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中文摘要 

  由於去尾迴旋碼的網格具有環狀迴旋不改變結構的特性，因此解

碼前作環狀位移(搭配解碼後的環狀位移回覆)並不會影響其解碼結

果。初步模擬結果顯示，適當的解碼前環狀位移確實能夠改善解碼效

能以及解碼複雜度。因此在本論文中，我們提出位移維特比演算法

(shifting Viterbi algorithm)和位移環狀解碼演算法(shifting circular 

decoding algorithm)搭配「等權重」以及「不等權重」之位移量搜尋法。

經由模擬比較不進行解碼前環狀位移之環狀解碼演算法(circular 

decoding algorithm)，使用位移環狀解碼演算法可以明顯縮減可達到接

近最大概率 (maximum-likelihood)效能的前訓練窗 (forward training 

window)與後訓練窗(backward training window)的大小。最後，我們提

出可達最大概率效能的訓練窗大小的理論預測方法。 
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Abstract 
 

By noting that the convolutional tail-biting code (CTBC) can be 
represented by a circular-free trellis structure, pre-decoding circular shift 
(together with the post-decoding shift back) will not change its decoding 
procedure. Simulations in the literature have already shown that the 
decoding performance as well as decoding complexity can be apparently 
improved by a proper pre-decoding circular shift. In this thesis, we 
proposed the shifting Viterbi algorithm and the shifting circular decoding 
algorithm using equal-weight and unequal-weight pre-decoding shift 
methods. We then show empirically that our methods can reduce the 
forward and backward training window sizes required for near 
maximum-likelihood performance. We also provide an intuitive 
analytical approach to determine the training window sizes required for 
near optimal performance.  
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Chapter 1

Introduction

1.1 Background

In 1955, convolutional codes were first introduced by Elias [2]. Later, Viterbi [12] proposed

a maximum likelihood (ML) decoding algorithm for convolutional codes in 1967. Till now,

convolutional codes are perhaps the most popular codes in modern digital communications.

In the encoding process of convolutional codes, a certain number of zeros is often required

to be appended at the end of the information sequence in order to clear the contents of

encoder shift registers. It can be anticipated that the code rate loss introduced by these

appended zero tail-bits is negligible for sufficiently long information sequence. However, as

long as a short information block length is considered, code rate loss due to zero tail bits

become significant.

In the literature, several approaches have been proposed to resolve the code rate loss of

the convolutional zero-tail codes (CZTC), such as Direct Truncation, Puncturing [14] and

Tail-biting [10, 13]. Among them, the convolutional tail-biting codes (CTBC) avoid the

code rate loss by directly “biting” out the zero tail-bits. In comparison with the CZTC, the

CTBC always starts from and ends at the same state, but the starting and ending state is

not necessary the all-zero state. For this reason, the Viterbi algorithm (VA) in its original
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form cannot be applied to obtain the maximum likelihood (ML) solution of the CTBC.

Due to the simplicity in the implementation of the VA, most of the decoding algorithms

for the CTBC [10, 13, 9, 8, 1] were modified from the VA. Specifically, Wang et al. extended

the received codeword by repeating a portion of it, and applied the VA to the extended

code trellis. Their algorithm thus provided a tradeoff between the performance and the

complexity by varying the length of the repetitive portion [13]. Shao et al. proposed to

wrap-around several code trellises, and resulted the least average complexity algorithm thus

far with near optimal performance [10]. In 2000, by adding forward and backward training

windows, W. Sung devised a circular decoding algorithm that can achieve near optimal per-

formance [11]. Very recently, Shankar et al. developed an ML two-phase decoding algorithm

of practical decoding complexity by first applying the VA, followed by the algorithm A* at

the second phase [9].

Because the CTBC code trellis has circular-free property, it is not necessary to decode

the received sequence at its original order if the receiver actually starts the decoding process

after the reception of the entire received sequence. One can circularly shift the received se-

quence before the decoding process begins to potentially improve the decoding complexity or

performance for suboptimal decoding algorithm. In order to resume the order of transmitted

sequence, the decoding output should be reversely shifted back the same number of times.

It should be noted that the decoding trellis remains the same for the shifted sequence as

it is circular-free. As such, Handlery et al. proposed an equal-weighted average method to

determine the proper number of shifts applied to the received sequence [5]. Similar idea has

also been applied to the two-phase decoding algorithm, which was shown by simulations that

significant decoding complexity reduction can be obtained by properly shifting the received

sequence before decoding begins [3].
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1.2 Contribution of the Research

In this thesis, we proposed a new unequal-weighted average method to determine the num-

ber of pre-decoding shifts on the received sequence. We then found by simulations that

the forward and backward training window sizes requiring for near ML performance in the

circular decoding algorithm of W. Sung can be reduced when the decoding process starts

from the positions of the received sequence, which are suggested by weighted average meth-

ods. We subsequently analyze the forward and backward training window sizes required for

near-optimal performance. Our analytical results conform to those obtained by simulations.

Throughout the thesis, we will use shifting VA to refer to the decoding algorithm that

shifts the received sequence before the decoding process begins but does not employ the

forward and backward training windows. The decoding algorithm that shifts the received

sequence before the decoding process begins, and at the same time, adds the forward and

backward training windows, will be referred to as shifting circular decoding algorithm. Details

will be given in Chapter 2.

1.3 Organization of the Thesis

The thesis is organized as follows. In Chapter 2, the decoding algorithms employed in this

thesis are introduced, and the proposed method to determine the number of pre-decoding

shifts is presented. In Chapter 3, the simulation results are summarized and remarked.

In Chapter 4, the forward and backward training window sizes required for near-optimal

performance are analyzed for shifting circular decoding algorithm. Chapter 5 concludes the

thesis.
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Chapter 2

Circular Decoding Algorithm with
Dynamic Starting Position

In this chapter, we present the weighted average methods to determine the number of pre-

decoding circular shifts on the received sequence. We then examine the effect of using these

suggestive pre-decoding shift numbers on the received sequence in shifting VA and shifting

circular decoding algorithm.

2.1 Definitions and Notations

Let C∼ be an (n, 1, m) CTBC, where n is the number of output bits per information bit, and

m is the memory order of the CTBC encoder. Assume that the length of the input sequence

is L. Then, the encoding code trellis of C∼ has L + 1 levels. Notably, for shifting VA, the

decoding code trellis of C∼ also has L + 1 levels (being indexed from level 0 to level L), but

for shifting circular decoding algorithm, the number of levels in the decoding code trellis

becomes of F + L + B + 1 levels , where F and B are the sizes of the forward and backward

windows, respectively. For convenience, the level index will always start at zero; hence,

the largest level index in the decoding code trellis of shifting circular decoding algorithm is

F + L + B. Denote the state space at each level by S. Obviously, |S| = 2m.
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A legitimate tail-biting path for the codeword of C∼ should constrain on the same initial

and final state. By relaxing such constraint, the inclusion of paths that start and end at

different states result in a supper code C∼s of C∼. For notational convenience, we denote

the binary input information sequence by z , (z0, z1, . . . , zL−1) ∈ {0, 1}L, the binary

codeword of C∼ by v , (v0, v1, . . . , vN−1) ∈ {0, 1}N , and the original received vector by

r , (r0, r1, . . . , rN−1), where N = nL.

To facilitate the following description of the decoding process, we denote by ρt1,t2(s) the

portion of the survivor path between levels t1 and t2, where t1 < t2, which starts at level

t1, and ends at state s at level t2. Likewise, we denote by βt1,t2(s) the state of the survivor

path at level t1, which ends at state s at level t2. Note that there is only one survivor path

ending at state s at level t2; hence, βt1,t2(s) is uniquely determined by s, t1 and t2. The metric

associated with ρt1,t2(s) is denoted by mt1,t2(s). By these notations, the best path ρbest in the

decoding code trellis of super code C∼s is the one that gives the smallest m0,L(s) (respectively,

m0,F+L+B(s)) for all s ∈ S for shifting VA (respectively, shifting circular decoding algorithm).

The path metric mbest associated with ρbest is thus given by:

mbest ,







min
s∈S

m0,L(s) for shifting VA;

min
s∈S

m0,F+L+B(s) for shifting circular decoding algorithm.

As aforementioned, a legitimate code path should starts from and ends at the same state,

which is usually termed tail-biting path in the literature. Thus, for shifting VA, the best

tail-biting path ρTB,best is the one that gives the smallest m0,L(s) with β0,L(s) = s. Likewise,

for shifting circular decoding algorithm, the best tail-biting path ρTB,best is the one that gives

the smallest m0,F+L+B(s) with βF,F+L+B(s) = βF+L,F+L+B(s).
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r ẑvz

Figure 2.1: System Model in AWGN Channel

2.2 Determination of Number of Pre-Decoding Circu-

lar Shift

Figure 2.1 depicts our system model. The encoded sequence is antipodally transmitted, and

then is corrupted by the additive white Gaussian noise (AWGN). The receiver will circular

shift the received sequence np times before the decoding process begins. It will then shifts

it back, and outputs the final decision.

The weighted average method to determine the number of information shifts p is intro-

duced. Since p represents the number of information shifts, the received sequence will in fact

be circularly shifted n × p times.

Step 1. Set the weighted average window W , and the weighting coefficients (w0, w1, . . . , wW−1).

Step 2. For received sequence r , (r0, r1, . . . , rN−1), compute for 0 ≤ ℓ < L,

Rℓ =

nℓ+nW−1∑

j=nℓ

w⌊(j−nℓ)/ n⌋|rj mod N |.

Step 3. Let p = arg maxℓ Rℓ.
1

1 If the maximum of Rℓ is achieved by more than one ℓ such as in binary erasure channels, then just
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Step 4. Output the shifted received sequence as (rnp, rnp+1, . . . , rN−1, r0, . . . , rnp−1).

In the above algorithm, we propose to average the absolute values of nW consecutive

received scalars. This is specific for AWGN channels. For a general channel, |rj| should be

replaced by reliability |φj|, where

φj , ln
Pr(rj|vj = 0)

Pr(rj|vj = 1)
. (2.1)

It can be shown that the larger reliability φj is, the higher the probability of correct decision

based on the hard-decision

yj ,

{
1, if φj < 0;
0, otherwise,

(2.2)

Therefore, to begin the decoding process from n × W most reliable received scalars may

possibly speed up the decoding process and improve the performance for suboptimal decoding

algorithms. Simulations do confirm our conjecture.

It should be noted that for AWGN channels and antipodal transmission, rj is proportional

to φj; hence, we can replace φj by rj for simplicity. Also, since for AWGN channels and

antipodal transmission,

Pr[rj > τ |vj = 1] = Pr[rj < −τ |vj = 0] (2.3)

for any positive τ , the degrees of reliability respectively for positive rj and for negative rj are

symmetric. Thus, no adjustment based on their signs is necessary when we perform average

on nW consecutive |rj|. In case (2.3) is violated, one may need to adjust the absolute value

of the reliability based on their signs according to hard-decision error probability.

randomly pick one.
Also, for shifting circular decoding algorithm, we will additional perform p = p+W/2 because the position

that is intended to located is in the middle of the forward subwindow coefficients w0, w1, . . . , wW/2−1 and the
backward subwindow coefficients wW/2, wW/2+1, . . . , wW−1. Please refer to the next section for more details.
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We close this section by remarking that in its implementation, p can be any integer

number between 0 and L − 1. We however will restrict p to be a multiple of W in our

analysis in Chapter 4. By adding this “constraint”, the averaged sequence R0, RW , R2W , . . .

becomes i.i.d. in statistics, which greatly simplify our subsequence analysis.

2.3 Derivation of Weighting Coefficients

For a given CTBC code structure, the probability of correct path being eliminated owing

to the other paths during the decoding process is different at each level. Based on this

observation, the equal-weight method proposed by Handlery et al. may be further improved

by considering unequal weights that are proportional to, e.g., the correct-path elimination

probability at each level. The intuition behind our provision is that a higher erroneous

elimination probability at a certain level should be compensated by a higher reliability at

the respective level; hence, with a higher weight coefficient at that position, the position

that can well compensate the erroneous elimination according to the code structure can be

located.

