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Data Detection Methods Based on Probabilistic Data Association

Algorithms for High Order Modulation MIMO-OFDM System

Student : Kuan-Chun Wang Advisors : Dr. Chia-Chi Huang

Department of Communication Engineering

National Chiao Tung University

ABSTRACT

Our information society.today is| marked by an increasing need for mobility and
accessibility. At the same time, the.demand -for ‘ever higher data transfer rates is also
increasing. A MIMO-OFDM spatial multiplexing system"is a proven technology that can
improve signal quality and data rate for wireless communications. Sphere Decoding (SD)
algorithm is a popular suboptimal data detection method in a MIMO-OFDM spatial
multiplexing system. It although performs very well but suffers from the fact that its
complexity is a random variable depending on channel and signal to noise ratio (SNR). In this
thesis, we establish the equivalence of the SSIC algorithm and the PDA algorithm.
Furthermore, we proposed two detectors, GPDA-MCPDA and GPDA-SD, to reduce the
complexity of the sphere decoding algorithm for near-optimal detection in a MIMO-OFDM
spatial multiplexing system with higher order QAM constellations (16QAM/64QAM).
Simulation results demonstrate that both detectors can achieve near-optimal performance with
lower complexity as compare with the sphere decoding algorithm, especially at the low SNR

regions.



TR S BRI F RARBEN AT A A E L S R 1
By N FeuEiRk o RAEUTHRAALE o B BH LR
K~ MEBARRNE FHERRES Mm~ g v@Ems RiK0
’1\“’?‘# 2 ‘bﬂa’léwpm i4tm3{°

FREH v EFEEE BESEL ALY A ol § 27
EPardhd  AEF A5 A A { e WH R WP HRT A
g~ AR BRHIE 2 HieR £ ROBPER Y c RHAREATRE
Rerd genip i RASIERET BRLEE -

Bofs o B RA 0 BASGA P s L 4 o PR A o

LA B PG A



Contents

IR % i
ABSTRACT ii
3y iii
Contents iv
List of Tables vi
List of Figures vii
Chapter 1 Introduction 1
Chapter 2 MIMO-OFDM System 4
2.1 Overview Of MIIMO SYSEEIM ...futiue.e s sueeoremm snesunssssiiesss e e onbnsmifheseeseeseensesssssessessessessesssessessessessessessessens 4
2.2 Overview Of OFDM SYSteMtuu. it urunsstiiusisesstesesesnssresidferssssssasms el cueeteseeiessesseseessessesaeeseeseesseseesseseessens 5
2.3 MIMO-OFDM SYSEM .....ffiatieeeeereneberesns eiimsfonessanesteesesshinsessi sl es 5
2.4 Detection Schemes on the Re€eiving SIde: . ... i ibm bt il 7
Chapter 3 Probabilistic Data Association Based Detectors 9
3.1 Probabilistic Data ASSOCIAtION DEECTON .........ccueuirieiiirieieiriee ettt 9

3. L1 BaSIC AIGOITEM ...ttt sttt b et nes 10

3.1.2 Computational REFINEMENTS........c.iviiiiiieiee ettt s 13

3.2 GENEralizEd PDA DELECION .....c.civiieiiiteieiist ettt ettt bbbttt b bbbt et 14
3.3 SIMUIALION RESUIES ...ttt bbbt b et b et nn et 16
Chapter 4 Data Detection in MIMO-OFDM System Based on GPDA Detector 29
4.1  GPDA-MCPDA DEIECION ....cvciiiiteitieteie sttt sttt sttt e b bt bbbt e b bt bbb e s ettt et ene s 29
4.1.1 Markov Chain Monte Carlo MEethod............cccoerieiriniiineree e 29
4111 Monte Carlo INTEGration .......c..eoveeruiieirieirierieeret ettt 30

4.1.1.2  IMPOrtance SAMPIING ...co.erveerierieerieiet ettt ettt sttt b s nen 31

4.1.1.3  Introduction to MarkoV ChaiNs ..........cccoeeiriirinieireeree et 31

4114 GBS SAMPIET ...eiiiie ettt b e sttt sae e 35

4.1.2 GPDA-MCPDA DEIECION. ...cueitiieiirtereeierietete ettt sttt sttt b e st be sttt be et be st s be e b e 39



4.2 GPDA-SD DELECION .......vveeteiemeenesesesieteteietesesese et se et ebsbetetesese st st e s se s b b e b e b ebeses e et et es s e b et et bbb et ene e e e e
421 SPNEIE DECOUING .. .cuerviuieuirtiieterteiet ettt ettt ettt ettt b et b e et b et be b et b bt e bt ebe e
4.2.1.1 Real SPNEre DECOUING .....coueuerteirtirteietertettrtestet sttt sttt ettt s ettt be bbb sb e seneseen
4.2.1.2 Complex SPhere DECOMING......ccueeruirieirieirierieiertetet sttt b et b e b b enas

4.2.2  GPDA-SD DEIECION ...c.viteiieiieieeeeieteterte sttt st ettt ne e resnenr e b e

4.3 SIMUIATION RESUILS ...ttt ettt ettt e s et e e e s bt e e s s bt e e e s sab e e e s sabbeeseabbesesabensessabaneas

Chapter 5 On the Equivalence between the SSIC Algorithm and the PDA Algorithm
5.1 The SSIC AIGOTTTNM ..ot bbb b ettt bbbt
5.2 The Equivalence of the SSIC Algorithm and the PDA AIQOrithm ...

5.3 SIMUIALION RESUIES ... ittt e e st e e e s sttt e e s st e e e s s bbeesssabaessssbessssabaeesssbbanesans

Chapter 6 Conclusion

Bibliography

61

61

65

66

69

70



List of Tables

Table 3.1 Simulation parameters for comparing PDA with GPDA. ........ccccccviiieciiece e 17
Table 4.1 Simulation parameters for MIMO-OFDM SYStEM. .......ccccoeiverieniieneeie e 48
Table 5.1 Simulation parameters for SSIC algorithm and PDA algorithm. ............cccccccevenene. 66

Vi



List of Figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

2.1 MIMO-OFDM spatial multiplexXing SYStEM.........c.ccvviieieeriiiereere e 6
3.1 Block diagram of the basic PDA ProCEAUIE. .........cvevveeeereeie e erie et 12
3.2 The BER performance for PDA and GPDA With g=4. ....cccccooviiiiiiiiiiiieeeiee, 20
3.3 The BER performance for PDA and GPDA With ¢ =16 .....cccccceviviiiiieniiieieenen, 21
3.4 The effect of sorting for PDA and GPDA With g =4 ......ccccceviiiiiiiiiiineeeee, 22
3.5 The number of iterations for PDA and GPDA With g=4.....cccccociiiiiiiininincenen, 23
3.6 The number of iterations for PDA and GPDA With ¢ =16 . ....cccccocvivvienininiiiiienen, 24
3.7 The complexity for PDA and GPDA With g =4 . .....ccccoiiiniiiiiiene e, 25
3.8 The complexity for PDA and GPDA With g =16 .....cccccoovviiiiieniiene e, 26
3.9 The complexity for PDA and GPDA with different modulation order....................... 27
3.10 The noise variance estimation error for GPDA and PDA..........cccociiiininiinieieenen, 28
4.1 Block diagram of the GPDA-MCPDA ELECION...........coeiverieie e 40
4.2 The discrepancy between the’'PDA detector and the MCPDA detector...................... 41
4.3 A sphere of radius d and centerediat] [ i, .ol e 42
4.4 Search tree of sphere deCOUING B etk iabiiadi e ohaiihe e ee e esee e se e sre e 44
4.5 Block diagram of the GPDA-SD AeteCIOT: vt ueiier et 48
4.6 The BER performance for MCMC detector with different initial point. .................... 52
4.7 The BER performance for MCPDA detector with different initial point. .................. 53
4.8 The BER performance for MCPDA detector with'different iterations. ..................... 54
4.9 The BER performance for parallel MCPDA with different combinative iterations...55
4.10 The BER performance for different detection scheme with ¢ =16 .......ccceeveneen. 56
4.11 The BER performance for different detection scheme with g =64 ..........ccccoen..... 57
4.12 The complexity for different detection scheme with ¢ =16 .........ccccovvrvvinieriennnn, 58
4.13 The complexity for different detection scheme with g =64 .........cccccovvvveivieriennnn, 59
4.14 The channel estimation error for different detection scheme...........cccooceveienieninnns 60
5.1 Block diagram of the basic SSIC ProCeduUIe. ........ccvverieiiierieere e 64
5.2 The BER performance for the SSIC algorithm and the PDA algorithm..................... 67
5.3 The complexity for the SSIC algorithm and the PDA algorithm..............cccccvevenene. 68

