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摘 要       

今天我們的資訊社會的特點是變得越來越需要移動性以及無障礙性。

同時，對於高傳輸率的需求也大大的增加。多輸入多輸出正交分頻多工

(MIMO-OFDM)空間多工系統是一種可行的技術，它可以用來改進無線通訊

訊號的品質以及傳輸的速率。在MIMO-OFDM空間多工系統的資料檢測中，

球狀解碼是一種被廣泛使用的次佳解檢測器。它擁有非常好的效能，但是

它的複雜度會隨著通道和訊雜比而改變。在這篇論文中，我們證明了 SSIC

演算法與 PDA 演算法是等效的。此外，我們提出了兩種檢測器，

GPDA-MCPDA 與  GPDA-SD，用來降低球狀解碼在接近最佳解的

MIMO-OFDM 空間多工系統下使用高階 QAM 調變(16QAM/ 64QAM)的複

雜度。模擬結果顯示，這兩種檢測器都可以達到接近最佳解的效能而且它

們的優勢在於擁有比球狀解碼還低的複雜度，特別是在低訊雜比的區域。 
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ABSTRACT 

Our information society today is marked by an increasing need for mobility and 

accessibility. At the same time, the demand for ever higher data transfer rates is also 

increasing. A MIMO-OFDM spatial multiplexing system is a proven technology that can 

improve signal quality and data rate for wireless communications. Sphere Decoding (SD) 

algorithm is a popular suboptimal data detection method in a MIMO-OFDM spatial 

multiplexing system. It although performs very well but suffers from the fact that its 

complexity is a random variable depending on channel and signal to noise ratio (SNR). In this 

thesis, we establish the equivalence of the SSIC algorithm and the PDA algorithm. 

Furthermore, we proposed two detectors, GPDA-MCPDA and GPDA-SD, to reduce the 

complexity of the sphere decoding algorithm for near-optimal detection in a MIMO-OFDM 

spatial multiplexing system with higher order QAM constellations (16QAM/64QAM). 

Simulation results demonstrate that both detectors can achieve near-optimal performance with 

lower complexity as compare with the sphere decoding algorithm, especially at the low SNR 

regions. 
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Chapter 1  

Introduction 

 

The Multiple-input multiple-output orthogonal frequency division multiplexing 

(MIMO-OFDM) spatial multiplexing system [1] [2] is a proven technology that can improve 

signal quality and data rate for wireless communications. The global growth of interest in the 

wireless Internet and digitized audio and video, coupled with a growing wireless 

high-bandwidth infrastructure leads to a rapidly expanding market for wireless multimedia 

services. To cope with the growth, wireless services providers today are facing a number of 

challenges, which include the limited availability of the radio frequency spectrum and a 

complex time-varying wireless environment. In near future, wireless devices will have the 

features for always-available connection, higher data rate, longer distance, low-power 

consumption, better Quality of Service (QoS), fewer dropped packets, and higher network 

capacity in order to improve service quality for rapid service expansion and configurations. 

Combining OFDM with MIMO equipment is the most promising technology for delivering 

high data rates and robust performance. 

In a MIMO-OFDM spatial multiplexing system, the optimum solution is to use 

Maximum Likelihood (ML) detection. However, ML detection is an exhaustive search; the 

complexity increases with either the increasing number of transmitting antennas or the 
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increasing order of modulation. Computational efficient data detection algorithms have been 

widely explored to achieve the substantial performance gains promised by MIMO-OFDM 

spatial multiplexing system with QAM constellations. There are two outstanding detectors of 

those frontrunners, the Sphere Decoding (SD) algorithm [3] and algorithm which based on the 

Probabilistic Data Association (PDA) [4] [5] principle. The SD algorithm although perform 

very well but suffers from the fact that its complexity is a random variable depending on 

channel and signal to noise ratio (SNR). The probabilistic data association is a simpler 

detection method, originally for Multi-User Detection (MUD) in synchronous Code Division 

Multiple Access (CDMA) [4]. The PDA based detectors perform well (close to the ML 

decoder) for simple modulation schemes i.e. BPSK and QPSK, but these results do not 

emerge from higher order modulations [5]. 

In this thesis, we focus on the higher order QAM constellations (16QAM/64QAM) data 

detection in the MIMO-OFDM spatial multiplexing system. We propose two near-optimal 

performance detectors with the common features which is using the Generalized PDA (GPDA) 

[5] detector at the low SNR regions. At the high SNR regions, we will combine different 

detectors to improve the performance. The first proposed detector is combining GPDA and 

Markov Chain Monte Carlo (MCMC) [6], and it is named MCPDA which incorporates the 

concept of PDA to calculate the covariance then construct a Markov Chain to make it 

converge to the target distribution. The second one is based on the SD algorithm using GPDA 
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solution to be the radius of the sphere. In addition, we prove the Soft Successive Interference 

Cancellation (SSIC) algorithm and the Probabilistic Data Association (PDA) algorithm are 

equivalent in the MIMO-OFDM system. 

 This thesis is organized as follows. In Chapter 2, we describe a MIMO-OFDM system. 

Chapter 3 introduces the PDA detector and the GPDA detector. In Chapter 4, we propose two 

modified methods (GPDA-MCPDA, GPDA-SD) of data detection in the MIMO-OFDM 

spatial multiplexing system. In Chapter 5, we establish the equivalence of the SSIC algorithm 

and the PDA algorithm in the MIMO-OFDM system. Finally, some conclusions are drawn in 

Chapter 6. 
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Chapter 2  

MIMO-OFDM System 

 

2.1 Overview of MIMO System 

A MIMO system can be defined simply. Given an arbitrary wireless communication 

system, we consider a link for which the transmitting end as well as the receiving end is 

equipped with multiple antenna elements. The idea behind MIMO is that the signals on the 

transmit (TX) antennas at one end and the receive (RX) antennas at the other end are 

“combined” in such a way that the performance (bit-error rate or BER) or the data rate 

(bits/sec) of the communication for each MIMO user will be improved. Such an advantage 

can be used to increase both the network’s quality of service. One popular example of such a 

system is V-BLAST (Vertical-Bell Laboratories Layered Space-Time) suggested by Foschini 

et al [7]. 

MIMO techniques can be basically split into two groups: space time coding (STC) and 

spatial multiplexing (SM). STC increases the performance of the communication system by 

coding over the different transmitter branches; whereas SM achieves a higher throughput by 

transmitting independent data streams on the different transmit branches simultaneously at the 

same carrier frequency. Since increasing the bit rates is our goal, we will focus on the SM 

algorithms in this thesis. A potential application of the MIMO principle is the next-generation 
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wireless local area network (WLAN). 

 

2.2 Overview of OFDM System 

 OFDM, which was brought up in the mid 60’s, is a digital multi-carrier modulation 

scheme. OFDM is used in numerous wireless transmission standards nowadays (DAB, 

DVB-T, WiMAX IEEE 802.16, ADSL, WLAN IEEE 802.11a/g), as a result of its capability 

of high-rate transmission and low-complexity implementation over frequency-selective fading 

channels. 

 The basic idea of OFDM is that it divides the available spectrum into several orthogonal 

subcarriers. Because these subcarriers are narrow-band, they experience flat fading channel 

and then equalization method of the system becomes very simple. Furthermore, it possesses 

high spectral efficiency by overlapping these orthogonal subcarriers [8]. Moreover, the 

insertions of the cyclic prefix (CP), which preserves the periodic extensions of the transmitted 

signal, can eliminate inter-symbol and inter-carrier interference caused by multipath 

environments. 

 

2.3 MIMO-OFDM System 

The combination of the throughput enhancement of MIMO with the robustness of 

OFDM against frequency-selective fading caused by severe multipath scattering and 

 
5 



 

narrowband interference is regarded as a very promising basis for future high data-rate radio 

communication systems. On the other hand, especially in multiplexing system, interference in 

MIMO-OFDM is severer than in single input single output (SISO) OFDM system and the 

complexity of data detection in a MIMO-OFDM system is higher than the complexity in 

SISO OFDM system. 

 

 

Fig. 2.1 MIMO-OFDM spatial multiplexing system. 

 

In the MIMO-OFDM spatial multiplexing system, we consider the system shown in Fig. 

