
 

國 立 交 通 大 學 
 

電信工程學系 

 

碩 士 論 文 

 

 

 

無線感測網路之線性最小平方差定位研究 

Study on Linear Least-Squares Localization 

in Sensor Networks 
 

 

研究生：徐泓聖 

指導教授：謝世福  教授 

 

 

 

 

 

中 華 民 國 九十八  年  六  月 



 

無線感測網路之線性最小平方差定位研究 

Study on Linear Least-Squares Localization in Sensor 

Networks 

研 究 生：徐泓聖          Student：H.S. Hsu 

指導教授：謝世福          Advisor：S. F. Hsieh 

 

國 立 交 通 大 學 

電信工程學系 

碩 士 論 文 

 

A Thesis 

Submitted to Department of Communication Engineering 

College of Electrical Engineering and Computer Science 

National Chiao Tung University 

In Partial Fulfillment of the Requirements 

For the Degree of 

Master of Science 

In 

Communication Engineering 

 

June 2009 

Hsinchu, Taiwan, Republic of China 

中華民國九十八年六月 



 

i 

無線感測網路之線性最小平方差定位研究 

 

學生:徐泓聖             指導教授:謝世福 

 

國立交通大學電信工程研究所 

 

中文摘要 

 

  在室內及室外環境之下，估測出目標物(人或物)的位置有許多重要的應用。

而 GPS 系統在被遮蔽的環境之下精準度不良，所以我們需要一個無線感測的定位

系統。靠著許多感測器對於目標的距離(或角度)量測，透過定位之演算法，我們

可以估算出待測物的位置。而感測器測距的準度越好，定位的準確度當然越好，

所以我們修正傳統的相關測距法，利用訊號飛行時間和其能量的聯合關係，將可

以提升精準度。另外，在測距時，感測器與待測物的直接路徑若不存在時，將會

使得測到的距離過長，使位置估測產生很大的偏差。我們根據最大概似法，提出

了減少誤差的方法。由於一般定位演算法是利用最小平方差方法來達成，其方程

式為非線性方程式。為了降低運算複雜度，我們將探討三種典型的線性化方法，

並分析其中兩種較常見線性化最小平方差方法之準確度。當感測器增加時，我們

推導出準確度與感測器個數的關係。另外，當待測物移動時，其運動軌跡的估測

也是定位技術中重要的議題。但過去利用 Kalman filter 來估測軌跡的運算複雜

度過高，我們將其化簡，在準確度相差不大的結果下，進一步降低運算複雜度。 
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Study on Linear Least-Squares Localization 

in Sensor Networks 

Student: H. S. Hsu       Advisor：S. F. Hsieh 

Department of Communication Engineering  

National Chiao Tung University 

Abstract 

     Sensor network localization relies on the range (or angle) measurement from 

the mobile (object) and the sensors with known positions. The location of the mobile 

can be estimated via these measurements. Accuracy of the localization algorithms 

highly depends on the accuracy of measured ranges. By considering both 

time-of-arrival (TOA) and received signal power, a range estimation method is 

proposed to improve ranging accuracy. Besides, the range measurement often suffers 

from non-line-of-sight (NLOS) effect and the range estimation might be much longer 

than the true range. As a result, the localization performance can degrade severely. We 

propose a NLOS mitigation algorithm based on simplified maximum-likelihood (ML). 

To alleviate the nonlinearity issue encountered in a least-squares localization model, 

three linearization techniques will be studied. Theoretical derivation shows that the 

asymptotic error is inversely proportional to the number of sensors. Besides, a 

simplified Kalman filter with lower complexity is proposed to track a moving mobile. 

Computer simulations will be performed to validate the theoretical analysis and 

compare performance of different algorithms. 
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Chapter 1 

Introduction 
 

  There are more and more applications of sensor network localization [1-2,5,14] 

in recent years. For example, a self-cleaning robot must be localized and controlled. 

In healthcare applications, doctors and nurses need to know where the patients are to 

ensure their safety. In public occasions like museum, the location of visitors must be 

known to avoid them being lost. 

Figure 1.1 shows a typical sensor network localization system. There are N 

 ,x y

sensor_Nsensor_3

sensor_2

sensor_1

 

Figure 1.1 A typical sensor network localization system 

 

distributed sensors and a mobile. The problem is how to estimate the position of the 

mobile via the information interaction between the unknown mobile and these 

distributed sensors with known positions. In case the positions of these sensors are 

also unknown to us, the localization problem would be more challenging [3].  
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Most common techniques for localizing a mobile use measurements of 

time-of-arrival (TOA) [4-5], time-difference-of-arrival (TDOA) [6-7], angle-of-arrival 

(AOA) [8-9], and received signal strength (RSS) [10-11]. Once we choose one kind , 

or a mixture [12], of these measured techniques, the position of mobile can be 

estimated by localization algorithms [13-14].   

The localization accuracy highly depends on the accuracy of measurements. 

Correlator [43-44] is a typical method to estimate TOA. But this method is a 

suboptimal scheme, because it neglects the effect of signal power. Thus, we will 

propose a hybrid TOA and RSS scheme to improve the accuracy of TOA estimation. 

The accuracy analysis [15-17] for location estimation is a crucial issue. [16] 

focused on the coverage issue and proposed two methods to estimate the lower bound 

of sensor density to guarantee a bounded localization error over the sensing field. [17] 

analyzed the localization accuracy of a linear least-squares (LS) technique 

theoretically. [17] also derived a closed-form mean square error (MSE) of the linear 

LS solution proposed in [18]. Based on [17], we will derive the asymptotic MSE 

theoretically when the number of sensors is large. In the other hand, we will also 

analyze the coverage issue in general localization scenario. 

Generally, the measurements may suffer from multipath [19-21] effect. In UWB 

[22-23] systems, the mitigation for multipath has been widely discussed. [24] 

proposed a geometrically motivated approach that utilizes additional information from 

the auto-correlation of sensor signals and a zero TDOA sum condition to suppress 

spurious TDOA estimates. Another source localization approach by virtual sensors in 

a reverberant environment was also proposed in [25]. However, the problem of 

solving multipath error is not our concern in this thesis. 

Besides, the measurements may also suffer from non-line-of-sight (NLOS) 

[26-29] effect. [26] proposed a NLOS identification technique based on the multipath 
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channel statistics. An effective technique is proposed in [27] for locating a mobile‘s 

position in NLOS environment by linearizing the inequalities of range models and 

adding loose variables. By modeling the TOA estimation error as Cauchy-Lorentz 

distribution, a robust source localization algorithm was derived in [30] to guard 

against outliers (include NLOS error). [29] proposed an optimal position estimation 

and a simple NLOS mitigation algorithm under NLOS environment. Based on [29], 

we extend to another NLOS bias estimation. Because the high complexity of the ML 

solution, we will propose a simplified ML estimation to mitigate NLOS effect. 

In addition to solving the effect of multipath and NLOS, the tracking [31-33] of a 

moving mobile is another important issue in sensor network localization. While the 

mobile is moving, the main concern is to estimate its trajectory. Kalman filter[34-35] 

has been widely applied in trajectory estimation of a moving object. While its 

accuracy of tracking may be good enough , it needs a high computational cost. In this 

thesis, we adapt and simplify the update of Kalman filter, and proposed an adaptive 

localization scheme with lower complexity.    

This thesis is organized as follows. We introduce localization techniques in 

Chapter 2 and proposed a hybrid ranging method based on TOA and RSS, then we 

focus on the theoretical error analysis for linear LS solutions in Chapter 3. The 

asymptotic mean-square-error will be derived in case of a large size of sensors. In 

Chapter 4, we first focus on the analysis of coverage issue. Next, we propose a 

simplified ML solution to mitigate NLOS effect. We will also propose an adaptive 

localization using simplified Kalman filter with low computational cost. Computer 

simulations of the derived analysis and proposed algorithms will be performed in 

Chapter 5. Finally, we give a conclusion of our work in Chapter 6. 
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Chapter 2  

Localization Techniques 

 
As mention in Chapter 1, the location estimation can be done via the measurements 

between the sensors and mobile. Four basic types of measurement techniques are 

introduced in Section 2.1. TOA estimation and a proposed hybrid scheme of TOA and 

RSS are discussed in Section 2.2.With the sensors at known positions and once the 

measurement information is obtained, the position of mobile can be estimated via 

localization algorithms. The localization algorithms are introduced in Sections 

2.3-2.5.    

 

2.1 Types of Measurements  

Location sensing approaches typically use some characteristics of communication 

signal between sensors and mobile to estimate the location of mobile. Typically, the 

location of sensors must be known. According to the information of sensors, the 

mobile can obtain its location by the measurement of communication signal. In the 

following, we will discuss four major measurement techniques: 

 

1. Angle of arrival (AOA)[ 8-9]: Angle of arrival is commonly used in direction-based 

systems. When the sensors receive signals from the mobile, the sensors can estimate 

the angle of the arrived signal. This approach requires the installation of a complex 

antenna array. All of AOA methods still need to concern the multi-path effect [19-21]. 

