating
transformations. Twelve of the seventeen transformations can be decom-
posed into the sequence of the operators. The formalization is feasible in

high-level abstraction.
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Chapter 5

Evaluation of Control-Flow

Obfuscation

This chapter describes our method of ‘evaluating the robustness of an ob-
fuscated program and-estimating the overhead on code size caused by a
control-flow obfuscating transformation. We propose metrics that we con-
jecture may be related to the'robustness of the obfuscated program against
reverse engineering. As for estimating the overhead, our approach works by
characterizing the space penalty of each individual atomic operator based on
the formalization of control-flow obfuscation. We believe that these evalu-
ation techniques can help to analyze the tradeoff between the effectiveness

and the overhead of different obfuscating transformations.

5.1 Preliminaries

Here, we introduce the notations used in Chapter 5.
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Notations

comp(y)
es(Gi, Gy)
dis(G;, G;)
DP(¢,T)

maz(num;, nums;)

mes(Gi, Gj)

Ne
peomp(i))
pot (¢, ')

scomp(1))

scope (1)

range(y, Bi)

range(y, F;)

crange(y, B;)|
ledge(G5))|

|Gil

[range(y, B;)|

[range(y, F3)]

Complexity of a parsed program

Common subgraph of graph G; and G;

Distance between graph G; and graph G
Distance-Potency (DP) vector of applying a transfor-
mation 7 to a parsed program

Maximum of num; and num;

Set of vertices of the maximal common subgraph of
graph G; and graph G

Number of condition expressions contained in a branch
Level-of-parallelism of v

Potency, indicating the increment of complexity be-
tween @ and @)’

Sequential complexity of 1

Value, determined by  the complexity measure
SCOPE; of ¢

Set of vertices in the loop led by branch B; in 1 or
on the paths branching out at B; in v until the paths
converge

Set of vertices on the parallel execution paths led by
fork F; in ¢ until the paths join

Size of compound range of B; in ¢

Number of edges of graph G;

Size of graph Gj, i.e. the number of vertices of G;
Size of range(y, B;)

Size of range(, F;)
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C Average size of code block C

5.2 Evaluation Metrics

Reverse engineers generally follow the following process to reverse-engineer

a program [69]:
e Identify the component that will be reverse engineered.
e Observe the execution flow, read manuals, and disassemble the code.

The difficulty of reverse engineering an obfuscated program depends on the
relationship between the eriginal and transformed program. The exact amount
of effort required is difficult to quantify, because it depends upon the ex-
perience and skill level of the reverse engineer: it may take some people
significantly longer than others to reverse engineer the same program.

We propose a measure that-tries to eliminate factors varying from person
to person. Our measure does not compare the difficulty of reverse engineering
the same program between different reverse engineers; rather, it is intended
to estimate the difficulty of reversing different obfuscated programs, if we
hold constant the person who is performing the reverse engineering.

To measure the complexity and overhead of obfuscated programs, Coll-
berg et al. [17] proposed several metrics for evaluating an obfuscating trans-
formation, including cost, resilience and potency. The cost metric is defined
to measure the additional run-time resources required to execute an obfus-

cated program. The resilience metric is intended to measure how well an
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obfuscating transformation holds up against attacks from an automatic de-
obfuscator. The potency metric is supposed to be related to the degree to
which an obfuscating transformation confuses a human trying to understand
the obfuscated program. Of these three metrics, only potency is intended
to measure the difficulty for a reverse engineer to compromise and deduce
an obfuscated program. The potency indicates the increment of software

complexity after obfuscation. It is defined as Eq. 5.1 shows.

comp(v')

—1. (5.1)

Here comp(y)) and comp(v') denote the-complexity of the original program
and the obfuscated program v’.

Potency pot() implies the difficulty in reverse engineering from the per-
spective of depth, i.e/“the increments of software complexity. Nevertheless,
for completeness of evaluating robustness-of software obfuscation, the diffi-
culty should be assessed‘from the perspective of width as well. We adopt a
distance metric that determines the degree of disparity between an original
program and an obfuscated program. The degree, offering the proportion
of the original execution paths to the paths of the obfuscated program, in-
dicates the difficulty of reverse engineering. We use both the distance and
potency metrics to evaluate robustness of an obfuscated program compared

with the original one.

5.2.1 Distance Metric

In this subsection, we introduce certain existing metrics for measuring dis-

tance between graphs and discuss their suitability for further implication of
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robustness of obfuscation.

MCS Measure Bunke et al. [70] proposed a distance metric based on the
maximal common subgraph (MCS). A common subgraph Gy, of graph G
and graph (5 is defined as that if there exists subgraph isomorphisms from
Gsuwp to G1 and from Gy to Gy, Gy is the MCS of G7 and Gy if there
exists no other common subgraph G’ , of G; and G, that has more nodes

than Gg,;,. The distance between two graphs is given in terms of the number

of nodes of their MCS:

jmes(Gy, Go)|

dis(G13Ga) =1= '
i5(G14Ga) max(|G1|s|Gal)

Here |G| is the number.of nodes-of the graph G, and-mcs(G1, G2) represents
the MCS of G; and Ga. This distance metric could be used to measure the
robustness of an obfuscated program obtained from & eontrol-flow obfuscating
transformation by letting Gy.denote the CFG of the.original program and G5
the CFG of the obfuscated one.

Graph Union Measure Wallis et al. [71] proposed another distance met-

ric:
B |mes(Gh, Go)|
|G1| +|G2| — [mes(Gy, Ga)|

diS(Gl, Gg) =1

We refer to this as the graph union measure, since |G1|+ |G| — |mes(G1, Ga)|
is loosely related to the size of the graph union. It is exactly the size of the
union, if G; and G5 have only one common subgraph.

These two metrics (MCS measure and graph union measure) only con-

sider the size of the MCS, and do not reflect any changes in other common
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subgraphs. They may fail to speculate on fine changes that a control-flow
obfuscating transformation produces. As a result, they may not accurately

measure the robustness of obfuscation.

Measure of Graph Edge To measure the robustness of obfuscation in
finer-grained, our distance metric differs from those of earlier work. Our
metric takes all common subgraphs into account, not merely the MCS. In
addition, our metric counts the number of edges in these common subgraphs,
instead of the number of nodes, to deliberate on the impacts upon execution
paths due to control-flow obfuseation: Our metric (Measure of Graph Edge,

MGE) quantifies the distance between two-graphs G; and Gs:

2 Iedge(csi(Gl, GQ))|
dge(G1)| + |edge(G2)|

dis(GL,Ga)=1-> 7 (5.2)

where cs;(G1, G2) denotes the it" common subgraph of G; and Gs, edge(G) is
the set of edges within graph G, and |edge(G)|is the number of edges within
G. The minimum value of dis(Gy,G2) is “0™ if the two graphs are exactly
the same. The maximum value of dis(G1,G2) is “1” if no common subgraph
exists between G; and GS.

Assume that we know which vertices in G correspond to which vertices in
G1, then the common subgraphs can be uniquely identified and the distance
metric is well-defined. Figure 5.1 displays examples of graphs G; and G,
both containing 8 nodes and 7 edges. There are two common subgraphs of
G1 and G3. One comprises 1 edge, and the other comprises 3. We obtain

diS(Gl,GQ) = % by Eq 5.2.
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Figure 5.1: Two common subgraphs of G; and G2 are circled.

5.2.2 Potency Metric

The potency, defined by Eq. 5.1, is the other indicator of robustness of ob-
fuscation. Eq. 5.1 calculates the increment,. of software complexity due to
obfuscation, so we need an appropriate measure of software complexity to
accomplish the equation. = Sinece-our formalization framework considers not
only sequential programs but also parallel ones, the complexity measure needs

to take both of the sequential. and parallel program into account.

