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Abstract

In wireless communication systemssmultiple-input and multiple-output (MIMO)
technology offers significant 'increases in data rate and link range without additional
bandwidth or transmit power. However, the design of high performance and low
complexity receivers for . MIMO: systems = is ; a challenging task. The
maximum-likelihood (ML) #detection 1s the optimal detection scheme but its
complexity grows exponentially: with the number. of transmit antennas. The sphere
decoding algorithm (SDA) achieves the ML performance with reduced complexity.
Nevertheless, the throughput of the conventional SDA is not stable. The K-best SDA
which keeps only K-best candidates at each layer for the search of next layer is
guaranteed to have a stable throughput. However, to achieve a near-ML performance,
the value of K should be sufficiently large. Besides, applying a sorting algorithm to
find K-best candidates at each layer requires a large amount of memory access. In this
thesis, we propose a complex K-best sphere decoder with an efficient search
architecture. The proposed K-best sphere decoder significantly reduces the sorting
complexity. We also provide the hardware architecture of the proposed complex
candidate search method. It is demonstrated through analysis and simulations that the
proposed K-best sphere decoder achieves a near-ML performance without requiring a
large value of K.
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Chapter 1

Introduction

Next generation wireless communication systems are expected to provide users
with higher data rate services including video, audio, data and voice signals. The
rapidly growing demand for these services drives the wireless communication
technologies towards higher data rate, higher mobility and higher link quality.
However, the time-selective and - frequency-selective fading in wireless channel
caused by multipath propagation, Doppler shifts and carrier frequency/phase drifts
severely affect the quality and reliability..of ‘wireless communication. Besides, the
available bandwidth and ‘power |are dimited=which makes the design of wireless
communication systems extremely challenging. Hence, recently there are many
innovative techniques that improve the reliability and the spectral efficiency of
wireless communication links. Some popular examples include the coded
multicarrirer modulation, smart antenna, in particular multiple-input multiple-output
(MIMO) technology [1-4] and adaptive modulation [5], [6].

MIMO technology involves the use of multiple antennas at the transmitter and
receiver to improve communication performance. The technology offers some
benefits that overcome the challenges posed by both the impairments in wireless
channel as well as resource constraints. The two important benefits of MIMO
technology are the diversity gain and the spatial multiplexing gain. Diversity gain

mitigates fading by providing the receiver with multiple (ideally independent) copies



of the transmitted signal in space, time or frequency. Spatial multiplexing offers a
linear increase in data rate by transmitting multiple independent data streams within
the bandwidth of operation.

There are many signal detection schemes for MIMO systems such as linear
detection, successive interference cancellation (SIC) [7], [8] and the
maximum-likelihood (ML) detection. Both the linear detection and the SIC schemes
are easy to be implemented but their detection performance are not optimal. The
optimal detection scheme is the ML detection; however, the complexity of the ML
detection scheme grows exponentially with the size of the transmit symbol alphabet
and the number of transmit antennas. To reduce the complexity of the ML detection,
the sphere decoding algorithm (SDA) is introduced in [9-12] to achieve the same
performance as the ML detéetionywithrreduced complexity. The basic idea of SDA is
to search the nearest lattice point to the received signal vector within a given sphere
radius. However, the complexity ofithe conventional SDA is still too high in the low
SNR range and its decoding throughput is not stable: Hence, it is not suitable for real
time detection and hardware implémentations.

To overcome the drawbacks of the conventional SDA, the K-best SDA is
introduced in [13-16]. The K-best SDA uses breadth-first search and keeps K-best
candidates at each layer for the next layer search. Hence, the decoding throughput of
the K-best SDA is stable. However, one major drawback of the K-best SDA is that the
value of K has to be chosen sufficiently large to achieve a near-ML performance
which increases the computational complexity. Besides, applying sorting algorithm to
find K-best candidates at each layer causes large amount of memory access.

In this thesis, our major goal is to reduce the sorting complexity of the K-best
SDA. We propose an efficient sorting method which reduces the large amount of

memory access without sacrificing the detection performance. To reduce the number
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of search layers, we propose an efficient complex domain candidate search method
which is simple and can be easily implemented by VLSI process. Moreover, we
propose a search method which deals with the poor condition channel to improve the
performance of the proposed K-best SDA when the value of K is small. As a result,
the proposed K-best SDA has lower complexity and better performance than the
conventional K-best SDA.

The remainder of the thesis is organized as follows. In Chapter 2, the signal
model and the conventional detection schemes of the MIMO systems are introduced
first. Secondly, several kinds of the SDA are given. In Chapter 3, the proposed K-best
SDA is presented. Chapter 4 provides the VLSI architecture of the proposed complex
domain candidate search method:and the sorting complexity analysis of the proposed
K-best SDA. Finally, Chapter 5 givesconclusion remarks of this thesis and leads the

way to some potential works.



Chapter 2

MIMO Systems

In wireless communication, multiple-input and multiple-output (MIMO) involves
the use of multiple antennas at the transmitter and receiver to improve communication
performance. MIMO technology offers significant increases in data rate and link
range without additional bandwidth or transmit power. In this chapter, we give a
review of the MIMO systems. We first introduce the MIMO system model in Section
2.1. Section 2.2 introduces the channel eapacity.. Then, the spatial diversity (SD) and
the spatial multiplexing (SM): techniques are introduced in-Section 2.3 and Section 2.4,
respectively. The common“detection schemes of.the MIMO systems will be given in
Section 2.5. The sphere decoding algorithm has beensstudied as a practical solution of
the ML detection with reduced complexity.:"We will give an introduction of the sphere

decoding algorithm in Section 2.6.

2.1 System Model

Consider the MIMO system shown in Figure 2-1 with N transmit antennas and
M  receive antennas. The received signal vector is denoted as

T
Y=y Yy - yM} e CM | where v,, 1s the received signal at the mth receive

antenna and []7 denotes the transpose operator. Similarly, the transmitted signal

T
vector is denoted as x:[xl z, - xy| €CV oor RV where z, is the



transmitted signal at the nth transmit antenna. Assume M > N and the channel
responses are frequency-flat fading and remain constant during a frame transmission.

The channel matrix can be expressed as

hyy gy Iy
hoy  hyy o hyy

H=| A (2.1)
hM,l hM,Q hM,N

where B, ; is the channel gain from the jth transmit antenna to the ith receive antenna.

With the assumption that sufficient antenna separation at the transmit and receive
antennas, the elements of the channel matrix H can be assumed to be i.i.d. complex

Gaussian random variables withszero-mean and unit variance. The relation between

the received signal vector and the transmitted signal vector can be expressed as

y = Hx +n, (2.2)

T
where n=|n, n, - ny| @C¥istheitd. complex additive white Gaussian

noise (AWGN) vector with zefo-mean and covarianée matrix oI .

TX 1 RX1
Y T ™ Y
Y v T

™ [ -] RX
Y v 7

TXN RXM

Figure 2-1: Block diagram of a MIMO system



2.2 Channel Capacity

Channel capacity is the highest rate in bits per channel use at which information
can be transmitted with an arbitrary probability of error. We first introduce the
single-input-single-output (SISO) channel capacity and then study the capacity of a
MIMO  channel. Note that single-input-multiple-output  (SIMO) and
multiple-input-single-output (MISO) channels are sub-sets of the MIMO case. The

channel capacity is defined as [17]

C= m(aXI(X;Y), (2.3)
p@
where
(X, YL HE)2H (Y | X) (2.4)

is the mutual informationbetween! X |and ¥; H(Y) and H(Y |X) are the
differential entropy of Y and differential conditional entropy of Y with knowledge of

X given, respectively. In (2:3),.it states that-the mutual information is maximized with
respect to all possible transmitter statisticaldistributions p ().

The ergodic capacity of a SISO system with a random complex channel gain A is
given by [17]

C = E{log2 (1+y]rf )} bits/sec/Hz, 2.5)
where v = % o 1s the average SNR at the receiver, P is the transmit power and
E{-} denotes the expectation over all channel realization. For a MIMO system with
N transmit antennas and M receive antennas, the capacity of a random MIMO channel
is given by [1]

P HRMHH]
N

C= g, b {I%

det [IM +

e } bits/sec/Hz, (2.6)



where R,, = F {XXH } is the covariance matrix of the transmitted signal vector x. If

the channel knowledge is unknown to the transmitter, the signals are chosen to be
independent and equal-powered. The covariance matrix of transmit signal vector is

then given by R, =1I,,. As a result, the ergodic capacity of a MIMO system can be

written as [1]

C = E{log2

det[IM+ L HHH]

2
o

} bits/sec/Hz. (2.7)

By using the eigenvalue decomposition, the matrix product of HH” can be

decomposed as HH” = EAE” , where E isan M x M matrix which consists of
the eigenvectors satisfying EE” = EYE =1,, and A = diag N XAy} s a

diagonal matrix with the eigenvalues A, >0 on'the main diagonal. Assuming that

the eigenvalues )\, are ordered so that- A; > A7, ;5 we have

o = (2.8)

A e P e
0, i +1<i< MY

where o is the ith squared singular value of the channel matrix H and

r = rank (H) < min{N, M} is the rank of the channel matrix. Then the capacity of

} - E{logz

= ZE{Ing [1 + QLAZ]} bits/sec/Hz.
o°N

=1

a MIMO channel can hence be rewritten as

p

det EAEH]
N

C=F {log2 5
o

P
2.9)

Note that the second equation holds due to the fact det(I, + AB) = det(I, + BA)

for matrices A € C"™" and B € C"™" and E”E =1I,,. Equation (2.9) shows that

the capacity of a MIMO channel is made up by sum of the capacities of r SISO

sub-channels with power gains A for ¢=12...,r and transmit power %

individually.