As an example in the (2, 1, 3) CTBC trellis in Fig. 2.2, given that the all-zero codeword

is transmitted, the path from state 1 at level 0 to state 0 at level 1 may eliminate the correct

8



all-zero path at level 1, which will occur with probability2

q0 = Pr
[
(y0 ⊕ 0)|φ0| + (y1 ⊕ 0)|φ1| > (y0 ⊕ 1)|φ0| + (y1 ⊕ 1)|φ1|

∣
∣v0 = v1 = 0

]

= Pr[r0 + r1 < 0|v0 = v1 = 0]

= Q(
√

2/σ),

where σ2 is the variance of the additive Gaussian noise, and

Q(x) ,

∫ ∞

x

1√
2π

e−x2/2dx

is the Q-function. At level 2, the correct all-zero path may be eliminated by either the path

from state 2 at level 0 to state 0 at level 2 or the path from state 3 at level 0 to state 0 at

level 2, for which the probability of occurrence is given by

q1 = Pr[r1 + r2 + r3 < 0 or r0 + r2 + r3 < 0|v0 = v1 = v2 = v3 = 0].

By repeating this procedure, the correct all-zero path may be eliminated due to four paths

ending at level 3, which are respectively the ones from state 4, 5, 6 and 7 at level 0 to state

0 at level 3. As such, we can pre-calculate these probabilities as q0, q1, q2, . . . , qL−1. Notably,

the block error probability is actually less than q0 + q1 + q2 + · · ·+ qL−1 because, for example,

the calculation of q2 does not exclude the event that q1 concerns, i.e., r0 + r1 > 0. As a

result, our weighting coefficients for shifting VA will be set intuitively as:

(w0, w1, . . . , wW−1) =
1

q0

(q0, q1, q2, . . . , qW−1)

corresponding to a certain operational signal-to-noise ratio such as Eb/N0 = 1 dB. The cal-

culations of erroneous elimination probabilities for (3, 1, 6) and (2, 1, 6) CTBCs are detailed

in Appendix A.

2The path metric we employed in our decoding is defined as [4]

µ(x0, x1, . . . , xℓn−1) =

ℓn−1∑

j=0

(yj ⊕ xj)|φj |,

where (x0, x1, . . . , xℓn−1) is the path label, “⊕” is the module-2 addition operation, and φj and yj are
respectively defined in (2.1) and (2.2).
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For shifting circular decoding algorithm, the weighting coefficients will be divided into two

groups: (i) forward subwindow coefficients w0, w1, . . . , wW/2−1 and (ii) backward subwindow

coefficients wW/2, wW/2+1, . . . , wW−1, where W is taken to be an even number. The backward

subwindow coefficients will be defined the same as the coefficients for shifting VA, i.e.,

(wW/2, wW/2+1, . . . , wW−1) =
1

q0

(
q0, q1, q2, . . . , qW/2

)
.

This part accounts for the influence from erroneous elimination. The forward subwindow

coefficients consider the backward structure in which the accumulated metric of the correct

path is larger than those of the other paths. Take Fig. 2.3 as an example. There will be

two branches emitting from state 0 at level L − 1. The one marked with 00 belongs to

the correct path. Then, the weight wW/2−1 will be proportional to the probability that the

metric corresponding to the path from state 0 at level L − 1 to state 4 at level L is smaller

than that of the path from state 0 at level L − 1 to state 0 at level L. Again, wW/2−2 will

be proportional to the probability that the metric corresponding to the path from state 0 at

level L − 2 to state 0 at level L is larger than either that of the path from state 0 at level

L − 2 to state 2 at level L or that of the path from state 0 at level L − 2 to state 6 at level

L. Detailed calculations of these window values for (3, 1, 6) and (2, 1, 6) CTBCs are given in

Appendix A.
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0 1r r 2 3r r 4 5r r

Figure 2.2: The forward trellis of (2,1,3) CTBC
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6 5L Lr r 4 3L Lr r 2 1L Lr r

Figure 2.3: The backward trellis of (2,1,3) CTBC
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2.4 Shifting Viterbi Algorithm

The shifting VA is simply to apply the VA after circularly shifting the received sequence.

For completeness, its procedure is given below.

Step 1. For the shifted received sequence r
′= (rnp, rnp+1, . . . , rN−1, r0, . . . , rnp−1), apply the

VA with initial metrics being zero for all states.

Step 2. Output the information sequence corresponding to ρTB,best if it exists. Otherwise,

output the information sequence corresponding to ρbest.

As shown in Fig. 2.1, the output information sequence of the above algorithm is the

shifted version of the true estimate at the receiver. Hence, the entire decoding process is

completed by the last “shift back” operation.

2.5 Shifting Circular Decoding Algorithm

For shifting circular decoding algorithm, in order to account for the effect of the forward

and backward training windows denoted respectively by F and B, we will add W/2 to

p before the decoding process begins as indicated in Footnote 1 (cf. Page 6). Because it

requires additional working load to find ρTB,best, namely, the examination of βF,F+L+B(s) =

βF+L,F+L+B(s) for all s ∈ S, and because the error performance by merely considering the

information sequence corresponding to ρbest is already acceptably good, we will directly

output the information sequence corresponding to ρbest without examining ρTB,best here.

Detailed procedure is summarized in the following.

Step 1. For the shifted received sequence r
′= (rnp, rnp+1, . . . , rN−1, r0, . . . , rnp−1), re-index it

as

r
′ = (rnp, rnp+1, . . . , rN−1, r0, . . . , rnp−1) = (r′0, r

′
1, r

′
2, . . . , r

′
N−1).
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Step 2. Copy the back nF values of r
′ to the head, and copy the front nB values of r

′ to

the tail. This gives that

r
′
TW = (r′N−1−(nF−1), . . . , r

′
N−1, r

′
0, r

′
1, . . . , r

′
N−1, r

′
0, . . . , r

′
nB−1).

Step 3. For r
′
TW , apply the VA to the super code trellis of F + L + B + 1 levels with initial

metrics being zero for all states.

Step 4. Retain the information sequence of length F + L + B + 1 corresponding to ρbest.

Remove the front F bits and back B bits. Output the remaining information sequence

of length L.

After the execution of the above algorithm, the entire decoding process is completed by

performing “shift back” in the end as depicted in Fig. 2.1.
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Chapter 3

Simulation Results

3.1 Performance of Shifting Viterbi Algorithm

In this section, we will compare the performances of the brutal-force maximum-likelihood

decoding algorithm, the VA, and the shifting VA. They are respective abbreviated as ML,

VA and SVA in the legends. Note that the difference between the VA and the SVA is that

no circular shift is performed on the received sequence in the VA. The “unequal-weight”

appearing before the SVA indicates that the weighting coefficients derived in Section 2.3 are

used.

The CTBCs used in our simulations are respectively the (3, 1, 6) code with generator

polynomial (554 744 724) (in octal) and the (2, 1, 6) code with generator polynomial (744

554) (in octal). The weighted average window is taken to be W = 6 only. After the binary

codeword is mapped onto the antipodal signals, the additive white Gaussian is added. From

Figs. 3.1, 3.2 and 3.3, we found that both equal-weight and unequal-weight SVAs improve

the performance of the VA. In addition, the proposed unequal-weight SVA performs better

than the equal-weight SVA.

From Figs. 3.4, 3.5 and 3.6, we found again that both equal-weight and unequal-weight

SVAs improve the performance of the VA. But, it is a little different from those obtained
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(3,1,6) CTBC, L = 40.
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Figure 3.1: Block error rates (BLER) of the maximum-likelihood (ML) decoder, the Viterbi
algorithm (VA) and the shifting Viterbi algorithm (SVA) for (3, 1, 6) CTBC. The length of
the information sequence is L = 40.

Figs. 3.1, 3.2 and 3.3 that the unequal-weight SVA performs almost the same as the equal-

weight SVA. Thus, the code rate could be a factor to result in different behavior between

the equal- and unequal-weight SVA. Hence, we further examine the (3, 1, 4) CTBC with

generator polynomial (52 66 76) (in octal).

Taking the average window size to be equal to the memory order of the CTBC code (i.e.,

W = 4 for (3, 1, 4) code), we observe from Figs. 3.7, 3.8 and 3.9 that both equal-weight and

unequal-weight SVAs outperforms the VA as usual, and unequal-weight SVA performs better

than the equal-weight SVA.
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Figure 3.2: Block error rates (BLER) of the maximum-likelihood (ML) decoder, the Viterbi
algorithm (VA) and the shifting Viterbi algorithm (SVA) for (3, 1, 6) CTBC. The length of
the information sequence is L = 80.
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Figure 3.3: Block error rates (BLER) of the maximum-likelihood (ML) decoder, the Viterbi
algorithm (VA) and the shifting Viterbi algorithm (SVA) for (3, 1, 6) CTBC. The length of
the information sequence is L = 120.
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Figure 3.4: Block error rates (BLER) of the maximum-likelihood (ML) decoder, the Viterbi
algorithm (VA) and the shifting Viterbi algorithm (SVA) for (2, 1, 6) CTBC. The length of
the information sequence is L = 40.
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Figure 3.5: Block error rates (BLER) of the maximum-likelihood (ML) decoder, the Viterbi
algorithm (VA) and the shifting Viterbi algorithm (SVA) for (2, 1, 6) CTBC. The length of
the information sequence is L = 80.
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Figure 3.6: Block error rates (BLER) of the maximum-likelihood (ML) decoder, the Viterbi
algorithm (VA) and the shifting Viterbi algorithm (SVA) for (2, 1, 6) CTBC. The length of
the information sequence is L = 120.
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Figure 3.7: Block error rates (BLER) of the maximum-likelihood (ML) decoder, the Viterbi
algorithm (VA) and the shifting Viterbi algorithm (SVA) for (3, 1, 4) CTBC. The length of
the information sequence is L = 40.
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Figure 3.8: Block error rates (BLER) of the maximum-likelihood (ML) decoder, the Viterbi
algorithm (VA) and the shifting Viterbi algorithm (SVA) for (3, 1, 4) CTBC. The length of
the information sequence is L = 80.
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Figure 3.9: Block error rates (BLER) of the maximum-likelihood (ML) decoder, the Viterbi
algorithm (VA) and the shifting Viterbi algorithm (SVA) for (3, 1, 4) CTBC. The length of
the information sequence is L = 120.
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3.2 Performance of Shifting Circular Decoding Algo-

rithm

We continue to compare the performances of circular decoding algorithm (CDA) without

pre-decoding shifting and shifting circular decoding algorithm (SCDA) for the CTBC codes

examined in the previous section. Since we propose to use both forward and backward

window, and since it is intuitive to have a window size to cover or accumulate the effect in

regard of both the forward window and backward window, the weighted average window size

W is taken to be twice of the memory order (instead of one memory-order that is taken for

the VA). Both equal-weight and unequal-weight coefficients are examined.

We observe from Figs. 3.10, 3.11 and 3.12 that forward and backward window sizes (F, B)

required for near-ML performance are about (19, 20), and are irrelevant to the information

length L. This result coincides with that in [11].

Figures 3.13, 3.14 and 3.15 summarize the training window sizes that are sufficient to

achieve near-ML performance for equal-weight SCDA. Specifically, Fig. 3.13 shows that the

near-ML-performance window sizes can be reduced down to (F, B) = (12, 18) when L = 40.

Further reduction can be reached down to (F, B) = (6, 10) when L increases to 80. While

L = 120, the near-ML-performance window sizes reduce to only (F, B) = (4, 10).

