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具分式校驗矩陣之低密度校驗迴旋碼
及其相關解碼演算法研究

研究生: 賴志傑 指導教授: 王忠炫

國立交通大學電信工程學系碩士班

摘摘摘要要要

低密度校驗碼(LDPC)是近幾年來最為人所熟知的靠近通道容量的編碼 。低密度校驗螺旋

碼(LDPC-CC)則為結合低密度校驗碼與螺旋碼的特性 ，具有低密度的非零位置在校驗矩陣中 ，

同時尤於螺旋碼的結構而能被編碼成任意的長度 ，卻只需要一個解碼器即可進行解碼的動作 。

除此之外 ，解碼器在經過一開始的延遲時間後就能連續地輸出解碼後的資料 。由於以上的特

色 ，使得在可能更改資料框架的大小以及即時作業的系統中 ，低密度校驗迴旋碼比起低密度校

驗方塊碼來得更合適 。因此本碩士論文即從兩方面討論低密度校驗迴旋碼的解碼特性 。一為提

供一新觀點來針對具分式校驗矩陣之低密度校驗迴旋碼做解碼的動作 ，二為提出針對低密度校驗

迴旋碼之位翻轉解碼演算法的改善 。

目前 ，具有良好更正能力的低密度校驗迴旋碼多為利用代數結構所建造出來的 ，而常被廣

泛使用的則是利用半循環式低密度校驗碼來建構出低密度校驗迴旋碼 。但是其對校驗矩陣的限

制是每個元素必須是零或單項式或是二項式 。若有一元素為三次多項式 ，則代表該碼的Tanner

graph的最短周長小於等於六 。這代表著在利用疊代信息傳遞解碼演算法進行解碼時容易造成信

息相關性過大而使得編碼增益大幅降低 。在本篇論文中 ，我們用新的觀點來針對具分式校驗矩

陣之低密度校驗迴旋碼做解碼的動作 ，經由改良過的Tanner graph建造過程 ，我們避免了最短

周長為四的情況 。在模擬結果中 ，更表述了我們的方法能使得以往認為較差編碼增益的低密度

校驗迴旋碼具有良好的編碼增益 。於此同時 ，我們產生與具有良好編碼增益的低密度校驗迴旋

碼之校驗矩陣的等價分式校驗矩陣 ，再經由我們所提出的方法進行解碼 ，所得的編碼增益媲美

與原先的解碼結果 。

另一方面 ，我們亦針對低密度校驗迴旋碼提出改善之位翻轉解碼演算法 。在前人的研究

中 ，針對低密度校驗迴旋碼之解碼器裡的每一個處理器提出了翻轉閾值的設定 。此設定的模擬

結果比Gallager提出的位翻轉解碼演算法有較佳的增益 。但是事先設定閾值讓處理器不能對解碼
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過程的真實情況做出對應的改變 。因此我們提出了動態提高閾值的解碼演算法 ，每個處理器只

有在必要時候才會提高閾值以做為因應 。模擬結果更告訴了我們所提出的改善方法能更有效率的

偵錯 ，並獲得更佳的編碼增益 。
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A Study on LDPC-CC with Rational Parity-Check

Matrices and Related Decoding Algorithms

Student: Chih-Chieh Lai Advisor: Chung-Hsuan Wang

Department of Communication Engineering

National Chiao Tung University

Abstract

Low-density parity-check convolutional codes (LDPC-CC) are convolutional codes with

low-density of ones in the scalar form of parity-check matrices. They have good features

that do not exist in LDPC block codes such as they can be encoded with arbitrary length by

simple shift registers, and can be decode by only one decoder. On the other hand, a decoder

for LDPC block code can only decode codewords with fixed length. Besides, the decoder

pops out the decoded outputs continuously, and makes LDPC-CC more adequate to real

time operating systems than LDPC block codes. In this thesis, we discuss the decoding

algorithms for LDPC-CC in two perspectives. First, we propose a new perspective for

decoding LDPC-CC with rational parity-check matrices. Second, we present an improved

bit-flipping decoding algorithm for LDPC-CC.

Recently, good performance LDPC-CC are constructed from quasi-cyclic LDPC (QC-

LDPC) codes. There are zeros, monomial or binomial in the parity-check matrices of those

LDPC-CC. In this thesis, we discuss the possibility that LDPC-CC with rational parity-

check matrices can still have good bit error rate (BER) performance. We propose a new

perspective of constructing Tanner graph to represent the rational in parity-check matrix.