If the channel knowledge is known to the transmitter, the capacity of a MIMO
channel is the sum of the capacities associated with the parallel SISO channels and is

given by

" P
C = ZE{logQ [1+"}/Z—0_2—N)\Z-

1=1

} bits/sec/Hz, (2.10)
where v, = F {|33Z|2} for i =1,2,...,r is the transmit power in the ith sub-channel

and satisfy Z:.':l%- = N . Since the transmitter can access the spatial sub-channels,
we can allocate variable power across the sub-channels to maximize the mutual
information. The optimal power allocation of the ith sub-channel is given by [1], [17]

Mo?*
P,

opt

Y =

/’L_

] for 1 =1,2,---,1 , (2.11)
+

where 1 is chosen to satisfy the constraint »°°. .= N and (), denotes the

operation that taking those terms which arepositive- The .optimal power allocation in

(2.11) is found iteratively through the water=filling algorithm [1], [17].

2.3 MIMO Diversity

Diversity techniques are widely used in MIMO systems to improve the reliability
of transmission without increasing the transmit power or sacrificing the bandwidth.
There many diversity techniques such as time diversity, frequency diversity and space
diversity. In this section, we focus on the space diversity that is so called antenna

diversity.

2.3.1 Receive Diversity

Receive diversity involves the use of multiple antennas at the receiver. At the

receiver, multiple copies of the transmitted signal are received, which can be

8



efficiently combined with an appropriate signal processing algorithm. There are four
main types of combining techniques, include selection combining, switch combining,
equal-gain combining (EGC) and the maximum ratio combining (MRC). In the
selection combining, the received signal with the best quality is chosen and the
choosing criterion is based on SNR. Switch diversity switches the received signal path
to an alternative antenna when the current received signal level falls below a given
threshold. EGC is a simple method since it does not require estimation of the channel.
The receiver simply combines the received signals from different receive antennas
with weights set to be equal. MRC forms the output signal by a linear combination of
all the received signals and is the optimal combination technique which achieves the

maximum value of the output SNR.

2.3.2 Transmit Diversity

Transmit diversity techniques-which-provide diversity benefits at the receiver
with multiple transmit antennas, has received much attention, especially in wireless
cellular systems. There are two broad ‘categorics of transmit diversity: the open loop
schemes and the closed loop schemes. In the open loop schemes, the transmitter
transmits signals without feedback information from receiver. Space-time code (STC)
is an open loop scheme which jointly designs of channel coding and modulation to
improve system performance by providing both transmit diversity and coding gain.
STC can be classified into two categories, the space-time block code (STBC) and the
space-time trellis code (STTC). In this section, we focus on STBC.

The most famous STBC is the Alamouti STBC [3]. This scheme is proposed for
two transmit antennas which is shown in Figure 2-2. In the Alamouti scheme, symbols

transmitted from the transmit antennas are encoded in both space and time in a simple



manner to ensure the transmissions form both the antennas are orthogonal to each
other. At a given symbol period, the encoder takes a block of two modulated symbols

z; and z, in each encoding operation and maps them into the transmit antennas

according to a code matrix which is given by
C = , (2.12)

where (0" denotes the conjugate operator. During the first transmission period, two

signals 1z, and z, are transmitted simultaneously from antenna one and antenna

two respectively. In the second transmission period, —:z:;k is transmitted from the

transmit antenna one and xf is transmitted .form the transmit antenna two. The

Alamouti scheme extracts the.diversity erder.of 2 (fullstransmit diversity) even in the

absence of the channel knowledge at the transmitter.

Alamouti h,
Encoder X

Data —» Modulator » S/P
}v
Ty Ty l ,

Figure 2-2: Transmitter block of the Alamouti scheme

2.4 Spatial Multiplexing

Spatial multiplexing 1is a transmission technique of MIMO wireless

communication systems which increases the transmission data rate without additional

bandwidth or power consumption. In the spatial multiplexing systems, N different

10



data streams are transmitted from different transmit antennas simultaneously or
sequentially and these data streams are separated and demutiplexed to yield the
original transmitted signals according to their unique spatial signatures at the receiver,
as illustrated in Figure 2-3. The separation of data streams at the receiver can be done
possibly by the fact that rich scattering multi-paths contribute to lower correlations

between MIMO channel coefficients and hence create a channel matrix with full rank
and low condition number to N unknowns from a linear system of M equations. In the

following, two typical spatial multiplexing schemes, D-BLAST [4] and V-BLAST [18]

are introduced.

Transmitter Receiver
ke et

4 4

—)( 2Y Y=

e
Y=—0 Y
_2’_

Figure 2-3: An illustration of a spatial multiplexing system

(1) Diagonal Bell Laboratories Layered Space-Time (D-BLAST)

The concept of layered space-time processing was introduced by Foschini at Bell
Laboratories [4]. D-BLAST uses multiple antennas at both the transmitter and the
receiver, and an elegant diagonally-layered coding sequence in which code blocks are
dispersed across the diagonals in space-time. The high-rate information bit stream is
first demultiplexed into N substreams, and each substream is encoded by a
conventional 1-D constituent code. The encoders apply these coded symbols to the
input to form a semi-infinite matrix X of N rows to be transmitted. The encoding

procedure is shown in Figure 2-4.

11



(2) Vertical Bell Laboratories Layered Space-Time (V-BLAST)

The D-BLAST algorithm suffers from certain implementation complexities
which is not suitable for practical implementation. Therefore, a simplified version of
the BLAST algorithm is known as V-BLAST. It is capable of achieving high spectral
efficiency while being relatively simple to be implemented. The coding procedure of
the V-BLAST can be viewed as there is an encoder on each transmit antenna. The
output coded symbols of each encoder are transmitted directly from the corresponding

antenna which is shown in Figure 2-5.

Encoder,-y | | | e

Input bits 1:N

" DEMUX » Encoderg— | || || |-
Encodera—> | || || |

Encoder~ | -

Encoder 3

Encoder a

Decision

Lz?)fer
(Decoding)\

Figure 2-4: Encoding procedure of the D-BLAST scheme (N = 3)

Encoder~y (— | || [ | |-

Input bits 1: N

—> » Encoder@ — | || || |
DEMUX
Encodera —> | || [ ]| |
Time
Encoder ~/| g ay ay
Encoder 8 X=>0p B DB, Py ---| Laver Pecision
(Decoding)
[Encoderal— [0 1 % %] | ]
Space

Figure 2-5: Encoding procedure of the V-BLAST scheme (N = 3)
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2.5 MIMO Detection

The classification of MIMO detection schemes are shown in Figure 2-6. In this
section, we introduce linear and non-linear detection schemes in the following

subsections.

»| Zero-Forcing (ZF)

Linear
Schemes

Minimum
Mean-Square Error
(MMSE)

\ 4

MIMO
Detection OSIC
Schemes

ZF-BLAST

\ 4

MMSE-BLAST

4

Non-Linear Exhaust ML
Schemes Search

Tree search
Algorithm

v

Sphere Decoding

Figure 2-6: Overview of MIMO detection methods

2.5.1 Linear Detection

The linear detection is to preprocess the received signal by transforming it

linearly
y = Wy = WHx + Wn (2.13)

so that the transformed channel-matrix WH will be close to a diagonal matrix. Here,
we introduce two detection schemes: zero-forcing and minimum mean-square error.
(1) Zero-Forcing (ZF)

In the ZF scheme, the preprocessing matrix W is chosen to remove the
oft-diagonal terms of WH

y=H'y (2.14)



where H' is the Moore-Penrose pseudo-inverse of H. The spatial interferences are
completely removed from the received signal; however, the main drawback of ZF
method is the resulting noise enhancement.

(2)Minimum Mean-Square Error (MMSE)

The MMSE scheme minimizes the joint effects of the interferences and the noise

by

y =

S

2 -1
H'H + fE—I] Hly (2.15)

where E_ is the average energy of a transmitted symbol. MMSE outperforms than

ZF method; however, to estimate the variance of the noise is hard at the receiver.