AOA is inapplicable for indoor environment or high node density network. 
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2. Received signal strength (RSS)[10-11]: There are many researches that focus on 

radio propagation models [36] by which we can calculate the distance from sensors to 

mobile. Cheap equipment with low computational cost is the main advantage of 

RSS-based localization method. But in the literature, it has been shown that RSS is 

not accurate enough, because there are many factors that can affect the RSS 

measurement [11]. For instance, multi-path, noise, humidity, temperature and so on.  

 

3. Time of arrival (TOA)[4-5]: With an accurate time synchronization between 

sensors and mobile [38], the signal propagation time from mobile to sensor, or 

vice-versa, can be measured. Thus, the distance between sensor and mobile can be 

calculated by multiplying the propagation time with the signal propagation speed 

( 83 10 /m s  for RF signal, or 340 /m s  for acoustic signal). For indoor 

applications, high localization accuracy is required. The localization accuracy is 

highly dependent on the accuracy of measured ranging information. Compared to 

other measurement techniques, TOA techniques is a good candidate in terms of 

accuracy. 

 

4. Time different of arrival (TDOA)[6-7]: TOA measurement relies on a precise time 

synchronization because the time when a signal leaves the emitter is generally not 

known. With the cross-correlation of two different sensors, the unknown time can be 

differentiated. Thus, the time difference of arrival between the two sensors can be 

measured. The main advantage of TDOA is the synchronization equipment is not 

necessary to install, but the accuracy of using the cross-correlation of two different 

sensors (both with noise) may degrade TDOA performance.    

 

Owing to the reasons mentioned above, we focus on TOA measurement 
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technique in terms of accuracy and cost. With the TOA ranging data discussed in 

Section 2.2, the location can be estimated by the localization algorithms in Sections 

2.4 and 2.5 

 

2.2 TOA Ranging Technique 

In this section, we discuss the range estimation by TOA technique. In Section 2.2.1 , 

we introduce conventional correlator–based TOA estimation. A hybrid scheme of 

TOA and RSS is proposed and discussed in Section 2.2.2.  

 

2.2.1 Conventional Correlator-based TOA Estimation 

First, the mobile transmits a signal s(t) to the sensors. The received signal at one 

sensor without multipath can be denoted as follows: 

( ) ( ) ( )r t s t n t       (2.1) 

where ( )s t  is the transmitted signal, which is usually a wideband signal, such as a 

PN signal or a chirp signal [44]. The issues of PN signal or chirp signal will be 

discussed in Section 5.1.   is the time-of arrival of direct path,   is the gain of 

direct path, and ( )n t  is the background noise. 

We assume a synchronization equipment has been set up, and the sensor knows 

when the signal is transmitted. In other words, when the signal was transmitted from 

the mobile, the sensor started to receive. Optimum maximum-likelihood estimation 

(assuming the background noise is white Gaussian) can be formulated as follows: 

 
2

arg min ( ) ( )r t s t dt             (2.2) 

where   is a function of  . The path-loss model [10] will be discussed later in 

Section 2.2.2. 

By neglecting the path-loss (assuming it is a fixed constant), suboptimum 
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estimation can be formulated as follows: 

 
2

arg min ( ) ( )r t s t dt               (2.3) 

TOA estimation

Mobile (Tx)
Sensor (Rx)

s(t) r(t)

s(t)

Figure 2.1 TOA estimation diagram 

 

(2.3) can be reformulated as the famous correlator [43-44] estimation of time-delay: 

arg max ( ) ( )r t s t dt    (2.4) 

Fig. 2.1 illustrates the procedure of cross-correlation and peak searching. It is 

note that (2.4) does not consider the effect of the received signal power loss . We 

will incorporate both TOA and RSS techniques to propose a more accurate ranging 

technique in next section. 

 

2.2.2 Ranging Scheme with a Hybrid of TOA and RSS 

First, we introduce the RSS ranging technique. We assume the path-loss model is 

given by[10] 

0
0

pnrP
k d

P
              (2.5) 

where rP  is the received signal power, 0P  is the transmitted signal power, d  is the 
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true distance between transmitter and receiver, 0k  is constant, and pn  is the 

path-loss exponent. Once we have the parameters of rP , 0k , pn , and 0P  in (2.5), the 

distance can be estimated as follows: 

1

0 0

( ) pnrP
d

k P



                   (2.6) 

Because parameters of path-loss model are sensitive to the variation of time and 

environment, they can affect the ranging accuracy significantly. Even they are 

perfectly known, RSS suffers worse degradation than correlator-based TOA method in 

an additive white Gaussian noise environment. Despite of the above disadvantages, 

the path-loss model still contains the ranging information, hence it can assist the 

TOA-only estimator. In the following, we will enhance TOA estimation by combining 

the path-loss model.  

By assuming the path-loss model is known to us, we want to obtain the 

relationship between path-loss   and  . In the absence of background noise, we 

have 2 2 ( )rP s t dt   and 2
0 ( )P s t dt  , from (2.1). By noting that d= v , where v 

is the propagation speed, (2.5) becomes: 

/ 2 / 2
0 1( ) p pn nk v k                     (2.7) 

The joint time and power estimation can be denoted as  

2/ 2
1arg min ( ) ( )pnr t k s t dt               (2.8) 

whose improved ranging performance will be shown in Section 5.1. 

 

2.3 TOA (Time-of-Arrival) System Model 

A localization system includes distributed sensors and a mobile. A typical localization 

scenario is shown in Figure 2.2. The problem is to estimate the position of mobile via 

the measurement from sensors. Before the mathematical formulation, the symbols are 



 

9 

classified as follows. ( , )x y  is the unknown position of mobile. ( , )i ix y  is the 

known position of ith sensor. ir  is the rage measurement between mobile and ith 

sensor. 

Assume that there are N sensors available for measuring the TOAs from the 

mobile. The relationship between ith true distance and range measurements can be 

denoted as 

2 2( ) ( )i i i id x x y y r        1, 2,...,i N   (2.9) 

 ,x y

1r

2r

3r Nr

sensor_Nsensor_3

sensor_2

sensor_1

 1 1,x y

 2 2,x y

 3 3,x y  ,N Nx y

                 Figure 2.2 A typical localization scenario  

 

where i i i ir d n L   . in  is the range error for measurement of ith sensor. iL  is 

NLOS bias, can be modeled as Rayleigh distribution. 

Here we focus on the demonstration in LOS environment, while the situation of 

NLOS environment will be discussed in Section 4.2. For measuring in LOS 

environment, the NLOS bias iL  is assumed to be zero. In other words, the range 
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measurement is only influenced by the range error in . From the range measurements 

and the position of distributed sensors, we want to obtain the best position estimation. 

If the statistical property of the range error isn’t known for us, we can resort to (LSE) 

least-square estimation [39] which is shown as follows: 

,( , ) arg x yx y   2 2 2

1

min ( ( ) ( ) )
N

i i i
i

x x y y r


     (2.10) 

In other hands, if the statistical property of the range error is known for us, we can 

resort to Maximum-Likelihood (ML) estimator which will be introduced in Section 

2.4. 

 

2.4 ML Estimator 

The ML estimator has been derived in [40], we summarize as follows. 

With the model of range error, the pdf of the range measurement of ith sensor can be 

denoted as 

               
2

22

( )1
exp( )

22

i i
i

ii

r d
f




      (2.11) 

  We assume that the range measurement between different sensors is independent, 

the joint pdf of all the range measurements can be denoted as: 

22
1 1

1 2 2 22 2 2
1 11 2

( )1 ( )
( , ..., ) exp( ... )

2 22 ...

N
N N

N i N
i NN

r dr d
p r r r f

    


       (2.12) 

In order to maximize (2.3), the optimum solution can be shown as follows: 

arg ( , )min x y

22 2
1 1 2 2

2 2 2
1 2

( )( ) ( )
...

2 2 2
N N

N

r dr d r d

  
 

         (2.13) 

   The solution of (2.13) is also called weighted least-squares (WLS) solution [43]. 

Typically, the property of range error is assumed to be i.i.d, so (2.10) might be the 

same with (2.13). From (2.13), we can know that it is composed of non-linear terms, 

so we can resort to Iterative Nonlinear Least Square Solution [30]. Accurate solution 
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can be achieved with high cost of computation complexity. In order to save some cost, 

we can linearize (2.10) at first. The popular techniques of linearization will be 

introduced in Section 2.5.  

 

2.5 Linearization of Least-Squares Estimator 

Typical linearization techniques include hyperbolic positioning algorithm, 

Taylor-series based least-squares solution, distance-augmented linearization. In this 

section, we will introduce these techniques separately. 

 

2.5.1. Hyperbolic Positioning Algorithm 

The hyperbolic positioning algorithm [15][41] is a popular method of linear 

least-squares solution. We summarize the linearization techniques as follows: 

(2.9) can be re-write as follows after squaring,   

22 2( ) ( )i i ix x y y r      (2.14) 

Expansion (2.14),  

2 2 22 2 2 2i i i i ix y x x y y x y r        (2.15) 

where 2 2x y : non-linear(hyperbolic) term 

We need a sensor as reference equation, 

2 2 22 2 2 2r r r r rx y x x y y x y r        (2.16) 

After subtracting (2.15) form (2.16), 

2 22( ) 2( )i r i r r i r ix x x y y y r r k k          (2.17) 

where 2 2 2 2,r r r i i ik x y k x y     

We can re-write (2.17) as a matrix form as follows. 

