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Abstract

Many solutions for detecting signals transmitted over flat-faded multiple input multi-

ple output (MIMO) channels have been proposed, e.g., the zero-forcing (ZF), minimum

mean squared error (MMSE), lattice reduction and V-BLAST algorithms, to name a

few. However, these approaches suffer from either unsatisfactory performance or high

complexity.

We present an alternative method for detecting quadrature amplitude modulated

(QAM) MIMO signals. This method tries to estimate the probability distribution of

the candidate signal location by sampling over a neighborhood of the received wave-

form. The proposed random sampling based iterative distribution estimator is similar

to the class of Monte-Carlo based optimization approach and if the distance used in

measuring the distance between a tentative distribution and the optimal distribution is

the Kullback-Leibler distance (cross entropy) then our solution is identical to the one

known as the Cross-Entropy (CE) method. The CE method is motivated by the search

for an efficient rare-event simulation solution. The problem is equivalent to finding

the optimal importance sampling density. The desired density is obtained by iterative

random search in the space of exponential distributions with the CE metric.
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The proposed CE-based detector yields bit-error-rate (BER) performance which is

close to that achievable by the Maximum-Likelihood (ML) detector when the signal-to-

noise ratio (SNR) is relatively low. Unfortunately the performance curves exhibit error

floors in high SNR region. To improve the performance in high SNR region, we borrow

the concept of particle swarm optimization (PSO) in designing our detector. PSO is a

population-based iterative search algorithm which moves a number of particles through

the feasible solution space towards the optimal solution with the information obtained

in previous iterations. The modified iterative detector incorporates extra terms, which

are generated by a PS-like process and represent a driving force to pull the iterative op-

timization process from being trapped in local minimums, in updating of the importance

density and is called the particle-swarm-driven cross-entropy (PSD-CE) MIMO detector.

The PSD-CE detector gives significant BER performance improvement in medium-to-

high SNR region. We also consider the case when channel state information is imperfect

and suggest a robust detector structure based on a modified score function.
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Chapter 1

Introduction

Wireless communications are impaired predominantly by multipath fading [2]. How-

ever, in a richly scattered fading environment, fading can be beneficially as it promises

a multiple-input-multiple-output (MIMO) system to achieve significant capacity gain

through independent spatial modes [1]. For this reason, the MIMO technology has

gained enormous popularity and attracted much research interest over the past decade

[2]. Depending on the operation environment, a MIMO system possesses the potential

to obtain (1) array gain, (2) spatial diversity gain, (3) spatial multiplexing gain and (4)

interference reduction capability [1, 2].

Array gain refers to the increase in receive SNR through spatial processing at the

receive antenna array and/or spatial pre-processing at the transmit antenna array. It

improves the coverage and the range of a wireless network by raising resistance to noise.

Spatial diversity gain alleviates fading of the signal level by providing the receiver with

multiple copies of the transmitted signal in space, frequency or time. Ideally, these copies

are independent and the number of independent copies is called the diversity order. The

quality and reliability of the received signal improves as diversity order increases. A

MIMO channel with NT transmit antennas and NR receive antennas offers a spatial

diversity order of NT NR. Transmitting multiple and independent data streams within

the operating bandwidth increases data rates and capacity of a wireless network, which

is known as Spatial multiplexing gain [2]. In general, the number of data streams that
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can be provided by a MIMO channel equals the minimum of the number of transmit

antennas and the number of receive antennas, i.e. min{NT , NR}. Exploiting the spatial

dimension in a MIMO system might alleviate interference caused by sharing resources.

In addition, directing signal energy towards the intended user rather than other users

would avoid the impact of the interference. Interference reduction and avoidance improve

the coverage and range of a wireless network [2].

Although these advantages can not exist simultaneously due to conflicting demands

on the spatial degrees of freedom, some combinations across a wireless network would

improve the system performance such as capacity and reliability.

Encouraged by the collective behavior of social animals such as fish schooling and

the colony of ants, many genetic algorithms have been studied. In the work of Kennedy

and Eberhart [3], Particle Swarm Optimization is motivated by bird-flocking behavior

and is an iterative algorithm based on social-psychological model of social influence and

social learning [4]. In the original model, individuals in a particle swarm follow a simple

behavior. The collective behavior that emerges is that of discovering optimal regions

of a high dimensional search space. At each iteration, each individual determines its

nearest neighbor and replaces its velocity with that of its neighbor. To further extend

the model, the “rooster” concept of Heppner and Grenander [5] was added, in the form

of a memory of previous best and neighborhood best positions. The previous (personal)

best position of each individuals is the best position found by the individual since the

first simulation to the current iteration. The neighborhood best position is the best

position found by the neighborhood. These two best positions serve as the attractor

and the resulting model was referred to as particle swarm optimization. The swarm

algorithm exhibits adaptive behavior since the state changes when personal best and

global best position change.

The Cross-Entropy (CE) method is a general Monte Carlo approach to solve com-

binatorial and continuous multi-extremal optimization problems. The name is derived
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from the cross-entropy distance (or the Kullback-Leibler distance) [6] which defines a

distance between two probability density functions. This method was animated by an

adaptive algorithm including the idea of minimizing variance for estimating probabilities

of rare events in complex stochastic networks [7]. Soon after the first exploration, the

fact was found that a simply modified version could be used not only for estimating

probabilities of rare events but for solving difficult combinatorial optimization problems

as well. This is done by translating an original deterministic optimization problem into a

related stochastic estimation problem and applying the rare-event simulation mechanism

to it [8].

The CE method is an iterative procedure and each iteration involves two phases [9] :

1. Generate a set of random samples according to a specified mechanism.

2. Update the parameters of the random mechanism based on the generated data in

order to produce a better set of samples in the next iteration.

