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用於多輸入多輸出系統具高效率搜尋設計之複

數 K-Best 球體解碼器 
 

學生：宋志晟      指導教授：李大嵩 博士 

 

國立交通大學電信工程學系碩士班 

 

摘要 

 

在無線通訊系統中，多輸入多輸出(Multiple-Input Multiple-Output, MIMO)

技術不需要增加額外的頻寬及傳輸功率便能提高傳輸速率及改善傳輸品質。然

而，在多輸入多輸出系統中要設計出具高性能且低複雜度之接收機是一項艱難的

挑戰。使用最大可能偵測法能得到最佳的效能，然而其所需的運算複雜度會隨著

傳送天線個數的增加呈指數的成長。球體解碼演算法能以較低的複雜度達到與最

大可能偵測法相同之效能。然而，傳統的球體解碼演算法會有資料吞吐量不穩定

之問題。K-best 球體解碼演算法在每一層的節點搜尋當中只保留 K 個最佳的候

選點當作下一次搜尋的依據，因此具有穩定的資料吞吐量。然而，K-best 球體

解碼演算法需要取相當大的 K 值才能達到近似最大可能偵測法之效能。除此之

外，在每一層的節點搜尋中將候選點作排序取出 K個最佳的候選點會耗費大量的

記憶體存取。在本論文中，吾人提出ㄧ具高效率搜尋架構之複數 K-best 球體解

碼器。此解碼器能夠大幅降低排序時所花費的運算量。針對所提出之複數候選點

搜尋方法，吾人亦設計出相對應之電路架構圖。經由分析與模擬的驗證，此解碼

器僅需選取較小的 K值即可達到近似最大可能偵測法之效能。 
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A Complex K-Best Sphere Decoder with Efficient 

Search Design for MIMO Systems 
 

Student: Chih-Sheng Sung   Advisor: Dr. Ta-Sung Lee 

 

Department of Communication Engineering 

National Chiao Tung University 

 

Abstract 
 

In wireless communication systems, multiple-input and multiple-output (MIMO) 
technology offers significant increases in data rate and link range without additional 
bandwidth or transmit power. However, the design of high performance and low 
complexity receivers for MIMO systems is a challenging task. The 
maximum-likelihood (ML) detection is the optimal detection scheme but its 
complexity grows exponentially with the number of transmit antennas. The sphere 
decoding algorithm (SDA) achieves the ML performance with reduced complexity. 
Nevertheless, the throughput of the conventional SDA is not stable. The K-best SDA 
which keeps only K-best candidates at each layer for the search of next layer is 
guaranteed to have a stable throughput. However, to achieve a near-ML performance, 
the value of K should be sufficiently large. Besides, applying a sorting algorithm to 
find K-best candidates at each layer requires a large amount of memory access. In this 
thesis, we propose a complex K-best sphere decoder with an efficient search 
architecture. The proposed K-best sphere decoder significantly reduces the sorting 
complexity. We also provide the hardware architecture of the proposed complex 
candidate search method. It is demonstrated through analysis and simulations that the 
proposed K-best sphere decoder achieves a near-ML performance without requiring a 
large value of K. 
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Chapter 1 
 
Introduction 
 

 Next generation wireless communication systems are expected to provide users 

with higher data rate services including video, audio, data and voice signals. The 

rapidly growing demand for these services drives the wireless communication 

technologies towards higher data rate, higher mobility and higher link quality. 

However, the time-selective and frequency-selective fading in wireless channel 

caused by multipath propagation, Doppler shifts and carrier frequency/phase drifts 

severely affect the quality and reliability of wireless communication. Besides, the 

available bandwidth and power are limited which makes the design of wireless 

communication systems extremely challenging. Hence, recently there are many 

innovative techniques that improve the reliability and the spectral efficiency of 

wireless communication links. Some popular examples include the coded 

multicarrirer modulation, smart antenna, in particular multiple-input multiple-output 

(MIMO) technology [1-4] and adaptive modulation [5], [6]. 

 MIMO technology involves the use of multiple antennas at the transmitter and 

receiver to improve communication performance. The technology offers some 

benefits that overcome the challenges posed by both the impairments in wireless 

channel as well as resource constraints. The two important benefits of MIMO 

technology are the diversity gain and the spatial multiplexing gain. Diversity gain 

mitigates fading by providing the receiver with multiple (ideally independent) copies 
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of the transmitted signal in space, time or frequency. Spatial multiplexing offers a 

linear increase in data rate by transmitting multiple independent data streams within 

the bandwidth of operation. 

 There are many signal detection schemes for MIMO systems such as linear 

detection, successive interference cancellation (SIC) [7], [8] and the 

maximum-likelihood (ML) detection. Both the linear detection and the SIC schemes 

are easy to be implemented but their detection performance are not optimal. The 

optimal detection scheme is the ML detection; however, the complexity of the ML 

detection scheme grows exponentially with the size of the transmit symbol alphabet 

and the number of transmit antennas. To reduce the complexity of the ML detection, 

the sphere decoding algorithm (SDA) is introduced in [9-12] to achieve the same 

performance as the ML detection with reduced complexity. The basic idea of SDA is 

to search the nearest lattice point to the received signal vector within a given sphere 

radius. However, the complexity of the conventional SDA is still too high in the low 

SNR range and its decoding throughput is not stable. Hence, it is not suitable for real 

time detection and hardware implementations. 

To overcome the drawbacks of the conventional SDA, the K-best SDA is 

introduced in [13-16]. The K-best SDA uses breadth-first search and keeps K-best 

candidates at each layer for the next layer search. Hence, the decoding throughput of 

the K-best SDA is stable. However, one major drawback of the K-best SDA is that the 

value of K has to be chosen sufficiently large to achieve a near-ML performance 

which increases the computational complexity. Besides, applying sorting algorithm to 

find K-best candidates at each layer causes large amount of memory access. 

 In this thesis, our major goal is to reduce the sorting complexity of the K-best 

SDA. We propose an efficient sorting method which reduces the large amount of 

memory access without sacrificing the detection performance. To reduce the number 
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of search layers, we propose an efficient complex domain candidate search method 

which is simple and can be easily implemented by VLSI process. Moreover, we 

propose a search method which deals with the poor condition channel to improve the 

performance of the proposed K-best SDA when the value of K is small. As a result, 

the proposed K-best SDA has lower complexity and better performance than the 

conventional K-best SDA. 

 The remainder of the thesis is organized as follows. In Chapter 2, the signal 

model and the conventional detection schemes of the MIMO systems are introduced 

first. Secondly, several kinds of the SDA are given. In Chapter 3, the proposed K-best 

SDA is presented. Chapter 4 provides the VLSI architecture of the proposed complex 

domain candidate search method and the sorting complexity analysis of the proposed 

K-best SDA. Finally, Chapter 5 gives conclusion remarks of this thesis and leads the 

way to some potential works. 
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Chapter 2 
 
MIMO Systems 
 

In wireless communication, multiple-input and multiple-output (MIMO) involves 

the use of multiple antennas at the transmitter and receiver to improve communication 

performance. MIMO technology offers significant increases in data rate and link 

range without additional bandwidth or transmit power. In this chapter, we give a 

review of the MIMO systems. We first introduce the MIMO system model in Section 

2.1. Section 2.2 introduces the channel capacity. Then, the spatial diversity (SD) and 

the spatial multiplexing (SM) techniques are introduced in Section 2.3 and Section 2.4, 

respectively. The common detection schemes of the MIMO systems will be given in 

Section 2.5. The sphere decoding algorithm has been studied as a practical solution of 

the ML detection with reduced complexity. We will give an introduction of the sphere 

decoding algorithm in Section 2.6. 

 

2.1 System Model 
 Consider the MIMO system shown in Figure 2-1 with N transmit antennas and 

M receive antennas. The received signal vector is denoted as 

1
1 2

T M
My y y ×⎡ ⎤= ∈⎢ ⎥⎣ ⎦y , where my  is the received signal at the mth receive 

antenna and [ ]T⋅  denotes the transpose operator. Similarly, the transmitted signal 

vector is denoted as 1
1 2

T N
Nx x x ×⎡ ⎤= ∈⎢ ⎥⎣ ⎦x  or 1N× , where nx  is the 
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transmitted signal at the nth transmit antenna. Assume M N≥  and the channel 

responses are frequency-flat fading and remain constant during a frame transmission. 

The channel matrix can be expressed as 

 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

,

N

N

M M M N

h h h

h h h

h h h

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H  (2.1) 

where ,i jh  is the channel gain from the jth transmit antenna to the ith receive antenna. 

With the assumption that sufficient antenna separation at the transmit and receive 

antennas, the elements of the channel matrix H can be assumed to be i.i.d. complex 

Gaussian random variables with zero-mean and unit variance. The relation between 

the received signal vector and the transmitted signal vector can be expressed as 

 ,= +y Hx n  (2.2) 

where 1
1 2

T M
Mn n n ×⎡ ⎤= ∈⎢ ⎥⎣ ⎦n  is the i.i.d. complex additive white Gaussian 

noise (AWGN) vector with zero-mean and covariance matrix 2σ I . 

 

 

 

 

Figure 2-1: Block diagram of a MIMO system 

RX HTX 

TX 1

TX N RX M

RX 1
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2.2 Channel Capacity 
 Channel capacity is the highest rate in bits per channel use at which information 

can be transmitted with an arbitrary probability of error. We first introduce the 

single-input-single-output (SISO) channel capacity and then study the capacity of a 

MIMO channel. Note that single-input-multiple-output (SIMO) and 

multiple-input-single-output (MISO) channels are sub-sets of the MIMO case. The 

channel capacity is defined as [17] 

 
( )

( )max ; ,
p x

C X Y= Ι  (2.3) 

where 

 ( ) ( ) ( ); |X Y Y H Y XΙ = Η −  (2.4) 

is the mutual information between X and Y, ( )YΗ  and ( )|H Y X  are the 

differential entropy of Y and differential conditional entropy of Y with knowledge of 

X given, respectively. In (2.3), it states that the mutual information is maximized with 

respect to all possible transmitter statistical distributions ( )p x .  