2.1. We assume that there are  transmitting antennas and  receiving antennas. At the 

transmitter side, bit stream is divided into  data layers and mapped each data layer to be 

 modulated signal streams.  modulated signal streams in  layer pass through 

IFFT, add cyclic prefix and then transmit parallel through  transmitting antennas. At the 

receiver side, there are  receiving antennas. After cyclic prefix removal and FFT, the 

received signal vector  can be expressed as 

TN

N

RN

T

TN

TN T TN

N

RN

r

= +r Ha v                              (2.1) 
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where  is a  by  channel matrix,  is a  by 1 transmit vector of symbols, 

satisfying that each symbol in the constellation is transmitted with equal probability, and  

is an  by 1 complex-valued white Gaussian noise vector with zero mean and covariance 

matrix equal to σ2I. By assuming a rich scattering model, the elements of the channel matrix 

 are independent and identically distributed (i.i.d.) complex Gaussian with zero mean. 

H

RN

RN TN a TN

v

H

 

2.4 Detection Schemes on the Receiving Side 

The complexity of the Maximum Likelihood (ML) detector grows exponentially with the 

number of transmitting antennas and the size of the signal constellation. This motivates the 

use of simpler suboptimum detectors in practical applications. Among those are: 

 Zero Forcing (ZF) detectors, which invert the channel matrix. The ZF receiver has a very 

small complexity that does not depend on the modulation. However, it does not completely 

exploit the system diversity and suffers from bad performance at low SNR. 

 Minimum Mean Square Error (MMSE) detectors, which reduce the combined effect of 

interference between the parallel channels and the additive noise. The MMSE receiver 

slightly improves the performance of the ZF receiver, but it requires knowledge of the 

SNR. Besides, it does not completely exploit the channel diversity either. 

 V-BLAST Ordered Successive Interference Cancellation (OSIC) [9], which exploits the 

timing synchronism inherent in the system model. Furthermore, linear nulling (i.e., ZF) or 
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MMSE is used to perform the detection. In other words, SIC is based on the subtraction of 

interference of already detected element of a from the received signal vector r. This results 

in a modified received vector in which effectively fewer interferers are present. 

 SD [3] algorithm, which reduces the number of symbol values used in the ML detector. 

Note that this type of detectors may preserve optimality while reducing implementation 

complexity. 

Thus, if signal conditions are excellent, the data rate will be more than twice depending 

on the number of antennas used in both the transmitter and receiver. In that case, the channel 

matrix is better conditioned and the performance degradation of suboptimal detectors is 

reduced. 
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Chapter 3  

Probabilistic Data Association Based Detectors 

 

3.1 Probabilistic Data Association Detector 

 The Probabilistic Data Association (PDA) detector [4] is a highly successful approach to 

target tracking in the case that measurements are unlabeled and may be spurious. It is based 

on two approximations. Firstly, the PDA detector only looks at one transmitted symbol at a 

time, treating the received symbols as statistically independent. The second approximation is 

the Gaussian approximation (“Gaussian forcing”) of the probability density function (PDF) of 

the interference and noise. This is a bold and to some extent unjustifiable step, but it is 

difficult to argue with good performance and low complexity. 

 Now, to obtain the system model of the PDA detector, we multiply (2.1) form the left by 

HH   to obtain 

= +y Ga n                             (3.1) 

where H=y H r , , and . H=G H H H=n H v

 The model of the PDA detector is obtained by multiplying (3.1) from the left by 1−G  to 

yield 

i i j j
j i

a a
≠

= + = + +∑y a n e e n�� �                      (3.2) 

In (3.2), -1=y G y� , , and  is a column vector whose ith element is 1 and the -1=n G n� ie
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other element are 0. In order to obtain computational efficiency, we choose (3.2) as the system 

model for the PDA algorithm. 

 

3.1.1 Basic Algorithm 

In the reformulated MIMO-OFDM spatial multiplexing system model (3.2), we treat the 

element of a as independent multivariate random variable where the ith element, , is a 

member of possible set: 

ia

{ } [ ]( ) ,  1,i i i Ta X x m i N∈ = ∈                       (3.3) 

In (3.3),  is the set of distinct values of the QAM symbols. For any element , we 

associate a vector  whose mth element, 

iX ia

ip ( )ip m , is the current estimate of the posterior 

that . Since direct evaluation of (i ia x )m= ( )( )i i m y�Pr a x=  is computationally prohibitive, 

the PDA algorithm attempts to estimate by using “Gaussian forcing” idea to approximate 

( )Pr ,{ j ia x m= y� p( )i i }j ∀ ≠ , which will serve as the update value for ( )ip m . 

 An important factor in the performance of the PDA algorithm is the order in which the 

probability vectors { }i i∀
p  are updated. In this case, we use V-BLAST OSIC method [9] to 

order the update sequence according to SNR in descending order, which can detect the first 

signal that belongs to the highest order of SNR. It is useful to provide the reliable symbols 

from the high SNR, and we can use these reliable symbols to detect the other symbols to 

make the BER performance better. 
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 To estimate the associated probabilities for an element , we treat all other elements 

 as multivariate random variables, and from (3.2), we define 

ia

(ja j i≠ )

i j j
j i

a
≠

= +∑N e �n

i

                           (3.4) 

as the effective noise on , and approximate it as a Gaussian noise with matched mean and 

covariance: 

a

[ ]i j
j i

jE a
≠

=∑N e                            (3.5) 

2 -1[ ]T
i j j j

j i

Var a σ
≠

= +∑Ω e e G                      (3.6) 

where [i E=N N ]i ]i and . In (3.5) and (3.6), [i Cov=Ω N E[ ]ja  and Var[ ]ja  are given by 

E[ ] ( ) ( )j j j
m

a x m p= m∑                         (3.7) 

2 2Var[ ] ( ) ( ) (E[ ])j j j j
m

a x m p m a= −∑                  (3.8) 

Therefore, we can calculate ( ( )i iP a x m=y� )  as follows: 

   ( )1( ( )) exp ( ( ) ) ( ( )H
i i i i i i i i iP a x m x m x m−= ∝ − − − − −y y e N Ω y e N� � � )

    
   (3.9) 

Then, we let 

i i= −θ y N�                                                         (3.10) 

and 

1

1

1

1 1

( ) ( ( ) ) ( ( )

(2 ( ) 2 ) ( ) 

(2 ( )) ( ) 

[2 ] [ ] ( )[ ] ( ) 

H
i i i i i i i i

H
i i i i i i

H
i i i i i i

H H
i j i ji i i ii i

j

m x m x m

x m x m

x m x m

)

x m x

α −

−

−

− −

= − − − − −

∝ − −

= −

⎛ ⎞
= −⎜ ⎟
⎝ ⎠
∑

y e N Ω y e N

y e N Ω e

θ e Ω e

θ Ω Ω

� �
�

m

                    (3.11) 

where  is the jth element of [2 ]H
i jθ 2 H

iθ ;  is the element (j,i) of . The posterior 1[ ]i j
−Ω i

1
i
−Ω
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probability  is then given as   ( )iP m

exp( ( ))( )
exp( ( ))

i
i

i
l

mP m
l

α
α

=
∑

                         (3.12) 

 

,  ( ) 1
 

1
i ii P m X

Initialize
iter

⎧∀ =
⎨

=⎩

1Initialize i =

( )iCalculate P m

Ti N<

1i i= +

No

,  ( ) ii P m
converged
∀

,  ( )
arg max{ ( )}

i l

id

i a x i
l P d
∀ =
=

Yes

No

Yes

1iter iter= +
 

Fig. 3.1 Block diagram of the basic PDA procedure. 

 

The basic procedure for the PDA detector is as follows: 

1. Based on the matrix  in (3.1), we obtain the optimal detection sequence proposed for 

the V-BLAST OSIC in [9] and denote the sequence as 

G

1{ } TN
i ik = . 

2. Initialize the probabilities as ( ) 1  ,i iP m X m i= ∀ ∀ , and set the iteration counter 1iter = . 

3. Initialize . 1i =

4. Based on the current values of { }
j j ik k k≠p , we use the “Gaussian forcing” idea to 

approximate (Pr ( ) ,{ )i ik ka x m m= ∀y� p }  
j j ik k k∀ ≠ , and set the results equal to the 
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corresponding elements of . 
ikp

5. If , let Ti N< 1i i= +  and back to step 4. Otherwise, carry on step 6. 

6. If ,  has converged, go to step 7. Otherwise, let i∀ ip 1iter iter= +  and return to step 3. 

7. For 1,..., Tj N= , make a decision ˆ ja  for ja  via 

ˆ ( ),  arg max{ ( )}j j jm
a x l l p m= =                    (3.13) 

The block diagram of the basic PDA procedure is shown in Fig. 3.1. 

