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摘    要 

 

由於良好更正叢集錯誤的能力和有效率的代數硬式解碼演算法，里德所羅門

碼 (Reed Solomon Codes) 在最近已成為許多通訊系統所選擇的錯誤更正碼。眾

所皆知，里德所羅門碼的軟式決策解碼相較於傳統的硬式決策解碼能夠提供明顯

的效能改善，但由於其軟式決策解碼的高複雜度，目前大部分的系統仍然使用傳

統的硬式決策解碼器。Jiang 和 Narayanan 於 2006 年提出了一種利用適應性校

驗矩陣，對里德所羅門碼進行軟式輸出輸入解碼的演算法 (JN 演算法)。JN 演算

法能夠避免校驗節點飽和化以及低信任度位置之錯誤傳遞等問題，然而其潛在的

問題在於過度信任高信任度位置的訊息。在本篇論文中，我們首先分析 JN 演算

法失敗的理由。基於我們的討論，我們提出一個新的演算法來避免發生在高信任

度的錯誤所對 JN 演算法帶來的影響並改進其效能。我們的演算法之構想來自於

1995 年由 Fossorier 和 Lin 所提出的 OSD 演算法。在做 JN 演算法之前，我們先

對收到的向量做一些調整。如此一來，一些發生在高信任度位置的錯誤可以被減

少。因此，發生在高信任度的錯誤所造成的影響也可以被減少。和原本的 JN 演

算法比較，在可加性白色高斯雜訊通道並使用雙相位鍵移調變之下，我們的演算

法有大約 0.5-1.2dB 的效能增進。 
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An Improved Belief Propagation Based Decoding

Algorithm for RS Codes

Student: Hsin-Chuan Kuo Advisor: Chung-Hsuan Wang

Department of Communication Engineering

National Chiao Tung University

Abstract

Recently, Reed-Solomon (RS) codes have been the error-correction codes (ECCs) of choice

in many communication systems because of their ability to correct burst errors and the avail-

ability of efficient algebraic hard decision decoding algorithms. It is known that soft-decision

decoding (SDD) of RS codes provides significant performance gain over hard decision de-

coding (HDD), but most systems still are based on HDD because of the high complexity

of SDD. In 2006, Jiang and Narayanan (JN) proposed an iterative soft-in soft-out decoding

algorithm of RS codes by adapting the parity check matrix. The JN algorithm can avoid the

problem of check node saturation and the error propagation from the least reliable positions,

but the drawback of the JN algorithm is to over believe the messages from the most reliable

positions. In this thesis, we first analyse the reason of decoding failure in the JN algorithm.

Based on our discussions, we propose a new algorithm to avoid the influence of errors in

most reliable positions in the JN algorithm and improve the decoding performance. The

basic idea of our algorithm comes from the OSD algorithm, which was proposed in 1995 by

Fossorier and Lin. We modify the received vector before the JN algorithm. Some errors in

the most reliable positions may be reduced. Therefore, the influence of errors in high reli-

able positions can also be reduced. Compared with the original JN algorithm, the proposed

algorithm has about a 0.5-1.2dB coding gain while decoding RS codes in the additive white

Gaussian noise (AWGN) channel under binary phase shift keying (BPSK) modulation.

II



誌  謝 

 

    本篇論文得以完成，首先要感謝指導教授王忠炫博士的辛苦栽

培，在兩年的過程中，教導我研究的態度和方法，並且適時地給予建

議和方向。也感謝實驗室的同學、學長、學弟妹們的鼓勵和幫助，使

得研究能夠順利進行，並度過了快樂的兩年研究生的生活。最後，也

要謝謝一直在背後默默支持我的家人和朋友們。由衷地感謝大家。 

 

 

 

 

 

 

 

 

 

 

                                          民國九十八年七月 

研究生郭欣銓謹識於交通大學 

 III



Contents

Chinese Abstract I

English Abstract II

Acknowledgement III

Contents IV

List of Figures VI

1 Introduction 1

2 Preliminaries 3

2.1 Notations and System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 A Brief Review of RS codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Binary Image Representation of RS codes . . . . . . . . . . . . . . . . . . . . 4

2.3.1 Binary Representation of a Symbol over GF(2m) . . . . . . . . . . . . 4

2.3.2 Binary Representation for Additions over GF(2m) . . . . . . . . . . . 5

2.3.3 Binary Representation for Multiplications over GF(2m) . . . . . . . . 5

2.3.4 Binary Image Representation of RS codes . . . . . . . . . . . . . . . 7

3 The Review of the Previous Works 8

3.1 Soft Decision Decoding Based on Order Statics . . . . . . . . . . . . . . . . 8

3.2 Discussions of the OSD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Iterative Decoding Algorithm by Adapting the Parity Check Matrix . . . . . 12

IV



3.4 Geometric Interpretation of the JN Algorithm . . . . . . . . . . . . . . . . . 15

3.5 Variations to the JN Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5.1 Degree-2 Random Connection . . . . . . . . . . . . . . . . . . . . . . 17

3.5.2 Various Grouping of Unreliable Bits . . . . . . . . . . . . . . . . . . . 18

3.5.3 Incorporated Hard Decision Decoding . . . . . . . . . . . . . . . . . . 19

3.5.4 Partial Reliable Bits Updating . . . . . . . . . . . . . . . . . . . . . . 19

3.5.5 Symbol-level Adaption . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.6 Combine the JN and the OSD Algorithm . . . . . . . . . . . . . . . . . . . . 20

3.7 The Reason of Adapting the Parity Check Matrices . . . . . . . . . . . . . . 22

3.8 The Latent Problem in the JN algorithm . . . . . . . . . . . . . . . . . . . . 25

3.9 The Modified JNOSD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 26

4 A New Decoding Algorithm Based on the JN Algorithm 32

4.1 The Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Discussions of the Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . 34

4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Conclusions 39

Bibliography 40

V



List of Figures

3.1 Form of the Parity Check Matrix Suitable for Iterative Decoding Obtained

through Row Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Performance comparison of three different algorithms of RS(15,7) . . . . . . 21

3.3 Erasure bits will saturate the check . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 The modified tanner graph by JN algorithm . . . . . . . . . . . . . . . . . . 23

3.5 Original Tanner graph. Bit node 3 and 4 are LRPs . . . . . . . . . . . . . . 23

3.6 One error occurs in MRP(bit node 3) . . . . . . . . . . . . . . . . . . . . . . 24

3.7 Message passing when error occurs in bit node 3 . . . . . . . . . . . . . . . . 25

3.8 Modified Tanner graph by JN algorithm . . . . . . . . . . . . . . . . . . . . 26

3.9 Message passing in JN algorithm . . . . . . . . . . . . . . . . . . . . . . . . 26

3.10 Error in bit node 3 and 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.11 Message passing when errors are in bit node 3 and 4 . . . . . . . . . . . . . . 28