The advantage of the CE method is that it provides a simple adaptive procedure for

estimating the optimal reference parameters. The fact that the updating rules are simple,

explicit and optimal in some well-defined mathematical sense makes the CE method

powerful and desirable. It provides a unifying approach to simulate and optimization

and has great potential for exploring new search areas in the solution space.

The rest of this thesis is organized as follows. The ensuing chapter provides brief

summary of the assumptions and models for the channel and system of concern. In

Chapter 3, we review some general MIMO detection schemes including linear and non-

linear detection methods. Chapter gives a detailed description of the Particle Swarm

Algorithm. In the following chapter, the concepts of the cross-entropy-based MIMO

detection method as well as the particle-swarm-driven cross-entropy MIMO detection

method are proposed. Chapter 6 shows simulation performance of these algorithms are

provided. Finally, our work is concluded. The notations used in this thesis are as follows.
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Vectors and matrices are denoted by symbols in bold face. (·)T and (·)H represent trans-

pose and Hermitian transpose, respectively. E{·} denotes the statistical expectation.

tr(·) denotes the trace of an square matrix.
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Chapter 2

System Model

2.1 Perfect Channel Estimation

Consider a MIMO system with NT transmit antennas and NR receive antennas

with NR > NT . Input data is demultiplexed into NT substreams which are mapped

onto sequences of M -QAM symbols. The set of candidate signals in the constellation

is denoted as AM . These substreams are transmitted simultaneously and received syn-

chronously. For convenience but without loss of generality, we present a time-discrete

complex baseband model for one time slot only.

Let xi and yj denote the complex valued signal transmitted by the ith antenna and

those received by the jth receive antenna, i = 1, · · · , NT , j = 1, · · · , NR, respectively.

Denote H as the overall channel matrix and assume, for the time being, that H is

perfect known to the receiver. In other words, there is no channel estimation error at

the receiver. The (j, i)th element of H, hj,i, is the channel response between the ith

transmit antenna and the jth receive antenna. The MIMO system model just described

is shown in Fig. 2.1. The received signal (vector) expressed in matrix form is given by

y = Hx + w (2.1)
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Figure 2.1: A MIMO system model.

where

x = [x1, · · · , xNT
]T ∈ ANT

M , (2.2)

y = [y1, · · · , yNR
]T ∈ CNR , (2.3)

w = [w1, · · · , wNR
]T ∈ CNR , (2.4)

H =




h1,1 · · · h1,NT

...
. . .

...
hNR,1 · · · hNR,NT


 ∈ CNR×NR . (2.5)

and C denotes the complex-valued domain. Every element of H is a complex Gaussian

fading gain with unit variance, i.e. σ2
h = 1. The vector w represents the complex

additive white Gaussian noise with zero mean and variance σ2
w. Each noise observed at

the different antenna is assumed to be uncorrelated, i.e. E{wwH} = Σw = σ2
wINR

where

INR
is an identity matrix of size NR ×NR. Throughout our work, the average transmit

power of each antenna is also normalized to 1. In other words, x has a covariance matrix

E{xxH} = σ2
xINT

with σ2
x = 1.
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2.2 Pilot-based Channel Estimation

In practice, the assumption that H is perfect known by the receiver is not valid.

There usually exists differences between the exact channel matrix and the estimated

channel matrix due to channel estimation errors.

In order to estimate the channel matrix H by the receiver, a number of pilot symbols

are sent prior to data symbols. Denote by si the NP × 1 pilot vector for ith transmit

antenna and constitute the NT ×NP matrix S as

S =




sT
1
...

sT
NT


 . (2.6)

The receive vector yP follows to

yP = HS + wP (2.7)

where wP is AWGN noise with zero mean and covariance matrix σ2
wP

INR
.

Define the channel matrix estimation error as ∆H, the channel known at the receiver

can be written as

Ĥ = H + ∆H, (2.8)

and the linear least-square (LS) estimate of H is given by

Ĥ = yPSH(SSH)−1. (2.9)

We thus have

∆H = wPSH(SSH)−1 (2.10)

It is known that mutual orthogonal pilot sequences will obtain the best channel

estimate with uncorrelated estimation errors. Therefore, the rows of S are chosen to be

orthogonal, i.e.

SSH = NP EP INT
(2.11)
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where EP is the average power of the training symbols defined as

EP =
1

NP NT

tr(SSH). (2.12)

From [10], the conditional probability density function (PDF) of Ĥ given H is a complex

Gaussian distribution with mean H and covariance matrix Σ∆H = σ2
∆HINT

. Using the

PDFs of H and (Ĥ|H) with the conditions of mutually orthogonal pilot sequences and

i.i.d. channel coefficients, we derive the PDF of (H|Ĥ) as [10]

p(H|Ĥ) = CN (δĤ, δσ2
∆HINT

⊗ INR
) (2.13)

with

δ =
σ2

h

σ2
h + σ2

∆H

(2.14)

where CN (·) denotes complex Gaussian distribution and ⊗ represents the Kronecker

product.
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Chapter 3

General MIMO Detection Schemes

We briefly survey four classes of popular MIMO detection schemes in this chapter

for the convenience of subsequent discussions. These detectors are classified into two

categories, namely, the linear and nonlinear detection schemes.

3.1 Linear Detectors

Using a NT ×NR matrix P to linearly combine the elements of the received signal

y is a straightforward approach to estimate the transmit signal x. Zero-Forcing (ZF)

and Minimum-Mean-Square-Error (MMSE) are the most two common methods in linear

MIMO detection schemes.