vii



Chapter 1

Introduction

The Multiple-input multiple-output orthogonal frequency division multiplexing
(MIMO-OFDM) spatial multiplexing system [1] [2] is a proven technology that can improve
signal quality and data rate for wireless communications. The global growth of interest in the
wireless Internet and digitized audio and video, coupled with a growing wireless
high-bandwidth infrastructure leads to a rapidly expanding market for wireless multimedia
services. To cope with the growth, wireless services providers today are facing a number of
challenges, which include the limited availability of the radio frequency spectrum and a
complex time-varying wireless environment. In near future, wireless devices will have the
features for always-available connection, higher data rate, longer distance, low-power
consumption, better Quality of Service (QoS), fewer dropped packets, and higher network
capacity in order to improve service quality for rapid service expansion and configurations.
Combining OFDM with MIMO equipment is the most promising technology for delivering
high data rates and robust performance.

In a MIMO-OFDM spatial multiplexing system, the optimum solution is to use
Maximum Likelihood (ML) detection. However, ML detection is an exhaustive search; the

complexity increases with either the increasing number of transmitting antennas or the



increasing order of modulation. Computational efficient data detection algorithms have been

widely explored to achieve the substantial performance gains promised by MIMO-OFDM

spatial multiplexing system with QAM constellations. There are two outstanding detectors of

those frontrunners, the Sphere Decoding (SD) algorithm [3] and algorithm which based on the

Probabilistic Data Association (PDA) [4] [5] principle. The SD algorithm although perform

very well but suffers from the fact that its complexity is a random variable depending on

channel and signal to noise ratio (SNR). The probabilistic data association is a simpler

detection method, originally for Multi-User, Detection (MUD) in synchronous Code Division

Multiple Access (CDMA) [4]. .The PDA based detectors' perform well (close to the ML

decoder) for simple modulation 'schemes i.e. BPSK and QPSK, but these results do not

emerge from higher order modulations [5]

In this thesis, we focus on the higher order.QAM constellations (L6QAM/64QAM) data

detection in the MIMO-OFDM spatial multiplexing system. We propose two near-optimal

performance detectors with the common features which is using the Generalized PDA (GPDA)

[5] detector at the low SNR regions. At the high SNR regions, we will combine different

detectors to improve the performance. The first proposed detector is combining GPDA and

Markov Chain Monte Carlo (MCMC) [6], and it is named MCPDA which incorporates the

concept of PDA to calculate the covariance then construct a Markov Chain to make it

converge to the target distribution. The second one is based on the SD algorithm using GPDA



solution to be the radius of the sphere. In addition, we prove the Soft Successive Interference

Cancellation (SSIC) algorithm and the Probabilistic Data Association (PDA) algorithm are

equivalent in the MIMO-OFDM system.

This thesis is organized as follows. In Chapter 2, we describe a MIMO-OFDM system.

Chapter 3 introduces the PDA detector and the GPDA detector. In Chapter 4, we propose two

modified methods (GPDA-MCPDA, GPDA-SD) of data detection in the MIMO-OFDM

spatial multiplexing system. In Chapter 5, we establish the equivalence of the SSIC algorithm

and the PDA algorithm in the MIMO-OFDM system. Finally, some conclusions are drawn in

Chapter 6.



Chapter 2
MIMO-OFDM System

2.1 Overview of MIMO System

A MIMO system can be defined simply. Given an arbitrary wireless communication
system, we consider a link for which the transmitting end as well as the receiving end is
equipped with multiple antenna elements. The idea behind MIMO is that the signals on the
transmit (TX) antennas at one end_and the receives (RX) antennas at the other end are
“combined” in such a way that the /performance (bit-error.rate or BER) or the data rate
(bits/sec) of the communication for each MIMO- user will be“improved. Such an advantage
can be used to increase both thenetwork’s'quality-of-service: One popular example of such a
system is V-BLAST (Vertical-Bell Laboratories Layered Space-Time) suggested by Foschini
etal [7].

MIMO techniques can be basically split into two groups: space time coding (STC) and
spatial multiplexing (SM). STC increases the performance of the communication system by
coding over the different transmitter branches; whereas SM achieves a higher throughput by
transmitting independent data streams on the different transmit branches simultaneously at the
same carrier frequency. Since increasing the bit rates is our goal, we will focus on the SM

algorithms in this thesis. A potential application of the MIMO principle is the next-generation



wireless local area network (WLAN).

2.2 Overview of OFDM System

OFDM, which was brought up in the mid 60’s, is a digital multi-carrier modulation
scheme. OFDM is used in numerous wireless transmission standards nowadays (DAB,
DVB-T, WiMAX IEEE 802.16, ADSL, WLAN IEEE 802.11a/g), as a result of its capability
of high-rate transmission and low-complexity implementation over frequency-selective fading
channels.

The basic idea of OFDM is,that it divides|the .availablé spectrum into several orthogonal
subcarriers. Because these subcarriers are narrow-band, they experience flat fading channel
and then equalization method of the system becames very;simple. Furthermore, it possesses
high spectral efficiency by overlapping these.orthogonal subcarriers [8]. Moreover, the
insertions of the cyclic prefix (CP), which preserves the periodic extensions of the transmitted
signal, can eliminate inter-symbol and inter-carrier interference caused by multipath

environments.

2.3 MIMO-OFDM System

The combination of the throughput enhancement of MIMO with the robustness of

OFDM against frequency-selective fading caused by severe multipath scattering and



narrowband interference is regarded as a very promising basis for future high data-rate radio
communication systems. On the other hand, especially in multiplexing system, interference in
MIMO-OFDM is severer than in single input single output (SISO) OFDM system and the
complexity of data detection in a MIMO-OFDM system is higher than the complexity in

SISO OFDM system.

_.| Modulation I_.I IFFT I_.I Add CP l— Tx1 Rx ‘—| CP Remove I_.I FFT I_.
N

q R < Tx2 2 i
Bit stream —-I Modulation l—»l IFFT l—»l Add CP l— Rx2 _| PR l_.| — l_, -
S . . 3 \ B . Detection]

—.| Modulation I—.| IFFT I—.| Add CP I— Tx Ny, RX Ng —| CP Remove I—.I FFT I—v

Fig. 2.1 MIMO-OFDM spatial- multiplexing system.

In the MIMO-OFDM spatial multiplexing system, we consider the system shown in Fig.
2.1. We assume that there are N transmitting antennas and Ny receiving antennas. At the
transmitter side, bit stream is divided into N; data layers and mapped each data layer to be
N, modulated signal streams. N; modulated signal streams in N; layer pass through
IFFT, add cyclic prefix and then transmit parallel through N transmitting antennas. At the
receiver side, there are Ny receiving antennas. After cyclic prefix removal and FFT, the
received signal vector r can be expressed as

r=Ha+v (2.1)



where H isa Ny by N; channel matrix, a isa N; by 1 transmit vector of symbols,
satisfying that each symbol in the constellation is transmitted with equal probability, and v
isan Ny by 1 complex-valued white Gaussian noise vector with zero mean and covariance
matrix equal to °I. By assuming a rich scattering model, the elements of the channel matrix

H are independent and identically distributed (i.i.d.) complex Gaussian with zero mean.

2.4 Detection Schemes on the Receiving Side

The complexity of the Maximum Likelihood (ML) detector grows exponentially with the
number of transmitting antennas and the size"of the signal constellation. This motivates the
use of simpler suboptimum detectors in practical applications. Among those are:

m Zero Forcing (ZF) detectors,.which invert the'channel matrix. The ZF receiver has a very
small complexity that does not depend on.the modulation. However, it does not completely
exploit the system diversity and suffers from bad performance at low SNR.