3.12 Modified Tanner graph by JN algorithm . . . . . . . . . . . . . . . . . . . . 29

3.13 Message passing in JN algorithm . . . . . . . . . . . . . . . . . . . . . . . . 29

3.14 Distribution of error patterns in MRPs when JN algorithm is failed . . . . . 30

3.15 Distribution of error patterns in MRPs between three algorithms when they

are failed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.16 Performance comparison of four different algorithms of RS(15,7) . . . . . . . 31

4.1 The proposed algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Performance comparison of RS (15,7) . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Performance comparison of RS (15,9) . . . . . . . . . . . . . . . . . . . . . . 36

VI



4.4 Performance comparison of RS (31,23) . . . . . . . . . . . . . . . . . . . . . 37

4.5 Performance comparison of RS (31,25) . . . . . . . . . . . . . . . . . . . . . 38

VII



Chapter 1

Introduction

Reed-Solomon (RS) codes [1] are powerful error correction codes which are widely em-

ployed in many communication systems. For instance, they have been adopted as outer codes

in the third-generation (3G) wireless standard, CDMA2000 high-rate broadcast packet data

air interference, and are expected to be used as outer codes in concatenated coding schemes

for future fourth-generation (4G) wireless systems. In most existing systems, RS codes

are decoded via algebraic hard decision decoding (HDD) due to it’s low complexity. How-

ever, HDD does not fully exploit the error correction capability of the code because of the

loss of the soft information. For example, for the additive white Gaussian noise (AWGN)

channel, the loss is believed to be 2-3dB under binary phase shift keying (BPSK) modula-

tion. Efficiently utilizing the soft information available at the decoder input to improve the

performance of RS codes is a long-time standing open problem.

The generalized minimum distance (GMD) algorithm [2] and the Chase algorithm [3]

are popular soft decision decoding (SDD) algorithms to decode RS codes by modifying

the least reliable positions (LRPs), then use an algebraic decoding algorithm to generate a

candidate codeword. Finally, select the candidate codeword with the best metric as the de-

coded solution. These kinds of algorithms are called LRP-reprocessing algorithms. Another

kinds of reliability-based soft decision decoding algorithms are referred to as most reliable

independent position (MRIP)-reprocessing algorithms. The order statistics decoding (OSD)

algorithm by Fossorier and Lin [4] is one of this kinds of algorithms. It sorts the received

1



bits with respect to their reliabilities and reduces the columns in the generator matrix cor-

responding to the most reliable bits to an identity submatrix. This matrix is then used

to generate codewords using the most reliable bits. Both LRP-reprocessing algorithms and

MRIP-reprocessing algorithms are called reliability-based soft decision decoding algorithms.

It has been proved that maximum-likelihood decoding (MLD) of RS codes is NP-hard [5].

Therefore, it remains an open problem to find polynomial-time decoding algorithms with

near ML performance. Guruswami and Sudan (GS) [7], invented a polynomial-time list

decoding algorithm for RS codes capable of correcting beyond half the minimum distance of

the code. Koetter and Vardy (KV) [8] developed an algebraic soft-decision decoding (ASD)

algorithm for RS codes based on multiplicity assignment scheme for the GS algorithm.

Alternative ASD algorithm, such as the Gaussian approximation algorithm in [9] and the

algorithm proposed based on Chernoff bound [10], have better performance.

Jiang and Narayanan (JN) [11] developed an iterative algorithm based on belief propa-

gation for soft decoding of RS codes. This algorithm compares favorably with other soft-

decision decoding algorithm for RS codes and is a major step toward message passing decod-

ing algorithm for RS codes. In the JN algorithm, belief propagation is run on an adapted

parity check matrix, where the columns in the parity check matrix corresponding to the

least reliable independent positions (LRIPs) are reduced to an identity submatrix. In [15],

an algorithm which combines the OSD algorithm and adaptive belief propagation (ABP)

such as the JN algorithm was proposed. Later in [16], the author modify the algorithm in

[15] to get a better performance.

In this thesis, we propose a new decoding algorithm based on the JN and the OSD

algorithm. We use the same concept as in the OSD algorithm to help the JN decoder. The

outline of this thesis is as follows. Some preliminaries are given in Chapter 2. In Chpater 3,

the OSD algorithm and the JN algorithm are introduced. We also reviewed the algorithm

in [15] and [16]. The proposed algorithm is shown in Chpater 4 with it’s simulation results.

Finally, we conclude this thesis in Chapter 5.

2



Chapter 2

Preliminaries

In this chapter, we define the notations and system model that will be used in the

following of this thesis. Then we give a brief review of RS codes. Finally, we introduce the

binary image representation of RS codes.

2.1 Notations and System Model

We will use underline letters to denote vectors and bold face letters to denote matrices.

For an (N,K) RS code, we use cs = [c1, c2, ..., cN ] to represent it’s codeword. Let Gs be

it’s generator matrix and Hs be the corresponding parity check matrix. In this thesis,

we assume the channel is AWGN channel. The modulation scheme is binary phase shift

keying (BPSK). In this scheme, 0 will be mapped to +1, and 1 will be mapped to −1.

Let rs = [r1, r2, . . . , rN ] be the channel output and n = [n1, n2, . . . , nN ] represent the noise

vector with it’s power spectrum density N0/2. Then

rs = (−2cs + 1) + n. (2.1)

3



2.2 A Brief Review of RS codes

An (N,K) RS code over GF(2m) is a kind of linear block code with it’s parity check

matrix

Hs =

⎡⎢⎢⎢⎢⎢⎣
1 � . . . �N−1

1 �2 . . . �2(N−1)

. . .

1 �dmin−1 . . . �(dmin−1)(N−1)

⎤⎥⎥⎥⎥⎥⎦ , (2.2)

where dmin = N −K + 1 and � is a primitive element in GF(2m).

2.3 Binary Image Representation of RS codes

2.3.1 Binary Representation of a Symbol over GF(2m)

Choosing {1, �, �2, . . . , �m−1} as bases, any symbol A ∈ GF(2m) could be written as

A =
m−1∑
i=0

A
(i)
b �

i, whereA
(i)
b ∈ GF(2). (2.3)

Therefore, we can represent A by a binary vector [A
(0)
b , A

(1)
b , . . . , A

(m−1)
b ].

Example: Consider in GF(23) with a primitive polynomial 1 + x+ x3 and � = x, any

symbol in GF(23) could be represented as follows:

0 = 0 + 0 ⋅ x+ 0 ⋅ x2 = [0, 0, 0],

1 = 1 + 0 ⋅ x+ 0 ⋅ x2 = [1, 0, 0],

� = 0 + 1 ⋅ x+ 0 ⋅ x2 = [0, 1, 0],

�2 = 0 + 0 ⋅ x+ 1 ⋅ x2 = [0, 0, 1],

�3 = 1 + 1 ⋅ x+ 0 ⋅ x2 = [1, 1, 0],

�4 = 0 + 1 ⋅ x+ 1 ⋅ x2 = [0, 1, 1],

�5 = 1 + 1 ⋅ x+ 1 ⋅ x2 = [1, 1, 1],

�6 = 1 + 0 ⋅ x+ 1 ⋅ x2 = [1, 0, 1].
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2.3.2 Binary Representation for Additions over GF(2m)

By the binary representation we defined above, additions over GF(2m) could be finished

by addition over GF(2).

