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Abstract

In the field of wireless sensor networks, existing works of channel-aware fusion
rule design assume that the fusion center (FC) knows the local sensor detection
probabilities. However, this paradigm ignores the possibility of unknown sensor alarm
responses to the event occurrences. This work focuses on the case where the local
detection probability is unknown and assumes sensors transmit their one-bit reports
through binary symmetric channels to FC. Traditionally, Generalized Likelihood Ratio
Test (GLRT) can tackle this scenario, but it does not guarantee optimal performance
and is too complicated to analyze. To solve these problems, a simpler fusion rule is
proposed based on the simplified ML estimate, and its performance is analyzed. By
investigating the channel effects, a power allocation scheme is then proposed to further
improve the performance. Being far less complicated than GLRT, the proposed fusion
rule with power allocation outperforms GLRT significantly and can even achieve the

performance of LRT, which is the optimal rule for any possible detectors.
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Chapter 1

Introduction

Distributed detection systems are typically composed of many sensors and an FC,
working collaboratively to detect an event of interest. With significant progresses in
wireless communications, networking and microprocessors, distributed detection using
wireless sensor networks (WSN) has become an active research area, [1-3]. In WSN,
sensors are connected by wireless channels to each other and FC so that they can be
flexibly deployed, enhancing the surveillance coverage and the sensing potential,
especially in applications like battlefield and monitoring for security or environment.
In contrast to traditional communication systems, sensors are usually cheap device
with low power usage; together with limited channel capacity, the stringent
communication resources make the system design quite challenging. Conventionally,
signal processing algorithms are treated as independent part of the communication
block, and thus most of the earlier studies are based on the idealized assumption that
the sensor reports can be received at FC without errors [3, 4], which are so-called
classical distributed detection problems. As is proved that designers should integrate
the signal processing algorithms design and the communication aspect to reach the
optimal performance, it is especially true in WSN where channels cannot be assumed
reliable anymore compared to those in classical distributed detection. Recently there
have been several proposals further taking into account the communication channel
impairments [5-9]; see [10] for a tutorial introduction to distributed detection in the
presence of non-ideal channel links. A common assumption made in these

channel-aware schemes is that the local sensor detection performance, characterized by
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the detection and false-alarm probabilities, is known at the FC. This, however, ignores
the possibly unknown sensor alarming responses to the occurrence of events. Consider,
for example, that a sensor network is deployed for monitoring the increase in the room
temperature, as in the scenario of home security against fire. The local detection
probability (under a fixed threshold) could be unknown due to the response to the
uncertain temperature of fire events. As the local detection probability being
indispensable in most fusion rule design, to reflect the variation of the sensing field
conditions, a conceivable approach is thus to model the local detection probability as
an unknown parameter, and to accordingly design the global decision rule for tackling
such uncertainty.

In this thesis, we propose a channel-aware distributed detection scheme for the
above-mentioned scenario. The communication links between the sensor nodes and the
FC are modeled as binary symmetric channels. In the proposed approach each sensor,
when triggered, just sends a single bit to inform the FC of its local decision; no further
communication overhead is needed for conveying the message about the current local
detection performance. The FC treats the local detection probability as an unknown
parameter. Based solely on the received sensor reports, the global decision rule is
naturally formulated as GLRT [11]. The implementation of GLRT calls for the
maximum likelihood (ML) estimate of the unknown parameter which, in our case,
does not lead to a closed-from solution. Under the high signal-to-ratio (SNR)
assumption this work derives an approximate ML estimate that is affine in the received
data. It is seen that, even with the approximation of the ML solution, the performance
of GLRT remains quite difficult to characterize. Based on the approximated ML
scheme, we then propose a simple alternative fusion rule in which the test statistic is
affine in the received data. The main advantages of this alternative are threefold.

Firstly, it allows deriving closed-form performance results for facilitating analytic
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characterization of the channel effect. Secondly, it is shown that, under certain
conditions, the global detection performance can be improved by enhancing the
communication-link quality, e.g., reducing the average link bit-error rate (BER). Hence,
this work then proposes an optimal power allocation scheme to minimize the mean
BER subject to a total power budget. Thirdly, simulations show that the proposed
alternative scheme outperforms GLRT. The rest of this thesis is organized as follows.
Chapter 2 traces the main developments in the field of distributed detection and gives
reviews of related works in WSN. Chapter 3 starts with the problem formulation,
presents the GLRT based detection scheme and then derives the approximate ML
solution. Chapter 4 introduces the alternative approach and derives the associated
analytic performance results. The issue of channel impairment mitigation for
improving the detection performance is then addressed. In Chapter 5 the simulation
results are shown and interpreted. Finally, Chapter 6 concludes this thesis and suggests

some future works.



Chapter 2
Wireless Sensor Network for

Detection

WSN have received greater research interests in recent years. Depending on
various applications and environment settings, many different system models have
been proposed, dedicating to solve different problems inherent in their environmental
assumptions. In this chapter, the concepts and models of the development of
distributed detection systems are reviewed. In the beginning, this thesis introduces the
classical detection problem, which assumes reliable transmission from sensors to the
center controller. A popular model called canonical distributed detection systems is
illustrated, which is similar to the model settings in this work.

WSN are distributed detection systems built on the wireless infrastructure, and
many new design challenges emerge. We investigate some fundamental works in areas

of WSN and point out the possible room for improvements which motivates our work.

2.1 Review of Distributed Detection Systems

Distributed detection systems refer to the systems where multiple sensors work in
some way to distinguish between two or more hypothesis, which is also often denoted
as the states of the environments. As can be traced back to the precedent human-like
activities such as voting when people try to make decisions, the first formal treatments
can be found in the work of Radner [12], where the problem of decision making from

multiple persons is addressed. Afterwards, many applications and the corresponding
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problem formulations are proposed, and one kind of the prevailing applications is the
system involving both distributed sensors and an FC. Specifically, the fusion center
makes the final decision based on the information gathered from local sensors. In the
following context, let’s confine the notation “distributed detection systems” to such
systems without otherwise noted. If the raw observations of the local sensors are
accessible at FC, this scenario is just the classical hypothesis testing problem [13].
Unfortunately, due to the limited communication resources such as channel capacity
between sensors and FC, the observations are often compressed at local sensors and
then transmitted to FC.

In distributed detection systems, the classical distributed detection had been an
active research field following the seminal work of Tenney and Sandell in 1981 [14],
where the so-called canonical distributed detection system is established. This system
assumes that the distributed sensors communicate directly through parallel channels, as

illustrated below,

Sensor 1 ,|  Fusion
Yy (® Center
5
Sensor 2 >
V2 () So = Yo (®
S
Sensor N N >
v (®)

Figure 2.1: Canonical distributed detection systems



Note that canonical distributed detection systems assume local sensor outputs can be
received reliably at FC, and the only uncertainty comes from the observation noise. In
such systems, two problems are to be solved: one is the decision rule (or fusion rule) at
FC and the other is the signal processing schemes at the local sensors. These two
problems are wined with each other and have to be jointly designed.