2.5.2 Non-Linear-Detection

(1) V-BLAST Detection
The detection schemerof the V-BLLAST-system is based on the ordered successive
interference cancellation (OSIC) algorithm [7], [8]: In*OSIC, the detection procedure
first detects the strongest signal, cancels the’ effect of the detected signal from the
received signal, and then proceeds to detect the strongest signal of the remaining
transmitted signals, and so on. The basic steps of the OSIC algorithm are as follows:
e Ordering: Detect the signals in descending order of power in accordance
with some criteria such as ZF or MMSE.
e Nulling: Nulling out all weaker signals to extract the strongest signal.
e Slicing: Make a hard decision on the strongest signal.
*  Cancelling: Cancel the effect of the detected strongest signal from the
received signal.

There are two common V-BLAST detection schemes: ZF V-BLAST and MMSE

14



V-BLAST. The differences between these two detection schemes are the ordering

criterion and the nulling process. The ZF V-BLAST detection algorithm can be

summarized as follows:
Initialization:

Recursion:
n e, |
0, = arg min , H
" j¢{01$02$"'307l—l} e
w, =(G,),
. H
zon Wony"

Yorr =% — Hon ‘%On
g\t
Gn-‘rl = (Hon)

n=mn-+1

The MMSE V-BLAST detection algorithm¢an be: summarized as follows:

Initialization:

2 -1
Y=Y G :[HHH+%I] H =QH?, n=1

Recursion:
2
0, = arg min (dlag (Qn ))
.7¢{017027"'>07171} J
W(’n - (G” >on
 _H
Zon Wony"
.'L'on = Q(ZOH )
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(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)



Yor1 =¥, —H, To, (2.29)

2

-1
Gy = | H0, H,, +%I] H, =Q,, M, (2.30)

n=mn++1 (2.31)

where (A). denotes the jth column of matrix A, @() denotes the quantization

operator, A,, denotes the matrix obtained by removing columns o,,0,,---,0, of H,
and (diag (A))j denotes the jth diagonal element of matrix A.

(2) Maximum-Likelihood (ML) Detection
It is well known that the optimal detection scheme of the MIMO systems is the
ML detection. The ML detection searches all possible combinations of transmitted

symbols via the following criterion:

XML = arg miél”y —Hx|, (2.32)
X€E

where S = O" denotes the set of all possible'transmitted symbol vectors and O is

the modulation symbol alphabet. Note-that-{S|=10|" so that the computational

complexity grows exponentially with N . Therefore, it is difficult to be implemented

at the receiver in practice which is the main drawback of this method.

2.6 Sphere Decoding Algorithm (SDA)

The sphere decoding algorithm (SDA) [9-12] achieves ML performance with
reduced complexity. Hence, it has recently received considerable attentions as an
effective detection scheme for MIMO systems. The basic idea of SDA is to restrict the
search region of the optimal solution to a smaller subset. Typically, the search region

is constrained to the interior of a hyper-sphere of radius d centered at the received

16



signal vector y as
4’ > |y — Hx|". (2.33)

The geometrical interpretation of the concept of SDA is shown in Figure 2-7.

Generally, the complex signal will be transformed into real signal model by

Re(y) Re (x) Re (n)
y = , X= , n= )
Im (y) Im (%) Im ()
(2.34)
_ |Re(H) —Im(H)
H= ;
Im(H) Re(H)

where Re() and Im() are the real and imaginary parts of its argument. Hence, the
real-valued signal is

¥ < Hx 41, (2.35)
where 7 € R*! | xe A eZ™, aeR*™, and H e R*2Y  Performing

QR-decomposition of H ,,we have

, (2.36)

where R is a 2N x2N upper friangular matrix, 0 is a 2(M — N)x N zero

matrix,and Q, and Q, are 2M x2N and 2M x2(M — N) unitary matrices

respectively.

Figure 2-7: Geometrical interpretation of the SDA

17



Substituting (2.36) into (2.33), we have
(d) >[5 - R, (2.37)

o ~<H 2 9 lxH -|? ) ~ ~ o
where ¥ =Q; ¥ and (d) =d —‘QQy . Letting R:[n’j} with 7., >0 and

r,; =0 for i>j, (2.37) canbe expended as

2N _ 2N~ N 2
=Z[yi— ’_n,jwj] (2.38)

2

~! ~ ~ 2 ~ ~ ~ ~
= (yQN - TQN,QN%N) + <y21v-1 ~hHyaanTay T r2N71,2N71$2N71> +-
[ ~ ~ 2 N - ~ 2
= (yQN - 7°2N,2N332N) + <y2N—1 - 7"2N-1,2N-1372N-1) BRI
where
’ ; 2V
j=i+1

The iterative search for th& candidates &,y @5y 15 .., &5, 2, creates a search tree as

shown in Figure 2-8.

Layer
*B 0
3 Ty
2 z,
1 I

Figure 2-8: A tree search structure of the SDA (N = 2)
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2.6.1 Fincke and Pohst SDA

In the Fincke and Pohst SDA (FP-SDA) [9], [10], the radius is chosen to be a
scaled variance of the noise

d* = aNo?, (2.40)

where the scalar « is chosen in such a way that the a lattice point HX lies in the

sphere with probability P,

a )\N—l
il e\ =P, (2.41)
0

where the integrand is the pdf of the y° random variable with N degrees of

freedom, and P, is set to a value closed to 1. If no lattice point is not found, we can

8

increase P,, adjust d, and then search again. For*the (2N)th layer, the necessary

s

condition for Hx to lie in§ide the spher& is
1\2 o r = 2
(d ) = (yQN -~ 7”2N,2N372N) F (2.42)

Hence, the corresponding range of. &,y 1s

n 1

Yoy —=d

THN 2N

oy +d

S s
HyoN

(2.43)

Y

where [1 and [-] denote the ceiling and the floor operations respectively. In general,

the necessary condition of the kth layer is

G —rua) < (0 = 3 (5 -7,5) = (@) 2.4

j=k+1

Hence, the corresponding range of 7, leads to
LB(%,) < %, <UB(%), (2.45)

where

(2.46)




n !

gk + dk:

Tk

UB(7,) = (2.47)

The lattice points satisfying the above equation are searched to find the ML solution.

In FP-SDA, the search for 7, is performed in the order of
LB(Zx), LB(%,)+ 6, LB(%,)+ 26, ---,UB(%,) , where § is the minimum

distance between symbols. If no lattice point satisfying (2.45) is found for all %, the

algorithm will set a larger search radius and restart the search again.

2.6.2 Schnorr and Euchner SDA

Schnorr and Euchner SDA (SE-SDA) [12] is a variant of the FP-SDA. In

SE-SDA, the search for the candidate 7of thekth layer is started from

B =25, (2.48)
Th,k
where [] denotes the. ‘rounding 'operator and the search order is

Tk, Tk — 0, Ty + 0,---. Hence, the first solution-found by the SE-SDA is exactly the
Babai estimate [19] (zero-forcing solution) of the real-valued signal. Therefore, the

search radius is set to be
dsp = [[¥ — A%, (2.49)

where %, denotes the zero-forcing solution. Note that HX,, is a lattice point;
hence it guarantees that there is at least one lattice point inside the sphere which does
not have to restart the search again as that in the FP-SDA. Moreover, the searching

symbols in each layer of this algorithm starts from the point that is the nearest one to
gj,! for each £; hence, it is likely to find the optimal solution earlier than the FP-SDA

which saves the computational complexity.
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2.6.3 K-Best SDA

Both FP-SDA and SE-SDA achieve ML performance; however, their complexity
in the low-SNR range is still too high. Besides, the decoding throughput is not stable
and hence they are not suitable for real-time hardware implementation. The K-best

SDA [13-16] is proposed for the MIMO detections with lower complexity and a stable

throughput. First, define path weight P, and branch weight B, of the kth layer as

P, =0, for k =2N +1
o , (2.50)
~ n 2

The main idea of the K-best . SDA is to keep only K candidates which have the

smallest path weights in each layer whiCh is shown in Figure 2-9. The steps of the

K-best SDA [13] are summarized as follows:
Step 1. Calculate C' = HS' - ﬁiZF||2

Step 2.
(a). Set k=2N, T2 y = C . For each symbol in the constellation, calculate:
D =T,y —B,y. (2.52)

D ,iftD>0

Ty = (2.53)

0, otherwise -

(b). Choose those symbols which have the K largest positive T,y , values.

Step 3.
(A k=k—-1
(b) For each survival partial symbol vector from the previous layer; for each
symbol in the constellation, calculate:
D=T,-B,. (2.54)
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~ D,ifD>0
Tk—lz

0, otherwise -

(c) Choose those symbols which have the K largest positive 7, , values.

@If (k=1)
The solution is the symbol vector with the largest TO .
else

Go back to step 3(a)

Layer O : Survival node

. : Dropped node

2N

2N-1

2N-2

Figure 2-9: The concept of the K-best SDA

2.6 Summary

(2.55)

In this chapter, we give a review of the MIMO communication systems.