Example: Consider in GF(23),

� + �5 = (0 + 1 ⋅ x+ 0 ⋅ x2) + (1 + 1 ⋅ x+ 1 ⋅ x2)

= [0, 1, 0] + [1, 1, 1] = [1, 0, 1] = 1 + 0 ⋅ x+ 1 ⋅ x2 = �6.

2.3.3 Binary Representation for Multiplications over GF(2m)

In order to maintain the property of multiplication, the binary representation of a symbol

to multiply another symbol should be replaced by multiplying a matrix. We give an example

to explain it.

Example: Consider in GF(23), what’s the binary representation of �5 for multiplica-

tion?

Let

�5 =

⎡⎢⎢⎣
A B C

D E F

G H I

⎤⎥⎥⎦ ,
then

1 ⋅ �5 = [1, 0, 0]

⎡⎢⎢⎣
A B C

D E F

G H I

⎤⎥⎥⎦ = [A,B,C] = �5 = [1, 1, 1].

� ⋅ �5 = [0, 1, 0]

⎡⎢⎢⎣
A B C

D E F

G H I

⎤⎥⎥⎦ = [D,E, F ] = �6 = [1, 0, 1].

�2 ⋅ �5 = [0, 0, 1]

⎡⎢⎢⎣
A B C

D E F

G H I

⎤⎥⎥⎦ = [G,H, I] = �7 = [1, 0, 0].
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So we could use ⎡⎢⎢⎣
1 1 1

1 0 1

1 0 0

⎤⎥⎥⎦
to represent �5 in multiplication. By the same manner, we can represent all the element in

GF(23) as follows:

0 =

⎡⎢⎢⎣
0 0 0

0 0 0

0 0 0

⎤⎥⎥⎦ (2.4)

1 =

⎡⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎦ (2.5)

� =

⎡⎢⎢⎣
0 1 0

0 0 1

1 1 0

⎤⎥⎥⎦ (2.6)

�2 =

⎡⎢⎢⎣
0 0 1

1 1 0

0 1 1

⎤⎥⎥⎦ (2.7)

�3 =

⎡⎢⎢⎣
1 1 1

0 1 0

1 1 1

⎤⎥⎥⎦ (2.8)

�4 =

⎡⎢⎢⎣
0 1 1

1 1 1

1 0 1

⎤⎥⎥⎦ (2.9)

�5 =

⎡⎢⎢⎣
1 1 1

1 0 1

1 0 0

⎤⎥⎥⎦ (2.10)

�6 =

⎡⎢⎢⎣
1 0 1

1 0 0

0 1 0

⎤⎥⎥⎦ (2.11)
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2.3.4 Binary Image Representation of RS codes

Let n = N×m and k = K×m be the length of codeword and the information at the bit

level, respectively. By the discussion above, we can transform a codeword cs = [c1, c2, . . . , cN ]

of an (N,K) RS code over GF(2m) to a binary form cb = [c
(0)
1 , c

(1)
1 , . . . , c

(m−1)
1 , . . . , . . . , c

(0)
N , c

(1)
N , . . . , c

(m−1)
N ],

where ci =
∑m−1

j=0 c
(j)
i �j. Rewrite cb as c = [c1, c2, . . . , cn]. And we can also transform the

parity check matrix

Hs =

⎡⎢⎢⎢⎢⎢⎣
1 � . . . �N−1

1 �2 . . . �2(N−1)

. . .

1 �dmin−1 . . . �(dmin−1)(N−1)

⎤⎥⎥⎥⎥⎥⎦ (2.12)

to an equivalent binary parity check matrix Hb by 2.3.3. Then Hb is an (n− k)× n binary

parity check matrix.

Example: Consider (7,5) RS code over GF(23), it’s parity check matrix

Hs =

⎡⎣1 � �2 �3 �4 �5 �6

1 �2 �4 �6 �1 �3 �5

⎤⎦ .
From (2.4) to (2.11) ,we can get the equivalent binary parity check matrix

Hb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1

0 1 0 0 0 1 1 1 0 0 1 0 1 1 1 1 0 1 1 0 0

0 0 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0 0 1 0

1 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1

0 1 0 1 1 0 1 1 1 1 0 0 0 0 1 0 1 0 1 0 1

0 0 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 1 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Chapter 3

The Review of the Previous Works

In this chapter, the OSD algorithm in [4] and the JN algorithm in [11] are introduced.

Then, the algorithm in [15] which combines both JN and OSD algorithm is reviewed. Right

after that, the analysis of the reason of decoding failure in the JN algorithm is presented.

Finally, the algorithm in [16] is also introduced.

3.1 Soft Decision Decoding Based on Order Statics

Let r = (r1, r2, . . . , rn) be the received sequence. The first step of OSD decoding algo-

rithm is to find k most reliable independent positions (MRIPs) of the received sequence.

We order the received sequence based on their reliability values in decreasing order. The

resultant sequence is denoted by

r′ = (r′1, r
′
2, . . . , r

′
n), (3.1)

with ∣r′1∣ > ∣r′2∣ > ⋅ ⋅ ⋅ > ∣r′n∣. This reordering of the received symbols defines a permutation

�1 for which r′ = �1[r]. Let the corresponding generator matrix of the binary parity check

matrix Hb is Gb. We permute the columns of Gb based on �1 and obtain the following

matrix:

G′ = �1[Gb] = [g′
1, g

′
2, ⋅ ⋅ ⋅ , g′

n], (3.2)

where for 1 ≤ i ≤ n, g′
i denotes the ith column of G′. Note that code C ′ generated by G′ is

equivalent to C generated by Gb. Although the first k positions of r′ are the k most reliable

8



positions, they are not necessarily independent, and therefore they do not always represent

an information set. To determine the k MRIPs, we perform Gaussian eliminations to put

G′ in the reduced echelon form. There are k columns in G′ in reduced echelon form that

contain only one 1. These k columns are linearly independent. Consequently, the positions

in r′ that correspond to these k linearly independent columns are the k MRIPs. We use

these k linearly independent columns as the first k columns of a new generator matrix G′′,

maintaining the decreasing order of their associated reliability values. The remaining n− k

columns of G′ in reduced echelon form give the next n− k columns of G′′ arranged in order

of decreasing associated reliability values. This process defines a second permutation �2. It

is clear that the code generated by G′′ is

C ′′ = �2[C
′] = �2[�1[C]]. (3.3)

Rearranging the components of r′ according to the permutation �2, we obtain the sequence

y = (y1, ⋅ ⋅ ⋅ , yk, yk+1, ⋅ ⋅ ⋅ , yn), (3.4)

with ∣y1∣ > ∣y2∣ > ⋅ ⋅ ⋅ > ∣yk∣, and ∣yk+1∣ > ⋅ ⋅ ⋅ > ∣yn∣. It is clear that y = �2[r
′] = �2[�1[r]].