By adding the constraint that (p − W/2) must be a multiple of W = 12, the near-ML

training window sizes become (F, B) = (12, 18) for L = 40, (F, B) = (8, 10) for L = 80, and

(F, B) = (6, 10) when L = 120 as indicated in Figs. 3.16, 3.17 and 3.18.

The performances of the unequal-weight shifting circular decoding algorithm are exam-

ined in Figs. 3.19, 3.20 and 3.21. These three figures show that the near-ML training window

sizes are exactly the same as those obtained for equal-weight shifting circular decoding al-

gorithm except that (F, B) = (12, 16) when L = 40.
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Next, we turn to the (2, 1, 6) CTBC with generator polynomial (744 554) (in octal) and

the weighted average window size W = 12. From Figs. 3.22, 3.23 and 3.24, the forward and

backward training window sizes (F, B) required for near-ML performance are about (27, 28),

and are again irrelevant to the information length L.

For the equal-weight SCDA, Figs. 3.25, 3.26 and 3.27 tell that the near-ML-performance

training window sizes are reduced to (F, B) = (24, 26), (16, 20) and (10, 14) respectively for

L = 40, 80 and 120. These window sizes remains the same even if an additional constraint

that (p−W/2) must be a multiple of W is added, except for (F, B) = (24, 28) for L = 40 as

shown in Figs. 3.28, 3.29 and 3.30.

It remains to examine the performances of the unequal-weight shifting circular decoding

algorithm for the (2, 1, 6) CTBC. From Figs. 3.31, 3.32 and 3.33, the near-ML training

window sizes are (F, B) = (20, 26) for L = 40, (F, B) = (12, 18) for L = 80, and (F, B) =

(8, 12) for L = 120, respectively. This hints that the window sizes required for near-ML

performance can be a little reduced by switching from the equal weights to unequal weights.

Now, we consider the last code examined in this section, i.e., the (3, 1, 4) CTBC with

generator polynomial (52 66 76) (in octal). From Figs. 3.34, 3.35 and 3.36, the forward and

backward training window sizes (F, B) required for near-ML performance are also irrelevant

to the information length L, which is (F, B) = (13, 13). From Figs. 3.37, 3.38 and 3.39, we

notice that the near-ML-performance window sizes are reduced to almost none as (F, B) =

(8, 8), (2, 4) and (2, 4) respectively for L = 40, 80 and 120. The constraint that (p − W/2)

must be a multiple of W = 8 does not change these required (F, B) as indicated in Figs. 3.40,

3.41 and 3.42. In the end, the performances of the unequal-weight SCDA are examined, and

are resulted some improvement over equal-weight SCDA. Specifically, from Figs. 3.43, 3.44

and 3.45, the near-ML training window sizes are (F, B) = (6, 6) for L = 40, (F, B) = (2, 4)

for L = 80, and (F, B) = (2, 2) for L = 120.
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(3,1,6), L=40, Circular Decoding Algorithm with (F,B) training window.

 

 
ML
CDA,(F,B)=(8,12)
CDA,(F,B)=(12,16)
CDA,(F,B)=(19,20)

Figure 3.10: Block error rates (BLER) of the circular decoding algorithm without pre-
decoding shift for (3, 1, 6) CTBC. The length of the information sequence is L = 40.
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(3,1,6), L=80, Circular Decoding Algorithm with (F,B) training window.
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Figure 3.11: Block error rates (BLER) of the circular decoding algorithm without pre-
decoding shift for (3, 1, 6) CTBC. The length of the information sequence is L = 80.
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(3,1,6), L=120, Circular Decoding Algorithm with (F,B) training window.
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Figure 3.12: Block error rates (BLER) of the circular decoding algorithm without pre-
decoding shift for (3, 1, 6) CTBC. The length of the information sequence is L = 120.
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(3,1,6), L=40, Equal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.
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Figure 3.13: Block error rates (BLER) of the equal-weight shifting circular decoding algo-
rithm for (3, 1, 6) CTBC. F and B denote the forward and backward training window sizes,
respectively. The length of the information sequence is L = 40.
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(3,1,6), L=80, Equal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.
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Figure 3.14: Block error rates (BLER) of the equal-weight shifting circular decoding algo-
rithm for (3, 1, 6) CTBC. F and B denote the forward and backward training window sizes,
respectivley. The length of the information sequence is L = 80.
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(3,1,6), L=120, Equal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.
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Figure 3.15: Block error rates (BLER) of the equal-weight shifting circular decoding algo-
rithm for (3, 1, 6) CTBC. F and B denote the forward and backward training window sizes,
respectivley. The length of the information sequence is L = 120.
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(3,1,6), L=40, Equal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.
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Equal−weight SCDA, (F,B)=(12,18)

Figure 3.16: Block error rates (BLER) of the equal-weight shifting circular decoding algo-
rithm for (3, 1, 6) CTBC, where (p − W/2) must be a multiple of W . F and B denote the
forward and backward training window sizes, respectively. The length of the information
sequence is L = 40.
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(3,1,6), L=80, Equal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.
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Equal−weight SCDA, (F,B)=(4,6)
Equal−weight SCDA, (F,B)=(8,10)

Figure 3.17: Block error rates (BLER) of the equal-weight shifting circular decoding algo-
rithm for (3, 1, 6) CTBC, where (p − W/2) must be a multiple of W . F and B denote the
forward and backward training window sizes, respectively. The length of the information
sequence is L = 80.
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(3,1,6), L=120, Equal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.
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Equal−weight SCDA, (F,B)=(6,10)

Figure 3.18: Block error rates (BLER) of the equal-weight shifting circular decoding algo-
rithm for (3, 1, 6) CTBC, where (p − W/2) must be a multiple of W . F and B denote the
forward and backward training window sizes, respectively. The length of the information
sequence is L = 120.
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(3,1,6), L=40, Unequal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.
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Figure 3.19: Block error rates (BLER) of the unequal-weight shifting circular decoding
algorithm for (3, 1, 6) CTBC. F and B denote the forward and backward training window
sizes, respectively. The length of the information sequence is L = 40.
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(3,1,6), L=80, Unequal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.
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Unequal−weight SCDA, (F,B)=(2,6)
Unequal−weight SCDA, (F,B)=(6,10)

Figure 3.20: Block error rates (BLER) of the unequal-weight shifting circular decoding
algorithm for (3, 1, 6) CTBC. F and B denote the forward and backward training window
sizes, respectively. The length of the information sequence is L = 80.
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(3,1,6), L=120, Unequal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.
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Figure 3.21: Block error rates (BLER) of the unequal-weight shifting circular decoding
algorithm for (3, 1, 6) CTBC. F and B denote the forward and backward training window
sizes, respectively. The length of the information sequence is L = 120.
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(2,1,6) CTBC, L=40 in AWGN, Circular Decoding Algorithm with (F,B) training window.
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CDA, (F,B)=(27,28)

Figure 3.22: Block error rates (BLER) of the circular decoding algorithm without pre-
decoding shift for (2, 1, 6) CTBC. The length of the information sequence is L = 40.
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(2,1,6) CTBC, L=80 in AWGN, Circular Decoding Algorithm with (F,B) training window.
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CDA, (F,B)=(23,24)
CDA, (F,B)=(27,28)

Figure 3.23: Block error rates (BLER) of the circular decoding algorithm without pre-
decoding shift for (2, 1, 6) CTBC. The length of the information sequence is L = 80.
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(2,1,6) CTBC, L=120 in AWGN, Circular Decoding Algorithm with (F,B) training window.
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Figure 3.24: Block error rates (BLER) of the circular decoding algorithm without pre-
decoding shift for (2, 1, 6) CTBC. The length of the information sequence is L = 120.
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(2,1,6) CTBC, L=40 in AWGN, Equal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.
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Figure 3.25: Block error rates (BLER) of the equal-weight shifting circular decoding algo-
rithm for (2, 1, 6) CTBC. F and B denote the forward and backward training window sizes,
respectively. The length of the information sequence is L = 40.
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(2,1,6) CTBC, L=80 in AWGN, Equal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.
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Equal−weight SCDA, (F,B)=(12,16)
Equal−weight SCDA, (F,B)=(16,20)

Figure 3.26: Block error rates (BLER) of the equal-weight shifting circular decoding algo-
rithm for (2, 1, 6) CTBC. F and B denote the forward and backward training window sizes,
respectivley. The length of the information sequence is L = 80.
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(2,1,6) CTBC, L=120 in AWGN, Equal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.
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Equal−weight SCDA, (F,B)=(10,14)

Figure 3.27: Block error rates (BLER) of the equal-weight shifting circular decoding algo-
rithm for (2, 1, 6) CTBC. F and B denote the forward and backward training window sizes,
respectivley. The length of the information sequence is L = 120.
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(2,1,6) CTBC, L=40 in AWGN, Equal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.
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Figure 3.28: Block error rates (BLER) of the equal-weight shifting circular decoding algo-
rithm for (2, 1, 6) CTBC, where (p − W/2) must be a multiple of W . F and B denote the
forward and backward training window sizes, respectively. The length of the information
sequence is L = 40.
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(2,1,6) CTBC, L=80 in AWGN, Equal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.
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Equal−weight SCDA, (F,B)=(16,20)

Figure 3.29: Block error rates (BLER) of the equal-weight shifting circular decoding algo-
rithm for (2, 1, 6) CTBC, where (p − W/2) must be a multiple of W . F and B denote the
forward and backward training window sizes, respectively. The length of the information
sequence is L = 80.
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(2,1,6) CTBC, L=120 in AWGN, Equal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.
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Equal−weight SCDA, (F,B)=(10,14)

Figure 3.30: Block error rates (BLER) of the equal-weight shifting circular decoding algo-
rithm for (2, 1, 6) CTBC, where (p − W/2) must be a multiple of W . F and B denote the
forward and backward training window sizes, respectively. The length of the information
sequence is L = 120.
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(2,1,6) CTBC, L=40 in AWGN, Unequal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.

 

 
ML
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Unequal−weight SCDA, (F,B)=(20,26)

Figure 3.31: Block error rates (BLER) of the unequal-weight shifting circular decoding
algorithm for (2, 1, 6) CTBC. F and B denote the forward and backward training window
sizes, respectively. The length of the information sequence is L = 40.
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(2,1,6) CTBC, L=80 in AWGN, Unequal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.
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Unequal−weight SCDA, (F,B)=(12,18)

Figure 3.32: Block error rates (BLER) of the unequal-weight shifting circular decoding
algorithm for (2, 1, 6) CTBC. F and B denote the forward and backward training window
sizes, respectively. The length of the information sequence is L = 80.
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(2,1,6) CTBC, L=120 in AWGN, Unequal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.

 

 
ML
Unequal−weight SCDA, (F,B)=(4,8)
Unequal−weight SCDA, (F,B)=(8,12)

Figure 3.33: Block error rates (BLER) of the unequal-weight shifting circular decoding
algorithm for (2, 1, 6) CTBC. F and B denote the forward and backward training window
sizes, respectively. The length of the information sequence is L = 120.
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(3,1,4) CTBC, L=40 in AWGN, Circular Decoding Algorithm with (F,B) training window.

 

 
ML
CDA, (F,B)=(9,9)
CDA, (F,B)=(13,13)

Figure 3.34: Block error rates (BLER) of the circular decoding algorithm without pre-
decoding shift for (3, 1, 4) CTBC. The length of the information sequence is L = 40.
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(3,1,4) CTBC, L=80 in AWGN, Circular Decoding Algorithm with (F,B) training window.

 

 
ML
CDA, (F,B)=(9,9)
CDA, (F,B)=(13,13)

Figure 3.35: Block error rates (BLER) of the circular decoding algorithm without pre-
decoding shift for (3, 1, 4) CTBC. The length of the information sequence is L = 80.
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(3,1,4) CTBC, L=120 in AWGN, Circular Decoding Algorithm with (F,B) training window.