3.1.1 Zero Forcing Dector

In a ZF detector, the interference introduced by the channel matrix is nulled out by

multiplying the received signal vector y with the Moore-Penrose pseudo-inverse [11] of

the channel matrix, i.e. PZF = H+ = (HHH)−1HH . The transmit signal x is estimated

by quantizing every element of the filter output vector to an element of the symbol

alphabet,

x̂ = Q{H+y} = Q{x + (HHH)−1HHw}, (3.1)

where x̂ is estimated transmit signal and Q denotes the quantization operation.
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A drawback of a ZF detector is that nulling out interference without considering the

noise might amplify the noise power significantly. For an orthogonal channel matrix,

ZF is identical to the optimum detector, Maximum Likelihood (ML) detector. However,

since the channel matrix is not ideal or orthogonal in practice, ZF leads to a noise

enhancement problem generally.

3.1.2 Minimum Mean Squared Error Detector

To solve the noise enhancement problem in ZF detectors, MMSE detectors take the

noise term into account and minimize the mean square error between the transmit signal

and the estimated transmit signal, J(P) = E{(x− x̂)H(x− x̂)}, with respect to P. The

optimum matrix PMMSE is given by

PMMSE =

(
HHH +

σ2
w

σ2
x

)−1

HH . (3.2)

Similar to ZF detectors, each element of the filter output is mapped by a minimum

distance quantization so as to get the estimated transmit signal.

3.2 Nonlinear Detectors

3.2.1 Maximum Likelihood Detector

The maximum likelihood (ML) detector estimates the transmit signal x̂ by find-

ing the one which minimizes the distance between the received signal vector and the

estimated signal vector, i.e.

x̂ = arg min
x∈ANT

M

||y −Hx||. (3.3)

The problem can be solved by exhaustively searching over all possible x and choose the

one that makes the distance smallest. However, although ML has the best performance

among all MIMO detection algorithms, the number of all possible x increases with
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NT exponentially. The computational complexity will become prohibitively high when

transmit antenna NT and constellation size M increase.

3.2.2 V-BLAST Algorithm

Vertical Bell Labs layered space time algorithm (V-BLAST) is a popular nonlinear

combining approach for detecting MIMO signals [12]. V-BLAST detection employs an

ordered serial detect-and-cancel strategy similar to that of decision-feedback equalizer.

At the receiver, a successive interference cancellation concept is applied such that each

substream is considered as the desired signal in turn while the others are regarded as

interferers. With a linear combinatorial nulling technique, nulling is performed in a

particular detection order by linear weighting the received signals to satisfy a specific

criterion such as ZF or MMSE. Taking ZF nulling for example, the weighting vectors zi

of size NR × 1 for i = 1, · · · , NT are chosen to meet

zT
i (H)j = δij. (3.4)

where (H)j is the jth column of H and δ is the Kronecker delta. And the ith substream

is estimated by

x̂i = Q(zT
i y). (3.5)

Interference from already-detected components of x is subtracted out from the received

signal. Therefore, the received vector is modified iteratively and the interferers are

less than that at the previous iteration. Due to the symbol cancellation used in this

algorithm, the weighting vectors for ZF nulling can be revised as

zT
i (H)j =

{
0, if j ≥ i
1, if j = i

(3.6)

Denote the detection order set by O = {s1, · · · , sNT
}. The general detection process

is described in Table 3.1.
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Step 1 : Set k = 1.

Step 2 : Choose the nulling vector zsk
for skth substream in accordance with

equation (3.6).

Step 3 : Calculate the decision statistic for skth substream and quantize it
to obtain x̂sk

as equation (3.5)

Step 4 : Assume x̂sk
= xsk

, and suppress the component of xsk
from the

received signal y. Modify the received vector as y = y − x̂sk
(H)j.

Step 5 : Stop at iteration k = NT ; otherwise, let k = k + 1 and go back to Step 2.

Table 3.1: The V-BLAST detection algorithm.

The detection order plays an important role in this algorithm. An improper order will

induce a error propagation problem. It is proved in [12] that the optimal detection order

is determined to maximize the minimum post-detection signal-to-noise ratio (SNR) of

all data streams. Therefore, selecting the “best” (smallest) post-detection SNR at each

stage in the process leads to the global optimum ordering. The post-detection SNR for

detected component xsk
of x is obtained by

ρsk
=
E{|xsk

|2}
σ2

w||zsk
||2 (3.7)

where the expectation is taken over the constellation set.
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Chapter 4

Particle Swarm Optimization

4.1 Particle Swarm Algorithm

Inspired by the movements of birds flocking, the particle swarm algorithm is an

optimization technique for a real-valued multidimensional solution space [4, 14]. It ad-

justs the trajectories of a population of “particles” (or samples) through the feasible

solution space iteratively. Every particle is evolved based on the information about

each particle’s previous best performance and the best previous best performance of its

neighborhood. They traverse a solution space where a quality measure, fitness can be

evaluated. Through cooperation and competition among these particles over several it-

erations, all particles can move towards the optimal position. This approach is attractive

due to its advantages of the simple mathematical model, resistance to being trapped in

a local optimum and faster convergence. For MIMO detection, binary particle swarm

optimization (PSO) are applied.

The coordinates of every particle represent a possible solution associated with two

vectors, the position and the velocity. In binary PSO, the elements in velocity vector

is squashed by a sigmoid function, Sig(x) = 1
1+e−x , to the range (0, 1) and is used

to determine whether the corresponding elements in position vector is either 0 or 1.

In K-dimensional search space, the ith particle is represented by the position vector

13



xi = [xi1, · · · , xiK ]T and the velocity vector vi = [vi1, · · · , viK ]T . In a MIMO detection

problem, xi is regarded as a candidate solution. Applying the PS algorithm to this

problem, the fitness function is defined as

f(x) = ||y −Hx||2. (4.1)

A fitness value of a particle is assigned to the particle’s current location by using the

coordinates of the particle. Also, let gb and pb
i denote the position vector of the particle

with the best performance among its neighbors so far and the position vector of ith

particle with the best performance along its previous fitness values, respectively.

