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Abstract

Sensor network localization relies on the range (or angle) measurement from
the mobile (object) and the sensors with known positions. The location of the mobile
can be estimated via these measurements. Accuracy of the localization algorithms
highly depends on the accuracy of measured ranges. By considering both
time-of-arrival (TOA) and received signal power, a range estimation method is
proposed to improve ranging accuracy. Besides, the range measurement often suffers
from non-line-of-sight (NLOS) effect and the range estimation might be much longer
than the true range. As a result, the localization performance can degrade severely. We
propose a NLOS mitigation algorithm based on simplified maximum-likelihood (ML).
To alleviate the nonlinearity issue encountered in a least-squares localization model,
three linearization techniques will be studied. Theoretical derivation shows that the
asymptotic error is inversely proportional to the number of sensors. Besides, a
simplified Kalman filter with lower complexity is proposed to track a moving mobile.
Computer simulations will be performed to validate the theoretical analysis and

compare performance of different algorithms.
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Chapter 1
Introduction

There are more and more applications of sensor network localization [1-2,5,14]
in recent years. For example, a self-cleaning robot must be localized and controlled.
In healthcare applications, doctors and nurses need to know where the patients are to
ensure their safety. In public occasions like museum, the location of visitors must be
known to avoid them being lost.

Figure 1.1 shows a typical sensor network localization system. There are N

(x.y)
[ Mobile
sensor_1 0
]
sensor_2 [T e ]
sensor_3 sensor N

Figure 1.1 A typical sensor network localization system

distributed sensors and a mobile. The problem is how to estimate the position of the
mobile via the information interaction between the unknown mobile and these
distributed sensors with known positions. In case the positions of these sensors are

also unknown to us, the localization problem would be more challenging [3].



Most common techniques for localizing a mobile use measurements of
time-of-arrival (TOA) [4-5], time-difference-of-arrival (TDOA) [6-7], angle-of-arrival
(AOA) [8-9], and received signal strength (RSS) [10-11]. Once we choose one kind ,
or a mixture [12], of these measured techniques, the position of mobile can be
estimated by localization algorithms [13-14].

The localization accuracy highly depends on the accuracy of measurements.
Correlator [43-44] is a typical method to estimate TOA. But this method is a
suboptimal scheme, because it neglects the effect of signal power. Thus, we will
propose a hybrid TOA and RSS scheme to improve the accuracy of TOA estimation.

The accuracy analysis [15-17] for location estimation is a crucial issue. [16]
focused on the coverage issue and proposed two methods to estimate the lower bound
of sensor density to guarantee a bounded localization error over the sensing field. [17]
analyzed the localization accuracy of a linear least-squares (LS) technique
theoretically. [17] also derived a closed-form mean square error (MSE) of the linear
LS solution proposed in [18]. Based on [17], we will derive the asymptotic MSE
theoretically when the number of sensors is large. In the other hand, we will also
analyze the coverage issue in general localization scenario.

Generally, the measurements may suffer from multipath [19-21] effect. In UWB
[22-23] systems, the mitigation for multipath has been widely discussed. [24]
proposed a geometrically motivated approach that utilizes additional information from
the auto-correlation of sensor signals and a zero TDOA sum condition to suppress
spurious TDOA estimates. Another source localization approach by virtual sensors in
a reverberant environment was also proposed in [25]. However, the problem of
solving multipath error is not our concern in this thesis.

Besides, the measurements may also suffer from non-line-of-sight (NLOS)

[26-29] effect. [26] proposed a NLOS identification technique based on the multipath
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channel statistics. An effective technique is proposed in [27] for locating a mobile*s
position in NLOS environment by linearizing the inequalities of range models and
adding loose variables. By modeling the TOA estimation error as Cauchy-Lorentz
distribution, a robust source localization algorithm was derived in [30] to guard
against outliers (include NLOS error). [29] proposed an optimal position estimation
and a simple NLOS mitigation algorithm under NLOS environment. Based on [29],
we extend to another NLOS bias estimation. Because the high complexity of the ML
solution, we will propose a simplified ML estimation to mitigate NLOS effect.

In addition to solving the effect of multipath and NLOS, the tracking [31-33] of a
moving mobile is another important issue in sensor network localization. While the
mobile is moving, the main concern is to estimate its trajectory. Kalman filter[34-35]
has been widely applied in trajectory estimation of a moving object. While its
accuracy of tracking may be good enough , it needs a high computational cost. In this
thesis, we adapt and simplify the update of Kalman filter, and proposed an adaptive
localization scheme with lower complexity.

This thesis is organized as follows. We introduce localization techniques in
Chapter 2 and proposed a hybrid ranging method based on TOA and RSS, then we
focus on the theoretical error analysis for linear LS solutions in Chapter 3. The
asymptotic mean-square-error will be derived in case of a large size of sensors. In
Chapter 4, we first focus on the analysis of coverage issue. Next, we propose a
simplified ML solution to mitigate NLOS effect. We will also propose an adaptive
localization using simplified Kalman filter with low computational cost. Computer
simulations of the derived analysis and proposed algorithms will be performed in

Chapter 5. Finally, we give a conclusion of our work in Chapter 6.



Chapter 2
Localization Techniques

As mention in Chapter 1, the location estimation can be done via the measurements
between the sensors and mobile. Four basic types of measurement techniques are
introduced in Section 2.1. TOA estimation and a proposed hybrid scheme of TOA and
RSS are discussed in Section 2.2.With the sensors at known positions and once the
measurement information is obtained, the position of mobile can be estimated via
localization algorithms. The localization algorithms are introduced in Sections

2.3-2.5.

2.1 Types of Measurements

Location sensing approaches typically use some characteristics of communication
signal between sensors and mobile to estimate the location of mobile. Typically, the
location of sensors must be known. According to the information of sensors, the
mobile can obtain its location by the measurement of communication signal. In the

following, we will discuss four major measurement techniques:

1. Angle of arrival (AOA)[ 8-9]: Angle of arrival is commonly used in direction-based
systems. When the sensors receive signals from the mobile, the sensors can estimate
the angle of the arrived signal. This approach requires the installation of a complex
antenna array. All of AOA methods still need to concern the multi-path effect [19-21].

AOA is inapplicable for indoor environment or high node density network.



2. Received signal strength (RSS)[10-11]: There are many researches that focus on
radio propagation models [36] by which we can calculate the distance from sensors to
mobile. Cheap equipment with low computational cost is the main advantage of
RSS-based localization method. But in the literature, it has been shown that RSS is
not accurate enough, because there are many factors that can affect the RSS

measurement [11]. For instance, multi-path, noise, humidity, temperature and so on.

3. Time of arrival (TOA)[4-5]: With an accurate time synchronization between
sensors and mobile [38], the signal propagation time from mobile to sensor, or
vice-versa, can be measured. Thus, the distance between sensor and mobile can be
calculated by multiplying the propagation time with the signal propagation speed
(3x10°m/s for RF signal, or ~340m/s for acoustic signal). For indoor
applications, high localization accuracy is required. The localization accuracy is
highly dependent on the accuracy of measured ranging information. Compared to
other measurement techniques, TOA techniques is a good candidate in terms of

accuracy.

4. Time different of arrival (TDOA)[6-7]: TOA measurement relies on a precise time
synchronization because the time when a signal leaves the emitter is generally not
known. With the cross-correlation of two different sensors, the unknown time can be
differentiated. Thus, the time difference of arrival between the two sensors can be
measured. The main advantage of TDOA is the synchronization equipment is not
necessary to install, but the accuracy of using the cross-correlation of two different

sensors (both with noise) may degrade TDOA performance.

Owing to the reasons mentioned above, we focus on TOA measurement
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technique in terms of accuracy and cost. With the TOA ranging data discussed in
Section 2.2, the location can be estimated by the localization algorithms in Sections

24 and 2.5

2.2 TOA Ranging Technique

In this section, we discuss the range estimation by TOA technique. In Section 2.2.1,
we introduce conventional correlator—based TOA estimation. A hybrid scheme of

TOA and RSS is proposed and discussed in Section 2.2.2.

2.2.1 Conventional Correlator-based TOA Estimation
First, the mobile transmits a signal s(t) to the sensors. The received signal at one
sensor without multipath can be denoted as follows:

rt)=as(t-7)+n(t) (2.1)
where s(t) is the transmitted signal, which is usually a wideband signal, such as a
PN signal or a chirp signal [44]. The issues of PN signal or chirp signal will be
discussed in Section 5.1. 7 is the time-of arrival of direct path, « is the gain of
direct path, and n(t) is the background noise.