We can permute the rows of G′′ to obtain a generator matrix G1 in systematic form,

G1 = [IkP ] =

⎡⎢⎢⎢⎢⎢⎣
1 0 ⋅ ⋅ ⋅ 0 p1,1 ⋅ ⋅ ⋅ p1,n−k

0 1 ⋅ ⋅ ⋅ 0 p2,1 ⋅ ⋅ ⋅ p2,n−k
...

. . .
...

...
...

0 0 ⋅ ⋅ ⋅ 1 pk,1 ⋅ ⋅ ⋅ pk,n−k

⎤⎥⎥⎥⎥⎥⎦ , (3.5)

where Ik represents the k×k identity matrix, and P is the k× (n−k) parity-check matrix.

Because the first k bits of y are the k most reliable independent bits, their hard decisions

should contain very few errors. Based on this concept, the OSD algorithm generates a

sequence of candidate codewords for testing by processing the k most reliable independent

bits of y. The candidate codeword v∗ with the least correlation discrepancy with y is the

decoded codeword. Then, �−11 [�−12 [v∗]] gives the decoded codeword in C. For 0 ≤ i ≤ k,

the OSD algorithm of order-i executes the following steps:

9



OSD Algorithm

Step 1. Perform hard-decision decoding of the k most reliable independent bits of y (the

first k bits of y). These k hard decisions give k binary digits, which form an information

sequence u0.

Step 2. Construct the codeword v0 = u0G1 for the information sequence u0, and compute

the distance of v0 with respect to y.

Step 3. For 1 ≤ l ≤ i, make all possible changes of l of the k most reliable bits in u0.

For each change, form a new information sequence u. Generate its corresponding

codeword v = uG1. Compute the distance for each generated codeword. Record the

codeword vbest that has the least distance. This step is referred to as the phase-l

reprocessing of u0. It requires generating
(
k
l

)
candidate codewords.

Step 4. Start the next reprocessing phase and continue to update vbest until the ith repro-

cessing phase is completed. The recorded codeword vbest is the decoded codeword.

Example: Consider a (7, 4) code with

G =

⎡⎢⎢⎢⎢⎢⎣
1 1 1 0 0 0 0

1 0 0 1 1 0 0

0 1 0 1 0 1 0

1 1 0 1 0 0 1

⎤⎥⎥⎥⎥⎥⎦ , (3.6)

let

r = (1.2,−0.01, 10, 4.3,−5.2,−6.6,−7), (3.7)

then

r′ = (10,−7,−6.6,−5.2, 4.3, 1.2,−0.01). (3.8)
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The corresponding

G′ =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 0 1 1

0 0 0 1 1 1 0

0 0 1 0 1 0 1

0 1 0 0 1 1 1

⎤⎥⎥⎥⎥⎥⎦ . (3.9)

Then

G′′ =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 0 1 1

0 1 0 0 1 1 0

0 0 1 0 1 0 1

0 0 0 1 1 1 1

⎤⎥⎥⎥⎥⎥⎦ , (3.10)

y = (10,−5.2,−6.6,−7, 4.3, 1.2,−0.01). (3.11)

Perform hard-decision decoding, we can get

u0 = (0, 1, 1, 1). (3.12)

v0 = u0G1 = (0, 1, 1, 1, 1, 0, 0),d0 = 195.15. (3.13)

In phase-1 reprocessing,

u1 = (0, 1, 1, 0), v1 = (0, 1, 1, 0, 0, 1, 1),d1 = 210.71. (3.14)

u2 = (0, 1, 0, 1), v2 = (0, 1, 0, 1, 0, 0, 1),d2 = 204.31. (3.15)

u3 = (0, 0, 1, 1), v3 = (0, 0, 1, 1, 0, 1, 0),d3 = 203.55. (3.16)

u4 = (1, 1, 1, 1), v4 = (1, 1, 1, 1, 1, 1, 1),d4 = 239.91. (3.17)

Therefore, the decoded codeword is v0 = (0, 1, 1, 1, 1, 0, 0).

3.2 Discussions of the OSD Algorithm

The OSD algorithm of order-i consists of (i + 1) reprocessing phases and requires pro-

cessing of a total of

1 +

(
k

1

)
+ ⋅ ⋅ ⋅+

(
k

i

)
(3.18)
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candidate codewords to make a decoding decision. The OSD algorithm of order-k is MLD,

which requires processing of 2k codewords. This not what we want. As pointed out earlier,

the k first bits of y are the k most reliable independent bits, and their hard decisions most

likely contain very few errors. That is to say that the information sequence u0 contains

very few errors. Consequently, making all possible changes of a small number of positions

of u0 most likely will produce the ML codeword. Therefore, an OSD algorithm with a small

order-i should practically achieve the MLD error performance.

3.3 Iterative Decoding Algorithm by Adapting the Par-

ity Check Matrix

Let c = [c1, c2, . . . , cn] be the binary representation of an RS codeword. The received

vector is given by

r = (−2c+ 1) + n. (3.19)

Thus, the initial reliability of each bit in the received vector can be expressed in terms of

the log-likelihood ratios (LLR) as observed from the channel:

L(0)(ci) = log
P (ci = 0∣ri)
P (ci = 1∣ri)

. (3.20)

The JN algorithm is composed of two stages: the matrix updating stage and the bit-

reliability updating stage. In the matrix updating stage, the magnitude of the received

LLR’s ∣L(ci)∣ are first sorted and let i1, i2, . . . , iN−K , . . . , in denote the position of the bits

in terms of ascending order of ∣L(ci)∣, i.e., the bit ci1 is the least reliable and cin is the most

reliable. Begin with the original parity check matrix Hb and first reduce the itℎ1 column of

Hb to a form [1, 0 . . . , 0]T . Then we reduce the itℎ2 column of Hb to a form [0, 1, 0 . . . 0]T

and so on. It can be guaranteed to proceed until the itℎ(N−K) column, since there are at

least (N −K) independent columns in Hb. Then we try to reduce the itℎN−K+1 column to

[0, . . . , 0︸ ︷︷ ︸
N−K

, 1, 0, . . . , 0]T . However, there is no guarantee we can do this. If we are unable to

do so, we will leave that particular column and try to reduce itℎ(N−K+2) column to the above

12



Figure 3.1: Form of the Parity Check Matrix Suitable for Iterative Decoding Obtained
through Row Operations

form and so on. Finally, we can reduce (n− k) columns among the n columns of Hb to be

the identity matrix, since the matrix is (n − k) × n and is full rank. The matrix is thus

reduced to a form as shown in Fig. 3.1. We denote the set of unreliable bits corresponding

to the sparse submatrix as BL.