 

3.1.2 Computational Refinements 

A. Speed-Up–Matrix arithmetic 

 As noted in [4], although the computation in step 4 is no longer exponential, to calculate 

the inverse of  for each element directly is still expensive. Further simplifications can be 

evaluated by applying the Sherman-Morrison-Woodbury formula [10] twice consecutively. 

iΩ

1. Define auxiliary variables   Ω

                          (3.14) [ ]T
i i i iVar a= +Ω Ω e e

2. Compute  via 1
i
−Ω

 

1 1
1 1

1

[ ]
1 [

T
i i i

]T
i i i

Var a
Var a

− −
− −

−= +
+

Ω e e ΩΩ Ω
e Ω e

                    (3.15) i

3. Compute  and update , . ( )iP m [ ]iE a Var[ ]ia�

4. Compute  via 1−Ω
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1 1
1 1

1

[ ]
1 [

T
i i i i i

i T
i i i i

Var a
Var a

− −
− −

−= −
+
Ω e e ΩΩ Ω

e Ω e ]

a

V

                    (3.16) 

B. Speed-Up–Successive Skip 

 In our simulations, we have observed that the algorithm generally converges within 2 to 

4 iterations for SNR < 14 dB, and within 1 to 2 iterations for SNR > 14 dB. However, the 

overall complexity can be high if one or two elements of  exhibit slow convergence. To 

reduce the complexity in these instances, successive skip is applied each iteration. Note that, 

the successive skip method is different from the successive cancellation method which 

mentioned in [4]. The advantage of the successive skip method is implemented easily and 

lower complexity than the successive cancellation method. The main idea of the successive 

skip tactic is that the posterior probability of some elements is high enough to let us believe it 

within the process of converges. So, if we have this element in the next iteration, we can 

simply skip it. 

 After zth iteration, we define  to be the set of elements that satisfy  

max{ ( )} ) , i mP m iε∀ ≥ ∀                        (3.17) 

where 21 (0.2 )ε σ= −  is a small positive number. At z+1th iteration, we will skip the 

elements that belong to . V

 

3.2 Generalized PDA Detector 

 The Generalized PDA (GPDA) detector [5] is present for the special case of 
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square/rectangular (sqr/rect) QAM. In the case of sqr/rect q-QAM, the GPDA algorithm 

differs from the PDA approach of [11] by reducing the number of probabilities associated 

with each transmit symbol. As an apparent consequence of reducing the number of 

probabilities for sqr/rect QAM, the GPDA shows an improved error probability over the PDA 

approach used in [11]. A further advantage of GPDA is that it offers a reduced computational 

cost over that of [11] for the case when the number of receive antennas is greater than the 

number of transmit antennas. 

 To obtain the system model for sqr/rect QAM version of the GPDA detector, we begin 

by transforming (2.1) into the real-valued vector equation 

= +r Ha v�� � �                             (3.18) 

where 

{ } { }
{ } { }
{ } { }
{ } { }
{ } { }

 

  

  

TT T

TT T

TT T

⎡ ⎤= ℜ ℑ⎣ ⎦

⎡ ⎤= ℜ ℑ⎣ ⎦

⎡ ⎤= ℜ ℑ⎣ ⎦
ℜ −ℑ⎡ ⎤

= ⎢ ⎥ℑ ℜ⎣ ⎦

r r r

a a a

v v v

H H
H

H H

�

�

�

�

                      (3.19) 

Next we multiply (3.18) from the left by  to obtain TH�

= +y Ga n�                             (3.20) 

where T=y H r� � , , and . Note that, because the element of  are 

modeled as i.i.d. complex Gaussian,  will almost always have full rank and consequently 

the symmetric matrix  will be positive definite with probability nearly one.  

T=G H H� � T=n H v� �

H�

H

G
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 The model for sqrt/rect QAM version of the GPDA detector is obtained by multiplying 

(3.20) from the left by  to yield  1−G

i i j j
j i

a a
≠

= + = + +∑y a n e e n� � �� � �                      (3.21) 

In (3.21), -1=y G y� , , and  is a column vector whose ith element is 1 and whose 

other element are 0.  is a member of one of two possible sets:   

-1=n G n�

ia�

ie

{ ( )},  [1, ]
{ ( )},  [ 1, 2 ]
i i T

i
i i T T

S X x m i N
a

S X x m i N N
ℜ

ℑ

= = ∈⎧
∈⎨ = = ∈ +⎩
�                (3.22) 

In (3.22),  and S  are the sets of distinct values that can be assumed by the real and 

imaginary parts of the QAM symbols respectively. Thus equation (3.21) can be solved via 

PDA which we introduced in Section 3.1. Note that, when we calculate equation (3.9) in the 

GPDA algorithm, it should be modeling by the real Gaussian distribution rather than the 

complex Gaussian distribution and the noise variance should be 

Sℜ ℑ

2 2σ  rather than 2σ . 

 

3.3 Simulation Results 

 

Perfect Channel State Information (CSI) 

Perfect noise variance estimation 

Number of subcarrier 64 

Length of cyclic prefix 16 

Channel Rayleigh Fading 

Path 2 
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Relative power (dB) (0,0) 

Modulation QPSK, 16QAM, 64QAM 

Table 3.1 Simulation parameters for comparing PDA with GPDA. 

 

In this Section, we use several computer simulation examples to show the performance 

and the computational cost of the PDA detector and the GPDA detector. We also compare the 

PDA detector and the GPDA detector with the V-BLAST ZF OSIC [9] and the optimal ML 

detector in the examples. The simulation parameters are shown in Table 3.1.  

In Fig. 3.2, we compare the BER performance for the GPDA detector and the PDA 

detector with . The result shows that the BER performance of the GPDA detector has 

about 1 dB improvements as compared with the PDA detector. Since the dimension of the 

GPDA detector is two times as the dimension of the PDA detector making the PDF of the 

interference and noise closer to Gaussian distribution. In Fig. 3.3, it shows the performance of 

the aforementioned detectors for the case 

4q =

16q = . 

In Fig. 3.4, we compare the effect of sorting for the GPDA detector and the PDA 

detector with . The result shows that the BER performance of the PDA and the GPDA 

detectors has approximately more 2 dB than that of the unsorted PDA and the unsorted GPDA 

detectors. Thus, we can identify that sorting is an important factor for the GPDA and the PDA 

detectors. 

4q =

In Fig. 3.5, we compare the number of iterations for the GPDA detector and the PDA 
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detector with . The result shows that both the GPDA detector and the PDA detector just 

need 2-4 iterations to converge. In Fig. 3.6, it shows the BER performance of the 

aforementioned detectors for the case 

4q =

16q = . 

In Fig. 3.7, we compare the complexity for the GPDA detector and the PDA detector 

with . For the case of complexity of the system, the measurement was calculated using 

FLOPS function in MATLAB [14], which counts the approximated floating point operations 

that the algorithm needs to complete decoding in one block of transmitted symbols. The result 

shows that there is a great gap of the original complexity between the GPDA detector and the 

PDA detector. After using the matrix speed-up (speed-up I) tactic, the gap between the GPDA 

detector and the PDA detector has reduced. If we use matrix speed-up tactic and successive 

skip tactic simultaneously (speed-up II), the complexity may reduce once more. Overall, the 

complexity of the GPDA detector is slight more than that of the PDA detector for 

4q =

4q = . 

In Fig. 3.8, we compare the complexity for the GPDA detector and the PDA detector 

with . As the figure suggests that, after using speed-up tactic, the complexity of the 

GPDA detector will be significantly less than that of the PDA detector. 

16q =

In Fig. 3.9, we compare the complexity for the GPDA detector and the PDA detector 

with different modulation order, at SNR=0 dB. We can observe that with greater modulation 

order, the gap between the GPDA detector and the PDA detector gets wider. 

Fig. 3.10 shows the noise variance estimation error for the GPDA detector and the PDA 

 
18 



 

detector with , at SNR=25 dB. The result shows that the GPDA detector and the PDA 

detector are almost free from the impact of the noise variance estimated error. Note that, 

16q =

[E2 2[ ] [ ]E E 2]σ σ= + σΔ�  where 2[ ]Eσ�  is estimated noise variance composed of real noise 

variance 2][Eσ  and estimation error 2[ ]E σΔ . 