There are no cycles of length 4, and the iterative message passing algorithm can be free from

high dependence in the examples. The simulation results show that the BER performance is

better than that of previous perspective for decoding LDPC-CC with rational parity-check

matrices about 1 dB improvement and 1 dB away from maximum likelihood (ML) decoding

results in the cases of LDPC-CC with small memory. In the cases of LDPC-CC with large

III



memory, our simulation results show about 0.7 dB improvement. We also generate rational

parity-check matrices equivalent to the monomial parity-check matrices constructed from

QC-LDPC. The simulation results show that there are no difference between two BER

peformance.

In addition to the decoding for LDPC-CC with rational parity-check matrices, we also

discuss the hard decision decoding for LDPC-CC. In many applications such as the commu-

nication in flash memory, the power consumption and the volume of the system are the most

important concern, and a simplified decoding algorithm for LDPC codes is needed. Bit-

flipping algorithms are good choices because they provide decoded results very quickly by

utilizing hard decisions of received sequence. There is much research on modified bit-flipping

algorithms for different type of LDPC block codes but few discussion about LDPC-CC. Un-

luckily, the bit-flipping algorithm for LDPC block codes are not well suitable for decoding

LDPC-CC due to the nature of the decoders for LDPC-CC. Therefore, we propose a mod-

ified bit-flipping algorithm for decoding LDPC-CC in this thesis. The simulation results

show that the BER performance is better than previous work about 2 dB improvement in

many cases.
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Chapter 1

Introduction

1.1 Motivation

Low-density parity-check (LDPC) block codes were invented by Gallager in 1960s [1] but are

overlooked for almost 35 years. They have been rediscovered and shown that the random

construction of LDPC codes for long code length can approach the Shannon-limit. Gener-

ally, the random construction codes outperform algebraically constructed LDPC codes in

long code length. However, for medium-length LDPC codes, say a few thousand bits, the

situation is different. For these lengths, algebraic construction may have better BER per-

formance than random ones. Besides, the lack of structure of random construction of LDPC

codes leads to a serious problem for accessing the large size of parity-check matrix both in

encoding and decoding. Therefore algebraic construction of LDPC codes is worthy to be

discussed. Quasi-cyclic LDPC (QC-LDPC) codes are one type of algebraic construction of

LDPC codes and they can be efficiently encoded by using simple shift registers [2, 7, 8].

After that, the convolutional counterpart of LDPC block codes called LDPC convolutional

codes (LDPC-CC) can be constructed from QC-LDPC.

In 1999, LDPC-CC were proposed by Alberto Jiménez Felström and Kamil Sh. Zigan-

girov [5]. LDPC-CC are convolutional codes with low density of ones in the scalar form

of parity-check matrices [6, 7, 10, 11]. They can be encoded efficiently and with arbitrary

length by shift registers just like convolutional codes, and there is no modification for the

decoder, i.e., a LDPC-CC decoder can decode the code with arbitrary length by modified
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iterative message passing decoding algorithms. Furthermore, after an initial delay, the de-

coded outputs of the decoder are continuously popped out. These features make LDPC-CC

more adequate than LDPC block codes in some communication systems such as IEEE 802.11

wireless standards that ethernet frames can vary in size from 64 Bytes to 1518 Bytes.

The recent algebraic construction for LDPC-CC comes from QC-LDPC codes [2, 6, 7].

However there are some restrictions on the parity-check matrices. For those codes, there

is zero, monomial, or binomial in each entry in the parity-check matrices. It was shown

that the girth of the Tanner graph corresponding to the QC-LDPC codes with trinomial

in the parity-check matrices is smaller or equal to six. Because the LDPC-CC constructed

from QC-LDPC codes has similar Tanner graph as the mother QC-LDPC codes, the girth

property is also apply to them [6]. This result usually leads to poor bit error rate (BER)

performance and is also the reason that mostly LDPC-CC consist of only zero, monomial

and binomial in the parity-check matrices. But in this thesis, we propose a new perspective

of decoding for LDPC-CC with rational parity-check matrices. We induce dummy variable

nodes in the Tanner graph to represent the structure of rational and avoid the cycles of length

4. The simulation results show that the BER performance is better for about 1 dB and

0.7 dB improvement in the examples. Besides, we generate rational parity-check matrices

equivalent to the monomial parity-check matrices and apply them to the new perspective of

decoding. The BER performance is comparable with that of algebraic constructed LDPC-

CC.

