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Abstract

Recently, Reed-Solomon (RS) codes have been the error-correction codes (ECCs) of choice
in many communication systems because of their ability to correct burst errors and the avail-
ability of efficient algebraic hard decision decoding algorithms. It is known that soft-decision
decoding (SDD) of RS codes provides significant performance gain over hard decision de-
coding (HDD), but most systems still are based on HDD because of the high complexity
of SDD. In 2006, Jiang and Narayanan (JN) proposed an iterative soft-in soft-out decoding
algorithm of RS codes by adapting the parity check matrix. The JN algorithm can avoid the
problem of check node saturation and the error propagation from the least reliable positions,
but the drawback of the JN algorithm is to over believe the messages from the most reliable
positions. In this thesis, we first analyse the reason of decoding failure in the JN algorithm.
Based on our discussions, we propose a new algorithm to avoid the influence of errors in
most reliable positions in the JN algorithm and improve the decoding performance. The
basic idea of our algorithm comes from the OSD algorithm, which was proposed in 1995 by
Fossorier and Lin. We modify the received vector before the JN algorithm. Some errors in
the most reliable positions may be reduced. Therefore, the influence of errors in high reli-
able positions can also be reduced. Compared with the original JN algorithm, the proposed
algorithm has about a 0.5-1.2dB coding gain while decoding RS codes in the additive white
Gaussian noise (AWGN) channel under binary phase shift keying (BPSK) modulation.
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Chapter 1

Introduction

Reed-Solomon (RS) codes [1] are powerful error correction codes which are widely em-
ployed in many communication systems. For instance, they have been adopted as outer codes
in the third-generation (3G) wireless standard, CDMA2000 high-rate broadcast packet data
air interference, and are expected to be used as outer codes in concatenated coding schemes
for future fourth-generation (4G) wireless systems. In most existing systems, RS codes
are decoded via algebraic hard decision decoding (HDD) due to it’s low complexity. How-
ever, HDD does not fully exploit the error correction capability of the code because of the
loss of the soft information. For example, for the additive white Gaussian noise (AWGN)
channel, the loss is believed to be 2-3dB under binary phase shift keying (BPSK) modula-
tion. Efficiently utilizing the soft information available at the decoder input to improve the
performance of RS codes is a long-time standing open problem.

The generalized minimum distance (GMD) algorithm [2] and the Chase algorithm [3]
are popular soft decision decoding (SDD) algorithms to decode RS codes by modifying
the least reliable positions (LRPs), then use an algebraic decoding algorithm to generate a
candidate codeword. Finally, select the candidate codeword with the best metric as the de-
coded solution. These kinds of algorithms are called LRP-reprocessing algorithms. Another
kinds of reliability-based soft decision decoding algorithms are referred to as most reliable
independent position (MRIP)-reprocessing algorithms. The order statistics decoding (OSD)

algorithm by Fossorier and Lin [4] is one of this kinds of algorithms. It sorts the received



bits with respect to their reliabilities and reduces the columns in the generator matrix cor-
responding to the most reliable bits to an identity submatrix. This matrix is then used
to generate codewords using the most reliable bits. Both LRP-reprocessing algorithms and
MRIP-reprocessing algorithms are called reliability-based soft decision decoding algorithms.

It has been proved that maximum-likelihood decoding (MLD) of RS codes is NP-hard [5].
Therefore, it remains an open problem to find polynomial-time decoding algorithms with
near ML performance. Guruswami and Sudan (GS) [7], invented a polynomial-time list
decoding algorithm for RS codes capable of correcting beyond half the minimum distance of
the code. Koetter and Vardy (KV) [8] developed an algebraic soft-decision decoding (ASD)
algorithm for RS codes based on multiplicity assignment scheme for the GS algorithm.
Alternative ASD algorithm, such as the Gaussian approximation algorithm in [9] and the
algorithm proposed based on Chernoff bound [10], have better performance.

Jiang and Narayanan (JN) [11] developed an iterative algorithm based on belief propa-
gation for soft decoding of RS codes. This algorithm compares favorably with other soft-
decision decoding algorithm for RS codes and is a major step toward message passing decod-
ing algorithm for RS codes. In the JN algorithm, belief propagation is run on an adapted
parity check matrix, where the columns in the parity check matrix corresponding to the
least reliable independent positions (LRIPs) are reduced to an identity submatrix. In [15],
an algorithm which combines the OSD algorithm and adaptive belief propagation (ABP)
such as the JN algorithm was proposed. Later in [16], the author modify the algorithm in
[15] to get a better performance.

In this thesis, we propose a new decoding algorithm based on the JN and the OSD
algorithm. We use the same concept as in the OSD algorithm to help the JN decoder. The
outline of this thesis is as follows. Some preliminaries are given in Chapter 2. In Chpater 3,
the OSD algorithm and the JN algorithm are introduced. We also reviewed the algorithm
in [15] and [16]. The proposed algorithm is shown in Chpater 4 with it’s simulation results.

Finally, we conclude this thesis in Chapter 5.



Chapter 2

Preliminaries

In this chapter, we define the notations and system model that will be used in the
following of this thesis. Then we give a brief review of RS codes. Finally, we introduce the

binary image representation of RS codes.

2.1 Notations and System Model

We will use underline letters to denote vectors and bold face letters to denote matrices.
For an (N, K) RS code, we use ¢, = [c1,¢a, ..., cy] to represent it’s codeword. Let Gy be
it’s generator matrix and H, be the corresponding parity check matrix. In this thesis,
we assume the channel is AWGN channel. The modulation scheme is binary phase shift
keying (BPSK). In this scheme, 0 will be mapped to +1, and 1 will be mapped to —1.
Let ry = [r1,72,...,7n] be the channel output and n = [ny,ns, ..., ny] represent the noise

vector with it’s power spectrum density Ny/2. Then

re=(—2¢,+1)+n. (2.1)



2.2 A Brief Review of RS codes

An (N, K) RS code over GF(2™) is a kind of linear block code with it’s parity check

matrix ) i
1 a oVl
1 o? o a2(N=1)
H, = , (2.2)

where d;, = N — K 4+ 1 and « is a primitive element in GF(2™).