 After above comparisons, the GPDA detector shows improved BER performance over 

the PDA detector by reducing the number of probabilities associated with each transmit 

symbol. Moreover, the complexity of the GPDA detector is much less than that of the PDA 

detector, especially in high order modulation. Hence, that is the reason why we choose the 

GPDA detector rather than the PDA detector. 
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Fig. 3.2 The BER performance for PDA and GPDA with . 4q =
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Fig. 3.3 The BER performance for PDA and GPDA with . 16q =
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Fig. 3.4 The effect of sorting for PDA and GPDA with . 4q =
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Fig. 3.5 The number of iterations for PDA and GPDA with . 4q =
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Fig. 3.6 The number of iterations for PDA and GPDA with . 16=q
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Fig. 3.7 The complexity for PDA and GPDA with . 4q =
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Fig. 3.8 The complexity for PDA and GPDA with . 16q =
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Fig. 3.9 The complexity for PDA and GPDA with different modulation order. 
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Fig. 3.10 The noise variance estimation error for GPDA and PDA. 
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Chapter 4  

Data Detection in MIMO-OFDM System Based on 

GPDA Detector 

 

4.1 GPDA-MCPDA Detector 

 The basic idea of the GPDA-MCPDA detector is using the GPDA detector at the low 

SNR regions, and using parallel MCPDA method to generate numbers of random samples at 

the high SNR regions. After generating samples, we will pick up a sample from the final 

iteration of parallels, and the sample which has minimum distance (i.e. 2arg min
ia X∈

r - Ha ). 

Thus, we can get a solution from the GPDA-MCPDA detector. 

 

4.1.1 Markov Chain Monte Carlo Method 

 A major limitation towards more widespread implementation of Bayesian approaches is 

that obtaining the posterior distribution often requires the integration of high-dimensional 

functions. This can be computationally very difficult, but several approaches short of direct 

integration have been proposed. The MCMC methods [6], which attempt to simulate direct 

draws from some complex distribution of interest. MCMC approaches are so-named because 

one uses the previous to randomly generate the next sample value, generating a Markov Chain 

(as the transition probabilities between sample values are only a function of the most recent 
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sample value). 

 The realization in the early 1990’s that one particular MCMC method, the Gibbs sampler, 

is widely applied to a broad class of Bayesian problems has sparked a major increase in the 

application of Bayesian analysis. 

 

4.1.1.1 Monte Carlo Integration 

The original Monte Carlo approach was a method developed by physicists to use random 

number generation to compute integrals. Suppose we wish to compute a complex integral 

( )
b

a
h x dx∫                                (4.1) 

If we can decompose  into the production of a function ( )h x ( )f x  and a probability 

density function ( )p x  defined over the interval (a,b), then note that    

( )( ) ( ) ( ) [ ( )]
b b

p xa a
h x dx f x p x dx E f x= =∫ ∫                  (4.2) 

so that the integral can be expressed as an expectation of ( )f x  over the density ( )p x . Thus, 

if we draw a large number 1, , nx x"  of random variables from the density ( )p x , then    

( )
1

1( ) [ ( )] ( )
nb

p xa
i

h x dx E f x f x
n =

= ∑∫ � i                    (4.3) 

This is referred to as Monte Carlo integration. 

 Monte Carlo integration can be used to approximate posterior (or marginal posterior) 

distributions required for a Bayesian analysis. Consider the integral ( ) ( | ) ( )I y f y x p x d= ∫ x , 

which we approximate by 
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1

1ˆ( ) ( | )
n

i
i

I y f y x
n =

= ∑                          (4.4) 

where ix  are draws from the density ( )p x . 

 

4.1.1.2 Importance Sampling 

 It was observed in the preceding Section 4.1.1.1 that the integral can be approximate by 

Monte Carlo integration. However, not every density ( )p x  can be drawn directly. Now, we 

suppose the density  roughly approximates the density ( )q x ( )p x , then  

( )
( ) ( )( ) ( ) ( )( ) ( ) [ ( )( )]
( ) ( )q x

p x pf x p x dx f x q x dx E f x
q x q x

= =∫ ∫
x

         (4.5) 

This forms the basis for the method of importance sampling, with 

1

( )1( ) ( ) ( )
( )

n
i

i
i i

p xf x p x dx f x
n q=
∑∫ �

x
                    (4.6) 

where ix  are draws from the density . ( )q x

 

4.1.1.3 Introduction to Markov Chains 

 Before introducing the Gibbs sampler, a few introductory comments on Markov Chains 

are in order. Let  denote the value of a random variable at time , and let the state space 

refer to the range of possible 

tX t

X  values. The random variable is a Markov process if the 

transition probabilities between different values in the state space depend only on the random 

variable’s current state, i.e.,   
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1 0 1Pr( | , , ) Pr( | )t j k t i t j tX s X s X s X s X s+ = = = = = =" i+            (4.7) 

Thus for a Markov random variable the only information about the past needed to predict the 

future is the current stage of the random variable, knowledge of the values of earlier states do 

not change the transition probability. A Markov chain refers to a sequence of random 

variables  generated by a Markov process. A particular chain is defined most 

critically by its transition probabilities,

0( , )nX X"

( , ) ( )p i j p i j= → , which is the probability that a 

process at stage is  moves to state js  in a single step, 

1( , ) ( ) Pr( | )t j tp i j p i j X s X s+ i= → = = =                (4.8) 

Let 

( ) Pr( )j t jt X sπ = =                           (4.9) 

denote the probability that the chain is in state j  at time , and let  denote the row 

vector of the state space probabilities at step . We start the chain by specifying a starting 

vector . Often all the elements of  are zero except for a single element of 1, 

corresponding to the process starting in that particular state. As the chain progresses, the 

probability values get spread out over the possible state space.  

t ( )tπ

t

)(0)π (0π

The probability that the chain has state value is  at time (or step)  is given by the 

Chapman-Kolomogrov equation, which sum over the probability of being in a particular state 

at the current step and the transition probability from that state into state 

1t +

is , 
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1

1

( 1) Pr( )
Pr( | ) Pr( )

Pr( ) ( ) Pr( , ) ( )

i t i

t i t k t k
k

k k
k k

t X s
X s X s X s

k i t k i t

π

π π

+

+

+ = =

= = =

= → =

∑

∑ ∑

=            (4.10) 

Successive iteration of the Chapman-Kolomogrov equation describes the evolution of the 

chain. 

 We can more compactly write the Chapman-Kolomogrov equation in matrix form as 

follows. Define the probability transition matrix  as the matrix whose th element is P ,i j

( , )P i j , the probability of moving from state  to state i j , ( )P i j→ . The 

Chapman-Kolomogrov equation becomes    

( 1) ( )t t+ =π π P                          (4.11) 

Using the matrix form, we immediately see how to quickly iterate the Chapman-Kolomogrov 

equation, as  

2( ) ( 1) ( ( 2) ) ( 2)t t t t= − = − = −π π P π P P π P                (4.12) 

Continuing in this fashion show that 

( ) (0) tt =π π P                            (4.13) 

Defining the n-step transition probability ( )
,
n

i jp  as the probability that the process is in state 

j  given that it started in state , n step ago, i.e.,  i

( )
, Pr( | )n

i j t n j t ip X s X s+= = =                     (4.14) 

it immediately follows that ,
n
i jp  is just the i,j-th element of .    nP

 Finally, a Markov chain is said to be irreducible if there exists a positive integer such that 
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( )
, 0n

i jp >  for all . That is, all states communicate with each other, as one can always go 

from any state to any other state (although it may take more than one step). Likewise, a chain 

is said to be aperiodic when the number of steps required to move between two states (say 

,i j

x  

and ) is not required to be multiple of some integer. Put another way, the chain is not 

forced into some cycle of fixed length between certain states.   

y

*π

* *

 A Markov chain may reach a stationary distribution , where the vector of 

probabilities of being in any particular given state is independent of the initial condition. The 

stationary distribution satisfies 

=π π P

*

                             (4.15) 

The condition for a stationary distribution is that the chain is irreducible and aperiodic. When 

a chain is periodic, it can cycle in a deterministic fashion between states and hence never 

settles down to a stationary distribution.    

 A sufficient condition for a unique stationary distribution is that the detailed balance 

equation holds, 

*( ) ( )j kP j k P k jπ π→ = →                     (4.16) 

If equation (4.16) holds for all , the Markov chain is said to be reversible, and hence 

equation (4.16) is also called the reversibility condition. Note that this condition implies 

, as the 

,i k

=π πP j th element of  is     πP

( ) ( ) ( ) ( )j i j j
i i i

P i j P j i P j i iπ π π= → = → = →∑ ∑ ∑πP π=
        

(4.17) 
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with the last step following since rows sum to one. 