 

 
ML
CDA, (F,B)=(9,9)
CDA, (F,B)=(13,13)

Figure 3.36: Block error rates (BLER) of the circular decoding algorithm without pre-
decoding shift for (3, 1, 4) CTBC. The length of the information sequence is L = 120.
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(3,1,4) CTBC, L=40 in AWGN, Equal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.

 

 
ML
Equal−weight SCDA, (F,B)=(4,4)
Equal−weight SCDA, (F,B)=(8,8)

Figure 3.37: Block error rates (BLER) of the equal-weight shifting circular decoding algo-
rithm for (3, 1, 4) CTBC. F and B denote the forward and backward training window sizes,
respectively. The length of the information sequence is L = 40.
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(3,1,4) CTBC, L=80 in AWGN, Equal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.

 

 
ML
Equal−weight SCDA, (F,B)=(0,2)
Equal−weight SCDA, (F,B)=(2,4)

Figure 3.38: Block error rates (BLER) of the equal-weight shifting circular decoding algo-
rithm for (3, 1, 4) CTBC. F and B denote the forward and backward training window sizes,
respectivley. The length of the information sequence is L = 80.
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(3,1,4) CTBC, L=120 in AWGN, Equal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.

 

 
ML
Equal−weight SCDA, (F,B)=(0,2)
Equal−weight SCDA, (F,B)=(2,4)

Figure 3.39: Block error rates (BLER) of the equal-weight shifting circular decoding algo-
rithm for (3, 1, 4) CTBC. F and B denote the forward and backward training window sizes,
respectivley. The length of the information sequence is L = 120.

56



1 1.5 2 2.5 3 3.5 4 4.5 5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0 (dB)

B
LE

R

(3,1,4) CTBC, L=40 in AWGN, Equal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.

 

 
ML
Equal−weight SCDA, (F,B)=(4,4)
Equal−weight SCDA, (F,B)=(8,8)

Figure 3.40: Block error rates (BLER) of the equal-weight shifting circular decoding algo-
rithm for (3, 1, 4) CTBC, where (p − W/2) must be a multiple of W . F and B denote the
forward and backward training window sizes, respectively. The length of the information
sequence is L = 40.
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(3,1,4) CTBC, L=80 in AWGN, Equal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.

 

 
ML
Equal−weight SCDA, (F,B)=(0,2)
Equal−weight SCDA, (F,B)=(2,4)

Figure 3.41: Block error rates (BLER) of the equal-weight shifting circular decoding algo-
rithm for (3, 1, 4) CTBC, where (p − W/2) must be a multiple of W . F and B denote the
forward and backward training window sizes, respectively. The length of the information
sequence is L = 80.
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(3,1,4) CTBC, L=120 in AWGN, Equal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.

 

 
ML
Equal−weight SCDA, (F,B)=(0,2)
Equal−weight SCDA, (F,B)=(2,4)

Figure 3.42: Block error rates (BLER) of the equal-weight shifting circular decoding algo-
rithm for (3, 1, 4) CTBC, where (p − W/2) must be a multiple of W . F and B denote the
forward and backward training window sizes, respectively. The length of the information
sequence is L = 120.

59



1 1.5 2 2.5 3 3.5 4 4.5 5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0 (dB)

B
LE

R

(3,1,4) CTBC, L=40 in AWGN, Unequal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.

 

 
ML
Unequal−weight SCDA, (F,B)=(2,2)
Unequal−weight SCDA, (F,B)=(6,6)

Figure 3.43: Block error rates (BLER) of the unequal-weight shifting circular decoding
algorithm for (3, 1, 4) CTBC. F and B denote the forward and backward training window
sizes, respectively. The length of the information sequence is L = 40.
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(3,1,4) CTBC, L=80 in AWGN, Unequal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.

 

 
ML
Unequal−weight SCDA, (F,B)=(0,2)
Unequal−weight SCDA, (F,B)=(2,4)

Figure 3.44: Block error rates (BLER) of the unequal-weight shifting circular decoding
algorithm for (3, 1, 4) CTBC. F and B denote the forward and backward training window
sizes, respectively. The length of the information sequence is L = 80.
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(3,1,4) CTBC, L=120 in AWGN, Unequal−Weight Shifting Circular Decoding Algorithm with (F,B) training window.

 

 
ML
Unequal−weight SCDA, (F,B)=(0,0)
Unequal−weight SCDA, (F,B)=(2,2)

Figure 3.45: Block error rates (BLER) of the unequal-weight shifting circular decoding
algorithm for (3, 1, 4) CTBC. F and B denote the forward and backward training window
sizes, respectively. The length of the information sequence is L = 120.
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Chapter 4

Analysis of Training Window Size for
Equal-Weight Shifting Circular
Decoding Algorithm

In the previous chapter, we observed from simulations that the forward and backward train-

ing window sizes required to achieve near ML performance can be reduced by pre-decoding

circular shift of the received sequence. However, these windows were determined by sim-

ulations. A natural subsequent work is whether or not we can obtain suggestive training

window sizes analytically.

4.1 Error Probability for Truncated Viterbi Decoding

In [6], the authors gave an upper bound on the bit error probability due to path truncation

for Viterbi decoding. This bound can then be used to determine the truncation window size

such that the additional error probability due to truncation becomes negligible with respect

to the ML decoding error.

Assume that the all-zero code word is transmitted, and the Viterbi decoder adopts trun-

cation window of size T . The decoding error of the first information bit due to truncation

occurs when one of the paths that diverges from the all-zero state at level 0 and never returns
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to the all-zero state within T levels has the best metric among all paths ending at level T

(cf. Fig. 4.1). The input-output weight enumerator function (IOWEF) for this set of paths

is given by
2m−1∑

i=1

AT
0,i(W, X, L) (4.1)

where AT
0,i(W, X, L) is the weight enumerator function in the modified state diagram, which

connects the all-zero state with ith state, and which is expurgated to include only paths

of length T . Here, W is the dummy variable whose exponent represents the weight of

information bits, X is the dummy variable whose exponent is the weight of code bits, and

the exponent of L is the length of the branch [7, pp. 493].1

Using union bound technique, we can bound the truncation error probability for the first

information bit on a binary symmetric channel (BSC) as

PT,1 <

2m−1∑

i=1

AT
0,i(W, X, L)

∣
∣
∣
∣
∣
W=1,X=2

√
ε(1−ε),L=1

, (4.2)

where ε is the channel crossover probability. By summing the first event error of length less

than T and the truncation error for first information bit in (4.2), the overall error probability

for the first bit is given by

PE,1 <

(

AT (W, X, L) +

2m−1∑

i=1

AT
0,i(W, X, L)

)∣
∣
∣
∣
∣
W=1,X=2

√
ε(1−ε),L=1

, (4.3)

where AT (W, X, L) is the weight enumerator function for the paths that start from the

all-zero state and later return to the all-zero state with length T or less.

Next, consider decoding the information bit at an arbitrary level t. Any path that diverges

from the all-zero state at or before level t and never returns to the all-zero state through

level t + T will cause a truncation error (cf. Fig. 4.2). Hence, we can obtain a bound similar

1The authors in [6] use notation GT
0,i(D, L) in their paper, which is exactly our AT

0,i(W = 1, X = D, L).
Similar notation conversion applies to the following derivations in this section.
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Figure 4.1: The set of paths that diverge from the correct path at level 0 but never return
to the zero-state within T level

to (4.2). By extending the bound in terms of the weight enumerator function AT,∞
0,i (W, X, L)

in the modified state diagram with length T and greater, we can establish

PT <
2m−1∑

i=1

AT,∞
0,i (W, X, L)

∣
∣
∣
∣
∣
W=1,X=2

√
ε(1−ε),L=1

. (4.4)

This concludes, as analogous to (4.3), that the overall bit error rate is bounded by

PE <

(

dA(W, X, L)

dW
+

2m−1∑

i=1

AT,∞
0,i (W, X, L)

)∣
∣
∣
∣
∣
W=1,X=2

√
ε(1−ε),L=1

(4.5)

where A(W, X, L) is the weight enumerator function of the code.

The first term in (4.5) is the ML bit error probability, and the second term corresponds

to the bit error probability bound due to truncation. Both terms are dominated by the

component with the smallest power of X. For the ML term, the smallest power of X is the

free distance dfree. For the term corresponding to truncation error, the smallest power of X

is contributed by the minimum Hamming weight path of the incorrect path subset, denoted

by dT . Therefore, if T is chosen such that dT > dfree, then the error will be dominated by

the ML term.
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Figure 4.2: The set of paths that diverge from the correct path at level t but never return
to the zero-state within t + T level

4.2 Error Bound for Circular Decoding

In [11], the author uses the techniques in Section 4.1 to analyze the error probability bound

for circular decoding. He actually regards the forward and backward training windows as

two truncation windows.

Following similarly (4.5), we can obtain the BSC error probability bound of circular

decoding as

PE <

(

dA(W, X, L)

dW
+

2m−1∑

i=1

AF,∞
i,0 (W, X, L) +

2m−1∑

i=1

AB,∞
0,i (W, X, L)

)∣
∣
∣
∣
∣
W=1,X=2

√
ε(1−ε),L=1

,

(4.6)

where AF,∞
i,0 (W, X, L) denotes the weight enumerator function in the modified state diagram

for the paths connecting the ith state with the all-zero state with length F or greater for the

forward training window, and AB,∞
0,i (W, X, L) denotes the weight enumerator function in the

modified state diagram for the paths connecting the all-zero state with the ith state with

length B or greater for the backward training window.

For the second and third terms in (4.6), denote respectively by dF and dB the dominant

weights of their minimal Hamming weight paths of the respective incorrect path subsets for

the forward and backward training windows. As a result, if dF > dfree and dB > dfree, the
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BSC error probability will be dominated by the ML term, i.e., the first term in (4.6).

We note in the end that the derivations from (4.2) to (4.6) also hold for the binary erasure

channel (BEC) with X = δ instead of X = 2
√

ε(1 − ε), where δ is the erasure probability.

They also hold for the additive white Gaussian noise (AWGN) channel with X = e−Es/N0 ,

where Es/N0 is the signal-to-noise ratio.

4.3 Error Bound for Shifting Circular Decoding in Bi-

nary Erasure Channel (BEC)

Over binary erasure channels (BEC) as depicted in Fig. 4.3, the erasure probability for the

the second and third terms in (4.6) will be changed by adding the pre-decoding circular

shifting. It should be pointed out that for BECs and equal prior probability, the statistics

of the absolute value of reliability φj becomes

|φj| =

{

∞, with probability (1 − δ);

0, with probability δ.

Hence, with the signal mapping at both the input and output signals as

0 → 1
erasure → 0

1 → −1
,

the pre-decoding circular shifts on the receive sequence r ∈ {−1, 0, 1}N is again performed

based on the absolute values of the received components. We can then analyze the effective

erasure probability δe as follows.

To simplify the analysis, we assume that the “unadjusted” pre-decoding information

circular shift p̃ = p−W/2 can only be a multiple of weighted average window W ,2 information

2Again, for shifting circular decoding algorithm, p = p̃ + W/2, in which W/2 will be added afterwards.
Here, we denote p̃ = arg maxℓ Rℓ. Thus, what we assume in this derivation is that

p̃ = arg max
ℓ=0,W,2W,...,(⌊L/W⌋−1)W

Rℓ.

See Footnote (1) in page 6.
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length L for (n, 1, m) CTBC is also a multiple of W , and equal weights that are all equal to

unity are adopted. Define for 0 ≤ i < M = L/W ,

Ui = |rinW | + |rinW+1| + · · · + |rinW+nW−1|.

Then, we derive that

Pr[Ui = u] = Pr [|rinW | + |rinW+1| + · · ·+ |rinW+nW−1| = u]

=

(
nW

u

)

δnW−u(1 − δ)u,

where we know that {rj}N−1
j=0 are i.i.d., and the absolute value of rj is distributed as

|rj| =

{

1, with probability 1 − δ;

0, with probability δ.