The JN algorithm is iterative and during the ltℎ iteration, we have a vector of LLR’s

as:

L(l) = [L(l)(c1), L
(l)(c2), . . . , L

(l)(cn)], (3.21)

where initially L(0) is determined from the channel output. Then, the parity check matrix

is reduced to a desired form based on L(l):

H
(l)
b = �(Hb, ∣L(l)∣). (3.22)

In the bit-reliability updating stage, the extrinsic LLR vector L
(l)
ext is first generated according

to L(l) using the SPA based on the adapted parity check matrix H
(l)
b :

L
(l)
ext =  (H

(l)
b , L

(l)). (3.23)
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That is for each bit, the extrinsic LLR is updated according to:

L
(l)
ext(ci) =

n−k∑
j=1

H
(l)
ji

=1

2 tanh−1(
n∏

p=1

p∕=i,H
(l)
jp

=1

tanh(
L(l)(cp)

2
)) (3.24)

The bit-reliability is then updated as:

L(l+1) = L(l) + �L
(l)
ext (3.25)

where 0 < � ≤ 1 is a damping coefficient. This is continued until a predetermined number of

times lmax = N1 or until all the checks are satisfied. A detailed description of the algorithm

is given as follows:

JN Algorithm

Step 1. Initialization: set �, lmax = N1, l = 0 and the LLR’s for the coded bits from the

channel observation: L(0) = 2
�2 r.

Step 2. Reliability based parity check matrix adaption: H
(l)
b = �(Hb, ∣L(l)∣).

a) Order the coded bits according to the absolute value of the LLR’s ∣L(l)∣ and record

the ordering indices.

b) Implement Gaussian elimination to systematize the (n − k) unreliable positions

which are independent in the parity check matrix.

Step 3. Extrinsic information generation: Apply SPA to generate the extrinsic LLR for

each bit using the adapted parity check matrix H
(l)
b : L

(l)
ext =  (H

(l)
b , L

(l)) (according

to 3.24)

Step 4. Bit-level reliabilities update: L(l+1) = L(l) + �L
(l)
ext, where 0 < � ≤ 1.

Step 5. Hard decision: ĉi =

⎧⎨⎩ 0, L(l+1)(ci) > 0;

1, L(l+1)(ci) < 0.
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Step 6. Termination criterion: If all the checks are satisfied, output the estimated bits;

else if l = lmax, declare a decoding failure; otherwise set l ← l + 1 and go to Step2.

for another iteration.

3.4 Geometric Interpretation of the JN Algorithm

Define the operator � : [−∞,+∞]→ [−1, 1] as a mapping from the LLR domain to tanh

domain:

�(L) = tanh(
L

2
) =

eL − 1

eL + 1
(3.26)

where the mapping is one-to-one and onto. The inverse operator �−1 : [−1, 1]→ [−∞,+∞]

can be expressed as:

�−1(t) = ln(
1 + t

1− t
) , t ∈ [−1,+1]. (3.27)

Apply the one-to-one tanh transform on the LLR’s and get the reliability measure of the

received signal in the tanh domain as:

T = [T1, T2, . . . , Tn] = [�(L(c1)), . . . , �(L(cn))] (3.28)

As in [12], we can measure the reliability of the jtℎ parity check node as:

rj =
n∏

p=1
Hjp=1

�(L(cp)) (3.29)

Definition 1 Define the potential function J as:

J(Hb, T ) = −
(n−k)∑
j=1

rj = −
(n−k)∑
j=1

n∏
p=1

Hjp=1

Tp (3.30)

where J is a function of both the parity check matrix Hb and the received soft information

T .

The operator � maps the original n−dimensional unbounded real space into an n−dimensional

cube (since the output of tanh function is confined to [−1, 1]). The potential function J is
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minimized iff a valid codeword is reached, that is all the checks are satisfied and ∣Tj∣ = 1

for j = 1, . . . , n, where Jmin = −(n − k). Besides, points with all ∣Tj∣ = 1 correspond

to vertices of the n−dimensional cube. Therefore, valid codewords correspond to the ver-

tices of the n−dimensional cube at which the potential function has the minimum value

of −(n − k). The decoding problem can be interpreted as searching for the most probable

minimum potential vertex given the initial point observed from the channel.

Note that the potential function J is minimized iff a valid codeword is reached. It is

quite natural to apply the gradient descent algorithm to search for the minimum potential

vertex, with the initial value T observed from the channel. Consider the gradient of J with

respect to the received vector T . From (3.30), it can be seen that:

∇J(Hb, T ) = (
∂J(Hb, T )

∂T1
,
∂J(Hb, T )

∂T2
, . . . ,

∂J(Hb, T )

∂Tn
) (3.31)

where the component wise partial derivative with respect to Ti is given by:

∂J(Hb, T )

∂Ti
= −

(n−k)∑
j=1

Hji=1

n∏
p=1

p∕=i,Hjp=1

Tp (3.32)

Thus, the gradient descent updating rule can be written as:

T (l+1) ← T (l) − �∇J(H
(l)
b , T

(l)) (3.33)

where � is a damping coefficient as in standard gradient descent algorithms to control the

step width.

Note that the reliabilities in tanh domain are confined to Ti ∈ [−1, 1]. However,

the updating rule (3.33) does not guarantee this. Therefore, we use the following modified

updating rule to guarantee that the updated Ti’s ∈ [−1, 1]:

T
(l+1)
i ← �(�−1(T

(l)
i )− �[−

∑
H

(l)
ji =1

�−1(
∏

p ∕=i,H(l)
jp =1

T (l)
p )]) (3.34)

where �−1(x) = 2 tanh−1(x). It can be seen that the above non-linear updating rule is

exactly the same as Step3 - Step4 in the description of the JN algorithm.
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When iterative decoding is applied to an HDPC code, with very high probability, the

iterative algorithm will reach some local minimum points where ∇J(Hb, T ) is zero or is

close to zero (since a few unreliable symbols will render the components of ∇J(Hb, T ) to

be small or close to zero). We refer to these as pseudo-equilibrium points since gradient

descent gets stuck at these points while these points do not correspond to valid codewords.

From (3.30), we observe that since J is also a function of Hb, different choices of the

parity check matrices Hb, though span the same dual space, result in different potential

functions J . More importantly, each Hb results in a different gradient ∇J(Hb, T ). The JN

algorithm exploits this fact and when a pseudo equilibrium point is reached, by adapting

the parity check matrix based on the bit reliabilities, switches to another Hb such that it

allows the update in (3.34) to proceed rather than getting stuck at the pseudo-equilibrium

point. However, note that the potential function that we want to minimize does not involve

the Euclidean distance between the received codeword and current estimate at all. That

is, the adaptive algorithm attempts merely to find a codeword that satisfies all the parity

checks, without really enforcing that it be the one at minimum distance from the received

word. Since small steps are taken in the gradient descent, very often we converge to the

codeword at small distance from the received vector as well. However, there is no guarantee

of convergence to the nearest codeword.

3.5 Variations to the JN Algorithms

In this section, several variations of the JN algorithm are discussed either to improve the

performance or to reduce the decoding complexity.