22

Exploiting multi-path scattering, MIMO systems deliver significant performance
enhancements in terms of data rate and link quality. Spatial diversity is one of the
MIMO techniques which mitigates fading and is realized by providing the receiver
with multiple copies of the transmitted signal in space or time. MIMO systems offer a
linear increase in data rate through spatial multiplexing by transmitting multiple and

independent data streams without requiring additional bandwidth or transmit power.



The detection of MIMO signals can be classified into two types: linear detection
and non-linear detection. Linear detection schemes such as ZF or MMSE are simple
but their performances are poor. The optimal detection scheme is the ML detection.
However, the computational complexity grows exponentially with the number of
transmit antennas. The sphere decoding algorithm achieves the ML performance with
reduced complexity. In this chapter, we introduce several kinds of the sphere decoding

algorithms for the trade-off between performance and the computational complexity.
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Chapter 3

Proposed Complex K-Best Sphere
Decoding Algorithm

In Chapter 2, we introduce the K-best SDA which is a suitable solution for
hardware implementation; however, the conventional K-best SDA has some
disadvantages. First, the complex-valued signal should be converted into real-valued
signal which increases the search layerssBesides, performing a sorting algorithm to
find K nodes which haye the smallest path weights in each layer causes a large
amount of memory access:Moreover, to-achieve a near-ML performance, the value of
K should be chosen sufficiently: large; ‘and this increases the computational
complexity.

In this chapter, we introduce the proposed complex K-best SDA which requires a
lower complexity and achieves a near-ML performance with smaller K than the
conventional K-best SDA. The details of the proposed algorithm will be introduced
through Section 3.1 to Section 3.5. The simulation results will be provided in Section
3.6 to show that the proposed algorithm works better than the conventional K-best

SDA.

3.1 Complex K-Best SDA

The complex K-best SDA is similar to the conventional K-best SDA. First,

performing complex QR-decomposition to the channel matrix H, we obtain
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R

0 (3.1)

H=[Q, Q)

where Q, € C"™" and Q, e C"M=N) are unitary matrices, R is an

N x N upper triangular matrix and 0 isan (M — N)x N zero matrix. Substituting

(3.1) into (2.33), we have
"2 , 2
(] 2y - 62
where y' = Qfly and (d' )2 =d* - HQ?y‘r . In this thesis, we choose
d= ||y — Hx ZF” and x,, denotes the zero-forcing solution. The right-hand-side of

(3.2) can be expanded as

(A =]y~ R
2

N
=2
i=1

LW
Yi = Zrmxj
i

(3.3)

e 2
Yn — T NTN H T HyN—l = Ty NTN T TN—l,N-lxN—lu +o

n 2 n" 2
= H?JN — TV NEN H 5 ||yN-1 = 7"N-1,N-137N-1H +y

N
where v, =y, — o ;%; . We define the path weight P, and the branch weight

j=i+1

B, of the kth layer as

P, =0, for k=N +1
(3.4)
n 2
B, = ‘Z/k = Tk Tk H (3.5)

For the ith layer, the complex K-best SDA keeps K survival nodes with the minimum
Ps. Next, for the (i+1)th layer, the algorithm finds all possible nodes which are

extended from the previous K survival nodes at the ith layer and then again keeps K

survival nodes with the minimum P, s. The procedures are recursively executed and

stoped at the Ist layer. The solution is the symbol vector with the minimum F. We
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summarize the steps of the complex K-best SDA as follows.
Step 1. Calculate y', d
Step 2.
(a). Set k=N . For each symbol in the complex-domain constellation,
calculate:
Py = Py, + By, (3.6)
"2
Py, if Py <(d)
Sy = g (3.7
-1, if Py > (d )
(b). Choose those symbols which have the K smallest non-negative Sy s.
Step 3.
(@. k—k—-1
(b). For each survivalpartial symbol vector, from*the previous layer; for each
symbol in the complex-domain constellation, calculate:
A St (3.8)
2
P, it <(d)
pof o . . (3.9)
it B> (d )

(c). Choose those symbols which have the K smallest non-negative S, s.

Step 4.
If k=1
The solution is the symbol vector with positive and the smallest S| .
Else

Go back to Step 3.
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3.2 Efficient Sorting Strategy

The main idea of the K-best SDA is to keep only K survival nodes in each
layer. The conventional K-best SDA has to sort among all possible nodes in each layer
to find K survival nodes which is shown in Figure 3-1. Note that the number inside
the circle denotes the path weight of the node. Generally, the sorting algorithm
applied in the K-best SDA is the bubble sort algorithm [13], [20]. When the size of the
symbol alphabet of the transmitted symbol or the value of K is large, using bubble

sort to sort among all possible nodes will cause a large amount of memory access.

Layer K=6

1+ 1

Layer

1+ 1

@

Find K survival nodes

)

Figure 3-1: Sorting of the conventional K-best SDA
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In the proposed method, the child nodes of each parent node in the ith layer are
first sorted in an ascending order according to their path weights. We propose an
efficient method to obtain the sorted child nodes sequence of each parent node which
does not require any complexity in sorting. The details of constructing the sorted child
node sequences will be introduced in the next section. Since the child nodes of each
parent node are already sorted, the candidate nodes in the ith layer are automatically

divided into K sorted groups which is shown in Figure 3-2.

Layer
i+ 1 (15 D
®

Figure 3-2: K sorted groups of the proposed method

When there are several sorted groups, it is efficient to apply the merge algorithm
[20] to obtain the sorted group containing all elements. The merge algorithm is one of
the algorithms that run sequentially over multiple sorted groups. The general merge
algorithm has a set of pointers { Dis Doyeevs pn} that point to the positions in a set of
the sorted groups {G,,G,,...,G, }. Initially they point to the first item in each group.
The merge algorithm is described as follows:
Step 1. Extract those elements which { Dy Doy e pn} point to in their respective
groups.
Step 2. Find out which element of those pointers point to with the minimum (or

maximum) value.
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Step 3. Advance one of those pointers to the next element in its group.

Step 4.

If any of {pl, Doyeres pn} still points to data inside of {Gl, Gy,. .., Gn}

Else

Figure 3-3 shows an example of the merge algorithm applied to two sorted groups.

Go back to Step 1.

The elements are all merged; stop the merge algorithm.

Step 1 v

h
SO ®)

Merged group:

Step 2 v

Merged group:

Step 3 v

Merged group:

Step 4 v

Merged.group:

L3N0

Step 5 v

Merged group:

000600

b
Step 6

v
d
Do
v
AO D)

Merged group:

000600

Done!

Figure 3-3: An example of the merge algorithm



To reduce the size of the storage memory, we repeatedly apply the merge
algorithm which deals with two sorted groups at a time. The steps of the proposed
sorting strategy of the ith layer are described as follows:

Step 1.
(a). k <« 2. Find the groups of the sorted child nodes of the (k-1)th and the kth

parent nodes.

(b). Apply the merge algorithm to the two sorted groups to find K nodes with the

minimum path weights.
Step 2.
k—k+1.

Step 3.

If PF > pmax

i+1 i
The K survival nodes of this layer are found.

Else
(1). Find the sorted child nedes group of the kth parent node.
(i1). Apply the merge algorithm to the current survival group and the sorted
child nodes group of the kth parent node to find K nodes with the minimum
path weights.

(ii1). Go back to Step 2.

P* and P™> denote the path weight of the kth parent node in the ith layer and the
maximum path weight of current survival node respectively. Figure 3-4 shows an
example of the proposed method. Note that in the proposed method, only a small part

of the candidate nodes have to be merged; hence, it significantly reduces the sorting

complexity.
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Iteration 1

L)
®

®
®
®
®
)

Iteration 2

®

Iteration 3

K=4 Layer

@ i+ 1

: Merge operation

K=4 Layer

@ |it+!

@, @
6 O
@
@

7
¢=) : Merge operation
Layer
@ i+ 1
7

Figure 3-4: An example of the proposed sorting method
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3.3 Efficient Complex Domain Search Method

In each layer, searching for the child nodes of each parent node has to satisfy the

following constraint:
2 2
lsi — 2| < €5, (3.10)
" 2 _9 2 N " 2
where s, :yi/m- and C; =r;; (d) - > Hy]-—rmxju . We assume the
j=i+1
modulation scheme of the transmitted symbols is QAM. The geometrical

interpretation of (3.10) is that finding all possible symbols inside the circle centered at

s; withradius C; which is shown in Figure 3-5.