The ergodic capacity of a SISO system with a random complex channel gain h is 

given by [17] 

 ( ){ } bits/sec/Hz2
2log 1    ,C E h= + γ  (2.5) 

where 2
Pγ
σ

=  is the average SNR at the receiver, P is the transmit power and 

{}E ⋅  denotes the expectation over all channel realization. For a MIMO system with 

N transmit antennas and M receive antennas, the capacity of a random MIMO channel 

is given by [1] 

 
( )

bits/sec/Hz2 2tr =
max log det    ,

xx

H
M xx

N

P
C E

N

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎪ ⎪⎟⎜⎢ ⎥= +⎨ ⎬⎟⎜ ⎟⎜⎝ ⎠⎪ ⎪⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭R
I HR H

σ
 (2.6) 
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where { }H
xx E=R xx  is the covariance matrix of the transmitted signal vector x. If 

the channel knowledge is unknown to the transmitter, the signals are chosen to be 

independent and equal-powered. The covariance matrix of transmit signal vector is 

then given by xx M=R I . As a result, the ergodic capacity of a MIMO system can be 

written as [1] 

 bits/sec/Hz2 2log det    .H
M

P
C E

N

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎪ ⎪⎟⎜⎢ ⎥= +⎨ ⎬⎟⎜ ⎟⎜⎝ ⎠⎪ ⎪⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭
I HH

σ
 (2.7) 

By using the eigenvalue decomposition, the matrix product of HHH  can be 

decomposed as H H=HH E EΛ , where E  is an M M×  matrix which consists of 

the eigenvectors satisfying H H
M= =EE E E I  and { }1 2diag , , , Mλ λ λ= …Λ  is a 

diagonal matrix with the eigenvalues 0iλ ≥  on the main diagonal. Assuming that 

the eigenvalues iλ  are ordered so that 1i iλ λ +≥ , we have 

 
if

if

2,        1       
,

0,        1

i
i

i r

r i M

⎧⎪ ≤ ≤⎪⎪= ⎨⎪ + ≤ ≤⎪⎪⎩

σ
λ  (2.8) 

where 2
iσ  is the ith squared singular value of the channel matrix H  and 

( ) { }rank min ,r N M= ≤H  is the rank of the channel matrix. Then the capacity of 

a MIMO channel can hence be rewritten as 

 
bits/sec/Hz

2 22 2

2 2
1

log det log det

  log 1    .

H
M M

r

i
i

P P
C E E

N N

P
E

N=

⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎟ ⎟⎜ ⎜⎢ ⎥ ⎢ ⎥= + = +⎨ ⎬ ⎨ ⎬⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
⎧ ⎫⎛ ⎞⎪ ⎪⎪ ⎪⎟⎜= +⎨ ⎬⎟⎜ ⎟⎜⎝ ⎠⎪ ⎪⎪ ⎪⎩ ⎭

∑

I E E I
σ σ

λ
σ

Λ Λ
 (2.9) 

Note that the second equation holds due to the fact ( ) ( )det detm n+ = +I AB I BA  

for matrices m n×∈A  and n m×∈B  and H
M=E E I . Equation (2.9) shows that 

the capacity of a MIMO channel is made up by sum of the capacities of r  SISO 

sub-channels with power gains iλ  for 1,2, ,i r= …  and transmit power P
N  

individually. 
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If the channel knowledge is known to the transmitter, the capacity of a MIMO 

channel is the sum of the capacities associated with the parallel SISO channels and is 

given by 

 bits/sec/Hz2 2
1

log 1    ,
r

i i
i

P
C E

N=

⎧ ⎫⎛ ⎞⎪ ⎪⎪ ⎪⎟⎜= +⎨ ⎬⎟⎜ ⎟⎜⎝ ⎠⎪ ⎪⎪ ⎪⎩ ⎭
∑ γ λ

σ
 (2.10) 

where { }2
i iE xγ =  for 1,2, ,i r= …  is the transmit power in the ith sub-channel 

and satisfy 
1

r
ii

Nγ= =∑ . Since the transmitter can access the spatial sub-channels, 

we can allocate variable power across the sub-channels to maximize the mutual 

information. The optimal power allocation of the ith sub-channel is given by [1], [17] 

 
2

opt    for 1,2, ,  ,i
i

M
i r

P
σ

γ μ
λ +

⎛ ⎞⎟⎜ ⎟= − =⎜ ⎟⎜ ⎟⎜⎝ ⎠
 (2.11) 

where μ  is chosen to satisfy the constraint opt
1

r
ii

Nγ= =∑  and ( )+⋅  denotes the 

operation that taking those terms which are positive. The optimal power allocation in 

(2.11) is found iteratively through the water-filling algorithm [1], [17]. 

 

2.3 MIMO Diversity 
 Diversity techniques are widely used in MIMO systems to improve the reliability 

of transmission without increasing the transmit power or sacrificing the bandwidth. 

There many diversity techniques such as time diversity, frequency diversity and space 

diversity. In this section, we focus on the space diversity that is so called antenna 

diversity. 

 

2.3.1 Receive Diversity 
Receive diversity involves the use of multiple antennas at the receiver. At the 

receiver, multiple copies of the transmitted signal are received, which can be 
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efficiently combined with an appropriate signal processing algorithm. There are four 

main types of combining techniques, include selection combining, switch combining, 

equal-gain combining (EGC) and the maximum ratio combining (MRC). In the 

selection combining, the received signal with the best quality is chosen and the 

choosing criterion is based on SNR. Switch diversity switches the received signal path 

to an alternative antenna when the current received signal level falls below a given 

threshold. EGC is a simple method since it does not require estimation of the channel. 

The receiver simply combines the received signals from different receive antennas 

with weights set to be equal. MRC forms the output signal by a linear combination of 

all the received signals and is the optimal combination technique which achieves the 

maximum value of the output SNR. 

 

2.3.2 Transmit Diversity 
 Transmit diversity techniques which provide diversity benefits at the receiver 

with multiple transmit antennas, has received much attention, especially in wireless 

cellular systems. There are two broad categories of transmit diversity: the open loop 

schemes and the closed loop schemes. In the open loop schemes, the transmitter 

transmits signals without feedback information from receiver. Space-time code (STC) 

is an open loop scheme which jointly designs of channel coding and modulation to 

improve system performance by providing both transmit diversity and coding gain. 

STC can be classified into two categories, the space-time block code (STBC) and the 

space-time trellis code (STTC). In this section, we focus on STBC. 

 The most famous STBC is the Alamouti STBC [3]. This scheme is proposed for 

two transmit antennas which is shown in Figure 2-2. In the Alamouti scheme, symbols 

transmitted from the transmit antennas are encoded in both space and time in a simple 
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manner to ensure the transmissions form both the antennas are orthogonal to each 

other. At a given symbol period, the encoder takes a block of two modulated symbols 

1x  and 2x  in each encoding operation and maps them into the transmit antennas 

according to a code matrix which is given by 

 
*

1 2

*
2 1

,
x x

C
x x

⎡ ⎤−⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦

 (2.12) 

where ( )*⋅  denotes the conjugate operator. During the first transmission period, two 

signals  1x  and 2x  are transmitted simultaneously from antenna one and antenna 

two respectively. In the second transmission period, *
2x−  is transmitted from the 

transmit antenna one and *
1x  is transmitted form the transmit antenna two. The 

Alamouti scheme extracts the diversity order of 2 (full transmit diversity) even in the 

absence of the channel knowledge at the transmitter. 

 

Figure 2-2: Transmitter block of the Alamouti scheme 

 

2.4 Spatial Multiplexing 
 Spatial multiplexing is a transmission technique of MIMO wireless 

communication systems which increases the transmission data rate without additional 

bandwidth or power consumption. In the spatial multiplexing systems, N different 

Data Modulator 
 

S/P

Alamouti 
Encoder 

1 2x x⎡ ⎤
⎢ ⎥⎣ ⎦  

⇓  
*

1 2

*
2 1

-x x

x x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

x

1h

2h
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data streams are transmitted from different transmit antennas simultaneously or 

sequentially and these data streams are separated and demutiplexed to yield the 

original transmitted signals according to their unique spatial signatures at the receiver, 

as illustrated in Figure 2-3. The separation of data streams at the receiver can be done 

possibly by the fact that rich scattering multi-paths contribute to lower correlations 

between MIMO channel coefficients and hence create a channel matrix with full rank 

and low condition number to N unknowns from a linear system of M equations. In the 

following, two typical spatial multiplexing schemes, D-BLAST [4] and V-BLAST [18] 

are introduced. 

 

Figure 2-3: An illustration of a spatial multiplexing system 

(1) Diagonal Bell Laboratories Layered Space-Time (D-BLAST) 

The concept of layered space-time processing was introduced by Foschini at Bell 

Laboratories [4]. D-BLAST uses multiple antennas at both the transmitter and the 

receiver, and an elegant diagonally-layered coding sequence in which code blocks are 

dispersed across the diagonals in space-time. The high-rate information bit stream is 

first demultiplexed into N  substreams, and each substream is encoded by a 

conventional 1-D constituent code. The encoders apply these coded symbols to the 

input to form a semi-infinite matrix X  of N  rows to be transmitted. The encoding 

procedure is shown in Figure 2-4. 

Transmitter Receiver 
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 (2) Vertical Bell Laboratories Layered Space-Time (V-BLAST) 

 The D-BLAST algorithm suffers from certain implementation complexities 

which is not suitable for practical implementation. Therefore, a simplified version of 

the BLAST algorithm is known as V-BLAST. It is capable of achieving high spectral 

efficiency while being relatively simple to be implemented. The coding procedure of 

the V-BLAST can be viewed as there is an encoder on each transmit antenna. The 

output coded symbols of each encoder are transmitted directly from the corresponding 

antenna which is shown in Figure 2-5. 

 

Figure 2-4: Encoding procedure of the D-BLAST scheme ( )3N =  

 

Figure 2-5: Encoding procedure of the V-BLAST scheme ( )3N =  
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2.5 MIMO Detection 
The classification of MIMO detection schemes are shown in Figure 2-6. In this 

section, we introduce linear and non-linear detection schemes in the following 

subsections. 

Figure 2-6: Overview of MIMO detection methods 

 

2.5.1 Linear Detection 
 The linear detection is to preprocess the received signal by transforming it 

linearly 

 = = +y Wy WHx Wn  (2.13) 

so that the transformed channel-matrix WH  will be close to a diagonal matrix. Here, 

we introduce two detection schemes: zero-forcing and minimum mean-square error. 

(1) Zero-Forcing (ZF) 

In the ZF scheme, the preprocessing matrix W  is chosen to remove the 

off-diagonal terms of WH  

 †=y H y  (2.14) 

MIMO 
Detection 

Tree search
Algorithm 
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Exhaust ML 
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ZF-BLAST 

MMSE-BLAST 

Zero-Forcing (ZF) 

Minimum 
Mean-Square Error 
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where †H  is the Moore-Penrose pseudo-inverse of H . The spatial interferences are 

completely removed from the received signal; however, the main drawback of ZF 

method is the resulting noise enhancement. 

(2)Minimum Mean-Square Error (MMSE) 

The MMSE scheme minimizes the joint effects of the interferences and the noise 

by 

 
12

H H

sE
σ

−⎛ ⎞⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎜⎝ ⎠
y H H I H y  (2.15) 

where sE  is the average energy of a transmitted symbol. MMSE outperforms than 

ZF method; however, to estimate the variance of the noise is hard at the receiver. 

 

2.5.2 Non-Linear Detection 
(1) V-BLAST Detection 

 The detection scheme of the V-BLAST system is based on the ordered successive 

interference cancellation (OSIC) algorithm [7], [8]. In OSIC, the detection procedure 

first detects the strongest signal, cancels the effect of the detected signal from the 

received signal, and then proceeds to detect the strongest signal of the remaining 

transmitted signals, and so on. The basic steps of the OSIC algorithm are as follows: 

 Ordering: Detect the signals in descending order of power in accordance 

with some criteria such as ZF or MMSE. 