3.5.1 Degree-2 Random Connection

One problem with the JN algorithm is that since each bit in the unreliable part BL

participates in only one check, it receives extrinsic information from one check only. If there

is a bit error in the dense part participating in that check, the bit in BL tends to be flipped

and the decoder tends to converge to a wrong codeword. To overcome this drawback, we can
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reduce the matrix Hb to a form where the submatrix corresponding to the less reliable bits

is sparse (say column weight 2 rather than 1). This can improve the performance since each

less reliable bit now receives more extrinsic information while the submatrix corresponding

to the unreliable bits still does not form any loops (i.i., there is no loop involving only

unreliable bits). We can obtain this via a degree-2 random connection algorithm. The

details are presented as follows:

Deg-2 Random Connection Algorithm

Step1. Apply Gaussian elimination to the parity check matrix and obtain an identity ma-

trix in the unreliable part.

Step2. Generate a random permutation of numbers from 1 to n−k. Record all the indices,

i.e., p1, p2, . . . , pn−k.

Step3. Adapt the parity check matrix according to the follow rule: add ptℎi+1 row to ptℎi

row, for i = 1 to n− k − 1.

After the Deg-2 random connection , all the (n− k− 1) columns in the parity check matrix

are of degree-2 except the ptℎ1 column. The last column p1 can be left on degree-1, which

will not significantly affect the performance. This appears to improve the performance of

the JN algorithm in the high SNR’s.

3.5.2 Various Grouping of Unreliable Bits

Another variation that can help to further imrpove the performance is to run the JN

algorithm several times each time with the same initial LLR’s from the channel but a

different grouping of the less reliable bits. It is possible that some bits with ∣L(l)(ci)∣ closes

to those in the unreliable set BL are also of the wrong sign and vice-versa. Hence, we can run

the JN algorithm several times each time with a different grouping of the less reliable bits.
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That is, we can swap some bits in the reliable part with those in the unreliable part near the

boundary and run the matrix adaptation all over again, which gives a new Hb. We then run

the JN algorithm on that new matrix Hb. Each time the JN algorithm is run, a different

estimate codeword may be obtained due to the difference in the parity check matrix Hb.

All the returned codewords are kept in a list and finally the one that minimizes Euclidean

distance from the received vector is chosen. This method can significantly improve the

asymptotic performance, but also increases the worst case complexity.

3.5.3 Incorporated Hard Decision Decoding

A hard decision decoder can be used during each iteration in the proposed algorithm

to improve the performance and accelerate decoding as well. Since the HDD may return

a codeword which is different from the ML codeword, we do not stop the decoder once

a codeword is returned by the HDD. Rather, we still iterate up to a maximum number of

iterations to obtain all the codewords returned by HDD during each iteration and finally pick

up the most likely codeword. This guarantees to perform no worse than the JN algorithm

or HDD. Combining the adaptive scheme with other SIHO algorithms such as the KV

algorithm has been investigated in [13].

3.5.4 Partial Reliable Bits Updating

The complexity in the bit level reliabilities update part can be further reduced via “partial

reliable bits updating” scheme. The main floating-point operation complexity comes from

the computation of the extrinsic information in the reliable part (where the submatrix

is dense). However, in the adaptation of the parity check matrix, only some bits in the

boundary will be switched from the reliable part to the unreliable part. Therefore, in the

bit reliability updating stage, we only update the bits in the unreliable set BL and some

reliable bits with ∣L(l)(cj)∣ close to those in the unreliable set BL. The number of bits in

the reliable part M can be adjusted to control the complexity.
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3.5.5 Symbol-level Adaption

Gaussian elimination requires serial update of the rows and is difficult to parallelize. Let

SL = i1, i2, . . . , i(N−K) be as a set of (N − K) least reliable symbols. In order to update

the parity check matrix at the symbol level, we need to find a valid parity check matrix

for which the sumbatrix corresponding to the symbols in SL is an identity matrix. The

detailed procedure is as follows: first, the submatrix corresponding to the symbols in SL is

filled with an (N −K)× (N −K) identity matrix and the rest of the matrix with unknown

symbols in the parity check matrix is equivalent to finding (N − K) valid codewords of

the dual code which will be the rows of the parity check matrix for the original code. For

the jtℎ row, the itℎj entry is 1 and the itℎ1 , i
tℎ
2 , . . . , i

tℎ
j−1, i

tℎ
j+1, . . . , i

tℎ
N−K entries are 0s and all

other entries are erasures E (i.e., all the positions corresponding to the reliable symbols are

erased). Since the dual code is an (N,N −K) RS code with dmin = K + 1 and there are

exactly K erasures in each row, Forney’s algorithm [14] can be used to compute the values in

the erased positions. Each decoded codeword corresponds to one row in the original parity

check matrix. By repeating this procedure for all (N −K) rows, we can get a systematic

parity check matrix over GF(2m), where the submatrix corresponding to unreliable symbols

is the identity matrix. Using the binary expansion, we can then get the binary parity check

matrix and thereafter apply the SPA using it. Unlike Gaussian elimination, each element

in the parity check matrix can be computed independently and, hence, the whole procedure

can be parallelized. This provides a computationally efficient way to obtain a parity check

matrix in the desired form for hardware implementation.

3.6 Combine the JN and the OSD Algorithm

In [15], a new algorithm which combines JN and OSD was proposed. Due to this com-

bination, we’ll use “JNOSD” to represent this algorithm in this thesis. At iteration l, the

decoding procedure is as follows:
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JNOSD Algorithm

Step1. Order-i reprocessing: Using the LLR vector L(l), new MRIPs is generated. OSD(1)

is performed to generate a candidate codeword. Sufficient conditions are applied to

check if the optimum codeword has been found. If yes, the algorithm stop. If not, the

algorithm proceeds to the next step.

Step2. JN Update: The adaptive parity check matrix H(l) is constructed from L(l−1).

Using H(l) and L
(l−1)
ext , extrinsic information L

(l)
ext is generated and the bit reliabilities

are updated to L(l). This L(l) is used in the next iteration of OSD to determine MRIPs.

This algorithm use the concept that after the JN algorithm, the updated LLRs seem to be

more reliable than the original channel output. Passing this updated LLR sequence into

OSD decoder, we will get a better decoding result. Fig. 3.2 shows that there is about a

0.5dB coding gain between JNOSD and JN or OSD algorithm.

3 3.5 4 4.5 5 5.5
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SNR(dB)

B
E

R

(15,7)RS code; AWGN channel; BPSK
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OSD(1)
JNOSD

Figure 3.2: Performance comparison of three different algorithms of RS(15,7)
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3.7 The Reason of Adapting the Parity Check Matri-

ces

It is well known that belief propagation does not suit to high density parity check

(HDPC) codes. If there is an error occurs in the high density part, it will affect many

checks and the effects will propagate to other nodes.

Figure 3.3: Erasure bits will saturate the check

In the AWGN channels, the larger the absolute value of LLR of one bit in the received

sequence is, the more reliable this bit is. In the conventional belief propagation such as sum

product algorithm, if two or more incoming messages of a check are erasures, the check is

erased as shown in Fig. 3.3. In the JN algorithm, it adapt the parity check matrix such

that the unreliable bits (bits that with small absolute value of LLR) will connect to only

one check, and each check will connect to only one unreliable bit as shown in Fig. 3.4. It

prevents the saturation of the check nodes and suppresses the error propagation caused by

errors occur in LRPs. We give an example here to explain it.