The decoding for LDPC-CC with any kinds of parity-check matrices in the above para-

graphs are based on soft decision decoding. In many applications, the power consumption

and the volume of the system are the most important concern. They require the decoders

to work in low complexity or quickly. For these reasons, the iterative message passing algo-

rithms for LDPC codes must be simplified. Bit-flipping (BF) algorithms are also originally

proposed by Gallager and they are hard decision decoding algorithms and hence can provide

decoded result very quickly. There are many modified bit-flipping algorithms for decoding

different type of LDPC block codes but few discussions for LDPC-CC. In this thesis, we
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proposed a modified BF algorithm for decoding LDPC-CC and compare the results with

previous works. The BER performance of our modified BF algorithms is better than that

of previous works about 2 dB improvement in many examples.

1.2 Organization of Thesis

The organization of this thesis is as follows. In Chapter 2 and 3, a review of LDPC block and

convolutional codes is presented, respectively. The discussion of LDPC convolutional codes

with rational parity-check matrix is given in Chapter 4. A proposed bit-flipping algorithm

is presented in Chapter 5. Simulation results are presented in Chapter 6. Remarks are given

in Chapter 7 to conclude this work.
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Chapter 2

Introduction to Quasi-Cyclic
Low-Density Parity-Check Codes and
Low-Density Parity-Check
Convolutional Codes

In this chapter, we introduce the concept of LDPC Codes and the decoding algorithm for

LDPC codes. We also introduce QC-LDPC codes and their construction and properties in

this chapter.

2.1 Low-Density Parity-Check Codes

Definition 1 LDPC codes.

An (j, k) LDPC code is a linear block code defined by the parity-check matrix which has low

density of ones, where j ones in every column and k ones in every row. In addition, the

number of ones in common between any two columns is no greater than 1.

An LDPC code can be represented by a Tanner graph. A Tanner graph is a bipartite

graph in which nodes can be partitioned into two classes, and no edge connects two nodes

from the same class. A Tanner graph for an (j, k) LDPC code of length N is a bipartite

graph such that there are N nodes, named ”bit nodes” or ”variable nodes”, corresponds

to the N coded bits and there are m nodes, named ”check nodes” or ”function nodes”,

corresponds to the m parity-check equations (Hence, the parity-check matrix H is of size
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m×N). An edge connects to a bit node and a check node if and only if the bit participates

the parity-check equation. The neighborhood of a node is a set of nodes that connect to

the node. There may be cycles in a Tanner graph and the length of the cycle must be even.

The girth of a Tanner graph is the length of the shortest cycle in the graph.

Example1: An example of (10, 5) LDPC code.

H =



1 1 1 1 0 0 0 0 0 0

1 0 0 0 1 1 1 0 0 0

0 1 0 0 1 0 0 1 1 0

0 0 1 0 0 1 0 1 0 1

0 0 0 1 0 0 1 0 1 1


The corresponding Tanner graph:

+ + + + +

Figure 2.1: Tanner graph of Example 1

To encode LDPC codes, we eliminate the parity-check matrix to a systematic form, then

using the shortcut

If H =
[

In−k | P
]

then G =
[

BT | Ik

]
to get the generator matrix. There is also an efficient approach to get the generator matrix.

The decoding algorithm for LDPC codes would be Sum-Product algorithm (SPA). Both

bit nodes and check nodes pass extrinsic information to the neighborhood in each iteration.

SPA algorithm can operates both in the probability domain and log-likelihood domain.
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Usually we operate SPA in the log-likelihood domain because of numerical stability. It

takes five steps to complete the decoding tasks.

Step 1: Initialization. For all i and j such that bit Xi is included in parity check fj, i.e.,

for all (i, j) such that hj,i = 1 the message from Xi to fj would be:

L(qi,j) = L(Xi) = 2yi/σ
2

where L(qi,j) is the log-likelihood ratio of the massage passed from bit Xi to the check fj,

L(Xi) is the log-likelihood ratio of bit Xi and 2yi/σ
2 is the log-likelihood ratio of bit Xi

assuming Xi is priori equally likely to be +1 or −1 and is transmitted over the additive

white Gaussian noise (AWGN) channel with variance σ2.

Step 2: Pass information from check nodes to bit nodes. The message from check node

fj to bit node Xi would be:

L(rj,i) =

 ∏
i′∈Rj\i

αi′,j

φ

 ∑
i′∈Rj\i

φ(βi′,j)


where αi,j = sgn(L(qi,j)) and βi,j = |L(qi,j)| and φ(x) = log

ex + 1

ex − 1
Step 3: Pass information from bit nodes to check nodes. The message from bit node Xi

to check node fj would be:

L(qi,j) = L(Xi) +
∑

j′∈Ci\j

L(rj′,i)

where Ci denotes the location of the 1’s in column i of H and Ci\j = Ci\{j}.