For the first problem, if FC knows perfectly the PDF of the gathered information
under every hypothesis, then the optimal fusion rule is the Likelihood Ratio Test (LRT)
[11]. This rule holds no matter the received signals at FC are soft or hard decided, as
long as FC knows the PDF of the soft/hard decided signals. However, when there are
unknown parameters in these PDF’s under different hypothesis, a commonly used
heuristic approach is GLRT [11], although it is not really the optimal fusion rule in
such cases. LRT and GLRT are relevant to our works and they are introduced in more
detail in Chapter 2.2. The second problem is a more complicated one. Under the
conditional independence assumption, the optimality of LRT at local sensors is
established. However, the LRT thresholds for the sensors are connected with each other.
The dominating approach finding the thresholds for local sensors is the
person-by-person optimization (PBPO) [15], where every sensor’s threshold is
optimized assuming the decision rules of all other sensors and FC are fixed. This thesis

does not deal with the second problem so we are not going any further here.

2.2  Neyman-Pearson Detection Rule

The performance of detectors can be measured in many ways, and one popular
indicator is the Receiver Operating Characteristic (ROC) curve. The ultimate goal of
distributed detection systems is to make a global decision s, as in Figure 2.1, and
s, =1 or 0 correspond to claiming H, or H,, respectively. There are four relevant
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values describing the accuracy of the global decision, which are Pr{s, =1|H,},

Pr{s, =1|H,}, Pr{sy=0|H,} and Pr{s,=0]|H,}. The first one and the

second one is called the detection probability P, and the false-alarm probability P,
respectively. In most cases of detector designs, the values of F, and P, are a
trade-off, which means that designers can hardly increase P, but decrease P, atthe

same time. The ROC curve plots these two values of the global decision, with P,

being the x-axis and P, being the y-axis. A typical ROC curve is illustrated as

follows:

ROC cune

0.1 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pf

Figure 2.2: An example of ROC curve

According to classical distributed detection theory, a detector generally calculates a

statistic as a function of the received reports from all sensors and then compares the



statistic with a predetermined threshold. If the statistic is larger than the threshold, the

detector claims the event happens, vice versa. The £, and P; of the detector move

along the ROC curve as the threshold changes, that is, the detector operates along the
ROC curve. A reasonable detector design always leads to a concave ROC curve above
the straight line connecting points (0,0) and (1,1). To see this, consider a detector
which tosses a biased coin in making decision whether the event happens. The
performance of the detector moves along the straight line connecting points (0,0) and
(1,1) as the bias of the coin changes, without using any information of observations.
Therefore, any detectors utilizing the information of observations guarantees a better
performance, which in turn results in an ROC curve above the straight line.

In the cases of binary hypothesis test, namely the detector decides only between
H, and H,, a popular detection rule LRT proposed by Neyman-Pearson [11]. It
guides how to obtain the maximum detection probability given a value of acceptable
false alarm probability. Specifically, denote x the received signal. The probability

distributions of x depend on the underlying hypotheses, which are denoted as

p(x;H,) and p(x;H,). The theory is stated as follows:

To maximize F, foragiven P, = «,decide H, if
LX) = ﬂ
x; H,

where the threshold ~ is found from

Pf - j;x:L(x>>7}p<X;7—{0)dX —Q
The function L (x) is indeed the ratio between the two likelihood functions, and that

is why the entire test is called Likelihood Ratio Test.

LRT assumes the prior knowledge p(x;H,) and p(x;H,) isavailable. However,



in many cases there are unknown parameters in the prior knowledge, for example the
prior knowledge is probably p(x;@o,HO) and p(x;&l,Hl), where 6, and 6, are

unknowns. LRT then serves as the foundation of modification in such cases. Two
major approaches to these situations are Bayesian approach and GLRT.

Bayesian approach considers the unknown parameters as realizations of random
variables and assigns to each of them a prior PDF. Following the previous example of

binary hypothesis, it has
p(xHy) = [ p(x|0y;Ho)p(6)d6y
p(X;H1) = fp(x | 91;H1)p(91>d91
It then applies the optimal LRT and decides H, if

p(xH) _ [ p(x16,:H)p(6,)d6,
p(x;Hy) fp(XI%;Ho)p(@o)d@o

>y

This approach has to make further assumption about the unknowns 6, and @,, and it
often require multidimensional integrations, which are often too complicated to
implement in practice.

GLRT still borrows the way LRT detects because it is the optimal rule when the
prior knowledge of probability distribution is known. Instead of making the
probabilistic assumption of the 6, and 6,, GLRT replaces the unknown parameters
by their maximum likelihood estimates. This replacement is straight forward but there
are no optimal criteria involved, and it has been shown that GLRT is generally not the
best detector in the cases where unknown parameters are present. Although it is
probably not optimal, it is still a popular approach in practice due to easy
implementations.

In analyzing detectors for situations with unknown parameters, one often generates

the optimal LRT by replacing the estimates of the unknowns with the real values,
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which are inaccessible in practice. It is the so-called clairvoyant detector, which is of
theoretical interests for it serves as the performance upper bound for all possible

detectors.

2.3  Review of Wireless Sensor Networks

WSN for detection are distributed detection systems using wireless technology, and
sensors are not physically wired to FC. Each sensor is equipped with an antenna and
transmits its report through the air. We still focus on the model of canonical distributed
detection system, and note that the parallel channels from sensors to FC can be
realized using orthogonal wireless transmission schemes such as TDMA, FDMA or
CDMA. In developing the signal processing algorithms in WSN for detection, the
designer often confronted not only the scarce resource constraints already appearing in
the classical distributed detection systems, but also the unreliable channels. The effects
of channel fading and interference in wireless channels invoke another uncertainty to
WSN, and open up another dimension for the system design. The system block

diagram is illustrated below,
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Figure 2.3: Canonical distributed detection systems with channel blocks

In the block diagram, the blocks in the dotted line can be regarded as the
communication block. A practical and straightforward approach [16] is to separate the
global decision task into a two stage process — first, s, is used to infer about s;, and
then apply the optimum fusion rule based on s,. This methodology treats the
communication block and the classical distributed detection system as two independent
parts so that once the communication problems are solved, the fusion rules developed
in the field of classical distributed detection can be applied directly.

A more basic question arises whether one can design the wireless communication
block alone irrespective of the signal processing algorithm at the local sensors and FC.
The answer is unfortunately negative. When one designs the communication block, all
the efforts are actually placed in recovery the s,’s from the s ’s. However, the
ultimate goal is not to recover the s,’s but to infer the underlying hypothesis, and any
deviating intermediate processing of the signal flow is vulnerable to losing information

for inference. It means that the signal processing algorithms designed for the classical
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distributed detection systems cannot be implemented directly to the systems with
unreliable channels, such as WSN. Designers have to regard the detection problem and
the unreliable communication block as a whole integration, and then derive the optimal
strategy in terms of the detection performance.