If the Tanner graph is shown as in Fig. 3.5. Cycle-4 in the graph represents the high

density part in the parity check matrix. In the discussion below, assume the correct LLR

value is a positive value, and the wrong LLR value is a negative value. If no error occurs,
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Figure 3.4: The modified tanner graph by JN algorithm

Figure 3.5: Original Tanner graph. Bit node 3 and 4 are LRPs

we assume the LLR value in MRPs are +V , the LLR values in LRPs are +v, and V > v.

If error occurs in MRPs, we assume the LLR value is −V and −v if it occurs in LRPs. In

Fig. 3.5, assume bit node 3 and bit node 4 are LRPs, other positions are MRPs. Now if

the error occurs in bit node 3 and the LLR is −v, as shown in Fig. 3.6.

If the extrinsic information get from check node is correct, we use +E to represent it and

E > 0. On the other hand, if it is wrong, we use −E to represent the extrinsic information.

By this assumption, we can get the extrinsic information from the check nodes and the

updated LLRs as shown in Fig. 3.7. All the bit nodes except 3 receive wrong information.
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Figure 3.6: One error occurs in MRP(bit node 3)

The propagation of these kinds of errors may cause errors in other bits. Belief propagation

will converge to the wrong codeword.

Consider the same case in Fig. 3.6 but now use JN algorithm to decode. As mentioned

in last chapter, we can get another equivalent Tanner graph shown in Fig. 3.8 by Gaussian

Elimination. In this figure, unreliable bits(bit node 3 and 4) connect to only one check and

each check connect to only one unreliable bit. Therefore, the bits in high density part are

more reliable. The updated LLR are shown in Fig. 3.9. Compare with Fig. 3.7, error

propagation is reduced. Only one bit in MRPs got the wrong extrinsic information.

Now consider that two low reliability positions(bit node 3 and 4) are both in error

as in Fig. 3.10. The result after message passing is shown in Fig. 3.11. Due to cycle-

4(high density part) between two wrong bits, these two bits will always get wrong extrinsic

information. Decoder will converge to a wrong codeword. If we use JN algorithm to decode,

the modified Tanner graph is shown in Fig. 3.12. The result of corresponding message

passing is shown in Fig. 3.13. Although error propagation still happen in this case, if V is

large enough, bit nodes will still have the correct signs. And low reliability bits will have

chances to be corrected during this iteration. It is better than original belief propagation in
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Figure 3.7: Message passing when error occurs in bit node 3

Fig. 3.11. By adapting the parity matrix according to the reliability during each iteration,

JN algorithm can reduce the influence caused by errors in LRPs.

3.8 The Latent Problem in the JN algorithm

As our discussions above, JN algorithm decreases the error propagation caused by errors

in LRPs by modify the parity check matrix such that LRPs are in the sparse part of the

parity check matrix. But if an error occurs in MRP, due to the modified parity check matrix,

this bits may connected to many other checks and the wrong message will widely propagate

to the graph. The decoder will converge to a wrong codeword. Fig. 3.14 is the distribution

of error patterns in MRPs when JN algorithm is fail. The number in x-axis represents the

number of errors in MRPs after the first time Gaussian elimination once the decoded result

is not correct. In this simulation, max iteration number lmax = 20, � = 0.1. We can observe

that if there is no error in MRPs after the first time Gaussian elimination, the decoded

output will be correct. But if there are errors in MRPs, JN decoder may give the wrong

answer.
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Figure 3.8: Modified Tanner graph by JN algorithm

Figure 3.9: Message passing in JN algorithm

3.9 The Modified JNOSD Algorithm

In [16], the author proposed a new algorithm based on JNOSD to decrease the influence

of errors in MRPs in the JN algorithm which is mentioned in the last section. To control

the error propagation in the JN algorithm, [16] uses OSD algorithm to help the decoding of

JN algorithm during each iteration. At iteration l, the decoding procedure is as follows:

Modified JNOSD Algorithm
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Figure 3.10: Error in bit node 3 and 4

Step1. Order-i reprocessing: Using the LLR vector L(l), a new MRB is generated. OSD(1)

is performed to generate a candidate codeword. Sufficient conditions are applied to

check if the optimum codeword has been found. If yes, the algorithm stop. If not, the

algorithm saves the best codeword comes from OSD(1) and proceeds to the next step.

Step2. Feedback: If the best codeword in the last step is 0 in some LRPs, add +A(A > 0)

to the corresponding positions of the LLR vector. If the best codeword in the last

step is 1 in some LRPs, add −A to the corresponding positions of the LLR vector. A

is a parameter that could be decided by the user.

Step3. JN Update: The adaptive parity check matrix H(l) is constructed from L(l−1).

Using H(l) and L
(l−1)
ext , extrinsic information L

(l)
ext is generated and the bit reliabilities

are updated to L(l). This L(l) is used in the next iteration of OSD to determine MRB.

The difference between the JNOSD and the modified JNOSD algorithm is the Step2.

Although OSD(1) can correct one error happened in MRPs, it can not help the JN algorithm

if the number of errors in MPRs are more than one. By the feedback of the information
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Figure 3.11: Message passing when errors are in bit node 3 and 4

from OSD, it could enhance the accuracy of bits in LRPs. Then by sorting according to

the updated LLR by Step 2, some positions in MRPs and LRPs may exchange. On the

boundary of MRPs and LRPs, there may be some bits in MRPs but still in error and vice

versa. Exchanging the bits on the boundary may exchange the wrong bit in MRPs and the

correct bit in LRPs. It can decrease the error number in MRPs and reduce the effect of

error propagation.

From Fig. 3.15, the modified JNOSD algorithm really decrease the number of decoding

failure when errors occurs in MRPs. The simulation result of (15,7) RS code is shown in

Fig. 3.16. The coefficient setting this simulation is: � = 0.1, lmax = 20 and A = 3.0. From

the simulation, the modified JNOSD algorithm is 0.45dB better than JNOSD at ber=10−5.
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Figure 3.12: Modified Tanner graph by JN algorithm

Figure 3.13: Message passing in JN algorithm
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Figure 3.14: Distribution of error patterns in MRPs when JN algorithm is failed

1 2 3 4
0

20

40

60

80

100

120

140

160

180

Num of errors in MRPs

N
um

 o
f d

ec
od

in
g 

fa
ilu

re

RS(15,7); SNR=4.0dB; total frame number=100,000

JN

JNOSD

Modified-JNOSD

Figure 3.15: Distribution of error patterns in MRPs between three algorithms when they
are failed

30



3 3.5 4 4.5 5 5.5
10-6

10-5

10-4

10-3

10-2

SNR(dB)

B
E

R

(15,7)RS code; AWGN channel; BPSK

JN
OSD(1)
JNOSD
M-JNOSD

Figure 3.16: Performance comparison of four different algorithms of RS(15,7)

31



Chapter 4

A New Decoding Algorithm Based on
the JN Algorithm

We’ve known the drawback of the JN algorithm from the last chapter. Now in this

chapter, we propose a new algorithm to improve the performance of the JN algorithm.