Velocity vector vi at tth iteration is updated according to the following equation:

vik(t) = vik(t− 1) + φ1[p
b
ik − xik(t− 1)] + φ2[g

b
k − xik(t− 1)]

with vik ∈ {−vmax, vmax} (4.2)

for k = 1, · · · , K, where φ1 and φ2 are positive random numbers drawn from a uniform

distribution with a predefined upper limit. In binary PSO, the limit is arbitrary but

the sum of φ1 and φ2 are usually set to be less than 4 [14]. The first term in equation

(4.2) indicate the impact of the velocity at (t − 1)th iteration. The last two terms are

considered as cognitive part and social part, respectively. The cognitive part denotes

the effect of the evolution of ith particle itself. The social part represents the interaction

between ith particle and its neighborhood.

In continuous PSO, the position vector is updated by the velocity vector as [15]

xi(t) = xi(t− 1) + vi(t− 1). (4.3)

where t is the index of iteration. Vector representation for relationship between velocity

and position is shown in Figure 4.1. In binary PSO [15], the elements in velocity vector

after being squashed represents the probabilities of the elements in position vector taking

the value 1. To update the position vector xi at tth iteration, the binary decision rule
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Figure 4.1: Vector representation for relationship between velocity and position with
k = 2.

shown below is followed:

If rand() < Sig(vik(t)), then xik(t) = 1

else, xik(t) = 0 (4.4)

for k = 1, · · · , K, where rand(·) is a random number selection function from a uniform

distribution in [0, 1]. With these new position vectors, fitness values of the particles are

evaluated. In the meanwhile, gb and pb
i are updated again, and so on. This procedure

is repeated until maximum number of iterations is reached and the estimated transmit

signal is decided by gb. The flow diagram of the Particle Swarm algorithm is shown in

Figure 4.2.
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Figure 4.2: The Particle Swarm algorithm flow chart.
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4.2 Variations of Particle Swarm Algorithm

In the PS algorithm, there are some parameters related to convergence speed and

performance, such as the number of particles in the swarm, the neighborhood topology

and the acceleration coefficients [4, 14]. The influences of these basic parameters are

discussed in this section.

The more number of particles in the swarm, also called the swarm size, the larger

the initial diversity of the swarm. A wider range of search space will be explored at

each iteration if the swarm size is larger. Furthermore, it is more possible that more

particles would reach the optimal solution within fewer iterations. Nevertheless, the

computational complexity increase while a large swarm size is used and the swarm

degrades to a parallel random search. Generally, fewer particles are needed for a smooth

search space than that for a rough surface. The optimal swarm size is problem-dependent

and is suggested to be optimized for each problem through cross-validation methods

instead the heuristics found in publications.

In the PS algorithm, gb denote the position vector of the particle with the best

performance among its neighbors. The neighborhood size represents the quantity of

social interaction occurring within the swarm. Smaller neighborhood sizes leads to a

slow convergence and are insensitive to a local minimum, thus there are more dependable

convergence to the optimal solution. To ensure an initial high diversity with faster

convergence, the search can start with small neighborhoods. As the number of iterations

increases, the size of neighborhood should be enlarged so as to move all particles to a

promising search area. Two extreme cases for neighborhood topology are presented in

Figure. 4.3. In Figure. 4.3(a) the neighborhood of every particle are the ones next to

it while the neighbors for every particle in Figure. 4.3(b) are all other particles in the

swarm .

In equation (4.2), the two random numbers φ1 and φ2 are regarded as acceleration

coefficients which control the stochastic effects of the cognitive and social components
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(a) (b)

Figure 4.3: Two examples for neighborhood topology.

over the procedure.

Particles move through smooth trajectories if φ1 and φ2 are small. They might

explore more good areas rather than being stocked in a good region found before. On

the contrary, large values for φ1 and φ2 lead to more acceleration, and particles move

towards past good regions with hasty movements.

Initialization for φ1 and φ2 are important because an improper initialization may lead

to divergent or cyclic behavior over the algorithm. In general, φ1 and φ2 are optimized

with the values ensuring convergence first and remain static during the procedure.
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Chapter 5

Cross-Entropy-based MIMO Signal
Detection

5.1 Generic Cross-Entropy Method

5.1.1 Importance Sampling

The Cross Entropy (CE) method attempts to solve an optimization problem by

relating it to a rare event simulation problem [9]. Usually, the sample size for estimat-

ing a rare event probability is very large. Important Sampling (IS) is a well-known

technique used to reduce the variance by simulating a system under a different set of

parameters (reference parameters) or under a different probability distribution. With

this technique, the rare event is much more likely to occur so that the sample size of

the rare event simulation can be reduced. In conventional IS, the optimal reference

parameters are difficult to obtain. The CE method provides a simple and fast proce-

dure to estimate the optimal reference parameters used in IS. More specifically, the CE

method is an iterative Monte-Carlo based approach to find the IS density, i.e. the im-

portance distribution, which is closest to the optimal important distribution in the

Kullback-Leibler sense. The Kullback-Leibler distance D(g, h) is a distance measure of
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two different distributions g(x) and h(x) which defines as follows:

D(g, h) =

∫
g(x) ln

g(x)

h(x)
µ(dx). (5.1)

A distance metric must satisfy the three rules below:

(1) The distance is non-negative.

(2) Symmetric property: The distance between two points is the same while measuring

from either direction.

(3) Triangle inequality: Considering a triangle formed by three points, the sum of any

two edges is larger than the third edge.