 Nulling: Nulling out all weaker signals to extract the strongest signal. 

 Slicing: Make a hard decision on the strongest signal. 

 Cancelling: Cancel the effect of the detected strongest signal from the 

received signal. 

There are two common V-BLAST detection schemes: ZF V-BLAST and MMSE 
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V-BLAST. The differences between these two detection schemes are the ordering 

criterion and the nulling process. The ZF V-BLAST detection algorithm can be 

summarized as follows: 

Initialization:  

 †
1 1,  = ,  1n= =y y G H  (2.16) 

Recursion: 

 
{ }

( )
1 2 1

2

, , ,
arg min

n
n n jj o o o

o
−∉

= G  (2.17) 

 ( )
n no n o
=w G  (2.18) 

 
n n

H
o o nz = w y  (2.19) 

 ( )n n
o ox Q z=  (2.20) 

 1 nn
on n o x+ = −y y H  (2.21) 

 ( )
†

1 n

H
on+ =G H  (2.22) 

 1n n= +  (2.23) 

The MMSE V-BLAST detection algorithm can be summarized as follows: 

Initialization: 

 
12

1 1 1,  ,  1H H H n
P
σ

−⎛ ⎞⎟⎜ ⎟= = + = =⎜ ⎟⎜ ⎟⎜⎝ ⎠
y y G H H I H Q H  (2.24) 

Recursion: 

 
{ }

( )( )
1 2 1

2

, , ,
arg min diag

n
n n jj o o o

o
−∉

= Q  (2.25) 

 ( )
n no n o
=w G  (2.26) 

 
n n

H
o o nz = w y  (2.27) 

 ( )n n
o ox Q z=  (2.28) 
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 1 nn
on n o x+ = −y y H  (2.29) 

 
12

1 1n n n n

H H H
o o o on nP

σ
−

+ +

⎛ ⎞⎟⎜ ⎟= + =⎜ ⎟⎜ ⎟⎜⎝ ⎠
G H H I H Q H  (2.30) 

 1n n= +  (2.31) 

where ( )jA  denotes the jth column of matrix A, ( )Q ⋅  denotes the quantization 

operator, noA  denotes the matrix obtained by removing columns 1 2, , , no o o  of H, 

and ( )( )diag
j

A  denotes the jth diagonal element of matrix A. 

(2) Maximum-Likelihood (ML) Detection 

It is well known that the optimal detection scheme of the MIMO systems is the 

ML detection. The ML detection searches all possible combinations of transmitted 

symbols via the following criterion: 

 2
ML argmin ,

S∈
= −

x
x y Hx  (2.32) 

where NS = Ο  denotes the set of all possible transmitted symbol vectors and Ο  is 

the modulation symbol alphabet. Note that NS = Ο  so that the computational 

complexity grows exponentially with N . Therefore, it is difficult to be implemented 

at the receiver in practice which is the main drawback of this method. 

 

2.6 Sphere Decoding Algorithm (SDA) 
The sphere decoding algorithm (SDA) [9-12] achieves ML performance with 

reduced complexity. Hence, it has recently received considerable attentions as an 

effective detection scheme for MIMO systems. The basic idea of SDA is to restrict the 

search region of the optimal solution to a smaller subset. Typically, the search region 

is constrained to the interior of a hyper-sphere of radius d  centered at the received 
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signal vector y  as 

 22 .d ≥ −y Hx  (2.33) 

The geometrical interpretation of the concept of SDA is shown in Figure 2-7. 

Generally, the complex signal will be transformed into real signal model by 

 

( )

( )

( )

( )

( )

( )

( ) ( )

( ) ( )

Re Re Re
,   ,   ,

Im ImIm

Re Im
,

Im Re

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤−
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

y x n
y x n

x ny

H H
H

H H

 (2.34) 

where ( )Re ⋅  and ( )Im ⋅  are the real and imaginary parts of its argument. Hence, the 

real-valued signal is 

 ,= +y Hx n  (2.35) 

where 2 1M×∈y , 2 1N×∈ Λ ⊂x , 2 1M×∈n , and 2 2M N×∈H . Performing 

QR-decomposition of H , we have 

 1 2 ,
⎡ ⎤
⎢ ⎥⎡ ⎤= ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

R
H Q Q

0
 (2.36) 

where R  is a 2 2N N×  upper triangular matrix, 0  is a ( )2 M N N− ×  zero 

matrix, and 1Q   and  2Q   are 2 2M N×  and ( )2 2M M N× −  unitary matrices 

respectively. 

 
Figure 2-7: Geometrical interpretation of the SDA 

       Hx      
 
        y  
 

           d  
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Substituting (2.36) into (2.33), we have 

 ( )2 2' ' ,d ≥ −y Rx  (2.37) 

where '
1
H

=y Q y  and ( )
22' 2

2
H

d d= − Q y . Letting ,i jr⎡ ⎤= ⎣ ⎦R  with , 0i ir >  and 

, 0i jr =  for i j> , (2.37) can be expended as 

 

( )

( ) ( )

( ) ( )

2 2' '

2
2 2

,
1

2 2' '
2 ,2 2 2 -1,2 2 2 -1,2 -1 2 -12 2 -1

2 2'' ''
2 ,2 2 2 -1,2 -1 2 -12 2 -1

     

     

     ,

N N

i j ji
i j i

N N N N N N N N NN N

N N N N N NN N

d

y r x

y r x y r x r x

y r x y r x

= =

≥ −

⎛ ⎞⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

= − + − − +

= − + − +

∑ ∑

y Rx

 (2.38) 

where 

 
2

'''
,

1

.
N

i i j ii
j i

y y r x
= +

= − ∑  (2.39) 

The iterative search for the candidates 2 2 -1 2 1, , , ,N Nx x x x…  creates a search tree as 

shown in Figure 2-8. 

 

 

Figure 2-8: A tree search structure of the SDA ( )2N =  
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2.6.1 Fincke and Pohst SDA 
 In the Fincke and Pohst SDA (FP-SDA) [9], [10], the radius is chosen to be a 

scaled variance of the noise 

 2 2,d Nα σ=  (2.40) 

where the scalar α  is chosen in such a way that the a lattice point Hx  lies in the 

sphere with probability sP  

 
( )

1

0

,
N

se d P
N

α
λλ
λ

−
− =

Γ∫  (2.41) 

where the integrand is the pdf of the 2χ  random variable with N  degrees of 

freedom, and sP  is set to a value closed to 1. If no lattice point is not found, we can 

increase sP , adjust d , and then search again. For the (2N)th layer, the necessary 

condition for Hx  to lie inside the sphere is 

 ( ) ( )2 2' ''
2 2 ,2 2 .N N N Nd y r x≥ −  (2.42) 

Hence, the corresponding range of 2Nx  is 

 
'' ' '' '
2 2

2
2 ,2 2 ,2

,N N
N

N N N N

y d y d
x

r r

⎡ ⎤ ⎢ ⎥− +⎢ ⎥ ⎢ ⎥≤ ≤⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦

 (2.43) 

where ⎡ ⎤⋅  and ⎣ ⎦⋅  denote the ceiling and the floor operations respectively. In general, 

the necessary condition of the kth layer is 

 ( ) ( ) ( ) ( )
22 2 2'' ' '' '

, ,
1

.
N

k k k k j j j j k
j k

y r x d y r x d
= +

− ≤ − − =∑  (2.44) 

Hence, the corresponding range of kx  leads to 

 ( ) ( ),k k kLB x x UB x≤ ≤  (2.45) 

where 

 ( )
'' '

,

k k
k

k k

y d
LB x

r

⎡ ⎤−⎢ ⎥= ⎢ ⎥
⎢ ⎥⎢ ⎥

 (2.46) 
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 ( )
'' '

,

k k
k

k k

y d
UB x

r

⎢ ⎥+⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.47) 

The lattice points satisfying the above equation are searched to find the ML solution. 

In FP-SDA, the search for kx  is performed in the order of 

( ) ( ) ( ) ( ),  ,  2 ,  ,k k k kLB x LB x LB x UB x+ +δ δ , where δ  is the minimum 

distance between symbols. If no lattice point satisfying (2.45) is found for all k , the 

algorithm will set a larger search radius and restart the search again. 

 

2.6.2 Schnorr and Euchner SDA 
 Schnorr and Euchner SDA (SE-SDA) [12] is a variant of the FP-SDA. In 

SE-SDA, the search for the candidate kx  of the kth layer is started from 

 
''

,

ˆ ,k
k

k k

y
x

r

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.48) 

where [ ]⋅  denotes the rounding operator and the search order is 

ˆ,  ,  ,k k kx x xδ δ− + . Hence, the first solution found by the SE-SDA is exactly the 

Babai estimate [19] (zero-forcing solution) of the real-valued signal. Therefore, the 

search radius is set to be 

 ,SE ZFd = −y Hx  (2.49) 

where ZFx  denotes the zero-forcing solution. Note that ZFHx  is a lattice point; 

hence it guarantees that there is at least one lattice point inside the sphere which does 

not have to restart the search again as that in the FP-SDA. Moreover, the searching 

symbols in each layer of this algorithm starts from the point that is the nearest one to 

''
ky  for each k; hence, it is likely to find the optimal solution earlier than the FP-SDA 

which saves the computational complexity.  
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2.6.3 K-Best SDA 
    Both FP-SDA and SE-SDA achieve ML performance; however, their complexity 

in the low-SNR range is still too high. Besides, the decoding throughput is not stable 

and hence they are not suitable for real-time hardware implementation. The K-best 

SDA [13-16] is proposed for the MIMO detections with lower complexity and a stable 

throughput. First, define path weight kP  and branch weight kB  of the kth layer as 

 
1

0,               for 2 1
,

,    for 1 2

k

k k k

P k N

P P B k N+

⎧⎪ = = +⎪⎪⎨⎪ = + ≤ ≤⎪⎪⎩
 (2.50) 

 ( )where
2''

, .k k k k kB y r x= −  (2.51) 

The main idea of the K-best SDA is to keep only K candidates which have the 

smallest path weights in each layer which is shown in Figure 2-9. The steps of the 

K-best SDA [13] are summarized as follows: 

Step 1. Calculate 
2

ZFC = −y Hx  

Step 2. 

(a). Set 2k N= , 2NT C= . For each symbol in the constellation, calculate: 

 2 2 .N ND T B= −  (2.52) 

 2 1

 ,  if 0  
.

0 ,  otherwiseN

D D
T −

⎧ >⎪⎪= ⎨⎪⎪⎩
 (2.53) 

 (b). Choose those symbols which have the K largest positive 2 1NT −  values. 

Step 3. 

 (a) 1k k= −  

 (b) For each survival partial symbol vector from the previous layer; for each 

    symbol in the constellation, calculate: 

 .k kD T B= −  (2.54) 
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 1

 ,  if 0  
.

0 ,  otherwisek

D D
T −

⎧ >⎪⎪= ⎨⎪⎪⎩
 (2.55) 

 (c) Choose those symbols which have the K largest positive 1kT −  values. 