Similar problems appear in detection using WSN that signal processing algorithm
at FC and at local sensors should be redesigned taking into account the channel state
information (CSI). Some channel-aware algorithms have been proposed and indeed
perform better than directly applying the classical detection methods. For the former
problem, if the local sensor decision rules are given, the fusion rule design goes back
to the centralized detection problem and classical detection rules apply, for example
the LRT rule. The previously mentioned two-stage process is shown to approximate
the optimal LRT rule when SNR is high, which is often a demanding requirement for
WSN. Note that the degree of knowledge of channel actually affects the corresponding
fusion rules, for example, whether FC can coherently detects or not results in different
fusion rules.

The proposal [5] gives an important example of fusion rule design incorporating
CSI. In its scenario of canonical WSN, in addition to knowing full CSI, FC has to
know the performances of all local sensors in terms of local detection and false alarm
probability. Remind that given the local sensor performance, the fusion rule design
goes back to the centralized detection problem, and the optimal fusion rule is LRT.
However, the formula of LRT is too complicated and the paper then proposes its
approximations in high and low SNR, termed A, and A,. The low-SNR fusion rule
assembles MRC statistic for diversity combining, which in turn motivates a heuristic
fusion rule assembling EGC, termed A,. The paper also provides a new fusion rule
called LRT-CS which requires only the channel statistics instead of the instantaneous
CSI. Surprisingly, the high-SNR approximation of LRT-CS turns to A, and low-SNR

12



approximation of low-SNR turns to the heuristic alternative A,. Simulations show
that the proposed LRT-CS rule outperform A, and A;, and it performs better than
A, for most practical SNR values.

After surveying relevant papers, we find that in general, most papers in
channel-aware fusion rule assume that the local sensors’ decision rules, or alternatively
their local detection performance characterized by detection probabilities and
false-alarm probabilities, are known to FC. However, these scenarios ignore the
possibly unknown sensor responses to the occurrence of the interested event. In our
work, the false-alarm probability of sensors is properly assumed not to change
significantly with the environments because false-alarm probability is defined under
the condition where the event is not happening. However, the detection probability is
probably varying with the intensity of the event. For example, consider a sensor
network deployed to monitor the rise in temperature in a room to detect the outbreak of
a fire. In practice, the characteristics of a fire are uncertain, e.g. the mean temperature
may vary from 100 to 1000 degrees depending on the severity of the fire or the type of
the fire. Moreover, the characteristics of the fire are probably time-varying. As is
introduced above, when there are unknowns in the PDF of the received signals, the
optimal LRT rule is not applicable anymore and the alternative method GLRT puts the
ML estimate of the unknown into the original LRT statistic and then compare it with
the predetermined threshold. Our work starts from this popular GLRT and tries to
simplify the complex ML estimates. However, the birth of GLRT is from heuristic
thoughts so that it works fine in practice but not optimally in theory. Moreover, the
formulation of GLRT statistic inherited from LRT is too complicated to analyze even if
the ML estimates are simplified. These two main reasons motivate our design of new
simple detection rule, which even performs far better than GLRT. In the following

sections, the performance of the proposed simple detection rule is analyzed and the
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effects of channel impairments on the performance are also investigated. Finally, the
corresponding power allocation strategy is proposed, which further improves our

system in terms of ROC curves.
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Chapter 3

GLRT Based Detection Method

3.1 System Model

Consider WSN of N identical sensors for detecting the occurrence of the event of

interest. Specifically, the sensors monitor a certain parameter in this event. If this
parameter exceeds a certain value, they should claim the event happening and transmit
their decisions to the FC. The FC then combines all these decisions from the sensors
and makes a global decision on whether the event is happening. Detailed system model
description for each stage is introduced as follows. In the first stage, the status of the

event can be regarded as binary hypothesis with 7, and 7, denoting the absence

and presence of the event, respectively. Each sensor makes its binary decision on the

hypothesis, transmitting s, =1 ifitclaims 7, and remaining silent if it claims 7,
i.e., s €{0,1}. Thatis, the reports to FC are hard decisions. Assume uniformity of the
phenomenon of interests in the area where WSN is deployed, so that each sensor
subjects to a known identical false-alarm probability p, = Pr{s, =1| Ho}é Ty
which can be measured before deploying the WSN. Assume also that each sensor
possesses an unknown identical detection probability p, = Pr{s, =1|H,} = m,

which has to be estimated at FC.

The sensors then transmit their 1-bit decisions s, through binary symmetric

channels with different cross-error probabilities. Assume FC knows the CSI and is in

15



turn aware of these cross-error probabilities. The signals received by FC are denoted as
r. and

Ty (1—&;)+(1—m,)e;, (eventisabsent),

Pri{r =1\ = ' 3.1
tn =1 m(1—¢)+(1—m)e;, (eventispresent). &)

Receiving r = [r;,7,...,7y| the FC then applies the fusion rule and makes global

decision s, = f(r) on the event. The system then has a global performance featured

by the global detection probability P, = Pr{s, =1|H,} and global false-alarm

probability P, = Pr{s, =1|H,}. Detector performance of the system is evaluated

using the ROC curve. The block diagram is illustrated as follows:

Sensor1 | Channel 1 | " Fusion
Pa/ Dy Center
Sensor2 | 2 Channel2 | 2
— pd/pf Sy =f@®

Sensor N | ° | ChanneIN | 'V
P/ Dy

Figure 3.1: System model

3.2 GLRT based detection method

Assume that the set of Bernoulli random variables {r.} are conditionally

independent given the event under the test, the joint probability mass functions of

16



r =[n,7,...,7y] Under m, and m are

N _ -
p(r;m,,) = H[(l —2¢;)m, + 5i]rz [‘(1 —2¢;)m, +(1- 5z‘>]1 L, m=01 (3.2
=1
The binary hypothesis thus reforms as
Hy it ~ p(r;m) (event is absent),
: (3.3)
H, :r ~ p(r;m ), ™ > m, (eventis present).

As described in Chapter 2, a commonly used detection method is GLRT, which

claims H, if
ir log (1—2¢,)m +¢
In p(r;m)  |i=1 Z (1—2¢;)m +e, > (3.4)
p(r;7,) N (1—2@)7?1—(1—81-) B .