 

4.1.1.4 Gibbs Sampler 

 One problem with applying Monte Carlo integration is in obtaining samples from some 

complex probability distribution. Attempts to solve this problem are the roots of MCMC 

methods. In particular, they trace to attempts by mathematical physicists to integrate very 

complex functions by random sampling, and resulting Metropolis-Hastings sampling [6]. The 

Gibbs sampler [6] [15] (introduced in the context of image processing by Geman 1984), is a 

special case of Metropolis-Hastings sampling wherein the random value is always accepted 

(i.e. 1α = ). The task remains to specify how to construct a Markov Chain with values 

converged to the target distribution. The key to the Gibbs sampler is that we only consider the 

univariate conditional distributions (the distribution when all of the random variables but one 

is assigned fixed value). Such conditional distributions are far easier to simulate than complex 

joint distributions and usually have simpler forms. Thus, we simulate n random variables 

sequentially from the n univariate conditions rather than generating a single n-dimensional 

vector in a single pass using the full joint distribution. 

 To introduce the Gibbs sampler, consider a bivariate random variable ( , )x y , and 

suppose we want to compute one or both marginal, ( )p x  and ( )p y . The idea behind the 

sampler is that it is far easier to consider a sequence of conditional distributions, ( | )p x y  and 
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( | )p y x , than to obtain the marginal by integral of the joint density ( , )p x y , e.g., 

( ) ( , )p x p x y dy= ∫ . The sampler starts with some initial value  for  and obtains 0y y 0x  by 

generating a random variable from the conditional distribution, 0( | )p x y = y . We use 0x  to 

generate a new value of  from the sampler. To do so, we draw from the conditional 

distribution based on the value 

1y

0x , 0( | )p y x x= . The sampler proceeds as follows: 

~ ( |i 1)ix p x y y −=                          (4.18) 

~ ( |iy p y )x xi=                           (4.19) 

Repeating this process for k times, then it generates a Gibbs sequence of length k, where a 

subset of points ( , )j jx y  for 1 j m k<≤ ≤  is taken as our simulated draws from the full joint 

distribution. The first m times of the process, called burn-in period, can make the Markov 

Chain converge to the distribution that near its stationary one. 

 When more than two variables are involved, the sampler is extended in the obvious 

fashion. In particular, the value of the kth variable is drawn from the distribution    

 where denotes a vector containing all of the variables but k. Thus, during 

the ith iteration of the sample, to obtain the value of ( )k
i

( )( |kp θ ( ) )k−θ )  ( k−θ

θ , we draw fr  the distribution o

,k nθ+=" "

m

( ),i
( ) ( ) 1) ( 1) (~ ( ,k k k k

ipθ θ θ θ θ− − +
− −

(1)| (1)
i i

( 1) (, , kθ θ= =

les, ( , , ,w x

( 1)θ )
1 1 )nθ=      i (4.20) 

For example, if there are four variab )y z

|
~ ( |
~ ( |

i i

x x
x p x w w
y p y w w

, the sampler beco

i

i

m  

i

es 

1

1

,
, ,
, ,

~ ( | , , )

i

i i i

i i i

y y z
x x z z

z p z w w x x y y

1 1~ ( , )i i i iw p w y y z z=

1 1)
)

z
− − −= =

− −

−

= =

= = =
= = =

=

                 

(4.21) 
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Now, we consider the equation (3.2) and we use Gibbs sampler to generate samples of 

from the distribution 

a  

( | )P a y� . The procedure as follows: 

b

T

T

T T

N

b s

n n n-1
2 2 1 3

 for n N 1 to N

ple  from ( | , ,a P a a a

= − +i

"

n n-1 n-1 n-1
1 1 2 3 N

n-1
N

n n
N N 1

 generate initial samples  randomly

     sample  from ( | , , , , )

     sam , , )

           
     sample  from ( |

a P a a a a

a

a P a a

−a

y

y

i

�"

�

#

T

n n
2 N 1, , , , )

  end

a a − y�"

 

then, we consider n( | , )i iP a −a y� , and it can be factorize as 

n
n

n

n n

n( ) (iP P−y a a� n

n n

n

n n

n n

n

n

( , ) ( )
( , )

( , )

( , ) ( ) ( )
)

( , ) ( )
( )

( , ) ( )
( , ) ( )

( , )
( , )

i

i

i i i
i i

i

i i i i i

i

i i i i

i

i i i i

i i i i
a

i i

i i
a

P a P a
P a

P

P a P a P a

P a P a
P

P a P a
P a P a

P a
P a

−
−

−

− −

−

− −

−

− −

− −

−

−

=

=

=

=

=

∑

∑

y a
a y

y a

y a a

y a a
y a

y a a
y a a

y a
y a

�
�

�

�

�
�

�
�

�
�

                          (4.22) 

where 
T

n n n n-1 n
1 1 1[ , , , , ,i i ia a a a− − +=a … … -1

N ] and n( ( ),i i iP a x m )−=y a�  can be calculated as follows: 

T

T

N-1
n n

1 1

N-1
n n 1

1

n 1 1( ( ), ) exp( ( ( ) )

                                       ( )

i
H

i i i i i j j j j
j j i

i

i i j j
j

P a x m x m a a

x m a

− −
−

= = +

−

=

=

1
      ( ))j j

j i
a

= +

∝ − − − − Φ

−

∑ ∑

∑ ∑

y a y e e e

e

� �

       (4.23) 

thus, we define 

− −y e e�
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( )i mγ
T T

T

N N-1 -1
n n 1 1 n n

1 1 1 1

N-1
1 n

1 1

1

1

n 1

( ( ) ) ( ( ) ))

(2 ( ) 2 ) ( )     Let 

(2 ( )) ( )      

i i
H

i i j j j j i i j j j j
j j i j j i

i
H

i i i i i i j j j j
j j i

H
i i i i i

x m a a x m a a

x m x m a a

x m x m

− − −

= = + = = +

− −

= = +

−

= − − − − Φ − − −

⎛ ⎞
∝ − − Λ Φ Λ = −⎜ ⎟

⎝ ⎠
= − Φ

∑ ∑ ∑ ∑

∑ ∑

y e e e y e e e

y e e e e

κ e e

� �

�

( )
1 1

        Let 

[2 ] [ ] ( )[ ] ( )

i i

H H
i j ji i ii i

j

x m x m− −

= −Λ

⎛ ⎞
= Φ − Φ⎜ ⎟
⎝ ⎠
∑

κ y

κ

�
(4.24) 

where  is the jth element of [2 ]H
i jκ 2 H

iκ , 1[ ] ji
−Φ  is the element (j,i) of  and 1−Φ

2σ 1−Φ                        = G      (4.25) 

finally, we can obtain 

n
n ( , )

( , )
exp( ( ))

i i
i i

i
l

P a
P a

lγ
−

− =
∑

y a
a y

�
�

                      (4.26) 

 In this routine, “for” loop examines the state variables ka  in order, b sN N+  times. 

The first bN  iterations of the loop, called burn-in period, are to let the Markov Chain 

converge to near its stationary distribution. During the next sN  iterations, the Gibbs sampler 

generate the sN  samples, i.e., 
T

n n n n
1 2 N, ,

T
a a ,a⎡ ⎤= ⎣ ⎦a " , for sn 1,2, , N= " . In general, the 

t sample can be istribution should be converged 

after 

las the solution of the distribution. Since the d

b sN N+  times iteration. 

There are two problems of Gibbs sampler: 

1)  choice of initial point will greatly increase the How do you choose an initial point? A poor

required burn-in time, and an area of much current research is whether an optimal initial 

point can be found. 
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2) How many iterates are needed? This question does not have exact answer, the majority 

.1.2 GPDA-MCPDA Detector 

  at higher values of SNR, some of the transition 

tioned 

answers are obtained from the experience. 

 

4

 In [12], the author mentioned that

probabilities in the underlying Markov Chain may become very small. As a result, the 

Markov Chain may be effectively divided into a number of nearly disjoint chains. The term 

nearly disjoint here means the transition probabilities that allow movement between the 

disjoint chains are very low. Therefore, a Gibbs sampler that starts from a random point will 

remain within the set of points surrounding the initial point and thus may not get a chance of 

visiting sufficient points to find the global solution. In [13] two solutions for solving this 

problem were proposed: (i) run a number of parallel Gibbs sampler with different initial 

points; (ii) while running the Gibbs sampler, we assume a noise variance which is higher than 

it actually is. These two methods turned out to be effective for low and medium SNRs. 