 (d) If ( )1k =  

        The solution is the symbol vector with the largest 0T . 

    else 

        Go back to step 3(a) 

 

 

Figure 2-9: The concept of the K-best SDA 

 

2.6 Summary 
 In this chapter, we give a review of the MIMO communication systems. 

Exploiting multi-path scattering, MIMO systems deliver significant performance 

enhancements in terms of data rate and link quality. Spatial diversity is one of the 

MIMO techniques which mitigates fading and is realized by providing the receiver 

with multiple copies of the transmitted signal in space or time. MIMO systems offer a 

linear increase in data rate through spatial multiplexing by transmitting multiple and 

independent data streams without requiring additional bandwidth or transmit power. 
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 The detection of MIMO signals can be classified into two types: linear detection 

and non-linear detection. Linear detection schemes such as ZF or MMSE are simple 

but their performances are poor. The optimal detection scheme is the ML detection. 

However, the computational complexity grows exponentially with the number of 

transmit antennas. The sphere decoding algorithm achieves the ML performance with 

reduced complexity. In this chapter, we introduce several kinds of the sphere decoding 

algorithms for the trade-off between performance and the computational complexity. 
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Chapter 3 
 
Proposed Complex K-Best Sphere 
Decoding Algorithm 
 

 In Chapter 2, we introduce the K-best SDA which is a suitable solution for 

hardware implementation; however, the conventional K-best SDA has some 

disadvantages. First, the complex-valued signal should be converted into real-valued 

signal which increases the search layers. Besides, performing a sorting algorithm to 

find K  nodes which have the smallest path weights in each layer causes a large 

amount of memory access. Moreover, to achieve a near-ML performance, the value of 

K  should be chosen sufficiently large, and this increases the computational 

complexity. 

 In this chapter, we introduce the proposed complex K-best SDA which requires a 

lower complexity and achieves a near-ML performance with smaller K  than the 

conventional K-best SDA. The details of the proposed algorithm will be introduced 

through Section 3.1 to Section 3.5. The simulation results will be provided in Section 

3.6 to show that the proposed algorithm works better than the conventional K-best 

SDA. 

 

3.1 Complex K-Best SDA 
 The complex K-best SDA is similar to the conventional K-best SDA. First, 

performing complex QR-decomposition to the channel matrix H , we obtain 
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 1 2

⎡ ⎤
⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

R
H Q Q

0
 (3.1) 

where 1
M N×∈Q  and ( )

2
M M N× −∈Q  are unitary matrices, R  is an 

N N× upper triangular matrix and 0  is an ( )M N N− ×  zero matrix. Substituting 

(3.1) into (2.33), we have 

 ( )2 2' 'd ≥ −y Rx  (3.2) 

where '
1
H=y Q y  and ( )2 2' 2

2
Hd d= − Q y . In this thesis, we choose 

ZFd = −y Hx  and ZFx  denotes the zero-forcing solution. The right-hand-side of 

(3.2) can be expanded as 

 

( )2 2' '

2

'
,

1

2 2' '
, -1 -1, -1, -1 -1

2 2'' ''
, -1 -1, -1 -1

     

     

     ,

N N

i i j j
i j i

N N N N N N N N N N N

N N N N N N N N

d

y r x

y r x y r x r x

y r x y r x

= =

≥ −

= −

= − + − − +

= − + − +

∑ ∑

y Rx

 (3.3) 

where '' '
,

1

N

i i i j j
j i

y y r x
= +

= − ∑ . We define the path weight kP  and the branch weight 

kB  of the kth layer as 

 
1

0,             for 1

,  for 1

k

k k k

P k N

P P B k N+

⎧ = = +⎪⎪⎨⎪ = + ≤ ≤⎪⎩
 (3.4) 

 
2''

,k k k k kB y r x= −  (3.5) 

For the ith layer, the complex K-best SDA keeps K survival nodes with the minimum 

iP s. Next, for the (i+1)th layer, the algorithm finds all possible nodes which are 

extended from the previous K survival nodes at the ith layer and then again keeps K 

survival nodes with the minimum 1iP+ s. The procedures are recursively executed and 

stoped at the 1st layer. The solution is the symbol vector with the minimum 1P . We 
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summarize the steps of the complex K-best SDA as follows. 

Step 1. Calculate ' ',  dy  

Step 2. 

(a). Set k N= . For each symbol in the complex-domain constellation, 

calculate: 

 1 ,N N NP P B+= +  (3.6) 

 
( )
( )

2'

2'

,    if 
.

-1,     if 

N N

N

N

P P d
S

P d

⎧⎪ ≤⎪⎪⎪= ⎨⎪⎪ >⎪⎪⎩

 (3.7) 

 (b). Choose those symbols which have the K smallest non-negative NS s. 

Step 3. 

 (a). 1k k← −  

 (b). For each survival partial symbol vector from the previous layer; for each 

symbol in the complex-domain constellation, calculate: 

 1 ,k k kP S B+= +  (3.8) 

 
( )
( )

2'

2'

,    if 
.

-1,     if 

k k

k

k

P P d
S

P d

⎧⎪ ≤⎪⎪⎪= ⎨⎪⎪ >⎪⎪⎩

 (3.9) 

 (c). Choose those symbols which have the K smallest non-negative kS s. 

Step 4. 

 If 1k =  

  The solution is the symbol vector with positive and the smallest 1S . 

 Else 

  Go back to Step 3. 
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3.2 Efficient Sorting Strategy 
 The main idea of the K-best SDA is to keep only K  survival nodes in each 

layer. The conventional K-best SDA has to sort among all possible nodes in each layer 

to find K  survival nodes which is shown in Figure 3-1. Note that the number inside 

the circle denotes the path weight of the node. Generally, the sorting algorithm 

applied in the K-best SDA is the bubble sort algorithm [13], [20]. When the size of the 

symbol alphabet of the transmitted symbol or the value of K  is large, using bubble 

sort to sort among all possible nodes will cause a large amount of memory access. 

 

Figure 3-1: Sorting of the conventional K-best SDA 
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In the proposed method, the child nodes of each parent node in the ith layer are 

first sorted in an ascending order according to their path weights. We propose an 

efficient method to obtain the sorted child nodes sequence of each parent node which 

does not require any complexity in sorting. The details of constructing the sorted child 

node sequences will be introduced in the next section. Since the child nodes of each 

parent node are already sorted, the candidate nodes in the ith layer are automatically 

divided into K  sorted groups which is shown in Figure 3-2. 

 

Figure 3-2: K sorted groups of the proposed method 

When there are several sorted groups, it is efficient to apply the merge algorithm 

[20] to obtain the sorted group containing all elements. The merge algorithm is one of 

the algorithms that run sequentially over multiple sorted groups. The general merge 

algorithm has a set of pointers { }1 2, , , np p p…  that point to the positions in a set of 

the sorted groups { }1 2, , , nG G G… . Initially they point to the first item in each group. 

The merge algorithm is described as follows: 

Step 1. Extract those elements which { }1 2, , , np p p…  point to in their respective 

groups. 

Step 2. Find out which element of those pointers point to with the minimum (or 

maximum) value. 
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Step 3. Advance one of those pointers to the next element in its group. 

Step 4. 

If any of { }1 2, , , np p p…  still points to data inside of { }1 2, , , nG G G…  

  Go back to Step 1. 

 Else 

  The elements are all merged; stop the merge algorithm. 

Figure 3-3 shows an example of the merge algorithm applied to two sorted groups. 

 

Figure 3-3: An example of the merge algorithm 

Step 1 

1G  13 14 17

1p  

2G  15 16 

2p  

Merged group: 

13 

Step 2 

1G  13 14 17

1p  

2G  15 16 

2p  

Merged group: 

13 14 

Step 3 

1G  13 14 17

1p

2G  15 16 

2p  

Merged group: 

13 14 15 

Step 4

1G 13 14 17 

1p  

2G 15 16

2p

Merged group: 

13 14 15 16

Step 5

1G 13 14 17 

1p  

2G 15 16

2p  

Merged group: 

13 14 15 16 17

Step 6

1G 13 14 17 

1p  

2G 15 16

2p  

Merged group: 

13 14 15 16 17

Done!
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 To reduce the size of the storage memory, we repeatedly apply the merge 

algorithm which deals with two sorted groups at a time. The steps of the proposed 

sorting strategy of the ith layer are described as follows: 

Step 1.  

(a). 2k ← . Find the groups of the sorted child nodes of the (k-1)th and the kth 

parent nodes. 

(b). Apply the merge algorithm to the two sorted groups to find K nodes with the 

minimum path weights. 

Step 2. 

1k k← + . 

Step 3. 

If max
+1
k
i iP P>  

  The K survival nodes of this layer are found. 

 Else 

  (i). Find the sorted child nodes group of the kth parent node. 

(ii). Apply the merge algorithm to the current survival group and the sorted 

child nodes group of the kth parent node to find K nodes with the minimum 

path weights. 

(iii). Go back to Step 2. 

 

k
iP  and max

iP  denote the path weight of the kth parent node in the ith layer and the 

maximum path weight of current survival node respectively. Figure 3-4 shows an 

example of the proposed method. Note that in the proposed method, only a small part 

of the candidate nodes have to be merged; hence, it significantly reduces the sorting 

complexity. 
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Figure 3-4: An example of the proposed sorting method 
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3.3 Efficient Complex Domain Search Method 
 In each layer, searching for the child nodes of each parent node has to satisfy the 

following constraint: 

 2 2,i i is x C− ≤  (3.10) 

where ''
,i i i is y r=  and ( )2 22 2 ' ''

, ,
1

N

i i i j j j j
j i

C r d y r x−

= +

⎡ ⎤
⎢ ⎥= ⋅ − −⎢ ⎥⎢ ⎥⎣ ⎦

∑ . We assume the 

modulation scheme of the transmitted symbols is QAM. The geometrical 

interpretation of (3.10) is that finding all possible symbols inside the circle centered at 

is  with radius iC  which is shown in Figure 3-5. 
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Figure 3-5: Geometrical interpretation of the search constraint 

To search the symbols efficiently, it is useful to construct the table of the symbol 

sequences within a given region [21], [22]. In the proposed method, we construct the 

table of the sequences of the 11 nearest constellation symbols for those points 

bounded by { }0,  1,  ,  1j j+ . For example 0.7 0.2is j= + , the sequence of the 

nearest 11 symbols in an ascending order according to their distances from is  is {35, 

36, 27, 28, 43, 44, 34, 37, 26, 29, 42} which is shown in Figure 3-6. 

        ix

            is  

     
            iC  
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Figure 3-6: An example of the nearest 11 points from the search center is  

For those points having the same symbol sequence, we will classify them into the 

same search group and share the same symbol sequence. Figure 3-7 shows the 

boundaries of the search groups and the corresponding symbol sequences are listed in 

Table 3-1. 
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Figure 3-7: Boundaries of the search groups 
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Table 3-1: List of candidate sequences 