Therefore, the K-L distance is not a true distance metric since it is not symmetric and

does not satisfy the triangle inequality.

5.1.2 A Generalized CE Method for Optimization

In this subsection, we give a brief description to the relationship between IS and the

CE method for optimization problem. The CE method attempts to solve the following

optimization function

arg max
ω∈Ω

S(ω) (5.2)

where Ω is the domain of variable ω and S is the score function of ω defined on Ω.

Applying IS to this problem, we find another set of parameter, e.g. v, instead of ω. To

find the optimal importance distribution within a class of densities f(ω; v), we adapts

the parameter v iteratively so that the Kullback-Leibler distance (i.e. the cross entropy)

between the associated density and the optimal importance distribution is minimized.

In general, a generic CE method can be described by the following steps :

1. Generate samples according to the importance distribution determined at the pre-

vious iteration.
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2. Calculate the scores to the generated samples according to a specific score function.

3. Update the importance distribution by the samples with comparatively better

scores.

4. Repeat the above steps until the stopping criterion is reached.

At the very beginning, we give a initial distribution to the importance distribution

and generate a set of samples depending on it. Then we compute the scores for every

sample individually. For an optimization problem, the value of the objective function

are usually regarded as the score for each sample. The samples with better scores are

called elite samples and the set composed of elite samples is defined as the elite set.

We choose those elite samples to update the importance distribution. The updated

importance distribution is a linear combination of the original importance distribution

and the distribution determined by the elite samples. Again, new samples are generated

according to the updated importance distribution and the same steps mentioned above

are repeated. This procedure is processed iteratively until the stopping criterion is

reached.

5.2 Cross-Entropy-based MIMO Signal Detection

5.2.1 A CE-based MIMO detection algorithm

To apply the CE method to a MIMO system, we first define a score function

S(x) = ||y −Hx||2 (5.3)

under the assumption of perfect channel estimation for solving the following optimization

problem,

arg min
x∈ANT

M

||y −Hx||. (5.4)
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Following the procedures of the CE method, the importance distribution of x with

relatively smaller scores are estimated by minimizing the distance between the initial

distribution and the optimal importance distribution. The estimated transmit signal x̂

is the symbol that is the most likely to occur according to the distribution or the sample

with the smallest score during the whole process. Intuitively, an estimated transmit

signal vector x̂ is regarded as a sample and the score will be calculated for the sample.

However, there are MNT possible candidates if we treat a vector as a sample unit. Thus

a large sample size may be required to cover a wider search region so that the computing

complexity would inevitably increase. In order to avoid this problem, the importance

distribution of every element in a transmit signal x is estimated separatively.

Let f (k)(xi) denote the importance distribution of the ith element for i = 1, · · · , NT ,

where the superscript k is the index of iteration. U samples, xk
i,u for u = 1, · · · , U ,

are generated at kth iteration in accordance with f (k)(xi) for the ith element. To cal-

culate the scores for these samples, a vector set {xk
u}U

u=1 is constructed where xk
u =

[xk
1,u, · · · , xk

i,u, · · · , xk
NT ,u]

T represents the uth sample vector at kth iteration.

Given a specific quantile probability ρ, there are infinite number of thresholds such

that the probability of the scores less or equal to these thresholds are larger or equal to

ρ. To select elite samples, we choose the threshold at kth iteration γk satisfying

γk = arg min
γ

P (S(Z) ≤ γ) ≥ ρ for Z ∈ {xk
u}U

u=1 (5.5)

And the elite samples are those whose scores satisfies S(xk
u) ≤ γk. The distributions of

elite samples are calculated as

f (k)
s (xi = a) =

∑U
u=1 I{S(xk

u)≤γk}I{xk
i,u=a}∑U

u=1 I{S(xk
u)≤γk}

(5.6)

where a ∈ AM for i = 1, · · · , NT .

Based on these elite samples, the importance distributions f (k)(xi) for i = 1, · · · , NT

are updated according to

f (k+1)(xi = a) = αf (k)
s (xi = a) + (1− α)f (k)(xi = a) (5.7)
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where α is the weighting factor and 0 ≤ α < 1. The updated importance distributions

are linear combinations of the original importance distributions and the distribution of

the elite samples.

The procedure described above is repeated iteratively until the stopping criterion is

met. For example, the pre-defined number of iterations is reached or the importance

distributions converges. This algorithm is listed as shown in Table 5.1.

Step 1 : Initialize the importance distributions f (k)(xi) with uniform
distribution for i = 1, · · · , NT , respectively. And set k = 0.

Step 2 : Generate U samples xk
i,u from fk(xi) for u = 1, · · · , U .

Construct the set {xk
u}U

u=1 where xk
u = [xk

1,u, · · · , xk
i,u, · · · , xk

NT ,u]
T .

Step 3 : Calculate the set of scores {S(xk
u)}U

u=1 according to equation (5.3).

Step 4 : Set a quantile parameter ρ such that there is a γk satisfying
equation (5.5).

Step 5 : Calculate the distribution of elite samples in accordance with
equation (5.6).

Step 6 : Update the importance distributions according to equation (5.7).

Step 7 : Stop at iteration k = K if the pre-defined stopping criterion is
met; otherwise, let k = k + 1 and go back to Step 2.

Table 5.1: The cross-entropy-based MIMO detection algorithm.

5.2.2 Weighting Factors

In equation (3.6), the weighting factor α effects the exploration and exploitation

ability. Exploration is an ability to explore more different regions in the search space

to find the global optimum. On the contrary, exploitation is an ability to concentrate

the search around the a specific region in order to refine a candidate solution. If α is
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larger, the component of updated distribution depends on more information from elite

samples. Therefore, it is more likely to exploit than to explore and the convergence

speed is faster. However, it is also much more possible to trap in one area since the elite

samples generated at first several iterations may lead to a local minimum. If α is small,

it takes more iterations to converge but has a higher probability to locate the global

optimum.