-I-Z(l—ri)log

1=1

(1—2¢)m —(L-¢)
where 7 is the ML estimation of 7, and v is the predetermined threshold. The

OIn p(r; T, )

87T1

ML estimation solves = 0, which turns to

T N

N 1—r
Z - =0 (3.5)

=1 T [57; /(1= 252‘)] - ;Wl - [(1 —&)/(1— 252‘)]

3.3 Proposed Simplified ML solution

To obtain the ML solution of 7, one has to solve certain roots of the polynomial
with order N —1. It can probably be achieved by numerical techniques, but no

analytic solution exists. Thus for higher SNR, an approximated solution is proposed.

In the high SNR case, ¢, ’s are small and we has

i = (1+25/,+45,2 —1—---)8, ~ ¢ and
1—2e, ‘ ‘ o
o T (142 +46] +-)(1—&) ~1+e¢, (3.6)

by neglecting the high order terms. With (3.6), Equation (3.5) approximates to
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iV: iv: iv:rz _l_si)+(1_7;‘)<7rl+5i>20(3'7)

i= 17T1+€ i=1 (1+5 i=1 m—m—gl—g)
Again by keeping only the first-order term in the denominator in each summand and

with rearrangement, (3.7) then becomes

iﬂ-l +¢& — (2, + r;

2
i=1 ™ T g

=0 (3.8)

Also assume that ¢, ’s are small so that 77 — 7 —e, ~m — 7, and (3.8) is further

simplified to

LS m e, (264 D] =0 (3.9)

7T1 — T =1

Thus, as longas m = {0,1}, 7, isobtained by solving

f:[m +e—(2+Dr]=0 (3.10)

=1

and the resulting approximated ML scheme is

1 N
a4 = NZ[(H%M; = &] (3.11)

=il

3.4 Computer Simulations

To examine the accuracy of the proposed simplified ML estimate, this work uses
mean square error (MSE) as the indicator of accuracy. The parameter to be estimate

Pr{s, =1|H,} =m is setto be 0.4, and we normalize the MSE to this value. Figure

3.2 shows the normalized MSE versus the mean cross-error probability.
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Figure 3.2: Accuracy of the proposed simplified ML estimate

Simulations tell that the proposed ML estimate approximates closely to the real one

when the mean cross-error probability is small, for example below 0.2.

3.5 Discussion

Although the proposed Formula (3.11) is only an approximation of the true ML
solution, the property of being affine in the data r’s makes it more attractive and
potentially amenable for analysis. Simulations show that the mean square error

between Equation (3.11) and the true ML solution is quite small when mean

cross-error probability is small. Accordingly, the performances of GLRT by 7, and

the true ML solution are also quite close. The solution (3.10) also has an appealing
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interpretation. Let’s consider the case where each communication link subjects to an

identical cross-over probability, i.e., ¢, =¢ for 1 <7< N. The received data r,’s
are thus regarded as i.i.d. Bernoulli random variables with “success probability”
Pr{r =1} =m (1—¢)+(L—m,)c when change is present. According to [17] and

the invariant property of the ML estimate [18], the exact ML solution is obtained as

1 [1X
7 = —> n—e¢
1-2¢|N i3 (3.12)
g
- ;1 2e 1—25_ ;1 2 1-2¢

In high SNR case where e is small, we have (1—2¢) " =(1+2 +4¢” +---)

Keeping only the zero-th and first order terms, (3.12) becomes

7 Z[ (1+2e)r —¢]. (3.13)

Hence, the proposed approximate ML estimate (3.11) can be regarded as a direct

modification of ﬁf) in (3.12) to take non-uniform communication link errors into

consideration.

We can also interpret the simplified ML estimate as a modification of the voting
scheme. If the sensors report their signal through perfect channels, the fusion center
actually receives r, =s, and then makes an estimate on Pr{s, =1} . The
corresponding best unbiased estimator uses the voting strategy, which uses the mean
value as the estimate of Pr{s, =1}. Assume now s;’s pass through BSC’s with
identical cross-over probability e, we have Pr{r =1} =m —2em +¢ when M

is true. The voting rule or the mean of r.’sisthus m —2em +¢,i.e,
1 N
NZQZW1—26W1+EZW1<1—2€)+€ (3.14)
1=1

To obtain 7, from (3.14), after manipulation we arrive at
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™ = :—Z L

1-2¢ NZl1-2c 1-2¢

(=N, —e) N .
I

] (3.15)
%;( (1+42¢e)r, —¢)

We arrive at the same conclusion as (3.13), which suggests the simplified ML estimate
is actually nothing but a modification from the natural voting scheme.

3.6 Summary

An accurate approximation formula (3.11) to the true ML solution is derived and it
has a natural interpretation related with the straightforward voting scheme. This
formula is more tractable in that it is an affine function in the received signal r,’s. To
accomplish the GLRT test, the FC then adopts this simplified ML estimate in the LRT
statistic and compares it with a predetermined threshold. However even with the
simplified formula, the achievable detection performance of GLRT, in particular the
impact from channel impairments, remains quite difficult to characterize especially

when the number of sensors is finite. It motivates us to propose an alternative detection

rule which can exploit the affine nature of 7. and result in analytic study of the link

1

error effects.
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Chapter 4

Proposed Detection Method

4.1 Proposed Simple Detection Rule

It is shown that GLRT is merely a heuristic approach, nor does it involve any
optimality criteria in deriving this rule. Even if the proposed ML approximation is
simple, it helps little after being adopted into the GLRT statistic, which motivates
another simpler fusion rule that can benefit from the ML approximation. Note that at
receiving r’s, the FC is actually applying the ML estimate 7 for Pr{s, =1}.
Because Pr{s, =1|H,} =m and Pr{s, =1|H,} =m,, ideally, 7~ m when

H, occurs and 7 ~ 7w, when H, occurs. A simpler and more natural alternative is

to obtain 7 first and then compare it with the known p, = m,. More specifically, the

FC can be designed to make the following decision

Hy:m—m <~
4.1
H 7w —my >y (4.
where ~ was the predetermined threshold.
The main advantage of the proposed decision rule (4.1) is that, unlike the GLRT in

(3.4), the test statistic in (4.1) is affine in the estimate 7, and hence is affine in the

received data r;’s. The proposed method also directly utilizes the parameter that really
reflects the different hypotheses. Based on these attractive features, performance can

be characterized analytically as shown below.
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4.2 Performance Analysis

A

To proceed, let’s write 7 as

N
ﬁ:FZ[1+25 r—a]:%; (14 2¢;) r—ﬁgs (4.2)

i=1

£T
and T'is substantially the equivalent test statistic. Since r, € {0,1}, T assumes a finite

number of alphabets, which are to be specified. First, for each 0 <k < N, define

RS {I{k I ',I(C’f_x?} to be the collection of all distinct k-element subsets of
{1,---,N}, where CY 2 N!/[k!(n—k)!] and I'” = {¢}. Each element in 1"

maps to a possible value of T', thus for each 0 < k < N, let’s define S™) be the set

consisting of all possible values of 7'when £ sensors are active, that is,

5) £ {T | k sensors are active} = { 1(]“),52(1“),-~-,S(Ck}\)]} (4.3)
k
where S = N7k 42 Z e, |. Asaresult,
16]
N -
T e |Js™, where S = {0} (4.4)
k=0

Note from (4.4) that there are totally C) +CY +. 4Oy =(1+1)" =2"

possible values of T.