2.3 Binary Image Representation of RS codes
2.3.1 Binary Representation of a Symbol over GF(2™)

Choosing {1, a,a?,...,a™ 1} as bases, any symbol A € GF(2™) could be written as
m—1
A= A,(f)of, WhereA((f) € GF(2). (2.3)
i=0

Therefore, we can represent A by a binary vector [Al()o)7 A£1)7 o Aémfl)}_

Example: Consider in GF(2%) with a primitive polynomial 1+ z + 2 and a = z, any

symbol in GF(23) could be represented as follows:

0=0+0-z+0-2°=10,0,0],
1=1+0-24+0-2*=[1,0,0],
a=0+1-2+0-2>=10,1,0],
a?=0+0-x+1-2°=][0,0,1],
o =1+1-2+0-22=[1,1,0],
ot =0+1-z+1-22=[0,1,1],
o =1+1-z+1-22=[1,1,1],

a=1+0-2+1-2°=[1,0,1].



2.3.2 Binary Representation for Additions over GF(2™)

By the binary representation we defined above, additions over GF(2™) could be finished
by addition over GF(2).
Example: Consider in GF(2%),

a+a®=0+1-2+0-2H)+(1+1-2+1-27

:[0’1’0]+[1’171]:[17071]:1+0x+1$2:C(6

2.3.3 Binary Representation for Multiplications over GF(2")

In order to maintain the property of multiplication, the binary representation of a symbol
to multiply another symbol should be replaced by multiplying a matrix. We give an example
to explain it.

Example: Consider in GF(2%), what’s the binary representation of a® for multiplica-

tion?
Let
A e
o —Ni® )
G Hdl
then
A B C]
1-a°=[1,0,00 |D E F|=I[AB,C]=0a"=[11,1].
G H |
(A B C]
a-a’®=10,1,0] |D E F|=[D,E,F]=a°=][1,0,1].
G H ]
A B (]
o®-a®=100,0,1 |D E F| =[G H1I =a =][1,0,0]
G H |




So we could use

1 11
1 01
1 00

to represent o® in multiplication. By the same manner, we can represent all the element in

GF(2?%) as follows:

' o o

—_ o o o o =

o = O o o O

S =

—_

O =

_ o o O O =

ID—CDCD o o O

|O — OI

— :

|O — Hllr—l

—_
]

(2.6)

(2.8)

(2.9)

(2.10)

(2.11)



2.3.4 Binary Image Representation of RS codes

Let n = N xm and k = K x m be the length of codeword and the information at the bit

level, respectively. By the discussion above, we can transform a codeword ¢, = [c1, ¢o, . . ., CN]
of an (N, K) RS code over GF(2™) to a binary form ¢, = [cgo), AV dm ,cg\?), cg\lf), .
where ¢; = 2;”2_01 cgj Jod. Rewrite ¢ as ¢ = [e1,¢9,...,¢,]. And we can also transform the

parity check matrix

1 o - oVl
1 o? .. a2®-1)

H, = (2.12)
1 adminfl a(dminfl)(Nfl)

to an equivalent binary parity check matrix Hj, by 2.3.3. Then Hj, is an (n — k) X n binary
parity check matrix.

Example: Consider (7,5) RS code over GF(23), it’s parity check matrix

1 a o & a* a® aof

H, =
1 a2 o a5 o & of

From (2.4) to (2.11) ,we can get the equivalent binary parity check matrix

(100010001111011111101]
010001110010111101100
001110011111101100010
100001011101010111111
010110111100001010101

1001011101010110111100]




Chapter 3

The Review of the Previous Works

In this chapter, the OSD algorithm in [4] and the JN algorithm in [11] are introduced.
Then, the algorithm in [15] which combines both JN and OSD algorithm is reviewed. Right
after that, the analysis of the reason of decoding failure in the JN algorithm is presented.

Finally, the algorithm in [16] is also introduced.

3.1 Soft Decision Decoding Based on Order Statics

Let r = (ry,7r9,...,7,) be the received sequence. The first step of OSD decoding algo-
rithm is to find k& most reliable independent positions (MRIPs) of the received sequence.
We order the received sequence based on their reliability values in decreasing order. The

resultant sequence is denoted by

' =(ry,rg, ), (3.1)

r'n

with || > |r4] > -+ > |r!|. This reordering of the received symbols defines a permutation
71 for which 1 = m[r]. Let the corresponding generator matrix of the binary parity check
matrix Hy is G,. We permute the columns of G, based on m; and obtain the following

matrix:
G/ = 7Tl[(;b] = [giagéa T 79;]3 (32)

where for 1 <i <n, g} denotes the ith column of G’. Note that code C’ generated by G’ is

equivalent to C' generated by Gy. Although the first k positions of 7’ are the & most reliable



positions, they are not necessarily independent, and therefore they do not always represent
an information set. To determine the & MRIPs, we perform Gaussian eliminations to put
G’ in the reduced echelon form. There are k& columns in G’ in reduced echelon form that
contain only one 1. These k columns are linearly independent. Consequently, the positions
in 7’ that correspond to these k linearly independent columns are the & MRIPs. We use
these k linearly independent columns as the first & columns of a new generator matrix G”,
maintaining the decreasing order of their associated reliability values. The remaining n — k
columns of G’ in reduced echelon form give the next n — k columns of G” arranged in order
of decreasing associated reliability values. This process defines a second permutation ms. It

is clear that the code generated by G” is
C" = m[C'] = mo[m [C]]. (3.3)
Rearranging the components of r’ according to the permutation m,, we obtain the sequence

g: (y17'.. ’yk’yk+1’ 7yn)7 (34)

with |y1] > |y2| > -+ > [yrl, and |yrsa| > -+ > |yn|. It is clear that y = mo[r'] = mo[m[r]].