Quadrature

In-Phase

Figure 3-5: Geometrical interpretation of the search constraint

To search the symbols efficiently, it is useful to construct the table of the symbol
sequences within a given region [21], [22]. In the proposed method, we construct the
table of the sequences of the 11 nearest constellation symbols for those points
bounded by {0, 1, j, 1+ j}. For example s; = 0.7 +0.2j, the sequence of the
nearest 11 symbols in an ascending order according to their distances from s; is {35,

36,27, 28,43, 44, 34, 37, 26, 29, 42} which is shown in Figure 3-6.
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QAM Constellation

3****‘018 fffff ‘.2677 77‘314‘ ffffff ‘.42*
| | | |
| | | |
l l l l
| | | |
| | | |

o 1****019‘ 3&7—r51 ***** 5*‘.43**
5 | | |
‘(.3' | | % |
§ l l l l
| I | |
3. 4 2 6

8
3 qel—————l—oqeg - @87~ &5
3 1 1 3
In-Phase

Figure 3-6: An example of the nearest 11 points from the search center s;
For those points having the same symbol sequence, we will classify them into the
same search group and share the samg symbol :sequeénce. Figure 3-7 shows the

boundaries of the search groups and the corresponding symbol sequences are listed in

Table 3-1.
Search Groups
1 T T T T T
07 15
0.9¢ 14 " 20 ]
0.8 03 i
02 11
0.7 26
17
© 0.6 13 .
>
= 01 21
©
S 0.4- 05 16\ 19 29 -
28
0.3f 04 23 :
30
0.2r 08 27 J
0.1f .
09 24
% 01 02 03 04 05 06 07 08 09 1
In-phase

Figure 3-7: Boundaries of the search groups
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Table 3-1: List of candidate sequences

Group ID Candidate Sequence
01 35—527—-36—28—34—26—43—19—44—-20—37
02 35—527—-36—28—34—26—543—19—44—-20—42
03 35—527—-36—28—34—26—43—19—44—42-20
04 35—36—27—-28—43—34—44—-26—37—19—-29
05 35—527—-36—28—34—43—-26—44—19—37—-20
06 35—527—-36—28—34—26—43—44—19—-20—37
07 35—527—-36—34—-28—26—43—19—44—42-20
08 35—36—27—28—43—44—34—26—37—29—19
09 35—3627—28—43—-44—-34—37—26—29—19
10 35—227—-36—>28>34—26—43—-44—19—20—42
11 35227-36—28—34--526—43-44—19—42—-20
12 35527 —-36-528=34=543=>26—>44—19—-37—42
13 35527536—28—34—43-526—44—19—42—37
14 35—527—-36—34—28—26—43—44—19—42—-20
15 35—527—-36—34—-28—26—543—-44—42—19-20
16 35—536—27—-28—43—34—44—26—37—19—42
17 35—527—-36—28—34—43—-26—44—42—19—-37
18 35527—-36—34—-28—43—-26—44—42—19-37
19 35—-36—27—-28—43—34—44—26—37—42—19
20 35—527—-36—34—43—-28—26—44—42—19—-37
21 35—36—27—-28—43—34—44—26—42—37—19
22 35—536—27—-28—43—44—34—26—37—-29—42

23

35—536—27—28—43—44—34—26—37—42—29
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Group ID Candidate Sequence

24 35—536—27—28—43—44—34—37—26—29—42

25 35—536—27—43—28—34—44—26—42—37—19

26 35—536—27—43—34—28—44—26—42—37—19

27 35—536—27—28—43—44—34—37—26—42—29

28 35—536—27—43—28—44—34—26—37—42—29

29 35—536—27—43—>28—44—34—26—42—37—29

30 35—536—27—43—28—44—34—37—26—42—29

Due to the symmetry property of the QAM constellation shown in Figure 3-8,
those points lying in the region bounded by {l+4+j, 1—j, —1+j —1—j} in

quadrant II, III and IV can use the same table. of' quadrant 1 by the following

transformation:

swap(Re( iIm (s ))

if (Re(s,) >0 and Im(s;)<0)
Re (5, ) < Re(s;)

Im (5,) < —Im(s,)

elseif (Re(s;) <0 and Im(s;) <0) (3.11)
Re () < — Re( i)

Im (5;) < —Tm(s,)

elseif (Re(s;) <0 and Im(s;) > 0)
Re(3;) < —Re(s;)

We first use the transformed search center 5, to find the nearest 11 candidate
symbols by looking up the table of the symbol sequences. When the candidate symbol

x; 1s found, we will transform it back to the original quadrant by

7
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swap (Re(z,),Im (z,))
if (Re(s;)>0and Im(s;)<0)
Re(z;) < —Re(z;)

<0and Im(s;) <0) (3.12)

15

o
a1
T

o

Quadrature

o
a1
T

135 -1 0.5 0 0.5 1 15
In-Phase

Figure 3-8: Symmetry property of the QAM constellation

For those search centers lying outside the region bounded by {1+, 1-j, -1+,

-1-j}, we can first round them into the bounded region and then use the

transformation relationship described above to find the relative nearest constellation
symbols. Then the nearest constellation symbols are obtained by adding the

coordinate offsets to the coordinates of the relative nearest constellation points which
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is shown in Figure 3-9. To improve the search efficiency, a special quantization for the

search center s; is performed at the Nth layer. When the search center s; is far

away from the QAM symbols, we will round it into a given boundary by

Re (Sc) ‘Re (SC) S BIHHX
) if

SigH[Re <5c )] : Bmax 1 ‘Re (8c> > Bmax

Im (s, (5, < B
) if

sagn[Im (SC )] : Bmax 1 ‘Im (80> > Bmax

Buw = |05(M, —1)+1]d

(3.13)

(3.14)

(3.15)

where M, is the size of the QAM symbol alphabet and d is the minimum distance

between two QAM symbols. Figure_ 3-10 shows an example of the special

quantization at the Nth layer.

QAM Constellation

Quadrature

In-Phase

Figure 3-9: Rounding operation of the search center
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Figure 3-10: Special quantization for the search center at the Nth layer

3.4 Preprocessing

The channel matrix 1§ preproeessed=with-some  techniques, which reduces the
complexity of searching the ¢andidates or improves. the performance of the K-best
SDA. There are many preprocessing techniques such as scaling [23], lattice reduction
[24], [25] and the column permutation [25]. In this thesis, we consider the column
permutation of the channel matrix. The permutation order is based on the column

norms of the channel matrix in an ascending order. The ordering mechanism increases

the expectation of 7;2, in the higher layers which has two benefits. First, for a fixed

value of K in the K-best SDA, increasing the expectation of 7;22 in the higher

layers reduces the effective search range of the candidates; therefore, it reduces the
probability of the ML path being dropped in the early stages. Another benefit is that it
constrains the growth of the tree and hence reduces the complexity of searching the

candidate nodes.
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3.5 ML-Like Search Strategy

One way to reduce the complexity of the conventional K-best SDA is to choose a
smaller number of the survival nodes in each layer. However, this will cause
performance degradation in the error rate. Instead of choosing a sufficiently large K
to achieve a near-ML performance, we propose an ML-like search strategy. The
proposed ML-like search method preserves all candidate nodes in the higher layers
and then starts to keep only K candidate nodes at a suitable layer with a smaller K.

Figure 3-11 shows the comparison between the conventional K-best algorithm and the
proposed ML-like search method with K = 4. The determination of the number of

layers performing the proposed ML+like searchowill be discussed in Chapter 4.

O : Survival node

: : Dropped node

.
o4
Yent

mmm : ML solution path

O : Survival node

Ll g

{ % :Dropped node

mmm : ML solution path

(b)

Figure 3-11: Comparison between (a) conventional K-best algorithm

(b) proposed ML-like search strategy
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3.6 Computer Simulations

In this section, we simulate the symbol-error-rate (SER) of the proposed complex
K-best SDA and compare it with SE SDA and the conventional K-best SDA. For the
4 x4 MIMO systems, only the 4th layer performs the proposed ML-like search
method. For the 8 x8 MIMO systems, we first search all possible candidates in the
8th and the 7th layers. Then we keep K survival nodes at the 7th layer. For each
simulation, we apply the preprocessing technique mentioned in Section 3.4 to all
algorithms to do a fair comparison.