Ap b   (2.18) 

where [   ]Tp x y is unknown position 
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Where 

   
   

   

1 1

2 2

r r

r r

N r N r

x x y y

x x y y
A

x x y y

  
   
 
 

   

 
   

2 2 2 2
1 1

2 2 2 2
2 2

2 2 2 2

2

2

2

r r

r r

c n

r N r N

r r k k

r r k k
b b b

r r k k

   
 
 

   
   
 
 

   
  


 

Where 

2 2 2 2
1 1

2 2 2 2
2 2

2 2 2 2

2

2

2

r r

r r

c

r N r N

d d k k

d d k k
b

d d k k

   
 
 

   
  
 
 

   
  


 , 

2 2
1 1 1

2 2
2 2 2

2 2

2 2
2

2 2
2

2 2
2

r r r

r r r

n

r r N N r N

d n d n n n

d n d n n n
b

d n d n n n

   
 
 

   
  
 
 

   
  


 

We can see that the statistical property of perturbation term nb  is not i.i.d. 

Thus, we can apply ML weighted-least-squares solution [43] as follows: 

1( )T Tp A WA A Wb      (2.19) 

where   1
T

n nW E b b


    , a weighted matrix.  

Similarly, once we don’t have the statistical property of the perturbation term, 

the weighting matrix can simply choose to be identity matrix. 

 

2.5.2 Taylor-Series Approximation Method 

We re-write (2.9) as follows: 

               2 2( , ) ( ) ( )i i iF x y x x y y       (2.20)  

   Apply Taylor-Series expansion [42] to (2.20) as follows. 

0 0 0 0( , ) ( , ) [ ( , )] higher order termsTF x y F x y F x y      

If the reference point is close to true position enough, the higher order terms can be 

omitted, and (2.20) can be linearized as follows. 

0 0 0 0( , ) ( , ) ( ) ( )i i
i i

F F
F x y F x y x x y y

x y

 
    

 
   (2.21) 
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Where 2 2
0 0 0 0 ,0( , ) ( ) ( )i i i iF x y x x y y d        0

,0

i i

i

F x x

x d

 



   0

,0

i

i

y yF

y d





 

 0 0
,0

,0 ,0

( ) ( )i i
i i

i i

x x y y
x y r d

d d

 
       (2.22) 

Where ,0id  0 0
,0 0 0

,0 ,0

( ) ( )i i
i

i i

x x y y
d x y

d d

 
   

We can re-write (2.22) as a matrix form as follows. 

0 1 0 1

1,0 1,0
1 1,0

0 2 0 2
2 2,0

2,0 2,0

,0
0 0

,0 ,0

N N
N N

N N

x x y y

d d
r d

x x y y
x r d

d dH p b
y

r d
x x y y

d d

  
 
   
    

                
      
 
 





  

   (2.23) 

  After Taylor-series approximated linearization, we can avoid the high cost of 

conjugate gradient, which is the main advantage of it. But before linearization, we 

should assure that the initial guess is good enough, or the least-squares solution might 

not converge after many times of iteration. In Section 3.2, we regard the hyperbolic 

positioning algorithm as the reference point, and will analyze the effect of it. 

 

2.5.3 Distance-Augmented Linearization Method 

The linearization method is also a popular technique in the localization field and is 

applied in [29]. We summaries it as follows:   

From equation (2.15), let  

2 2R x y  , we can get the following equation 

22 2i i i ix x y y R k r      (2.24) 

We can re-write (2.24) as a matrix form as follows. 
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2
1 11 1

2
2 2 2 2

2

2 2 1

2 2 1

2 2 1N N N N

k rx y
x

x y k r
y

R
x y k r

  
            
           

   
   (2.25) 

  From the derivation of above, we can realize the key is that we enable 

2 2R x y   with the degree of freedom. Equivalently, we let R be independent of x 

and y, so the non-linear equation can be linearized. While the linearization suffers 

from range error and the error of new variable R , the accuracy might be the worst one, 

and is seldom applied in localization. Thus, we don’t focus on the analysis of 

theoretical error of the linearization method which is introduced in this section. 
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Chapter 3  

Asymptotically Theoretical Error 

Analyses 

 
Recent years, the analysis and comparisons of non-linear LS and linear LS 

solution is proposed in [15]. In [17], the closed-form error covariance has been 

derived for hyperbolic positioning algorithm. In our research, we focus on the analysis 

and comparison of different linearization techniques. 

Define the location estimation error as the difference between the true position 

vector p and estimated position vector p :  

e p p    

Mean square error (MSE) is defined as 

2
E e 
         (3.1) 

will be used as the performance measure of localization accuracy. 

We summarize the general theoretical derivation as following.  

Typical linearized LS solution has the following form: 

1 1( ) ( ) ( )T T T T
c np A A A b A A A b b p e       

where c nb b b  , nb  is the error comes from range error and modeling error, and  

1( )T T
ne A A A b  

 

The error covariance can be written as following: 

1 1( ) ( )T T T T T
n nE ee A A A E b b A A A          (3.2) 

The mean square error (MSE) can be written as: 
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2
( [ ])TE e trace E ee     

[17] has derived the closed-form error covariance of (3.2). Obviously, the 

expectation is taken with respect to the range error in (3.2), while the matrix A is 

varied with respect to the position of sensors and mobile. In this chapter, we derived 

the asymptotic theoretical error of hyperbolic positioning algorithm and 

TS-approximated LS solution in line-of-sight environment with the increasing of 

sensors. We also derived the asymptotic MSE of hyperbolic positioning algorithm 

under weighted-least-squares solution.  

 

3.1 Theoretical Analysis of Hyperbolic Positioning Algorithm 

  In this section, we introduce typical hyperbolic positioning algorithm first. In 

Section 3.1.1, with some assumptions, the MSE can be derived as a simpler form. 

Next, we further derived asymptotic MSE which is a clear equation. In Section 3.1.2 

we derive the hyperbolic positioning algorithm lower bound by weighted LS solution. 

 

3.1.1 Hyperbolic Positioning without Weighted LS 

  The hyperbolic positioning algorithm relies on a sensor as reference equation. So, 

the selection of sensor is very important for location estimation of the mobile. First, 

[17] choose sensor at origin as the reference terminal. But the performance will 

degrade when the mobile is far away from the reference sensor. In intuition, one can 

choose a sensor with shortest range as the reference sensor. This can improve some 

performance than the former method. The two reference sensor selection method is 

popular in the literature. However, there is a lower bound for hyperbolic positioning 

algorithm. In this section, we derive and analysis the lower bound of hyperbolic 

positioning algorithm. 
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From (2.18) and (3.2), the theoretical error covariance of hyperbolic positioning 

algorithm can be denoted as following: 

1 1( ) ( )TT T T T
n nE ee A A A E b b A A A          (3.3) 

From the derivation of [17], T
n nE b b    can be denoted as: 

2 22 4 2

2 2 2 22 4 2

[ ] 1.5

[ ] ( ) 2 ( )

T
n n ij r r

T
n n ii r i r i

E b b d d

E b b d d d d

  

  

  

    
  (3.4) 

where 2  is the variance of range error. 

We can see that T
n nE b b    is not a diagonal form, so (3.4) will be too complex 

to derive. In order to get a simpler form, we assume that the matrix in (3.4) is diagonal 

form. In other words, the value of rd  in (3.4) is assumed to be zero (i.e. 

   , ,r rx y x y ). Physically, it represents that the reference sensor is always attacked 

to the mobile. However, it is not practical to replace a sensor next to the mobile. Only 

when there is a large amount of distributed sensors in the room, the effect of rd can 

almost be omitted. So in the following derivation, we regard it as a lower bound of 

hyperbolic positioning algorithm and will analyze the theoretical error of this bound.    

With such assumption, the distance between the reference sensor and mobile 

equals to zero approximately .Thus, T
n nE b b    can be denoted as: 

2
1

2
2 22

2

0 ... 0

0 0 0

0 ... ... 0

0 0 ...

T
n n

N

d

d
E b b D

d

 

 
 
      
 
  

  (3.5) 

Thus, the matrix above is a diagonal form as we want it to be. 

Combined (3.3) and (3.5),  

2 1 1( ) ( )T T T TE ee A A A DA A A        (3.6) 

The exact mathematical form of (3.6) is hard to be expressed, so we divide it into 3 
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blocks (i.e. 1 1( ) ( )T T TA A A DA A A   ). 