We can permute the rows of G” to obtain a generator matrix G in systematic form,

10 -+ 0 pi1 - Dink
O 1 --- 0 P21t Pon—k
G, = [Ik’P] = 1. . . . . ) (35)
_0 0 - 1 pga1 - Dkn—k |

where I}, represents the k x k identity matrix, and P is the k x (n — k) parity-check matrix.
Because the first & bits of y are the k£ most reliable independent bits, their hard decisions
should contain very few errors. Based on this concept, the OSD algorithm generates a
sequence of candidate codewords for testing by processing the £ most reliable independent
bits of y. The candidate codeword v* with the least correlation discrepancy with y is the
decoded codeword. Then, 7 *[m; '[v*]] gives the decoded codeword in C. For 0 < i < k,

the OSD algorithm of order-i executes the following steps:



OSD Algorithm

Step 1. Perform hard-decision decoding of the k& most reliable independent bits of y (the
first k bits of y). These k hard decisions give k binary digits, which form an information

sequence yy.

Step 2. Construct the codeword v, = u,G; for the information sequence v, and compute

the distance of v, with respect to y.

Step 3. For 1 < [ < ¢, make all possible changes of [ of the £ most reliable bits in .
For each change, form a new information sequence u. Generate its corresponding
codeword v = uG,. Compute the distance for each generated codeword. Record the
codeword v, that has the least distance. This step is referred to as the phase-/

reprocessing of u,. It requires generating (’;) candidate codewords.

Step 4. Start the next reprocessing phase and continue to update v until the ith repro-

cessing phase is completed. The recorded codeword v, is the decoded codeword.

Example: Consider a (7,4) code with

(1110000
1001100
G- , (3.6)
0101010
1101001
let
r=(1.2,-0.01,10,4.3, —5.2, —6.6, —7), (3.7)
then
' = (10, —7,—6.6, —5.2,4.3,1.2, —0.01). (3.8)

10



The corresponding

10000 11

@ (0001110

0010101

010011 1

Then _ -
1000011

G |01 00110

0010101

000111 1]

y = (10, 5.2, 6.6, —7,4.3,1.2, —0.01).

Perform hard-decision decoding, we can get
QO — (O, 1, 17 ].)

vy = u,Gy = (0,1,1,1,1,0,0), dy = 195.15.

In phase-1 reprocessing,

u, = (0,1,1,0),0, = (0,1,1,0,0,1,1), dy = 210.71.
u, = (0,1,0,1),v, = (0,1,0,1,0,0,1), ds = 204.31.
uy = (0,0,1,1),v5 = (0,0,1,1,0,1,0), ds = 203.55.

w,=(1,1,1,1),0, = (1,1,1,1,1,1,1), dy = 239.91.

Therefore, the decoded codeword is v, = (0,1,1,1,1,0,0).

3.2 Discussions of the OSD Algorithm

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
(3.16)

(3.17)

The OSD algorithm of order-i consists of (i + 1) reprocessing phases and requires pro-

cessing of a total of
(1) =+ )
1+ +oo4 .
1 1

11

(3.18)



candidate codewords to make a decoding decision. The OSD algorithm of order-k is MLD,
which requires processing of 2¥ codewords. This not what we want. As pointed out earlier,
the k first bits of y are the k most reliable independent bits, and their hard decisions most
likely contain very few errors. That is to say that the information sequence u, contains
very few errors. Consequently, making all possible changes of a small number of positions
of u, most likely will produce the ML codeword. Therefore, an OSD algorithm with a small

order-i should practically achieve the MLD error performance.

3.3 Iterative Decoding Algorithm by Adapting the Par-
ity Check Matrix

Let ¢ = [c1,¢a,...,¢y] be the binary representation of an RS codeword. The received
vector is given by

r=(-2c+1)+n (3.19)

Thus, the initial reliability of each bit in the received vector can be expressed in terms of
the log-likelihood ratios (LLR) as observed from the channel:

P(Ci = 0|7°Z)

LO(c;) = log =t — 1"t
(@) = log 5 —T)r)

(3.20)

The JN algorithm is composed of two stages: the matrix updating stage and the bit-
reliability updating stage. In the matrix updating stage, the magnitude of the received
LLR’s |L(¢;)| are first sorted and let iy,4s,...,iN_k, ..., i, denote the position of the bits
in terms of ascending order of |L(¢;)|, i.e., the bit ¢;, is the least reliable and ¢;, is the most
reliable. Begin with the original parity check matrix H} and first reduce the i{" column of
H,, to a form [1,0...,0]7. Then we reduce the i¥* column of Hj to a form [0,1,0...0]"
and so on. It can be guaranteed to proceed until the zf]}v_ K) column, since there are at
least (N — K) independent columns in Hj,. Then we try to reduce the i§}_, ., column to

0,...,0,1,0,...,0]". However, there is no guarantee we can do this. If we are unable to

N-K
do so, we will leave that particular column and try to reduce zf}}\,_ K+2) column to the above

12



Dense part

O . 10 . .0 .0
o1 . .0 .0
o0 . . 1 .0
O . 00 . .0 .1

i1 12 13 14 l5 g

Figure 3.1: Form of the Parity Check Matrix Suitable for Iterative Decoding Obtained
through Row Operations

form and so on. Finally, we can reduce (n — k) columns among the n columns of Hj to be
the identity matrix, since the matrix is (n — k) x n and is full rank. The matrix is thus
reduced to a form as shown in Fig. 3.1. We denote the set of unreliable bits corresponding
to the sparse submatrix as B .