® Minimum Mean Square Error (MMSE) detectors, which reduce the combined effect of
interference between the parallel channels and the additive noise. The MMSE receiver
slightly improves the performance of the ZF receiver, but it requires knowledge of the
SNR. Besides, it does not completely exploit the channel diversity either.

m V-BLAST Ordered Successive Interference Cancellation (OSIC) [9], which exploits the

timing synchronism inherent in the system model. Furthermore, linear nulling (i.e., ZF) or



MMSE is used to perform the detection. In other words, SIC is based on the subtraction of
interference of already detected element of a from the received signal vector r. This results
in a modified received vector in which effectively fewer interferers are present.

m SD [3] algorithm, which reduces the number of symbol values used in the ML detector.
Note that this type of detectors may preserve optimality while reducing implementation
complexity.

Thus, if signal conditions are excellent, the data rate will be more than twice depending
on the number of antennas used in both the,transmitter and receiver. In that case, the channel
matrix is better conditioned and:the performance degradation of suboptimal detectors is

reduced.



Chapter 3

Probabilistic Data Association Based Detectors

3.1 Probabilistic Data Association Detector

The Probabilistic Data Association (PDA) detector [4] is a highly successful approach to
target tracking in the case that measurements are unlabeled and may be spurious. It is based
on two approximations. Firstly, the PDA detector only looks at one transmitted symbol at a
time, treating the received symbols as.statistically independent. The second approximation is
the Gaussian approximation (“Gaussian-forcing™) of the probability density function (PDF) of
the interference and noise. This is a bold and to some extent unjustifiable step, but it is
difficult to argue with good perfarmance and low:-complexity:

Now, to obtain the system model of the PDA detector, we multiply (2.1) form the left by
H"” to obtain

y=Ga+n (3.1)
where y=H"r, G=H"H,and n=H"v.

The model of the PDA detector is obtained by multiplying (3.1) from the leftby G™* to

yield

y:a+ﬁ:eiai+2ejaj+ﬁ (3.2)

J#i

In 3.2), y=G'y, i=G"n, and e, is a column vector whose ith element is 1 and the



other element are 0. In order to obtain computational efficiency, we choose (3.2) as the system

model for the PDA algorithm.

3.1.1 Basic Algorithm

In the reformulated MIMO-OFDM spatial multiplexing system model (3.2), we treat the
element of a as independent multivariate random variable where the ith element, «,, is a
member of possible set:

a, € X, ={x(m)}, i €[LN,] (3.3)
In (3.3), X, is the set of distinct values ofithet QAM symbols. For any element a;, we
associate a vector P, whose mth'element, p,(m); is the current estimate of the posterior
that a, = x,(m). Since direct evaluation'of=Pr(a=x(m)|y ). is computationally prohibitive,
the PDA algorithm attempts to estimate by. using “Gaussian forcing” idea to approximate
Pr (al_ = x,(m)[§ { pj}wil_) , which will serve as the update value for p,(m) .

An important factor in the performance of the PDA algorithm is the order in which the
probability vectors {pi}w are updated. In this case, we use V-BLAST OSIC method [9] to
order the update sequence according to SNR in descending order, which can detect the first
signal that belongs to the highest order of SNR. It is useful to provide the reliable symbols
from the high SNR, and we can use these reliable symbols to detect the other symbols to

make the BER performance better.

10



To estimate the associated probabilities for an element a;,, we treat all other elements

a,(j=#i) asmultivariate random variables, and from (3.2), we define

Ni=Zejaj+ﬁ (3.4)

J#

as the effective noise on 4, and approximate it as a Gaussian noise with matched mean and

covariance:

N, =Se,Elq,] (3.5)

J#i

Q =3 eeVarla]+0°G” (3.6)
where N.=E[N.] and € =CoV[N,]. In (3:5) and (3.6), Ela,] and Var[a,] are given by
€la,1= 3o (e, () (3.7)
Vatfa, 1= 355 (m)p (m) - B 1) (38)
Therefore, we can calculate P(§|a, = x (7)) ~as follows:
P(|a, = x,(m)) o exp( 2(i=e.x (m)=N) @ *F —e.x,(m)-N,)) (3.9)
Then, we let
0.=y—N, (3.10)
and
a,(m)=—(§ —ex,(m)=N,)" Q7 (¥ —ex,(m)-N,)

oc (2§ —e,x,(m)—2N,)" Qe x,(m)
= (20, —e,x,(m))" Q;"e,x,(m) (3.11)

-(Zeria, o, o

. . . _ . . -1 -
where [297],- is the jth element of 20/ ; [Ql.l]ﬁ is the element (j,7) of €. The posterior

11



probability P(m) is then given as

R(m) — exp(ai (m))

3.12
D exp(a, (1)) (3:12)
I
¢ Start ) '
Calculate P.(m)

Nyl
S
I
=
>

Y
Initialize

A

Initialize 1=1
Vi, a, = x,(i)
[ = || r=agmae@) End

iter =iter +1

Fig. 3.1 Bloek diagram of the basic.PDA procedure.

The basic procedure for the PDA detector is as follows:

1. Based on the matrix G in (3.1), we obtain the optimal detection sequence proposed for
the V-BLAST OSIC in [9] and denote the sequence as {k,}", .

2. Initialize the probabilities as P(m) =1/|X,| Vm, Vi, and set the iteration counter iter =1.

3. Initialize i =1.

4. Based on the current values of {pk/_}k/_#[, we use the “Gaussian forcing” idea to

approximate Pr(aki=xkl_(m)‘57,{pk,}v,€/_¢ki) Vm , and set the results equal to the

12



corresponding elements of p, .
5 If i<N,, let i=i+1 and back to step 4. Otherwise, carry on step 6.
6. If vi, P. hasconverged, go to step 7. Otherwise, let iter =iter +1 and return to step 3.
7. For j=1..,N;, make adecision a, for a; via
a,=x,(), l=arg mmax{pj(m)} (3.13)

The block diagram of the basic PDA procedure is shown in Fig. 3.1.

3.1.2 Computational Refinements
A. Speed-Up-Matrix arithmetic

As noted in [4], although:the' computation in-Step 4 Is no lfonger exponential, to calculate
the inverse of €2, for each element directlyisstillrexpensive. Further simplifications can be
evaluated by applying the Sherman-Marrison-\Woodbury formula [10] twice consecutively.
1. Define auxiliary variables Q

Q=Q +ee Varla,] (3.14)

2. Compute . via

Qee QVarla]
1+e/ Qe Var[a ]

Q'=Q"+ (3.15)

3. Compute P(m) andupdate E[a], Var[a].

4. Compute Q' via

13



i e @ Varl]

Q' =Q
" l+e/ Qe Var[a]

(3.16)

B. Speed-Up-Successive Skip

In our simulations, we have observed that the algorithm generally converges within 2 to
4 iterations for SNR < 14 dB, and within 1 to 2 iterations for SNR > 14 dB. However, the
overall complexity can be high if one or two elements of a exhibit slow convergence. To
reduce the complexity in these instances, successive skip is applied each iteration. Note that,
the successive skip method is different from the successive cancellation method which
mentioned in [4]. The advantage of‘the successive skip.method is implemented easily and
lower complexity than the suceessive ecancellation method: The main idea of the successive
skip tactic is that the posterior‘probability of:.some elements is high enough to let us believe it
within the process of converges#So, if we have this element in the next iteration, we can
simply skip it.

After zth iteration, we define V to be the set of elements that satisfy

max{P.(m)},,,) = &, Vi (3.17)

where €=1-(0.267%) is a small positive number. At z+1th iteration, we will skip the

elements that belong to V .