Group ID Candidate Sequence 

01 35→27→36→28→34→26→43→19→44→20→37 

02 35→27→36→28→34→26→43→19→44→20→42 

03 35→27→36→28→34→26→43→19→44→42→20 

04 35→36→27→28→43→34→44→26→37→19→29 

05 35→27→36→28→34→43→26→44→19→37→20 

06 35→27→36→28→34→26→43→44→19→20→37 

07 35→27→36→34→28→26→43→19→44→42→20 

08 35→36→27→28→43→44→34→26→37→29→19 

09 35→36→27→28→43→44→34→37→26→29→19 

10 35→27→36→28→34→26→43→44→19→20→42 

11 35→27→36→28→34→26→43→44→19→42→20 

12 35→27→36→28→34→43→26→44→19→37→42 

13 35→27→36→28→34→43→26→44→19→42→37 

14 35→27→36→34→28→26→43→44→19→42→20 

15 35→27→36→34→28→26→43→44→42→19→20 

16 35→36→27→28→43→34→44→26→37→19→42 

17 35→27→36→28→34→43→26→44→42→19→37 

18 35→27→36→34→28→43→26→44→42→19→37 

19 35→36→27→28→43→34→44→26→37→42→19 

20 35→27→36→34→43→28→26→44→42→19→37 

21 35→36→27→28→43→34→44→26→42→37→19 

22 35→36→27→28→43→44→34→26→37→29→42 

23 35→36→27→28→43→44→34→26→37→42→29 
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Group ID Candidate Sequence 

24 35→36→27→28→43→44→34→37→26→29→42 

25 35→36→27→43→28→34→44→26→42→37→19 

26 35→36→27→43→34→28→44→26→42→37→19 

27 35→36→27→28→43→44→34→37→26→42→29 

28 35→36→27→43→28→44→34→26→37→42→29 

29 35→36→27→43→28→44→34→26→42→37→29 

30 35→36→27→43→28→44→34→37→26→42→29 

 

Due to the symmetry property of the QAM constellation shown in Figure 3-8, 

those points lying in the region bounded by { }1 ,  1 ,  1 ,  1j j j j+ − − + − −  in 

quadrant II, III and IV can use the same table of quadrant I by the following 

transformation: 

 

( ) ( )( )
( ) ( )( )

( ) ( )

( ) ( )

( ) ( )( )
( ) ( )

( ) ( )

( ) ( )( )
( ) ( )

( ) ( )

swap

if and

else if and

else if and

Re , Im

 Re 0  Im 0

Re Re  

Im Im

 Re 0  Im 0

Re Re

Im Im

 Re 0  Im 0

Re Re

Im Im  

i i

i i

i i

i i

i i

i i

i i

i i

i i

i i

s s

s s

s s

s s

s s

s s

s s

s s

s s

s s

≥ <

⎧ ←⎪⎪⎪⎨⎪ ← −⎪⎪⎩
< <

⎧ ←−⎪⎪⎪⎨⎪ ← −⎪⎪⎩
< ≥

⎧ ←−⎪⎪⎪⎨⎪ ←⎪⎪⎩

 (3.11) 

We first use the transformed search center is  to find the nearest 11 candidate 

symbols by looking up the table of the symbol sequences. When the candidate symbol 

ix  is found, we will transform it back to the original quadrant by 
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( ) ( )( )
( ) ( )( )

( ) ( )

( ) ( )

( ) ( )( )
( ) ( )

( ) ( )

( ) ( )( )
( ) ( )

( ) ( )
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if and

else if and
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Re , Im

 Re 0  Im 0
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i i

i i

x x

s s

x x

x x

s s

x x

x x

s s

x x

x x

≥ <
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< <

⎧ ←−⎪⎪⎪⎨⎪ ← −⎪⎪⎩
< ≥
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 (3.12) 

 

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

In-Phase

Q
ua

dr
at

ur
e

 
Figure 3-8: Symmetry property of the QAM constellation 

 For those search centers lying outside the region bounded by {1+j, 1-j, -1+j, 

-1-j}, we can first round them into the bounded region and then use the 

transformation relationship described above to find the relative nearest constellation 

symbols. Then the nearest constellation symbols are obtained by adding the 

coordinate offsets to the coordinates of the relative nearest constellation points which 

Quadrant IQuadrant II

Quadrant IVQuadrant III
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is shown in Figure 3-9. To improve the search efficiency, a special quantization for the 

search center is  is performed at the Nth layer. When the search center is  is far 

away from the QAM symbols, we will round it into a given boundary by 

 ( )
( )

( )

( )

( )
if

max

max max

Re               Re
Re    

sign Re Re

c c

c
c c

s s B
s

s B s B

⎧⎪ ≤⎪⎪= ⎨⎪ ⎡ ⎤ ⋅ >⎪ ⎣ ⎦⎪⎩
 (3.13) 

 ( )
( )

( )

( )

( )
if

max

max max

Im               Im
Im    

sign Im Im

c c

c
c c

s s B
s

s B s B

⎧⎪ ≤⎪⎪= ⎨⎪ ⎡ ⎤ ⋅ >⎪ ⎣ ⎦⎪⎩
 (3.14) 

 ( )max   0.5 1 1cB M d⎡ ⎤= − +⎢ ⎥⎣ ⎦  (3.15) 

where cM  is the size of the QAM symbol alphabet and d  is the minimum distance 

between two QAM symbols. Figure 3-10 shows an example of the special 

quantization at the Nth layer. 
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Figure 3-9: Rounding operation of the search center 

 

1. Rounding 

2. Add offset 
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Figure 3-10: Special quantization for the search center at the Nth layer 

 

3.4 Preprocessing 
 The channel matrix is preprocessed with some techniques, which reduces the 

complexity of searching the candidates or improves the performance of the K-best 

SDA. There are many preprocessing techniques such as scaling [23], lattice reduction 

[24], [25] and the column permutation [25]. In this thesis, we consider the column 

permutation of the channel matrix. The permutation order is based on the column 

norms of the channel matrix in an ascending order. The ordering mechanism increases 

the expectation of 2
,i ir  in the higher layers which has two benefits. First, for a fixed 

value of K  in the K-best SDA, increasing the expectation of 2
,i ir  in the higher 

layers reduces the effective search range of the candidates; therefore, it reduces the 

probability of the ML path being dropped in the early stages. Another benefit is that it 

constrains the growth of the tree and hence reduces the complexity of searching the 

candidate nodes. 
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3.5 ML-Like Search Strategy 
 One way to reduce the complexity of the conventional K-best SDA is to choose a 

smaller number of the survival nodes in each layer. However, this will cause 

performance degradation in the error rate. Instead of choosing a sufficiently large K  

to achieve a near-ML performance, we propose an ML-like search strategy. The 

proposed ML-like search method preserves all candidate nodes in the higher layers 

and then starts to keep only K candidate nodes at a suitable layer with a smaller K. 

Figure 3-11 shows the comparison between the conventional K-best algorithm and the 

proposed ML-like search method with K = 4. The determination of the number of 

layers performing the proposed ML-like search will be discussed in Chapter 4. 

(a) 

(b) 

Figure 3-11: Comparison between (a) conventional K-best algorithm 

(b) proposed ML-like search strategy 

: Survival node 

: Dropped node 

: ML solution path 

4K =

: Survival node 

: Dropped node 

4K =

: ML solution path 
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3.6 Computer Simulations 
 In this section, we simulate the symbol-error-rate (SER) of the proposed complex 

K-best SDA and compare it with SE SDA and the conventional K-best SDA. For the 

4 4×  MIMO systems, only the 4th layer performs the proposed ML-like search 

method. For the 8 8×  MIMO systems, we first search all possible candidates in the 

8th and the 7th layers. Then we keep K survival nodes at the 7th layer. For each 

simulation, we apply the preprocessing technique mentioned in Section 3.4 to all 

algorithms to do a fair comparison. 

  Figure 3-12 shows the simulations of SER as a function of SNR with 4 4×  

16QAM and 8K = . Note that the performance of the SE SDA is the same as the 

ML detection. With the proposed ML-like search method performed at the 4th layer, 

the performance of the proposed K-best SDA is better than the conventional K-best 

SDA. The SER of the proposed K-best SDA is close to that of the SE SDA. In 

contrast, the SER of the conventional K-best SDA tends to saturate at given value. 

This phenomenon is due to the fact that the conventional K-best SDA with a smaller K 

drops the ML-path with a high probability when the channel is in poor condition and 

the channel has a fixed probability of being in poor condition. Figure 3-13 shows the 

simulations of SER with 8 8×  16QAM and 14K = . In this simulation, the value 

of K has to be chosen larger to reduce the probability of the ML path being dropped in 

the higher layers. Hence, the performance gap between the proposed K-best SDA and 

the conventional K-best SDA is smaller than the 4 4×  case. However, the proposed 

K-best SDA still achieves a 0.5 dB gain over the conventional K-best SDA. 
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Figure 3-12: Simulations of 4 4×  16QAM with 8K =  
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Figure 3-13: Simulations of 8 8×  16QAM with 14K =  
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Figure 3-14 shows the simulations of SER with 4 4×  64QAM and 8K = . 

The proposed K-best SDA achieves nearly a 2 dB gain over the conventional K-best 

SDA at SER -310= . Note that the performance gap between the proposed K-best 

SDA and the conventional K-best SDA is larger than that of the 4 4×  16QAM case. 

This is because the probability of the ML-path being dropped becomes higher when 

the size of the modulation symbol alphabet becomes larger. However, the proposed 

ML-like search method keeps all possible candidates in the higher layers; hence, it 

significantly reduces the probability of the ML path being dropped. Figure 3-15 shows 

the simulation of SER with 8 8×  64QAM and 36K = . The proposed K-best SDA 

works better than the 8 8×  16QAM case. This is because we choose 36K =  

which covers only half of the 64QAM constellation points. Hence, the probability of 

the ML-path being dropped of the conventional K-best SDA is higher than that of the 

8 8×  16QAM case. 
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Figure 3-14: Simulations of 4 4×  64QAM with 8K =  

 



 

 43

17 20 23 26 29
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR (dB)

SE
R

 

 

Conventional K-Best SDA (8x8)
Proposed K-Best SDA (8x8)
SE SDA (8x8)

 

Figure 3-15: Simulations of 8 8×  64QAM with 36K =  
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3.7 Summary 
 In this chapter, we give a detailed description of the proposed complex K-best 

SDA. Applying the K-best algorithm directly to the complex-valued signal reduces the 

number of search layers. The merge algorithm combined with the proposed complex 

domain search method works more efficiently than the conventional sorting algorithm. 

The column ordering of the channel matrix reduces the number of candidates in the 

higher layers and also reduces the probability of the ML-path being dropped. To 

further enhance the performance of the K-best SDA, we propose an ML-like search 

method which improves the performance in SER without requiring a sufficiently large 

value of K. Simulations show that the proposed K-best SDA works better than the 

conventional K-best SDA under 16QAM and 64QAM MIMO systems with different 

dimensions. 
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Chapter 4 
 
Hardware Architecture and Sorting 
Complexity Analysis of Proposed 
Algorithm 
 

 In this chapter, we first give the hardware architecture of the proposed complex 

domain search method. In Section 4.2, we discuss the determination of the number of 

layers performing the proposed ML-like search method which is based on the derived 

pdf of 2
,i ir . In Section 4.3, we give an analysis of the sorting complexity in each layer 

under different operation modes. The complexity and the performance simulations 

will be provided in Section 4.4 to show that the proposed K-best SDA has lower 

complexity and better performance than the conventional K-best SDA. 