We assume a synchronization equipment has been set up, and the sensor knows
when the signal is transmitted. In other words, when the signal was transmitted from
the mobile, the sensor started to receive. Optimum maximum-likelihood estimation
(assuming the background noise is white Gaussian) can be formulated as follows:

arg. minJ'[r(t)—as(t—r)]zdt (2.2)

where « isa function of 7. The path-loss model [10] will be discussed later in
Section 2.2.2.

By neglecting the path-loss & (assuming it is a fixed constant), suboptimum



estimation can be formulated as follows:

arg, minf[r(t)—s(t—r)]zdt (2.3)

s(t)

|

Cross- .
. ﬂ Peak searchin
correlation g ‘

Sensor (Rx)

Mobile (Tx)
TOA estimation

Figure 2.1 TOA estimation diagram

(2.3) can be reformulated as the famous correlator [43-44] estimation of time-delay:

arg. max J' rit)s(t—z)dt (2.4)

Fig. 2.1 illustrates the procedure of cross-correlation and peak searching. It is
note that (2.4) does not consider the effect of the received signal power loss & . We
will incorporate both TOA and RSS techniques to propose a more accurate ranging

technique in next section.

2.2.2 Ranging Scheme with a Hybrid of TOA and RSS

First, we introduce the RSS ranging technique. We assume the path-loss model is
given by[10]

— =k,d M (2.5)

where P. isthe received signal power, P, is the transmitted signal power, d is the



true distance between transmitter and receiver, k, isconstant,and n, isthe

path-loss exponent. Once we have the parameters of B, ,k,, n ,and B, in(2.5), the

distance can be estimated as follows:
LAY (26)
kP

Because parameters of path-loss model are sensitive to the variation of time and
environment, they can affect the ranging accuracy significantly. Even they are
perfectly known, RSS suffers worse degradation than correlator-based TOA method in
an additive white Gaussian noise environment. Despite of the above disadvantages,
the path-loss model still contains the ranging information, hence it can assist the
TOA-only estimator. In the following, we will enhance TOA estimation by combining

the path-loss model.

By assuming the path-loss model is known to us, we want to obtain the

relationship between path-loss « and 7. In the absence of background noise, we
have P :azj'sz(t)dt and P, = Isz(t)dt, from (2.1). By noting that d=vz , where v

is the propagation speed, (2.5) becomes:
a =k, (vr) "' =k ™" 2.7)

The joint time and power estimation can be denoted as

arg, min [[r(t) -~k " *s(t—7) | dt 2.8)

whose improved ranging performance will be shown in Section 5.1.

2.3 TOA (Time-of-Arrival) System Model

A localization system includes distributed sensors and a mobile. A typical localization
scenario is shown in Figure 2.2. The problem is to estimate the position of mobile via

the measurement from sensors. Before the mathematical formulation, the symbols are



classified as follows. (x,y) isthe unknown position of mobile. (x;,y,) isthe
known position of ith sensor. r, is the rage measurement between mobile and ith
sensor.

Assume that there are N sensors available for measuring the TOAs from the

mobile. The relationship between ith true distance and range measurements can be

denoted as
d =J(x-x)2+(y-y) ~r i=12.,N (29)
(X Y1)
sensor_
I,
-
sensor_2 D
(%, Y.) sensor_3 sensor_N
(%1 Ys) (X Vi)

Figure 2.2 A typical localization scenario

where r,=d; +n,+L . n, isthe range error for measurement of ith sensor. L; is

NLOS bias, can be modeled as Rayleigh distribution.
Here we focus on the demonstration in LOS environment, while the situation of

NLOS environment will be discussed in Section 4.2. For measuring in LOS

environment, the NLOS bias L, isassumed to be zero. In other words, the range



measurement is only influenced by the range error n, . From the range measurements
and the position of distributed sensors, we want to obtain the best position estimation.
If the statistical property of the range error isn’t known for us, we can resort to (LSE)

least-square estimation [39] which is shown as follows:

N
(%,9)=arg,, min " (/(x=x)*+(y-y)’ —r)* (2.10)
i=1
In other hands, if the statistical property of the range error is known for us, we can

resort to Maximum-Likelihood (ML) estimator which will be introduced in Section

2.4.

2.4 ML Estimator

The ML estimator has been derived in [40], we summarize as follows.
With the model of range error, the pdf of the range measurement of ith sensor can be

denoted as

f = 1

1
2
270,

exp(— W) (2.11)
20,

We assume that the range measurement between different sensors is independent,

the joint pdf of all the range measurements can be denoted as:

N

p(r,h...ry)=11]f=
v 1:1[ \/27Z'N612622...GN

In order to maximize (2.3), the optimum solution can be shown as follows:

(rl_dl)2 (rN _dN)2
exp(— ———.— 2.12
(-3 H i) e

(n-d)° (p-dy)* (1 —dzw)z (2.13)

2 2
o, 20, 20,

arg min, .,

The solution of (2.13) is also called weighted least-squares (WLS) solution [43].
Typically, the property of range error is assumed to be i.i.d, so (2.10) might be the
same with (2.13). From (2.13), we can know that it is composed of non-linear terms,

S0 we can resort to Iterative Nonlinear Least Square Solution [30]. Accurate solution

10



can be achieved with high cost of computation complexity. In order to save some cost,
we can linearize (2.10) at first. The popular techniques of linearization will be

introduced in Section 2.5.

2.5 Linearization of Least-Squares Estimator

Typical linearization techniques include hyperbolic positioning algorithm,
Taylor-series based least-squares solution, distance-augmented linearization. In this

section, we will introduce these techniques separately.

2.5.1. Hyperbolic Positioning Algorithm

The hyperbolic positioning algorithm [15][41] is a popular method of linear
least-squares solution. We summarize the linearization techniques as follows:

(2.9) can be re-write as follows after squaring,

(X=X +(y-v) =K (2.14)

Expansion (2.14),

X2+ y? 2% X=2y,y+ X% + Y. ~r’ (2.15)
where X + y?: non-linear(hyperbolic) term
We need a sensor as reference equation,

X2y 2% x=2y.y+x’+y ~r’ (2.16)
After subtracting (2.15) form (2.16),

20% =X )X+ 2(y, —y,)y~r’—r =k +k  (2.17)
where k =x7+y, Kk =x+y’
We can re-write (2.17) as a matrix form as follows.
Ap~b (2.18)

where p =[x y]" is unknown position

11



I r,z—rlz—kr2+k12/_
(Xl_xr) (yl_yr) 2

_ _ rrz—rz—kr2+k7
Where A= (xzzxr) (yzzyr) b= i /2 =b, +b,

(% =%) (\n=¥) rrz_er_kr2+kN7
L 2 |

d,? —df—kr2+k17 | [ 2d.n, —2d1n1+nr2—n12/
2 2

d’—d’—k’+ k27 2d.n, —2d,n,+n’ - n27

Where b, = 2 |, b= 2

drz—sz—kr2+kN7 2d_n_—2d,n, +nf-nN7
i 2 | 2

We can see that the statistical property of perturbation term b, is not i.i.d.

Thus, we can apply ML weighted-least-squares solution [43] as follows:

5= (AWA)'AWh  (2.19)
-1
where W :(E[bnbnT ]) , a weighted matrix.

Similarly, once we don’t have the statistical property of the perturbation term,

the weighting matrix can simply choose to be identity matrix.

2.5.2 Taylor-Series Approximation Method

We re-write (2.9) as follows:

RO ==X +(y-y)  (2.20)
Apply Taylor-Series expansion [42] to (2.20) as follows.
F(X,y)=F (X, Yo) +[V" F(X,, Y,)]A + higher order terms

If the reference point is close to true position enough, the higher order terms can be

omitted, and (2.20) can be linearized as follows.
F(xy)=~ F(XOvyo)+ i (X X )"‘ d (y Yo) (2.21)

12



oF  X,—X oF —y.
Where Fi(XO'yO):\/(XO_Xi)2+(yO_yi)2 =d, a—xlz% EZ%
i0 i0

xO—Xi)X_F(yo—Yi)yzri_dL0 (2.22)

( di,O dl,O

Where dio = dio —(XO _Xi)XO _(yo _yi)yo
Y ‘ di,O di,O

We can re-write (2.22) as a matrix form as follows.