The JN algorithm is iterative and during the {*" iteration, we have a vector of LLR’s

as:

LO = [LU(¢y), LO(¢y), ..., LY (ey)], (3.21)

where initially L® is determined from the channel output. Then, the parity check matrix

is reduced to a desired form based on L(l):
H," = ¢(H,,|L"]). (3.22)

In the bit-reliability updating stage, the extrinsic LLR vector Lg{gt is first generated according
to L) using the SPA based on the adapted parity check matrix H él):

Ly, = v(H,", LY). (3.23)

Liegt —

13



That is for each bit, the extrinsic LLR is updated according to:

n—k n
Lo
L) =Y 2tanh™'( J] tanh( (Cp>>) (3.24)
Hj(;lzl p#i,pljj(,lgzl
The bit-reliability is then updated as:
LY = 1O 4 aLl), (3.25)

where 0 < o < 1is a damping coefficient. This is continued until a predetermined number of
times l,,,q. = N7 or until all the checks are satisfied. A detailed description of the algorithm

is given as follows:

JN Algorithm

Step 1. Initialization: set «, [,,,, = N1, [ = 0 and the LLR’s for the coded bits from the

channel observation: L(O) = (%f.
Step 2. Reliability based parity check matrix adaption: H. lfl) = ¢(Hp, ]L(l)\).

a) Order the coded bits according to the absolute value of the LLR’s |L"| and record

the ordering indices.

b) Implement Gaussian elimination to systematize the (n — k) unreliable positions

which are independent in the parity check matrix.

Step 3. Extrinsic information generation: Apply SPA to generate the extrinsic LLR for
each bit using the adapted parity check matrix HZSZ): LY = Ww(H él), LYY (according

ext —

to 3.24)

Step 4. Bit-level reliabilities update: L(l“) = L(l) + aL(l) where 0 < a < 1.

ext)

0, LUD(c;) > 0;

Step 5. Hard decision: ¢; =
1, LUY(¢) <0.

14



Step 6. Termination criterion: If all the checks are satisfied, output the estimated bits;
else if | = 42, declare a decoding failure; otherwise set [ <— [ + 1 and go to Step2.

for another iteration.

3.4 Geometric Interpretation of the JN Algorithm

Define the operator v : [—oo, +oo] — [—1, 1] as a mapping from the LLR domain to tanh

domain:
L el —1
L) =tanh(=) = —— 3.26
where the mapping is one-to-one and onto. The inverse operator v ! : [—1,1] — [—00, +09]
can be expressed as:
1+
v (1) :m(lft), tel[-1,+1]. (3.27)

Apply the one-to-one tanh transform on the LLR’s and get the reliability measure of the

received signal in the tanh domain as:
I - [T17 T27 - 7Tn] = [V(L(Cl))7 s 7V(L(Cn))] (328)
As in [12], we can measure the reliability of the j* parity check node as:

(3.29)

::]:

pl
Hj,=1

Definition 1 Define the potential function J as:

(n—k)

J(H,, T Z r; = Z ﬁ T, (3.30)

JP

where J is a function of both the parity check matriz Hy, and the received soft information

T.

The operator v maps the original n—dimensional unbounded real space into an n—dimensional

cube (since the output of tanh function is confined to [—1, 1]). The potential function J is
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minimized iff a valid codeword is reached, that is all the checks are satisfied and || = 1
for j = 1,...,n, where J,,;, = —(n — k). Besides, points with all |7;| = 1 correspond
to vertices of the n—dimensional cube. Therefore, valid codewords correspond to the ver-
tices of the n—dimensional cube at which the potential function has the minimum value
of —(n — k). The decoding problem can be interpreted as searching for the most probable
minimum potential vertex given the initial point observed from the channel.

Note that the potential function J is minimized iff a valid codeword is reached. It is
quite natural to apply the gradient descent algorithm to search for the minimum potential
vertex, with the initial value T observed from the channel. Consider the gradient of J with

respect to the received vector T'. From (3.30), it can be seen that:

aJ(H(nI) aJ(HlHI) a'](Hbaz)

VJ(H,,T) = cey 3.31
S L R o, (3:31)
where the component wise partial derivative with respect to 7; is given by:

0J(H, ey

—*” Z H T, (3.32)

H]1_1 pAi, E p=1

Thus, the gradient descent updating rule can be written as:

THY 7O — ovJ(HY, TO) (3.33)

where « is a damping coefficient as in standard gradient descent algorithms to control the
step width.

Note that the reliabilities in tanh domain are confined to 7; € [—1,1]. However,
the updating rule (3.33) does not guarantee this. Therefore, we use the following modified

updating rule to guarantee that the updated T;’s € [—1, 1]:

7Y v ) —al- Y v [T T (3.34)

0_ C O
H/ =1 p#i,H; =1

where v~!(z) = 2tanh™'(z). It can be seen that the above non-linear updating rule is

exactly the same as Step3 - Step4 in the description of the JN algorithm.
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When iterative decoding is applied to an HDPC code, with very high probability, the
iterative algorithm will reach some local minimum points where V.J(H,,T) is zero or is
close to zero (since a few unreliable symbols will render the components of VJ(Hy,T') to
be small or close to zero). We refer to these as pseudo-equilibrium points since gradient
descent gets stuck at these points while these points do not correspond to valid codewords.

From (3.30), we observe that since J is also a function of Hj, different choices of the
parity check matrices Hp, though span the same dual space, result in different potential
functions J. More importantly, each H,, results in a different gradient VJ(Hy, T). The JN
algorithm exploits this fact and when a pseudo equilibrium point is reached, by adapting
the parity check matrix based on the bit reliabilities, switches to another Hj such that it
allows the update in (3.34) to proceed rather than getting stuck at the pseudo-equilibrium
point. However, note that the potential function that we want to minimize does not involve
the Euclidean distance between the received codeword and current estimate at all. That
is, the adaptive algorithm attempts merely to find a codeword that satisfies all the parity
checks, without really enforcing that it be the one at minimum distance from the received
word. Since small steps are taken in the gradient descent, very often we converge to the
codeword at small distance from the received vector as well. However, there is no guarantee

of convergence to the nearest codeword.