Step 4: Compute the log-APP (a posteriori probability) ratios for each bit position i:

L(qi,j) = L(Xi) +
∑
j∈C

L(rj,i)

Step 5: Compute the hard decisions and decide if it’s time to stop.

X̂i =

 +1, if L(Qi) > 0;

−1, otherwise

6



If all the parity-checks are satisfied or the maximum number of iterations reached, then

stop; otherwise, go to step 2.

The SPA algorithm processes the soft information while there is an algorithm for hard

decision. Bit-Flipping (BF) algorithm was also proposed by Gallager and is an algorithm

that flips the most probable error bits in each iteration. It takes 6 steps to complete the

decoding task.

Step 1: Fix a ”threshold” parameter δ.

Step 2: For parity check j (0 ≤ j ≤ m− 1), compute the associated syndrome Sj.

Step 3: If Sj = 0 for all j or the maximum number of iteration is reached, stop.

Step 4: For each bit position i (0 ≤ i ≤ n − 1), let gi denote the number of non-zero

syndromes that include bit i.

Step 5: Let A denote the bit positions that participate in more than or equal to δ failed

parity checks, i.e. A = {i : gi ≥ δ}.

Step 6: Flip bit i for all i ∈ A and go to Step 2.

2.2 Quasi-Cyclic Low-Density Parity-Check Codes

In this section, we introduce an algebraic method to construct an LDPC code which results in

a special class of LDPC codes named Quasi-Cyclic Low-Density Parity-Check (QC-LDPC)

codes[2, 3].

Definition 2 Circulant matrix.

A circulant matrix is a special kind of Toeplitz matrix where each row vector is rotated one

element to the right relative to the preceding row vector.

An n× n matrix C of the form

C =



c0 cn−1 · · · c2 c1

c1 c0 cn−1 c2
... c1 c0

. . .
...

cn−2
. . . . . . cn−1

cn−1 cn−2 · · · c1 c0


7



is called a circulant matrix.

Definition 3 The ring of binary circulant matrices.

The set of binary right circulant matrices of size r × r forms a ring isomorphic to the ring

of polynomias of degree less than r, F2[X]/ < Xr−1 >: to each circulant matrix M we can

associate uniquely a polynomial M(X) with coefficients the entries of the first row of M .

Definition 4 Quasi-Cyclic Codes.

A linear code C of length n , r · P is called a quasi-cyclic (QC) code with period P if

the right-shift by P positions of any codeword is again a codeword. Such a code can be

represented by a parity-check matrix Hthat consists of circulant matrices of size r × r.

Definition 5 Type-I and Type-II QC-LDPC codes.

We say that a quasi-cyclic code is of type-I if it is given by a polynomial parity-check matrix

H(X) with all entries either monomials or zero. We say that a quasi-cyclic code is of type-II

if it is given by a polynomial parity-check matrix H(X) with all entries either binomials

(i.e. sum of two monomials), monomials, or zero.

We introduce an algebraic method to construct a QC-LDPC codes. Let a, b be two

nonzero element of the set {0, 1, · · · ,m− 1}, i.e. GF(m), for m is a prime. Let the K and

J be the corresponding multiplicative orders of a and b, respectively, i.e., o(a) = K and

o(b) = J . We form a J ×K matrix of the form

H =


I1 Ia Ia2 · · · IaK−1

Ib Iab Ia2b · · · IaK−1b

· · · · · · · · · · · · · · ·
IbJ−1 IabJ−1 Ia2bJ−1 · · · IaK−1bJ−1


where Ix is an identity matrix of size m×m with each row shifting to the left by x−1 mod m

positions.
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Example 2: An example of QC-LDPC code. m = 31, a = 2, b = 5.

It is easy to know that o(a) = 5 and o(b) = 3. Then the parity-check matrix is given by

H =


I1 I2 I4 I8 I16

I5 I10 I20 I9 I18

I25 I19 I7 I14 I28


93×155

From the example, we can know that a QC-LDPC code constructed by this way is a

regular LDPC code with common column weight J and common row weight K.

2.2.1 Encoding and Decoding

To decode QC-LDPC codes, we can use SPA as we treat QC-LDPC codes a class of LDPC

codes. But in encoding of QC-LDPC codes, there is an easier way to encode QC-LDPC

codes. We can use the nature of quasi-cyclic code to encode with a shift register.