Xo =% Yo — V1

dl,O dl,o B r_ 7]
1 1,0
X0 =% Yo— Yo ]
—d
Hxp=| dy,  d, xmz PTRo iy (229
N _&N,O

After Taylor-series approximated linearization, we can avoid the high cost of
conjugate gradient, which is the main advantage of it. But before linearization, we
should assure that the initial guess is good enough, or the least-squares solution might
not converge after many times of iteration. In Section 3.2, we regard the hyperbolic

positioning algorithm as the reference point, and will analyze the effect of it.

2.5.3 Distance-Augmented Linearization Method

The linearization method is also a popular technique in the localization field and is
applied in [29]. We summaries it as follows:

From equation (2.15), let

R =x*+y?, we can get the following equation
2xX+2y,y—R~k —r* (2.24)

We can re-write (2.24) as a matrix form as follows.

13



2x, 2y, -1 y k-1 ]
2x, 2 -1 -r?
e N N e P Y
: - :
2 29 ) 5 [k on)

From the derivation of above, we can realize the key is that we enable
R=x*+y* with the degree of freedom. Equivalently, we let R be independent of x

and y, so the non-linear equation can be linearized. While the linearization suffers
from range error and the error of new variable R , the accuracy might be the worst one,
and is seldom applied in localization. Thus, we don’t focus on the analysis of

theoretical error of the linearization method which is introduced in this section.

14



Chapter 3
Asymptotically Theoretical Error
Analyses

Recent years, the analysis and comparisons of non-linear LS and linear LS
solution is proposed in [15]. In [17], the closed-form error covariance has been
derived for hyperbolic positioning algorithm. In our research, we focus on the analysis
and comparison of different linearization techniques.

Define the location estimation error as the difference between the true position
vector p and estimated position vector p:

e=p-p
Mean square error (MSE) is defined as
E|[eff | (3.)
will be used as the performance measure of localization accuracy.
We summarize the general theoretical derivation as following.

Typical linearized LS solution has the following form:
p=(A"A)"Ab=(A"A)*A"(b,+b )= p+e

is the error comes from range error and modeling error, and

n

where b=b +b,, b

e=(ATA)'ATh.

The error covariance can be written as following:
Elee’ |=(ATA)'AE[b b |[AATA) (3.2)
The mean square error (MSE) can be written as:
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E [”eﬂ =trace(E[ee'])

[17] has derived the closed-form error covariance of (3.2). Obviously, the
expectation is taken with respect to the range error in (3.2), while the matrix A is
varied with respect to the position of sensors and mobile. In this chapter, we derived
the asymptotic theoretical error of hyperbolic positioning algorithm and
TS-approximated LS solution in line-of-sight environment with the increasing of
sensors. We also derived the asymptotic MSE of hyperbolic positioning algorithm

under weighted-least-squares solution.

3.1 Theoretical Analysis of Hyperbolic Positioning Algorithm

In this section, we introduce typical hyperbolic positioning algorithm first. In
Section 3.1.1, with some assumptions, the MSE can be derived as a simpler form.
Next, we further derived asymptotic MSE which is a clear equation. In Section 3.1.2

we derive the hyperbolic positioning algorithm lower bound by weighted LS solution.

3.1.1 Hyperbolic Positioning without Weighted LS

The hyperbolic positioning algorithm relies on a sensor as reference equation. So,
the selection of sensor is very important for location estimation of the mobile. First,
[17] choose sensor at origin as the reference terminal. But the performance will
degrade when the mobile is far away from the reference sensor. In intuition, one can
choose a sensor with shortest range as the reference sensor. This can improve some
performance than the former method. The two reference sensor selection method is
popular in the literature. However, there is a lower bound for hyperbolic positioning
algorithm. In this section, we derive and analysis the lower bound of hyperbolic

positioning algorithm.
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From (2.18) and (3.2), the theoretical error covariance of hyperbolic positioning
algorithm can be denoted as following:

E[ee’ |=(ATA)ATE [lonbnT ] AATA)  (3.3)
From the derivation of [17], E [bnbnq can be denoted as:

Elb,b, ], =d,’0” +1.50* ~d,’c?
(3.4)
Elb,b, 1, =(d,?+d*)o? +26* ~(d,* +d,*)o?
where o is the variance of range error.
We can see that E [bnbnT] is not a diagonal form, so (3.4) will be too complex

to derive. In order to get a simpler form, we assume that the matrix in (3.4) is diagonal

form. In other words, the value of d, in (3.4) is assumed to be zero (i.e.

(x,y)=(x..y,)). Physically, it represents that the reference sensor is always attacked

to the mobile. However, it is not practical to replace a sensor next to the mobile. Only
when there is a large amount of distributed sensors in the room, the effect of d, can
almost be omitted. So in the following derivation, we regard it as a lower bound of
hyperbolic positioning algorithm and will analyze the theoretical error of this bound.

With such assumption, the distance between the reference sensor and mobile

equals to zero approximately .Thus, E [bnbnq can be denoted as:

d*> 0 0
0 d° 0 0

E[bb, |~0’ ) 2 T ~o’D (3.5)
0 0 dy’ |

Thus, the matrix above is a diagonal form as we want it to be.

Combined (3.3) and (3.5),
E[ee’ |=c”(ATA)'ATDA(A'A)"  (3.6)
The exact mathematical form of (3.6) is hard to be expressed, so we divide it into 3
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blocks (i.e. (ATA)'x ATDAx (AT A)™).

The first and the third block, A" A can be denoted as

N N

Sn-n) D mx)o-
izljl:(yi_yr)z

Y)

ATA= (3.7)

N

D =x )iy,

i=1

If the number of the sensor is large enough, and also the distribution of the
sensor is random enough, the x-y cross-term will approximately equal to zero. So (3.7)

can be written as:

Similarly,
>d (% —x,) 0
ATDA~cg?x| ™
0 D di(vi-v.)

From (3.5), (3.8), and (3.9), the theoretical error can be further denoted as

(3.9)

E[ee’ |p]~ o*

. 2
d,
i=1

X—X

|2

N

X—X
i=1

T

ZN:diz(y -

i=1

i=1

(3.10)

The notation E[ee’ |p] represent that the theoretical error is derived when the

position of sensors and mobile is given. We are interested in what the theoretical error

will be if the position of mobile and sensors is averaged over the room. Under the

assumption that the sensors are uniformly distributed ina LxL squared room and

18



the mobile also locates at random position, we derive the mean of E[ee’ | p] versus

position:
3 d (% —x) |
|=i:\l > O
2 }
E{E[ee" [pl} ~o*xE4| =" ) (3.11)
Zdiz(y -
0 = 2
|:Zl(y| - yr)z}

Assume that the expectation of divider and denominator can be taken
independently, and the position of sensors and mobile (X, y),(x;,y,) satisfies:
XY, %,y ~U(O,L) U (0, L) : Uniform distribution within [O,L]

The following is the calculation of the expectation of (3.11):

E{%“di (% —x,) } iE[ X =X, ) } NxE[diz(Xi—Xr)z}

€[00 x ]~ {[(x %)+ (-9, 05 -0, )
~E[(x %)+ (x-x ) x(3 -y, ]
= £(x %) [0 €[ (3w Y]

L4 N
—_— —_—X—_—=

"15 6 6 180

2 2 2] L N(N -1 L4 Lt N2
E{[(xl—xr) +(%, = X%,) +...(xN—xr)}}:EN +2x (2 ), 5 30( +N)




Thus, (3.9) can be simplified as follows.

E{E[ee’ | p]}p ~ o’
(3.12)

, 17
=0 X
6(N +1)

x |

where | isa 2x2 identity matrix.

Finally, the asymptoticMSE can be obtained by calculating the diagonal sum of

the position error covariance as following:

34 , 5.67
=0 X——
6(N +1) N+1

asymptotic MSE:trace{E{E[eeT | p]}p} ~ 0% x (3.13)

From (3.13), we can understand that the asymptotic MSE is inversely proportional to

the number of sensors..