3.2 Generalized PDA Detector

The Generalized PDA (GPDA) detector [5] is present for the special case of

14



square/rectangular (sqr/rect) QAM. In the case of sqgr/rect g-QAM, the GPDA algorithm
differs from the PDA approach of [11] by reducing the number of probabilities associated
with each transmit symbol. As an apparent consequence of reducing the number of
probabilities for sqr/rect QAM, the GPDA shows an improved error probability over the PDA
approach used in [11]. A further advantage of GPDA is that it offers a reduced computational
cost over that of [11] for the case when the number of receive antennas is greater than the
number of transmit antennas.
To obtain the system model for sqr/rect:QAM . version of the GPDA detector, we begin
by transforming (2.1) into the real-valued vectorequation
r=Ha+Vv (3.18)

where

g 11
Il

n
a= iR{aT} T{aT
3.19
v=[af{v}s{vyT G2
- [R{H} -3{H}
H:
| S{H} R{H]
Next we multiply (3.18) from the leftby H’ to obtain
y=Ga+n (3.20)

where y=H'F, G=H"H, and n=H’v. Note that, because the element of H are
modeled as i.i.d. complex Gaussian, H will almost always have full rank and consequently

the symmetric matrix G will be positive definite with probability nearly one.

15



The model for sgrt/rect QAM version of the GPDA detector is obtained by multiplying

(3.20) from the leftby G™ to yield

y=5+ﬁ=e.&i+2ej~j+ﬁ (3.21)
i

In(3.21), ¥ =G'y, i=G™n, and e, is a column vector whose ith element is 1 and whose

other element are 0. a, is a member of one of two possible sets:

; (3.22)
S.=X,={x,(m)}, ie[N,+1,2N,]

. { S =X, ={x,(m)}, ie[LN,]
a. €
In (3.22), S; and S5 are the sets of distinct values that can be assumed by the real and
imaginary parts of the QAM symbals respectively. Thus equation (3.21) can be solved via
PDA which we introduced in Section 3.1 Note that, when 'we calculate equation (3.9) in the

GPDA algorithm, it should be modeling by the real Gaussian distribution rather than the

complex Gaussian distribution and.the noise variance should'be 0'2/2 rather than &°.

3.3 Simulation Results

Perfect Channel State Information (CSI)

Perfect noise variance estimation

Number of subcarrier 64

Length of cyclic prefix 16

Channel Rayleigh Fading
Path 2

16



Relative power (dB) (0,0)

Modulation QPSK, 16QAM, 64QAM

Table 3.1 Simulation parameters for comparing PDA with GPDA.

In this Section, we use several computer simulation examples to show the performance

and the computational cost of the PDA detector and the GPDA detector. We also compare the

PDA detector and the GPDA detector with the V-BLAST ZF OSIC [9] and the optimal ML

detector in the examples. The simulation parameters are shown in Table 3.1.

In Fig. 3.2, we compare the BER performance for. the GPDA detector and the PDA

detector with ¢ =4. The result.shows-that-the BER performance of the GPDA detector has

about 1 dB improvements as compared with-the PDA detector. Since the dimension of the

GPDA detector is two times as the dimension of the PDA" detector making the PDF of the

interference and noise closer to Gaussian distribution. In Fig. 3.3, it shows the performance of

the aforementioned detectors for the case ¢ =16.

In Fig. 3.4, we compare the effect of sorting for the GPDA detector and the PDA

detector with ¢ =4. The result shows that the BER performance of the PDA and the GPDA

detectors has approximately more 2 dB than that of the unsorted PDA and the unsorted GPDA

detectors. Thus, we can identify that sorting is an important factor for the GPDA and the PDA

detectors.

In Fig. 3.5, we compare the number of iterations for the GPDA detector and the PDA
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detector with ¢ =4. The result shows that both the GPDA detector and the PDA detector just

need 2-4 iterations to converge. In Fig. 3.6, it shows the BER performance of the

aforementioned detectors for the case ¢ =16.

In Fig. 3.7, we compare the complexity for the GPDA detector and the PDA detector

with ¢ =4. For the case of complexity of the system, the measurement was calculated using

FLOPS function in MATLAB [14], which counts the approximated floating point operations

that the algorithm needs to complete decoding in one block of transmitted symbols. The result

shows that there is a great gap of the original.complexity between the GPDA detector and the

PDA detector. After using the matrix speed-upi(speed-up ) tactic, the gap between the GPDA

detector and the PDA detector-has reduced. If we use matrixspeed-up tactic and successive

skip tactic simultaneously (speed-up I1); the complexity may.reduce once more. Overall, the

complexity of the GPDA detector is slight more thanthat'of the PDA detector for ¢=4.

In Fig. 3.8, we compare the complexity for the GPDA detector and the PDA detector

with ¢ =16. As the figure suggests that, after using speed-up tactic, the complexity of the

GPDA detector will be significantly less than that of the PDA detector.

In Fig. 3.9, we compare the complexity for the GPDA detector and the PDA detector

with different modulation order, at SNR=0 dB. We can observe that with greater modulation

order, the gap between the GPDA detector and the PDA detector gets wider.

Fig. 3.10 shows the noise variance estimation error for the GPDA detector and the PDA
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detector with ¢ =16, at SNR=25 dB. The result shows that the GPDA detector and the PDA
detector are almost free from the impact of the noise variance estimated error. Note that,
E[6°]=E0’]+ E[Ac”] where E[67] is estimated noise variance composed of real noise
variance E[o”] and estimation error E[Ac’].

After above comparisons, the GPDA detector shows improved BER performance over
the PDA detector by reducing the number of probabilities associated with each transmit
symbol. Moreover, the complexity of the GPDA detector is much less than that of the PDA
detector, especially in high order modulation.sHence, that is the reason why we choose the

GPDA detector rather than the PDA detector!
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Fig. 3.2 The BER performance for PDA and GPDA with ¢=4.

20



EBER

10

107

10

10

10

Ra

MIMO-OFDM N=N;=4 16QANM

] —&— VBLAST ZF 0SIC

| —B— PDA (iter 4)

—»— GPDA (iter 4)
I

0 b 10
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Fig. 3.5 The number of iterations for PDA and GPDA with ¢ =4.
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Fig. 3.7 The complexity for PDA and GPDA with ¢ =4.
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Chapter 4
Data Detection in MIMO-OFDM System Based on
GPDA Detector

4.1 GPDA-MCPDA Detector

The basic idea of the GPDA-MCPDA detector is using the GPDA detector at the low
SNR regions, and using parallel MCPDA method to generate numbers of random samples at
the high SNR regions. After generating samples, we,will pick up a sample from the final

iteration of parallels, and the sample-which- has minimum distance (i.e. arg min||r-Ha||2)-
aeX;

Thus, we can get a solution from the GPDA-MCPDA detector.

4.1.1 Markov Chain Monte Carlo Method

A major limitation towards more widespread implementation of Bayesian approaches is
that obtaining the posterior distribution often requires the integration of high-dimensional
functions. This can be computationally very difficult, but several approaches short of direct
integration have been proposed. The MCMC methods [6], which attempt to simulate direct
draws from some complex distribution of interest. MCMC approaches are so-named because
one uses the previous to randomly generate the next sample value, generating a Markov Chain

(as the transition probabilities between sample values are only a function of the most recent
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sample value).
The realization in the early 1990’s that one particular MCMC method, the Gibbs sampler,
is widely applied to a broad class of Bayesian problems has sparked a major increase in the

application of Bayesian analysis.

4.1.1.1 Monte Carlo Integration
The original Monte Carlo approach was a method developed by physicists to use random
number generation to compute integrals. Suppase we wish to compute a complex integral
_[jh(x)dx 4.1)
If we can decompose #(x) =into the production of a function f(x) and a probability
density function p(x) defined over the‘interval(a;b);then note that
[ H = @ p)dE = E, [/ ()] (4.2)
so that the integral can be expressed as an expectation of f(x) over the density p(x). Thus,

if we draw a large number Xx;,---,x, of random variables from the density p(x), then

[/ s = E, L 01 == 3 £ 5) “3)

This is referred to as Monte Carlo integration.
Monte Carlo integration can be used to approximate posterior (or marginal posterior)

distributions required for a Bayesian analysis. Consider the integral /(y) = If(y | x) p(x)dx,

which we approximate by
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i(y)z%if(ylx,-) (4.4)

where Xx; are draws from the density p(x).

4.1.1.2 Importance Sampling
It was observed in the preceding Section 4.1.1.1 that the integral can be approximate by
Monte Carlo integration. However, not every density p(x) can be drawn directly. Now, we

suppose the density ¢(x) roughly approximates the density p(x), then

[ £ = o= £, L 0] 45)

This forms the basis for the method of importance sampling, with

x,)

[ () pl)ae= Zf( )p( ]

(4.6)

where Xx; are draws from the density ‘g(x)..