Consider an example of (9, 3) quasi-cyclic code generated by the followiing generator

matrix:

G =


111 100 110

110 111 100

100 110 111


To encode the codeword, we can use a shift register as in Figure 2.2. Let (c0, c1, c2) be the

+

+

Gate 1

Gate 2

Input

Output

Figure 2.2: A shift register for encoding a (9,3) quasi-cyclic code.

message to be encoded. As soon as the three information symbols have been shifted into

9



the register, gate 1 is deactivated and gate 2 is activated. The information symbol c2 and

two parity-check symbols p
(1)
2 and p

(2)
2 appear at the output terminals and then are shifted

into the channel. The two parity-check symbols are given by

p
(1)
2 = c0 + c2,

p
(2)
2 = c0 + c1 + c2.

Next, the register is shifted once. The content of the register is now (c2, c0, c1). The

information symbol c1 and two parity-check symbols p
(1)
1 and p

(2)
1 appear at the output

terminals, and the are shifted into the channel. The parity-check symbol p
(1)
1 and p

(2)
1 are

given by

p
(1)
1 = c1 + c2,

p
(2)
1 = c0 + c1 + c2.

At this point, the register is shifted once again. The content of the register is now (c1, c2, c0),

and the information symbol c0 and two parity-check symbols p
(1)
0 and p

(2)
0 appear at the

output terminals.

These three symbols are then shifted into the channel. The two parity-check symbols

are given by

p
(1)
0 = c0 + c1,

p
(2)
0 = c0 + c1 + c2.

This completes the encoding. The codeword has the form

v = (p
(2)
0 , p

(1)
0 , c0, p

(2)
1 , p

(1)
1 , c1, p

(2)
2 , p

(1)
2 , c2)

which consists of three blocks, each of which consists of one unaltered information symbol

and two parity-check symbols. This form may also be regarded as a systematic form.

2.2.2 Properties of QC-LDPC Codes

In this section, we introduce some important properties of QC-LDPC codes.

Theorem 1 Let C be a (J,K)-regular type-I QC-LDPC code with a J × K monomial

parity-check matrix H(X). Then

dmin ≤ (J + 1)!
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Theorem 2 For any J ≥ 2 and K ≥ 3 (J,K)-regular type-I QC-LDPC codes, the corre-

sponding graph in this class can not have a girth greater than 12.

Theorem 3 Let C be a (J,K)-regular QC-LDPC code with trinomial or higher order poly-

nomials parity-check matrix H(X). Then the girth of the corresponding Tanner graph can

not greater than six.

The proof of Theorem 1 and Theorem 2 can be found in [3] and [2], respectively. Finally,

it is easy to find a cycle of length six in the Tanner graph of the QC-LDPC code with trino-

mial or higher order polynomials in parity-check matrix H(X), and the proof of Theorem

3 is completed.

2.3 LDPC Convolutional Codes

In this chapter, we briefly introduce the concept of LDPC convolutional codes.

2.3.1 Definition

A rate R = b/c regular LDPC convolutional (ms, J,K) codes is a code defined by a syndrome

former HT , having exactly J ones in each row, where J � (c − b)ms, and K ones in each

column. ms is the largest degree of the exponent of parity-check matrix.

The syndrome former HT satisfies v · HT = 0, where v is a coded sequence v =

(· · · ,v0,v1, · · · ,vt, · · · ), vt ∈ Fc
2. It is of the form:

HT =


HT

0 (0) · · · HT
ms

(ms)
. . . . . .

HT
0 (t) · · · HT

ms
(t+ms)

. . . . . .


where HT

x (t) is the submatrix at time t and is of size c× (c− b) and the largest value of x

would be ms which is code the memory of the syndrome former.

From above, we can know that the column weight constraint starts from the ms ·(c−b)th

column. Usually, we require HT
0 (t) to be full rank for help fast encoding.
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Example: 3 An example of fast encoding for rate R = 1/3 (3, 2, 3) LDPC convolutional

codes.

The code is specified by the transpose of parity-check matrix[6]

HT =


1 D3

D D2

D3 1


The transpose of parity-check matrix is a superposition of different time delay matrix.