3.1.2 Hyperbolic Positioning with Distance-De-Weighted LS

From (3.5), we can realize that the localization error is highly dependent on the
distances between the mobile and sensors. In other words, if the distances are the
same with each other, we can interfere that the mobile is almost locates at the
geometry center, and the localization error might reach its smallest value, and vice
versa. However, the derivation in Section 3.1.1 is simply a lower bound under
un-weighted least-squares solution. [43] has proposed a ML (maximum-likelihood)
weighted LS solution to de-weight the the effect of non-uniformly distances. But the
amount of improvement of localization error is not indicated in [43] theoretically. In

this section, we want to show how amount of performance can be improved.
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In (2.10) the optimum weighted least-squares estimator is given by:

p=(A'WA'AWb=p+e (3.14)

1o 0
d,
1 .
-1 0 — O :
Where W ={E[bnbnT]} - d,’ -D! (3.15)

0 0

0 .. 0

L dN i

where e=(A'WA)"A"Wb, .
From (3.3) and (3.14), the localization error can be denoted as follows
E[ee" |p]|=0"(A'WA) ' AWDWA(A'WA) ' =c*(A'D'A)*  (3.16)

Location error covariance:

Elee’|p]=0"x (3.17)

With Weighted LS solution, the amount of improvement and comparison in

performance will be shown in Section 3.3.

3.2 Theoretical Analysis of TS-approximated LS Solution

In this section, we discuss the asymptotic MSE for TS-approximated LS solution.
Unlike hyperbolic positioning algorithm, the accuracy of TS-approximated LS
solution is related to the initial guess . The issues for initial guess are discussed in
Section 3.2.1. With the inaccuracy of initial guess, the effect of the modeling error is
discussed in Section 3.2.2. Because the uncertainty of modeling error, we derived the
asymptotic upper bound and lower bound for TS-approximated LS solution in Section

3.2.2.
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3.2.1 Initial Guess

When using Taylor-series expansion to do linearization, it is well-known that a
good initial guess is very important. Or the linearization modeling error will not
neglect-able. A popular technique is to regard the center of the sensors as an initial
guess, after linearization we can get a roughly LS solution which can be regard as a
better initial guess. After iteration, we can obtain an accurate initial guess. But we
don’t have any property of the initial guess, the modeling error is hard to analyze. For
simplicity of error analysis, we regard the hyperbolic positioning algorithm as the
initial guess. Thus, the modeling error can be derived easier. In Section 3.2.2, we will

discuss about it.

3.2.2 Modeling Error
As mention in Section 2.5, the TS-approximated linearization can be denoted as

follows.

fi (% y) = f,(X, yo)"‘(%Kx’ y) = (X, yo)]>< (X=X%,) +
(3.18)
(%va y) = (X, yo)]>< (YY) +€ni

where X e[x,,X],¥ €[V, Y],

and

ot o°f
8 2

H = X°  OXoy
o°f  o°f,

2
Oyox oy (xy)=(X,y)

is the Hessian matrix.
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If the initial guess (X,,Y,) is not close to the mobile enough, the modeling error
(denoted as e, ;) will be not neglected.

After linearization and apply the LS solution,

p=(H"H)*H™b=(H"H)"H (b, +b,)=p+e (3.19)

13

dl —H10
d,—d
where b, =| 2 "%°
_dN - dN,O
n ma1
n, €2 .
bn =€ te,=| . |+| . [|=rangeerror vector+modeling error vector
Ny CY

Assume that the range error and modeling error are independent to each other,
E|bb, |=Elee |+E[ee, |=o’1+E[ee, | (320
The modeling error is hard to handle. First, the modeling error is different from
ith to jth sensor. Second the higher order terms contains the computation of the
Hessian, which involved with high cost. So we resorted to modeling error upper
bound [27]. However, the upper bound of TS-approximated modeling error is too
complicated, so [27] has simplified it as follows.
0<e’< %(I&I +|o,)> (3.21)
The bound above is position-dependent, we further take expectation to (3.21):
0<Ele, |< EB (|5X|+\5y\)2} (3.22)

As mention in Section 3.2.1, we regard typical hyperbolic position algorithm as the
initial guess of TS-expansion, and in Section 3.1, the closed-form MSE of the initial

guess can be denoted as:
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E[57+5/)|~0? x% (3.23)

where ¢ >5.67.

Reasonably, we can assume that E[5,]=E[ 5, |= /%x o x%

The mean upper bound can be denoted as follows.
1 2| 2.9
E{E(|5X|+\5y\) } ~otx (3.24)

From (3.20) and (3.24), the upper bound of error covariance:

E[bb,"|= (1+ %}xaz (3.25)

From (3.3) and (3.25),

E[eeT]:(HTH)—lHTE[bnbnT}H(HTH)-l=(1+%)xazx(HTH)-1 (3.26)

From (3.26), we can understand that when the number of sensor increases, the

modeling error will decrease which is a reasonable trend.

Similarly, we further take expectation to (3.26) with respect to the position of

sensors and mobile as follows.

E{E[eeT|p]}=(1+%)><az><E[(HTH)-1]p (3.27)

In Section 2.4.2, the matrix H is denoted as follows.

(3.28)

| Xo =% Yo— W ]
dl,O dlyo
Cl
X =% Yo— Yo e
H = d2,0 d2,0 = :2
Cy S
Xy — Xy Yo — Yn " N
L dN,O dN,O i
2 2
Because |0 Xi|<p  |[doTViloq [ XoTX) Yi | 21
di,O di,O di,O i
We assume that X~ % _ cos 6, yod_ L =sing,

i,0
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N -1

-1

N
(H T H )—l — i=1 i=1 — i=1 i=1 (3'29)
& ) L N.1-cos 26,
Zci Si Zsi zci Si z—
i=1 i=1 i=1 i=1 2

From (3.29), we can understand that it is somehow different from (3.7). The following

are some assumptions:

N N
(1) If N is large enough, Zciz Z% ZCOSZQ N
i=1 i=1

N
2 5

N N 1 . N _
2) Similarly, >'52=y 170526 _N _~-cos26 N
=) =) 2 2 T 2 2

N N H
(3) Also, Y c;s, :Zsmzzei ~0
i=1 i=1

Once the assumptions above are not hold when there are fewer distributed sensors, it
will be discussed in Section 4.1.

Because the initial guess is variant with the position of mobile and also N is large
enough, we can assume that @ is nearly uniform distribution within 0~27z. Thus

the assumptions above are reasonable, and (3.29) can be simplified as follows.

(HTH)™ z%m (3.30)

So, the asymptotic MSE upper bound for TS-approximated with modeling error can

be written as follows.

trace{E{E[eeT | p]}}u ~ (1+%)x02 xtrace{E[(HTH)l]p} -

= (1+&)><0'2 ><i
N N

If the initial guess of the TS expansion is almost perfect, the effect of modeling
error can be neglect. In other words, only range error and position of sensors

influences the localization error. (3.31) can be rewritten as follows.
4
T ~ 2 —
trace{E{E[ee |p}}}L ~ox (3.32)
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But in practical, the modeling error always exist, the performance in (3.32) is

hard to achieve for almost all situations.

3.3 Comparisons with CRLB

For comparison with the result in Section 3.1 and 3.2, we also derived the

asymptotic MSE of CRLB in this section. First, the CRLB is given [17]:
o’cre =trace(1(x,y)™) (3.33)

where the Fisher information matrix is given by

e e
xy)=| ;_X')('_ ) )  ( ._.)2 (339
;( Gllzd?lz i .2:1: 3;_Iz(j/ilz

Nx—x,2 (X=X )(Y-Y,
AR Rl S
lxy)== = ‘ ', |==xH'H  (335)
o ZN:(X_Xi)(y_yi) i(y_yi) o
L i=1 diz i=1 di2 i

From (3.30) and (3.35), the asymptotic MSE of CRLB can be denoted as
4
2 _ -1 o2, T
E[oens ], —trace(E[I(x, y) ]p)~a (330
The following are some observations:

(1) From (3.32) and (3.36), we can see that the TS-approximated LS solution

without modeling error will approach to CRLB asymptotically.

(2) From (3.17) and (3.35), we can understand that the theoretical lower bound of

hyperbolic positioning algorithm is the same with CRLB.
(3) From (3.31) and (3.36), we can understand that the asymptotic MSE upper

bound of TS-approximated LS will approach to CRLB asymptotically which
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can be shown as follows:

(1+ q )XO'2 Xi N large enough O_2 Xi
N+1 N N

(3.37)

Here we do a summary about the asymptotic MSE of this chapter. The comparison is

shown in Table 3.1.