4.1.1.3 Introduction to Markov Chains

Before introducing the Gibbs sampler, a few introductory comments on Markov Chains
are in order. Let X, denote the value of a random variable at time ¢, and let the state space
refer to the range of possible X values. The random variable is a Markov process if the
transition probabilities between different values in the state space depend only on the random

variable’s current state, i.e.,
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Pr(X, ., =5, | X, =s,,, X, =5)=Pr(X,, =5, | X, =5s,) 4.7
Thus for a Markov random variable the only information about the past needed to predict the
future is the current stage of the random variable, knowledge of the values of earlier states do
not change the transition probability. A Markov chain refers to a sequence of random
variables (X,,---X,) generated by a Markov process. A particular chain is defined most
critically by its transition probabilities, p(i, j)) = p(i = j), which is the probability that a
process at stage s; moves to state s; inasingle step,
PG, j)=pli 3 j)=Rr(X,  =5,1X, =5) (4.8)
Let
7, (t)=Pr(X, =s,) (4.9
denote the probability that the .chain Is in’State” ;7 -at time #, and let () denote the row
vector of the state space probabilities at'step. z..\We start the chain by specifying a starting
vector 1!:(0). Often all the elements of 7':(0) are zero except for a single element of 1,
corresponding to the process starting in that particular state. As the chain progresses, the
probability values get spread out over the possible state space.
The probability that the chain has state value s; at time (or step) ¢+1 is given by the
Chapman-Kolomogrov equation, which sum over the probability of being in a particular state

at the current step and the transition probability from that state into state s, ,
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z(t+1)=Pr(X, =s,)
= Z Pr(X,.,=s,|X, =s,)Pr(X, =s,) (4.10)
k

= > "Pr(k > i), (1) = > Pr(k, i)z, (¢)
k k
Successive iteration of the Chapman-Kolomogrov equation describes the evolution of the
chain.

We can more compactly write the Chapman-Kolomogrov equation in matrix form as
follows. Define the probability transition matrix P as the matrix whose i, j th element is
P(i,j) , the probability of moving from state i to state ; , P(i—j) . The
Chapman-Kolomogrov equation becomes

a(t+1) =n(r)P (4.11)
Using the matrix form, we immediately see.how to quickly iterate the Chapman-Kolomogrov
equation, as

7(f) =n(t —)P = (n(f —2)P)P = n(¢ — 2) P (4.12)

Continuing in this fashion show that

n(¢) = ()P (4.13)
Defining the n-step transition probability pl.‘”;) as the probability that the process is in state
j given that it started in state i, n step ago, i.e.,

pl)=Pr(X,,, =5,|X, =s,) (4.14)

+n

it immediately follows that p;. is just the i,j-th element of P".

Finally, a Markov chain is said to be irreducible if there exists a positive integer such that
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pl.("jl.) >0 for all i, ;. That is, all states communicate with each other, as one can always go
from any state to any other state (although it may take more than one step). Likewise, a chain
is said to be aperiodic when the number of steps required to move between two states (say x
and y) is not required to be multiple of some integer. Put another way, the chain is not
forced into some cycle of fixed length between certain states.

A Markov chain may reach a stationary distribution = * , where the vector of
probabilities of being in any particular given state is independent of the initial condition. The
stationary distribution satisfies

n*=n*P (4.15)
The condition for a stationary distribution is that.the‘chain is irreducible and aperiodic. When
a chain is periodic, it can cycle in a deterministic fashion between states and hence never
settles down to a stationary distribution.

A sufficient condition for a unique stationary distribution is that the detailed balance
equation holds,

P(j —>k)z; = Pk > j)x, (4.16)
If equation (4.16) holds for all i,k the Markov chain is said to be reversible, and hence
equation (4.16) is also called the reversibility condition. Note that this condition implies

n=nP,asthe jthelementof =P is

(nP), = Z?Z'iP(i —>j)= Zﬂ'jP(j —i)= ﬂjZP(j —i)=7, (4.17)
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with the last step following since rows sum to one.

4.1.1.4 Gibbs Sampler

One problem with applying Monte Carlo integration is in obtaining samples from some
complex probability distribution. Attempts to solve this problem are the roots of MCMC
methods. In particular, they trace to attempts by mathematical physicists to integrate very
complex functions by random sampling, and resulting Metropolis-Hastings sampling [6]. The
Gibbs sampler [6] [15] (introduced in the,context.of image processing by Geman 1984), is a
special case of Metropolis-Hastings samplingiwherein the random value is always accepted
(i.e. a=1). The task remains to'specify how.to constructa Markov Chain with values
converged to the target distribution. The'key to thezGibbs sampler is that we only consider the
univariate conditional distributions (the distribution‘when all of the random variables but one
is assigned fixed value). Such conditional distributions are far easier to simulate than complex
joint distributions and usually have simpler forms. Thus, we simulate » random variables
sequentially from the » univariate conditions rather than generating a single n-dimensional
vector in a single pass using the full joint distribution.

To introduce the Gibbs sampler, consider a bivariate random variable (x,y), and
suppose we want to compute one or both marginal, p(x) and p(y). The idea behind the

sampler is that it is far easier to consider a sequence of conditional distributions, p(x|y) and
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p(y|x), than to obtain the marginal by integral of the joint density p(x,y), e.g.,
p(x) = jp(x,y)dy . The sampler starts with some initial value y, for y and obtains x, by
generating a random variable from the conditional distribution, p(x|y=1y,). We use x, to
generate a new value of y, from the sampler. To do so, we draw from the conditional
distribution based on the value x,, p(y|x=Xx,). The sampler proceeds as follows:

x,~plx|y=y.,) (4.18)

Y, ~py|x=x) (4.19)
Repeating this process for k£ times, then it.generates a Gibbs sequence of length %, where a
subset of points (x,,y,) for 1<j<m <k isitaken.as our simulated draws from the full joint
distribution. The first m times=of the process, called burn-in-period, can make the Markov
Chain converge to the distribution that nearitsstationary one.

When more than two variables are involved, the ‘sampler is extended in the obvious
fashion. In particular, the value of the kth variable is drawn from the distribution
p(ﬁ(k) |0("‘)) where 0% denotes a vector containing all of the variables but &. Thus, during
the ith iteration of the sample, to obtain the value of 8“, we draw from the distribution

0 ~ p(O@® |69 =g, 04D = gD gh — gD . o) = g (4.20)
For example, if there are four variables, (w,x, y,z), the sampler becomes
w,~ pWlx=x_4,y=y1,2=2.)
X~ plx|lw=w,y=y,,2=2,)

Vi ~p(y|W:M}i’x:xi’Z:Zi—1)

z,~pzlw=w,x=x,y=7)

(4.21)
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Now, we consider the equation (3.2) and we use Gibbs sampler to generate samples of a

from the distribution P(a|y). The procedure as follows:

- generate initial samples a™"* randomly
« forn=-N, +1to N,

n

sample @' from P(a, |a,* @y, -+, aq

Y)
sample @, from P(a, |@,',a;" -+, ay )

sample ay from P(a,_|a,a; -, ay, 4.¥)
end

then, we consider P(a, |a",,¥), and it can be factorize as
P(y,a"|a)P(q,
P@|" §) =t J )P@)
P(y,a%)
P(§la-a")P(a’|a)P(a)
P(y[a’)p(al)
_ P(la,a%)P@]an)
P(y]a") (4.22)
. P(y[a,an)P@E)at)
> P(s|a,a%)P(a]a")

_Pilaan)
> PGs]a,a)

—n —=n-l

where @', =[a,...,a’;,a;,....a, ] and P(§|a =x,(m),a") can be calculated as follows:

i-1 N
P(§|a, =x,(m),a",) cexp(~(y —ex,(m) - Y ea’ — > ea ) @
J=1 J=i+l
i1 Ny (4.23)
(F—ex(m)= ea > ea™)
1

J=i+l

thus, we define
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7,(m)
i-1 Ny i-1 Ny
~ —n —n-1 -1/~ —n —n-1
:—(y—el.xi(m)—Zejaj - Z ea, ) D (y—el.xi(m)—Zejaj - Z ea )
= A