Usually, to balance the exploration and exploitation, the weighting of the original

importance distribution, i.e. the importance distribution at the previous iteration, is

about twice that of the distribution of elite samples from some experiences of simulations.

Therefore, α is chosen to be about 0.3 in our work. For other optimization problems, it

depends.

5.2.3 Simulation Result of the CE-based Detection Method

Figure 5.1 shows the BER performance of ML detection and the CE-based detection

method under a 4× 4 MIMO system using 4-QAM.

As shown in the figure, our simulation indicates that the resulting BER performance

is close to that of ML detector at low SNR region. However, there exists an error floor

when SNR is larger than about 10dB since the estimated importance distributions do

not converge uniformly, i.e., some of the importance distributions do converge but not

all the NT importance distributions.

5.3 Particle-Swarm-Driven Cross-Entropy Methods

5.3.1 A PS-Driven CE MIMO Detection Algorithm

Inspired by the evolution concept of swarm algorithm, the updating formula of im-

portance distribution, i.e. equation (5.7), in the CE-based MIMO detection method
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Figure 5.1: BER performance comparison of ML detection and the CE-based detection
with α = 0.3.

is modified to solve the problem of nonuniform convergence mentioned in the previous

section. The main idea is to keep the newly generated samples close to the generated

samples with the best scores. Except for the elite samples generated in the current itera-

tion, we enhance the effect of sample vectors with the best score in the current iteration

and those among all iterations so far. The updated importance distribution thus become

a mixture of distributions determined by the current elite set, the current best sample

vector(s) and the overall best sample vector(s).

Denote by xg(1) = [xg(1),1, · · · , xg(1),NT
]T the best sample vector from the first iteration

to the current iteration where the index “1” represents the rank of score. Similarly,

xp(1) = [xp(1),1, · · · , xp(1),NT
]T is defined as the best sample vector in the current iteration.

At each iteration, xg(1) and xp(1) are recorded and updated. New added distributions

at kth iteration f
(k)
g(1)(xi) and f

(k)
p(1)(xi) for i = 1, · · · , NT , are given based on these two
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vectors respectively as

f
(k)
g(1)(xg(1),i = a) =

{
λp, if a ∈ A′

M

p , if a 6∈ A′
M

(5.8)

and

f
(k)
p(1)(xp(1),i = a) =

{
λp, if a ∈ A′

M

p , if a 6∈ A′
M

(5.9)

subject to the constraints

∑
a∈AM

f
(k)
g(1)(xg(1),i = a) = 1 (5.10)

and

∑
a∈AM

f
(k)
p(1)(xp(1),i = a) = 1, (5.11)

where p ∈ (0, 1) denotes a probability, A′
M is a subset of AM containing all neighbors

of a, and λ is a constant positive integer. In our work, A′
M is defined as all nearest

points of a. Taking a = 1 + i in 16-QAM for example, the region of A′
M is shown in

Figure 5.2. Even though a is not the global optimal point exactly, the true optimum

may occur within its neighbors intuitively. Hence, higher probabilities are assigned to

the four points nearest a and a itself.

Including these components into the updating of the CE-based MIMO detection

method, the updating formula of importance distributions are revised as follows,

f (k+1)(xi = a) = α1f
(k)
s (xi = a) + α2f

(k)
g(1)(xi = a) + α3f

(k)
p(1)(xi = a)

+

(
1−

3∑
i=1

αi

)
f (k)(xi = a), (5.12)

where αi are weighting factors with 0 ≤ αi < 1 for i = 1, 2, 3 and
3∑

i=1

αi < 1.

The algorithm of the Particle-Swarm-driven CE MIMO detection method is listed

in Table 5.2. As shown in the simulations, the PS-driven CE MIMO detection method

provides a significant improvement in the BER performance compared with the CE-

based MIMO detection method.
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Figure 5.2: An example of region of A′
M as a = 1 + i with 16-QAM.

Step 1 : Initialize the importance distributions f (k)(xi) with uniform
distribution for i = 1, · · · , NT , respectively. And set k = 0.

Step 2 : Generate U samples xk
i,u from f (k)(xi) for u = 1, · · · , U .

Construct the set {xk
u}U

u=1 where xk
u = [xk

1,u, · · · , xk
i,u, · · · , xk

NT ,u]
T .

Step 3 : Calculate the set of scores {S(xk
u)}U

u=1 according to equation (5.3).

Step 4 : Set a quantile parameter ρ such that there is a γk satisfying
equation (5.5).

Step 5 : Calculate the distribution of elite samples in accordance with
equation (5.6).

Step 6 : Update the sample vector with the best score overall (from the
1st to the kth iteration), xk

g(1), and the best sample vector in the

current iteration, xk
p(1).

Step 7 : Calculate the component importance distributions f
(k)
g(1) and f

(k)
p(1)

according to equation (5.8) and (5.9).

Step 8 : Update the importance distributions following the revised
updating equation (5.12).

Step 9 : Stop at iteration k = K if the pre-defined stopping criterion is
met; otherwise, let k = k + 1 and go back to Step 2.
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Table 5.2: The Particle-Swarm-driven CE MIMO detection algorithm.

As mention in the previous section, the weighting factors follow the rule of that in the

CE-based MIMO detection method. The weighting for the distribution of the previous

iteration remains most part of the updating equation.

5.3.2 Modifications for the PS-Driven CE Method

Enhancement of the effects of sample vectors in the current iteration and those

among all iterations leads to a uniform convergence. However, it may encounter the

problem of being trapped in a local minimum. To draw a higher probability to explore

the global minimum during the procedure, the samples vectors with the second best

score are also considered.