Now, the sorted U0, U1, . . . , UM−1 gives that

U(0) ≤ U(1) ≤ U(2) ≤ · · · ≤ U(M−1).

In such case, the pre-decoding circular shift p̃ = Wi, if U(M−1) = Ui, and the unadjusted

inputs for the circular decoding algorithm is rp̃n, rp̃n+1, . . . , rN−1, r0, r1, . . . , rp̃n−1.
3 It remains

to find the distribution of the unadjusted shifted input sequence.

For (a0, a1, . . . , aN−1) ∈ {−1, 0, 1}N with
∑nW−1

ℓ=0 |aℓ| < max1≤i≤M−1

∑nW−1
ℓ=0 |ainW+ℓ|,

Pr [rp̃n = a0 ∧ rp̃n+1 = a1 ∧ · · · ∧ rp̃n−1 = aN−1] = 0.

3There is potentially a notational flaw here. For example, rp̃n−1 will equal r−1, which happens when
p̃ = 0. For notational convenience, r−1 is well understood as rN−1 since r−1 = r(−1) mod N = rN−1. Similar
rule will be applied to, say, r−2, r−3, . . . whenever they are encountered.
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1

1

Figure 4.3: Binary erasure channel (BEC) model

For (a0, a1, . . . , aN−1) ∈ {−1, 0, 1}N with
∑nW−1

ℓ=0 |aℓ| > max1≤i≤M−1

∑nW−1
ℓ=0 |ainW+ℓ|,4

Pr [rp̃n = a0 ∧ rp̃n+1 = a1 ∧ · · · ∧ rp̃n−1 = aN−1]

=

M−1∑

i=0

Pr [rinW = a0 ∧ rinW+1 = a1 ∧ · · · ∧ rinW−1 = aN−1] (4.7)

= M

N−1∏

ℓ=0

Pr [rℓ = aℓ] , (4.8)

where (4.8) is valid since Pr [rinW = a0 ∧ rinW+1 = a1 ∧ · · · ∧ rinW−1 = aN−1] is the same

for every i as {rℓ}N−1
ℓ=0 is i.i.d. For (a0, a1, . . . , aN−1) ∈ {−1, 0, 1}N with

∑nW−1
ℓ=0 |aℓ| =

4Note that we give below a simple example to facilitate the understanding of (4.7). Since p̃ is a random
variable, the event of [rp̃n = a0 ∧ rp̃n+1 = a1 ∧ · · · ∧ rp̃n−1 = aN−1] is seemingly involved in its calculation.
This involvement however can be clarified by the following example.

Now, suppose W = 2, L = 6 and n = 2. Then, M = 3, and p̃ must be even, and we receive a
sequence of length 12. Given that (a0, a1, . . . , a11) = (1, 1,−1,−1, 0, 0, 1, 1,−1, 0,−1, 1), the event that
(r2p̃, r2p̃+1, . . . , r2p̃−1) = (1, 1,−1,−1, 0, 0, 1, 1,−1, 0,−1, 1) occurs only when one of the three cases below
occur, which are







(r0, r1, . . . , r11) = (1, 1,−1,−1, 0, 0, 1, 1,−1, 0,−1, 1)

(r0, r1, . . . , r11) = (−1, 0,−1, 1, 1, 1,−1,−1, 0, 0, 1, 1)

(r0, r1, . . . , r11) = (0, 0, 1, 1,−1, 0,−1, 1, 1, 1,−1,−1)

This explains why (4.7) holds.
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max1≤i≤M−1

∑nW−1
ℓ=0 |ainW+ℓ|,5

Pr [rp̃n = a0 ∧ rp̃n+1 = a1 ∧ · · · ∧ rp̃n−1 = aN−1]

=
1

∑M−1
k=0 1

{
∑nW−1

ℓ=0 |aknW+ℓ| =
∑nW−1

ℓ=0 |aℓ|
}

×
M−1∑

i=0

Pr [rinW = a0 ∧ rinW+1 = a1 ∧ · · · ∧ rinW−1 = aN−1]

=
M

∑M−1
k=0 1

{
∑nW−1

ℓ=0 |aknW+ℓ| =
∑nW−1

ℓ=0 |aℓ|
}

N−1∏

ℓ=0

Pr [rℓ = aℓ] ,

where 1{·} is the set indicator function. The above derivation concludes:

Pr [rp̃n = a0 ∧ rp̃n+1 = a1 ∧ · · · ∧ rp̃n−1 = aN−1]

= M

1

{

max
1≤i≤M−1

nW−1∑

ℓ=0

|ainW+ℓ| ≤
nW−1∑

ℓ=0

|aℓ|
}

M−1∑

k=0

1

{
nW−1∑

ℓ=0

|aknW+ℓ| =
nW−1∑

ℓ=0

|aℓ|
}

N−1∏

ℓ=0

Pr [rℓ = aℓ]

= M

1

{

max
1≤i≤M−1

nW−1∑

ℓ=0

|ainW+ℓ| ≤
nW−1∑

ℓ=0

|aℓ|
}

M−1∑

k=0

1

{
nW−1∑

ℓ=0

|aknW+ℓ| =
nW−1∑

ℓ=0

|aℓ|
}

(
1 − δ

2

)∑N−1

ℓ=0
|aℓ|

δN−
∑

N−1

ℓ=0
|aℓ|. (4.9)

It is clear from (4.9) that the probability only depends on
∑nW−1

ℓ=0 |ainW+ℓ| for 0 ≤ i ≤ M−1.

5In case
∑nW−1

ℓ=0 |aℓ| = max1≤i≤M−1

∑nW−1
ℓ=0 |ainW+ℓ| such as (a0, a1, . . . , a11) =

(1, 1,−1,−1, 0, 0, 1, 1,−1, 1,−1, 1) as continuing from the example in Footnote 4, this event occurs
when one of the three cases below occur, i.e.,







(r0, r1, . . . , r11) = (1, 1,−1,−1, 0, 0, 1, 1,−1, 1,−1, 1)

(r0, r1, . . . , r11) = (−1, 1,−1, 1, 1, 1,−1,−1, 0, 0, 1, 1)

(r0, r1, . . . , r11) = (0, 0, 1, 1,−1, 1,−1, 1, 1, 1,−1,−1).

However, since |a0| + |a1| + |a2| + |a3| = |a8| + |a9| + |a10| + |a11|, and since we will randomly pick one of
those Rℓ that achieve maximum, the probability should be cut in half, i.e., to multiply

1
∑2

k=0 1

{
∑3

ℓ=0 |a4k+ℓ| =
∑3

ℓ=0 |aℓ|
} =

1
∑2

k=0 1

{
∑3

ℓ=0 |a4k+ℓ| = 4
} =

1

2
.
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As a result,

Pr [rp̃n = a0 ∧ rp̃n+1 = a1 ∧ · · · ∧ rp̃n+nW−1 = anW−1]

=
∑

(anW ,...,aN−1)∈{−1,0,1}N−nW

Pr [rp̃n = a0 ∧ rp̃n+1 = a1 ∧ · · · ∧ rp̃n−1 = aN−1]

=
∑

(anW ,...,aN−1)∈{−1,0,1}N−nW

M

1

{

max
1≤i≤M−1

bi ≤ b0

}

M−1∑

k=0

1 {bk = b0}

(
1 − δ

2

)∑M−1

i′=0
b
i′

δN−
∑

M−1

i′=0
b
i′ ,

where for notational convenient, we denote

bi =

nW−1∑

ℓ=0

|ainW+ℓ|.
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Continue the derivation with q = (1 − δ)/δ:

Pr [rp̃n = a0 ∧ rp̃n+1 = a1 ∧ · · · ∧ rp̃n+nW−1 = anW−1]

= MδN (q/2)b0
∑

(b1,...,bM−1)∈{0,...,b0}M−1

(
nW

b1

)

2b1

(
nW

b2

)

2b2 · · ·
(

nW

bM−1

)

2bM−1
(q/2)

∑
M−1

i′=1
b
i′

1 +
M−1∑

k=1

1 {bk = b0}

= MδN (q/2)b0
∑

(b1,...,bM−1)∈{0,...,b0}M−1

(
nW

b1

)(
nW

b2

)

· · ·
(

nW

bM−1

)
q
∑

M−1

i′=1
b
i′

1 +
M−1∑

k=1

1 {bk = b0}

=







δN , b0 = 0

MδN (q/2)b0

M−1∑

k=0

1

1 + k

(
M − 1

k

)(
nW

b0

)k

∑

(bk+1,...,bM−1)∈{0,...,b0−1}M−1−k

(
nW

bk+1

)

· · ·
(

nW

bM−1

)

qkb0+
∑

M−1

i′=k+1
b
i′ , b0 > 0

=







δN , b0 = 0

MδN (q/2)b0

M−1∑

k=0

1

1 + k

(
M − 1

k

)(
nW

b0

)k

qkb0

M−1∏

i′=k+1





b0−1∑

b
i′=0

(
nW

bi′

)

qb
i′



 , b0 > 0

=







δN , b0 = 0

MδN (q/2)b0

M−1∑

k=0

1

1 + k

(
M − 1

k

)((
nW

b0

)

qb0

)k




b0−1∑

b
i′=0

(
nW

bi′

)

qb
i′





M−1−k

, b0 > 0

=







δN , b0 = 0

MδN (q/2)b0





b0∑

b
i′=0

(
nW

bi′

)

qb
i′





M

−





b0−1∑

b
i′=0

(
nW

bi′

)

qb
i′





M

M

(
nW

b0

)

qb0

, b0 > 0

=
δN

2b0

(
nW

b0

)









b0∑

b
i′=0

(
nW

bi′

)

qb
i′





M

−





b0−1∑

b
i′=0

(
nW

bi′

)

qb
i′





M

 ,

where in the last equation, we assume for convenience that
∑b0−1

b
i′=0

(
nW
b
i′

)
qb

i′ = 0 when b0 = 0.
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This leads to that

δe = Pr [rp̃n = 0]

=
∑

(a1,...,anW−1)∈{−1,0,1}nW−1

Pr [rp̃n = 0 ∧ rp̃n+1 = a1 ∧ · · · ∧ rp̃n+nW−1 = anW−1]

=
∑

(a1,...,anW−1)∈{−1,0,1}nW−1

δN

2b0

(
nW

b0

)









b0∑

b
i′=0

(
nW

bi′

)

qb
i′





M

−





b0−1∑

b
i′=0

(
nW

bi′

)

qb
i′





M



=
nW−1∑

k=0

(
nW − 1

k

)

2k δN

2k

(
nW

k

)









k∑

b
i′=0

(
nW

bi′

)

qb
i′





M

−





k−1∑

b
i′=0

(
nW

bi′

)

qb
i′





M



= δN

nW−1∑

k=0

(nW − k)

nW









k∑

b
i′=0

(
nW

bi′

)

qb
i′





M

−





k−1∑

b
i′=0

(
nW

bi′

)

qb
i′





M

 .

This gives the effective marginal erasure probability δe based on pre-decoding circular

shift we propose. Through several empirical examinations, we observe that taking this new

marginal erasure probability δe into (4.6) also provides an upper error bound on PE for

the shifting circular decoding algorithm. We however fail to substantiate this observation

analytical, and will defer it as our future work.

Based on our “conjectured” observation, we will try to determine (F, B) “analytically”.

Specifically, considering only the terms with the lowest exponent respectively for the three

terms in (4.6), we first solve

δdfree = δd
e .

where we use δdfree to approximate the ML error. We then choose F and B such that dF

and dB equal ⌈d⌉. In the next section, we will compare F and B derived in this section with

those obtained by simulations.
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Table 4.1: The near-ML forward and backward training window sizes (F, B) for the CDA
and equal-weight SCDA for the (3, 1, 2) CTBC. The weighted average window is W = 16.