3.5 Variations to the JN Algorithms

In this section, several variations of the JN algorithm are discussed either to improve the

performance or to reduce the decoding complexity.

3.5.1 Degree-2 Random Connection

One problem with the JN algorithm is that since each bit in the unreliable part B
participates in only one check, it receives extrinsic information from one check only. If there
is a bit error in the dense part participating in that check, the bit in B; tends to be flipped

and the decoder tends to converge to a wrong codeword. To overcome this drawback, we can
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reduce the matrix H,, to a form where the submatrix corresponding to the less reliable bits
is sparse (say column weight 2 rather than 1). This can improve the performance since each
less reliable bit now receives more extrinsic information while the submatrix corresponding
to the unreliable bits still does not form any loops (i.i., there is no loop involving only
unreliable bits). We can obtain this via a degree-2 random connection algorithm. The

details are presented as follows:

Deg-2 Random Connection Algorithm

Stepl. Apply Gaussian elimination to the parity check matrix and obtain an identity ma-

trix in the unreliable part.

Step2. Generate a random permutation of numbers from 1 to n— k. Record all the indices,

i'6'7 b1,P2, -, Pn—k-

Step3. Adapt the parity check matrix according to the follow rule: add pﬂl row to pih

row, fort =1ton—k — 1.

After the Deg-2 random connection , all the (n — k& — 1) columns in the parity check matrix
are of degree-2 except the p!* column. The last column p; can be left on degree-1, which
will not significantly affect the performance. This appears to improve the performance of

the JN algorithm in the high SNR’s.

3.5.2 Various Grouping of Unreliable Bits

Another variation that can help to further imrpove the performance is to run the JN
algorithm several times each time with the same initial LLR’s from the channel but a
different grouping of the less reliable bits. It is possible that some bits with [L")(c;)| closes
to those in the unreliable set B are also of the wrong sign and vice-versa. Hence, we can run

the JN algorithm several times each time with a different grouping of the less reliable bits.
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That is, we can swap some bits in the reliable part with those in the unreliable part near the
boundary and run the matrix adaptation all over again, which gives a new H,. We then run
the JN algorithm on that new matrix H,. Each time the JN algorithm is run, a different
estimate codeword may be obtained due to the difference in the parity check matrix H.
All the returned codewords are kept in a list and finally the one that minimizes Euclidean
distance from the received vector is chosen. This method can significantly improve the

asymptotic performance, but also increases the worst case complexity.

3.5.3 Incorporated Hard Decision Decoding

A hard decision decoder can be used during each iteration in the proposed algorithm
to improve the performance and accelerate decoding as well. Since the HDD may return
a codeword which is different from the ML codeword, we do not stop the decoder once
a codeword is returned by the HDD. Rather, we still iterate up to a maximum number of
iterations to obtain all the codewords returned by HDD during each iteration and finally pick
up the most likely codeword. This guarantees to perform no worse than the JN algorithm
or HDD. Combining the adaptive scheme with other STHO algorithms such as the KV

algorithm has been investigated in [13].

3.5.4 Partial Reliable Bits Updating

The complexity in the bit level reliabilities update part can be further reduced via “partial
reliable bits updating” scheme. The main floating-point operation complexity comes from
the computation of the extrinsic information in the reliable part (where the submatrix
is dense). However, in the adaptation of the parity check matrix, only some bits in the
boundary will be switched from the reliable part to the unreliable part. Therefore, in the
bit reliability updating stage, we only update the bits in the unreliable set B; and some
reliable bits with |L"(c;)| close to those in the unreliable set B;. The number of bits in

the reliable part M can be adjusted to control the complexity.
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3.5.5 Symbol-level Adaption

Gaussian elimination requires serial update of the rows and is difficult to parallelize. Let
Sp = i1,%2,...,i(n—k) be as a set of (N — K) least reliable symbols. In order to update
the parity check matrix at the symbol level, we need to find a valid parity check matrix
for which the sumbatrix corresponding to the symbols in Sy is an identity matrix. The
detailed procedure is as follows: first, the submatrix corresponding to the symbols in Sy, is
filled with an (N — K) x (N — K) identity matrix and the rest of the matrix with unknown
symbols in the parity check matrix is equivalent to finding (N — K) valid codewords of
the dual code which will be the rows of the parity check matrix for the original code. For
the 5 row, the ¢} entry is 1 and the 4{" 24", ... " ith .. i, entries are Os and all
other entries are erasures E (i.e., all the positions corresponding to the reliable symbols are
erased). Since the dual code is an (N, N — K) RS code with d,,;, = K + 1 and there are
exactly K erasures in each row, Forney’s algorithm [14] can be used to compute the values in
the erased positions. Each decoded codeword corresponds to one row in the original parity
check matrix. By repeating this procedure for all (N — K') rows, we can get a systematic
parity check matrix over GF(2™), where the submatrix corresponding to unreliable symbols
is the identity matrix. Using the binary expansion, we can then get the binary parity check
matrix and thereafter apply the SPA using it. Unlike Gaussian elimination, each element
in the parity check matrix can be computed independently and, hence, the whole procedure
can be parallelized. This provides a computationally efficient way to obtain a parity check

matrix in the desired form for hardware implementation.