Figure 3-12 shows the simulations of SER as a function of SNR with 4 x4
16QAM and K = 8. Note that the performance of the SE SDA is the same as the
ML detection. With the proposed ML-like search méthod performed at the 4th layer,
the performance of the proposed K-best:SDA "is better than the conventional K-best
SDA. The SER of the proposed K-best SDA is close to that of the SE SDA. In
contrast, the SER of the conventional-K=best=SDA tends to saturate at given value.
This phenomenon is due to the fact that the conventional K-best SDA with a smaller K
drops the ML-path with a high probability when the channel is in poor condition and
the channel has a fixed probability of being in poor condition. Figure 3-13 shows the
simulations of SER with 8 x8 16QAM and K = 14. In this simulation, the value
of K has to be chosen larger to reduce the probability of the ML path being dropped in
the higher layers. Hence, the performance gap between the proposed K-best SDA and
the conventional K-best SDA is smaller than the 4 x4 case. However, the proposed

K-best SDA still achieves a 0.5 dB gain over the conventional K-best SDA.
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Figure 3-12: Simulations of 4% 4-16QAM with K =8
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Figure 3-13: Simulations of 8 x8 16QAM with K =14
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Figure 3-14 shows the simulations of SER with 4 x4 64QAM and K =38.
The proposed K-best SDA achieves nearly a 2 dB gain over the conventional K-best
SDA at SER =107, Note that the performance gap between the proposed K-best
SDA and the conventional K-best SDA is larger than that of the 4 x4 16QAM case.
This is because the probability of the ML-path being dropped becomes higher when
the size of the modulation symbol alphabet becomes larger. However, the proposed
ML-like search method keeps all possible candidates in the higher layers; hence, it
significantly reduces the probability of the ML path being dropped. Figure 3-15 shows
the simulation of SER with 8 x8 64QAM and K = 36. The proposed K-best SDA
works better than the 8 x8 16QAM case. This is because we choose K = 36
which covers only half of the 64QAM constellation points. Hence, the probability of
the ML-path being dropped-of the conventional K-best SDA is higher than that of the

8 x8 16QAM case.

H

-1
10 F==z=z=z3=2==z=2=2zE=====QC--C--FESZZZZzas=zz==o

-3
e e s R S B\

T

—»— Conventional K-Best SDA (4x4) | - - - -
H —¥—Proposed K-Best SDA (4x4) |- - -
|| —©— SE SDA (4x4)
10 I I

15 18 21 2‘4
SNR(dB)

Figure 3-14: Simulations of 4 x4 64QAM with K =8
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3.7 Summary

In this chapter, we give a detailed description of the proposed complex K-best
SDA. Applying the K-best algorithm directly to the complex-valued signal reduces the
number of search layers. The merge algorithm combined with the proposed complex
domain search method works more efficiently than the conventional sorting algorithm.
The column ordering of the channel matrix reduces the number of candidates in the
higher layers and also reduces the probability of the ML-path being dropped. To
further enhance the performance of the K-best SDA, we propose an ML-like search
method which improves the performance in SER without requiring a sufficiently large
value of K. Simulations show that the proposed K-best SDA works better than the
conventional K-best SDA under 16QAM and 64QAM MIMO systems with different

dimensions.
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Chapter 4

Hardware Architecture and Sorting
Complexity Analysis of Proposed
Algorithm

In this chapter, we first give the hardware architecture of the proposed complex
domain search method. In Section 4.2, we discuss the determination of the number of

layers performing the proposed ML-like search method which is based on the derived
pdf of 7;2, . In Section 4.3;we give an analysi$.of the sorting complexity in each layer
under different operation modes.. The-complexity and the performance simulations

will be provided in Section 44 te_show that the proposed K-best SDA has lower

complexity and better performance than the conventional K-best SDA.

4.1 Hardware Architecture

The hardware architecture of the proposed complex domain search method is
introduced in this section. We call the proposed complex candidate search unit the
“Complex Candidate Generator” (CCG) and its functional block diagram is shown in

Figure 4-1.
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Search Constraint d’

Search Center  s;

Parent Weight P, ;

Complex Candidate

Generator (CCQ)

T 7T

Constellation K

Size M,

Figure 4-1: Functional block diagram of the CCG unit

When we give a set of input (si, dg,Pi_l) , CCG will output candidate points according

to their path weights in an ascending order. The value of M, is used for checking
whether the candidate point z, lies outside the constellation boundary or not. The

value of K controls the number of the output candidate points. The CCG unit is

composed of three functional bloeks which is shown in Figure 4-2.

::> Candidate Point x;
—> Node Weight P,

CCG. Unit
d?
dx dx t v
5= Rounding Transforming Candidate P> i
Unit L Unit ﬂ; Generator |l p
7 W \ '
P, :
M. K

Figure 4-2: Detailed block diagram of the CCG unit

When we input a new search center s;, CCG first rounds it to the relative

position §; which lies inside the region bounded by {1+ j, 1—j, -1—j, -1+ j}.

The rounding procedures are as follows:

Rounding for Re(s;):

X_offset = floor (Re (s; )) -+ mod (ﬂoor (Re (s; )),2)
Re(§;) = Re(s;) — X_offest
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Rounding for Im(s;):
Y offset = floor (Im (si )) + mod (ﬂoor (Im (si )) , 2) (4.2)
Im(3;) = Im(s;) — Y_offest

The rounding unit of Re (57;) is shown in Figure 4-3 which is composed of only two
adders and two multiplexers. We use 2’s complement to store the value of Re (sz) S
is the sign bit of Re(s;) and b0 is the LSB of the integer part of Re(s;). The value
of dx is used for Re(s;). Since the rounding procedures of Im(s;) is the same

asRe(s; ), the rounding unit of Im(s;) isthe sameas Re(s;).

/—lnteger part——— ﬁFractional part——
S ‘ cen b0 ‘ coe ‘

Re(s;)

+1 -1

l — b0
o oA 1S
Uoffset U

X _offset=|offset:0] dx

b0

Figure 4-3: Rounding unit of Re(s;)

Now, the search center s; is rounded to the point s, = dx 4 j-dy which lies
in the region bounded by {1+ j, 1—7j, -1—7, -1+ j}. In the next step, if §
lies in quadrants II, III or IV, the CCG unit will map s, into quadrant I by the
transformation in (3.11). The transformation circuit is shown in Figure 4-4. The

multiplexers will choose a right data path based on the values of MSBs of dx and dy.

dx_t and dy_t denote the transformed value of Re(S;) and Im(5;) respectively.
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Figure 4-4: Transforming unit of 5,

The set (dx t, dy t) isSent to the candidate”generator unit to generate the
candidate point z; and its*corresponding path weight, .. The hardware architecture
of the candidate generator.1s shown in Figutre 4-5. Fhe contents of the group ID and
its corresponding candidate sequenee are-stored-in ROM 1 and ROM 2 respectively.
We first use (dx_t, dy t) as a memory address to obtain'the group ID stored in ROM 1.
Then we use the group ID as a memory address to obtain the sequence of the
candidate points stored in ROM 2. After adding the offset pair (X offset, Y _offset) to
the coordinates of the found candidate point, the constellation boundary checker will
check whether the found point lies inside the constellation boundary. If the found
candidate point lies inside the constellation boundary, the quadrant restoring unit will
transform it back to the original quadrant. The distance calculator calculates the value

of ||51 —xi”Q. Multiplying the value of ”51‘ _fU1:||2 by 7;22 and adding the parent

weight P, to the multiplied result, we obtain the path weight P, of the found point.

7

The path weight P, will be compared with the search constraint d”. If the found

7

candidate point lies outside the constellation boundary or its path weight P. is larger

1
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than the search constraint d°, the value of the valid indicator will be 0 which

indicates the found point is not a valid one.

™ Up-counter Chnstellation Size M,
N ROMI (ONIO) ok clk
Gro@_ ID ‘ ‘
ROM 2 Constellation Quadrant | |
@® Boundary — 1 Q
Checker Restore Candidate pairs
l— en
[X_offset, Y_offset] ‘ T ik
dx_t B
_ ® Q
dy t a Valid number Node weight
- Up-counte}'k elk
" clk [+
Distance (0~10)
Calculator (r; ;)2 Parent Weight en
’ P Valid
Search Constraint Indicator

&

Figure 4-5: Hardware architecture of the candidate generator

4.2 Discussion- on Proposed ML-Like Search
Strategy

For the search of candidates at the Nth layer, the candidate symbol should satisfy

the following constraint:

2

!

d

TN N

(4.3)

2
lsy — v <

It is obvious that will enlarge the constraint region when 7y y is smaller than

v N

1. In such case, the probability of the ML path being dropped will increase when we

keep only K nodes at the Nth layer. Hence, the number of layers performing the

proposed ML-like search depends on the distribution of 7;22 . Figure 4-6 (a) and 4-6 (b)

show the impact of 7 ,, on the constrained search region. To determine the number

of layers performing the proposed ML-like search, we derive the pdf and cdf of 7;2,
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after channel column ordering. Based on the derived results, we can determine the

number of layers performing the proposed ML-like search under different M and V.