To facilitate further investigation, assume without loss of generality that, for each

1<k <N, theelementsin S* are arranged so that S < S{M < ... < S(C’j)v ie
k

N 'Ek+2Y g|<N!

z‘e]fk)

k+2> ¢

z‘e]ém

< <N HE+2Y &| (45

)
ZE[(
cy

Also, let 1< k <N be such that
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N
N! §%+%Zq+v<N4

1=1

k42> ¢

ie]{]“l)

MH+2Zz{ (4.6)

ie]fk”l)
1 N
By definition of the detection probability P, = Pr {T > my + NZ@ + 7| Hl}, the
=1
lower bound for P, isthen
P, > pY (4.7)

where based on (4.6) and (4.3),

Pd(L) — Pr {S(kz-i-l) usk+t2 . ysW) | 7, S '[I’UE}

N OF (4.8)
= > S ATl a=2)m +&] IT [-(1—2¢)m + (1)t
k=k+11=1 Z-efl(k) igflw)

N

Similarly, for the false-alarm probability P, = Pr {T >, +%Zsj + 7| HO} an
=1

associated lower bound can be obtained as

T (4.9)

PP = Pr {S(’W“) usShtD y . us™ | g, is true}

NG (4.10)
= > > 11l [(1_251:)”0 +5i] I1 [_(1_2‘51:)”0 +(1_8i>] .
k=k+11=1 ie][("') i%];k)

Observe that the performance bounds in (4.8) and (4.10) depended on the link error
probability ¢,’s. This allows for further discussions on the impact of the channel
effect on the detection performance, as in the next sections.

The performance a thirty-sensor WSN is simulated as the blue ROC curve in
Figure 2.1. The channel model is the same as that in Chapter 4.4 and the average

cross-over probability is 0.023, which is small enough to validate the bound derivation.
The local detection and false-alarm probability are 0.6 and 0.4, respectively. The

proposed bound is plotted as the red ROC curve. It can be seen that the proposed

bound is tight enough to evaluate the performance of the proposed fusion rule.
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Figure 4.1: Accuracy of the proposed performance bound

4.3 Impact due to Channel Effects

The performance formulas in (4.8) and (4.10) remain non-linear functions of ¢_’s.

It is still difficult to assess the effects of non-ideal communication channels.

Remember that the proposed ML solution is derived under the high-SNR assumption.

By further exploiting the assumption that ¢ ’s are small, (4.8) and (4.10) can be

simplified considerably, as in the next lemma.

Lemma 4.1: For small g;’S,

PP = Y Aﬁ[i@] > B (4.11)
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where

A E2CY(1- Wl)Nik Wf

A k-1 N—k—1{N_1 N1 (4.12)
B, &2m (1-2m)1-m) (Ckfl (1-m)-C, 771)
Similarly,
; N N N
CEEI R 8l B i) 413
k=k+1 =1 k=k+1
where
C,20Y (1—W0)N7kwg 414)
4.14
D, 2! (1—2m)(1—m, )Nﬁkil (Cévfll (1-m)—C; _170)
Proof:

Based on (4.8) and (4.10), (4.11) and (4.13) are obtained by neglecting the high-order

terms of ¢, ’s and then some manipulations. The binomial coefficient comes from the

summation of all possible combinations given k sensors are active. L]
While the bounds (4.8) and (4.10) are quite complicated functions of ¢ ’s, in the

high-SNR regime, the detection performance is closely related to the summed

N
cross-error probabilities, namely > e, . Still, the fact that P;*) and P{*) depend on
1=1
N N
> e; does not explicitly indicate how the variation of » ¢, influences the detection
i=1 i=1

performance. However, under some reasonable assumptions on p, and p,, this work
N

proves that minimizing > e, guarantees a better detector performance in terms of the
i=1

ROC curve, as precisely stated in the following theorem.

Theorem 4.2: Assume m, < 0.5 <. Given a fixed false-alarm probability P;, let
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P and P/ be two detection probability lower bounds associated with two

N N
different summed link errors E=>"e, and E' =) ¢/, respectively. If E' < E,

1=1 1=1

then P/“) > P, ]

Proof: See Appendix A

Theorem 4.2 suggests that, when the condition 7, < 0.5 < is fulfilled, the

global detection performance improves if the summed link error rate can be made

small. The assumption 7, < 0.5 < is actually not too demanding for any
reasonable sensors. Inspired by Theorem 4.2, a sensor power allocation scheme for

enhancing the global detection performance is developed next.

4.4  Proposed Power Allocation Strategy

Recall that the ith sensor transmits s, =1 when it claims 7, and transmits

nothing when it claims H,. Namely, the sensors report their one-bit decisions using

on-off keying to conserve energy. After incorporating the power allocation strategy, the

ith sensor actually transmits s < {0,1} multiplied with an amplitude factor aq,,

which is to be designed later on, and the corresponding power allocated to this sensor
is p, = a’. Assume the communication channel between the 4th sensor and the FC is
flat and Rayleigh distributed with the current channel coefficient h,, with the average

power normalized to 1. Knowing these current channel coefficients, the FC can then

apply the coherent detection and the received signal y, from the ith sensor could be

described by a commonly used discrete-time baseband model
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v, = has, +n;,, 1<i<N (4.15)

17171

where n, is the zero-mean Gaussian noise of variance NO/Q. The corresponding

hi,2 p;

cross-over probability of the 4h link is then e =@ N
0

7

,  Where

Qt) & (\/ﬂ)flftoo exp|—u’ /2|du is the Q-function.

Under a total transmit power budget P, the optimization problem can be formally

stated as

N 2
{p; W l—arg mln ZQ \/W ) =arg min Y _ Q( M)

PN =1 P1y--PN ;=1 2N0

(4.16)

subject to Zpi =P, p >0
i=1

The optimization problem of the form (4.16) has been addressed in the context of
MIMO wireless communications [19, 20]. Note that the cost function and the
inequality constraint are convex and the equality constraint is linear. The optimization

problem is thus convex and the Kuhn-Tucker conditions are necessary and sufficient
conditions for finding {p*}\_, .

Define the Lagrangian function as:

N

X => QW) — Zupz-l-)\

i=1 i=1

N h2
—P|, y, =— 4.17
; ] %= 9N (4.17)
where {u,}Y, and A\ are KKT multipliers and Lagrange multiplier, respectively.