The first and the third block, TA A  can be denoted as 

   

   

2

1 1

2

1 1

( )

( )

N N

i r i r i r
i iT

N N

i r i r i r
i i

x x x x y y

A A

x x y y y y

 

 

 
   

 
 

   
 

 

 
  (3.7) 

 

If the number of the sensor is large enough, and also the distribution of the 

sensor is random enough, the x-y cross-term will approximately equal to zero. So (3.7) 

can be written as: 

 

 

2

1

2

1

0

0

N

i r
iT

N

i r
i

x x

A A

y y





 
 

 
 

 
 




   (3.8) 

Similarly, 

 

 

22

12

22

1

0

0

N

i i r
iT

N

i i r
i

d x x

A DA

d y y

 



 
 

  
 

 
 




   (3.9) 

From (3.5), (3.8), and (3.9), the theoretical error can be further denoted as  

 

 

 

 

22

1
2

2

12

22

1
2

2

1

0

[ ]

0

N

i i r
i

N

i r
iT

N

i i r
i

N

i r
i

d x x

x x

E ee p

d y y

y y











 
 

 
      
 

 
 
  

     









   (3.10) 

The notation [ ]TE ee p  represent that the theoretical error is derived when the 

position of sensors and mobile is given. We are interested in what the theoretical error 

will be if the position of mobile and sensors is averaged over the room. Under the 

assumption that the sensors are uniformly distributed in a L L  squared room and 
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the mobile also locates at random position, we derive the mean of [ ]TE ee p  versus 

position: 

 

 

 

 

 

22

1
2

2

12

22

1
2

2

1

0

[ ]

0

N

i i r
i

N

i r
iT

N

i i r
i

N

i r
i p

d x x

x x

E E ee p E

d y y

y y











  
  

  
                             









    (3.11) 

Assume that the expectation of divider and denominator can be taken 

independently, and the position of sensors and mobile ( , ), ( , )i ix y x y  satisfies: 

, , , ~ (0, )i ix y x y U L     (0, )U L : Uniform distribution within [0,L]  

 The following is the calculation of the expectation of (3.11): 

     2 2 22 2 2

1 1

N N

i i r i i r i i r
i i

E d x x E d x x N E d x x
 

                
   

 

        
     

     

2 2 2 22

4 2 2

4 2 2

4 2 2 417

15 6 6 180

i i r i r i r i r

i r i r i r

i r i r i r

E d x x E x x y y x x

E x x x x y y

E x x E x x E y y

L L L L

           

       
               

   

 

 

       

 

   

      

2
22 4 2

1 1 1

4
4

4
22

4 4 422 2 2 2
1 2

2

15

30

( 1)
... 2 ( )

15 2 30 30

N N N

i r i r i r j r
i i i

i r

i r j r

r r N r

E x x x x x x x x

L
E x x

L
E x x x x

L N N L L
E x x x x x x N N N

  

              

   

     

            

  
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Thus, (3.9) can be simplified as follows. 

 

4

4
2

2

4

4
2

2

17
180 0

( )
30[ ]

17
1800

( )
30

17

6( 1)

T

p

L N

L
N N

E E ee p
L N

L
N N

I
N





 
 
 
 
   
 
 
 
  

  


   (3.12) 

where I  is a 2x2 identity matrix. 

 

Finally, the asymptoticMSE can be obtained by calculating the diagonal sum of 

the position error covariance as following: 

   2 234 5.67
asymptotic MSE=trace [ ]

6( 1) 1
T

p
E E ee p

N N
    

 
   (3.13) 

From (3.13), we can understand that the asymptotic MSE is inversely proportional to 

the number of sensors.. 

 

3.1.2 Hyperbolic Positioning with Distance-De-Weighted LS 

From (3.5), we can realize that the localization error is highly dependent on the 

distances between the mobile and sensors. In other words, if the distances are the 

same with each other, we can interfere that the mobile is almost locates at the 

geometry center, and the localization error might reach its smallest value, and vice 

versa. However, the derivation in Section 3.1.1 is simply a lower bound under 

un-weighted least-squares solution. [43] has proposed a ML (maximum-likelihood) 

weighted LS solution to de-weight the the effect of non-uniformly distances. But the 

amount of improvement of localization error is not indicated in [43] theoretically. In 

this section, we want to show how amount of performance can be improved. 
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In (2.10) the optimum weighted least-squares estimator is given by: 

1ˆ ( )T Tp A WA A Wb p e      (3.14) 

Where  

2
1

1
2 1

2

2

1
0 ... 0

1
0 0

0 ... 0

1
0 ... 0

T
n n

N

d

dW E b b D

d




 
 
 
 
      
 
 
 
  




 (3.15) 

where 1( )T T
ne A WA A Wb . 

From (3.3) and (3.14), the localization error can be denoted as follows 

2 1 1 2 1 1( ) ( ) ( )T T T T TE ee p A WA A WDWA A WA A D A            (3.16) 

Location error covariance: 

   

   

12

2 2
1 12

2

2 2
1 1

( )

( )

N N
i i i

i ii iT

N N
i i i

i ii i

x x x x y y

d d
E ee p

x x y y y y

d d





 

 

   
 
       

   
  

 

 
    (3.17) 

With Weighted LS solution, the amount of improvement and comparison in 

performance will be shown in Section 3.3. 

 

3.2 Theoretical Analysis of TS-approximated LS Solution 

In this section, we discuss the asymptotic MSE for TS-approximated LS solution. 

Unlike hyperbolic positioning algorithm, the accuracy of TS-approximated LS 

solution is related to the initial guess . The issues for initial guess are discussed in 

Section 3.2.1. With the inaccuracy of initial guess, the effect of the modeling error is 

discussed in Section 3.2.2. Because the uncertainty of modeling error, we derived the 

asymptotic upper bound and lower bound for TS-approximated LS solution in Section 

3.2.2.  
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3.2.1 Initial Guess 

When using Taylor-series expansion to do linearization, it is well-known that a 

good initial guess is very important. Or the linearization modeling error will not 

neglect-able. A popular technique is to regard the center of the sensors as an initial 

guess, after linearization we can get a roughly LS solution which can be regard as a 

better initial guess. After iteration, we can obtain an accurate initial guess. But we 

don’t have any property of the initial guess, the modeling error is hard to analyze. For 

simplicity of error analysis, we regard the hyperbolic positioning algorithm as the 

initial guess. Thus, the modeling error can be derived easier. In Section 3.2.2, we will 

discuss about it. 

 

3.2.2 Modeling Error 

As mention in Section 2.5, the TS-approximated linearization can be denoted as 

follows. 

0 0 0 0 0

0 0 0 ,

( , ) ( , ) ( , ) ( , ) ( )

( , ) ( , ) ( )

i
i i

i
m i

f
f x y f x y x y x y x x

x

f
x y x y y y e

y

        
 

     

   (3.18) 

where 0[ , ]x x x , 0[ , ]y y y , 

  0
, 0 0

0

1

2m i ess

x x
e x x y y H

y y

 
        

,  

and 

 

2 2

2

2 2

2
( , ) ( , )

i i

ess

i i

x y x y

f f

x x y
H

f f

y x y 

  
    
  
 
    

 

is the Hessian matrix. 
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If the initial guess 0 0( , )x y  is not close to the mobile enough, the modeling error 

(denoted as ,m ie ) will be not neglected.  

After linearization and apply the LS solution, 

1 1ˆ ( ) ( ) ( )T T T T
c np H H H b H H H b b p e        (3.19) 

1 1,0

2 2,0

,0

where  c

N N

d d

d d
b

d d

 
 

   
 
  







    

,11

,22

,

range error vector+modeling error vector

m

m
n r m

m NN

en

en
b e e

en

  
  
      
  
  

      


 

Assume that the range error and modeling error are independent to each other, 

2T T T T
n n r r m m m mE b b E e e E e e I E e e                     (3.20) 

The modeling error is hard to handle. First, the modeling error is different from 

ith to jth sensor. Second the higher order terms contains the computation of the 

Hessian, which involved with high cost. So we resorted to modeling error upper 

bound [27]. However, the upper bound of TS-approximated modeling error is too 

complicated, so [27] has simplified it as follows. 

2 21
0 ( )

2m x ye        (3.21) 

The bound above is position-dependent, we further take expectation to (3.21): 

2 21
0 ( )

2m x yE e E          
   (3.22) 

As mention in Section 3.2.1, we regard typical hyperbolic position algorithm as the 

initial guess of TS-expansion, and in Section 3.1, the closed-form MSE of the initial 

guess can be denoted as:  
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2 2 2
x y

q
E

N
           (3.23) 

where  5.67q  . 

Reasonably, we can assume that   21

2x y

q
E E

N
         

The mean upper bound can be denoted as follows. 

2 21
( )

2 x y

q
E

N
       

   (3.24) 

From (3.20) and (3.24), the upper bound of error covariance: 

21T
n n

q
E b b

N
         

    (3.25) 

From (3.3) and (3.25),  

1 1 2 1( ) ( ) (1 ) ( )TT T T T T
n n

q
E ee H H H E b b H H H H H

N
                (3.26) 

From (3.26), we can understand that when the number of sensor increases, the 

modeling error will decrease which is a reasonable trend. 

Similarly, we further take expectation to (3.26) with respect to the position of 

sensors and mobile as follows. 