Sequential Complexity - The complexity.metric underlying the potency
metric must evaluate complexity from the perspective of obfuscation so that
the derived potency value is able to represent the capability of obfuscation.
In 1981 Harrison and Megal presented the measure SCOPE [72] to calculate
complexity of a control flow graph of a sequential program. The measure
SCOPE determines complexity in terms of the size and the depth of nests
involved in a control flow graph. Since transforming a CFG into another
usually leads to changes of the graph size or the nesting level, the measure

SCOPE can be an appropriate base for the potency metric. The measure
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SCOPE is defined as Eq. 5.3 shows [72].

scope(y) = Y |range(, By)| (5.3)

B, eB

where B is the set of branches in ¢ and |range(i, B;)|, size of the range of
B, stands for the nesting level that B; contributes. |range(v, B;)| represents
the number of code blocks in the loop led by B; or on the paths branching
out at B; until the paths converge. scope increases as the number of nodes in
the nests of a program increases. The complexity of the entire control flow
graph equals the summation of the complexity of each split sub-graph when
the measure SCOPE is introduced. This feature is especially advantageous
to a complicated CFGror'a CFG with some changingsub-graphs.

Condition expressions which dominate control flow of a program play a
crucial role in analyzing and understanding the execution logic of the pro-
gram. In addition to the nesting level, the number-of condition expressions
within a branch also contributes complexity of a program. The large the
number of condition expressions is, the more effort should be taken to under-
stand the control flow. We extend the measure SCOPE to contemplate the
effects resulting from the number of the condition expressions in a branch.

From a high-level programming perspective, a branch can be treated as
a building block for two types of control flow structures, conditional jump

and loop, which pose individual effects upon software complexity.

e Conditional jump
The fundamental control flow graph of a conditional jump is shown in

Figure 5.2. It contains a branch with two target code blocks which
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are followed by C#. Assume that in this fundamental control flow
graph the branch B; contains only one condition expression so that
|range(, B;)| is 2. However, it is with a high possibility that there are
more than one condition expression contained in a branch. We should

further consider the nesting level of a branch in this situation.

While B; contains n. condition expressions which are connected by
the relation “AND” and “OR,” B; can be split into n. branches (B;;
to Bi(n.)), each branch of which involves only one condition expression.
The new flow graph deduced from Figure 5.2 now includes n. branches
and 3 simple code blocks:” The nesting level of branch B;;, in the
deepest nest, is equal to-2-since two code blocks C77#¢ and CF%*¢ are
on the divergent paths branching out at By |rang(y, B;)| also equals
|range(, B;)|. For branch B, Bjj is moved to either B;y’s true or false
target, while B;;’s true and false targets are unchanged. So, before the
paths which branch‘out at_B;, meet, three code blocks (B;, CTm¢ and
CFalse) are likely executed, i.e.. |range(v, Bip)| = 3. Similarly, B
is placed as Bi3’s true/false target according to the relation between
them. In this way, |[range(1, B;3)| is obtained as 4, while 4 code blocks
(Bia, Bj, CTrue and CFe¢) are included. By induction, for branch
By, lrange($, Bij)| = [range(w, Ba)| +j — 1 = [range(s, By)| +j — 1.

We define the compound range of B; to consider the situation that B;
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Figure 5.2: Control flow graph of a conditional jump

contains n. condition expressions by Eq. 5.4.

lerange(y, Bi)| = ) _ |range(s, By)| (5.4)

j=1

=" (range(y, B))| +j — 1)
j=1

=iie % |range(w, BY+ > (i —1).
j=2

e Loop
In a high-level program, a loop may be generated by for, while and
do-while statements. “The control-flow graph of a loop is as Figure 5.3
shows, where the graph contains one branch and two simple code blocks.
If B; in the loop contains only one condition expression, the nesting
level, denoted by |range(v, B;)|, is 2 since 2 code blocks (CT™¢ and B;
itself) are on the paths branching out at B; until the paths converge.
B; can be further split into n. pieces (B;1 — By(,,)) when B; contains n,
condition expressions (see Figure 5.4). A new flow graph thus contains
two simple code blocks and n, branches. For each branch in the loop in
Figure 5.4, before its divergent paths meet at C#, all the branches in

the loop and CT"“¢ are executed. That is, the number of the code blocks
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Figure 5.3: Control flow graph of a loop
on the divergent paths is n.+ 1. Hence V1 < j < n,, |[range(y, B;;)| =
ne+1 = n.+|range(v, B;)| —1s The compound range of B;, containing

n. condition expressions, within a loop-is thus derived as

|erange (1, Bi)l = ne X (Jrange(y, By)| +n. — 1) (5.5)

Parallel Complexity © The measure SCOPE was proposed for a sequential
program, and thus unable t6 measure.complexity of a parallel program. In
1988, Shatz [73] suggested a framework of measuring a distributed program’s
complexity, which is calculated based on complexity of each local task and
complexity stemming from interaction between the tasks. In Shatz’s opinion,
complexity of each local task can be calculated by the existing complexity
measures of sequential programs, while he proposed the number of concur-
rently active rendezvous as a useful measure in deriving the complexity of the

interaction. According to [73], we define the total complexity of a parallel
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Figure 5.4: Extended control flow graph of a loop: B; contains n. condition expressions

program (1) as Eq. 5.6 shows:

comp(y)) =avgx.scomp(1) +wp, X pcomp() (5.6)

comp(1) is the total complexity of ©. comp(1)) involves two parts: scomp(1))
and pcomp(1), indicating the sequential complexity and the level of paral-
lelism, respectively. w, and w, are adjustable weights. We can use existing
measures, such as SCOPE, to calculate scomp(1)). However, there has been
little discussion about the metric for calculating pcomp(1)). Assume that the
number of code blocks executed in parallel in a program contributes the level

of parallelism of the program; we define a metric pcomp(1)) by extending
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Shatz’s concept. Eq. 5.7 expresses the definition of the level of parallelism.

peomp() = > [range(, F})| (5.7)

F,eF
where F is the set of forks in ¢ and |range(1), F;)| represents the parallelism
that the fork F; is conducive to. |range(1, F;)| indicates the number of code
blocks on the parallel execution paths led by F; until the paths join. If no

forks exist in 1, then pcomp(1)) is zero.

5.2.3 DP Vector

In evaluating the difficulty that-a reverse engineer may encounter after obfus-
cation, Collberg et al. proposed the potency metric (Eq. 5.1) as an estimate
of the degree of the difficulty. However, the potency metric, based on the
software complexity metric, failsto detect all changesto execution paths and
may not accurately measure.the robustness of some obfuscating transforma-
tions. One way to remedy this kind-ef-shortcoming is to introduce another
metric which measures the difficulty caused by obfuscation from a different
dimension. We devise a special distance metric for quantifying the differ-
ence between two programs after obfuscation. Evaluating the robustness of
obfuscation from both the potency and distance perspectives considers more
factors and can provide a relatively holistic analysis. Therefore, we suggest
using both the potency metric and our distance metric to evaluate the ro-

bustness, namely,

DP(,T) = (dis(¢, T(¥)), pot (¢, T(4))) (5:8)
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where 9 represents the CFG of the original program, 7 the obfuscating trans-
formation, and 7 (¢) the obfuscated CFG. Here dis(¢, T (v)) is computed us-
ing the MGE defined in Eq. 5.2, and pot(v, T (¢))) denotes the potency com-
puted using SCOPE (Eq. 5.3). We expect that larger distance and potency

values are correlated to better robustness against reverse engineering.

5.3 Space Penalty

Control-flow obfuscation uses techniques such as creating buggy loops and
inserting dummy codes to disturb the real execution path. After obfuscat-
ing transformations, a source program can better forbid malicious tampering
and reverse engineering. However, it suffers from space penalty. The more
transformations applied to a program, the more codessize overheads are suf-
fered. Thus, estimation of space penalty is important.for assurance whether
the increment of code size due to the designated transformations is tolerable.
Through the proposed formal representation, estimation of space penalty
can be efficiently determined in advance such that administrators can decide
whether to apply more transformations or not. In this section we analyze
overheads on code size resulting from each atomic operator.

Assuming that an original parsed program 1 has n code blocks where the
size of the i*" block is denoted as z;, Vi € [1,n], the total code size of v is
o zi. After obfuscating transformations, « simple blocks, g branches, v
forks and § joins are inserted into 1 where the size of the i*" simple block, the
j' branch, k" fork and I'" join are respectively indicated as zs;, zb;, 2 fx and

zj1, Vi € [1,a], V5 € [1,8], Vk € [1,4] and VI € [1,§]. Now, the total code size of
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the obfuscated program is S, z; + 3%, 28 + 320 2bi+ S0 2fi + 320, 23
and the space penalty is Y% | zs; + 30 | 2b; + S0, 2fi + S0, i

For simplicity of analysis, the summation of the sizes of all inserted blocks
is replaced with the product of the average size and the number of blocks.
Since the gap between the average size of each type of code blocks may be
too large to be ignored, they should be individually denoted by S, B, F and
J. The space penalty becomes a- S+ 3-B+~-F +6§-J. We describe the
space penalty with respect to each proposed operator in the following, and

Table 5.1 makes the arrangement.