Length of information sequence L 100 200 400
Simulated (F, B) of CDA (9, 9) (9, 9) (9, 9)

Derived (F, B) of equal-weight SCDA (6, 6) (5, 5) (5, 5)
Simulated (F, B) of equal-weight SCDA (2, 4) (2, 2) (2, 2)

Table 4.2: The near-ML forward and backward training window sizes (F, B) for the CDA
and equal-weight SCDA for the (3, 1, 4) CTBC. The weighted average window is W = 24.

Length of information sequence L 100 200 400
Simulated (F, B) of CDA (13, 13) (13, 13) (15, 15)

Derived (F, B) of equal-weight SCDA (10, 10) (9, 9) (9, 9)
Simulated (F, B) of equal-weight SCDA (8, 8) (4, 6) (4, 4)

4.4 Forward and Backward Training Windows in BEC

In this section, we investigate the forward and backward window sizes of the circular decoding

algorithm (CDA) and equal-weight shifting circular decoding algorithm (SCDA), requiring

for near maximum-likelihood performance in BEC. The weighted average window is taken

to be twice of the dfree, i.e., W = 2dfree. Three CTBC codes are considered, which are the

(3, 1, 2), (3, 1, 4) and (3, 1, 6) codes respectively with generator polynomials (5 7 7), (52 66

76) and (554 744 724) (in octal). The results are summarized in Tables 4.1, 4.2 and 4.3.

They show that the (F, B) of the CDA required for near ML performance in BEC match

those reported in [11]. Also, the derived (F, B) pairs are a little larger than the simulated

ones. The performance curves can be found in Figs 4.4–4.21.

Table 4.3: The near-ML forward and backward training window sizes (F, B) for the CDA
and equal-weight SCDA for the (3, 1, 6) CTBC. The weighted average window is W = 30.

Length of information sequence L 100 200 400
Simulated (F, B) of CDA (19, 20) (19, 20) (19, 21)

Derived (F, B) of equal-weight SCDA (16, 19) (15, 18) (12, 15)
Simulated (F, B) of equal-weight SCDA (14, 14) (10, 12) (8, 10)
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Figure 4.4: Block error rates (BLER) of the CDA for (3, 1, 2) CTBC in BEC. F and B denote
the forward and backward training window sizes, respectively. The length of information
sequence is L = 100.
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Figure 4.5: Block error rates (BLER) of the SCDA for (3, 1, 2) CTBC in BEC. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 100 and the weighted average window is W = 16.
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Figure 4.6: Block error rates (BLER) of the CDA for (3, 1, 2) CTBC in BEC. F and B denote
the forward and backward training window sizes, respectively. The length of information
sequence is L = 200.
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Figure 4.7: Block error rates (BLER) of the SCDA for (3, 1, 2) CTBC in BEC. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 200 and the weighted average window is W = 16.
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Figure 4.8: Block error rates (BLER) of the CDA for (3, 1, 2) CTBC in BEC. F and B denote
the forward and backward training window sizes, respectively. The length of information
sequence is L = 400.

79



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

1 − p
e

B
LE

R

(3,1,2) CTBC, L=400 in BEC

 

 
ML
Equal−weight SCDA, (F,B)=(0,0)
Equal−weight SCDA, (F,B)=(2,2)

Figure 4.9: Block error rates (BLER) of the SCDA for (3, 1, 2) CTBC in BEC. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 400 and the weighted average window is W = 16.
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Figure 4.10: Block error rates (BLER) of the CDA for (3, 1, 4) CTBC in BEC. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 100.
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Figure 4.11: Block error rates (BLER) of the SCDA for (3, 1, 4) CTBC in BEC. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 100 and the weighted average window is W = 24.
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Figure 4.12: Block error rates (BLER) of the CDA for (3, 1, 4) CTBC in BEC. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 200.

83



0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
10

−3

10
−2

10
−1

10
0

1 − p
e

B
LE

R

(3,1,4) CTBC, L=200 in BEC

 

 
ML
Equal−weight SCDA, (F,B)=(0,2)
Equal−weight SCDA, (F,B)=(4,6)

Figure 4.13: Block error rates (BLER) of the SCDA for (3, 1, 4) CTBC in BEC. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 200 and the weighted average window is W = 24.
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Figure 4.14: Block error rates (BLER) of the CDA for (3, 1, 4) CTBC in BEC. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 400.
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Figure 4.15: Block error rates (BLER) of the SCDA for (3, 1, 4) CTBC in BEC. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 400 and the weighted average window is W = 24.
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Figure 4.16: Block error rates (BLER) of the CDA for (3, 1, 6) CTBC in BEC. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 100.
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Figure 4.17: Block error rates (BLER) of the SCDA for (3, 1, 6) CTBC in BEC. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 100 and the weighted average window is W = 30.

88



0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
10

−4

10
−3

10
−2

10
−1

10
0

1 − p
e

B
LE

R

(3,1,6) CTBC, L=200 in BEC

 

 
ML
CDA, (F,B)=(15,16)
CDA, (F,B)=(19,20)

Figure 4.18: Block error rates (BLER) of the CDA for (3, 1, 6) CTBC in BEC. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 200.
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Figure 4.19: Block error rates (BLER) of the SCDA for (3, 1, 6) CTBC in BEC. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 200 and the weighted average window is W = 30.
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Figure 4.20: Block error rates (BLER) of the CDA for (3, 1, 6) CTBC in BEC. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 400.
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Figure 4.21: Block error rates (BLER) of the SCDA for (3, 1, 6) CTBC in BEC. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 400 and the weighted average window is W = 30.
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4.5 Error Bound for Shifting Circular Decoding in Ad-

ditive White Gaussian Noise (AWGN) Channel

On AWGN channels, the log-likelihood ratio φj is proportional to the received scalar rj .

Hence, the pre-decoding circular shifts on the receive sequence r is again performed based

on the absolute values of the received components. Since the code we considered is linear,

the error rate conditional on the code word transmitted is independent of the code word. We

then assume without loss of generality that the transmitted code word is the all-zero one.

For notational convenience, we omit the conditional notation in the following derivations.

Similar to the analysis in BEC, in order to simplify the analysis, we assume that the

“unadjusted” pre-decoding information circular shift p̃ = p−W/2 can only be a multiple of

weighted average window W , information length L for (n, 1, m) CTBC is also a multiple of

W , and equal weights that are all equal to unity are adopted. Define for 0 ≤ i < M = L/W ,

Ui = |rinW | + |rinW+1| + · · · + |rinW+nW−1|.

Now, the sorted U0, U1, . . . , UM−1 gives that

U(0) ≤ U(1) ≤ U(2) ≤ · · · ≤ U(M−1).

In such case, the pre-decoding circular shift p̃ = Wi, if U(M−1) = Ui, and the unadjusted

inputs for the circular decoding algorithm is rp̃n, rp̃n+1, . . . , rN−1, r0, r1, . . . , rp̃n−1. It remains

to find the probability density f of the unadjusted shifted input sequence.

It is clear that the density f for (a0, a1, . . . , aN−1) ∈ ℜN with

nW−1∑

ℓ=0

|aℓ| < max
1≤i≤M−1

nW−1∑

ℓ=0

|ainW+ℓ|

is zero. For (a0, a1, . . . , aN−1) ∈ ℜN with
∑nW−1

ℓ=0 |aℓ| > max1≤i≤M−1

∑nW−1
ℓ=0 |ainW+ℓ|,

f (rp̃n = a0, rp̃n+1 = a1, · · · , rp̃n−1 = aN−1) = M
N−1∏

ℓ=0

f (rℓ = aℓ) , (4.10)
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where (4.10) is valid since f (rinW = a0, rinW+1 = a1, · · · , rinW−1 = aN−1) is the same for

every i as {rℓ}N−1
ℓ=0 is i.i.d. The above derivation concludes:

f (rp̃n = a0, rp̃n+1 = a1, · · · , rp̃n−1 = aN−1)

= M

(
N−1∏

ℓ=0

f (rℓ = aℓ)

)

1

{

max
1≤i≤M−1

nW−1∑

ℓ=0

|ainW+ℓ| ≤
nW−1∑

ℓ=0

|aℓ|
}

. (4.11)

Notably,

f (rℓ = aℓ) =
1√

2πσ2
e−(aℓ−µ)2/(2σ2),

where µ = (−1)0 = 1 is the signal transmitted, and σ2 is the noise variance. It can be

observed that (4.11) is not just a function of
∑nW−1

ℓ=0 |ainW+ℓ| for 0 ≤ i ≤ M − 1 in AWGN

channel as the the case in BEC. As a result,

f (rp̃n = a0, rp̃n+1 = a1, · · · , rp̃n+nW−1 = anW−1)

=

∫

(anW ,...,aN−1)∈ℜN−nW

f (rp̃n = a0, rp̃n+1 = a1, · · · , rp̃n−1 = aN−1) danW · · ·daN−1

= M

(
nW−1∏

ℓ=0

f (rℓ = aℓ)

)

×
∫

{(anW ,...,aN−1)∈ℜN−nW : max1≤i≤M−1 bi≤b0}

(
N−1∏

ℓ=nW

f (rℓ = aℓ)

)

danW · · · daN−1

= M

(
nW−1∏

ℓ=0

f (rℓ = aℓ)

)

×
M−1∏

i=1

∫

{(ainW ,...,ainW+nW−1)∈ℜnW : bi≤b0}

(
nW−1∏

ℓ=0

f (rinW+ℓ = ainW+ℓ)

)

dainW · · ·dainW+nW−1

= M

(
nW−1∏

ℓ=0

f (rℓ = aℓ)

)
M−1∏

i=1

Pr[Ui ≤ b0]

= M

(
nW−1∏

ℓ=0

f (rℓ = aℓ)

)

(Pr[U ≤ b0])
M−1 ,

where for notational convenient, we denote bi =
∑nW−1

ℓ=0 |ainW+ℓ|, and U is a random variable,

independent of r0, . . ., rnW−1, of which the probability density is the same as |r0| + · · · +
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|rnW−1|. This leads to that

f (rp̃n = a0)

=

∫

(a1,...,anW−1)∈ℜnW−1

f (rp̃n = a0, rp̃n+1 = a1, · · · , rp̃n+nW−1 = anW−1) da1 · · · dnW−1

=

∫

(a1,...,anW−1)∈ℜnW−1

M

(
nW−1∏

ℓ=0

f (rℓ = aℓ)

)

(Pr[U ≤ b0])
M−1 da1 · · · dnW−1

= M · f(r0 = a0)

∫

(a1,...,anW−1)∈ℜnW−1

(
nW−1∏

ℓ=1

f (rℓ = aℓ)

)

(Pr[U ≤ b0])
M−1 da1 · · · danW−1

= M · f(r0 = a0)EB

[

(Pr[U ≤ |a0| + B])M−1
]

where random variable B is defined as B ,
∑nW−1

ℓ=1 |rℓ|. By letting f0 and f1 be respectively

the densities of random variables |r0| and B, the density of U should be the same as that of

|r0| + B with |r0| and B being independent. Thus,

EB

[

(Pr[U ≤ |a0| + B])M−1
]

=

∫ ∞

0

f1(b)

(
∫ |a0|+b

0

(∫ ∞

0

f1(τ)f0(t − τ)dτ

)

dt

)M−1

db

=

∫ ∞

0

f1(b)

(
∫ ∞

0

f1(τ)

∫ |a0|+b

0

f0(t − τ)dtdτ

)M−1

db

=

∫ ∞

0

f1(b)

(
∫ |a0|+b

0

f1(τ)F0(|a0| + b − τ)dτ

)M−1

db,

where F0 denotes the cumulative distribution function of random variable |r0|.

This gives the effective marginal density based on pre-decoding circular shift we propose.