  2 1(1 ) ( )T T

p

q
E E ee p E H H

N
              (3.27) 

In Section 2.4.2, the matrix H is denoted as follows. 

0 1 0 1

1,0 1,0

1 1
0 2 0 2

2 2
2,0 2,0

0 0

,0 ,0

N N
N N

N N

x x y y

d d
c s

x x y y
c s

d dH

c s
x x y y

d d

  
 
                       
 
 

 
 

   (3.28) 

Because 

2 2

0 0 0 0

,0 ,0 ,0 ,0

1  ,   1  ,   1i i i i

i i i i

x x y y x x y y

d d d d

      
         

   
 

We assume that 0
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i
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x x

d


    0
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i

y y

d

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1 1
2

1 1 1 11

2

1 1 1 1

1 cos 2
c c s c s

2
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c s c s
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N N N N
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i i i i i
i i i iT

N N N N
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i i i i i
i i i i
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

 

   

   

   
   
    
   
   
   

   

   
  (3.29) 

From (3.29), we can understand that it is somehow different from (3.7). The following 

are some assumptions: 

(1) If N is large enough, 2

1 1 1

1 cos 2 cos 2
c

2 2 2 2

N N N
i i

i
i i i

N N 
  


       

(2) Similarly, 2

1 1 1

1 cos 2 cos 2

2 2 2 2

N N N
i i

i
i i i

N N
s

 
  


       

(3) Also, 
1 1

sin 2
c s 0

2

N N
i

i i
i i


 

    

Once the assumptions above are not hold when there are fewer distributed sensors, it 

will be discussed in Section 4.1.  

Because the initial guess is variant with the position of mobile and also N is large 

enough, we can assume that   is nearly uniform distribution within 0~2 .  Thus 

the assumptions above are reasonable, and (3.29) can be simplified as follows. 

1 2
( )TH H I

N
       (3.30) 

So, the asymptotic MSE upper bound for TS-approximated with modeling error can 

be written as follows. 

    2 1

2

(1 ) ( )

4
                                   (1 )

T T

pU

q
trace E E ee p trace E H H

N
q

N N





         

   
    (3.31) 

 

If the initial guess of the TS expansion is almost perfect, the effect of modeling 

error can be neglect. In other words, only range error and position of sensors 

influences the localization error. (3.31) can be rewritten as follows. 

   2 4T

L
trace E E ee p

N
         (3.32) 
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But in practical, the modeling error always exist, the performance in (3.32) is 

hard to achieve for almost all situations. 

 

3.3 Comparisons with CRLB 

For comparison with the result in Section 3.1 and 3.2, we also derived the 

asymptotic MSE of CRLB in this section. First, the CRLB is given [17]: 

 2 1( , )CRLB trace I x y       (3.33) 

where the Fisher information matrix is given by 

    

    
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 

 

 

   
 
   

   
  

 

 
     (3.34) 

In the assumption that the range error is i.i.d, the Fisher information can be written as 

    

    

2

2 2
1 1

2 22
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1 1
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i ii i

x x x x y y

d d
I x y H H

x x y y y y

d d

 
 

 

   
 
    

   
  

 

 
    (3.35) 

From (3.30) and (3.35), the asymptotic MSE of CRLB can be denoted as 

 2 1 2 4
( , )CRLB

p p
E trace E I x y

N
              (3.36) 

The following are some observations: 

(1) From (3.32) and (3.36), we can see that the TS-approximated LS solution 

without modeling error will approach to CRLB asymptotically. 

(2) From (3.17) and (3.35), we can understand that the theoretical lower bound of 

hyperbolic positioning algorithm is the same with CRLB. 

(3) From (3.31) and (3.36), we can understand that the asymptotic MSE upper 

bound of TS-approximated LS will approach to CRLB asymptotically which 
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can be shown as follows: 

 large enough2 24 4
(1 )

1
Nq

N N N
     


   (3.37) 

Here we do a summary about the asymptotic MSE of this chapter. The comparison is 

shown in Table 3.1. 

 

Table 3.1. Comparisons of Asymptotical MSE 

Uniform-weight 2 5.67

1N
 


 Hyperbolic lower bound 

Distance-de-weight 2 4

N
   

With modeling 

error(upper bound) 

2 4
(1 )

q

N N
   TS-approximated 

Without modeling error 2 4

N
   

CRLB 2 4

N
   

 

Also, for localization applications, a user might request for a specific accuracy. 

So the localization equipment designer should determine how many sensors should be 

used in line-of-sight environment. From the derivation of asymptotic MSE for CRLB 

in this chapter, a designer can regard the list in Table 3.2 as a reference.  

 

Table 3.2 A simple guide to determine the number of sensors (Assume 0.3m  ) 

Spec. 
30cm 

( ) 

25cm 

(0.83 ) 

20cm 

(0.67 ) 

16cm 

(0.53 ) 

12cm 

(0.4 ) 

10cm 

(0.33 ) 

N   4 6 9 15 25 36 
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Chapter 4  

Other Localization Issues 

 
In this chapter, we will consider other localization issues. First, we focus on the issue 

of coverage for mobile localization in a general LOS scenario. The analysis of 

coverage will be discussed in Section 4.1. Second, based on [29], we proposed a 

simplified ML method to mitigate NLOS effect in Section 4.2. Third, typical adaptive 

localization using Kalman filter is engaged in high computational complexity. We 

proposed an adaptive localization scheme combined with TS-approximated 

linearization technique in Section 4.3. 

 

4.1 Coverage Analysis of TS-approximated LS Solution 

In Chapter 3, we have verified the asymptotical error analysis of linear 

least-squares solution. While there is a large amount of distributed sensors, the 

coverage problem is less important. Without loss of generality, we will discuss the 

coverage issue in this section while there are four sensors at corners. 

Because (3.28) can be supposed to be a matrix with cosines and sins, we focus 

on the coverage issue of TS-approximated LS solution in this section. But 

TS-approximated LS solution suffers from modeling error. Although the modeling 

error varied with different sensors, the influence of it is limited. For analysis 

simplicity, we neglect the modeling error in this section. First, we parameterize (3.29) 

in Section 4.1.1. After some assumptions and approximations, the MSE nearly can be 

determined by one of the parameters. The further analysis and result will be shown in 

Section 4.1.2.  
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4.1.1 Parameterization 

In (3.29), some terms can’t be neglected, so (3.29) should be re-written as: 
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 
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 
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



 



 

                           
       
       

 


 

  ’    (4.1) 

2 2

1 1

cos 2 sin 2
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 
  

   
   
    
   
   
   

 
 

From (4.1), we can understand that the localization error is a function of 2 , ,N  . In 

the case that N=4 , and 2  is given, the MSE can be written as  

                   
 

2 1
MSE ( )

1
f  


  


   (4.2) 

 

4.1.2 Further Analysis  

 
2 24 4

2 21 1

cos 2 sin 2
Assume  

4 4

i i
i i

 
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   
   
      
   
   
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 
    (4.3) 

4 4

1 1

cos 2 sin 2
where =   and  = ,  are geometric parameters.

4 4

i i
i i

 
  
 

 

Figure 4.1 shows a general geometric setting scenario for N=4 . From (3.28) and the 

setting of Figure 4.1, the angle matrix can be written as:  
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1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

cos sin cos sin

cos sin cos( ) sin( )
 =

cos sin cos( ) sin( )

cos sin cos( ) sin( )

H

   
     
     
   

   
       
    
          

     (4.4) 

 

 

Figure 4.1 The corresponding angles from initial guess to each sensor 

 

Generally, we can view ith sensor as original, and then the corresponding angle n  

will locate at the quadrant of the mobile. 

 

4.1.2.a  Effect of Parameter   

Because the sensor geometry is symmetric, if we can know the localization ability of 

the area displayed in Figure 4.2, we can realize the localization ability of the whole 

area. 
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Figure 4.2 An area as a general case 

 

We randomly choose a point in the indicated area of figure as an example. First, we 

focus on 1 3and    in figure. Find point C, and then let AB AC.  From Figure 4.3, 

we can know that   

 3 1 2

         (4.5) 

 

 

Figure 4.3 A point in a general area for sensor 1 and 3 
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Similarly, in Figure 4.4, we can get the relationship as follows: 

2 4 2

         (4.6) 

 

Figure 4.4 A point in a general area for sensor 2 and 4. 

 

From (4.5) and (4.6), 

1 3 1 3 1 3

2 4 2 4 2 4

3
( ) ( )

2

( )
2

         

        

        

        
   (4.7) 

where , 0    

From (4.7), the value of   can be written as 

1 1 2 2

1 2 1 2

3
cos 2 cos 2( ) cos 2 cos 2( )

2 2
4

sin 2 2 sin 2 2 sin 2 sin 2

4 2

      


       

      


     
 

   (4.8) 

In (4.8), if the value of   and   is small enough, the effect of   is nearly not 

exist. From Matlab experiment, the mean value of   and   is shown as follows. 

mean=5.9613  ,  std=5.5048  . Thus, the geometric parameter   almost can be 

neglected. 
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4.1.2.b  Effect of Parameter   

Similarly, form (4.7), the value of   can be written as 

1 1 2 2

1 2 1 1

3
sin 2 sin 2( ) sin 2 sin 2( )

2 2
4

sin 2 sin 2 cos 2 cos 2

2

      


     

      


    


   (4.9) 

In (4.9), we can understand that even if the value of   and   is small enough, 

the value of   will be influenced by the value of 1sin 2  and 2sin 2 . Thus, the 

MSE is nearly depend on the value of  . In other words, (4.2) can be re-written as 

following: 

 
2

2

1
( )

1
MSE f  


  


   (4.10) 

In Chapter 5, it will be shown in our simulation. 