3.6 Combine the JN and the OSD Algorithm

In [15], a new algorithm which combines JN and OSD was proposed. Due to this com-
bination, we’ll use “JNOSD” to represent this algorithm in this thesis. At iteration [, the

decoding procedure is as follows:
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JNOSD Algorithm

Stepl. Order-i reprocessing: Using the LLR vector LY, new MRIPs is generated. OSD(1)
is performed to generate a candidate codeword. Sufficient conditions are applied to
check if the optimum codeword has been found. If yes, the algorithm stop. If not, the

algorithm proceeds to the next step.

Step2. JN Update: The adaptive parity check matrix H® is constructed from JAGES

Using H® and L(l_l)7 extrinsic information Lﬁfﬁt

Loy is generated and the bit reliabilities

are updated to LY. This LY is used in the next iteration of OSD to determine MRIPs.

This algorithm use the concept that after the JN algorithm, the updated LLRs seem to be
more reliable than the original channel output. Passing this updated LLR sequence into

OSD decoder, we will get a better decoding result. Fig. 3.2 shows that there is about a
0.5dB coding gain between JNOSD and JN or OSD algorithm.

2

) (15,7)RS code; AWGN channel; BPSK
10 T T

{ : :
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Figure 3.2: Performance comparison of three different algorithms of RS(15,7)
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3.7 The Reason of Adapting the Parity Check Matri-
ces

It is well known that belief propagation does not suit to high density parity check
(HDPC) codes. If there is an error occurs in the high density part, it will affect many

checks and the effects will propagate to other nodes.

erased bits

/ l \ bit nodes

: check nodes

Figure 3.3: Erasure bits will saturate the check

In the AWGN channels, the larger the absolute value of LLR of one bit in the received
sequence is, the more reliable this bit is. In the conventional belief propagation such as sum
product algorithm, if two or more incoming messages of a check are erasures, the check is
erased as shown in Fig. 3.3. In the JN algorithm, it adapt the parity check matrix such
that the unreliable bits (bits that with small absolute value of LLR) will connect to only
one check, and each check will connect to only one unreliable bit as shown in Fig. 3.4. It
prevents the saturation of the check nodes and suppresses the error propagation caused by
errors occur in LRPs. We give an example here to explain it.

If the Tanner graph is shown as in Fig. 3.5. Cycle-4 in the graph represents the high
density part in the parity check matrix. In the discussion below, assume the correct LLR

value is a positive value, and the wrong LLR value is a negative value. If no error occurs,



unreliable bits

/ I \ bit nodes

@ oo QQQ/@ _________ O

check nodes

Figure 3.4: The modified tanner graph by JN algorithm

Check 1 Check 2

1<

Bit Nodes o o o ° ° e
v ey

Original correct LLR | 4 v +v

Figure 3.5: Original Tanner graph. Bit node 3 and 4 are LRPs

we assume the LLR value in MRPs are +V, the LLR values in LRPs are +v, and V' > v.
If error occurs in MRPs, we assume the LLR value is —V and —v if it occurs in LRPs. In
Fig. 3.5, assume bit node 3 and bit node 4 are LRPs, other positions are MRPs. Now if
the error occurs in bit node 3 and the LLR is —v, as shown in Fig. 3.6.

If the extrinsic information get from check node is correct, we use +FE to represent it and
E > 0. On the other hand, if it is wrong, we use —FE to represent the extrinsic information.
By this assumption, we can get the extrinsic information from the check nodes and the

updated LLRs as shown in Fig. 3.7. All the bit nodes except 3 receive wrong information.
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Check 1 Check 2

Bit Nodes o o °

LLR +V +V -V +v

1.

Error occurs at this position

+V +V

Figure 3.6: One error occurs in MRP(bit node 3)

The propagation of these kinds of errors may cause errors in other bits. Belief propagation
will converge to the wrong codeword.

Consider the same case in Fig. 3.6 but now use JN algorithm to decode. As mentioned
in last chapter, we can get another equivalent Tanner graph shown in Fig. 3.8 by Gaussian
Elimination. In this figure, unreliable bits(bit node 3 and 4) connect to only one check and
each check connect to only one unreliable bit. Therefore, the bits in high density part are
more reliable. The updated LLR are shown in Fig. 3.9. Compare with Fig. 3.7, error
propagation is reduced. Only one bit in MRPs got the wrong extrinsic information.

Now consider that two low reliability positions(bit node 3 and 4) are both in error
as in Fig. 3.10. The result after message passing is shown in Fig. 3.11. Due to cycle-
4(high density part) between two wrong bits, these two bits will always get wrong extrinsic
information. Decoder will converge to a wrong codeword. If we use JN algorithm to decode,
the modified Tanner graph is shown in Fig. 3.12. The result of corresponding message
passing is shown in Fig. 3.13. Although error propagation still happen in this case, if V is
large enough, bit nodes will still have the correct signs. And low reliability bits will have

chances to be corrected during this iteration. It is better than original belief propagation in
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Check 1 Check 2

Bit Nodes o e e °

LLR [+V v v +v 4y

Extrinsic information from Check 1 .E -E +E -E 0 0

Extrinsic information from Check 2 0 +E E -E E
Updated LLR |+V.E +V.E —vRE  +v2FE +VE  +V.E

Figure 3.7: Message passing when error occurs in bit node 3

Fig. 3.11. By adapting the parity matrix according to the reliability during each iteration,

JN algorithm can reduce the influence caused by errors in LRPs.