HT =


1 D3

D D2

D3 1

 =


1 0

0 0

0 1

+D


0 0

1 0

0 0

+D2


0 0

0 1

0 0

+D3


0 1

0 0

1 0


Let vt = (v

(0)
t , v

(1)
t , v

(2)
t ) represent the three codedbits of time t in the coded sequence. Then

it follows that

vt


1 0

0 0

0 1

+ vt−1


0 0

1 0

0 0

+ vt−2


0 0

0 1

0 0

+ vt−3


0 1

0 0

1 0

 =
[

0 0
]

And we have two equations from the above. v
(0)
t + v

(1)
t−1 + v

(2)
t−3 = 0

v
(2)
t + v

(1)
t−2 + v

(0)
t−3 = 0

If we let v
(2)
t be the information bit ut, then the corresponding parity-bits v

(0)
t ,v

(1)
t can be

determined by solving the equations. Therefore, we can use a shift-register in Figure 3.1 to

solve the equation and encode the pairty-bits. From Example 3, we know that as the time

delay zero submatrix is full rank, we can encode the corresponding paritybits by solving the

equations.

2.3.2 Decoding Algorithm for LDPC Convolutional Codes

We use BP algorithm to decode LDPC convolutional codes. Because the nature of the

convolutional code, we can use a decoding window to slide through the Tanner graph cor-

responding to the LDPC convolutional code and have continuous outputs after an initial

delay.

12



Figure 2.3: A shift register for encoding LDPC convolutional code.[6]

Example: 4 Decoding window for a LDPC convolutional code.

A rate R = b/c = 1/3 (3, 2, 3) LDPC convolutional code is specified by the parity-check

matrix

HT (D) =


1 D3

D D2

D3 1


From the parity-check matrix, we have a corresponding Tanner graph The black or gray

Figure 2.4: Tanner graph for LDPC convolutional codes of Example 5[6]
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Figure 2.5: Decoding window for LDPC convolutional codes of Example 5[6]

circles represent bit nodes while the white circles stand for check nodes. Each time instant

the code generates three coded bits, i.e. three bit nodes, and has two parity-checks, i.e.

two check nodes. Therefore, at the right most of the Tanner graph there is a rectangle

surrounding three bit nodes and two check nodes and that means those five nodes are in

one time instant. We can find that the Tanner graph of LDPC convolutional codes is

periodic with period one time instant.

The memory of this code is ms = 3 and that means every bit node whose associated

check nodes must all appear in three time instants. This nature gives a decoding window to

decode the Tanner graph in pipeline. The decoding window has I processors corresponding

I maximum iterations and the size of window is I(ms + 1) time instants. The Tanner graph

flow through the decoding window from the right side, and is popped out from the left side.

The nodes popped out are updated I times and can be decoded after hard decision for the

LLR. That means once the nodes are processed by a processor, the LLR of the nodes are

updated once. The ith processor performs ith iteration of message passing, i = 1, 2, · · · , I.

The influence of one processor is those bit nodes and check nodes in (ms + 1) time instants.

Suppose that each edge of the Tanner graph has associated with it a memory element

to store the message passed along that edge during iterations. Channel messages are stored

14



in memory elements associated with the symbol nodes. A processor can access the memory

elements along edges connected to constraint nodes under its influence.

Each processor first activates the c − b = 2 check nodes and then c = 3 bit nodes

referred to as ”active” nodes in Figure 3.3. The check nodes are updated corresponding to

those that just enter into the influence of the ith processor and the bit nodes are those will

exit the influence of the ith processor once updated. When a check node is activated, it

reads the memory locations corresponding to the edges which it connects to and updates

these locations with new messages. Activating a symbol node leads to exactly the same set

of operations. In this case access to the memory locations containing the channel values

is also needed to update messages. The message updates are calculated according to the

particular message passing algorithm being used, for example in the case of the BP algorithm

the update equations are as in Chapter 2.

Consider the part of the Tanner graph under the influence of the first processor in Figure

3.3, i.e., the interval [t+ 4(I − 1)− 1, t+ 4I − 1]. The bottom of the two active check nodes

at time t + 4I − 1 is connected to three bit nodes, the first at time t + 4I − 1, the second

at time t + 4I − 3, and the third at time t+ 4(I − 1). The corresponding edges are shown

using dashed lines in Figure 3.3. Consider the situation just before the check nodes at time

t + 4I − 1 are activated by processor 1. The edges corresponding to bit nodes in the past

(shaded arrows) already contain the channel values (in general the values from the previous

iteration). The check node only needs the channel value along the edge (in general the value

from previous iteration) corresponding to the symbol node at t+4I−1 to be able to update

messages along its connecting edges.