 

4.1 Hardware Architecture 
The hardware architecture of the proposed complex domain search method is 

introduced in this section. We call the proposed complex candidate search unit the 

“Complex Candidate Generator” (CCG) and its functional block diagram is shown in 

Figure 4-1. 
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Figure 4-1: Functional block diagram of the CCG unit 

When we give a set of input ( )2
-1, ,i is d P , CCG will output candidate points according 

to their path weights in an ascending order. The value of cM  is used for checking 

whether the candidate point ix  lies outside the constellation boundary or not. The 

value of K controls the number of the output candidate points. The CCG unit is 

composed of three functional blocks which is shown in Figure 4-2. 

Figure 4-2: Detailed block diagram of the CCG unit 

When we input a new search center is , CCG first rounds it to the relative 

position is  which lies inside the region bounded by { }1 ,  1 ,  -1 ,  -1j j j j+ − − + . 

The rounding procedures are as follows: 

 

( )

( )( ) ( )( )( )
( ) ( )

Rounding for

X_offset

X_offest

 Re :

floor Re mod floor Re ,2

Re Re                            

i

i i

i i

s

s s

s s

⎧⎪ = +⎪⎪⎨⎪ = −⎪⎪⎩

 (4.1) 
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Size cM  

K

 

Complex Candidate 
Generator (CCG) Node Weight iP  

Candidate Point ix  

Parent Weight -1iP  

Search Constraint 2d  
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( )

( )( ) ( )( )( )
( ) ( )

Rounding for

_offset

_offest

 Im :

Y floor Im mod floor Im ,2

Im Im Y                            

i

i i

i i

s

s s

s s

⎧⎪ = +⎪⎪⎨⎪ = −⎪⎪⎩

 (4.2) 

The rounding unit of ( )Re is  is shown in Figure 4-3 which is composed of only two 

adders and two multiplexers. We use 2’s complement to store the value of ( )Re is . S 

is the sign bit of ( )Re is  and b0 is the LSB of the integer part of ( )Re is . The value 

of dx is used for ( )Re is . Since the rounding procedures of ( )Im is  is the same 

as ( )Re is , the rounding unit of ( )Im is  is the same as ( )Re is . 

 

Figure 4-3: Rounding unit of ( )Re is  

Now, the search center is  is rounded to the point dx dyis j= + ⋅  which lies 

in the region bounded by { }1 ,  1 ,  - 1 ,  - 1j j j j+ − − + . In the next step, if is  

lies in quadrants II, III or IV, the CCG unit will map is  into quadrant I by the 

transformation in (3.11). The transformation circuit is shown in Figure 4-4. The 

multiplexers will choose a right data path based on the values of MSBs of dx and dy. 

dx_t and dy_t denote the transformed value of ( )Re is  and ( )Im is  respectively. 
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Figure 4-4: Transforming unit of is  

 The set (dx_t, dy_t) is sent to the candidate generator unit to generate the 

candidate point ix  and its corresponding path weight iP . The hardware architecture 

of the candidate generator is shown in Figure 4-5. The contents of the group ID and 

its corresponding candidate sequence are stored in ROM 1 and ROM 2 respectively. 

We first use (dx_t, dy_t) as a memory address to obtain the group ID stored in ROM 1. 

Then we use the group ID as a memory address to obtain the sequence of the 

candidate points stored in ROM 2. After adding the offset pair (X_offset, Y_offset) to 

the coordinates of the found candidate point, the constellation boundary checker will 

check whether the found point lies inside the constellation boundary. If the found 

candidate point lies inside the constellation boundary, the quadrant restoring unit will 

transform it back to the original quadrant. The distance calculator calculates the value 

of 2
i is x− . Multiplying the value of 2

i is x−  by 2
,i ir  and adding the parent 

weight -1iP to the multiplied result, we obtain the path weight iP  of the found point. 

The path weight iP  will be compared with the search constraint 2d . If the found 

candidate point lies outside the constellation boundary or its path weight iP  is larger 
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than the search constraint 2d , the value of the valid indicator will be 0 which 

indicates the found point is not a valid one. 

ROM1
Group_ID

dx_t
dy_t

Up-counter
(0~10) clk

ROM 2 Constellation
Boundary
Checker

Quadrant
Restore+

[X_offset, Y_offset] clk

Q

Distance
Calculator

( )2•

( )2•

+

+ clk

Q

(ri,i)2 Parent Weight 
Pi-1

Search Constraint
d2

clk

Candidate pairs

Node weightValid number
Up-counter

(0~10) clk

en
Valid 

Indicator

en

Cnstellation Size Mc

Figure 4-5: Hardware architecture of the candidate generator 

 

4.2 Discussion on Proposed ML-Like Search 

Strategy 
 For the search of candidates at the Nth layer, the candidate symbol should satisfy 

the following constraint: 

 
2

'
2

,

.N N
N N

d
s x

r

⎛ ⎞⎟⎜ ⎟⎜− ≤ ⎟⎜ ⎟⎟⎜⎝ ⎠
 (4.3) 

It is obvious that 
,

1

N Nr
 will enlarge the constraint region when ,N Nr  is smaller than 

1. In such case, the probability of the ML path being dropped will increase when we 

keep only K  nodes at the Nth layer. Hence, the number of layers performing the 

proposed ML-like search depends on the distribution of 2
,i ir . Figure 4-6 (a) and 4-6 (b) 

show the impact of ,N Nr  on the constrained search region. To determine the number 

of layers performing the proposed ML-like search, we derive the pdf and cdf of 2
,i ir  
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after channel column ordering. Based on the derived results, we can determine the 

number of layers performing the proposed ML-like search under different M and N. 
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 Reordering the columns of H according to their vector norms in an ascending 

order, we have 

 ( ) ( ) ( )1 2, , , ,o o o o N
⎡ ⎤= ⎢ ⎥⎣ ⎦H h h h  (4.4) 

where ( ) ( ) ( )1 2o o o N≤ ≤ ≤h h h . From [25], ( )o ih  can be expressed as 

 ( )   ,o i i iX=h θ  (4.5) 

where iX  is the ith order statistic of N independent ( )Gamma ,1M  distribution 

random variables with 1 2 NX X X≤ ≤ ≤  and { }siθ  are i.i.d. uniformly 

distributed on the unit sphere in M . Note that iX  and iθ  are independent. With 

the QR decomposition of o o o=H Q R , we are now going to characterize the 

distribution of the square of the diagonal entries of oR  denoted by 2
, ,o i ir . 

Letting ( ) ( ) ( )1 2  , , ,o o o o N
⎡ ⎤= ⎢ ⎥⎣ ⎦Q q q q  and performing the QR decomposition of 

Figure 4-6: Search constraint at the Nth layer with ' 1.1d =  (a) , 1N Nr =  

(b) , 0.33N Nr =  
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oH , we obtain 

 
( )( ) ( )

-1 -122 2
, ,

1 1

  , for 1      
  1   1    ,

, for 2

i i iH
o i i i i i io k

i ik k

X i
r X X k

X S i N= =

⎧ =⎪⎡ ⎤ ⎡ ⎤ ⎪⎢ ⎥ ⎢ ⎥= − = − = ⎨⎢ ⎥ ⎢ ⎥ ⎪ ≤ ≤⎣ ⎦ ⎣ ⎦ ⎪⎩
∑ ∑q θ θ  (4.6) 

where 

 ( )
-1

2

1

1
i

i i
k

S k
=

⎡ ⎤
⎢ ⎥= −⎢ ⎥⎣ ⎦

∑ θ  (4.7) 

and ( )i kθ  denotes the kth element of iθ . Note that the second equation holds due to 

the fact that the distribution of iθ  is invariant under the orthogonal transformation 

oQ . To derive the cdf of 2
, ,o i ir , we should first obtain the pdf of iX  and iS . The pdf 

of iX  is available in [26] as 

 ( )
( ) ( )

( )[ ] ( )[ ] ( )
-1 -!

  1 ,
1 ! !i

i N i
X

N
f x F x F x f x

i N i
= −

− −
 (4.8) 

where 

 ( )
( )

1

     for 0,
M xx e

f x x
M

− −⋅
= >

Γ
 (4.9) 

 ( )
1

0

1 .
!

iM
x

i

x
F x e

i

−
−

=
= − ∑  (4.10) 

From [27], iθ  can be modeled from a 2M-dimensional random vector 

1 2 2  
T

Mv v v⎡ ⎤= ⎢ ⎥⎣ ⎦V  with ( ) ~ i.i.d. 0,1iv N , where 

 ( ) 2 1 2 2 1 2
2 2 2
1 2 2

    .k k k k
i

M

v j v v j v
k

v v v
− −+ ⋅ + ⋅

= =
+ + +V

θ  (4.11) 

Due to the fact that 1H
i i =θ θ , iS  can be rewritten as 

 ( ) ( )
1 1

2 2

1 1

1
i M i

i i i
k k

S k k
− − +

= =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑θ θ  (4.12) 

Substituting (4.11) into (4.12), we have 

 ( ) ( )
2 2 21
1 2 2 12

2 2 2
1 1 2 2

    ,
M i

M i i
i i

k M i

v v v Q
S k

v v v P

− +
⋅ − +

=

+ + +
= = =

+ + +
∑ θ  (4.13) 

where iQ  and iP  are chi-square random variables with ( )2 1M i⋅ − +  and 2M  

degrees of freedom respectively. 
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The joint pdf of iQ  and iP  is 

 

( ) ( ) ( )

( )( ) ( ) ( ) ( )

( ) ( )( )
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p q
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= ⋅ −
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= > >

⋅ Γ − + ⋅ Γ −

χχ  (4.14) 

where ( ) ( )kf xχ  denotes the pdf of the chi-square random variable with k degrees of 

freedom. The pdf of iS  can be obtained by 
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 (4.15) 

Since iX  and iS  are independent, the joint pdf of iX  and iS  is 

 ( ) ( ) ( ), ,   
i i i iX S X Sf x s f x f s= ⋅  (4.16) 

The cdf of 2
, ,o i ir  for 2 i N≤ ≤  can be obtained by 

 ( ) ( ) ( ) ( )2
, ,

1 1

,
0 0 0 0
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i i i io i i

r rs s

X S X Sr
F r f x s dx ds f x f s dxds
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∫ ∫ ∫ ∫  (4.17) 

Finally, the pdf and the cdf of 2
, ,o i ir  are as follows: 

For 1i =  
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For 2 i N≤ ≤  

 ( ) ( ) ( )2
, ,

-1 -1 -1 -1
-2- - -1 - -

0 00 0

  1 1
! !o i i

r i N ik ks M M
ix x M x M i

iir
k k

x x
F r C e e x e s s dxds

k k= =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑∫ ∫  (4.19) 

 

where 

 
( ) ( ) ( ) ( )

!
 .