Jj=i+l Jj=i+l

i-1 N
oc (2y —e,x,(m)— 2Ai)H q)_lel.x[ (m) [Let A = Ze_ /.c_zj'.‘ — Z ejc_z_/'.‘_ll
Jj=1

S (4.24)
= (2x, —ex.(m))" e x,(m) (Letk,=y—A,)
- [Z[z-cf’ ][0, (m)[cb-l]ﬁin (m)
j
where [2k], is the jth elementof 2k, [®™], isthe element (j,)) of @™ and
®=0G™ (4.25)
finally, we can obtain
P(ala’,§ TR (4.26)

28X (1)
[
In this routine, “for” loop examines the state variables” @, in order, N, + N, times.
The first N, iterations of the loop, called burn-in period, are to let the Markov Chain
converge to near its stationary distribution. During the next N, iterations, the Gibbs sampler
- —n —n —n —n r
generate the N, samples, i.e., a :[al ,az,u-,aNT] , for n=12,---,N,. In general, the
last sample can be the solution of the distribution. Since the distribution should be converged
after Ny +N, times iteration.
There are two problems of Gibbs sampler:
1) How do you choose an initial point? A poor choice of initial point will greatly increase the
required burn-in time, and an area of much current research is whether an optimal initial

point can be found.
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2) How many iterates are needed? This question does not have exact answer, the majority

answers are obtained from the experience.

4.1.2 GPDA-MCPDA Detector

In [12], the author mentioned that at higher values of SNR, some of the transition

probabilities in the underlying Markov Chain may become very small. As a result, the

Markov Chain may be effectively divided into a number of nearly disjoint chains. The term

nearly disjoint here means the transition sprebabilities that allow movement between the

disjoint chains are very low. Therefore, a Gibbs'sampler that starts from a random point will

remain within the set of pointsssurrounding the tnitial point and thus may not get a chance of

visiting sufficient points to find the global solution: In [13] two solutions for solving this

problem were proposed: (i) run a number.of parallel. 'Gibbs sampler with different initial

points; (ii) while running the Gibbs sampler, we assume a noise variance which is higher than

it actually is. These two methods turned out to be effective for low and medium SNRs.

In the parallel MCPDA detector, we will focus on these two methods which mentioned

above to improve the performance of MCMC method. First, we use parallel Gibbs samplers

with the initial point generated randomly. Second, we compute covariance according to (3.6)

rather than (4.25), so named MCPDA. Since we take the variance of residual interference

caused by the random samples into account in the equation (3.6), the covariance will increase.
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Furthermore, with few times of iteration, the covariance will be gradually narrowing. This
may be regarded as automatic Simulated Annealing method [6]. Finally, we will pick up a
sample from the final iteration of parallels, and the sample which has minimum distance (i.e.
arg m|Xn ||r-Ha||2). Thus, we can get a solution from the parallel MCPDA detector.

In Chapter 3, we have mentioned that the GPDA detector performs well at the low SNR
regions, so we can only use the GPDA detector at the low SNR regions; however, with the
SNR increasing (exceed M dB), the performance of the GPDA detector will get worse
gradually. Thus, we need to use parallel MCRDA method to assist the GPDA detector in order
to reach better performance, so“named GPDA=MCPDA ‘detector. Moreover, MCPDA is
similar to GPDA, we only need to add few blocks,-and then the GPDA detector will become
the MCPDA detector. Thereforg, it. may be quite simple to/implement. The block diagram of
the GPDA-MCPDA detector is shown in Fig. 4.1 and the discrepancy between the GPDA

detector and the MCPDA detector is shown in Fig. 4.2.

>

-~ i GPDA o
r' H, 0.2 Signal r, H, 02 Initial Pb
— . > Calculate
Processing

Mean,Var, Q" SNR »M dB

)’\(Rmzd_l
- MCPDA
X/mm,z AR L/
- MCPDA argmin |r - HX||

5( . .
Rand _M MCPDA

Fig. 4.1 Block diagram of the GPDA-MCPDA detector.
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Fig. 4.2 The discrepancy between the;RDA detector and the MCPDA detector.

4.2 GPDA-SD Detector

As we know, the GPDA detector'does not-have good. performance at the high SNR
regions. In order to solve this problem, we.try.to find a solution which is better than the
GPDA solution. Therefore, we use the Sphere Decoding (SD) algorithm to do this work, so
named GPDA-SD, which can attain a better performance and lower complexity in the

MIMO-OFDM spatial multiplexing system.

4.2.1 Sphere Decoding
The sphere decoding [3] algorithm is a quasi-ML detection technique. It promises to find

the optimal solution with low computational costs under some conditions. The SD algorithm
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was first introduced by Finke and Pohst [16] in the context of the closest point search in
lattices but it has become very popular in digital communication literature. Its various

applications include lattice codes, CDMA systems, MIMO systems, global positioning system

(GPS), etc.

4.2.1.1 Real Sphere Decoding

- -

- S
F ~
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1
I ;4
i
[ @ ® O
\ '
® 0 ® L
b
&
\"‘-._ a

Fig. 4.3 A sphere of radius .4 “and'centered at I .

In communication system, the SD algorithm is used to solve the ML problem as follows:

4, =argmin |- Ha’ (4.27)
The computational complexity of above exhaustive search method is really high. Therefore,
the SD algorithm is brought up to avoid the exhaustive search and search only over the

possible a which lie in a certain sphere of radius 4 around the given vector I, thereby

reducing the search space and, hence, the required computations (see Fig. 4.3).
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It is clear that the closest point inside the sphere will also be the closest point for the
whole point. However, close scrutiny of this basic ideal leads to two key questions.

1) How do you choose radius d ? Clearly, if radius is too large, we obtain too many points,
and the search remains exponential in size, whereas if radius is too small, we obtain no
points inside the sphere.

2) How can we tell which points are inside the sphere? If this requires testing the distance of
each point form I, then there is no point in SD, as we will still need an exhaustive
search.

The SD algorithm does not really‘address the*first'question;but usually uses ZF solution to be
the radius of the sphere. However it does propose‘an efficient way to answer the second. The
basic observation is the following. Although itiis difficult to determine the points inside a
general N -dimensional sphere, it is trivial to do so'in.the one-dimensional case. The reason
is that a one dimensional sphere reduces to the endpoints of an interval, and so the desired
points will be the integer values that lie in this interval. We can use this observation to go
from dimension & to dimension k +1. Suppose that we have determined all k-dimensional
points that lie in a sphere of radius d . Then, for any such & -dimensional point, the set of
admissible values of the (k+1) th dimensional coordinate that lie in the higher dimensional
sphere of the same radius d forms an interval.

The above means that we can determine all points in a sphere of dimension N and
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radius d by successively determining all points in spheres of lower dimensions 1,2,---, N,
and the same radius d . Such an algorithm for determining the points in an N -dimensional
sphere essentially constructs a tree where the branches in the kth level of the tree
correspond to the points inside the sphere of radius d and dimension k& (see Fig. 4.4).
Moreover, the complexity of such an algorithm will depend on the size of the tree, i.e., on the

number of points visited by the algorithm in different dimensions.

Fig. 4.4 Search tree of sphere decoding.