QAM Constellation QAM Constellation
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!
o
o
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|
|
_ {:9 _
|
__ @ (-
1
|
-
|
Quadrature

’
@
:
0
:

In-Pahse 7 7 In-Pahse

(a) (b)
Figure 4-6: Search constraint at the Nth layer with d =1.1 (a) Ty y =1
(b) TN,N — 0.33

Reordering the columns of H according to their vector norms in an ascending

order, we have

H = [h0(1)7h0(2)’ ' ”7h0(N)]7 (4.4)

where

ho(N)H . From [25], h,; can be expressed as

by <

ho(Q)H <. <

ho(i) - \/Xiei7 4.5)
where X, is the ith order statistic of N independent Gamma (M,1) distribution

random variables with X; < X, <--< X, and {0,}s are iid. uniformly

distributed on the unit sphere in C" . Note that X, and 0, are independent. With

the QR decomposition of H = QR,, we are now going to characterize the

distribution of the square of the diagonal entries of R, denoted by r

0,1,%

Letting Q, = [qo(l),qoe),m,qo( N)] and performing the QR decomposition of
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H,, we obtain

, Pl i X, JJori=1 (4.6)
Toii = lel_kl(qo(k)ez) ] = lel_kzlez (k)] = XZ-Si,fOI‘2§Z.SN7 :
where
i-1
S, = ll -3 (k)} (4.7)
k=1

and 0, (k) denotes the kth element of 0, . Note that the second equation holds due to

the fact that the distribution of 0, is invariant under the orthogonal transformation

Q, . To derive the cdf of 7’

NX R

we should first obtain the pdf of X, and S;. The pdf

of X, isavailable in [26] as

fo (@ = N [F@:' 1—F@]" fa (4.8)
i (i — 2N —7)! ’ '
where
M-1 —z
M 1€,
(.= ———==" for'z >0, 4.9
f () (4.9)
M-1 xi '
Fp) =1= Z,—|e‘“’. (4.10)
=0 7

From [27], O, can be modeled from a’ 2M-dimensional random vector

T
V = [vl vy e UQM} with v, ~iid. N(0,1), where
0,(k) = Upp 1 +J Vo _ Vo TV 4.11)
M N RN

Due to the fact that 870, =1, S, can be rewritten as

i1 M—i+1
S; = Il— 20k =] X 6 (k)} (4.12)
k=1 k=1
Substituting (4.11) into (4.12), we have
Moirt O U;(Mﬂ'ﬂ) Q,
S;= > 0 (k) = — 5 = = (4.13)
k=1 V) TV e Uy Iy

where (), and P, are chi-square random variables with 2-(M —i+1) and 2M

degrees of freedom respectively.
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The joint pdfof @, and P is
fQi,P,; (Q7p) = fQi <Q) : ff;-Q,; (P - Q)
= fir—isn) (O Leie (P —a) (4.14)

i— _D
_ 4 )
M. T(M —i+1)-T(i—1)

(M—1) . (

, for p>0and ¢ >0,

where fx(k) (z) denotes the pdf of the chi-square random variable with % degrees of

freedom. The pdf of S, can be obtained by

fo (9 = f |p| fo,.p. (PS5, p)dp

0 (M-i) (i-2) Y%
- fp'gZE)P(M(Zﬁ;.r(il) ap
0 (4.15)

B sM-D (1= 8)(2;2) 7 (M—1) ,%d
= T - ; p € 14
27 - R(M =i +1)-T'(#1_~

s (31— 220 SO )
DM RS )

Since X, and S, are independent, the joint pdf of* X, and S, is
fris, (@,8) =fr @ f5/(®) (4.16)

The cdfof 7. for 2 <i< N canbe obtained by

0,11

0,1,1
0 00

L% 1%
Fo (m = f{fprSi (a:,s)da:}ds = ffin @) fg, () dads (4.17)
0

Finally, the pdf and the cdf of 7"0272-7%- are as follows:

For 1 =1
N-1
N ML ko M—1 —r
(r) = ¢ e
fz., (N —1)!/(M —1)! kz::) k!
4.18)
r N‘ M—1,.k N1 ’ (
F, (i = f | e o
T0i,i 0 (N —1)'(M - 1)' k=0 k!
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For 2<3:<N

Y DTS U S ol PV U G A |
Foor = Cof [I= 5o S5t oot 9 (1 - 5) dads (4.19)
b0l o k! =k
where
N
Ci = : (4.20)

TN =M = i) (i - 1)1 - 2)!

Figure 4-7 shows the pdf curves of 2, of the 4x4 MIMO channel. We can see

0,1,1

that the probability of 72

KX

being smaller than 1 in the 4th layer is larger than that of

the other layers. Hence, only the 4th layer has to perform the proposed ML-like search

method. Figure 4-8 shows the pdf curves of > . of the 8 x8 MIMO channel. In

0,1,%

this case, the probabilities of 4

Syt

being smaller tham 1 in the 8th and the 7th layers

are larger than that of the other layers.. However, the number of the possible

candidates in the 7th layer.1s (MC )2 i 'the worst case which is too large to store for
hardware implementation when M, is large. Hence, we first keep all possible

candidates in the 8th layer. For the.7th layer, we first find all possible candidates and

then start to keep K survival nodes with the minimum path weights.
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Figure 4-7: PDF curves of r’.. ofthe 4 x4 channel

0,1,%
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PDF Curves

Figure 4-8: PDF curves of r°,. ofthe 8x8 channel

To further reduce the complexity; the proposed ML-like search is performed only
when any of 7;; for N — Ly, + 1 < i<SpNis smaller than a given threshold T,
where L,; is the number of layers performing ‘the -proposed ML-like search.
Recalling that for the Nthelayer, the search for the candidate symbols should satisfy
the following constraint:

i ov S anlf < (d) (4.21)

In the proposed algorithm, we keep only k& constellation symbols which are the

nearest ones from sy, where k& = min(K,11); hence, the value of ||3N — :1:N||2 has

a limit range. From this property, the threshold 7. is chosen based on the following

criterion:
2 m2
D—Tg =1, (4.22)
o{(e7)
D* = min (D} i Dy in ) (4.23)
where Dy ., and Dy, denote the minimum distances from the Kth and the 11th
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nearest constellation symbols to sy respectively. The geometrical interpretation of

(4.22) is that when the nearest K constellation symbols fail to cover all possible

symbols inside the average constraint region E {(d' )2} , the proposed ML-like search

method will be performed to keep all possible symbols. Note that the value of

E {(dv )2} varies with SNR. We can choose E {(dv )2} at the SNR when the symbol

error rate of the proposed K-best SDA without the proposed ML-like search method
tends to be 7T times larger than that of the ML detection. When T is close to 1, the
performance of the proposed K-best SDA will be close to the ML detection; however,
its complexity will increase because the probability of performing the proposed
ML-like search increases. This shews a trade-eff between the complexity and the

performance.

4.3 Sorting Complexity'Analysis

The main reduction of;the complexity in the:proposed K-best SDA is about
sorting. Hence, we focus on the analysis of the sorting complexity in this section. The
evaluation of the sorting complexity is based on the number of data “compare and
select” (CS) operations. We first consider the sorting complexity in the Nth layer. For
the normal K-best operation, there is no sorting complexity because the candidates are
directly generated from the table of the candidate sequences. When the ML-like
operation is performed, we assume that all constellation points have to be sorted and

the applied sorting algorithm is the bubble sort algorithm. Hence, the number of CS of
the ML-like operation in the Nth layer, Ng 5/ v, 18

M, - (M, —1)
Nes unn :(Mc_1>+(Mz:_2)+'”+2+1:f7 (4.24)

where M, denotes the constellation size. Table 4-1 shows the sorting complexity in
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the Nth layer.

Table 4-1: Sorting complexity in the Nth layer

K-Best Operation | ML-Like Operation

Total Complexity None M, '(M c 1)
2

For the (N —1)th layer, we assume that each parent node has K child nodes.
Constructing the group of the sorted child nodes of each parent node has no sorting
complexity when the K-best operation is performed; however, when the ML-like
operation is performed, we apply the bubble sort algorithm to find K child nodes of

each parent node. The number of CS, for constructing a sorted group of the ML-like
operation, N, CS MLN-1.G > 1S

KM, -(2M, — K +1
Nes sy 1o = (M, 1) jo(@d2) i (A, — k) = ( ) (4.25)

Applying the merge algorithm tostwo sorted groups takes K (CS)s. We consider the
worst case that the merge algorithm will be applied to the last group of the sorted

child nodes. Hence, the merge algorithm is performed (K —1) times if the Nth layer
applies the normal K-best operation and is performed (M . — 1) times if the Nth layer

applies the ML-like operation. The sorting complexity in the (N —1)th layer is shown

in Table 4-2.
For the ith (2 <i< N —2) layer, the sorted child nodes of each parent node

are always obtained from the table of the candidate sequences which takes no sorting
complexity. The number of parent nodes of each layer is assumed to be K and we

consider the worst case that the merge algorithm will be applied to the last group of

the sorted child nodes. The sorting complexity in the ith (2 <i< N —2) layer is
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shown in Table 4-3.

Table 4-2: Sorting complexity in the (N-1)th layer

K-Best Operation

ML-Like Operation

K(2M, — K +1)

Obtain the sorted None
2
group
Merge operation K K

Total complexity

If Nth layer applies K-best

operation

K- (K1)

K-M, -(2M, — K +1)

If Nth layer applies ML-like

operation

K- (M, ~1)

+K - (M, —1)

Table 4-3: Sorting complexity in the ith layer (2 <i< N —2)

K-Best Operation

Obtain the sorted group None
Merge operation K
Total Complexity K-(K-1)
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For the 1st layer, the proposed K-best SDA only has to find one child node of
each parent node. Hence, performing the merge operation once takes one “compare
and select” operation. The complexity in the 1st layer is shown in Table 4-4.