Let xg(2) and xp(2) denote the sample vectors with the second best score among all

iterations and in the current iteration, respectively. Similar to f
(k)
g(1)(xi) and f

(k)
p(1)(xi),

f
(k)
g(2)(xi) and f

(k)
p(2)(xi) are given depending on these two vectors. Including the two new

added distributions to the updating formula of importance distributions, equation (5.12)

can be modified as

f (k+1)(xi = a) = α1f
(k)
s (xi = a) + α2f

(k)
g(1)(xi = a) + α3f

(k)
g(2)(xi = a)

+α4f
(k)
p(1)(xi = a) + α5f

(k)
p(2)(xi = a)

+

(
1−

5∑
i=1

αi

)
f (k)(xi = a), (5.13)

According to equation(5.13), any one component can be dropped if the corresponding

weighting factor is assigned to zero. Thus there are several combinations of the composite

components for the updating formula. To further extend this model, the sample vector

with the third best score can even be considered. However, the sample vector with too

poor score will degrade the performance. Therefore, to enhance the exploration ability

of this algorithm, the sample vectors used should have relatively better scores but not
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too worse at all. The discussion of different combinations for those component is given

in Chapter 6 with their BER performances.

5.4 Score Function under Imperfect Channel Esti-

mation

So far, the channel state information is assumed perfect known at the receiver. Thus

the score function used in the proposed algorithms is defined as

f(x,y,H) = ||y −Hx||2.

Recalling a detector in the ML sense and define the likelihood function as L(y|H,x), the

ML detector estimates x by maximizing the likelihood function under i.i.d. Gaussian

noise:

x̂ML = arg max
x∈ANT

M

L(y|H,x) (5.14)

= arg min
x∈ANT

M

(− log L(y|H,x)) (5.15)

= arg min
x∈ANT

M

||y −Hx||. (5.16)

However, when imperfect channel estimation is taken into account, the score function

must be modified in the presence of channel estimation errors. Denote Lm(y|Ĥ,x) the

modified likelihood function which is obtained by averaging L(y|H,x) over all estimation

errors as [10]

Lm(y|Ĥ,x) =

∫

H∈CNR×NT

L(y|H,x)p(H|Ĥ)dH (5.17)

= EH|Ĥ
[
L(y|H,x)|Ĥ

]
. (5.18)

= CN (δĤx,Σw + δΣ∆H||x||2) (5.19)

Using equation(5.19), the ML estimate under imperfect channel estimation is revised
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as

x̂ML = arg min
x∈ANT

M

(
− log Lm(y|Ĥ,x)

)
(5.20)

= arg min
x∈ANT

M

NR log π(σ2
w + δσ2

∆H||x||2) +
||y − δĤx||2

σ2
w + δσ2

∆H||x||2
. (5.21)

Hence the modified score function in the presence of imperfect channel estimation is

defined as

fm(x,y, Ĥ) , − log Lm(y|Ĥ,x) (5.22)

=
||y − δĤx||2

σ2
w + δσ2

∆H||x||2
+ NR log π(σ2

w + δσ2
∆H||x||2) . (5.23)

The first term in equation (5.23) is similar to the original score function. It also indicates

that the modified score function only includes the term σ2
∆H instead of other detailed

information about estimations errors.
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Chapter 6

Simulation Results

In this chapter, we examine the performance of various proposed MIMO detectors.

A MIMO system with NT = 4 transmit antennas and NR = 4 receive antennas with

4-QAM modulation is considered. Let Eb be the average received energy per information

bit and denote by N0 the noise power density. The signal-to-noise (SNR) ratio is defined

as

Eb

N0

=
NR

log2(M)σ2
w

. (6.1)

6.1 Perfect Channel Estimation

The channel matrix is assumed perfect known by the receiver in this section. Fig.

6.1 shows the bit error rate (BER) of the CE-based detection method with α = 0.3 and

the PS-driven CE MIMO detection method with α1 = α2 = 0.1 ,α3 = 0.2 and β = 0.3.

It is obvious to see that the proposed PS-driven CE detection algorithm can effectively

solve the problem of nonuniform convergence in the CE-based detection algorithm. The

error floor caused by the CE-based detection is eliminated at high SNR regions.

The BER performance comparison between some existing detection methods such as

ZF, MMSE, ZF-VBLAST and the PS-driven CE detection algorithm is shown in Fig.

6.2. Due to noise enhancement, the performance of ZF is poor in comparison to ML

even with V-BLAST algorithm. MMSE offers a slight improvement compared with ZF.
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Figure 6.1: BER performance of the two proposed detectors.

Figure 6.2: BER performance comparison of different detectors.
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The proposed algorithm provides a near-ML performance and outperforms the MMSE

detector by more than 12dB at BER=10−4.

Next, we discuss some modifications for the PS-driven CE detection methods. BER

performances are shown for the PS-driven CE detection method with different combina-

tions in the updating formula, equation (5.13). Fig. 6.3 compares the difference between

the one using xg(1) only and the one using both xg(1) and xp(1). As shown in this figure,

the one using both xg(1) and xp(1) reaches lower BER when SNR is larger than 10dB

since xp(1) provides another more reliable position at each iteration in addition to the

best position among overall iterations.

Figure 6.3: BER comparison of the PS-driven CE detector using(1) xg(1) only; (2) both
xg(1) and xp(1).

Although including the use of best sample vector in every iteration leads to an obvious

improvement instead of using xg(1) only, it is possible that the swarm is trapped in a

local minimum since only the best sample vectors are considered. Replacing xp(1) with

xp(2) or xp(3), Fig. 6.4 plots BER performance comparison of these different detection
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methods.