4.1 The Proposed Algorithm

Once an error occurs in the MRPs, the error propagation may cause the failure of the

JN decoder as mention in the last chapter. In [16], it uses the decoded result of OSD(1) to

deal with this problem. By exchanging the bits on the boundary of MRPs and LRPs, this

new decoder can give a better decoded result. This algorithm takes the information from

OSD(1) to help the decoding in the JN algorithm. Considering the same problem(to ease

the effect of error propagation in MRPs), we take another viewpoint.

Recall that in the OSD algorithm, the received sequence are partitioned into MRIPs and

LRPs. The bits in MRIPs are thought to be more reliable than LRPs. Each time OSD(1)

flip one position in MRIPs and re-encode to generate a new candidate codeword. Finally

picks up the one with the maximum correlation. In the JN algorithm, it modify the parity

check matrix according to the reliability due to the bits with higher reliability are thought to

be more reliable. The corresponding Tanner graph of the modified parity check matrix has

higher probability to correct errors in LRPs compared with the original belief propagation.

But if there are errors in MRPs, the JN decoder may fail due to error propagation. From
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Fig. 3.15, if no error happened in MRPs, the JN decoder will almost decode successfully.

Our goal is to try to reduce the errors in MRPs before the JN algorithm. We uses the same

concept as OSD(1). That is, flip one bit in MRPs at a time and use this new LLR sequence

as the input of the JN decoder. There are k bits in MRPs, so we’ll get k decoded outputs

as the candidate codewords. With the original LLR sequence from channel, total number

of candidates are k + 1. Here are the decoding procedures:

The Proposed Algorithm

Step1. Initialization: set �, lmax = N1, l = 0 and the LLR’s for the coded bits from the

channel observation: L(0) = 2
�2y.

Step2. Reliability based parity check matrix adaption: H
(l)
b = �(Hb, ∣L(l)∣).

a) Order the coded bits according to the absolute value of the LLR’s ∣L(l)∣ and record

the ordering indices.

b) Implement Gaussian elimination to systematize the (n − k) unreliable positions

which are independent in the parity check matrix.

Step3. Use the sorted LLR vector as the input to the JN decoder which is the same as the

original JN algorithm. For 1 ≤ i ≤ k, flip the LLR value of i-th position in MRPs.

Feed these k modified vectors as the inputs to the JN decoders. Finally, we can get

k + 1 candidates from the JN decoders.

Step4. Compute the correlation of each candidates. The one with the largest correlation

will be the decoded output.

The idea of the proposed algorithm is shown in Fig. 4.1. Note that the number in each

position of the MRPs is the LLR value.
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Figure 4.1: The proposed algorithm

4.2 Discussions of the Proposed Algorithm

To deal with the error propagation in the JN algorithm, we first modify the LLR vector

before the JN decoder. The modification can reduce the number of errors in the MPRs.

Therefore, the decoded output seems to be more correct. Although we need k + 1 JN

decoders, each decoder is independent of others. That is, k + 1 JN decoders can run in

parallel. Our modification is very like to OSD(1), but the proposed algorithm can have a

better performance than OSD(1). In OSD(1), if the errors in MRIPs are more than one, the

decoder will fail. However, in the proposed algorithm, due to the message passing in the

Tanner graph, errors in MRPs may be corrected by the information from other bit nodes.

4.3 Simulation Results

In this section, simulation results of the proposed algorithm and the comparison between

different algorithms are presented. We use “JN” to represent the JN algorithm in [11],

“OSD(1)” to represent the OSD algorithm with order-1 in [4], “JNOSD” to represent the
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algorithm introduced in [15] and “M-JNOSD”(Modified-JNOSD) to represent the algorithm

in [16]. We first show the simulation results of (15,7) RS code in Fig. 4.2. In this simulation,
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Figure 4.2: Performance comparison of RS (15,7)

� = 0.1, lmax = 20 for the JN algorithm and A = 3.0 for the modified JNOSD algorithm.

At bit error rate = 10−5, JNOSD provides about a 0.5dB gain over JN and OSD algorithm.

The modified JNOSD algorithm has a 0.45dB gain compare with JNOSD. The proposed

algorithm, is 0.25dB better than the modified JNOSD algorithm and the performance is

very close to the ML decoding.

Next we consider (15,9) RS code as shown in Fig. 4.3 The coefficients of simulation

are set as follows: � = 0.1, lmax = 20 and A = 3.0. At bit error rate = 10−5, OSD(1) is

0.4dB better than the JN algorithm. JNOSD is 0.25dB better than OSD(1).The modified

JNOSD is about 0.1dB better than the original JNOSD. The performance of the proposed

algorithm is almost the same sa the modified JNOSD algorithm in this case. The reason is

the performance of these two algorithms in this code are very close to the ML decoding.
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Figure 4.3: Performance comparison of RS (15,9)

The simulation results for the (31,23) RS code are shown in Fig. 4.4. At bit error rate

= 10−5, JNOSD provides a 0.25dB gain over JN and OSD algorithm. The modified JNOSD

algorithm is 0.4dB better than JNOSD algorithm. The proposed algorithm performs 0.3dB

better than the modified JNOSD algorithm.

Fig. 4.5 shows the simulation results for the (31,25) RS code. At bit error rate = 10−5,

JNOSD is about 0.2dB better than OSD(1) and 0.3dB better than the JN algorithm. The

modified JNOSD is 0.4dB better than the original JNOSD algorithm. In this case, our

algorithm has only a 0.06dB gain compared with the modified JNOSD algorithm.
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Figure 4.5: Performance comparison of RS (31,25)
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Chapter 5

Conclusions

In this thesis, we first introduce how to map RS codes into it’s binary representations. By

doing so, we can transform the decoding problem of RS codes into the decoding of binary

linear block codes. Many decoding algorithms designed for binary linear block codes can

therefore be used. Then we briefly review the previous works of decoding RS codes. They

are the OSD and the JN algorithm. After reviewing these two algorithms, we analyse the

advantages and the drawbacks of the JN algorithm. We discover that the main reason of

decoding failure in the JN algorithm is the errors in MRPs. In order to deal with this

problem, we propose a new algorithm, which uses the concept in the OSD algorithm before

doing the JN algorithm.

From the simulation results, the proposed algorithm has very good performance com-

pared with the previous work such as JN and OSD(1). It also outperforms JNOSD and

the modified JNOSD algorithm. Although many decoders are needed in the proposed al-

gorithm, they can run in parallel. The same concept of our algorithm can also be applied

to the modified JNOSD algorithm. It means that we modify the received vector before

doing the modified JNOSD algorithm. The simulation results show that after doing so, the

performance is better than the original modified JNOSD algorithm and is also better than

the original proposed algorithm. To sum up, in this thesis, we propose a new soft input

soft output decoding algorithm based on JN and OSD algorithm. The idea of the proposed

algorithm can also applied to some other algorithms to get a better performance.
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