 

4.2 NLOS Mitigation by Simplified ML Solution 

When the direct path between the propagation from mobile to sensor is not 

existed, the measurement error is so-called NLOS error which is shown in Figure 4.5. 

Intuitionally, the measured distance of the third sensor would be too long which 

resulted in degrading on localization performance. NLOS propagation error mitigation 

is still a popular issue to be solved. General NLOS error mitigation includes of two 

parts:  

(1). NLOS identification [26]: In the measurements, we should identify which sensor 

suffers from NLOS bias. 

(2). NLOS mitigation [29]: With the identification of NLOS bias, we should apply 

signal processing techniques to mitigate the error caused by NLOS bias. 
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Figure 4.5 The occurrence of NLOS effect 

 

In this section, we assume that the identification of NLOS sensor has been done 

and will focus on the NLOS mitigation. In Section 4.2.1 we formulate the problem of 

NLOS effect. An optimum solution based on statistics is proposed and derived in [29]. 

We summarize it in Section 4.2.2. Based on [29], we proposed a simplified ML 

solution to mitigate NLOS effect in Section 4.2.3.  

 

4.2.1 NLOS Problem Formulation  

Once the NLOS effect had been identified by the methods proposed in [29], we 

assume there are m NLOS and N-m LOS sensor measurement, the mathematical 

equation can be denoted as follows: 

      for 1, 2,... -   

   for - 1,...,   
i i

i
i i i i i

d n i N m
r

d n L d i N m N
 

       
 (4.11) 
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where iL  is NLOS bias which is a positive bias,    2 2

i i id x x y y    , and 

i i in L   . 

(4.11) follows the model given in (2.1), while (2.1) does not consider NLOS 

bias. With the range measurements in (4.11), we can simply apply least-squares 

estimation to estimate the position of the mobile. While the accuracy might be very 

poor because the high residual errors from sensors with NLOS effect. The optimum 

solution based on statistics is proposed in [29], and we will summarize it in Section 

4.2.2. 

 

4.2.2 Optimum ML Solution 

   With the assumption that the measurement error and NLOS bias can be modeled 

as zero-mean normal distribution and Rayleigh distribution respectively, the joint 

distribution of the two random variables can be derived as 

2
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2 2
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i i ii i i

i

nS n

i i i

S n LS L S
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

 

  
    

 
    

 
   
         

  (4.12) 

 

where Q(.) is the standard Q-function and 2 2

i i iS n L    . 
in  is the standard 

deviation of measurement error from ith sensor. 
iL  is the parameter of Rayleigh 

distribution from ith NLOS sensor. 

Define the position vector and measurement vector respectively as 

[   ]Tp x y  

1 2[   ]T
Nr r rr    

The log-likelihood function ( )pr can be denoted as 
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for all 

( ) ( , ) ( )p p P dr r 


       (4.13) 

where  
1

( )
i

N

i
i N m

P P  
  

  ,  1 2, ,...,N m N m N        

From the derivation of [29], (4.13) can be simplified as follows. 
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  
                

     
           

  (4.14) 

The position estimation is produced by maximizing the above log likelihood. 

Equivalently, the optimal estimation is achieved by: 

arg min ( )p pr      (4.15) 

Although the result of (4.15) is an optimum solution, the computation cost of 

iterative least-squares solution is very high. First, we adapt (4.13) as follows: 

for all 

( ) ( , ) ( )L

L

r p r p L P L dL  


     (4.16) 

Where 
2 2

1 2 2
1 1

( ) ( )
( , )

2 2
i i

N m N
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i i N mn n

r d r d L
r p L k

 



   

      
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2
1

( )
i

Li

i

L
N

i
L

i N m L

L
P L e







  

 


 , the probability of occurrence of L   

1 2, ,N m N m NL L L L      
    , which is a vector of estimated NLOS bias.  

Under the assumption, the optimal estimation is achieved by (4.15). 

Similarly, the computation cost of solving (4.15) is very high; we will resort to 

another solution with low computation complexity based on (4.16) in Section 4.2.3. 
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4.2.3. Simplified ML solution  

Briefly, the ML estimator does a global search for all probable NLOS bias 

combination, while the computational cost is inevitably high. If we merely take a 

most probable NLOS bias combination into consideration, and according to (4.16) 

and (4.17), the criteria can be denoted as follows. 

 arg  min ( , )p Lr p L P L   
    (4.17) 

Equivalently, (4.17) is a problem of minimizing 2 ( , )r p L  with a certain 

combination of NLOS bias estimation. The NLOS mitigation algorithm proposed in 

[29] estimate a probable combination of NLOS bias in the beginning. Thus, the 

minimization problem is equivalent with (4.17). But the NLOS bias estimation in [29] 

is not generated based on theoretical derivation. In other words, the NLOS bias 

estimated in [29] is not always reliable. In order to further enhance localization 

performance in NLOS environment, we consider another probable combination of 

NLOS bias. Thus, proposed diagram is shown in Figure 4.6, and the minimization 

problem can be adapted as follows:   

   1 1 2 2arg  max ( , ) ( , )L Lr p L P L r p L P L      
      (4.18) 

 

 

Figure 4.6 Proposed NLOS mitigation algorithm 
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where 1L  is a vector of NLOS bias estimation from [29], and 2L  is a vector of 

another probable NLOS bias estimation which may comes from the mean value of 

NLOS bias .  

    Briefly, (4.18) maximizing weighted sum of two probable likelihood functions 

which will be more robust than (4.17). 

We summarize the NLOS bias estimation in [29] as follows. 

In the beginning, an initial estimation 0 0( , )x y  is generated by these original N range 

measurements via linear least-squares solution. For NLOS sensors, we can 

re-calculate the distance between the initial estimation and the position of NLOS 

sensors. We denoted the distance as follows: 

   2 2

0 0i i ir x x y y     for - 1,...,i N m N     (4.19) 

We have an initial position estimation, combined with the re-calculated distance 

for NLOS and original measurement for LOS, the position can be estimated by 

TS-approximated LS solution. Equivalently, the NLOS mitigation algorithm in [29] 

somehow estimates the magnitude of NLOS bias. The estimated bias can be denoted 

as: 

1, =  i i iL r r  for - 1,...,i N m N    (4.20) 

The estimation of another probable NLOS bias would be a crucial problem. 

Here we supply two kinds of method to be the NLOS estimation. First, the magnitude 

around true mean of NLOS bias may be the most probable bias statistically. A kind of 

probable NLOS bias can be denoted as follows: 

 2,i iL E L   for - 1,...,i N m N    (4.21) 

Similar to (4.21), another on-line estimation of mean of NLOS bias can be denoted as 

follows: 
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3, 1,i iL E L   
    for - 1,...,i N m N    (4.22) 

From (4.18), (4.20), and (4.21), and the probability density functions of range error 

and NLOS bias, (4.18) can be re-written as: 

 

 

2 2
1, 1 1

1 1

2 2
2, 1 2

1 1

( ) ( )

arg  min 

( ) ( )
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i i N m

N m N
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i i N m

r d r d L k P L

r d r d L k P L
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          
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           

 

 

 

 
  (4.23) 

We further simplified (4.23) as follows: 

 
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2 2
1, 1
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2 2
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1 1
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 

 

 

 
 (4.24) 

While 1k  is independent of p . 

(4.24) can be re-written as: 

    1 1 2 2arg  min L LE P L E P L      (4.25) 

Where 2 2
1 1,

1 1

( ) ( )
N m N

i i i i i
i i N m

E r d r d L


   

        

2 2
2 2,

1 1

( ) ( )
N m N

i i i i i
i i N m

E r d r d L


   

        

After TS-approximated linearization, problem in (4.25) can be denoted as a cascaded 

LS formulation as follows, 

 
 

 
 

1 1
1

2
2 2

0 0

0 0

L L

L L

P L I P L I hH
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hHP L I P L I

                            

 

 
  (4.26) 

where 1 2    H h h  has been defined in Section 2.5. 

The problem of (4.26) can be solved by the following LS solution:  

1ˆ ( )T Tp B B B h   (4.27) 
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where 
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P L h
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Similarly, if we want to rely on the on-line mean bias estimation, we can combine 

(4.18) and (4.21). The minimization criteria can be denoted as follows: 

    1 1 2 3arg  min L LE P L E P L      (4.28) 

(4.28) can be solved by (4.27) similarly. The simulation results of proposed simplified 

ML of NLOS mitigation will be presented and discussed in Chapter 5. 