. ng or ng introduees ‘an extra predicate which results in a space

penalty of B.

° Oép inserts a new predicate and an equivalent block. This operator
yields a space penalty which can be one of the followings depending on
the type of CT: B48,2-B, B+ F or B+¥.J. For example, if CT is a

simple block, then the space penalty is B + S.

o O?” or O™ splits CT into smaller pieces. The space penalty is “07,

but the number of nodes increases.
e Op adds nothing and has “0” space penalty.

e O replaces CT with its equivalence ¢(CT). Since it is a replacement,

there is no space penalty.

e O3 inserts an extra simple block and acquires an space penalty S.
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Table 5.1: Space Penalty of Each Atomic Operator

Atomic Operators Space Penalty

Insert type I/IT opaque predicates, Of,/04, | B

Insert type IIT opaque predicates, O, B+Sor2-BorB+ForB
Split code blocks, 05" /O5™ 0

Reorder code blocks, Ogr 0

Replace with equivalent codes, Og 0

Insert dummy simple blocks, O%, S

Insert dummy loops, O% S+ B

Insert forks, O% F+J

Insert edges, Oq 0

e OL inserts a dummy loop containing a branch and a simple block. Thus

the space penaltyis S + B.

e OF inserts a fork and a join to increase the level of parallelism of a

program that leads to a space penalty of F + J.

e Og inserts an edge without any code instructions. Therefore, no space

penalty is produced.

5.4 Summary

In this chapter, we introduced the evaluation of control-flow obfuscation

based on the formalization of control-flow obfuscating transformations. We
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evaluated a control-flow obfuscating transformation in terms of the robust-
ness and the overhead on code size. We proposed the DP vector, composed
of the distance and the potency metrics, to calculate the robustness of ob-
fuscation. Moreover, we provided a light-weight approach to estimating the
space penalty caused by an obfuscating transformation on the basis of the
formalization in Chapter 4.

We recognize our metrics of the DP vector serve as merely heuristic,
general indicators of security. However these metrics can still be the first
step towards the evaluation of obfuscation. We do not claim that a large
value of our metric implies that the obfuscation will necessarily be secure
against reverse engineering; we-expect that large values of this metric are
necessary but not sufficient for security.” Our metrics are only intended to
reflect the difficulty of reverse engineering through static analysis — it does
not reflect information that might be gained by running the program and ob-
serving its execution, or by performing some otherkind of dynamic analysis.
Nonetheless, we conjecture that the metrics are helpful in comparing differ-
ent approaches to obfuscation. We also realize that the calculation of space
penalty in this dissertation is trivial to some extent. However, we believe
the simplicity of the calculation is indeed advantageous for an administrator
to approximate the overhead, especially in advance of implementing an ob-
fuscated program. Therefore, the DP vector and the space penalty metrics
still offer useful information to determine the balance between the protection

capability and accompanying overheads.
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Chapter 6

Case Studies

We validate our assessment methods of network security by case studies. In
assessing network security from the viewpoint of external attacks, we demon-
strate the effectiveness-and feasibility of our wireless risk assessment method
by two examples. In Example 1, we assess the risks of two different networks,
and then launch a practical eavesdropping attack against the networks. The
measured risk values are consistent with the realistic attack results. We il-
lustrate how our method handles the wireless dynamics by Example II, in
which configuration snapshots of a wireless network at different timing points
are introduced. In assessing network security from internal attacks, Example
[T and Example IV explain how our framework formalizes and evaluates a
control-flow obfuscating transformation. The capability and the overhead of
a control-flow obfuscating transformation can be effectively estimated by our
framework.

The symbols used in this chapter are the same as those defined in Sec-

tion 3.1, Section 4.1 and Section 5.1.
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6.1 Case Study of Wireless Risk Assessment

This section describes two examples for validating our wireless risk assess-
ment method. In these examples, we should first build up a risk analytic
hierarchy, and then develop the experience mapping tables to further deter-
mine the risk levels of configurations, the probabilities of acquiring device
configurations, etc. With the hierarchy and the tables, our assessment algo-

rithm derives the risk values.

6.1.1 Establish Risk Model

To build up a four-layer xisk ‘hierarchy; an administrator needs to select and
analyze possible attacks in a wireless network. In the following two exam-
ples, we consider 12 known wireless attacks to establish the hierarchy: war
driving, eavesdropping; active scan, evil twin, MAC:spoofing, IP spoofing,
TCP hijacking, beacon flood, association flood,de-authentication flood, key
cracking attacks and penetration attacks [74, 75, 76, 77]. These attacks are
first classified in terms of their types. Then, we analyze their impacts and
prerequisite configurations as listed in Table 6.1. With these analyses, we

finally construct the four-layer risk model accordingly.

Type I:  The war driving, eavesdropping and active scan attacks fall into

this category.

1. War driving targets on exposing and locating accessible wireless
networks while driving around a city without a priori information

about the target network. With the exposed locations, illicit users
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Type 1I:

can abuse the networks to interfere services for legitimate users.

Eavesdropping imperils traffic confidentiality. Even more, the at-
tacker is capable of replaying or deciphering the packets captured

to strike network security violently.

After an illicit user actively sends a probe request to a target
AP, the user may receive a response from the AP. The response
provides designate configurations, such as SSID, MAC address and
channel, which can be used to inflict additionally severe damages

to the network security réquirements.

The evil twin, MAC spoofing; IP speofing and TCP hijacking

attacks are classified as Type LI attacks.

1.

Masquerade of a physical AP is referred as an evil twin attack. An
attacker sets its SSID to be the same as an AP at a local hotspot.
A user may accidentally connect to this malicious AP (called the
evil twin), allowing the attacker to intercept all the packets which
should be transmitted to the victim AP. Traffic confidentiality,

packet integrity and service availability are all jeopardized.

An illicit STA can access a network by replacing its MAC address
with a permitted one. The MAC spoofing attack obstructs granted

access rights and destroys the AP’s service availability.

An attacker who alters the source IP address in the packet headers
can cheat a router into forwarding the modified packets. Hence,

the attacker is allowed to access the network.
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4. An attacker utilizes the regularity of SYN and ACK numbers dur-
ing a TCP session and then hijacks the TCP session to eavesdrop

the secrets exchanged between the two communication parties.

Type III:  Flooding attacks, such as beacon flood, association flood and

de-authentication flood, are classified as DoS attacks.

1. In a beacon flood attack, a great amount of counterfeit 802.11
beacons are generated to consume wireless resources and to make
legitimate users difficult to access the network. The impact sever-
ity hence suffers from the network unavailability caused by the

attack.

2. In 802.11, the association requests from STAs are kept in the as-
sociation table of an AP. Sinee the memory size of the association
table is limited, the AP cannot deal with more association re-
quests when the table is full. By taking advantage of the limited
storage capacity of an‘association table, the impact severity again
suffers from the network unavailability caused by a great amount

of forged association requests.

3. An attacker floods a victim STA with repeatedly masqueraded
de-authentication or disassociation packets to disconnect the STA

from its associated AP. This attack forbids the network availabil-

ity.

Type IV:  Key cracking attacks attempt to recover WEP or WPA keys,

which were proposed to protect data confidentiality and data integrity
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Figure 6.1: Example of four-layer risk analytic hierarchies (4-RAH):(a)4-RAH of an access

point (b)4-RAH of a station

and to prevent unauthorized access to APs.

Type V:

The penetration attack exploits existing security flaws and vul-

nerabilities in software, which can be but not limited to internet browsers,

drivers or media players. In general, an attacker should possess prereq-

uisite knowledge of the target machine, like its IP address, OS version,

software version and running services, before launching this kind of

attack against a selected software program.