! ! 1 ! 2 !ii
N

C
N i M i i i

=
− − − −

 (4.20) 

Figure 4-7 shows the pdf curves of 2
, ,o i ir  of the 4 4×  MIMO channel. We can see 

that the probability of 2
, ,o i ir  being smaller than 1 in the 4th layer is larger than that of 

the other layers. Hence, only the 4th layer has to perform the proposed ML-like search 

method. Figure 4-8 shows the pdf curves of 2
, ,o i ir  of the 8 8×  MIMO channel. In 

this case, the probabilities of 2
, ,o i ir  being smaller than 1 in the 8th and the 7th layers 

are larger than that of the other layers. However, the number of the possible 

candidates in the 7th layer is ( )2cM  in the worst case which is too large to store for 

hardware implementation when cM  is large. Hence, we first keep all possible 

candidates in the 8th layer. For the 7th layer, we first find all possible candidates and 

then start to keep K survival nodes with the minimum path weights. 
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Figure 4-7: PDF curves of 2
, ,o i ir  of the 4 4×  channel 
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Figure 4-8: PDF curves of 2
, ,o i ir  of the 8 8×  channel 

To further reduce the complexity, the proposed ML-like search is performed only 

when any of ,i ir  for 1MLN L i N− + ≤ ≤  is smaller than a given threshold rT , 

where MLL  is the number of layers performing the proposed ML-like search. 

Recalling that for the Nth layer, the search for the candidate symbols should satisfy 

the following constraint: 

 ( )222 '
,N N N Nr s x d− ≤  (4.21) 

In the proposed algorithm, we keep only k  constellation symbols which are the 

nearest ones from Ns , where ( )min ,11k K= ; hence, the value of 2
N Ns x−  has 

a limit range. From this property, the threshold rT  is chosen based on the following 

criterion: 

 
( ){ }
2 2

2'
1,

E

rD T

d

⋅
=  (4.22) 

 ( )2 2 2
,min 11,minmin , ,KD D D=  (4.23) 

where ,minKD  and 11,minD  denote the minimum distances from the Kth and the 11th 
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nearest constellation symbols to Ns  respectively. The geometrical interpretation of 

(4.22) is that when the nearest k constellation symbols fail to cover all possible 

symbols inside the average constraint region ( ){ }2'E d , the proposed ML-like search 

method will be performed to keep all possible symbols. Note that the value of 

( ){ }2'E d  varies with SNR. We can choose ( ){ }2'E d  at the SNR when the symbol 

error rate of the proposed K-best SDA without the proposed ML-like search method 

tends to be T  times larger than that of the ML detection. When T  is close to 1, the 

performance of the proposed K-best SDA will be close to the ML detection; however, 

its complexity will increase because the probability of performing the proposed 

ML-like search increases. This shows a trade-off between the complexity and the 

performance. 

 

4.3 Sorting Complexity Analysis 
 The main reduction of the complexity in the proposed K-best SDA is about 

sorting. Hence, we focus on the analysis of the sorting complexity in this section. The 

evaluation of the sorting complexity is based on the number of data “compare and 

select” (CS) operations. We first consider the sorting complexity in the Nth layer. For 

the normal K-best operation, there is no sorting complexity because the candidates are 

directly generated from the table of the candidate sequences. When the ML-like 

operation is performed, we assume that all constellation points have to be sorted and 

the applied sorting algorithm is the bubble sort algorithm. Hence, the number of CS of 

the ML-like operation in the Nth layer, , ,CS ML NN , is 

 ( ) ( )
( )

, ,

1
1 2 2 1 ,

2
c c

CS ML N c c
M M

N M M
⋅ −

= − + − + + + =  (4.24) 

where cM  denotes the constellation size. Table 4-1 shows the sorting complexity in 
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the Nth layer. 

Table 4-1: Sorting complexity in the Nth layer 

 K-Best Operation ML-Like Operation 

Total Complexity None ( )1
2

c cM M⋅ −
 

 

For the (N－1)th layer, we assume that each parent node has K  child nodes. 

Constructing the group of the sorted child nodes of each parent node has no sorting 

complexity when the K-best operation is performed; however, when the ML-like 

operation is performed, we apply the bubble sort algorithm to find K child nodes of 

each parent node. The number of CS for constructing a sorted group of the ML-like 

operation, , , 1,CS ML N GN − , is 

 ( ) ( ) ( )
( )

, , 1,
2 1

1 2 .
2

c c
CS ML N G c c c

K M M K
N M M M K−

⋅ ⋅ − +
= − + − + + − =  (4.25) 

Applying the merge algorithm to two sorted groups takes K (CS)s. We consider the 

worst case that the merge algorithm will be applied to the last group of the sorted 

child nodes. Hence, the merge algorithm is performed ( )1K −  times if the Nth layer 

applies the normal K-best operation and is performed ( )1cM −  times if the Nth layer 

applies the ML-like operation. The sorting complexity in the (N－1)th layer is shown 

in Table 4-2. 

For the ith ( )2 2i N≤ ≤ −  layer, the sorted child nodes of each parent node 

are always obtained from the table of the candidate sequences which takes no sorting 

complexity. The number of parent nodes of each layer is assumed to be K  and we 

consider the worst case that the merge algorithm will be applied to the last group of 

the sorted child nodes. The sorting complexity in the ith ( )2 2i N≤ ≤ −  layer is 
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shown in Table 4-3. 

 

Table 4-2: Sorting complexity in the (N-1)th layer 

 K-Best Operation ML-Like Operation 

Obtain the sorted 

group 

None ( )2 1

2
cK M K− +

 

Merge operation K  K  

If Nth layer applies K-best 

operation 

( )1K K⋅ −  

If Nth layer applies ML-like 

operation 

 

 

Total complexity 

( )1cK M⋅ −  

 

 

( )

( )

2 1

2
1

c c

c

K M M K

K M

⋅ ⋅ − +

+ ⋅ −

 

 

Table 4-3: Sorting complexity in the ith layer ( )2 2i N≤ ≤ −  

 K-Best Operation

Obtain the sorted group None 

Merge operation K  

Total Complexity ( )1K K⋅ −  
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For the 1st layer, the proposed K-best SDA only has to find one child node of 

each parent node. Hence, performing the merge operation once takes one “compare 

and select” operation. The complexity in the 1st layer is shown in Table 4-4. 

Table 4-4: Sorting complexity in the 1st layer 

 Normal Operation

Obtain the sorted group None 

Merge operation 1  

Total Complexity 1K −  

 

4.4 Simulation Results 
 In this section, we simulate the SER and the complexity of the proposed K-best 

SDA and compare it with the SE SDA and the conventional K-best SDA. To compare 

the complexity of different algorithms, we define the complexity weight of different 

operations according to [13], [28], [29] which are shown in Table 4-5. The total 

complexity of each simulated algorithm is the sum of the number of times of each 

operation multiplied by its corresponding weight. 

 

Table 4-5: Complexity weight of different operations 

Operation Weight Operation Weight 

Real addition/subtraction 1 Complex multiplication 6 

Real multiplication 1 Reading data from memory 1 

Real division 2 Writing data to memory 1 

Real square operation 1 Memory data comparison 1 

Complex addition/subtraction 2  
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 Figure 4-9 (a) and Figure 4-9 (b) show the 4 4×  16QAM simulations of SER 

and the complexity with 8K = . The threshold rT  is chosen to be 0.291 and its 

corresponding probability of performing the proposed ML-like search is 4.72 %. We 

can see that the conventional K-best SDA has higher complexity than that of the SE 

SDA. This phenomenon is due to the fact that the conventional K-best SDA visits 

more candidate nodes than the SE SDA when the number of the layers is small. The 

proposed efficient sorting method reduces the number of visited nodes and the sorting 

complexity in each layer; hence, the complexity of the proposed K-best SDA is lower 

than that of the SE SDA and the conventional K-best SDA. Comparing Figure 4-9 (a) 

with Figure 3-14, the SER curve of the proposed K-best SDA in Figure 4-9 (a) is 

nearly the same as that in Figure 3-14. This shows that the threshold constraint 

significantly reduces the probability of performing the proposed ML-like search and 

there is nearly no performance degradation of the proposed K-best SDA. 

 Figure 4-10 (a) and Figure 4-10 (b) show the 8 8×  16QAM simulations of 

SER and the complexity with 14K = . The threshold rT  is chosen to be 0.833 and 

its corresponding probability of performing the proposed ML-like search is 38.4 %. 

The probability of performing the proposed ML-like search is higher than that of the 

4 4×  case because the probability of the ML-path being dropped in the K-best SDA 

is higher in the 8 8×  case. We can see that the performance of the proposed K-best 

SDA is better than the conventional K-best SDA and the complexity of the proposed 

K-best SDA is lower than that of the SE SDA and the conventional K-best SDA. 

Because the number of search layers is larger in this case, the proposed sorting 

method reduces more complexity in sorting. Hence, we can see that the gap of the 

complexity between the proposed K-best SDA and the conventional K-best SDA is 

larger than that in the 4 4×  case. 
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Figure 4-9: 4 4×  16QAM simulations of (a) SER (b) complexity , 8K =  and 

0.291rT =  
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Figure 4-10: 8 8×  16QAM simulations of (a) SER (b) complexity , 14K =  and 

0.833rT =  
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Figure 4-11 (a) and Figure 4-11 (b) show the 4 4×  64QAM simulations of SER 

and the complexity with 8K = . The threshold rT  is chosen to be 0.353 and its 

corresponding probability of performing the proposed ML-like search is 6.44 %. In 

this case, the proposed K-best SDA still has better performance than the conventional 

K-best SDA and has lower complexity than that of the SE SDA and the conventional 

K-best SDA. The value of rT  is higher than that of the 4 4×  16QAM case because 

the probability of the ML-path being dropped is higher when the size of the 

modulation symbol alphabet becomes larger. We can further improve the performance 

of the proposed K-best SDA by choosing a higher threshold; however, the complexity 

of the proposed K-best SDA may be higher than that that of the SE SDA in the high 

SNR range. 