 

4.3 Adaptive Localization of Moving Mobiles 

In this section, we introduce conventional adaptive position update using Kalman 

filter in Section 4.4.1. In Section 4.4.2, we simplified the conventional Kalman gain 

and obtain a simple adaptive update of position estimation. In Section 4.4.3, we will 

propose an adaptive localization scheme under NLOS environment. 

 

4.3.1 Adaptive Position Update Using Kalman Filter  

The Kalman filter [34][35] addresses the general problem of estimating the state of a 

discrete-time process that is governed by the linear stochastic difference equation 

1 1 1k k k kp Ap Bu w        (4.29) 

With the measurement N
kz R that is 

k k kz Hp v     (4.30) 

The random variables  and k kw v  represent the process and measurement noise 

(respectively). They are assumed to be independent to each other, white, and with 

normal probability distributions 
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( ) ~ (0, )

( ) ~ (0, )

p w N Q

p v N R
   (4.31) 

In (4.30), if we apply TS-approximated linearization, the matrix H  is the same with 

(2.14). 

The specific procedure for update of parameter is presented below in Figure 4.7. 

 

Figure 4.7 Diagram of a Kalman filter, adapted from [34] 

where T
k k kP E e e    , which is a posteriori estimate error covariance 

k k ke p p    

From Figure 4.7, we can understand that the high computation of cost of the part of 

correction. In Section 4.3.2, our goal is to simplify the part of correction and compare 

the difference of performance. 

 

4.3.2 Adaptive Position Update Using Simplified Kalman Filter 

First, we focus on the simplification of the Kalman gain. If the SNR is higher than a 

general level, the error covariance matrix R nearly can be neglected. So the correction 

part in Figure 4.7 can be modified as below in Figure 4.8 
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Figure 4.8 Simplified Kalman filter  

From Figure 4.8, we can understand that the computational complexity of Kalman 

gain is highly reduced. Furthermore, if we apply TS-approximated linearization to 

observations, the position update equation can be simplified as follows: 

†
1 1 1( )k k k k kp p H r r        (4.32) 

where 1kr   is a range measurement vector at time index 1k  . kr  is a distance 

vector which is calculated from prediction position and position of the sensors. 

With the simplified Kalman gain, the error covariance is unexpected closed to 

zero which is not an ideal result. This might degrade some performance. Meanwhile, 

when the SNR is no longer good enough, the approximation in Figure 4.8 may no 

longer hold. This effect will be discussed and shown in our simulation in Chapter 5.  

 

4.3.3 Adaptive Localization in NLOS Environment 

For the tracking of a mobile, we will have information of consecutive range 

measurements. Between two closed range measurements, the range difference might 
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bounded by a certain amount. We utilize this property and attempt to enhance the 

accuracy of adaptive localization in NLOS environment. From (4.14), we can 

understand that magnitude of all elements of kr and 1kr   might comparable. So we 

detect the occurrence of NLOS by the following description: 

If 1, ,k i k ir r T     We infer that NLOS error occurred.  (4.33) 

where T is a threshold, related to the magnitude of NLOS bias. 

Once we infer that the measurement suffered from NLOS bias error at time 

index k+1, we replace 1kr   as follows: 

1 1(1 )k k kr r r       (4.34) 

where  is a forgetting factor. Usually, 0.9 ~ 1  . 

Because NLOS bias error may occur with a certain period typically, the 

forgetting factor avoids that the range would stop updating with a long time. The 

simulation result will be shown in Chapter 5.  
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Chapter 5  

Computer Simulations 

 
We will show the simulations of Chapters 3 and 4 to verify the algorithms in this 

chapter. In Section 5.1 we show the proposed range estimation of joint time and 

power technique. In Section 5.2 and 5.3, we verify the theoretical analysis derived in 

Chapter 3. The result of coverage analysis will be shown in Section 5.4. Section 5.5, 

compares the proposed two NLOS mitigation algorithms  and the method in [29]. 

Finally, in Section 5.6, we will compare the proposed tracking technique by simplified 

Kalman filter with conventional one. 

The performance measure for localization evaluation is: 

2
RMSE(Root-Mean-Square-Error) [ ]MSE E e              (5.1) 

where e p p    is the location estimation error defined in (3.1) 1000 independent 

trials are performed for each simulation of MSE. 

 

5.1 Simulations of Range Measurement 

In this section, we show the simulations of range estimations. First, we simulate 

conventional correlation scheme in Section 5.1.1. Localization accuracy is highly 

dependent on accurate measurement. The simulation result of proposed range 

estimation by joint time/power scheme will present in Section 5.1.2. 

 

5.1.1 Conventional TOA estimator 

In this section, we introduce and simulate correlator-based TOA estimator [44]. 

The selection of signal is an important issue. Chirp signal (or PN sequence) has the 
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property of high processing gain and its auto-correlation has a high peak and narrow 

width. These properties make it be regarded as a proper transmitted signal. We can see 

the advantage of these properties in the following discussion and Figures. The 

parameter we simulated is described as follows. The transmitted signal in Section 5.1 

is a chirp signal with duration 1 second and bandwidth 500Hz. The sampling rate is 

1000Hz. 

The true distance between mobile and sensor is 35m. We assume that the speed of 

sound is350m/s . We assume the gain of direct path is 1 and there is a multipath 

signal (with power gain 10.7 ) which followed the direct path. The received signal 

can be denoted as  

1 2( ) ( ) ( ) ( )mr t s t s t n t          (5.2) 

We assume 100  (sampling period), and 110m  . The normalized correlation 

output is shown in Figure 5.1. 

 

Figure 5.1 Normalized correlation output(Chirp duration=1 sec or 1000 samples) 
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Figure 5.2 Normalized correlation output (Chirp duration=0.4 sec or 400 samples) 

 

Once we set a threshold (for example, 0.7), the time-of-arrival of direct path can 

be estimated. If we choose a chirp signal with duration 0.4 second (a shorter one) and 

bandwidth 500Hz, the normalized correlation output is shown in Figure 5.2. We can 

understand that the two lobes of correlation output near the true TOA at 100 samples 

would broaden. If the multipath is much closer to the direct path, we can imagine that 

the two lobes will interfere with each other. This situation result in TOA estimation 

error. So a chirp signal (or PN sequence) with long duration (high processing gain) is 

a good choice of transmitted signal. 

We further discuss the importance of the property of transmitted signal as 

follows. The cross-correlation is highly dependent on the auto-correlation of ( )s t . 

We show the autocorrelation output with respect to different chirp signal duration in 

Figure 5.3. 
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Figure 5.3 Auto correlation output (left: duration=1 sec, right: duration=0.4 sec ) 

 

From Figure 5.3, we can understand that a chirp signal with long duration (high 

processing gain) would have better autocorrelation property. As shown in Figure 5.3, 

a chirp signal with higher processing gain will have better resolution in time. 

In the other hand, SNR (Signal to Noise Ratio) is another factor which affects 

the accuracy of TOA estimation. Figure 5.4 shows the simulation result of the TOA 

estimation with respect to SNR (Signal to Noise Ratio). A point in the Figure comes 

from 10000 times of estimations. The performance evaluation is the standard 

deviation of range error. From Figure 5.4, we obtain two observations. First, the 

ranging accuracy improves with increased SNR. Second, a chirp signal with longer 

duration will have better performance.  
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Figure 5.4 Standard deviation of range error v.s. SNR 

 

5.1.2 Ranging Technique by a Hybrid of TOA and RSS  

We assume that there is only a direct path, and the path-loss model 1 2k  , 2n  , in 

(2.7). We can see from Figure 5.5 that RSS performance is the poorest one, the 

correlator follows next, and the hybrid outperforms the others.  
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Figure 5.5 Standard deviation of range error v.s. true distance 

 

5.2 Asymptotic MSE of Hyperbolic Positioning Algorithm 

In Sections 5.2-5.3, we assume the sensors are distributed randomly and the 

mobile locates at the room randomly for 1000 times in a 6 6m m room. The range 

error is normal distributed random variable with standard deviation 10cm  .  

As mention in Section 3.1, the performance is highly dependent on the reference 

sensor selection. Figure 5.6 shows the performance distinction, we can see the result 

as follows.  
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Figure 5.6 Different reference sensor selections 

 

First, if we always choose the sensor which locates at origin, as mention in [17], 

the performance might degrade as the mobile far away from origin. Only when the 

mobile terminal always moves around the origin, the performance may acceptable. Or 

the performance will highly degrade. Second, if we choose the shortest range 

measurement as reference sensor, the performance might be enhanced about 5cm 

( 0.5 ). Besides, the red line is a theoretical result which can’t be achieved practically 

because it assumed that the shortest range is zero. However, if the there is a large 

amount of distributed sensors in the room, the blue line will approach to the red line 

asymptotically. In addition, the lowest line is the result of CRLB, which is hard to 

achieve.  