 In the parallel MCPDA detector, we will focus on these two methods which men

above to improve the performance of MCMC method. First, we use parallel Gibbs samplers 

with the initial point generated randomly. Second, we compute covariance according to (3.6) 

rather than (4.25), so named MCPDA. Since we take the variance of residual interference 

caused by the random samples into account in the equation (3.6), the covariance will increase. 
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Furthermore, with few times of iteration, the covariance will be gradually narrowing. This 

may be regarded as automatic Simulated Annealing method [6]. Finally, we will pick up a 

sample from the final iteration of parallels, and the sample which has minimum distance (i.e. 

2arg min
ia X∈

r - Ha ). Thus, we can get a solution from the parallel MCPDA detector.  

r 3, we have mentioned that the GPDA detector performs well at th In Chapte e low SNR 

regions, so we can only use the GPDA detector at the low SNR regions; however, with the 

SNR increasing (exceed M dB), the performance of the GPDA detector will get worse 

gradually. Thus, we need to use parallel MCPDA method to assist the GPDA detector in order 

to reach better performance, so named GPDA-MCPDA detector. Moreover, MCPDA is 

similar to GPDA, we only need to add few blocks, and then the GPDA detector will become 

the MCPDA detector. Therefore, it may be quite simple to implement. The block diagram of 

the GPDA-MCPDA detector is shown in Fig. 4.1 and the discrepancy between the GPDA 

detector and the MCPDA detector is shown in Fig. 4.2. 

 

1−Ω

ˆ
GPDAX

_ 2
ˆ

RandX

_
ˆ

Rand MX

2ˆarg min r - Hx

_1
ˆ

RandX

â

2, ,σr H 2, ,σr H��

 

Fig. 4.1 Block diagram of the GPDA-MCPDA detector. 
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Fig. 4.2 The discrepancy between the PDA detector and the MCPDA detector. 

 

.2 GPDA-SD Detector 

not have good performance at the high SNR 

.2.1 Sphere Decoding 

e lgorithm is a quasi-ML detection technique. It promises to find 

4

 As we know, the GPDA detector does 

regions. In order to solve this problem, we try to find a solution which is better than the 

GPDA solution. Therefore, we use the Sphere Decoding (SD) algorithm to do this work, so 

named GPDA-SD, which can attain a better performance and lower complexity in the 

MIMO-OFDM spatial multiplexing system. 

 

4

 Th  sphere decoding [3] a

the optimal solution with low computational costs under some conditions. The SD algorithm 
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was first introduced by Finke and Pohst [16] in the context of the closest point search in 

lattices but it has become very popular in digital communication literature. Its various 

applications include lattice codes, CDMA systems, MIMO systems, global positioning system 

(GPS), etc. 

 

4.2.1.1 Real Sphere Decoding 

Fig. 4.3 A sphere of radius  and centered at 

 

In communication system, the SD algorithm is used to solve the ML problem as follows: 

 

 

d r . 

2
MLˆ arg min

ia X∈
=a r - Ha                        (4.27) 

The computational complexity of above exhaustive search

m

 method is really high. Therefore, 

the SD algorithm is brought up to avoid the exhaustive search and search only over the 

possible a  which lie in a certain sphere of radius d  around  the given vector r , thereby 

reducing the search space and, hence, the required co putations (see Fig. 4.3).  
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It is clear that the closest point inside the sphere will also be the closest point for the 

who

ny points, 

2) oints are inside the sphere? If this requires testing the distance of 

The SD algorithm does not really address the first question, but usually uses ZF solution to be 

le point. However, close scrutiny of this basic ideal leads to two key questions. 

1) How do you choose radius d ? Clearly, if radius is too large, we obtain too ma

and the search remains exponential in size, whereas if radius is too small, we obtain no 

points inside the sphere. 

How can we tell which p

each point form r , then there is no point in SD, as we will still need an exhaustive 

search. 

the radius of the sphere. However it does propose an efficient way to answer the second. The 

basic observation is the following. Although it is difficult to determine the points inside a 

general TN -dimensional sphere, it is trivial to do so in the one-dimensional case. The reason 

is that a one dimensional sphere reduces to the endpoints of an interval, and so the desired 

points will be the integer values that lie in this interval. We can use this observation to go 

from dimension k  to dimension 1k + . Suppose that we have determined all -dimensionalk  

points that lie in sphere of radius Then, for any such k -dimensional point, the set of 

admissible values of the ( 1)k+ th d ensional coordinate th  lie in the higher dimensional 

sphere of the same radius ms an interval.  

 The above means that we can determine all

a  d . 

im at

d  for

 points in a sphere of dimension  and TN
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radius d  by successively determining all points in spheres of lower dimensions T1, ,N  

and the same radius d . Such an algorithm for determining the points in an TN -di  

sphere essentially constructs a tree where the branches in the thk  level of the tree 

correspond to the points inside the sphere of radius d  and dimension k  (see Fig. 4.4). 

Moreover, the complexity of such an algorithm will depend on the size of the tree, i.e., on the 

number of points visited by the algorithm in different dimensions. 

 

2,"

mensional

 

 at hand. To this 

Fig. 4.4 Search tree of sphere decoding. 

W ief discus n, we can now be mo e specific about the problem

 

ith this br sio r

end, we shall assume that R TN N≥ . Note that, the point Ha  lies inside a sphere of radius 

d  centered at r  if and only if   

22d ≥ r - Ha                            (4.28) 

In order to break the problem into the sub-problems described above, it is useful to consider 

the QR factorization of the matrix H    
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R T T(N N ) N0 − ×

⎡ ⎤
⎢ ⎥
⎣ ⎦

R
Q=H                         (4.29) 

where  is  by upper triangular matrix, and 1 2[ ]=Q Q Q  is an RN  by R TN TN  RN  

Northogonal ma atrices 1Q  and 2Q  represent  and la RNtrix. The m T the first TN st −  

orthonormal columns of Q , respectively. The condition (4.28) can be written as   

2

2 [ ]d 1 2

2

1

2

2 2

1 2

0

0

H

H

H H

⎡ ⎤
≥ − ⎢ ⎥

⎣ ⎦

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

= +

RQ
r - a

Q

Q r - Ra Q r

                            

In other words  

R
r Q Q a

2 22
2 1
H Hd − ≥Q r Q r-Ra                      (4.30) 

Defining  and 1
H=y Q r

22 2
2
Hd d′ = − Q r  allows us to rewr

                       (4.31) 

where  denotes an 

ite this as   

T T
2N

y r a
⎛ ⎞

∑-
N

2
,

1
i i j j

i j i

d
= =

′ ≥ ⎜ ⎟
⎝ ⎠

∑

,i jr ( , )i j  entry of  Here is where t

ht-ha h

...            (4.32) 

where the first term only on , the second term on }  and

R . he upper triangular property of R  

comes in handy. The rig nd side of t e above inequality can be expanded as 

T T T T

2 2
N N ,N N( )d y r a′ ≥ −

T T T T T T T

2
N 1 N 1,N N N 1,N 1 N 1( )y r a r a− − − − −+ − − +

TNa

to 

T TN N 1{ ,a a − ,

is that d′

 so on. Therefore, a 

necessary condition for Ha  lie inside the sphere 
T T T TN N ,N N( )y r a≥ − . This 

condition is equivalent to 
T
 belonging to the interval 

2 2

Na

 
45 



 

TNd y d
a

⎡ ⎤ ⎢′ ′− + +
≤ ≤⎢ ⎥ ⎢ T

T

T T T T

N
N

N ,N N ,N

y
r r

⎥
⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦
                    (4.33) 

where denotes rounding to the nearest larger element in

poi

eans sufficient. For every satisfying (4.33), defining 

⋅⎡ ⎤⎢ ⎥  

 

 the set of numbers that spans 

the point. Similarly, ⋅⎢ ⎥⎣ ⎦  denotes rounding to the nearest smaller element in the set of 

numbers that spans the nt. 