Next, we further analyze the above attacks and list the victim devices

of the above attacks, where A{¥ means the i*" attack targeting on an access

point and A% denotes the i’ attack aiming at a wireless station. Table 6.1

states the analysis results. Then, we construct the 4-RAH for each type of

device according to Table 6.1. Figure 6.1 shows the 4-RAH for an AP and

that for a station.
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Table 6.1: Attack Analysis

Types | Attacks Target Configurations Direct Indirect
victims impact impact
War driving (A7) AP None - A
I Eavesdropping (A5t*) | STA None C I A
Active scan (A7) AP None C LA
Evil twin (A5'®) STA SSID-(Con f1) C, LA -
I MAC spoofing (A5") AP STA MAC (Confy) A -
IP spoofing (A3") AP STA TP (Confs) A -
TCP hijacking (435'*) | STA STA IP (Confs), AP | C, A |-
IP (Confs), open port
(Confs)
Beacon flood (Aj) STA None A -
I11 Association flood. | AP SSID (Confi), AP | A -
(AZP) MAC (Confs),
Deauth. flood (A$') STA STA MAC (Confy) A -
WEP/WPA key crack- | STA, AP | SSID (Conf1), AP | C, I, A -
v ing (Ag",Agt) MAC (Confs), chan-
nel (Conf7)
Penetration attack | STA STA IP (Confs), open | C, I, A -
v (Asta) port (Confs), running

C: confidentiality

I: integrity

services (Confg)

A: availability
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6.1.2 Develop Experience Mapping Tables

Expert experience is mandatory to assess network risk. To derive the risk
value which can be the representative of the practical situation, expertise and
real-world experiences are introduced into our risk assessment method. In
this step we inject expert experiences and dependable databases for 1) con-
verting the expert experiences to crisp numbers, 2) defining the risk level of a
device configuration, 3) defining the probability of acquiring a configuration

and 4) assigning each impact a numeric value.

e Linguistic to numeric conversion
Table 6.2 exhibits an example of the linguistic-to-numeric conversion.
In the conversion table, 9 linguistic terms are mapped to crisp numbers
falling within the range [0, 1]. The erisp numbers assigned in Table 6.2
can be adjusted according to the experience of an administrator or the

sociological orbit.

e Risk levels of device configurations
The risk level of a device configuration is determined according to the

following factors.

1. Configuration management: A device is risky if it adopts default
configuration values. If an administrator adopts the default con-
figuration without changing periodically, then it is easy for an at-
tacker to guess the setting. The configuration is hence viewed as
a risky configuration. In Figure 6.1, configurations Con f; (SSID),

and Confg (open port) are of “High” risk, if default settings are
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taken; otherwise “Low” risk levels are assigned.

2. Number of effective attacks: An attack may require a certain con-
figuration for a successful launch. Such an attack is called an
effective attack of the configuration. The risk level of a config-
uration increases with the number of its effective attacks, which
take this configuration as a prerequisite. In Figure 6.1, the risk
level of Confi, Confs, Confs, Confy, Confs, Confs, and Conf;

is determined by the number of their effective attacks.

Table 6.2 describes.anexample conversion between the num-
ber of effective attacks and the risk level of a configuration. An
administrator may adjust the conversion between the number of
effective attacks and the risk level of a configuration according to
his or her expert experience and the sociological orbit of a wireless

network.

3. thum(dev): ihvm(dev)-stands-for-the risk level of a device dev
caused by the vulnerabilities of services running on dev. Table 6.3
lists the vulnerabilities of some services, the severity of each vul-
nerability, and the age of each vulnerability. We obtain the infor-
mation from NVD (National Vulnerability Database) [78]. Then,
we derive the hvm(ser) by Eq. 3.1 with 5 = 1. Solving Eq. 3.5,

we finally obtain the risk level stemming from Con fs.

e Probabilities of acquiring configurations
The probability of acquiring a configuration strongly depends on the

encryption method adopted in a wireless network. It takes different
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Table 6.2: Effective Attacks and Risk levels

Number of effective at- | Risk level in linguistics | Risk level in crisp
tacks numbers
0 Absolutely low (AL) 0

0 Very low (VL) 0.1

0 Low (L) 0.2

0 Fairly low (FL) 0.3

1 Medium (M) 0.5
2-4 Fairly high (FH) 0.7
5-8 High (H) 0.8
9-11 Very high (VH) 0.9

12 Absolutely high (AH) 1

Table 6.3:" Vulnerabilities of Running Services

Severity | Age in year

Running service (ser) Vulnerabilities* (a) ) hvm(ser)
CVE-2010-0278 4.3 0.32
CVE-2009-2544 6.8 0.81
Windows Live Messenger |[c CVE-2009-0647 5.0 1.24 2.3951
CVE-2008-5828 5.0 1.37
CVE-2008-5179 5.0 1.49
CVE-2010-0304 7.5 0.25
CVE-2009-4378 4.3 0.37
Wireshark CVE-2009-4377 4.3 0.37 3.2299
CVE-2009-4376 9.3 0.37
CVE-2009-4211 9.3 0.42
CVE-2009-4741 10 0.11
CVE-2009-4567 3.5 0.33
Skype CVE-2009-5697 4.2 1.37 2.8013
CVE-2009-4875 6.8 1.51
CVE-2009-1805 9.3 1.92
. CVE-2009-3478 6 0.6
Fireltp CVE-2008-2399 |  9.30 1.96 17242

*The vulnerabilities are named by the Common Vulnerabilities and Exposures (CVE)
standard [79)].
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Table 6.4: Probability of Acquiring Configurations

Encryption method Lingiioslz?cblhty Crisp Vulnerable configurations
No encryption Absolutely high 1 Conf;, Confy, Confs,
Confy, Confs, Confg,
Confr, Confs
WEP Absolutely high 1 Confy, Confy, Confy,
Con fr
Medium 0.5 Confs, Confs, Confg,
Confg
WPA-PSK, WPA2-PSK Absolutely high 1 Conf;, Confy, Confy,
Confr
Low 0.2 | Confs, Confs, Confs,
Confs
Stronger encryption Absolutely high 1 Confy, Confy, Confy,
Confr
methods™ Very low 0.1 Confs, Confs, Confg,
Confs

*: WPA-EAP TLS, WPA-EAP AES; etc

efforts to decrypt packets ciphered by different methods. However,
in some cases, the attacker may obtain some:.configurations that can-
not be protected by the activated encryption method. By analyzing
the configurations displayed in Figure 6.1, we present an example of
probabilities of obtaining configurations under protection by various

encryption methods in Table 6.4.

Impact level

The impacts on the security requirements can be classified into three
levels: direct, indirect and no impact. According to the expert expe-
rience, an administrator can assign each impact a numeric level. In
this example, we assign 1, 0.5 and 0 to direct, indirect and no impact.

Then, we produce the degree matrices for each type of victim device
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according to Table 6.1. Since 6 attacks target on victim APs, and 7
attacks shoot for stations, a 6-by-3 matrix and a 7-by-3 matrix are
built for an AP and a STA, respectively (see Eq. 6.1). By definition,
each row of a degree matrix represents the impacts against the security
requirements launched by an attack. The number of the elements in a
row relies on the number of the security requirements. The element d;
in an AP’s degree matrix D stands for the level of impact that attack
A¢? launches upon the j security requirement. Taking “war driving
(A1")” as an example, it only has indirect impact on availability of a
victim AP, so the 1% row of D is [0°0-0.5]. “The meaning of each element

in a station’s degree matrix-is similar to that in an AP’s.

00 0.5
1 0.5/ 05
0 0 1
for AP, D= (6.1)
0.0 1
0 0 1
1 1 1
[ 1 05 05 1
1 1 1
1 1 1
for STA, D = 0 0 1
0 0 1
1 1 1
1 1 1
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6.1.3 Assess Network Risk

Example I: Eavesdropping Attack

In the first example, we design two experiments (Ex1-1, and Ex1-2) with
similar wireless topologies, one AP, and two STAs. STA; runs Windows
Live Messenger, and STA, maliciously eavesdrops the conversation of STA;
by running Wireshark. In this example, no security mechanism is applied
in Ex1-1, but WPA2-PSK encryption is introduced in Ex1-2 to protect the
network traffic. Due to the different configurations, STA, successfully eaves-
drops the traffic of STA; in Ex1-1, but fails'to steal the MSN conversations
of STA; in Ex1-2. Figure 6:2'shows the scenarios and results in Example I.

In the following, we evaluate-the risk values of the two networks by the

proposed method.