According to the theory of optimization, {p: W, {u,}Y, and X should satisfy the

following conditions:
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@) p; >0, 1<i<N
(4) u; >0, 1<i<N
(5) up/ =0, 1<i<N
Condition (1.) turns to

Dig P g N 1<i<N (4.18)
For a fixed value of A, w, and p’ can be chosen for every i as follows
1. Ifthereisa P >p, >0 thatsolves (4.18), then choose u;, =0 and p’ = p,
2. Ifthereis nosuch p;,choose p =0 and u; = o0

Thus, the minimizer {p*},_, can be expressed as p; = max (0,p,).

To clarify further, demonstrated below is the flow chart of the power allocation

procedure:

_(0) _
A=2A0 <0, Ax=2

v

Calculate the Transmit Power
p; for Each Sensor

/ﬁe—pm =-)\ 1<i<N
p;

|P" — P| < tolerance ?

A

'

The Current Power Used

A=A—AN Ax=A% A=A+ AN Ax=A%

P/ = Zj\;lpi

Figure 4.2: Flow chart of power allocation strategy
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4.5 Summary

To solve the problems that GLRT is not optimal and the GLRT statistic is too
complicated, a simpler and more straightforward fusion rule is proposed. The proposed
fusion rule conserves the affine properties of the approximated ML estimate and is in

turn affine in the received signals, which enables the performance analysis. A tight

bounds of P, and P, are proposed and then simplified under the assumption that

the SNR is moderately high. These bounds are derived not only to evaluate the

performance, but also to facilitate investigation of the channel effects, which is
accomplished by locating the simple channel-related term Z«,];V:ﬁz‘ in the
approximation formulas. However, it remains unclear how to improve the ROC curve

N
i=15i -

because both of these approximations remain complicated functions of
Despite of the fact, it is proved that under some more reasonable assumptions,

minimizing vazl g; Quarantees a better performance. At the end, a power allocation

strategy aiming at minimizing Z«,];V:F

7

is proposed. Simulations of this work are

demonstrated in the next chapter.
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Chapter 5
Computer Simulations and

Discussions

5.1 Computer Simulations

The performances are simulated for the proposed detection rule with and without
transmit power allocation, and then are compared with those for GLRT. The
simulations of the LRT performance are also provided, which serve as the upper bound
of any possible detector designs. In all simulations, the channel coefficients are
assumed flat and Rayleigh distributed with the average power normalized to 1.

Figure 5.1 shows the ROC curve for an WSN of twenty sensors with uniform local

detection probability p, = 0.6 and local false-alarm probability p, =0.4. The

noise power is N, = 0.05. The blue line is the performance of the LRT detector with
power allocation proposed in this work. The black solid and the red dash curves are the
ROC curves of the proposed fusion rule with and without power allocation,
respectively. The black solid and the red dash curves with circles are the ROC curves
of GLRT with and without power allocation designed for the proposed fusion rule,

respectively.
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Figure 5.1: ROC curve of twenty-sensor network

From the above figure, the proposed fusion rule without power allocation (red dash

line) outperforms GLRT in P, by 10 to 15 percent given a value of P, small

enough to have practical interests. After power allocation, the performance of the
proposed fusion rule even approaches the optimal LRT bound (blue solid line).

Figure 5.2 and Figure 5.3 are based on similar environment settings as Figure 5.1,
but the number of sensors changes to 30 and 50, respectively. As can be seen, similar

results appear but the extent of increase in P, becomes smaller. The phenomenon

will be described shortly in this section.
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Figure 5.2: ROC curve of thirty-sensor network
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Figure 5.3: ROC curve of fifty-sensor network
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Figure 5.4 illustrates the influence of the number of sensors on the relative increase

in P, of the proposed fusion rule with power allocation over GLRT, given the global

P, =0.1. As the number of sensors increases, the detector is expected to perform

better because it has more information-bearing reports to make a correct decision.
Asymptotically, when the number of sensors grows to infinity, all detector designs that
use the information in the received signals have so much information available that
their ROC curves approach to the left-upper corner, same for GLRT. That is why the
improvement of the proposed fusion rule over GLRT diminishes as the number of
sensors increases, and the proposed fusion rule improves P, significantly for smaller

number of sensors.

0.16

0.14

0.12

Improvementin Pd
o
o
oo

Number of sensors

Figure 5.4: Relative increases in P, over GLRT vs. number of sensors
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Figure 5.5 demonstrates the relations of the relative increase in P, of the

proposed rule with power allocation over that without power allocation versus the
average transmit power per sensor. The P; is fixed to 0.1, and other environment
settings remain the same, ie., p, =0.6, p, =0.4 and N, =0.05. Interestingly,

the improvement in P, is smaller when the average transmit power is too high or too

low, and there is a peak improvement when the average transmit power is equal to

about 0.8.

0.04

0.038

0.036

0.034

Improvement in Pd

0.032

0.03
05 06 07 08 09 1 11 12 13 14 15

Average power per sensor
Figure 5.5: Relative increase in P, from power allocation

vs. average power for N, = 0.05
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Figure 5.6: Relative increase in P, from power allocation

vs. average power for N, = 0.15

Figure 5.6 also demonstrates the relations of the improvement in P, from power
allocation versus the average transmit power per sensor, but this time the noise
variance increases by three times, i.e., N, =0.15. Note that the peak of the
improvement in P, now moves to the average power of about 2.4, which is three
times larger than the peak average power in Figure 5.5. The reason for the relation
between Figure 5.5 and Figure 5.6 is explained as follows. In Equations (4.11) and

(4.13), the channel effects only go into the value of ¢,’s. Given a realization of s,

E; :Q( /hfpj/2NO) only depends on p, and N,. If the average power p, and

N, keeps the same ratio, they would produce the same value of ¢,’s. The cross-error

probabilities before and after power allocation will be the same for all the same ratio of
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p; to N,. The effects of fixing p, and changing N, match that of fixing N, and
changing p, . Specifically, the improvement in P, at average power 0.8 in Figure 5.5

matches that at average power 2.4 in Figure 5.6.
To illustrate why too high or too low average power leads to smaller improvement

in P,, two ROC curves are illustrated for these two extreme scenarios. Figure 5.7

shows the case where the average transmit power is 0.1, which is extremely small, and

Figure 5.8 shows the case where the average transmit power is 3, which is

comparatively high.

Proposed scheme with power loading
——- Proposed scheme without power loading

0 04 02 03 04 05 06 07
P

0.3

Figure 5.7: ROC curve of thirty-sensor network with average power 0.1
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Figure 5.8: ROC curve of thirty-sensor network with average power 3

As expected, when there is no power allocation, the performance of the proposed
fusion rule with higher transmit power is already better than that with lower transmit
power. Also note that in the case of higher average power, the gap between the
proposed fusion rule without power allocation and LRT (with power allocation) is
already smaller than that in the low-average-power case. It is reasonable because when
the average transmit power is high, even if there are no power allocations, the ¢,’s are
already quite small. Power allocation cannot make the performance of the proposed
detector better than that of LRT and thus the increase in P, is small. It can also be
explained as follows: the improvement in P, becomes small because the power
allocation changes ¢, ’s from already small ones to smaller ones.