Table 3.1. Comparisons of Asymptotical MSE

Hyperbolic lower bound Uniform-weight o2 x 287
N +1
Distance-de-weight o2 xi
TS-approximated With modeling (1 +&) ol x—
N
error(upper bound)
Without modeling error o2 xi
N
CRLB o 4
N

Also, for localization applications, a user might request for a specific accuracy.
So the localization equipment designer should determine how many sensors should be
used in line-of-sight environment. From the derivation of asymptotic MSE for CRLB

in this chapter, a designer can regard the list in Table 3.2 as a reference.

Table 3.2 A simple guide to determine the number of sensors (Assume o = 0.3m)

30cm 25cm 20cm 16cm 12cm 10cm
Spec.
(o) (0.830) | (0.670) | (0.530) 0.40) (0.330)
N > 4 6 9 15 25 36
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Chapter 4
Other Localization Issues

In this chapter, we will consider other localization issues. First, we focus on the issue
of coverage for mobile localization in a general LOS scenario. The analysis of
coverage will be discussed in Section 4.1. Second, based on [29], we proposed a
simplified ML method to mitigate NLOS effect in Section 4.2. Third, typical adaptive
localization using Kalman filter is engaged in high computational complexity. We
proposed an adaptive localization scheme combined with TS-approximated

linearization technique in Section 4.3.

4.1 Coverage Analysis of TS-approximated LS Solution

In Chapter 3, we have verified the asymptotical error analysis of linear
least-squares solution. While there is a large amount of distributed sensors, the
coverage problem is less important. Without loss of generality, we will discuss the
coverage issue in this section while there are four sensors at corners.

Because (3.28) can be supposed to be a matrix with cosines and sins, we focus
on the coverage issue of TS-approximated LS solution in this section. But
TS-approximated LS solution suffers from modeling error. Although the modeling
error varied with different sensors, the influence of it is limited. For analysis
simplicity, we neglect the modeling error in this section. First, we parameterize (3.29)
in Section 4.1.1. After some assumptions and approximations, the MSE nearly can be
determined by one of the parameters. The further analysis and result will be shown in

Section 4.1.2.

28



4.1.1 Parameterization

In (3.29), some terms can’t be neglected, so (3.29) should be re-written as:

-1

N N
> " cos 26, D sin26,
E 1+ |4 Exi:l—
2 N 2 N
2 Tygyv-1) 2
otr((HTH) ) =co’tr ) )
sin 20, €0s 26,
N Zl % le 0 4.1)
it 1=
2 N 2 N
=0'2><—N2 N
- (=7)
N 2 N 2
> cos 26, > sin26,
Where y=| 22— | 4| 2
N N

From (4.1), we can understand that the localization error is a function of &®,N, 7. In

the case that N=4 ,and o is given, the MSE can be written as

1
MSE = f () = 0% x 4.2)
(1-7)
4.1.2 Further Analysis
4 2 4 2
> c0s 26, D sin26,

Assume y =| =L +| 4L 7 =g*+6° (4.3)

4 4

D" c0s 26, D sin26,

where g=iﬂT and 5=iﬂT, are geometric parameters.

Figure 4.1 shows a general geometric setting scenario for N=4 . From (3.28) and the

setting of Figure 4.1, the angle matrix can be written as:

29



cosé, sing cos ¢, sing,
cosd, sing,| |cos(r-a,) sin(r-a,)

H = _ = . (4.4)
cosd, sind, cos(w+a,) sin(r+a;)
cosd, sing, cos(—«,) sin(-a,)
sensor 4 sensor 3

sensor 1 sensor 2

Figure 4.1 The corresponding angles from initial guess to each sensor

Generally, we can view ith sensor as original, and then the corresponding angle 6,

will locate at the quadrant of the mobile.

4.1.2.a Effect of Parameter &
Because the sensor geometry is symmetric, if we can know the localization ability of
the area displayed in Figure 4.2, we can realize the localization ability of the whole

area.
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Figure 4.2 An area as a general case

We randomly choose a point in the indicated area of figure as an example. First, we
focuson @, and 6, in figure. Find point C, and then let AB = AC. From Figure 4.3,
we can know that

a3+,6’+al=% (4.5)

! B
initial guess /-~~~
Y Sy
.--"'-----{”‘ /
ﬂ ¢ ‘
B : .
C A

Figure 4.3 A point in a general area for sensor 1 and 3
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Similarly, in Figure 4.4, we can get the relationship as follows:

a2+¢+a4:% (4.6)

Figure 4.4 A point in a general area for sensor 2 and 4.

From (4.5) and (4.6),

6, +0; :a1+(7z'+a3):”+(a1+a3):§77_13
4.7)
0, +0, =7~ ~a,=1~(a, +a4)=%+¢

where S, ¢ >0

From (4.7), the value of & can be written as

C0S 26, + cos 2(27:—01 — ) +C0s 26, + cos 2(%—192 + )
4 (4.8)
_8in20,x23-sin20,x2¢ sin26, x f—sin 20, x ¢
) 4 - 2

E =

In (4.8), if the value of £ and ¢ issmall enough, the effect of & is nearly not
exist. From Matlab experiment, the mean value of S and ¢ isshown as follows.
mean=5.9613" , std=5.5048". Thus, the geometric parameter & almost can be

neglected.
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4.12.b Effect of Parameter O

Similarly, form (4.7), the value of & can be written as

sin 26, +sin 2(27[—01—ﬂ)+8in 20, +sin 2(%—92 + )

o=
4 (4.9)
_Sin26, +sin 28, + #xC0s 26, — $ x COS 26,
2

In (4.9), we can understand that even if the value of £ and ¢ issmall enough,
the value of & will be influenced by the value of sin26, and sin26,. Thus, the
MSE is nearly depend on the value of ¢ . In other words, (4.2) can be re-written as

following:

MSE =~ f(8) = 0% x

(4.10)

1
(1-5%)

In Chapter 5, it will be shown in our simulation.

4.2 NLOS Mitigation by Simplified ML Solution

When the direct path between the propagation from mobile to sensor is not
existed, the measurement error is so-called NLOS error which is shown in Figure 4.5.
Intuitionally, the measured distance of the third sensor would be too long which
resulted in degrading on localization performance. NLOS propagation error mitigation
is still a popular issue to be solved. General NLOS error mitigation includes of two
parts:

(1). NLOS identification [26]: In the measurements, we should identify which sensor
suffers from NLOS bias.
(2). NLOS mitigation [29]: With the identification of NLOS bias, we should apply

signal processing techniques to mitigate the error caused by NLOS bias.
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(X4, Y1) (x,y)

I
sensor_ ﬁ Mobile
r2 - — I// “\\\\\
) | LI
m Furniture | T | wall
sensor_2
(%, Y.) 0
sensor_3
(% ¥2)

Figure 4.5 The occurrence of NLOS effect

In this section, we assume that the identification of NLOS sensor has been done
and will focus on the NLOS mitigation. In Section 4.2.1 we formulate the problem of
NLOS effect. An optimum solution based on statistics is proposed and derived in [29].
We summarize it in Section 4.2.2. Based on [29], we proposed a simplified ML

solution to mitigate NLOS effect in Section 4.2.3.

4.2.1 NLOS Problem Formulation
Once the NLOS effect had been identified by the methods proposed in [29], we
assume there are m NLOS and N-m LOS sensor measurement, the mathematical

equation can be denoted as follows:

(4.11)

f

d.+n  fori=12,..N-m
d+n+L=d+g fori=N-m+1..,N
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where L, is NLOS bias which is a positive bias, d; = \/(x— X, )2 +(y-y; )2 , and
g=n+L.

(4.11) follows the model given in (2.1), while (2.1) does not consider NLOS
bias. With the range measurements in (4.11), we can simply apply least-squares
estimation to estimate the position of the mobile. While the accuracy might be very
poor because the high residual errors from sensors with NLOS effect. The optimum

solution based on statistics is proposed in [29], and we will summarize it in Section

4.2.2.

4.2.2 Optimum ML Solution
With the assumption that the measurement error and NLOS bias can be modeled
as zero-mean normal distribution and Rayleigh distribution respectively, the joint

distribution of the two random variables can be derived as

P al

1 2
.= exp| — +
" 2rog 2/ o, p{ 20, 2 }

£ oyp| - &' ol &
O'Si2 lo, 20'Si2 050, o,

where Q(.) is the standard Q-function and o =,/o,”+0.” . o, is the standard

(4.12)

deviation of measurement error from ith sensor. o is the parameter of Rayleigh

distribution from ith NLOS sensor.
Define the position vector and measurement vector respectively as
p=[x yI'

F=[n nnl

The log-likelihood function A(r| p) can be denoted as
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Aflp)= [ A(F|p.e)P.(e)de  (4.13)

forall &

N
where P, (¢) = H P, (gi)’ gz[gN—m+l'gN—m+2"“'gN]

i=N-m+1

From the derivation of [29], (4.13) can be simplified as follows.