1. Derive r, and p.*The rules of calculating the risk levels of different

configurations are mentioned in Section 6.1.2.

(a) For Conf;, and Confg, their risk levels should be determined by
1) the configuration management, and 2) the number of effec-
tive attacks. In this example, C'onf; does not adopt a default
setting, and hence a “Low” risk level is assigned. In addition,
Conf; is a prerequisite for three attacks, including “evil twin,”
“association flood,” and “key cracking” attacks. By Table 6.2, a
“fairly high” risk level may be assigned. In the end, we convert
these possible risk levels to crisp numbers, and select a maximum

value, max(0.2,0.7), for Conf;. Similarly, we acquire the risk

98



level of Con fs, max(0.8,0.7) = 0.8, by assuming a default setting

is adopted for Con f.

The risk levels of Con fy, Con f3, Confy, Confs, and Con f; depend
on the number of effective attacks. For example, Con f5 is required
by 2 attacks, and its risk level is then set to “fairly high,” where

“fairly high” implies 0.7.

The risk level of C'on fg is determined by the IHVM, as mentioned
in Section 6.1.2. In this example, STA; is running a service, Win-
dows Live Messenger. (serq); and STA, is running a service, Wire-
shark (sery), while no service is run oneAP;. According to NVD,
there are 8,7and 93-known vulnerabilitiesrof Windows Live Mes-
senger, and-Wireshark, respectively. Table 6.3 displays the newest
5 vulnerabilities of each:” Assume the administrator concerns only
the latest 5 vulnerabilities of each service,.and introduces the high-
est three hum(ser;) to.ihvm(dev); according to Eq. 3.1, Eq. 3.2,
Eq. 3.4, and Eq. 3.5, we obtain ihvm(AP;) = 0, and we derive
ihvm(STA,) and ihvm (ST Ay) by

hvm(sery)= ln(ii?glxi')) =0.6092 # sery: Windows Live Messenger

thvm (ST A1)=In(1+exp(hvm(sery)))=1.0434

. _ ihvm(STAy) _
zhvm(STAl)—m—()A?lQ
hvm(serg):%:0.82l5 # sera: Wireshark

thvm (ST A2)=In(1+exp(hvm(sery)))=1.1860

ithvm(STAg)

ihvm(STA2):7ln(l+3><E.’L‘p(l))

=0.5356
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Hence, in both Ex1-1 and Ex1-2, the risk levels of configurations for

APq, STA; and STA, are shown as follows.

r T
AP, : t=|0.7 07 05 07 0.7 08 0.5 0} (6.2)
- T
STA;: t=10.7 07 05 0.7 07 0.8 05 0.4712} (6.3)
- T
STAy: t=107 07 05 0.7 0.7 08 0.5 0.53561 (6.4)

We calculate the probability of acquiring configurations (p) by analyz-
ing Table 6.2, and Table 6.4:

In Ex1-1 (no security protection), we obtain p.for each device:

T
p=111 11111 1] . (6.5)

In Ex1-2 (the WPA2-PSK encryption is applied), the probabilities of
acquiring the configurations for-each device are adjusted according to

the encryption method.

P=|11021 0202102 - (6.6)

. Derive the weight vector of configurations (wWg) of APy, STA;, and
STA, by Eq. 3.6.
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In Ex1-1,

_ T
for APL: Wy=|11 07 07 0.7 0.6333] (6.7)

for STA;: wy=|1 0.7 0.6667 1 0.7 0.6333 0.6571]

_ T
for STAy: Wy= |1 0.7 0.6667 1 0.7 0.6333 0.6785
In Ex1-2,
_ T
for AP, : W, = | 10 0.7 04 0.7 0.6333} (6.8)

for STA;: wg='1 0.7 01333 1.0.7 0.6333 0.1314}

for STAy: Wyg=1|1 0.7 01333 1 0.7-0.6333 0.1357

3. Derive the weight-wvector of requirements (w,) for each network de-
vice. For example, “availability” of an-accéess point should have a heav-
ier weight than “confidentiality”™ and “integrity” because the AP is in
charge of providing Internet access for wireless devices. Hence, in Ex1-1

and Ex1-2, we have
T
W, = [ 11 1 ] for AP;. (6.9)
1 1 2

On the other hand, confidentiality, integrity, and availability could be
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weighted equally for a wireless station, so that for ST A; and ST A,
T
co— | 1 1 1
wr—[§ ! g} (6.10)

4. Derive the impact severity of each device. By Eq. 3.7, Eq. 6.1, Eq. 6.7,
Eq. 6.9, and Eq. 6.10, we obtain the following risk values for devices in

Ex1-1.

APy : I =vig x D x W, = 25583
STA; : 0 L =g x-D 5w, = 3.8004

STAy: I =wWg XD X Ww,=309118.

Similarly, we canobtain the impact:severity of each device in Ex1-2:

AP T =2.2783
STA,: [I=28313

STAy . I =2.8356.

5. Determine the risk value of the wireless network by Eq. 3.8. We obtain
the risk values T' = log; (10?753 4 1038904 - 1039118) = 4.2120 for Ex1-
1, and T = log;(10%2™3 4 10%8313 4 10283%) = 3.1911 for Ex1-2.7.
Ex1-1 is at HIGH risk because the total impact severity of Ex1-1 is

larger than the high threshold 3.6887 based on Table 3.2. Similarly,
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Ex1-2 falls into the LOW category because its total impact severity is

smaller than the medium threshold 3.3877.

According to Table 3.2, the total impact severity in Ex1-1 and Ex1-
2 should fall into the range [0.4771,7.3222|. The scaling information can
provide more semantic meanings for an administrator, in addition to
the suggested mapping table. Thus, we import the scaling information
into the risk value to better describe the semantics. Therefore, for Ex1-
1, the risk value can be further represented as %. Since 4.2120
falls in the upper half of the range, an administrator can reason that
Ex1-1 is at HIGH risk. Similarly, % is the implication for the

risk value of Ex1-2: Ex1-2-is at LOW risk because 3.1911 falls in the

lower half.

Such a result is close to the real situation because the derived risk
value for Ex1-1 isdarger when the eavesdropping attack succeeds, and
the risk value for Ex1-2-isssmaller when the network Ex1-2 can resist

the attack.

Example II: Dynamic Topologies

In the second example, we show how our risk assessment method incorporates

the dynamic topologies of a wireless network. The example presents snap-

shots of a wireless network at times 71, 7o, and 73. Initially (at time 77), the

network contains one AP, and two STAs. Then, a new station STAj3 enters

the network at 5. Finally, STA; leaves at 73. Figure 6.3 shows the network

topologies, and the device configurations. With the proposed method, we
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Figure 6.2: Example I: No security mechanism is applied in Ex1-1, but the network is
protected by WPA2-PSK in Ex1-2. The eavesdropper (STA,) successfully captures STA;’s
MSN messages in Ex1-1, but fails to sniff the communication session in Ex1-2.
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can assess the network risk efficiently by performing the following steps.
Initially, at time 7: Ex2-1
Because the two networks in Ex1-2 and Ex2-1 are exactly the same, we derive

the total risk value for Ex2-1 the same as those for Ex1-2, T'= 3.1911. The

3.1911

0.4771,7.3229) 1 details.

risk value is represented as
At time 7: Ex2-2
STAj3 joins the wireless network (as shown in Figure 6.3) at time 7. Because

no changes are made in AP, STA;, and STA,, we do not need to re-calculate

the corresponding impact severities, but perform the following steps.

1. Derive the risk levels of ‘configurations of STA3. Assume that STAj
runs the servicessWindows-Live Messenger (seri), Skype (sers), and
FireFtp (sery); and the administrator intends to-consider the latest five
vulnerabilities of-each service. According to the.service vulnerabilities
listed in Table 6.3; we /derive humi(ser;),i/€ {1,3,4} by Eq. 3.1 and
Eq. 3.2, and solve ihom(STAs) by Eq: 3.2 and Eq. 3.4.

hvm(serl)Z%ZO.GOQQ # seri;: Windows Live Messenger
hvm(sem):%:&?l%} # sers: Skype
hvm(sem):m(lli%:[)ASSE) # sery: FireFtp

ihum(ST A3)=1.8607

ihum(ST A3)=0.8403
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Hence, we obtain the risk level vector of ST Az, i.e.