Figure 4-12 (a) and Figure 4-12 (b) show the 8 8×  64QAM simulations of 

SER and the complexity with 36K = . The threshold rT  is chosen to be 1.143 and 

its corresponding probability of performing the proposed ML-like search is 65.8 %. In 

this case, the proposed K-best SDA still works better than the conventional K-best 

SDA. Due to the fact that the expectation of the constraint search radius is much 

larger than that in the 8 8×  16QAM and the 4 4×  64QAM cases, the threshold 

rT  has to set higher to reduce the probability of the ML-path being dropped in higher 

layers. We can see that the gap of the complexity between the proposed K-best SDA 

and the conventional K-best SDA is larger than that in the 8 8×  16QAM case. The 

reason is that the proposed efficient sorting method reduces much more complexity 

when the size of the modulation alphabet becomes larger. 
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Figure 4-11: 4 4×  64QAM simulations of (a) SER (b) complexity , 8K =  and 

0.353rT =  
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Figure 4-12: 8 8×  64QAM simulations of (a) SER (b) complexity , 36K =  and 

1.143rT =  
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4.5 Summary 
 In this chapter, we provide the hardware architecture of the proposed complex 

domain search method. In Section 4.2, we discuss the determination of the number of 

layers performing the ML-like search. Based on the derived pdf of 2
, ,o i ir , we can 

easily determine the number of layers performing the ML-like search method with 

different values of M and N. To reduce the overall complexity of the proposed 

algorithm, we give a threshold constraint to reduce the probability of performing the 

ML-like search method. In Section 4.3, we give a discussion of the sorting complexity 

of each layer of the proposed algorithm. In Section 4.4, we simulate the SER and the 

complexity of the proposed K-best SDA and compare it with the SE SDA and the 

conventional K-best SDA. Simulations show that the proposed K-best SDA has better 

performance and lower complexity than the conventional K-best SDA. Besides, the 

performance of the proposed K-best SDA is close to that of the SE SDA (ML 

performance). 
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Chapter 5 
 
Conclusions and Future Works 
 

In this thesis, we propose a complex K-best SDA with an efficient search 

architecture. In the proposed sorting method, only a small part of the candidates in 

each layer have to be sorted which significantly reduces the sorting complexity. The K 

survival nodes found by the proposed sorting method in each layer are the same as 

that found by the conventional sorting algorithm. Hence, the proposed sorting method 

does not sacrifice any performance. Moreover, the proposed complex domain 

candidate search method makes it possible that the child nodes of each parent node 

are already sorted without requiring any sorting. The hardware architecture of the 

proposed complex domain candidate search method is also provided. Finally, the 

proposed ML-like search reduces the probability of the ML-path being dropped in 

higher layers. As a result, the proposed K-best SDA has better performance and lower 

complexity than that of the conventional K-best SDA. 

 In Chapter 2, we give a review of the MIMO system and introduce several kinds 

of SDAs. The SE SDA achieves the ML performance with lower complexity. 

However, its decoding throughput is not stable. The K-best SDA has fixed decoding 

throughput and is suitable for pipelined hardware implementation. However, sorting 

the candidates in each layer requires a large amount of memory access. Hence, the 

theme of this thesis is focus on the reduction of the sorting complexity while 

improving the performance of the K-best SDA. 
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In Chapter 3, we give a detailed description of the proposed K-best SDA. The 

merge algorithm combined with proposed complex domain candidate search method 

has lower complexity than the conventional bubble sort algorithm. The concept of the 

proposed ML-like search method is to keep all possible candidates in higher layers to 

reduce to probability of the ML-path being dropped. With a small number of layers 

performing the proposed ML-like search, the proposed ML-like search method 

significantly improves the decoding performance of the K-best SDA when the value 

of K is small. Simulations demonstrate that the proposed K-best SDA achieves a 

near-ML performance which does not require a large value of K. 

The hardware architecture of the proposed complex domain candidate search 

method is provided in Chapter 4. Besides, we discuss the determination of the number 

of layers performing the proposed ML-like search which is based on the statistical 

properties of the channel matrix after column ordering. We also propose a threshold 

constraint of the proposed ML-like search which simplifies the decision of the 

trade-off between the performance and the complexity. The detailed analysis of the 

sorting complexity of the proposed K-best SDA is also included. Simulations show 

that the proposed K-best SDA significantly reduces the complexity and improves the 

performance of the conventional K-best SDA. Moreover, the performance of the 

proposed K-best SDA is close to that of the ML detection. 

 The main contributions of this thesis are as follows. First, the proposed sorting 

method significantly reduces the sorting complexity and requires a smaller storage 

memory. Hence, it is more suitable to be implemented in hardware than the 

conventional bubble sort algorithm. In addition, the proposed complex domain 

candidate search method overcomes the difficulty in searching and sorting the 

constellation points in the complex domain within a constraint region. Hence, the 

complex-valued signals do not have to be converted into real-valued signals which 
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reduces the number of search layers. Moreover, the proposed ML-like search method 

with the threshold constraint improves the decoding performance of the K-best SDA 

while maintaining lower complexity than that of the conventional K-best SDA and the 

SE SDA. 

 There are some future works worthy of further investigation. The first one is that 

the MIMO channel is assumed to be perfectly estimated. However, the MIMO 

channel cannot be perfectly estimated in practice. The second one is that it is not 

likely to have sufficiently many receive antennas in practice to decouple the spatial 

signals especially in the downlink path. When the number of receive antennas is less 

than the number of transmit antennas, searching for the optimal solution at the 

receiver becomes an underdetermined problem. In such a case, the K-best SDA cannot 

be directly applied to the underdetermined MIMO systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 69

 
Bibliography 

 

[1] E. Telatar, “Capacity of multi-antenna Gaussian channels,” AT&T Bell Labs 
Internal Tech. Memo., June 1995. 

 
[2] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading 

environment using multiple antennas,” Wireless Personal Commun., vol. 6, no.3, 
pp. 311-335, Mar. 1998. 

 
[3] S. M. Alamouti, “A simple transmit diversity scheme for wireless 

communication,” IEEE J. Select. Areas Commun., vol. 16, no. 8, pp. 1451-1458, 
Oct. 1998. 

 
[4] G. J. Foschini, “Layered space-time architecture for wireless communication in a 

fading environment when using multi-element antennas,” AT&T Bell Labs Tech. 
J., pp. 41-59, Autumn 1996. 

 
[5] A. J. Goldsmith and S. G. Chua, “Variable-rate variable-power MQAM for 

fading channels,” IEEE Trans. Commun., vol. 45, no. 10, pp. 1218-1230, Oct. 
1997. 

 
[6] S. Catreux, V. Erceg, D. Gesbert and R. W. Heath, “Adaptive modulation and 

MIMO coding for broadband wireless data networks,” IEEE Commun. Mag., vol. 
40, no. 6, pp. 108-115, Jun. 2002. 

 
[7] G. J. Foschini, G. D. Golden, R. A. Valenzuela and P. W. Wolniansky, “Simplified 

processing for high spectral efficiency wireless communication employing 
multi-element arrays,” IEEE J. Select. Areas Commun., vol. 17, no. 11, pp. 
1841-1852, Nov. 1999. 

 
[8] G. D. Golden, G. J. Foschini, R. A. Valenzuela and P. W. Wolniansky, ”Detection 

algorithm and initial laboratory results using V-BLAST space-time 
communication architecture,” Electronic Letters, vol. 35, no. 1, pp. 14-16, Jan. 
1999. 

 
[9] U. Fincke and M. Pohst, “Improved methods for calculating vectors of short 

length in a lattice, including a complexity analysis,” Math. Comput., vol. 44, no. 
170, pp. 463-471, Apr. 1985. 



 

 70

[10] B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm I. expected 
complexity,” IEEE Trans. Signal Process., vol. 53, no. 8, pp. 2806-2818, Aug. 
2005. 

 
[11] H. Vikalo and B. Hassibi, “On the sphere-decoding algorithm II. generalizations, 

second-order statistics, and applications to communications,” IEEE Trans. Signal 
Process., vol. 53, no. 8, pp. 2819-2834, Aug. 2005. 

 
[12] C. P. Schnorr and M. Euchner, “Lattice basis reduction: improved practical 

algorithms and solving subset sum problems,” Math. Programming, vol. 66, pp. 
181-191, Aug. 1994. 

 
[13] K. W. Wong, C. Y. Tsui, R. S. Cheng and W. H. Mow, “A VLSI architecture of a 

K-best lattice decoding algorithm for MIMO channels,” in Proc. IEEE ISCAS’02, 
vol. 3, pp. 273-276, May 2002. 

 
[14] Q. W. Li and Z. F. Wang, “Improved K-best sphere decoding algorithms for 

MIMO systems,” in Proc. IEEE ISCAS’06, pp. 1159-1162, May 2006. 
 
[15] S. Roger, A. Gonzalez, V. Almenar and A. M. Vidal, “Combined K-best sphere 

decoder based on the channel matrix condition number,” ISCCSP’08, pp. 
1058-1061, May 2008. 

 
[16] S. Mondal, K. N. Salama and W. H. Ali, “A novel approach for K-best MIMO 

detection and its VLSI implementation,” in Proc. IEEE ISCAS’08, pp. 936-939, 
May 2008. 

 
[17] T. M. Cover and J. A. Thomas, Elements of Information Theory, John Wiley & 

Sons, Inc., 1991. 
 
[18] P. W. Wolniansky, G. J. Foschini, G. D. Golden and R. A. Valenzuela, “V-BLAST: 

An architecture for realizing very high data rates over the rich-scattering wireless 
channel,” in Proc. URSI ISSSE-98, pp. 295-300, 1998. 

 
[19] M. Grotschel, L. Lovasz and A. Schriver, Geometric Algorithms and 

Combinatorial Optimization, 2nd ed. New York: Springer-Verlag, 1993. 
 
[20] D. Knuth, The Art of Computer Programming, Volumn 3: Sorting and Search, 

3rd ed., Addison-Wesley, 1997. 
 
 
 



 

 71

[21] A. Wiesel, X. Mestre, A. Pages and J. R. Fonollosa, “Efficient implementation of 
sphere demodulation,” IEEE Workshop on Signal Processing Advances in 
Wireless Communications (SPAWC), pp. 36-40, Jun. 2003, Rome, Italy. 

 
[22] N. Kobayashi, M. Ohnishi, M. Kova, N. Tsukamoto and Y. Kokuryou, 

“Simplified viterbi decoding for high speed data modem,” in Proc. IEEE 
GLOBECOM’87, vol. 1, pp. 472-478, Nov. 1987, Japan. 

 
[23] K. Lee and J. Chun, “ML symbol detection based on the shortest path algorithm 

for MIMO systems,” IEEE Trans. Signal Process., vol. 55, no. 11, pp. 5477-5484, 
Nov. 2007. 

 
[24] A. K. Lenstra, H. W. Lenstra and L. Lovasz, “Factoring polynomials with 

rational coefficients,” Math. Ann., vol. 261, no. 4, pp. 513-534, 1982. 
 
[25] W. Zhao and G. B. Giannakis, “Reduced complexity closest point decoding 

algorithms for random lattices,” IEEE Trans. Wireless Commun., vol. 5, no. 1, pp. 
101-111, Jan. 2006. 

 
[26] N. Balakrishnan and A. C. Cohen, Order Statistics and Inference Estimation 

Methods, New York: Academic, 1991. 
 
[27] M. E. Muller, “A note on a method for generating points uniformly on 

n-dimensional spheres,” Comm. Assoc. Comp. Mach., vol. 2, no. 4, pp. 19-20, 
Apr. 1959. 

 
[28] Z. Guo and P. Nilsson, “Algorithm and implementation of the K-best sphere 

decoding for MIMO detection,” IEEE J. Select. Areas Commun., vol. 24, no. 3, 
pp. 491-503, Mar. 2006. 

 
[29] D. Pham, K. R. Pattipati, P. K. Willett and J. Luo, “An improved complex sphere 

decoder for V-BLAST systems,” IEEE Signal Process. Letters, vol. 11, no. 9, 
pp.748-751, Sep. 2004. 