 Of Course, (4.33) is by no m
TNa  

T

2
N 1−′ T T T T

2 2
N N ,N N( )d d y r a′= − −  and 

T T TT T N 1 N 1,NN 1 Ny y r− −− T
aN= − , a stronger necessary 

32), which leads to 
TN 1acondition can be found by looking at the first two terms in (4. −  

belonging to the interval 

T TT T T T

T

T T T T

N 1 N 1N 1N N 1N
N 1

N 1,N 1 N 1,N 1

d y d y
a

r r
− −− −

−
− − − −

′ ′− + +⎡
⎢ ⎥

⎤ ⎢ ⎥
≤ ≤ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦
              (4.34) 

One can continue in a similar fashion for 
TN 2a −  and so on until 

.2.1.2 Complex Sphere Decoding 

ies on a real system where a  is chosen from a 

1 , thereby obtaining all a

points belonging to (4.28).  

 

4

 The SD algorithm described above appl

real point, but in communication systems we face to deal with complex systems, because of 

the modulation scheme we used is QPSK. In this case, equation (4.28) becomes as follows: 

22d ≥ r -Ha�� �                            (4.35) 

where 
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{ } { }
{ } { }
{ } { }
{ } { }

 

  

TT T

TT T

⎡ ⎤= ℜ ℑ⎣ ⎦

⎡ ⎤= ℜ ℑ⎣ ⎦
ℜ −ℑ⎡ ⎤

= ⎢ ⎥ℑ ℜ⎣ ⎦

r r r

a a a

H H
H

H H

�

�

�

                      (4.36) 

If a  belongs to QPSK then each entry of a�  belongs to BPSK. Thus equation (4.35) can be 

.2.2 GPDA-SD Detector 

y problems of the SD algorithm are mentioned. The second 

 block diagram of the GPDA-SD detector is shown in Fig. 4.5. As the diagram 

solved via SD which we introduced in Section 4.2.1.1.  

 

4

 In the Section 4.2.1.1, two ke

one can be solved by the algorithm of SD, but we don’t know how to choose the radius in the 

first problem. In this case, we can use the distance calculated by GPDA as the radius of 

sphere. 

 The

indicates, it can be divided into three types. First, when SNR is below M dB, which SNR is 

quite low, we can use the GPDA detector directly to achieve near-optimal solution. Second, 

when SNR is between M dB and N dB, we can use the GPDA-SD detector to assist the 

GPDA detector to reach better performance. Finally, when SNR is over N dB, the complexity 

of the SD algorithm (using the ZF solution to be the radius of the sphere) may be lower than 

that of the GPDA-SD detector, hence using the SD algorithm directly will be a better choice. 
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Fig. 4.5 Block diagram of the GPDA-SD detector. 

 

.3 Simulation Results 

Perfect channel information 

4

 

Perfect noise variance estimation 

Number of subcarrier 64 

Length of cyclic prefix 16 

Channel Rayleigh Fading 

Path 2 

Relative power (dB) 0) (0,

Number of iterations (GPDA) ention) 2 (if no m

Modulation 
16QAM (M=16, N=30) 

64QAM (M=21, N=35) 

Table 4.1 Simulation parameters for MIMO-OFDM system. 

 

 this Section, we compare the BER performance between MCMC and MCPDA, and 

then 

In

we show the influence on the number of iterations and the number of parallel for the 

MCPDA detector. After that, we compare the BER performance of proposed two detectors 
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with the optimal ML detector, the SD algorithm, and the GPDA detector. We also compare 

the complexity of proposed two detectors with that of the SD algorithm. Finally, we will show 

the effect of channel estimation error for different detection scheme. Note that, our 

simulations are based on real-valued signal model (i.e. equation (3.21)). 

Fig. 4.6 and Fig. 4.7 show the BER performance for the MCMC detector and the 

MCP

mance for the MCPDA detector with different iterations 

and 

s the BER performance for parallel MCPDA detector with different 

comb

crea

DA detector with different initial point, respectively, where obtained by running 5 times 

iteration. As we can observe in Fig. 4.6, the initial point dominates the BER performance 

seriously, but in the Fig. 4.7, it does not absolutely dominate the BER performance. Thus, the 

MCPDA detector solved the initial point problem which in the MCMC detector. Moreover, if 

the initial point does not affect BER performance too much, why do not we choose an initial 

point which has lower complexity? 

Fig. 4.8 shows the BER perfor

16q = . The result shows that the MCPDA detector only needs few times iteration to be 

converged. In other words, with the number of iteration increasing, the BER performance of 

the MCPDA will get little better. Thus, we must increase number of parallel to reach better 

BER performance. 

Fig. 4.9 show

inative iterations and 16q = . The result shows that when the parallel MCPDA detector 

with the number of parallel in sing, the BER performance of the parallel MCPDA can be 
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better. But, how many parallels we need? That is another question which is worth us 

pondering. 

Fig. 4.10 shows the BER performance for different detection schemes with 16q = . As 

we can observe form Fig. 4.10, at BER= 310− , the GPDA detector and the ML detection have 

about 5 dB disparity. The ML detector and the SD algorithm have the same performance; the 

GPDA-SD detector and the GPDA-MCPDA detector are really close to the ML detector. In 

this simulation, the SD algorithm use the distance calculated by ZF as the radius of sphere and 

GPDA-MCPDA is obtained by running 20 parallel randomly initialized MCPDA; each 

MCPDA has depth of 2. In Fig. 4.11, it shows the BER performance of the aforementioned 

detectors for the case 64q = . 

 Fig. 4.12 shows t phe com lexity for different detection schemes with . The result 16q =

shows that the complexity of the GPDA-SD detector and that of the GPDA-MCPDA are both 

lower than that of the SD algorithm, especially at low SNR regions. Nevertheless, at the high 

SNR regions, the complexity of the GPDA-SD detector is significantly less than that of the 

GPDA-MCPDA. I In addition, when the SNR exceeds the N dB, the complexity of the SD 

algorithm may continue to decrease and less than that of the GPDA-SD detector, thus we will 

switch the GPDA-SD detector to the SD algorithm. In Fig. 4.13, it shows the complexity of 

the aforementioned detectors for the case 64q = .  

Fig. 4.14 shows the channel estimation error for different detection schemes with 
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1q =

channe

6 , at SNR=25 dB. The result shows that the GPDA detector is not too sensitive to 

l, whereas the ML detector, the GPDA-MCPDA detector and the GPDA-SD detector 

are sensitive to channel. Note that, 2 2 2[| | ] [| | ] [| | ]E E E= + ΔH H H�  where 2[| | ]E H�  is estimated 

channel composed of real channel 2[| |E ΔH

 

2[| | ]E H  and estimation error ] . 
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Fig. 4.6 The BER performance for MCMC detector with different initial point. 
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Fig. 4.7 The BER performance for MCPDA detector with different initial point. 
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Fig. 4.8 The BER performance for MCPDA detector with different iterations. 
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Fig. 4.9 The BER performance for parallel MCPDA with different combinative iterations 
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16= . Fig. 4.10 The BER performance for different detection scheme with q
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64= . Fig. 4.11 The BER performance for different detection scheme with q

 

 

 

 

 

 
57 



 

 

 

 

 

 

16= . Fig. 4.12 The complexity for different detection scheme with q
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64= . Fig. 4.13 The complexity for different detection scheme with q
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Fig. 4.14 The channel estimation error for different detection scheme. 
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Chapter 5  

valence between the SSIC Algorithm 

In this Chapter, we prove the Soft Successive Interference Cancellation (SSIC) algorithm 

 

 The SSIC Algorithm 

In ccessive interference cancellation algorithm is a simple 

idea, which has been widely used in m

orm the left by 

On the Equi

and the PDA Algorithm 

 

 

and the PDA algorithm are equivalent. The simulation results demonstrate that the SSIC 

algorithm and the PDA algorithm have exactly the same BER performance. 

 

5.1

 communication systems, the su

any fields. Unfortunately, if some symbols were not 

reliably detected, it would make the BER performance worse. Therefore, instead of 

“cancelling by signal subtraction” (which would cause error propagation in case of incorrect 

decoding), we resort to a “soft” mean value, which can deal with reliability information for 

symbols rather than with hard decisions only, i.e. SSIC [17] algorithm. 

To obtain the system model of the SSIC algorithm, we multiply (2.1) f

HH   to obtain 

= +y Ga n                              (5.1) 

where H=y H r ,  and . H=G H H , H=n H v
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 Th algorie model of the SSIC thm is obtained by multiplying (5.1) from the left by 1−G  

to yield 

i i j j
j i

a a
≠

= + = + +∑y a n e e n� ��                     (5.2) 

In (5.2), -1=y G y� , , -1=n G n� { ( )},  [1, ]i i i Ta X x m i N∈ = ∈  

lement is 1 and the other element are 0. In order to co

ed signal vector z can be expressed as follows: 

(5.3) 

where is the interferences from undetected symbols, is the interference due to the 

and ie  is a column vector 

whose ith e obtain mputational efficiency 

and to compare with the PDA algorithm under the fair condition, we choose (5.2) as the 

system model for the SSIC algorithm. 