Gni _(ri_di)2 & - _d.)x
N-m (I" d. )2 N \/ﬁexp( ZO'niZ ]+Gsi (rl dl)
A(rp)=> -

i=1 Uni i=N-m+1 (r ) r.—d.
e 1 1
Xp( O'Si JQ[ 05,0, / o, ]

The position estimation is produced by maximizing the above log likelihood.

(4.14)

Equivalently, the optimal estimation is achieved by:
arg, min[ -A(I'|p)]  (4.15)

Although the result of (4.15) is an optimum solution, the computation cost of
iterative least-squares solution is very high. First, we adapt (4.13) as follows:

A(rlp)= [ A(r[p.D)P (DL (4.16)

forall

Where A(r‘p,[)_kl—[[lin(ﬁz#}{ i (r.d.I:.)zJ]

i=1 Oy,

mszfE%]

. I:|2

~ N N_ 2 ~
PL=T] %e 24" the probability of occurrence of L

i=N-m+1 L

C=[ L s Cu_meo» Dy | which is a vector of estimated NLOS bias.

Under the assumption, the optimal estimation is achieved by (4.15).
Similarly, the computation cost of solving (4.15) is very high; we will resort to

another solution with low computation complexity based on (4.16) in Section 4.2.3.
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4.2.3. Simplified ML solution

Briefly, the ML estimator does a global search for all probable NLOS bias
combination, while the computational cost is inevitably high. If we merely take a
most probable NLOS bias combination into consideration, and according to (4.16)

and (4.17), the criteria can be denoted as follows.
arg, min [—A(r‘ p,L)xP, (E)] (4.17)
Equivalently, (4.17) is a problem of minimizing —Az(r‘ p, L) with a certain

combination of NLOS bias estimation. The NLOS mitigation algorithm proposed in
[29] estimate a probable combination of NLOS bias in the beginning. Thus, the
minimization problem is equivalent with (4.17). But the NLOS bias estimation in [29]
is not generated based on theoretical derivation. In other words, the NLOS bias
estimated in [29] is not always reliable. In order to further enhance localization
performance in NLOS environment, we consider another probable combination of
NLOS bias. Thus, proposed diagram is shown in Figure 4.6, and the minimization

problem can be adapted as follows:

arg max [A(r‘p,[l)x PL(I:i)+A(r‘p,[2)x PL(EZ)} (4.18)

LOSs
P (I:l) \

NLOS ranges - L, > WLS :> (% 7)

NLOS ranges— L, N >/

R.(L)

Figure 4.6 Proposed NLOS mitigation algorithm
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where I:1 is a vector of NLOS bias estimation from [29], and I:2 is a vector of
another probable NLOS bias estimation which may comes from the mean value of
NLOS bias .

Briefly, (4.18) maximizing weighted sum of two probable likelihood functions
which will be more robust than (4.17).

We summarize the NLOS bias estimation in [29] as follows.
In the beginning, an initial estimation (X,,Y,) is generated by these original N range
measurements via linear least-squares solution. For NLOS sensors, we can
re-calculate the distance between the initial estimation and the position of NLOS

sensors. We denoted the distance as follows:

fi:\/(xo—xi)2+(y0—yi)2 fori=N-m+1,..,N  (4.19)

We have an initial position estimation, combined with the re-calculated distance
for NLOS and original measurement for LOS, the position can be estimated by
TS-approximated LS solution. Equivalently, the NLOS mitigation algorithm in [29]
somehow estimates the magnitude of NLOS bias. The estimated bias can be denoted

as:
L,=r—F fori=N-m+1..,N (4.20)
The estimation of another probable NLOS bias would be a crucial problem.
Here we supply two kinds of method to be the NLOS estimation. First, the magnitude

around true mean of NLOS bias may be the most probable bias statistically. A kind of

probable NLOS bias can be denoted as follows:
L, =E[L] fori=N-m+1..,N (4.21)

Similar to (4.21), another on-line estimation of mean of NLOS bias can be denoted as

follows:
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L, =E[L;] fori=N-m+L..,N (4.22)

From (4.18), (4.20), and (4.21), and the probability density functions of range error
and NLOS bias, (4.18) can be re-written as:

N

{Nﬁ‘(r‘ —di)2+_7z (r _di_I:i,i)z_kl}XPL(El)-i_

i=1 i=N-m+1

arg min - y (4.23)
|:Z(ri_di)2+ Z (ri_di_l:z,i)z_kl:|XPL(|:2)
i=1 i=N-m+1
We further simplified (4.23) as follows:
N-m N - ~
{z(n—dif >, (5—d;~ Ll.)Z}PL(Ll)+
argp min i=1 i=N-m+1 (424)

Pg(ri—di)u i —d, —LZ,)} (L)

While k; isindependentof p.

(4.24) can be re-written as:

arg min {EleL(I:l)+ szPL(I:Z)} (4.25)

i=N-m+1

N-m N -
EZZZ(ﬁ_di)2+ z (ri_di_LZ,i)z
= i=N_m+1

After TS-approximated linearization, problem in (4.25) can be denoted as a cascaded

LS formulation as follows,

JR(E)x1 0 [H}pz JR(E)x1 0 x[hl
)x1

} (4.26)
0 P (L)xI 0 P (L

where H h h, has been defined in Section 2.5.
The problem of (4.26) can be solved by the following LS solution:

=(B'B)'B'h (4.27)
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s

[C)xH | _[JR(E)<n

(I:z)xH PL(I:Z)th

Similarly, if we want to rely on the on-line mean bias estimation, we can combine

where B =

v

(4.18) and (4.21). The minimization criteria can be denoted as follows:
arg min {Elx P (L)+E,x PL(ES)} (4.28)

(4.28) can be solved by (4.27) similarly. The simulation results of proposed simplified

ML of NLOS mitigation will be presented and discussed in Chapter 5.

4.3 Adaptive Localization of Moving Mobiles

In this section, we introduce conventional adaptive position update using Kalman
filter in Section 4.4.1. In Section 4.4.2, we simplified the conventional Kalman gain
and obtain a simple adaptive update of position estimation. In Section 4.4.3, we will

propose an adaptive localization scheme under NLOS environment.

4.3.1 Adaptive Position Update Using Kalman Filter
The Kalman filter [34][35] addresses the general problem of estimating the state of a
discrete-time process that is governed by the linear stochastic difference equation

P, = Ap,, +Bu,_, +w, (4.29)
With the measurement z, € R" that is
z, =Hp, +v, (4.30)
The random variables w, and v, represent the process and measurement noise

(respectively). They are assumed to be independent to each other, white, and with

normal probability distributions
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p(w) ~N(0,Q)

ow-noRr) 43

In (4.30), if we apply TS-approximated linearization, the matrix H is the same with
(2.14).

The specific procedure for update of parameter is presented below in Figure 4.7.

/ prediction \ / comection \

1. Compuie the Kalman gam:

L. position: p,,, = pp + Tu; - K,,=B H, (H.,P H.,+R)"

2. emvor covariance: B, = F, + 0, 2. Update state with new measurement z,
Pra = Pra Y K (2o — Hya Pr)
— 3. Update the emror covariance

i',l.-l-l ={ _Kmﬂm)ﬁnl

- 2N /

Figure 4.7 Diagram of a Kalman filter, adapted from [34]

where B, =E [ekekT ] , Which is a posteriori estimate error covariance
& = P — Py
From Figure 4.7, we can understand that the high computation of cost of the part of

correction. In Section 4.3.2, our goal is to simplify the part of correction and compare

the difference of performance.