The last of the three active bit nodes at t + 4(I − 1) connects to two check nodes, one

at time t+ 4(I − 1), and the other at time t+ 4I − 1. The corresponding edges are shown

using dashed lines. Once more let us look at the situation just before the check nodes at

t + 4I − 1 are activated by processor 1. Since the check node at time t + 4(I − 1) was

activated earlier (in fact 3 time units back) this edge (shaded arrow) contains an updated

message. The symbol node only lacks the message along the other edge (empty arrow), i.e.,
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from the check node three time units away.

Once processor 1 activates the two check nodes at t + 4I − 1 each of them can use the

values along the edges to which it connects and calculate the new message for each edge.

Thus, all edges connected to the two check nodes now contain updated messages. When

the bit nodes are then activated all its edges contain updated messages from the associated

check nodes. The symbol nodes can now calculate the new messages to be output along each

of the connecting edges and the first iteration is complete for bit nodes at time t+ 4(I − 1).

Observe that each processor can operate independent of the other processors. The Ith

processor calculates APP values and outputs the final decoded values for the three active

bit under its influence. This process is now repeated as the decoder slides along the Tanner

graph.

2.3.3 Previous Algebraic Construction

This section describes a method to construct a LDPC convolutional code from a QC-LDPC

code. We use the structure of multiplicative groups of integers modulo m to put circulant

matrices into the parity-check matrix so as to form regular quasi-cyclic LDPC codes. We

briefly review the procedure to construct a regular quasi-cyclic LDPC code. For a prime m,

the integers {0, 1, 2, · · · ,m− 1} forms a field under addition and multiplication modulo m,

i.e. the Galois field GF(m). The non-zero elements of GF(m) form a cyclic multiplicative

group. Let a and b be two non-zero elements with multiplicative order o(a) = K and

o(b) = J respectively. Then we form the J ×K matrix P of elements from GF(m) that has

its (s, t)th entry Ps,t = bsat as follows:

P =


1 a a2 · · · aK−1

b ab a2b · · · aK−1b

· · · · · · · · · · · · · · ·
bJ−1 abJ−1 a2bJ−1 · · · aK−1bJ−1


where 0 ≤ s ≤ J − 1 and 0 ≤ t ≤ K − 1.

The quasi-cyclic LDPC code is specified by its parity-check matrix H . H contains a
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J ×K array of circulant submatrix as shown below:

H =


I1 Ia Ia2 · · · IaK−1

Ib Iab Ia2b · · · IaK−1b

· · · · · · · · · · · · · · ·
IbJ−1 IabJ−1 Ia2bJ−1 · · · IaK−1bJ−1


where Ix is an identity matrix of size m×m with each row shifting to the left by x−1 mod m

positions.

The LDPC convolutional codes come from the quasi-cyclic LDPC codes. Each circulant

matrix can be specified by a unique polynomial. The polynomial represents the entries

in the first column of the circulant matrix. For example, a circulant matrix with its first

column [1 0 0 1 0 1 1]T can be represented by a polynomial 1 + D3 + D5 + D6. Thus the

parity-check matrix of the quasi-cyclic LDPC codes constructed by the method above can

be expressed in polynomial form (with indeterminate D) to obtain the following J × K

matrix:

H(D) =


D0 Da−1 Da2−1 · · · DaK−1−1

Db Dab−1 Da2b−1 · · · DaK−1b−1

· · · · · · · · · · · · · · ·
DbJ−1−1 DabJ−1−1 Da2bJ−1−1 · · · DaK−1bJ−1−1


J×K

Example 5: An example of LDPC code constructed by the QC-LDPC code with m =

31, a = 2, b = 5.

The parity-check matrix of a QC-LDPC code is given by

H =


I1 I2 I4 I8 I16

I5 I10 I20 I9 I18

I25 I19 I7 I14 I28


93×155

The parity-check matrix of corresponding LDPC convolutional code is as follows:

H(D) =


D0 D1 D3 D7 D15

D4 D9 D19 D8 D17

D24 D18 D6 D13 D27


3×5
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2.3.4 Properties of LDPC-CC

In this section, we introduce some important properties of LDPC convolutional codes con-

structed above. To be more specific, the relation between the block and convolutional

Tanner graphs, quasi-cyclic block codes viewed as tail-biting convolutional codes, girth and

the minimum distance.