With this brief discussion, we can now be more specific about the problem at hand. To this
end, we shall assume that Ng =N;. Note that, the point Ha lies inside a sphere of radius
d centeredat I ifandonly if

d* > |r-Hal (4.28)
In order to break the problem into the sub-problems described above, it is useful to consider

the QR factorization of the matrix H
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R
H =Q{O } (4.29)

(Ng=Ng)xNg
where R is N; by N upper triangular matrix, and Q=[Q, Q,] is an N, by Ng
orthogonal matrix. The matrices Q, and Q, represent the first N; and last Ny —N;

orthonormal columns of Q, respectively. The condition (4.28) can be written as

2

dZ

\%

r _[Ql Qz]{l;:|a

el

H 2 H_|?
= [QuixRaf +[Q}'r]

2

In other words

& Q] 2[R 430)

2
Defining y=Q”r and d’=4° —HQ?I’H allows Ut rewrite this as

2
Ny Ny
d*> Z(yi 2.0 jaj] (4.31)
i=1 j=i

1

where 7, denotes an @,)) entry of R. Here is where the upper triangular property of R

comes in handy. The right-hand side of the above inequality can be expanded as

d?> (n, _FNT,NTaNT)Z
(4.32)

2
+(yNT—1 TN N ON _rNT—l,NT—laNT—l) +e

where the first term only on a, , the second term on {a,_,a, ,}, and so on. Therefore, a
necessary condition for Ha to lie inside the sphere is that d’ZZ(J’NT—VNT,NTaNT)Z- This

condition is equivalent to @ belonging to the interval
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—d'+y d+y
N <a, < — N (4.33)
Nr N "Ny Ny

where f} denotes rounding to the nearest larger element in the set of numbers that spans
the point. Similarly, |_J denotes rounding to the nearest smaller element in the set of
numbers that spans the point.

Of Course, (4.33) is by no means sufficient. For every a  satisfying (4.33), defining
di =d” =y~ @)’ a0d Yy g =Y~ hean @y, o @ Stronger  necessary
condition can be found by looking at the first two terms in (4.32), which leads to ay_,

belonging to the interval

EE A= clh o
TN .

One can continue in a similar’fashion for—ag—~and so on.until a,, thereby obtaining all

points belonging to (4.28).

4.2.1.2 Complex Sphere Decoding
The SD algorithm described above applies on a real system where a is chosen from a
real point, but in communication systems we face to deal with complex systems, because of
the modulation scheme we used is QPSK. In this case, equation (4.28) becomes as follows:
N I
d ZHr-HaH (4.35)

where
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3

(4.36)

b2}
Il
s

as]l
Il

If a belongsto QPSK then each entry of a belongs to BPSK. Thus equation (4.35) can be

solved via SD which we introduced in Section 4.2.1.1.

4.2.2 GPDA-SD Detector

In the Section 4.2.1.1, two key problems; of:the SD algorithm are mentioned. The second
one can be solved by the algorithm of SD, butwe don’t know how to choose the radius in the
first problem. In this case, we can use the distance calculated by GPDA as the radius of
sphere.

The block diagram of the GPDA-SD..detector is ‘shown in Fig. 4.5. As the diagram
indicates, it can be divided into three types. First, when SNR is below M dB, which SNR is
quite low, we can use the GPDA detector directly to achieve near-optimal solution. Second,
when SNR is between M dB and N dB, we can use the GPDA-SD detector to assist the
GPDA detector to reach better performance. Finally, when SNR is over N dB, the complexity
of the SD algorithm (using the ZF solution to be the radius of the sphere) may be lower than

that of the GPDA-SD detector, hence using the SD algorithm directly will be a better choice.
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T Xz _| Sphere

| Decoding

Fig. 4.5 Block diagram of the GPDA-SD detector.

4.3 Simulation Results

Perfect channel information

Perfect noise variance estimation

Number of subcarrier 64

Length of cyelic prefix 16

Channel Rayleigh Fading
Path 2

Relative power (dB) (0,0

Number of iterations (GPDA) | 2 (if no mention)

16QAM (M=16, N=30)
Modulation
64QAM (M=21, N=35)

Table 4.1 Simulation parameters for MIMO-OFDM system.

In this Section, we compare the BER performance between MCMC and MCPDA, and

then we show the influence on the number of iterations and the number of parallel for the

MCPDA detector. After that, we compare the BER performance of proposed two detectors
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with the optimal ML detector, the SD algorithm, and the GPDA detector. We also compare

the complexity of proposed two detectors with that of the SD algorithm. Finally, we will show

the effect of channel estimation error for different detection scheme. Note that, our

simulations are based on real-valued signal model (i.e. equation (3.21)).

Fig. 4.6 and Fig. 4.7 show the BER performance for the MCMC detector and the

MCPDA detector with different initial point, respectively, where obtained by running 5 times

iteration. As we can observe in Fig. 4.6, the initial point dominates the BER performance

seriously, but in the Fig. 4.7, it does not absolutely dominate the BER performance. Thus, the

MCPDA detector solved the initial point problem which in'the MCMC detector. Moreover, if

the initial point does not affect:BER performancetoo much, why do not we choose an initial

point which has lower complexity?

Fig. 4.8 shows the BER performance for the . MCPDA detector with different iterations

and ¢ =16. The result shows that the MCPDA detector only needs few times iteration to be

converged. In other words, with the number of iteration increasing, the BER performance of

the MCPDA will get little better. Thus, we must increase number of parallel to reach better

BER performance.

Fig. 4.9 shows the BER performance for parallel MCPDA detector with different

combinative iterations and ¢ =16 . The result shows that when the parallel MCPDA detector

with the number of parallel increasing, the BER performance of the parallel MCPDA can be
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better. But, how many parallels we need? That is another question which is worth us
pondering.

Fig. 4.10 shows the BER performance for different detection schemes with ¢ =16. As
we can observe form Fig. 4.10, at BER=10"°, the GPDA detector and the ML detection have
about 5 dB disparity. The ML detector and the SD algorithm have the same performance; the
GPDA-SD detector and the GPDA-MCPDA detector are really close to the ML detector. In
this simulation, the SD algorithm use the distance calculated by ZF as the radius of sphere and
GPDA-MCPDA is obtained by running, 20 gparallel randomly initialized MCPDA,; each
MCPDA has depth of 2. In Fig..4:11, it shows'the-BER performance of the aforementioned
detectors for the case ¢ =64.

Fig. 4.12 shows the complexity for different-detection'schemes with ¢ =16 . The result
shows that the complexity of the GPDA-SD.detector and that of the GPDA-MCPDA are both
lower than that of the SD algorithm, especially at low SNR regions. Nevertheless, at the high
SNR regions, the complexity of the GPDA-SD detector is significantly less than that of the
GPDA-MCPDA. | In addition, when the SNR exceeds the N dB, the complexity of the SD
algorithm may continue to decrease and less than that of the GPDA-SD detector, thus we will
switch the GPDA-SD detector to the SD algorithm. In Fig. 4.13, it shows the complexity of
the aforementioned detectors for the case ¢ =64.

Fig. 4.14 shows the channel estimation error for different detection schemes with

50



g =16, at SNR=25 dB. The result shows that the GPDA detector is not too sensitive to
channel, whereas the ML detector, the GPDA-MCPDA detector and the GPDA-SD detector

are sensitive to channel. Note that, E[|H["]=E[|H[*]+E[JAHP] where E[HFf] is estimated

channel composed of real channel E[JH["] and estimation error E[JAH[].
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MIMO-OFDM M =N_=4 16QAM

BER

-] --&r- MCMC{GPDA) 1*
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Fig. 4.6 The BER performance for MCMC detector with different initial point.
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MIMO-OFDM M =N_=4 16QAM

BER

H --&r- MCF‘DA(GF‘DA}
[l —6— MCF‘DA[MMSE} 1*5
| —B— MCPDA(ZF) 1*

[| —e— MCPDA(FPAND}
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Fig. 4.7 The BER performance for MCPDA detector with different initial point.
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Fig. 4.8 The BER performance for MCPDA detector with different iterations.
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Fig. 4.9 The BER performance for parallel MCPDA with different combinative iterations
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Fig. 4.10 The BER performance for different detection scheme with ¢ =16.
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Fig. 4.11 The BER performance for different detection scheme with ¢ =64.
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Fig. 4.12 The complexity for different detection scheme with ¢ =16.
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Fig. 4.13 The complexity for different detection scheme with ¢ =64 .
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Fig. 4.14 The channel estimation error for different detection scheme.
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Chapter 5
On the Equivalence between the SSIC Algorithm
and the PDA Algorithm

In this Chapter, we prove the Soft Successive Interference Cancellation (SSIC) algorithm
and the PDA algorithm are equivalent. The simulation results demonstrate that the SSIC

algorithm and the PDA algorithm have exactly the same BER performance.