4.3.2 Adaptive Position Update Using Simplified Kalman Filter
First, we focus on the simplification of the Kalman gain. If the SNR is higher than a
general level, the error covariance matrix R nearly can be neglected. So the correction

part in Figure 4.7 can be modified as below in Figure 4.8
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1. Compute the Kalman gain:
Kl-l-l. = ﬁHthr(thpthtﬂr +R B A’Hkﬂ-‘-
2. Update state with new measurement z_

Pon = Pamt "‘HmT(Ztu —H,y Prn)
3. Update the error covariance
Pm =( _KHIHH-])I-)H-I =0

- /

Figure 4.8 Simplified Kalman filter

From Figure 4.8, we can understand that the computational complexity of Kalman
gain is highly reduced. Furthermore, if we apply TS-approximated linearization to

observations, the position update equation can be simplified as follows:

P = Pt Hk+1T(rk+1 -T) (4.32)
where r,,, isarange measurement vector at time index k+1. T, isa distance
vector which is calculated from prediction position and position of the sensors.
With the simplified Kalman gain, the error covariance is unexpected closed to
zero which is not an ideal result. This might degrade some performance. Meanwhile,
when the SNR is no longer good enough, the approximation in Figure 4.8 may no

longer hold. This effect will be discussed and shown in our simulation in Chapter 5.

4.3.3 Adaptive Localization in NLOS Environment
For the tracking of a mobile, we will have information of consecutive range

measurements. Between two closed range measurements, the range difference might
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bounded by a certain amount. We utilize this property and attempt to enhance the
accuracy of adaptive localization in NLOS environment. From (4.14), we can
understand that magnitude of all elements of T, andr, , might comparable. So we

detect the occurrence of NLOS by the following description:

If r..,—T;>T Weinferthat NLOS error occurred. (4.33)

where T is a threshold, related to the magnitude of NLOS bias.
Once we infer that the measurement suffered from NLOS bias error at time
index k+1, we replacer, , as follows:
ha=AL+A-)r,, (4.34)
where A is a forgetting factor. Usually, 2 =0.9~1.
Because NLOS bias error may occur with a certain period typically, the
forgetting factor avoids that the range would stop updating with a long time. The

simulation result will be shown in Chapter 5.
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Chapter 5
Computer Simulations

We will show the simulations of Chapters 3 and 4 to verify the algorithms in this
chapter. In Section 5.1 we show the proposed range estimation of joint time and
power technique. In Section 5.2 and 5.3, we verify the theoretical analysis derived in
Chapter 3. The result of coverage analysis will be shown in Section 5.4. Section 5.5,
compares the proposed two NLOS mitigation algorithms and the method in [29].
Finally, in Section 5.6, we will compare the proposed tracking technique by simplified
Kalman filter with conventional one.

The performance measure for localization evaluation is:
RMSE(Root-Mean-Square-Error) = VMSE = E[||e||2] (5.1)
where e= p—p isthe location estimation error defined in (3.1) 1000 independent

trials are performed for each simulation of MSE.

5.1 Simulations of Range Measurement

In this section, we show the simulations of range estimations. First, we simulate
conventional correlation scheme in Section 5.1.1. Localization accuracy is highly
dependent on accurate measurement. The simulation result of proposed range

estimation by joint time/power scheme will present in Section 5.1.2.

5.1.1 Conventional TOA estimator
In this section, we introduce and simulate correlator-based TOA estimator [44].

The selection of signal is an important issue. Chirp signal (or PN sequence) has the
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property of high processing gain and its auto-correlation has a high peak and narrow
width. These properties make it be regarded as a proper transmitted signal. We can see
the advantage of these properties in the following discussion and Figures. The
parameter we simulated is described as follows. The transmitted signal in Section 5.1
is a chirp signal with duration 1 second and bandwidth 500Hz. The sampling rate is
1000Hz.
The true distance between mobile and sensor is 35m. We assume that the speed of
sound is350m/s . We assume the gain of direct path is ¢, and there is a multipath
signal (with power gain0.7¢, ) which followed the direct path. The received signal
can be denoted as

rit)=a,st—-7)+a,s(t—z,)+n(t) (5.2)
We assume 7 =100 (sampling period), and 7, =110. The normalized correlation

output is shown in Figure 5.1.

09r =

08r =

07 r .

0B =

0&r A

0.4r A

Figure 5.1 Normalized correlation output(Chirp duration=1 sec or 1000 samples)
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Figure 5.2 Normalized correlation output (Chirp duration=0.4 sec or 400 samples)

Once we set a threshold (for example, 0.7), the time-of-arrival of direct path can
be estimated. If we choose a chirp signal with duration 0.4 second (a shorter one) and
bandwidth 500Hz, the normalized correlation output is shown in Figure 5.2. We can
understand that the two lobes of correlation output near the true TOA at 100 samples
would broaden. If the multipath is much closer to the direct path, we can imagine that
the two lobes will interfere with each other. This situation result in TOA estimation
error. So a chirp signal (or PN sequence) with long duration (high processing gain) is
a good choice of transmitted signal.

We further discuss the importance of the property of transmitted signal as
follows. The cross-correlation is highly dependent on the auto-correlation of s(t).
We show the autocorrelation output with respect to different chirp signal duration in

Figure 5.3.
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Figure 5.3 Auto correlation output (left: duration=1 sec, right: duration=0.4 sec )

From Figure 5.3, we can understand that a chirp signal with long duration (high
processing gain) would have better autocorrelation property. As shown in Figure 5.3,
a chirp signal with higher processing gain will have better resolution in time.

In the other hand, SNR (Signal to Noise Ratio) is another factor which affects
the accuracy of TOA estimation. Figure 5.4 shows the simulation result of the TOA
estimation with respect to SNR (Signal to Noise Ratio). A point in the Figure comes
from 10000 times of estimations. The performance evaluation is the standard
deviation of range error. From Figure 5.4, we obtain two observations. First, the
ranging accuracy improves with increased SNR. Second, a chirp signal with longer

duration will have better performance.
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Figure 5.4 Standard deviation of range error v.s. SNR

5.1.2 Ranging Technique by a Hybrid of TOA and RSS

We assume that there is only a direct path, and the path-loss model k, =2, n=2,in
(2.7). We can see from Figure 5.5 that RSS performance is the poorest one, the

correlator follows next, and the hybrid outperforms the others.
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Figure 5.5 Standard deviation of range error v.s. true distance

5.2 Asymptotic MSE of Hyperbolic Positioning Algorithm

In Sections 5.2-5.3, we assume the sensors are distributed randomly and the
mobile locates at the room randomly for 1000 times in a6mx 6m room. The range
error is normal distributed random variable with standard deviation o =10cm .

As mention in Section 3.1, the performance is highly dependent on the reference
sensor selection. Figure 5.6 shows the performance distinction, we can see the result

as follows.
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Figure 5.6 Different reference sensor selections

First, if we always choose the sensor which locates at origin, as mention in [17],
the performance might degrade as the mobile far away from origin. Only when the
mobile terminal always moves around the origin, the performance may acceptable. Or
the performance will highly degrade. Second, if we choose the shortest range
measurement as reference sensor, the performance might be enhanced about 5cm
(0.50). Besides, the red line is a theoretical result which can’t be achieved practically
because it assumed that the shortest range is zero. However, if the there is a large
amount of distributed sensors in the room, the blue line will approach to the red line
asymptotically. In addition, the lowest line is the result of CRLB, which is hard to
achieve.

The red line comes from (3.6), and based on (3.6) we have derived a asymptotic
MSE in (3.13). In Figure 5.7 we show the comparison of (3.6) and (3.13)

theoretically.
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For comparison, we re-write them as follows:

Closed-form MSE: &°x(ATA)"ATDA(ATA)"  (5.3)

. .67
Asymptotic MSE: o x 56 (5.4)
N +1
4':' T T T T
—a—ihSE
a5k —o— pasition-averaged MSE |
30 5
A =
E
i
73]
=
o

5 10 15 20 26 30
Mumber of sensors

Figure 5.7 Closed-form MSE v.s. asymptotic MSE

From Figure 5.7, we can understand that the line of MSE and asymptotic MSE
will asymptotically close to each other. It represent that the assumptions in Section 3.1
might hold when there are a large amount distributed sensors. To sum up, the
closed-form MSE can be replace by a simpler closed-form shown in (5.4)
asymptotically.
In Figures 5.6 and 5.7, the result of red line can be further improved by weighed
LS solution which is derived in (3.14). In Figure 5.8, we can see the performance

upgrade by WLS.
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Figure 5.8 Performance improvement by Weighted LS

From Figure 5.8, we can understand that the red line is further improved to be the blue
line. The amount of enhancement in performance is about 2cm (0.2o0 ). And from

Figure 5.8 and (3.17), the hyperbolic positioning algorithm lower bound will approach

to CRLB.