3.8 The Latent Problem in the JN algorithm

As our discussions above, JN algorithm decreases the error propagation caused by errors
in LRPs by modify the parity check matrix such that LRPs are in the sparse part of the
parity check matrix. But if an error occurs in MRP, due to the modified parity check matrix,
this bits may connected to many other checks and the wrong message will widely propagate
to the graph. The decoder will converge to a wrong codeword. Fig. 3.14 is the distribution
of error patterns in MRPs when JN algorithm is fail. The number in x-axis represents the
number of errors in MRPs after the first time Gaussian elimination once the decoded result
is not correct. In this simulation, max iteration number [,,,, = 20, o = 0.1. We can observe
that if there is no error in MRPs after the first time Gaussian elimination, the decoded
output will be correct. But if there are errors in MRPs, JN decoder may give the wrong

alnswer.
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Check 1 Check 2

Bit Nodes 3 2 1 6 5 4
LLR | v +V +v +v v v |
Bit node 3 moved to low density position Bit node 4 moved to low density position

Figure 3.8: Modified Tanner graph by JN algorithm

Check 1 Check 2

Bit Nodes ° o o o

LLR | +V +V +V +V +v
Extrinsic information from check 1 +E -E -E -E 0 0
Extrinsic information from check 2 0 0 +E +E +E +E

LLR |[wE  +V-E  +V +V VHE  +viE

Figure 3.9: Message passing in JN algorithm

3.9 The Modified JNOSD Algorithm

In [16], the author proposed a new algorithm based on JNOSD to decrease the influence
of errors in MRPs in the JN algorithm which is mentioned in the last section. To control
the error propagation in the JN algorithm, [16] uses OSD algorithm to help the decoding of

JN algorithm during each iteration. At iteration [, the decoding procedure is as follows:

Modified JNOSD Algorithm
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Check 1 Check 2

Bit Nodes o o o o ° e ‘
+V +V

LLR | +V Iy v w
error error

Figure 3.10: Error in bit node 3 and 4

Stepl. Order-i reprocessing: Using the LLR vector LY, a new MRB is generated. OSD(1)
is performed to generate a candidate codeword. Sufficient conditions are applied to
check if the optimum codeword has been found. If yes, the algorithm stop. If not, the

algorithm saves the best codeword comes from OSD(1) and proceeds to the next step.

Step2. Feedback: If the best codeword in the last step is 0 in some LRPs; add +A(A > 0)
to the corresponding positions of the LLR vector. If the best codeword in the last
step is 1 in some LRPs, add —A to the corresponding positions of the LLR vector. A

is a parameter that could be decided by the user.

Step3. JN Update: The adaptive parity check matrix H® is constructed from L¢V.
Using H® and ngt extrinsic information Lgm is generated and the bit reliabilities

are updated to L. This LW is used in the next iteration of OSD to determine MRB.

The difference between the JNOSD and the modified JNOSD algorithm is the Step2.
Although OSD(1) can correct one error happened in MRPs; it can not help the JN algorithm

if the number of errors in MPRs are more than one. By the feedback of the information
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Check 1 Check 2

Bit Nodes ° e o o ° e

LLR  [+v_ +v v ~ v v |
Extrinsic information from check 1 +g +E -E -E 0 0
Extrinsic information from check 2 0 E E +E +E
LLR [+V4E +V+E _ ~v2E  +v2E FVHE  +ViH

Figure 3.11: Message passing when errors are in bit node 3 and 4

from OSD, it could enhance the accuracy of bits in LRPs. Then by sorting according to
the updated LLR by Step 2, some positions in MRPs and LRPs may exchange. On the
boundary of MRPs and LRPs, there may be some bits in MRPs but still in error and vice
versa. Exchanging the bits on the boundary may exchange the wrong bit in MRPs and the
correct bit in LRPs. It can decrease the error number in MRPs and reduce the effect of
error propagation.

From Fig. 3.15, the modified JNOSD algorithm really decrease the number of decoding
failure when errors occurs in MRPs. The simulation result of (15,7) RS code is shown in
Fig. 3.16. The coefficient setting this simulation is: a = 0.1, [,,,4, = 20 and A = 3.0. From
the simulation, the modified JNOSD algorithm is 0.45dB better than JNOSD at ber=1075.
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Check 1 Check 2

Bit Nodes o o
+V WV |

LLR -V +V +V +V
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Figure 3.12: Modified Tanner graph by JN algorithm
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Bit Nods O O O O
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Extrinsic information from check 1 +E -E E -E 0 0
Extrinsic information from check 2 0 0 -E -E -E +E
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Figure 3.13: Message passing in JN algorithm
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Figure 3.14: Distribution of error patterns in MRPs when JN algorithm is failed
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Figure 3.15: Distribution of error patterns in MRPs between three algorithms when they
are failed
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Figure 3.16: Performance comparison of four different algorithms of RS(15,7)
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Chapter 4

A New Decoding Algorithm Based on
the JN Algorithm

We’ve known the drawback of the JN algorithm from the last chapter. Now in this

chapter, we propose a new algorithm to improve the performance of the JN algorithm.

4.1 The Proposed Algorithm

Once an error occurs in the MRPs, the error propagation may cause the failure of the
JN decoder as mention in the last chapter. In [16], it uses the decoded result of OSD(1) to
deal with this problem. By exchanging the bits on the boundary of MRPs and LRPs, this
new decoder can give a better decoded result. This algorithm takes the information from
OSD(1) to help the decoding in the JN algorithm. Considering the same problem(to ease
the effect of error propagation in MRPs), we take another viewpoint.

Recall that in the OSD algorithm, the received sequence are partitioned into MRIPs and
LRPs. The bits in MRIPs are thought to be more reliable than LRPs. Each time OSD(1)
flip one position in MRIPs and re-encode to generate a new candidate codeword. Finally
picks up the one with the maximum correlation. In the JN algorithm, it modify the parity
check matrix according to the reliability due to the bits with higher reliability are thought to
be more reliable. The corresponding Tanner graph of the modified parity check matrix has
higher probability to correct errors in LRPs compared with the original belief propagation.