When the average transmit power is small, it is seen from Figure 5.7 that the

proposed fusion rule without power allocation performs much poorly than LRT with
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power allocation. In contrast to high-average-power case where the improvement in
P, is somewhat “upper bounded” by LRT, the low average transmit power deprives
the FC of the margin to tackle with the channel impairments. Thus, the ¢, ’s decrease

insignificantly after power allocation, which make the improvementin P, small.

5.2 Discussion on Proposed Method

Simulations indicate that the proposed detection rule outperforms GLRT
significantly, in terms of ROC curve. After the transmit power allocation, the ROC
curve of the proposed rule moves to the left-upper corner and even approaches the

LRT bound. It means that the proposed method with power allocation is nearly optimal.

Also, we can see that for any given value of P;, the improvement in P, has a peak
at a certain average transmit power, termed p, ... . Average transmit power lower than

Pyear. 1S 100 small to have large improvement in P,, and the ROC curve of the

proposed method after power allocation still has gap from that of LRT. Average

transmit power greater than p,... is large enough to raise the ROC curve of the

proposed fusion rule to the LRT’s ROC curve. But as the performance gap between
LRT and the proposed fusion rule without power allocation becomes less, the extent of

improvement is thus less. The ROC curve of the proposed rule with power allocation is

somewhat “upper bounded” by that of the optimal LRT. Although p,., generates the

peak improvement, it is not really the so-called optimal transmit power from the global

perspective. Indeed, this work suggests using the average power greater than p

because the system performance can approach that of the optimal LRT, but note that

while the transmit power is larger, the ROC curve of LRT still moves to left-upper
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corner. Since the performance of our work with power allocation approaches that of
LRT, the resulting P, is still increasing with the total power, although the extent of

improvement in P, is decreasing. After all, designers can choose a certain transmit

power larger than p, . to obtain the desired optimal ROC curve.

To find the reason GLRT performs poorly, we first notice that in LRT all the

parameters in p(r;#;) and p(r;H,) are assumed known by FC, which can directly

adopt these parameters in calculating the likelihood ratio. Most importantly, these
values of parameters do not depend on whether the underlying situation is H, or H,.
However in GLRT, we only obtain the formula for estimating these parameters and
these estimates are differentin 7+, and 7, . Take the system in this work for example,
although GLRT asks for Pr{s; =1} given that 7, is true, the derived ML estimate
approximates m, only when 7, is actually happening. In other words, it is not
possible to obtain the estimate of =, if itis 7, that is happening. In such case, the
FC can only obtain Pr{s, =1|™,}, which is close to m,. Consequently, although
GLRT takes a similar form as LRT, it does not actually behave the same. Even in
asymptotic case, i.e. through extensive computer simulations, there is still a gap

between the ROC performance of LRT and GLRT.

5.3 Summary

Simulations indicate that the proposed simple fusion rule with power allocations
outperforms GLRT rule significantly, especially when the number of sensors is small.
With average transmit power moderately large, the performance of the proposed fusion
rule with power allocations can even approach the ROC curve of the optimal

clairvoyant LRT detector. When the transmit power is too low, power allocation does
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not improve much and there is still a gap from the optimal ROC curve of LRT. When
the transmit power is larger than a threshold, power allocations can raise the ROC

curve of the proposed fusion rule to that of LRT. However, the relative increase in P,
diminishes because the performance with power allocation is upper bounded by the

ROC curve of LRT.
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Chapter 6

Conclusions and Future Works

In the beginning, this thesis traces some important developments of distributed
detection systems, and a popular system model called canonical distributed detection
system is introduced, where sensors transmit their reports reliably and directly to FC
through parallel channels. Two problems in canonical distributed detection systems are
to be solved: the fusion rule design and the signal processing algorithm at local sensors,
and our work focuses on the first one. In the WSN cases where channels cannot be
assumed reliable anymore, following the important concept that fusion rule design and
the channel effects should be considered jointly, this thesis surveys many works of
channel-aware fusion rule design and finds out that most of these works do not address
the problems where sensor performances are not known to FC. If the sensor
performances are necessary in fusion rule design, estimations must be conducted at FC.
Although GLRT can be applied to tackle these problems, there are rooms for
improvement because firstly, the GLRT statistic is too complicated and secondly,
GLRT does not guarantee the optimal performance.

In Chapter 3, the system model in our work is described in detail. The probability
distributions of the received signal at FC are derived, which are indispensable in many
fusion rule design, including GLRT. The formula of GLRT statistic is then derived for
our system, and as is mentioned above, it is too complicated to analyze; moreover, the
ML solution in the GLRT statistic is also complicated. This thesis then proposes an
accurate approximation of the ML solution in high SNR, which is an affine function in

the received signals, and can be reasonably interpreted as a modification of the voting
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scheme. However, even after replacing the simplified ML solution in the GLRT
statistic, the GLRT statistic remains complicated.

Aiming at reducing the complexity of GLRT and at seeking for a better
performance, this work then proposes a simpler fusion rule in Chapter 4. The greatest
advantage of the proposed fusion rule is that it is simple and retains the affine
properties of the proposed ML approximation, making it easy to analyze. The rule also
uses the core information reflecting the state of the environments. A tight bound for the
ROC curve is proposed and for high SNR, it further indicates that the channel effects
come into the bound of global detection and false-alarm probability only through the
summation of cross-over probability. A proof is also given under some reasonable
assumption, claiming that minimizing the summation term guarantees better
performance in ROC curve, and a power allocation strategy is then proposed to meet
this goal. Simulations show that the proposed fusion rule outperforms GLRT, and after
power allocation, the ROC curve of the proposed fusion rule can even approach the
optimal LRT benchmark.

The key reason GLRT performs poorly is that in contrast to LRT where the
environmental parameters in LRT statistic are known and identical in all hypotheses,
GLRT replaces these fixed parameters with the ML estimates, whose values vary
between different hypotheses. In sum, GLRT only borrows the formula but behaves
differently. Another interesting feature of the proposed fusion rule is that channel
effects come into the performance by the summation of cross-over probabilities. It
means that the sensors with poor channels should transmit more power as
compensation, which is different from the conventional communication system that to
maximize capacity, water-filling is applied so that some parts of system with poor
channels are allocated less power or even turned off. Note that the basic difference

between these two systems is that in conventional communication systems, the
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transmitted signals from the transmitter are the same; given limited communication
resources, a plausible way is to use these resources as efficiently as possible. In
contrast, sensors in WSN make their decisions independently and each sensor should
have “the same rights to speak.” The formulas of the performance reflect this
reasoning because it is the summation of the cross-error probabilities that have the
strongest impact. To summarize, in the scenario where there are unknowns, instead of
adopting the commonly used GLRT rule, this work highlights the potential of
designing a simpler fusion rule that outperforms GLRT, and then indeed proposes one
fusion rule whose performance can even approach that of LRT, which is the optimal
fusion rule for the cases where there are no unknowns.