5.3 Asymptotic MSE of TS-approximated LS Solution

In this section, we show the simulation result of TS-approximated LS solution.
As the derivation in Section 3.2, the simulated TS-approximated LS solution is

bounded by (3.31) and (3.32). We can see Figure 5.9 shown below:
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Figure 5.9 Lower bound and upper bound of TS-approximated localization errors-1

The red line is a simulated line using TS-approximated LS solution with
modeling error. The modeling error is comes from the initial guess which is obtained
from hyperbolic positioning algorithm. From Figure 5.9 we can understand that the
simulated RMSE is actually bounded by blue line and green line. Also, the three lines
will close to each other asymptotically as mention in Section 3.3. Besides, if the
number of sensors is fixed (N=10), we can see the variation of performance with the

variation of range error in Figure 5.10. The result is similar to Figure 5.9.
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Figure 5.10 Lower bound and upper bound of TS-approximated localization errors-2

To sum up, we show the comparison of the linearization methods introduced in

30 . . . . .
—+#— Distance-augmented
—&—T5-hased

25 Hyperbalic(shortest range as reference) H

RMSE{cm)

nurnber of sensors

Figure 5.11 Comparison of 3 linearization methods
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Section 2.5. Figure 5.11 shows the simulation result, and we can understand that
TS-approximated localization outperforms the others. The simulation result also

verifies the theoretical analysis which has been discussed in Chapter 3.

5.4 Coverage Analysis of TS-approximated Localization

From (4.2), the MSE of TS-approximated LS solution can be written as

f(y)=0"x ! =c’ 1

(1-7) ><(1—b2 -5%)

Where both b and & are position-dependent parameters. Once we know the value

(5.5)

of b and &, (5.5) can be calculated easily. Figure 5.13 shows the value of &°at
different position ina 6mx6mroom and o =10cm . The four sensors are located at

four corners respectively.

55 e H 0,045
5 0,04
45 - =
2 = 10,035
4 [
10,03
15 HHE
. - 0,025
25 T : 10,02
2 _ Epaas
15 H H
'] ]
11 I |
0.5 '

Figure 5.12 Value of &*at different position
In Figure 5.12, we can understand that the value of &* can almost be neglected

because it is much smaller than 1. This result satisfies the mathematical derivation in
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(4.8). Similarly, the value of 6° is shown in Figure 5.13 as following.

delta?

10.16
q0.14
012
0.1

10.08

Figure 5.13 Value of &7 at different position

In Figure 5.13, we can understand that the value of §%almost can reveal the
localization error at different locations. When the mobile is closed to the sensor at
corner, the value of &° in (5.5) can’t be neglected. In other words, the localization
accuracy is somehow dominated by &2. Figure 5.14 shows the localization error for
TS-approximated LS solution. We can understand that (5.5) and &> have similar

trend.
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Figure 5.14 Localization error at different positions

5.5 Simulations of NLOS Mitigation

In this section, we will show the simulations to verify the algorithms proposed in
Section 4.2. We assume the mobile locates at the center of a 30mx30m room.

o =0.4m for range error and o, =3m for NLOS bias error. Equivalently, the mean
value and standard deviation for NLOS bias is 3.76 m and 1.97 m respectively. There
are 8 sensors uniform distributed on the side of the room. We vary the number of
NLOS sensors (denoted as m, ) and observe the performance between the four NLOS

mitigation algorithm shown in Figure 5.15.
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Figure 5.15 RMSE with different numbers of NLOS sensors.

From Figure 5.15, there are some observations. When m,_ <3, the two
algorithms (simplified ML-2a, simplified ML-2b) we proposed are slightly worse than
the algorithm proposed in [29] (simplified ML-1). But when m, >4, the proposed
algorithms outperforms simplified ML-1. We infer that when there are a large amount
of NLOS sensors, the NLOS bias would occur more likely around the true mean value
of NLOS bias. So when m, >4, the effect of smoothing of least-squares will be more
efficient. In Figure 5.16 and 5.17, we compare the CDF (Cumulative Density

Function) when there are 2 and 5 NLOS sensors respectively.
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Figure 5.16 CDF comparisons with 2 NLOS sensors
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Figure 5.17 CDF comparisons with 5 NLOS sensors
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In Figure 5.16, we can understand that the performances are comparable for the three
algorithms (simplified ML-1, simplified ML-2a, simplified ML-2b) when there are 2
NLOS sensors. While if there are 5 NLOS sensors, the proposed two algorithms

outperform simplified ML-1 obviously which verify our inference.

5.6 Simulation of Adaptive Localization

5.6.1 Simplified Kalman Filter and Conventional Kalman Filter

In Section 4.3 we proposed an adaptive location update by simplified Kalman filter. In
this section, we compared the conventional Kalman with the simplified one. First, we

set a trajectory for the mobile as Figure 5.18. The range error o =10cm (high SNR).
A point in Figures 5.18 and 5.19 is average by 100 position estimation. We can see the

comparison in the Figures 5.18 and 5.109.

true
estimated by kalman

[k}
T
1

Figure 5.18 Conventional Kalman filter
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true
estimated by simplified kalman

Figure 5.19 Simplified Kalman filter

From Figures 5.18 and 5.19, we can’t recognize which method is the better one.
However, the RMSE for conventional Kalman filter and simplified one is 1.23cm and
1.26 cm respectively. We can conclude that in high SNR environment, the two
algorithms have comparable performance. In other words, we can save a portion of
computational cost by using the proposed simplified Kalman filter. When the range

error rises, we can see the comparison between the two algorithms in Figure 5.20.
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Figure 5.20 Adaptive localization performance v.s. range error
In Figure 5.20 we can understand that when the range error raises the difference
between the two lines becomes larger and larger. In other words, conventional
Kalman filter highly outperforms the simplified one. The main factor is the
computation of Kalman gain. In Figure 4.8, when the range error rises, the assumption
will degrade the accuracy of the calculation of Kalman gain. To sum up, adaptive
localization using simplified Kalman gain saves amount of computational complexity

in the cost of performance degradation.

5.6.2 Adaptive Localization with NLOS Bias Error

We also present our simulation on the adaptive localization with NLOS bias error. For
simplicity, we assume a mobile is moving straightly from a corner to another corner
as shown in Figure 5.21. NLOS error is randomly arranged in the route with random
period. The NLOS bias error is modeled as Rayleigh distribution with mean 3.76m,

standard deviation 1.97. And the range error is modeled as normal distribution with
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o =20cm. We can see the simulation result as following Figure:

E T T T T T

true

- estimated without MLOS mitigation
ar estimated with proposed MLOS detection ]
_4 - .
3 - =
2 - .
1 - .
I:I | | | | |

0 1 2 3 4 5 B

Figure 5.21 Adaptive localization in NLOS environment

The tracking line has been smoothed. The thick black line represents that the
occurrence of NLOS effect. Without NLOS detection and mitigation, the tracking
performance is shown as the green line which is poor while NLOS occurred. The red
line is the tracking result by proposed NLOS detection scheme. We can understand
that while the NLOS occurred, it can be detected by (4.33), and the tracking

performance will still be not influenced by NLOS effect.
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Chapter 6
Conclusions and Future Works

In this thesis, we improve the ranging accuracy by a scheme of a hybrid TOA
and RSS. The improvement in ranging will enhance the accuracy of localization. And
we have investigated the accuracy of linear least-squares solution for sensor network
localization in LOS environment. And the asymptotic MSE for different least-squares
techniques were derived. With the derivation in Chapter 3, we can interfere that the
theoretical error of TS-approximated LS solution and lower bound of hyperbolic
positioning algorithm achieves CRLB asymptotically. On the other hand, the
asymptotic MSE is inversely proportional to the number of sensors from the
derivation of this thesis.

From simulation results, the proposed NLOS mitigation algorithm with
simplified ML outperforms the method proposed in [29] obviously. But there is still
a gap between proposed simplified ML and exact ML solution. And if the NLOS has
not been identified, the problem will be more challenging. Besides, we have shown
the comparisons of proposed adaptive localization scheme and conventional one. In
high SNR environment, they have comparable localization performance. But
proposed adaptive localization using simplified Kalman Filter has lower
computation cost. While in low SNR environment, the modified of proposed method

to enhance performance is an issue which is deserve to discuss in the future.
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