T
r= [0.7 0.7 05 0.7 0.7 08 0.5 0.8403} .

Because Ex2-2 uses WPA2-PSK encryption, we acquire
T
ﬁzll 1 02 1 02 02 1 0.2} :

2. Derive the weight vector of configurations of STA3. By Eq. 3.6, for
ST As,

Wy =1 1+07 01333 1 0.7 0.6333 0.1560 (6.11)

3. Assign the weight vector of requirements. In this example, we apply

the same vector, wy, given in Example-1.
4. Derive the impact severity of STAg: [-= 2.8559.

5. Derive the total risk value for Ex2-2, T, from AP;’s impact severity,
ST Ay’s impact severity, ST As’s impact severity and ST As’s impact
severity. By Eq. 3.8, T' = log; (1022783 4 1(%8313 4 1()2-8356 4. 1(2-8559) =
3.3561. Since more devices are within the network at time 7, the range

of T becomes [0.6021, 7.7924]. The risk value can be further represented

3.3561

a8 10.:6021,7.7924]

Compared with the experiment Ex2-1, there are more devices and vulnera-
bilities in Ex2-2; hence, the total risk value of Ex2-2 is larger than that of

Ex2-1, but the risk still falls into the LOW category.
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Figure 6.3: Example II: snapshots of a-wireless network at different time
At time 73: Ex2-3
STA; leaves the network with nothing changed for other devices. We can
easily calculate the risk value at 73 by re-calculating the total impact severity
of Ex2-3 with the known impact severities of AP;, ST As and ST As, the same

as those in Ex2-2. As a result, for Ex2-3, T' = 3.2020. The current risk value

3.2020

18 (0.4771,7.3222] "
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6.2 Case Study of Evaluating Control-Flow
Obfuscation

This section states our method of evaluating control-flow obfuscation. We
introduce two examples (Example III and Example IV) to demonstrate the
feasibility and flexibility of our method. Example III models two existing
control-flow obfuscating transformations by the atomic operators and then
evaluates them by the DP vector and the space penalty metric. Example
IV introduces two transformations which are composed of the same sequence
of atomic operators but with different target code blocks. The examples
indicate that our evaluation method are flexible and sensitive enough to

distinguish the differences and to produce fine results:

6.2.1 Graph Conversion

We introduce Program I, a prime number generator, as an original program
used in the examples in this section. "We first parse Program I into v, and
then we can apply the atomic operators to make v obscure. Figure 6.4
displays v and the contents of each code block.

/* Program I. Prime number generator */
int _PrimeGen(int tmp) {

int i;

for (i=2; i<=tmp/2; i++)

if (tmp %i == 0)
return O;
return 1;

}
int main() {

int num, tmp, sum;
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Sy
: F
T Sy int num, tmp, sum;
int PrimeOrNot=0;
printf(“Insert a number: \n”);
S, scanf(“%d”,&num);
sum=0;
tmp=2;
o E B, tmp <= num
T S, PrimeOrNot = _PrimeGen(tmp);
B, PrimeOrNot ==
S3
S3 printf(“%6d”,tmp);
Sa sum. +=tmp;
tmp ++;
L | S,
Ss printf(“\n”);
ﬁ return 0;
Ss
0]
Figure 6.4: CFG of Program I: P =
where 1% = {51,52753,S4,S5,B1,B2,¢}, and

{(S1,B1), (B1,S2)", (B1,S5)", (824 Ba);(Bs;55)"5(B2,.54)", (S3, 54), (Sa, B1), (S5, 0)}-

int PrimeOrNot=0;

printf("insert a number \n");

scanf ("%d", &num);

for (sum=0, tmp=2; tmp<=num; tmp++) {
PrimeOrNot = _PrimeGen(tmp);
if ( PrimeOrNot == 1)
printf ("%64", tmp);
sum += tmp;

¥

printf("\n");

return 0O;
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6.2.2 Obfuscation Formalization and Evaluation
Example III: Existing Control-Flow Obfuscating Transformations

We apply two control-flow obfuscating transformations, the basic block fis-
sion obfuscation [38] and the branch insertion transformation [17], in the

example:

Ti = (09°(-,81), 03(-, 1), 05, (-, B1), 05, (-, CP))

To = (0%(,81), 05, (. $12), Op(-, S12), OB (-, £(S12)))

Apply the specified.basic bloeck fission obfuscation, 7;

e Running 05’2(-, S1):

(7E «—,Slh
Ve (V ={S1}) U{S11, 512},

E « (E={(S1,.B1)}) u4(Si1, S12), (S12, B1)}.

In this example, Si; is

int num, tmp, sum;
int PrimeOrNot=0;
printf("insert a number \n");

scanf ("%d", &num);

and Sy is

sum=0; tmp=2;

Since splitting S; does not contribute to the nesting level, scope remains

the same as the original so far.

110



e Running OP (-, S12):

V«vu{cPy,

E «(E —{(S11,512)}) U{(511,CP), (CT, S12)}.

We choose sum = num + (tmp%4) as C{. Inserting CP in front of S;5 does

not impose influence on the nesting level, so that scope is not modified

by this operation.
e Running OF (-, B1):
V «Vu{Pl},

E «(E={(S4,B1), (S12, By)}HU

{(847P1T)7 (5127P1T)7 (PiTwBl)Ta (PiTvClD)F}

We choose (num® < num)%3 == 0 for-P{;-which only works with an inte-

ger num. After applying this atomic operator, scope raises from 6 to

16.

e Running Of,(-,CP):

V «VU{PF,
E <+ (E- {(511,09),(PF’CP)F})U

{(3117P2F)7 (P2Fv512)T7(P2F?CID)F7 (P1T7P2F)F}

We choose 7 x tmp? — 1 == num? as P

Applying ng(-, CP) to ¢ not only results in |range (v, PL)| but also produces

the increment of |range(y, PT)| and |range(, By)|, so scope becomes 19.
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Now, we obtain the obfuscated CFG 1, after applying 7; and can de-
rive the obfuscated program (Program II) from ¢4, which is displayed in

Figure 6.5.

Apply the specified branch insertion transformation, 7;
e Running Og’2(-,51) :
CE <~ S11,

V (V= {S1}) U{S11, 512},

E + (E = {(S1, B2)}) U {(S11, S12), (S12, B2)}.

Here, we use the same S7; and Sy as those used in 7;.
e Running Of,(-, S12) -
V<« VUuU{Pf},

B (B #{(811,512)}) U {(S11, P{"), (P{5B1)",

(P{75812) )}

We choose 7 x tmp? — 1 == num? as P} ng(-, S12) inserts a branch and
makes scope increased by one.
e Running Og(-, S12):
1% <—(V — 512) U {&(S12)},

E «+(E —{(S12, B1), (P{", 512)"}) U{(£&(S12), B1),

(P, €(S12))"}

Here, £(S12) can be generated by several techniques, such as inserting
dummy instructions and creating parallel execution. We assume the

replacement with £(S12) in this example does not change scope.
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Si1 int.num, tmp, sum;
int PrimeOrNot=0;
printf(“Insert a number: \n”);
scanf(“%d”,&num);
PzF 7% tmpz-l == num’
> sum=num+(tmp\%4);
S, S12 sum=0;
tmp=2;
P, (num*num)%3 ==0
E By tmp <= num
T S2 PrimeOrNot = _PrimeGen(tmp);
B, PrimeOrNot ==
S3
S3 printf(“%6d”,tmp);
\ M sum +=tmp;
tmp ++;
L | S,
Ss printf(“\n”);
+7 return O;
S5
Y
(0]

Figure 6.5: 11: obfuscated result of ¢ after applying 71
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e Running O3 (-, £(512)):

vV «vu{cPy,
E «(E—{P{,&(S12))"})u

{(CP.&(S12)), (P, CP)F ).

We choose sum = num + (tmp%4) as CP. Since CP is inserted and located

on a branched path, scope raises from 7 to 8.

Now, we regenerate the obfuscated program (Program III) according to .

Figure 6.6 shows 5 and the instructions in each code block.