Some issues are not addressed in this work. Recall that the sensor report s, and
the received signal . at FC are elements of {0,1}, namely they are hard decisions.
Hard decisions in many cases lose the original information and thus perform worse.
Accordingly, we expect that changing from hard to soft decisions results in better
performance, but the analyses will be more involved. Another issue is that in WSN, it
is probably demanding to obtain the instantaneous CSI. In our work, utilizing the
instantaneous CSI and applying power allocation lead to an ROC curve close to that of
optimal LRT. However without CSI and the resulting power allocation, there is still
gap between the performance of the proposed fusion rule and that of optimal LRT. One
future work is thus to design another fusion rule that uses less CSI or just the statistic

of the channel, while still performing better than the proposed fusion rule in this work.
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APPENDIX A:

PROOF OF THEOREM 5.2

To prove the theorem, first define

N N N N
23 A, S 23 B, S £3C, 8 £3D, (A1)
i=k i=k i=k i=k
where A, and B; are definedin (4.12),and C; and D, are defined in (4.14). The

two technical lemmas shown next facilitate the proof of the theorem.

Lemma A.1: Assume that 7, < 0.5 < . The following results hold.

(1)Both S >0 and S >0 are monotonically decreasing in .

(2) S7 <0 and SP >0 forall k. ]
Proof of Lemma A.1:
Because A4, >0 and C, > 0, (1) follows immediately by definitions.

To prove (2). Let’s write

B, = 7T1 1-2m)(1- 7T1>N7k A Wf (1—2m)(1- 7T1)N7k71 oyt (A.2)
::Qk :Rk

Note that ), = Ry, = 0, duetothe fact ¢V ' =0 and Cy ' =0. Since

N v k-1 N—k ~N-1
Z Q. = (1 - 271)2 S (1 - 7T1> Ciy
k=1 k=1

(A.3)
=1 —-2m)(m +1—m)" ' =(1-2m)
and
fl Nl N—k—-1
kz;; =(1-2m ;;; m(1—m) cy- | (Ad)
=(1—-2m)(m +1-m)V ' =(1—-2m)
it means
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B N N N N N-1
So :ZBi:ZQi_ZRi:ZQi_ZRiZO' (A.5)
=0 =0 =0 i=1 1=0
Furthermore, as m > 0.5,

Sy =m""(1-2m)— 0" as Ngets large. (A.6)

Also observe that

oN-1 (1_7T )—CNflﬂ' _ 1—m)N -1! _ m (N —1)!
i VO T k= D)IN = k) (R)I(N —k —1)!

LN (A7)
= (N —1)l|——T
(B)}(N —k)!
From (A.7) and definition of B, in (4.12), it follows immediately that
B, >0 for k< Nm,and B, <0 for k> Nm,. (A.8)

From (A.8), S decreases for 0 <k < N, and increases for Nw, <k < N . This
result, together with (A.5) and (A.6), imply S < 0. Using the similar techniques, it

can be verified that S” > 0. ]

Lemma A.2: The following results hold.

N N
@) IfF e < 2:1 ,then S/' + 87|13 ¢, | is monotonically decreasing.
1=1 1 i=1
N N
) If Ye < n "0 then S¢ + 8P [Z g;| is monotonically decreasing. ]
i=1 — &7 i=1

Proof of Lemma A.2:

We only proved (1), since (2) can be similarly verified. To proceed, first focus on these

k’s such that k£ > N, . By assumption,

i€.< ™o _ M Xcliv(l_ﬂ)
o' Teom—1 2m—1 CM(l-m)
’ , (A.9)
_ Clév % m(1—m) < C/ﬁv m(l—m)

om, —1 ¢ —mCY ~ 2m -1 CY' —mCf

where the last equality follows due to C,';' < and k> N, . From (A.9) we

immediately have
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N-1 N (N N
Gy —mCy e < G (A.10)
m(l—m) -1 2m —1
Since ¢ =CY,' +¢, (A.10) can be rewritten as
o -m (G + ) & |0 O —me &
m (1 —m) il m(l—m) il
N-1 N-1 N (A1)
e At (). d
™ I-m)) = ") " 2m -1
The last inequality in (A.11) equals to
— _ N
oy & [0,?;1 1=2m _gval22m [Zai > 0. (A12)
m 1—m \im

Multiply both sides of (A.12) by (1 — )" *#F and by rearrangement, we obtain

Cil (1 —m)"

N

257:

i=1

- A | 5 >0. (Al3)
oy 1(1—27T1)(1—7T1)N ¢ 1(0,?211(1—75)—0,?/ 17r1)

By definition of the sequences A4, and B, in (5.2), inequality (A.13) essentially

asserts

N
A + B, [Z €120. (A.14)

1=1

Since Si' — S, =4, and SP —SZ | = B,, (A.14) thus implies

N N
Sit+ 8¢ [Z | > S+ S5 [Z 5] (A.15)
=1 i=1
N-1 CN—l
which proves (1) for k> Nm. If k< Nm then |1 — n L1 <0, and hence
7'('1 — ’7'('1

the last inequality in (A.11) still holds. By repeating the procedures as in

(A.12)~(A.14), the relation (A.15) can also be obtained. The proof is thus completed.
[]
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Proof of Theorem 5.2:

Associated with total error rate E, let (S, SP, S, SP) be accordingly defined as

in (A.1). For a given threshold ~ and with the given E, we can then express the
performance bounds in (5.1) and (5.3) as

P =58, + 80 E and PIY =S + SV, (A.16)
where &, is some positive integer. Now if E is reduced to E’ < E, it follows from

part (2) of Lemma A.1 that

Si+ SPE < S+ SPE' and S{+S)E > S¢+SPE. (A.17)
Since m, <05<m , we have — L >0 and —< >0 . Under the

assumptions of Lemma A.2, we have S,f+S,f’E’ IS monotonically decreasing. Let

kil <k, be such that
k = minfk | Sy + S E' < S; +S,E} . (A.18)
For such &/, it follows that P{*)(k)): = S + SyE' < Sy +S)E = P/ < P;, and
the corresponding detection probability lower bound shall satisfy
PPk = S+ S?E’@S,QJF sPE'Ysit SPE=BP,  (A19)
where (a) holds since S;'+SPE is also monotonically decreasing (see Lemma A.2),
and (b) follows from the first inequality in (A.17). Hence, as E is reduced to E’, we

have P{"(k)> P{*) whenever P{")(k/)< P, . This implies that the detection

probability lower bound P{*" correspondingto P, must exceed Py".
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