Figure 6.4: BER comparison of the PS-driven CE detector using xg(1) and (1) xp(1); (2)
xp(2); (3) xp(3), respectively.

As expected, the one with xp(2) performs best among these three scenarios. The case

of xp(3) provides a similar contribution with that of xp(2). However, the third best sample

vector may be too far away the optimum and can’t afford good enough information.

Fig. 6.5 shows results of adjustments for the weighting factor of xp(2). The weighting for

f
(k)
g(1)(xi) and f

(k)
s (xi) remain constant as 0.1, respectively. In Fig. 6.6, the combination

of xg(1), xg(2) and xp(2) is considered. It also indicates that the sample vectors used in

each iteration plays an more important role for the algorithm rather than those among

all iterations.

Figs. 6.7 and 6.8 verify the one with xp(2) performs better than that with xp(1). Fig.

6.8 plots the averaged minimum distance trajectory, i.e. ||y −Hx||2, at each iteration

when SNR is 15 dB over 1,000,000 simulations and it exhibits that using xp(2) exactly

leads to a smaller distance.
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Figure 6.5: BER comparison of the PS-driven CE detector using xg(1) and xp(2) with
different weighting of xp(2).

Figure 6.6: BER comparison of the PS-driven CE detector using (1)xg(1) and xp(2);
(2)xg(1), xg(2) and xp(2).

35



Figure 6.7: Symbol error rate performance of the PS-driven CE detector using xg(1) and
(1) xp(1); (2) xp(2), respectively.

Figure 6.8: The averaged minimum distance at each iteration when SNR=15 dB.
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Finally, we present the BER performance using the PS-driven CE detection method

which uses the components of xg(1) and xp(2) in a 6× 6 MIMO system.

Figure 6.9: BER of a 6×6 MIMO system with 4-QAM under the PS-driven CE detection
algorithm and ML detection.

6.2 Imperfect Channel Estimation

In this section, the channel estimation error is included. Orthogonal training se-

quences are generated from a perfect root-of-unity sequence (PRUS) [16] which can be

constructed by the Frank-Zadoff-Chu-sequence [17] as

s(k) =

{
ejπCk2/N , for N is even
ejπCk(k+1)/N , for N is odd

(6.2)

with k = 0, · · · , N−1 where N denotes the length of sequence and C is a positive integer

that is coprime to N . The updating formula for importance distributions is chosen to

37



be

f (k+1)(xi = a) = 0.1f (k)
s (xi = a) + 0.1f

(k)
g(1)(xi = a)

+0.2f
(k)
p(2)(xi = a) + 0.6f (k)(xi = a) (6.3)

since it performs best according to the simulation results shown in the previous section.

Fig. 6.10 shows the BER performance with σ2
∆H = 0.03 and NP = 8 using the original

score function and the modified one.

Figure 6.10: BER performance comparison of a 4× 4 MIMO system with 4-QAM based
on different score functions with σ2

∆H = 0.03.

6.3 Complexity Comparison

The computational complexity comparison of conventional detectors and the pro-

posed detectors is listed in Table 6.1.

Although the complexity of the proposed detectors is higher than conventional de-

tectors such as ZF, MMSE, ZF-VBLAST, the BER performance of the PSD-CE outper-

forms those detectors. Compared with the ML detector, the complexity is much lower
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when NT is large. Though the sample size U increases as the constellation size M in-

creases, it has a very slight variation while NT increases. Taking 4× 4 and 6× 6 MIMO

systems for example, the complexity of the PSD-CE detector for these two cases is the

same since U and Nitr remain constant in the two cases. However, the complexity of

ML detector increase two orders when the number of antennas is raised from 4 to 6.

Detector Complexity
ML (NT NR + NR)×MNT

ZF 4N3
T + 2N2

T NR + NT NR

MMSE 4N3
T + 2N2

T NR + NT NR + NT

ZF-VBLAST

NT∑
i=0

(4i3 + 2NRi2) +

NT−1∑
i=0

[NT (NT − i) + 2NT ]

CE [(NT NR + NR)× U + 3]×Nitr

PSD-CE [(NT NR + NR)× U + 5]×Nitr

Table 6.1: Complexity comparison between different detectors.
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Chapter 7

Conclusion

The purpose of this thesis is to present alternative algorithms for detecting signals in

a MIMO system. We first propose a detector which is based on the Cross-Entropy (CE)

method. The CE-based MIMO detection method is a Monte-Carlo based approach to

estimate the importance distribution of transmit signals by minimizing the distance be-

tween the provisional distribution derived at each iteration and the optimal importance

distribution. Simulation result indicates that the BER performance of our detector is

close to the ML detector when SNR is comparatively low. However, an error floor occurs

at high SNR region due to nonuniform convergence of the CE approach.

To improve the CE-based MIMO detector and reduce the error floor, we include

the ideas of the Particle Swarm Optimization (PSO) and propose the PS-driven CE

detection algorithm. Updating the importance distributions by a mixture of densities

determined by the elite set and the best sample vector among all iterations improves the

detector performance. In addition, considering the best sample vector at each iteration

in determining the updated importance distributions further improves the performance.

Moreover, to extend the PS-driven CE MIMO detection algorithm, some modifications

for the updating formula of importance distributions are also considered. As shown

in the simulation results, PS aided CE approach can significantly eliminate the error

floor, outperforming the conventional ZF or MMSE detector by more than 12dB at

BER=10−4.
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To take into account the channel estimation errors, we propose a robust detector

structure which is based a modified score function. The estimation errors are modelled

as complex Gaussian distributed and the modified score function includes the variance

of the channel estimation error as an extra term. Simulation results prove that the

modified score function used by our detector helps to improve the BER performance

when the practical imperfect channel estimation scenario is considered.
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