But if there are errors in MRPs, the JN decoder may fail due to error propagation. From
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Fig. 3.15, if no error happened in MRPs, the JN decoder will almost decode successfully.
Our goal is to try to reduce the errors in MRPs before the JN algorithm. We uses the same
concept as OSD(1). That is, flip one bit in MRPs at a time and use this new LLR sequence
as the input of the JN decoder. There are k bits in MRPs, so we’ll get k decoded outputs
as the candidate codewords. With the original LLR sequence from channel, total number

of candidates are k + 1. Here are the decoding procedures:

The Proposed Algorithm

Stepl. Initialization: set «, [, = N1, [ = 0 and the LLR’s for the coded bits from the

channel observation: L(O) = C%g.
Step2. Reliability based parity check matrix adaption: ngl) = ¢(H,, |LY)).
a) Order the coded bits according to the absolute value of the LLR’s |L"| and record
the ordering indices.

b) Implement Gaussian elimination to systematize the (n — k) unreliable positions

which are independent in the parity check matrix.

Step3. Use the sorted LLR vector as the input to the JN decoder which is the same as the
original JN algorithm. For 1 <4 < k, flip the LLR value of i-th position in MRPs.
Feed these k modified vectors as the inputs to the JN decoders. Finally, we can get
k 4+ 1 candidates from the JN decoders.

Step4. Compute the correlation of each candidates. The one with the largest correlation

will be the decoded output.

The idea of the proposed algorithm is shown in Fig. 4.1. Note that the number in each
position of the MRPs is the LLR value.
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Figure 4.1: The proposed algorithm

4.2 Discussions of the Proposed Algorithm

To deal with the error propagation in the JN algorithm, we first modify the LLR vector
before the JN decoder. The modification can reduce the number of errors in the MPRs.
Therefore, the decoded output seems to be more correct. Although we need k£ + 1 JN
decoders, each decoder is independent of others. That is, £ + 1 JN decoders can run in
parallel. Our modification is very like to OSD(1), but the proposed algorithm can have a
better performance than OSD(1). In OSD(1), if the errors in MRIPs are more than one, the
decoder will fail. However, in the proposed algorithm, due to the message passing in the

Tanner graph, errors in MRPs may be corrected by the information from other bit nodes.

4.3 Simulation Results

In this section, simulation results of the proposed algorithm and the comparison between
different algorithms are presented. We use “JN” to represent the JN algorithm in [11],
“OSD(1)” to represent the OSD algorithm with order-1 in [4], “JNOSD” to represent the
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algorithm introduced in [15] and “M-JNOSD” (Modified-JNOSD) to represent the algorithm
in [16]. We first show the simulation results of (15,7) RS code in Fig. 4.2. In this simulation,

(15,7)RS code; AWGN channel; BPSK
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Figure 4.2: Performance comparison of RS (15,7)

a = 0.1, lee = 20 for the JN algorithm and A = 3.0 for the modified JNOSD algorithm.
At bit error rate = 1075, JNOSD provides about a 0.5dB gain over JN and OSD algorithm.
The modified JNOSD algorithm has a 0.45dB gain compare with JNOSD. The proposed
algorithm, is 0.25dB better than the modified JNOSD algorithm and the performance is
very close to the ML decoding.

Next we consider (15,9) RS code as shown in Fig. 4.3 The coefficients of simulation
are set as follows: a = 0.1, lqe = 20 and A = 3.0. At bit error rate = 107>, OSD(1) is
0.4dB better than the JN algorithm. JNOSD is 0.25dB better than OSD(1).The modified
JNOSD is about 0.1dB better than the original JNOSD. The performance of the proposed
algorithm is almost the same sa the modified JNOSD algorithm in this case. The reason is

the performance of these two algorithms in this code are very close to the ML decoding.
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Figure 4.3: Performance comparison of RS (15,9)

The simulation results for the (31,23) RS code are shown in Fig. 4.4. At bit error rate
= 107?, JNOSD provides a 0.25dB gain over JN and OSD algorithm. The modified JNOSD
algorithm is 0.4dB better than JNOSD algorithm. The proposed algorithm performs 0.3dB
better than the modified JNOSD algorithm.

Fig. 4.5 shows the simulation results for the (31,25) RS code. At bit error rate = 1075,
JNOSD is about 0.2dB better than OSD(1) and 0.3dB better than the JN algorithm. The
modified JNOSD is 0.4dB better than the original JNOSD algorithm. In this case, our
algorithm has only a 0.06dB gain compared with the modified JNOSD algorithm.
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Figure 4.4: Performance comparison of RS (31,23)
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(31,25)RS code; AWGN channel; BPSK
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Figure 4.5: Performance comparison of RS (31,25)
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Chapter 5

Conclusions

In this thesis, we first introduce how to map RS codes into it’s binary representations. By
doing so, we can transform the decoding problem of RS codes into the decoding of binary
linear block codes. Many decoding algorithms designed for binary linear block codes can
therefore be used. Then we briefly review the previous works of decoding RS codes. They
are the OSD and the JN algorithm. After reviewing these two algorithms, we analyse the
advantages and the drawbacks of the JN algorithm. We discover that the main reason of
decoding failure in the JN algorithm is the errors in MRPs. In order to deal with this
problem, we propose a new algorithm, which uses the concept in the OSD algorithm before
doing the JN algorithm.

From the simulation results, the proposed algorithm has very good performance com-
pared with the previous work such as JN and OSD(1). It also outperforms JNOSD and
the modified JNOSD algorithm. Although many decoders are needed in the proposed al-
gorithm, they can run in parallel. The same concept of our algorithm can also be applied
to the modified JNOSD algorithm. It means that we modify the received vector before
doing the modified JNOSD algorithm. The simulation results show that after doing so, the
performance is better than the original modified JNOSD algorithm and is also better than
the original proposed algorithm. To sum up, in this thesis, we propose a new soft input
soft output decoding algorithm based on JN and OSD algorithm. The idea of the proposed

algorithm can also applied to some other algorithms to get a better performance.
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