Table 4-4: Sorting complexity in the 1st layer

Normal Operation

Obtain the sorted group None
Merge operation 1
Total Complexity K -1

4.4 Simulation Results

In this section, we simulate the SER and-the complexity of the proposed K-best
SDA and compare it with the SE.SDA and the.conventionial K-best SDA. To compare
the complexity of different algorithms,swe define the complexity weight of different
operations according to [13], [28],.[29] which are shown in Table 4-5. The total
complexity of each simulated algorithm-is-the sum of the number of times of each

operation multiplied by its corresponding weight.

Table 4-5: Complexity weight of different operations

Operation Weight Operation Weight
Real addition/subtraction 1 Complex multiplication 6
Real multiplication 1 Reading data from memory 1
Real division 2 Writing data to memory 1
Real square operation 1 Memory data comparison 1
Complex addition/subtraction 2
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Figure 4-9 (a) and Figure 4-9 (b) show the 4 x4 16QAM simulations of SER
and the complexity with K = 8. The threshold 7. is chosen to be 0.291 and its
corresponding probability of performing the proposed ML-like search is 4.72 %. We
can see that the conventional K-best SDA has higher complexity than that of the SE
SDA. This phenomenon is due to the fact that the conventional K-best SDA visits
more candidate nodes than the SE SDA when the number of the layers is small. The
proposed efficient sorting method reduces the number of visited nodes and the sorting
complexity in each layer; hence, the complexity of the proposed K-best SDA is lower
than that of the SE SDA and the conventional K-best SDA. Comparing Figure 4-9 (a)
with Figure 3-14, the SER curve of the proposed K-best SDA in Figure 4-9 (a) is
nearly the same as that in Figure 3-14. This shows that the threshold constraint
significantly reduces the prébability of performing the proposed ML-like search and
there is nearly no performance!degradation of the proposed K-best SDA.

Figure 4-10 (a) and+Figure 4-107(b) show. the 8 %8 16QAM simulations of
SER and the complexity with & =d4. The threshold 7. is chosen to be 0.833 and
its corresponding probability of performing the proposed ML-like search is 38.4 %.
The probability of performing the proposed ML-like search is higher than that of the
4 x4 case because the probability of the ML-path being dropped in the K-best SDA
is higher in the 8 x 8 case. We can see that the performance of the proposed K-best
SDA is better than the conventional K-best SDA and the complexity of the proposed
K-best SDA is lower than that of the SE SDA and the conventional K-best SDA.
Because the number of search layers is larger in this case, the proposed sorting
method reduces more complexity in sorting. Hence, we can see that the gap of the
complexity between the proposed K-best SDA and the conventional K-best SDA is

larger than that in the 4 x4 case.
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Figure 4-11 (a) and Figure 4-11 (b) show the 4 x4 64QAM simulations of SER
and the complexity with K = 8. The threshold 7, is chosen to be 0.353 and its
corresponding probability of performing the proposed ML-like search is 6.44 %. In
this case, the proposed K-best SDA still has better performance than the conventional
K-best SDA and has lower complexity than that of the SE SDA and the conventional
K-best SDA. The value of 7| is higher than that of the 4 x4 16QAM case because
the probability of the ML-path being dropped is higher when the size of the
modulation symbol alphabet becomes larger. We can further improve the performance
of the proposed K-best SDA by choosing a higher threshold; however, the complexity
of the proposed K-best SDA may be higher than that that of the SE SDA in the high
SNR range.

Figure 4-12 (a) and Figure 4-12:(b) show the' 8x 8 64QAM simulations of
SER and the complexity with 1/ = 36. The threshold 7, is chosen to be 1.143 and
its corresponding probability of performing the proposed ML-like search is 65.8 %. In
this case, the proposed K-best:SDA'still works bettersthan the conventional K-best
SDA. Due to the fact that the expectation of the constraint search radius is much
larger than that in the 8 x8 16QAM and the 4 x4 64QAM cases, the threshold
T has to set higher to reduce the probability of the ML-path being dropped in higher
layers. We can see that the gap of the complexity between the proposed K-best SDA
and the conventional K-best SDA is larger than that in the 8 x8 16QAM case. The
reason is that the proposed efficient sorting method reduces much more complexity

when the size of the modulation alphabet becomes larger.
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4.5 Summary

In this chapter, we provide the hardware architecture of the proposed complex

domain search method. In Section 4.2, we discuss the determination of the number of

layers performing the ML-like search. Based on the derived pdf of roz we can

easily determine the number of layers performing the ML-like search method with
different values of M and N. To reduce the overall complexity of the proposed
algorithm, we give a threshold constraint to reduce the probability of performing the
ML-like search method. In Section 4.3, we give a discussion of the sorting complexity
of each layer of the proposed algorithm. In Section 4.4, we simulate the SER and the
complexity of the proposed K-bestsSDA and compare it with the SE SDA and the
conventional K-best SDA. Simulations shew-that the proposed K-best SDA has better
performance and lower complexity than the'conventional K-best SDA. Besides, the
performance of the propesed K-best SDA is close to-that of the SE SDA (ML

performance).
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Chapter 5

Conclusions and Future Works

In this thesis, we propose a complex K-best SDA with an efficient search
architecture. In the proposed sorting method, only a small part of the candidates in
each layer have to be sorted which significantly reduces the sorting complexity. The K
survival nodes found by the proposed_sorting method in each layer are the same as
that found by the conventional serting algorithm. Henee, the proposed sorting method
does not sacrifice any performance. Moreover,. the “proposed complex domain
candidate search method imakes it possible‘that the-child-nodes of each parent node
are already sorted without requiring anyssoerting: The hardware architecture of the
proposed complex domain candidate search method“is also provided. Finally, the
proposed ML-like search reduces the probability of the ML-path being dropped in
higher layers. As a result, the proposed K-best SDA has better performance and lower
complexity than that of the conventional K-best SDA.

In Chapter 2, we give a review of the MIMO system and introduce several kinds
of SDAs. The SE SDA achieves the ML performance with lower complexity.
However, its decoding throughput is not stable. The K-best SDA has fixed decoding
throughput and is suitable for pipelined hardware implementation. However, sorting
the candidates in each layer requires a large amount of memory access. Hence, the
theme of this thesis is focus on the reduction of the sorting complexity while

improving the performance of the K-best SDA.
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In Chapter 3, we give a detailed description of the proposed K-best SDA. The
merge algorithm combined with proposed complex domain candidate search method
has lower complexity than the conventional bubble sort algorithm. The concept of the
proposed ML-like search method is to keep all possible candidates in higher layers to
reduce to probability of the ML-path being dropped. With a small number of layers
performing the proposed ML-like search, the proposed ML-like search method
significantly improves the decoding performance of the K-best SDA when the value
of K is small. Simulations demonstrate that the proposed K-best SDA achieves a
near-ML performance which does not require a large value of K.

The hardware architecture of the proposed complex domain candidate search
method is provided in Chapter 4:Besides, we discuss the determination of the number
of layers performing the proposed ML-like search which is based on the statistical
properties of the channel matrix after column' ordering. We also propose a threshold
constraint of the proposed ML-like.Search which simplifies the decision of the
trade-off between the performance and the complexity: The detailed analysis of the
sorting complexity of the proposed K-best SDA'is also included. Simulations show
that the proposed K-best SDA significantly reduces the complexity and improves the
performance of the conventional K-best SDA. Moreover, the performance of the
proposed K-best SDA is close to that of the ML detection.

The main contributions of this thesis are as follows. First, the proposed sorting
method significantly reduces the sorting complexity and requires a smaller storage
memory. Hence, it is more suitable to be implemented in hardware than the
conventional bubble sort algorithm. In addition, the proposed complex domain
candidate search method overcomes the difficulty in searching and sorting the
constellation points in the complex domain within a constraint region. Hence, the

complex-valued signals do not have to be converted into real-valued signals which
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reduces the number of search layers. Moreover, the proposed ML-like search method
with the threshold constraint improves the decoding performance of the K-best SDA
while maintaining lower complexity than that of the conventional K-best SDA and the
SE SDA.

There are some future works worthy of further investigation. The first one is that
the MIMO channel is assumed to be perfectly estimated. However, the MIMO
channel cannot be perfectly estimated in practice. The second one is that it is not
likely to have sufficiently many receive antennas in practice to decouple the spatial
signals especially in the downlink path. When the number of receive antennas is less
than the number of transmit antennas, searching for the optimal solution at the
receiver becomes an underdetermined problem. In'such a case, the K-best SDA cannot

be directly applied to the underdetermined MIMO systems.
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