Evaluation of Example Il Comparing ; %1, and 1o, we obtain the
edges of the common subgraphs-of ¢, ¥ and ; 1s:

edge(cs(¢> wl)) :{(Blv SQ)Tv (Blv S5)F7 (52’ BQ)’ (327 53)T7 (BQ> 54)F7 (537 S4>7 (557 ¢)}
edge(cs(d), ¢2)) :{(Bla SQ)Tv (Bla S5)F7 (SQa BQ)a (327 53)T7 (BQ, 54)F7 (53? 54)’ (347 Bl)’

(Ss5,0)}

The number of edges in v, 11 and 15 are 9, 15 and 13. The distances between
these graphs are dis(¢, 1) = &5 and dis(¢,102) = 2.

In 4, there are two branches B; and By with range values 5 and 1. Hence,
scope() = 6. In 9y, the range values of P!, By, By and P} are 8, 9, 1 and
1. So, we obtain scope(1) = 19 and pot(,1p1) = 12, Similarly, in w5, the
range values of Pf', By and By are 2, 5 and 1. Therefore, scope(1) = 8 and
pot(¥,12) = 1.

Positive potency values imply that both 77 and 75 achieve obscurity from

the perspective of the nesting level of a program. With distance computed
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[

&(S12)
Si1 int num, tmp, sum;
gl i P int PrimeOrNot=0;
\ J printf(“Insert a number: \n”);
scanf(“%d”,&num);
B E
1 F 2 _ 2
Py 7 *ktmp°-1 == num
T
> sum=num-+(tmp\%4);
Sz §(Slz) tmp=179653;
sum=num * (tmp%2)-num;
tmp=2;
By tmp <=num
S, PrimeOrNot = _PrimeGen(tmp);
B, PrimeOrNot ==
S3 printf(“%6d”,tmp);
Sy sum +=tmp;
tmp ++;
| Sy Ss printf(“\n”);
return O;
S5
Y
(0]

Figure 6.6: 15: obfuscated result of 3 after applying 7T
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using the proposed MGE, we then acquire two DP vectors, DP(y,T1) =
(3,%) and DP(¢, T2) = (£, 3). Since both distance and potency values of
1 are larger than those of 1. We conclude that 77 provides the better
robustness than 73 to the original program .

The space penalty caused by 7; is estimated as (S+2-B), where 05’2(-, S1)
results in no overheads, O3(:, S12) leads to S, Of (-, B1) and OF, (-, CP) lead
to 2-B in total. The space penalty resulting from 75 is B+S, where 02 (-, 5;)
and Og(+, S12) derives no overheads, but ng(', S19) and O3 (-, £(S12)) leads to
B and S, respectively.

The metrics tell us that 7; presents better protection to ¢ than 73 while
an administrator suffers. more-space penalty if he decides to adopt 7;. An
administrator can make a decision about the balance between the robustness

and the overhead by referring to the evaluation results.

Example IV: Parallel Control-Flow Obfuscating Transformations

We introduce a parallel control-flow obfuscating transformation, proposed in
[38], as an example. The original program used in Example IV is the same
one used in Example III. To formalize the transformation, we first create and
insert a dummy code block into 1. Then a fork is inserted to generate parallel
execution. Example IV presents two specific transformations with the same

composition and sequence of the atomic operators but with different target

code blocks.

T3 = (0D (-, B2), O%(-, S2))

Ta = (03(-, S3), O%(-, CP))
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Apply the 1% specified parallel control-flow obfuscation, 73
e Running O3 (-, Ba):

V <V u{cPy,
E +(E —{(S2, B2)}) U{(S2,CP), (CY, B2)}.

We create a dummy function, kidfunc(), as CP, where kidfunc() is
described in the following.

void kidfunc (int* t)

{
int til=x*t;

while(t1-- &(t1%10) !'=0);

Since CP is placed in the loop led by By, [range(t, By)| is increased by

1. We obtain comp(ip)= |range(v, By)| +|range(i, Bo)| =6+ 1 =T7.
e Running O%(-, Ss):

V+Vu {Fl,Jl},
E «+(E—{(CP,B2),(S2,CP), (B1,S2) " })u

{(F1732)7 (Flrch)»(JhBQ): (BlvF)Tv (827‘]1)7 (ClDle)}

After inserting O%(-,S2), So and CP are specified as the immediate
successors of the fork Fy such that Sy and CP could be executed

in parallel. Now 13 has been generated. By Eq. 5.3 and Eq. 5.7,

scomp(13) = |range(s, By)| + |range(is, By)| = 9 and pcomp()3) =
|range(1s, F1)| = 2. comp(1)3) is equal to 11 by summing up scomp(t)3)
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Sy int num=4, tmp=7, sum;
int PrimeOrNot=0;
pthread_t kid;
printf(“Insert a number: \n”);
scanf(“%d”,&num);
sum=0;
S, cP tmp=2;

By tmp <= num
v Fy pthread_create(&kid,NULL,kidfunc,NULL);
S, PrimeOrNot = _PrimeGen(tmp);
| kidfunc();
E
Jh pthread_join(kid,NULL);

B, PrimeOrNot == 1
S S3 printf(“%6d”,tmp);
S sum +=tmp;
Ss printf(“\n”);
S, return 0;
Y
Ss
(0]

Figure 6.7: 132 obfuscated result of v _after applying 73

and pcomp(13) according to Eq:-5.6 with wy = 1 and w, = 1. Figure 6.7

shows 153 after applying 73 to .

Apply the 2" specified parallel control-flow obfuscation, 7;

e Running O3 (-, S3):

V «Vu{cP},

E <_(E - {(BQv 53)True}) u {(B27 CID)TTuev (Cle S3)}

The example code of CP here is the same as that of T3. CP is inserted

as the true target of By that CP and S; are in the loop led by B,. Hence
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|range(v, By)| and |range(v, Bs)| are increased by one, and comp(v))
is derived as |range(v, By)| + |range(y, By)| = 6 + 2 = 8.
e Running O%(-,CP):
V+Vu {F1, Jl},

E +(E — {(B2,cP)Trve (CP, S3), (S3,84)})U

{(F17CID)7(F1733)7 (J1754)v (B27F1)Tru8v (Clejl)v(S:’)le)}'

O%(-,CP) makes CP and S3 executed in parallel after F;. The ob-
fuscated CFG (v4) after applying 7; is shown in Figure 6.8. The
insertion of Fj contributes the parallelism such that pcomp(v,) =
|range(y, F1)| = 2. The total cemplexity of ¢y is obtained as [range (1, B1)|+

|range(y, Bs)| +|range(tis, F1)] =8 + 4+ 2 =14.

Evaluation of Example IV _To measure the distance between v, 13 and

1y, we first analyze the edges of their common subgraphs:

edge(cs(w, %)) - (517 Bl)7 (BQ, 53)T7 (327 S4)F7 (537 S4)a (547 Bl)? (Blv S5)F7 (S5a ¢)

edge(cs(¢> ¢4)) = (517 31)7 (Bb 52)T7 (Bla 55)F7 (S2> B2)7 (327 S4)F7 (S4a Bl)a (557 ¢)

In this example, |edge(cs(v,13))| = |ledge(cs(v,14))| = 7, and dis(¥, 3) =
dis(i, 1) = %, even the common subgraphs of 1, 13 and 1, 14 are not
the same. We then evaluate the robustness of 3 and 4 from the potency
perspective by Eq. 5.1. We derive the potency that T3 results in: pot(,13) =
o —1=2. Similarly, pot(1,1h4) = 4 —1 = 5. We obtain DP(¢, T3) = (57, 2)
and DP(¢,T1) = (55, 3). According to the DP vectors, we conjecture that

T4 provides more robust protection to v than 73 since the potency value 7y
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S int num=4, tmp=7, sum;

int PrimeOrNot=0;
pthread_t kid;
printf(“Inserta number: \n”);
scanf(“%d”,&num);

sum=0;
tmp=2;
By tmp <=num
F1 pthread_create(&kid,NULL,kidfunc,NULL);
S, PrimeOrNot = _PrimeGen(tmp);
Ss c°, c®, kidfunc();
i pthread_join(kid,NULL);
B, PrimeOrNot==1
S; printf(“%6d”,tmp);
Ss sum += tmp;
Sy Ss printf(“\n”);
return 0;
*—
Ss

Figure 6.8: 14: obfuscated result of ¢ after applying T4
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contributes is larger than that 73 produces, while the two transformations

lead to the same distance value.