The red line comes from (3.6), and based on (3.6) we have derived a asymptotic 

MSE in (3.13). In Figure 5.7 we show the comparison of (3.6) and (3.13) 

theoretically. 
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For comparison, we re-write them as follows: 

Closed-form MSE: 2 1 1( ) ( )T T TA A A DA A A      (5.3) 

Asymptotic MSE: 2 5.67

1N
 


            (5.4) 

 

Figure 5.7 Closed-form MSE v.s. asymptotic MSE 

 

From Figure 5.7, we can understand that the line of MSE and asymptotic MSE 

will asymptotically close to each other. It represent that the assumptions in Section 3.1 

might hold when there are a large amount distributed sensors. To sum up, the 

closed-form MSE can be replace by a simpler closed-form shown in (5.4) 

asymptotically.  

In Figures 5.6 and 5.7, the result of red line can be further improved by weighed 

LS solution which is derived in (3.14). In Figure 5.8, we can see the performance 

upgrade by WLS. 
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Figure 5.8 Performance improvement by Weighted LS 

 

From Figure 5.8, we can understand that the red line is further improved to be the blue 

line. The amount of enhancement in performance is about 2cm ( 0.2 ). And from 

Figure 5.8 and (3.17), the hyperbolic positioning algorithm lower bound will approach 

to CRLB. 

 

5.3 Asymptotic MSE of TS-approximated LS Solution  

In this section, we show the simulation result of TS-approximated LS solution. 

As the derivation in Section 3.2, the simulated TS-approximated LS solution is 

bounded by (3.31) and (3.32). We can see Figure 5.9 shown below: 
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Figure 5.9 Lower bound and upper bound of TS-approximated localization errors-1 

 

The red line is a simulated line using TS-approximated LS solution with 

modeling error. The modeling error is comes from the initial guess which is obtained 

from hyperbolic positioning algorithm. From Figure 5.9 we can understand that the 

simulated RMSE is actually bounded by blue line and green line. Also, the three lines 

will close to each other asymptotically as mention in Section 3.3. Besides, if the 

number of sensors is fixed (N=10), we can see the variation of performance with the 

variation of range error in Figure 5.10. The result is similar to Figure 5.9. 
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Figure 5.10 Lower bound and upper bound of TS-approximated localization errors-2 

 

To sum up, we show the comparison of the linearization methods introduced in 

 

Figure 5.11 Comparison of 3 linearization methods 
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Section 2.5. Figure 5.11 shows the simulation result, and we can understand that 

TS-approximated localization outperforms the others. The simulation result also 

verifies the theoretical analysis which has been discussed in Chapter 3.   

 

5.4 Coverage Analysis of TS-approximated Localization 

From (4.2), the MSE of TS-approximated LS solution can be written as 

   
2 2

2 2

1 1
( )

1 1
f

b
  

 
   

  
   (5.5) 

Where both b  and   are position-dependent parameters. Once we know the value 

of b  and  , (5.5) can be calculated easily. Figure 5.13 shows the value of 2 at 

different position in a 6 6m m room and 10cm  . The four sensors are located at 

four corners respectively. 

 

Figure 5.12 Value of 2 at different position 

In Figure 5.12, we can understand that the value of 2  can almost be neglected 

because it is much smaller than 1. This result satisfies the mathematical derivation in 
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(4.8). Similarly, the value of 2  is shown in Figure 5.13 as following. 

 

Figure 5.13 Value of 2 at different position 

 

In Figure 5.13, we can understand that the value of 2 almost can reveal the 

localization error at different locations. When the mobile is closed to the sensor at 

corner, the value of 2  in (5.5) can’t be neglected. In other words, the localization 

accuracy is somehow dominated by 2 . Figure 5.14 shows the localization error for 

TS-approximated LS solution. We can understand that (5.5) and 2  have similar 

trend. 



 

57 

 

Figure 5.14 Localization error at different positions 

 

5.5 Simulations of NLOS Mitigation 

In this section, we will show the simulations to verify the algorithms proposed in 

Section 4.2. We assume the mobile locates at the center of a 30 30m m  room. 

0.4m  for range error and 3L m   for NLOS bias error. Equivalently, the mean 

value and standard deviation for NLOS bias is 3.76 m and 1.97 m respectively. There 

are 8 sensors uniform distributed on the side of the room. We vary the number of 

NLOS sensors (denoted as Lm ) and observe the performance between the four NLOS 

mitigation algorithm shown in Figure 5.15. 
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Figure 5.15 RMSE with different numbers of NLOS sensors.   

 

From Figure 5.15, there are some observations. When 3Lm  , the two 

algorithms (simplified ML-2a, simplified ML-2b) we proposed are slightly worse than 

the algorithm proposed in [29] (simplified ML-1). But when 4Lm  , the proposed 

algorithms outperforms simplified ML-1. We infer that when there are a large amount 

of NLOS sensors, the NLOS bias would occur more likely around the true mean value 

of NLOS bias. So when 4Lm  , the effect of smoothing of least-squares will be more 

efficient. In Figure 5.16 and 5.17, we compare the CDF (Cumulative Density 

Function) when there are 2 and 5 NLOS sensors respectively.   
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Figure 5.16 CDF comparisons with 2 NLOS sensors 

 

Figure 5.17 CDF comparisons with 5 NLOS sensors 
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In Figure 5.16, we can understand that the performances are comparable for the three 

algorithms (simplified ML-1, simplified ML-2a, simplified ML-2b) when there are 2 

NLOS sensors. While if there are 5 NLOS sensors, the proposed two algorithms 

outperform simplified ML-1 obviously which verify our inference.  

 

5.6 Simulation of Adaptive Localization 

5.6.1 Simplified Kalman Filter and Conventional Kalman Filter 

In Section 4.3 we proposed an adaptive location update by simplified Kalman filter. In 

this section, we compared the conventional Kalman with the simplified one. First, we 

set a trajectory for the mobile as Figure 5.18. The range error 10cm   (high SNR). 

A point in Figures 5.18 and 5.19 is average by 100 position estimation. We can see the 

comparison in the Figures 5.18 and 5.19. 

 

Figure 5.18 Conventional Kalman filter 
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Figure 5.19 Simplified Kalman filter 

 

From Figures 5.18 and 5.19, we can’t recognize which method is the better one. 

However, the RMSE for conventional Kalman filter and simplified one is 1.23cm and 

1.26 cm respectively. We can conclude that in high SNR environment, the two 

algorithms have comparable performance. In other words, we can save a portion of 

computational cost by using the proposed simplified Kalman filter. When the range 

error rises, we can see the comparison between the two algorithms in Figure 5.20.   
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Figure 5.20 Adaptive localization performance v.s. range error 

In Figure 5.20 we can understand that when the range error raises the difference 

between the two lines becomes larger and larger. In other words, conventional 

Kalman filter highly outperforms the simplified one. The main factor is the 

computation of Kalman gain. In Figure 4.8, when the range error rises, the assumption 

will degrade the accuracy of the calculation of Kalman gain. To sum up, adaptive 

localization using simplified Kalman gain saves amount of computational complexity 

in the cost of performance degradation.  

 

5.6.2 Adaptive Localization with NLOS Bias Error 

We also present our simulation on the adaptive localization with NLOS bias error. For 

simplicity, we assume a mobile is moving straightly from a corner to another corner 

as shown in Figure 5.21. NLOS error is randomly arranged in the route with random 

period. The NLOS bias error is modeled as Rayleigh distribution with mean 3.76m, 

standard deviation 1.97. And the range error is modeled as normal distribution with 
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20cm  . We can see the simulation result as following Figure: 

 

Figure 5.21 Adaptive localization in NLOS environment 

 

The tracking line has been smoothed. The thick black line represents that the 

occurrence of NLOS effect. Without NLOS detection and mitigation, the tracking 

performance is shown as the green line which is poor while NLOS occurred. The red 

line is the tracking result by proposed NLOS detection scheme. We can understand 

that while the NLOS occurred, it can be detected by (4.33), and the tracking 

performance will still be not influenced by NLOS effect. 
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Chapter 6  

Conclusions and Future Works 

 
In this thesis, we improve the ranging accuracy by a scheme of a hybrid TOA 

and RSS. The improvement in ranging will enhance the accuracy of localization. And 

we have investigated the accuracy of linear least-squares solution for sensor network 

localization in LOS environment. And the asymptotic MSE for different least-squares 

techniques were derived. With the derivation in Chapter 3, we can interfere that the 

theoretical error of TS-approximated LS solution and lower bound of hyperbolic 

positioning algorithm achieves CRLB asymptotically. On the other hand, the 

asymptotic MSE is inversely proportional to the number of sensors from the 

derivation of this thesis. 

      From simulation results, the proposed NLOS mitigation algorithm with 

simplified ML outperforms the method proposed in [29] obviously. But there is still 

a gap between proposed simplified ML and exact ML solution. And if the NLOS has 

not been identified, the problem will be more challenging.  Besides, we have shown 

the comparisons of proposed adaptive localization scheme and conventional one. In 

high SNR environment, they have comparable localization performance. But 

proposed adaptive localization using simplified Kalman Filter has lower 

computation cost. While in low SNR environment, the modified of proposed method 

to enhance performance is an issue which is deserve to discuss in the future. 
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