After interference-cancelled receiv

, , ,
[ ] ( [ ])j j i i j j i j j

j i j D j i j D j i j D
E a a a a a

≠ ∈ ≠ ∈ ≠ ∉

= − = + − + +∑ ∑ ∑z y e e e e n��        

D U

E

I I
����	���
 ��	�


UI  DI  

decision error of previously detected symbols, and we define D  to be a set of symbols 

which have been detected. Thus, to estimate the associated probabilities for an element ia , 

we treat all other elements ( )ja j i≠  as multivariate random variables, and from equation 

(5.3), we define 

, ,
( [ ])i j j i j j

j i j D j i j D
a E a a

≠ ∈ ≠ ∉

= − + +∑ ∑B e e �n                  (5.4) 

as the effective noise on i , and approximate it as a Gaussian noise with matched mean and a

covariance: 

,

[ ]i j
j i j D

jE a
≠ ∉

= ∑B e                           (5.5) 
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2 -1

, ,

2 -1

, ,

2 -1

[ [ ]] [ ]

[ ] [ ]

[ ]

T T
i j j j j j j j

j i j D j i j D

T T
j j j j j j

j i j D j i j D

T
j j j

j i

Var a E a Var a

Var a Var a

Var a

σ

σ

σ

≠ ∈ ≠ ∉

≠ ∈ ≠ ∉

≠

∑ = − + +

= + +

= +

∑ ∑

∑ ∑

∑

e e e e G

e e e e G

e e G

      (5.6) 

where [ ]i E=B Bi ]i ] and . In (5.5) and (5.6), [i Cov∑ = B [ jE a  and [ ]jVar a  are given by 

E[ ] ( ) ( )j j j
m

a x m p= m∑                          (5.7) 

2 2Var[ ] ( ) ( ) (E[ ])j j j j
m

a x m p m a= −∑                  (5.8) 

Therefore, we can calculate ( (i iP a x m=z ))  as follows: 

( )1( ( )) exp ( ( ) ) ( ( )H
i i i i i i i i iP a x m x m x m−= ∝ − − − ∑ − −z z e B z e )B       (5.9) 

Then, we let 

iη i= −z B                                                         (5.10) 

and 

1

1

1

1 1

( ) ( ( ) ) ( ( )

(2 ( ) 2 ) ( )

(2 ( )) ( )

[2 ] [ ] ( )[ ] ( ) 

H
i i i i i i i i

H
i i i i i i

H
i i i i i i

H H
i j i ji i i ii i

j

m x m x m

x m x m

x m x m

)

x m x

β

η

η

−

−

−

− −

= − − − ∑ − −

∝ − − ∑

= − ∑

⎛ ⎞
= ∑ − ∑⎜ ⎟
⎝ ⎠
∑

z e B z e B

z e B e

e e

m

j

                      (5.11) 

where  is the jth element of [2 ]H
iη 2 H

iη  and  is the element (j,i) of 1[ ]i ji
−∑ 1

i
−∑ . The 

posterior probability  is then given as   ( )iP m

exp( ( ))( )
exp( ( ))

i
i

i
l

mP m
l

β
β

=
∑

                        (5.12) 
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Fig. 5.1 Block diagram of the basic SSIC procedure. 

 

The basic procedure for the SSIC detector is as follows: 

1. Based on the matrix  in (5.1), we obtain the optimal detection sequence proposed for 

the V-BLAST OSIC in [9] and denote the sequence as 

G

1{ } TN
i ik = . 

2. Initialize the probabilities as ( ) 1  ,i iP m X m i= ∀ ∀ , and set the iteration counter 1iter = . 

3. Initialize . 1i =

4. Let 
,

[ ]
j j

j i j

k k
k k k D

E a
≠ ∈

= − ∑z y e� . 

5. Calculate ( (
i ik kP a x m=z ))

i

 by approximate the  in (5.3) as Gaussian distributed, and 

set the results equal to the corresponding elements of .  

z

kp

6. If , let Ti N< 1i i= +  and back to step 4. Otherwise, carry on step 7. 

7. If ,  has converged, go to step 8. Otherwise, let i∀ ip 1iter iter= +  and return to step 3. 

8. For 1,..., Tj N= , make a decision ˆ ja  for ja  via 
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ˆ ( ),  arg max{ ( )}j j jm
a x l l p m= =                     (5.13) 

The block diagram of the basic SSIC procedure is shown in Fig. 5.1. 

 

5.2 The Equivalence of the SSIC Algorithm and the PDA 

Algorithm 

 In Section 5.1, we can calculate ( (i iP a x m=z ))  by equation (5.9) as follows: 

1( ( )) exp( ( ( ) ) ( ( )H
i i i i i i i i iP a x m x m x m−= ∝ − − − ∑ − −z z e B z e )B              

Substituting equation (5.3) in to equation (5.9), we can get 

, ,

1

,

[ ] ( ) exp( ( [ ] ( ) )

                                                           ( [ ] ( ) ))

H
j j i i j j i i i

j i j D j i j D

i j j i i
j i j D

P E a a x m E a x m

E a x m

≠ ∈ ≠ ∈

−

≠ ∈

⎛ ⎞
− = ∝ − − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ − − −

∑ ∑

∑

y e y e e B

y e e B

� �

� i

−

    (5.14) 

Substituting equation (5.5) in to equation (5.14), we can obtain 

, ,

1

, ,

1

[ ] ( ) exp( ( [ ] ( ) [ ])

      ( [ ] ( ) [ ]))

exp( ( [ ] ( ))

       ( [ ]

,

H
j j i i j j i i j j

j i j D j i j D j i j D

i j j i i j
j i j D j i j D

H
j j i i

j i

i j j
j i

P E a a x m E a x m E a
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where  can be observed in equation (3.6) and equation (5.6). 

Therefore, using equation (3.9) and equation (5.9) can obtain the same posterior probability 

. In other words, we confirm that the SSIC algorithm and the PDA algorithm are 

[ ] [ ]i i iCov Cov∑ = = =B N Ωi

( )iP m
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equivalent. 

 

5.3 Simulation Results 

 

Perfect channel information 

Perfect noise variance estimation 

Number of subcarrier 64 

Length of cyclic prefix 16 

Channel Rayleigh Fading 

Path 2 

Relative power (dB) (0,0) 

Modulation 16QAM 

Table 5.1 Simulation parameters for SSIC algorithm and PDA algorithm. 

  

In this Section, we show the BER performance for the SSIC algorithm and the PDA 

algorithm. Furthermore, we will compare the complexity for the SSIC algorithm and the PDA 

algorithm. The simulation parameters are shown in Table 5.1. 

Fig. 5.2 shows the BER performance for the SSIC algorithm and the PDA algorithm. As 

we can observe form Fig. 5.2, the SSIC algorithm has same the BER performance with the 

PDA algorithm. 

Fig. 5.3 shows the complexity for the SSIC algorithm and the PDA algorithm. The result 
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shows that the complexity of the SSIC algorithm is slightly more than that of the PDA 

algorithm. Since the SSIC algorithm needs to subtract the soft information form y� . 

 

 

 

Fig. 5.2 The BER performance for the SSIC algorithm and the PDA algorithm. 
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Fig. 5.3 The complexity for the SSIC algorithm and the PDA algorithm. 
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Chapter 6  

Conclusion 

 

 In this thesis, we establish the equivalence of the SSIC algorithm and the PDA algorithm. 

Furthermore, we proposed two detectors, GPDA-MCPDA and GPDA-SD, to reduce the 

complexity of the SD algorithm for near-optimal detection in a MIMO-OFDM spatial 

multiplexing system with higher order QAM constellations (16QAM/64QAM). These two 

methods exploit the GPDA detector which performs well at the low SNR regions. At the high 

SNR regions, the first proposed detector is combining GPDA and MCMC, which incorporates 

the concept of PDA to calculate the covariance then construct a Markov Chain to make it 

converge to the target distribution; the second one is based on the SD algorithm using the 

GPDA detector solution to be the radius of the sphere. Simulation results demonstrate that 

both detectors can achieve near-optimal performance with lower complexity as compare with 

the SD algorithm, especially at the low SNR regions. 
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