Advanced Evaluation of Example IV In the previous paragraphs, we
calculate the D P vectors from a coarse-grained perspective since we view the
called function, kidfunc(), as a single code block without further parsing the
function into a separate sub-CFG. In this way, we may underestimate the
potency that the newly inserted kidfunc() contributes. Here, we present a
relatively fine-grained evaluation of the total complexity of 13 by Eq. 5.4,
Eq. 5.5 and Eq. 5.6.

As the steps taken in.the previous sections, we first parse kidfunc() into
Y5 that 5 = (CF (V. K)) where OF = SE .V = {SK BE SK ¢} and
E = {(SK, BE), (BE ST (SE, BE), (B, $)F'}. Here, we use a superscript
K to emphasize that the code blocks are parsed from kidfunc() in CP. 5
is exhibited in Figure 6.9. Since there are two condition expressions in B,
we further consider the complexity that-multiple condition expressions yield
by computing the compound range of Bff. We obtain |crange(¢ys, BF)| =
2x(2+2—-1)=6 by Eq. 5.5.

We now integrate the total complexity of 15 into the new total complexity
of 3. range(ibs, Fy) is { Sy, SK, SK BE} if we parse kidfunc(), contained in
CP, into 15 with the code blocks S, S¥, BE. pcomp(is) thus becomes
4. In addition, |range(is, By)| increases due to the code blocks of 5 that
[range(ts, By)| = 10. Now, scomp(iss) = [range(is, By)| + [range(ts, By)| +
|crange(vs, BEX)| = 10 + 1+ 6 = 17. Hence a fine-grained total complexity

of 13, comp()3) = 17+ 4 = 21, has been obtained. pot(1),13) is accordingly
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S

T 5K int tl=*t;
5S¢ B, t11=0 & t1%10!=0
Szk tl--;
(0]

Figure 6.9: 95: CFG of the function kidfunc()

derived as % -1 = % which is larger than % described in the paragraph
“Evaluation of Example IV.” “The discrepancy implies that the advanced
evaluation adopts more information and derives a distinct result. By the
advanced evaluation, we can measure the effect that anewly inserted dummy

code block causes in more details.

6.3 Summary

This chapter presented several examples to demonstrate our assessment meth-
ods. In Example I and Example II, we clarified the usage and steps of the
proposed method for wireless risk assessment. We conducted several experi-
ments to launch an eavesdropping attack against two different wireless net-
works, Ex1-1 and Ex1-2, where Ex1-1 is unprotected, but Ex1-2 is protected
by WPA2-PSK. The attack succeeds to sniff the communication sessions in
Ex1-1, but fails in Ex1-2. We obtained the total impact severity of Ex1-1

(4.2120, HIGH risk) and of Ex1-2 (3.1911, LOW risk) by our risk assessment
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method. The derived risk values confirm the realistic experiment results.
In addition, we showed the risk value of the entire wireless network can be
calculated without repeating the redundant steps when the topology or the
configuration of the network changes. The examples verified that our wireless
risk assessment method is feasible for the real-world situation.

In Example III and Example IV, we formalized and evaluated control-
flow obfuscating transformations by our method. Example III explained how
our method helps an administrator designate an effective transformation for
protecting a specified program in terms of protection capability and space
penalty. Moreover, we illustrated the evaluation of parallel control-flow ob-
fuscating transformations by Example IV. This example verified the flexi-
bility and distinguishability of eur method: Different sequences of atomic
operators and different specified target blocks lead to. different transforma-
tions. Therefore, our method can not only formalize existing control-flow
obfuscating transformations but also help design and measure new transfor-

mations.
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Chapter 7

Conclusions and Future Work

Assessment of cyber security has been a long-standing challenge to the re-
search community. Nevertheless, there is an imperative need for a practical
security assessment method which is supportive of controlling and managing
security. In this dissertation, we showed our first attempt at the quantitative
assessments of cyber security. “We proposed assessment methods to assist
an administrator or a developer in assessing cyber security in a methodical
manner, from establishing a formal representation to deriving a numerical
assessment result.

Our assessment methods are separated along two dimensions, external
and internal attacks, to meet specific requirements for distinct scenarios. We
dived into the two dimensions and studied the deficiencies of the existing
security assessment methods; then we presented a wireless risk assessment
method and an evaluation method for estimating software robustness for each
dimension.

Our wireless risk assessment method measures network risk in considera-
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tion of dynamics of a wireless network. We designed a 4-layer risk analytical
hierarchy to model wireless network risk from the perspectives of security re-
quirements, external attacks and configurations. Due to the design of clearly
separated layers and the design of a hierarchy per device, the computing load
of assessing risk of a changing wireless network is reduced since only the re-
lated layers and hierarchies have to be calculated and developed. Our method
diminishes the time complexity in the network assessment at a considerable
sacrifice that wireless risk is assessed from a comparatively coarse-grained
viewpoint. The assessment result can be used as the first perimeter of con-
trolling and managing security of -a network, especially a dynamic network.
Then, the administrator can further use other methods to probe potential
attack paths and to mitigate security risk: A holistic security assessment and
management can thus be achieved by combining the existing solutions with
ours.

As for evaluating cyber security in terms of internal attacks, we started
from evaluating software robustness in terms of control-flow obfuscation. We
presented a framework for representing control-flow obfuscating transforma-
tions and evaluating software robustness enhanced by the transformations.
We showed that, with a graph-based representation, many existing control-
flow obfuscating transformations can be represented as a composition of
atomic operators. The atomic operators can not only describe the present
transformations but also help to design and construct new ones which may
offer different levels of software robustness to a program. We have also pro-
posed new metrics (distance and potency) for quantifying the effects of these

transformations upon a program. The metrics has been designed from the
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viewpoint of static analysis, and we recognize they serve merely heuristic,
general indicators of security. However, we view our approach as a first
step towards evaluating the trade-off between the robustness and overheads
caused by control-flow obfuscating transformations. We believe our formal
framework with the metrics is beneficial in avoiding suffering intolerable over-
heads, which can be estimated at the design stage, prior to implementation
of a more robust but too costly version of an obfuscated program.

We evaluated cyber security from multiple aspects and provided practical
metrics for system administrators in a systematic manner. This dissertation
is our first attempt, and we recognize thereis still space for improvement
to reach absolutely quantitative-assessment. In order to fulfill the require-
ments of realistic security_assessment, there are, however, some issues that
are interesting and need to be further'explored. We summarize the issues as

follows:

e Coherence of databases. To_provide-a fair or even close to fair eval-
uation, risk assessment heavily depends on information collected from
multiple databases and experts. A holistic risk assessment method
should be able to consider the discrepancy between databases or expert
opinions. More study is required to evaluate the consistency between

the data, and to integrate the risk value with the consistency.

e FEstimation of obfuscation overheads. The side effects of obfuscating a
software program include not only the increased code size but also the
slowed-down execution performance. Therefore, more study is needed

on how best to compromise between security and performance over-
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heads.

e Attacks, scenarios and protection mechanisms. We believe that no sin-
gle security measurement or metric is able to satisfy the requirements
of security control and management in the real world. A thorough
security assessment has to be considered from aspects of different at-
tacks, scenarios and protection mechanisms. In this dissertation, we
simply discussed the evaluation of control-flow obfuscation, while a
formal evaluation method for other types of obfuscation, such as data
obfuscation and layout obfuseation,are also desired. Another interest-
ing direction of future work would be the design of a framework for

combining multiple security measurements or metrics.

e Absolutely quantitative assessment. In this dissertation, the range of a
derived risk value-varies with the number of attacks and number of de-
vices because attacks are the threat sources impacting a network and
more devices within a network sensibly imply more potential attack
surfaces. We recognize the current design has not achieved absolutely
quantitative assessment since we need extra information, such as a scale
or a mapping table, to grasp the implication of a numerical risk value
for an individual network. However, this is simply our first attempt
at devising a quantitative and semantic reference for a network ad-
ministrator. Further research on the design of a fixed-range variable
representing risk of various networks could be conducted based on our

present result.

e Human efforts. There is always a hope that system administrators
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easily infer the realistic efforts that an attacker should invest, such as
time and money, from the proposed security measurements and metrics.
The inference is a pressing need for system administrators to designate
security strategies in a more effective way. A solution to determining

the inference is required despite it is still an open issue.
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