We can then numerically compute the mean and second moment of rp̃n given that transmitted

codeword bit is 0 to obtain the effective mean µe and effective noise variance σ2
e (and hence,

the effective signal-to-noise ratio).6

6From what we just derived,

E[rp̃n] = M

∫ ∞

−∞

a0√
2πσ2

e−(a0−µ)2/(2σ2)





∫ ∞

0

f1(b)

(
∫ |a0|+b

0

f1(τ)F0(|a0| + b − τ)dτ

)M−1

db



 da0
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Again, through several empirical examinations, we observe that taking this new signal-

to-noise ratio into (4.6) with X = e−µ2
e/(2σ2

e ) also provides an upper error bound on PE for

the shifting circular decoding algorithm. We however fail to substantiate this observation

analytical, and will defer it as our future work.

Based on our “conjectured” observation, we will try to determine (F, B) “analytically”.

Specifically, considering only the terms with the lowest exponent respectively for the three

terms in (4.6), we first solve

exp

{

−dfree ·
µ2

2σ2

}

= exp

{

−d · µ2
e

2σ2
e

}

.

We then choose F and B such that dF and dB equal ⌈d⌉. In the next section, we will compare

F and B derived in this section with those obtained by simulations.

4.6 Forward and Backward Training Windows in AWGN

Now, based on the derivation in the previous section, we investigate the forward and back-

ward window sizes of the CDA and equal-weight SCDA, requiring for near maximum-

likelihood performance in AWGN. The weighted average window is taken to be twice of

the dfree, i.e., W = 2dfree. Three CTBC codes are considered, which are the (3, 1, 4), (3, 1, 6)

and (2, 1, 6) codes respectively with generator polynomials (52 66 76), (554 744 724) and

(744 554) (in octal). In addition, we adopt Eb/N0 = 3 dB as the operation SNR for (2, 1, 6)

and (3, 1, 6), and Eb/N0 = 4 dB for (3, 1, 4). The results are summarized in Tables 4.4,

4.5 and 4.6. They show that the (F, B) of the CDA required for near ML performance in

and

E[r2
p̃n] = M

∫ ∞

−∞

a2
0√

2πσ2
e−(a0−µ)2/(2σ2)





∫ ∞

0

f1(b)

(
∫ |a0|+b

0

f1(τ)F0(|a0| + b − τ)dτ

)M−1

db



 da0.

We then have: µe = E[rp̃n] and σ2
e = E[r2

p̃n] − E2[rp̃n].
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Table 4.4: The near-ML forward and backward training window sizes (F, B) for the CDA
and equal-weight SCDA for the (3, 1, 4) CTBC. The weighted average window is W = 24.

Length of information sequence L 100 200 400
Simulated (F, B) of CDA (13, 13) (13, 13) (13, 13)

Derived (F, B) of equal-weight SCDA (12, 12) (9, 9) (7, 7)
Simulated (F, B) of equal-weight SCDA (6, 10) (4, 8) (4, 6)

Table 4.5: The near-ML forward and backward training window sizes (F, B) for the CDA
and equal-weight SCDA for the (3, 1, 6) CTBC. The weighted average window is W = 30.

Length of information sequence L 100 200 400
Simulated (F, B) of CDA (19, 20) (19, 20) (19, 20)

Derived (F, B) of equal-weight SCDA (16, 19) (15, 18) (12, 15)
Simulated (F, B) of equal-weight SCDA (12, 16) (10, 14) (6, 12)

AWGN match those reported in [11]. Also, the derived (F, B) pairs are a little larger than

the simulated ones. The performance curves can be found in Figs 4.22–4.39.

Table 4.6: The near-ML forward and backward training window sizes (F, B) for the CDA
and equal-weight SCDA for the (2, 1, 6) CTBC. The weighted average window is W = 20.

Length of information sequence L 100 200 400
Simulated (F, B) of CDA (27, 28) (27, 28) (27, 28)

Derived (F, B) of equal-weight SCDA (17, 18) (10, 11 − 15) (7, 8 − 10)
Simulated (F, B) of equal-weight SCDA (14, 18) (8, 12) (6, 10)
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Figure 4.22: Block error rates (BLER) of the CDA for (3, 1, 4) CTBC in AWGN. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 100.
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Figure 4.23: Block error rates (BLER) of the SCDA for (3, 1, 4) CTBC in AWGN. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 100 and the weighted average window is W = 24.
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Figure 4.24: Block error rates (BLER) of the CDA for (3, 1, 4) CTBC in AWGN. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 200.

100



1 1.5 2 2.5 3 3.5 4 4.5 5
10

−4

10
−3

10
−2

10
−1

10
0

Eb/N0 (dB)

B
LE

R

(3,1,4) CTBC, L=200 in AWGN

 

 
ML
Equal−weight SCDA, (F,B)=(0,2)
Equal−weight SCDA, (F,B)=(2,6)
Equal−weight SCDA, (F,B)=(4,8)

Figure 4.25: Block error rates (BLER) of the SCDA for (3, 1, 4) CTBC in AWGN. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 200 and the weighted average window is W = 24.
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Figure 4.26: Block error rates (BLER) of the CDA for (3, 1, 4) CTBC in AWGN. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 400.
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Figure 4.27: Block error rates (BLER) of the SCDA for (3, 1, 4) CTBC in AWGN. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 400 and the weighted average window is W = 24.
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Figure 4.28: Block error rates (BLER) of the CDA for (3, 1, 6) CTBC in AWGN. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 100.
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Figure 4.29: Block error rates (BLER) of the SCDA for (3, 1, 6) CTBC in AWGN. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 100 and the weighted average window is W = 30.
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Figure 4.30: Block error rates (BLER) of the CDA for (3, 1, 6) CTBC in AWGN. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 200.

106



1 1.5 2 2.5 3 3.5 4
10

−4

10
−3

10
−2

10
−1

10
0

Eb/N0 (dB)

B
LE

R

(3,1,6) CTBC, L=200 in AWGN

 

 
ML
Equal−weight SCDA, (F,B)=(2,5)
Equal−weight SCDA, (F,B)=(4,10)
Equal−weight SCDA, (F,B)=(10,14)

Figure 4.31: Block error rates (BLER) of the SCDA for (3, 1, 6) CTBC in AWGN. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 200 and the weighted average window is W = 30.
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Figure 4.32: Block error rates (BLER) of the CDA for (3, 1, 6) CTBC in AWGN. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 400.
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Figure 4.33: Block error rates (BLER) of the SCDA for (3, 1, 6) CTBC in AWGN. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 400 and the weighted average window is W = 30.
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Figure 4.34: Block error rates (BLER) of the CDA for (2, 1, 6) CTBC in AWGN. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 100.
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Figure 4.35: Block error rates (BLER) of the SCDA for (2, 1, 6) CTBC in AWGN. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 100 and the weighted average window is W = 20.
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Figure 4.36: Block error rates (BLER) of the CDA for (2, 1, 6) CTBC in AWGN. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 200.
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Figure 4.37: Block error rates (BLER) of the SCDA for (2, 1, 6) CTBC in AWGN. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 200 and the weighted average window is W = 20.
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Figure 4.38: Block error rates (BLER) of the CDA for (2, 1, 6) CTBC in AWGN. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 400.
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Figure 4.39: Block error rates (BLER) of the SCDA for (2, 1, 6) CTBC in AWGN. F and
B denote the forward and backward training window sizes, respectively. The length of
information sequence is L = 400 and the weighted average window is W = 20.
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Chapter 5

Conclusions

In this work, we proposed the shifting Viterbi algorithm and the shifting circular decoding

algorithm with equal-weight and unequal-weight circular shifting methods. We found that

the forward and backward training window sizes can be reduced by using the pre-decoding

circular shifting. Furthermore, a sampled analysis of the required training window sizes

required for near ML performances is also established for both BEC and AWGN based on

a conjecture. A natural future work is thus to substantiate the conjecture that taking the

new marginal probability of the shifted scalar in place of the original marginal probability

can be an error bound.
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Appendix A

Calculation of Unequal Weighting
Coefficients

In the appendix, we list the equations for the calculation of unequal weighting coefficients

according to code structure. These are provided simply for references.

A.1 (3, 1, 6) CTBC

The noise power corresponding to Eb/N0 = 1 dB is σ2 = 1.1915. Assume the all-zero

sequence is transmitted.

A.1.1 Coefficients corresponding to forward training window

1. Probability for the all-zero path is eliminated at the 1st branch:

Pr(r0 + r1 + r2 < 0) ≈ 0.0563

2. Probability for the all-zero path is eliminated at the 2nd branch:

Pr(r0 + r3 + r4 + r5 < 0 ∨ r1 + r2 + r3 + r4 + r5 < 0) ≈ 0.0335
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3. Probability for the all-zero path is eliminated at the 3rd branch:

Pr(r2 + r3 + r6 + r7 + r8 < 0 ∨ r0 + r1 + r3 + r6 + r7 + r8 < 0

∨r0 + r2 + r4 + r5 + r6 + r7 + r8 < 0 ∨ r1 + r4 + r5 + r6 + r7 + r8 < 0) ≈ 0.0203

4. Probability for the all-zero path is eliminated at the 4th branch:

Pr(r0 + r1 + r5 + r6 + r9 + r10 + r11 < 0 ∨ r2 + r5 + r6 + r9 + r10 + r11 < 0

∨r1 + r3 + r4 + r6 + r9 + r10 + r11 < 0 ∨ r0 + r2 + r3 + r4 + r6 + r9 + r10 + r11 < 0

∨r0 + r1 + r2 + r3 + r5 + r7 + r8 + r9 + r10 + r11 < 0

∨r3 + r5 + r7 + r8 + r9 + r10 + r11 < 0 ∨ r1 + r2 + r4 + r7 + r8 + r9 + r10 + r11 < 0

∨r0 + r4 + r7 + r8 + r9 + r10 + r11 < 0) ≈ 0.0124

5. Probability for the all-zero path is eliminated at the 5th branch:
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Pr(r0 + r1 + r2 + r3 + r4 + r8 + r9 + r12 + r13 + r14 < 0

∨r3 + r4 + r8 + r9 + r12 + r13 + r14 < 0

∨r1 + r2 + r5 + r8 + r9 + r12 + r13 + r14 < 0

∨r0 + r5 + r8 + r9 + r12 + r13 + r14 < 0

∨r0 + r1 + r2 + r4 + r6 + r7 + r9 + r12 + r13 + r14 < 0

∨r2 + r4 + r6 + r7 + r9 + r12 + r13 + r14 < 0

∨r1 + r3 + r5 + r6 + r7 + r9 + r12 + r13 + r14 < 0

∨r0 + r2 + r3 + r5 + r6 + r7 + r9 + r12 + r13 + r14 < 0

∨r2 + r3 + r4 + r5 + r6 + r8 + r10 + r11 + r12 + r13 + r14 < 0

∨r0 + r1 + r3 + r4 + r5 + r6 + r8 + r10 + r11 + r12 + r13 + r14 < 0

∨r0 + r2 + r6 + r8 + r10 + r11 + r12 + r13 + r14 < 0

∨r1 + r6 + r8 + r10 + r11 + r12 + r13 + r14 < 0

∨r4 + r5 + r7 + r10 + r11 + r12 + r13 + r14 < 0

∨r0 + r1 + r2 + r4 + r5 + r7 + r10 + r11 + r12 + r13 + r14 < 0

∨r0 + r3 + r7 + r10 + r11 + r12 + r13 + r14 < 0

∨r1 + r2 + r3 + r7 + r10 + r11 + r12 + r13 + r14 < 0) ≈ 0.0133

6. Probability for the all-zero path is eliminated at the 6th branch:

Pr(r6 + r7 + r11 + r12 + r15 + r16 + r17 < 0) ≈ 0.0077

A.1.2 Coefficients corresponding to backward training window

1. Probability for the all-zero path is eliminated at the 1st branch:

Pr(rN−3 + rN−2 + rN−1 < 0) ≈ 0.0563
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2. Probability for the all-zero path is eliminated at the 2nd branch:

Pr(rN−6 + rN−5 + rN−4 + rN−2 + rN−1 < 0 ∨ rN−6 + rN−5 + rN−4 + rN−3 < 0) ≈ 0.0335

3. Probability for the all-zero path is eliminated at the 3rd branch:

Pr(rN−9 + rN−8 + rN−7 + rN−5 + rN−4 + rN−3 + rN−2 + rN−1 < 0

∨rN−9 + rN−8 + rN−7 + rN−5 + rN−4 < 0 ∨ rN−9 + rN−8 + rN−7 + rN−6 + rN−3 < 0

∨rN−9 + rN−8 + rN−7 + rN−6 + rN−2 + rN−1 < 0) ≈ 0.0358

4. Probability for the all-zero path is eliminated at the 4th branch:

Pr(rN−12 + rN−11 + rN−10 + rN−8 + rN−7 + rN−6 + rN−5 + rN−4 + rN−3 + rN−2 < 0

∨rN−12 + rN−11 + rN−10 + rN−8 + rN−7 + rN−6 + rN−5 + rN−4 + rN−1 < 0

∨rN−12 + rN−11 + rN−10 + rN−8 + rN−7 + rN−3 + rN−1 < 0

∨rN−12 + rN−11 + rN−10 + rN−8 + rN−7 + rN−2 < 0

∨rN−12 + rN−11 + rN−10 + rN−9 + rN−6 + rN−1 < 0

∨rN−12 + rN−11 + rN−10 + rN−9 + rN−6 + rN−3 + rN−2 < 0

∨rN−12 + rN−11 + rN−10 + rN−9 + rN−5 + rN−4 + rN−2 < 0

∨rN−12 + rN−11 + rN−10 + rN−9 + rN−5 + rN−4 + rN−3 + rN−1 < 0) ≈ 0.0231

5. Probability for the all-zero path is eliminated at the 5th branch (Only dominant error

conditions are listed here):

Pr(rN−15 + rN−14 + rN−13 + rN−11 + rN−10 + rN−5 + rN−2 < 0

∨rN−15 + rN−14 + rN−13 + rN−12 + rN−9 + rN−4 + rN−3 < 0

∨rN−15 + rN−14 + rN−13 + rN−12 + rN−9 + rN−6 + rN−5 < 0

∨rN−15 + rN−14 + rN−13 + rN−12 + rN−8 + rN−7 + rN−5 < 0) ≈ 0.0307
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6. Probability for the all-zero path is eliminated at the 6th branch (Only dominant error

conditions are listed here):

Pr(rN−18 + rN−17 + rN−16 + rN−14 + rN−13 + rN−8 + rN−5 + rN−1 < 0

∨rN−18 + rN−17 + rN−16 + rN−15 + rN−12 + rN−7 + rN−6 + rN−1 < 0

∨rN−18 + rN−17 + rN−16 + rN−15 + rN−12 + rN−9 + rN−8 + rN−2 < 0

∨rN−18 + rN−17 + rN−16 + rN−15 + rN−11 + rN−10 + rN−8 + rN−3 < 0) ≈ 0.0191

In summary, for shifting circular decoding algorithm with W = 12, we let the normalized

weighting coefficients be

(
0.0191

0.0563
,
0.0307

0.0563
,
0.0231

0.0563
,
0.0358

0.0563
,
0.0335

0.0563
,
0.0563

0.0563
,

0.0563

0.0563
,
0.0335

0.0563
,
0.0203

0.0563
,
0.0124

0.0563
,
0.0133

0.0563
,
0.0077

0.0563

)

≈ (0.34, 0.55, 0.41, 0.64, 0.60, 1
︸ ︷︷ ︸

backward

, 1, 0.60, 0.36, 0.22, 0.23, 0.13
︸ ︷︷ ︸

forward

).

For shifting Viterbi algorithm with W = 6, we will use (1, 0.60, 0.36, 0.22, 0.23, 0.13) as the

normalized weighting coefficients.

A.2 (2, 1, 6) CTBC

The noise power corresponding to Eb/N0 = 1 dB is σ2 = 0.7943. Assume the all-zero

sequence is transmitted.

A.2.1 Coefficients corresponding to forward training window

1. Probability for the all-zero path is eliminated at the 1st branch:

Pr(r0 + r1 < 0) ≈ 0.0563
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2. Probability for the all-zero path is eliminated at the 2nd branch:

Pr(r1 + r2 + r3 < 0 ∨ r0 + r2 + r3 < 0) ≈ 0.0441

3. Probability for the all-zero path is eliminated at the 3rd branch:

Pr(r3 + r4 + r5 < 0 ∨ r0 + r1 + r3 + r4 + r5 < 0

∨r1 + r2 + r4 + r5 < 0 ∨ r0 + r2 + r4 + r5 < 0) ≈ 0.0260

4. Probability for the all-zero path is eliminated at the 4th branch:

Pr(r0 + r1 + r5 + r6 + r7 < 0 ∨ r5 + r6 + r7 < 0

∨r0 + r2 + r3 + r5 + r6 + r7 < 0 ∨ r1 + r2 + r3 + r5 + r6 + r7 < 0

∨r0 + r1 + r3 + r4 + r6 + r7 < 0 ∨ r3 + r4 + r6 + r7 < 0

∨r0 + r2 + r4 + r6 + r7 < 0 ∨ r1 + r2 + r4 + r6 + r7 < 0) ≈ 0.0260

5. Probability for the all-zero path is eliminated at the 5th branch (Only dominant error

conditions are listed here):

Pr(r0 + r7 + r8 + r9 < 0 ∨ r1 + r7 + r8 + r9 < 0) ≈ 0.0207

6. Probability for the all-zero path is eliminated at the 5th branch (Only dominant error

conditions are listed here):

Pr(r3 + r9 + r10 + r11 < 0) ≈ 0.0124

A.2.2 Coefficients corresponding to backward training window

1. Probability for the all-zero path is eliminated at the 1st branch:

Pr(rN−2 + rN−1 < 0) ≈ 0.0563
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2. Probability for the all-zero path is eliminated at the 2nd branch:

Pr(rN−4 + rN−3 + rN−2 < 0 ∨ rN−4 + rN−3 + rN−1 < 0) ≈ 0.0441

3. Probability for the all-zero path is eliminated at the 3rd branch:

Pr(rN−6 + rN−5 + rN−4 + rN−2 + rN−1 < 0 ∨ rN−6 + rN−5 + rN−4 < 0

∨rN−6 + rN−5 + rN−3 + rN−1 < 0 ∨ rN−6 + rN−5 + rN−3 + rN−2 < 0) ≈ 0.0260

4. Probability for the all-zero path is eliminated at the 4th branch:

Pr(rN−8 + rN−7 + rN−6 + rN−4 + rN−3 + rN−2 + rN−1 < 0

∨rN−8 + rN−7 + rN−6 + rN−4 + rN−3 < 0 ∨ rN−8 + rN−7 + rN−6 + rN−1 < 0

∨rN−8 + rN−7 + rN−6 + rN−2 < 0 ∨ rN−8 + rN−7 + rN−5 + rN−3 < 0

∨rN−8 + rN−7 + rN−5 + rN−3 + rN−2 + rN−1 < 0

∨rN−8 + rN−7 + rN−5 + rN−4 + rN−2 < 0

∨rN−8 + rN−7 + rN−5 + rN−4 + rN−1 < 0) ≈ 0.0372

5. Probability for the all-zero path is eliminated at the 5th branch (Only dominant error

conditions are listed here):

Pr(rN−10 + rN−9 + rN−8 + rN−3 < 0 ∨ rN−10 + rN−9 + rN−7 + rN−5 < 0) ≈ 0.0231

6. Probability for the all-zero path is eliminated at the 6th branch (Only dominant error

conditions are listed here):

Pr(rN−12 + rN−11 + rN−10 + rN−5 < 0 ∨ rN−12 + rN−11 + rN−9 + rN−7 < 0) ≈ 0.0231
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In summary, for shifting circular decoding algorithm with W = 12, we let the normalized

weighting coefficients be

(
0.0231

0.0563
,
0.0231

0.0563
,
0.0372

0.0563
,
0.0260

0.0563
,
0.0441

0.0563
,
0.0563

0.0563
,

0.0563

0.0563
,
0.0441

0.0563
,
0.0260

0.0563
,
0.0260

0.0563
,
0.0207

0.0563
,
0.0124

0.0563

)

≈ (0.41, 0.41, 0.66, 0.46, 0.78, 1
︸ ︷︷ ︸

backward

, 1, 0.78, 0.46, 0.46, 0.36, 0.22
︸ ︷︷ ︸

forward

)

For shifting Viterbi algorithm with W = 6, we will use (1, 0.78, 0.46, 0.46, 0.36, 0.22) as the

normalized weighting coefficients.

A.3 (3, 1, 4) CTBC

The noise power corresponding to Eb/N0 = 1 dB is σ2 = 1.1915. Assume the all-zero

sequence is transmitted.

A.3.1 Coefficients corresponding to forward training window

1. Probability for the all-zero path is eliminated at the 1st branch:

Pr(r0 + r1 + r2 < 0) ≈ 0.0563

2. Probability for the all-zero path is eliminated at the 2nd branch:

Pr(r1 + r2 + r3 + r4 + r5 < 0 ∨ r0 + r3 + r4 + r5 < 0) ≈ 0.0335

3. Probability for the all-zero path is eliminated at the 3rd branch:

Pr(r0 + r2 + r4 + r5 + r6 + r7 + r8 < 0 ∨ r1 + r4 + r5 + r6 + r7 + r8 < 0

∨r0 + r1 + r3 + r6 + r7 + r8 < 0 ∨ r2 + r3 + r6 + r7 + r8 < 0) ≈ 0.0203
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4. Probability for the all-zero path is eliminated at the 4th branch (Only dominant error

conditions are listed here):

Pr(r4 + r7 + r8 + r9 + r10 + r11 < 0 ∨ r1 + r5 + r6 + r9 + r10 + r11 < 0) ≈ 0.0231

A.3.2 Coefficients corresponding to backward training window

1. Probability for the all-zero path is eliminated at the 1st branch:

Pr(rN−3 + rN−2 + rN−1 < 0) ≈ 0.0563

2. Probability for the all-zero path is eliminated at the 2nd branch:

Pr(rN−6 + rN−5 + rN−4 + rN−2 + rN−1 < 0

∨rN−6 + rN−5 + rN−4 + rN−3 < 0) ≈ 0.0335

3. Probability for the all-zero path is eliminated at the 3rd branch:

Pr(rN−9 + rN−8 + rN−7 + rN−5 + rN−4 + rN−3 + rN−1 < 0

∨rN−9 + rN−8 + rN−7 + rN−5 + rN−4 + rN−2 < 0

∨rN−9 + rN−8 + rN−7 + rN−6 + rN−3 + rN−2 < 0

∨rN−9 + rN−8 + rN−7 + rN−6 + rN−1 < 0) ≈ 0.0203

4. Probability for the all-zero path is eliminated at the 4th branch(Only dominant error

conditions are listed here):

Pr(rN−12 + rN−11 + rN−10 + rN−8 + rN−7 + rN−5 < 0

∨rN−12 + rN−11 + rN−10 + rN−9 + rN−4 + rN−2 < 0) ≈ 0.0231
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In summary, for shifting circular decoding algorithm with W = 8, we let the normalized

weighting coefficients be

(
0.0231

0.0563
,
0.0203

0.0563
,
0.0335

0.0563
,
0.0563

0.0563
,
0.0563

0.0563
,
0.0335

0.0563
,
0.0203

0.0563
,
0.0231

0.0563

)

≈ (0.41, 0.36, 0.60, 1
︸ ︷︷ ︸

backward

, 1, 0.60, 0.36, 0.41
︸ ︷︷ ︸

forward

).

For shifting Viterbi algorithm with W = 4, we will use (1, 0.60, 0.36, 0.41) as the normalized

weighting coefficients.
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