5.1 The SSIC Algorithm

In communication systems, the successivesinterference cancellation algorithm is a simple
idea, which has been widely used in many fields:-Unfortunately, if some symbols were not
reliably detected, it would make the /BER performance worse. Therefore, instead of
“cancelling by signal subtraction” (which would cause error propagation in case of incorrect
decoding), we resort to a “soft” mean value, which can deal with reliability information for
symbols rather than with hard decisions only, i.e. SSIC [17] algorithm.

To obtain the system model of the SSIC algorithm, we multiply (2.1) form the left by
H"” to obtain

y=Ga+n (5.1)

where y=H"r, G=H"H,and n=H"v.
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The model of the SSIC algorithm is obtained by multiplying (5.1) from the left by G™
to yield
y=a+i=ea+) ea +i (52)
I
In (5.2), ¥=G'y, i=G™, a X ={x(m)} ic[LN,] and e, is a column vector
whose ith element is 1 and the other element are 0. In order to obtain computational efficiency
and to compare with the PDA algorithm under the fair condition, we choose (5.2) as the

system model for the SSIC algorithm.

After interference-cancelled received signal-vector Z can be expressed as follows:

z=y- Z ejE[aj]zel.al.Jr Z ej(aj—E[al.])+ Z e.a, +n (5.3)

J#i,jeD J#LjeD J#i, jeD
.

I, I

where I, is the interferences from undetected symbols, I,"is the interference due to the
decision error of previously detected symbols, and we'define D to be a set of symbols
which have been detected. Thus, to estimate the associated probabilities for an element a,,

we treat all other elements a;(j#i) as multivariate random variables, and from equation

(5.3), we define

B = Z e (a,—Ela])+ Z ea,+n (5.4)

j#i,jeD J#i,jeD

as the effective noise on 4, and approximate it as a Gaussian noise with matched mean and

covariance:

B = > eEa] (5.5)

Jj#i,jeD

62



Y,= > eeVarla,—E[a]l+ D eelVarla]+c°G*

J#i,jeD J#i,jeD
= > eelVarlal+ D eelVara]+0°G* (5.6)
J#i,jeD J#i,jeD
=Y eeVarla]+c°G*
JJ J
J#i

where B, =E[B,] and X, =CoVvB]. In (5.5)and (5.6), E[a,] and Var[a,] are given by
Ela,]= ;xj (m) p,;(m) (5.7)
Varla,]= ;Xf(M)pj (m) — (E[a,])* (5.8)
Therefore, we can calculate P(z|ai =x,(m)) as follows:
P(z|a, = x,(m)) = exp (—(z—epy(m) - B,)" X' (z—e,x,(m) - B))) (5.9)

Then, we let

=
Il
i
=i

(5.10)
and
B.(m) = —(z—e x,(m)~B,)" X" (z—e,x,(m)-B,)

o« (2z—ex,(m)=2B,)" X e,x,(m)
= (2n, —ex,(m))" X" ex,(m) (5.11)

= [Z [2771‘H]j[zi71]ji _xiH (m)[zil]iijxi(m)
-
where [2777], is the jth element of 2n!" and [Z,.’l]ﬂ. is the element (j,i)) of X.*. The
posterior probability P(m) is then given as

_ exp(f(m)
BN YD) 612
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. Vi, a, = x, (i)
Sorting I =arg max{F,(d)}

h J
¥i, P(m) =Y|x|

iter =1

Initialize {

iter =

Initialize i =1

z=y- 3 ¢FEa)] » Calculate P(m)

Fig. 5.1 Block diagram of the basic SSIC procedure.

The basic procedure for the SSIC detector isiasifollows:

1. Based on the matrix G in+(5.1), we obtain the optimal detection sequence proposed for
the V-BLAST OSIC in [9] and denoté the'sequenceras {k.}", .

2. Initialize the probabilities as P (n)=4/|.X | Vm;¥i , and set the iteration counter iter =1.

3. Initialize i =1.

4. Let z=y— > e Eq,].

k;#k; k;eD

5. Calculate P(Z|ak,. =x, (m)) by approximate the Z in (5.3) as Gaussian distributed, and
set the results equal to the corresponding elements of p, .

6. If i<N,, let i=i+1 and back to step 4. Otherwise, carry on step 7.

7. If vi, P. hasconverged, go to step 8. Otherwise, let iter =iter +1 and return to step 3.

8. For j=1,..,N;, make adecision a, for a; via
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a;=x,(), I =argmax{p,(m)} (5.13)

The block diagram of the basic SSIC procedure is shown in Fig. 5.1.

5.2 The Equivalence of the SSIC Algorithm and the PDA

Algorithm

In Section 5.1, we can calculate P(z|al. =x,(m)) by equation (5.9) as follows:
P(z| a, = x,(m)) oc exp(—(z—e,x,(m)—B,)" X' (z—e,x,(m)-B,)

Substituting equation (5.3) in to equation (5.9), we can get

PLy— D e Ea)]

Jj#i,jeD

a; =X (m)J =5 GXp(—(S’ - z ejE[aj] —€X; (m) - ﬁi)H
ljii, jeD (5.14)

2y =D e Ela,]-ex,(m)-B)
Jj#i,jeD
Substituting equation (5.5) in to equation (5.14), we can obtain

P(y— D e Ea]

J#i,jeD

ai:xl.(m)Jocexp(—(y— z e Ela ]=ex (m)- Z ejE[aj])H

Jj#i,jeD J#i,jeD

Z;l(y_ Z ejE[aj]_eixi(m)_ Z ejE[aj]))

oc exp(—(y — ZejE[aj] —e,x,(m))"”
Z;l(y—ZejE[aj]—eixi (m)) (515)

= P(Sf|ai = x,(m)) (Equation (3.9))
oc eXp(—(S’ —€.X; (m) - Ze}.E[a‘/])H
Q7 (§—ex,(m) - e E[a,]))

J#i

where 2, = Cov[B,] = Cov[N,] =€, can be observed in equation (3.6) and equation (5.6).
Therefore, using equation (3.9) and equation (5.9) can obtain the same posterior probability

P(m). In other words, we confirm that the SSIC algorithm and the PDA algorithm are
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equivalent.

5.3 Simulation Results

Perfect channel information

Perfect noise variance estimation

Number of subcarrier 64

Length of cyclic prefix 16

Channel Rayleigh Fading
Path 2

Relative power(dB) (0,0)
Modulation 16QAM

Table 5.1 Simulation parameters for SSIC algorithm and PDA algorithm.

In this Section, we show the BER performance for the SSIC algorithm and the PDA

algorithm. Furthermore, we will compare the complexity for the SSIC algorithm and the PDA

algorithm. The simulation parameters are shown in Table 5.1.

Fig. 5.2 shows the BER performance for the SSIC algorithm and the PDA algorithm. As

we can observe form Fig. 5.2, the SSIC algorithm has same the BER performance with the

PDA algorithm.

Fig. 5.3 shows the complexity for the SSIC algorithm and the PDA algorithm. The result
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shows that the complexity of the SSIC algorithm is slightly more than that of the PDA

algorithm. Since the SSIC algorithm needs to subtract the soft information form y .

MIPCO-0OFDIM systems

BER

== F'IZI]A (iter 4) , , ,
| ==£x- S8IC (iter 4) | : ! : ;

0 b 10 15 20 25 30

Fig. 5.2 The BER performance for the SSIC algorithm and the PDA algorithm.
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Fig. 5.3 The complexity for the SS

15 20 25 30
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IC algorithm and the PDA algorithm.
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Chapter 6

Conclusion

In this thesis, we establish the equivalence of the SSIC algorithm and the PDA algorithm.
Furthermore, we proposed two detectors, GPDA-MCPDA and GPDA-SD, to reduce the
complexity of the SD algorithm for near-optimal detection in a MIMO-OFDM spatial
multiplexing system with higher order QAM constellations (16QAM/64QAM). These two
methods exploit the GPDA detector which performs well at the low SNR regions. At the high
SNR regions, the first proposed.detector-is combining GPDA and MCMC, which incorporates
the concept of PDA to calculate the covariance-then construct a Markov Chain to make it
converge to the target distribution; the 'second-one=is based: on the SD algorithm using the
GPDA detector solution to be the radius of the sphere. Simulation results demonstrate that
both detectors can achieve near-optimal performance with lower complexity as compare with

the SD algorithm, especially at the low SNR regions.
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