Relation Between the Block and Convolutional Tanner Graphs

Consider the Tanner graphs of the following two codes[6]:

HT =


I1 I4

I2 I3

I4 I1



HT (D) =


1 D3

D D2

D3 1


We can observe that the Tanner graph of the convolutional code is very similar to that

Figure 2.6: The Tanner Graphs of the Quasi-cyclic Code and the Convolutional Code[6]

of the quasi-cyclic code. The Tanner graph of the convolutional code can be viewed as

being obtained by unwrapping that of the quasi-cyclic code. If we numerate the time index

of the Tanner graph of the quasi-cyclic code as done for the convolutional code, we can
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observe that some bit nodes of the Tanner graph of the quasi-cyclic code connecting to

some check nodes in past while all that of the convolutional code connecting to the future.

In other words, the Tanner graph of the quasi-cyclic code can be viewed as being obtained

by truncating the convolutional code into block code with finite length and wrapping the

edges associated to the end of the bit nodes back to the check nodes at the beginning.

Quasi-cyclic Block Codes Viewed as Tail-biting Convolutional Codes

Tail-biting is a technique to convert a convolutional code into a block code without loss

of rate. An encoder of the tail-biting convolutional code can be obtained by performing

each entry of the generator matrix of the convolutional code modulo Dm + 1 for some m

and replacing a circulant matrix of size m × m whose first column vector is specified by

the polynomial entry it is going to replace. Since the generator matrix consists of array of

circulant matrices only, the obtained block code is a quasi-cyclic code.

Theorem 4 Let C be a length Km quasi-cyclic code with the Jm×Km parity check matrix

H, where H is composed of m×m circulants (i.e., its period is K). Let C be a convolutional

code obtained by unwrapping H. Then the quasi-cyclic block code (tail-biting convolutional

code) C̃ of length Km constructed from C is a sub-code of C[6].

Girth

In chapter two, the properties of quasi-cyclic code constructed by the method we described

cannot have girth larger than twelve because we always can find a cycle of length twelve

in the Tanner graph. The prove is described as follows. We first index the columns and

the rows of the parity-check matrix of the quasi-cyclic code, and a path in the parity-check

matrix is expressed by a sequence of coordinate of the entries. Then we can find a path of

length twelve in which the sum of the column coordinates and that of the row coordinates

are both equal to zero and that means the path is a cycle of length twelve. So the girth of

the quasi-cyclic code can not greater than twelve.

The girth of the convolutional code obtained by the quasi-cyclic code has girth greater
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than or equal to that of the mother quasi-cyclic code. For a cycle in the convolutional code

Tanner graph we can find an equivalent cycle in the QC code Tanner graph but not vice

versa. For the detail of the proof, see [6].
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Chapter 3

LDPC Convolutional Codes with
Rational Parity-Check Matrix

In chapter 2, a property of regular QC-LDPC codes is that if there were trinomial or higher

order polynomials in the parity-check matrix H(X) then the girth of the corresponding

Tanner graph can not be greater than six. The LDPC convolutional codes constructed

by the QC-LDPC code inherit the property, i.e., if there were trinomial or higher order

polynomials in the parity-check matrix H(D) of the LDPC convolutional code then the

girth of the corresponding Tanner graph can not greater than six. This property is usually

not welcome for SPA decoders because low girth usually leads to high dependence in message

passing and results poor error correcting behavior.

For conventional convolutional codes, we use Viterbi algorithm (VA) as the decoding

algorithms and the result is also the maximum likelihood (ML) result. For these convolu-

tional code, the memory is usually under twenty, while the memories of LDPC convolutional

codes are usually higher than one hundred. Therefore, trellis decoding is not suitable for

LDPC convolutional code; instead, we utilize the feature of the low-density of the scalar

form parity-check matrix of the LDPC convolutional code H(D).

In VA decoder, the performances are the same for equivalent parity-check matrix H(D)

no matter the entries in H(D) are monomial, binomial, trinomial, higher order polynomial

or rational.

If there are rational entries in H(D) of LDPC convolutional codes, there would be a
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problem when expanding the H(D) into scalar form. One straight way is to expand the

rational entries into infinite series entries, which results high density of ones in the scalar

form of parity-check matrix. Using SPA decoder, the performance with the resultant Tanner

graph is poor due to the high dependence in message passing. Another way is to multiply

H(D) with the polynomial equal to the least common multiple (l.c.m) of the denominators

of rational entries. This may results the parity-check matrix with higher order polynomial

in many entries.

Example 1: A LDPC convolutional codes with rational parity-check matrix H(D)

given by

H(D) =

 1 D D3

1+D3

D3 D2 1


One way is to expand the rational into infinite series

H(D) =

 1 D D3 +D6 +D9 + · · ·
D3 D2 1


We refer this realization as ”direct I realization.” Another method is to multiply H(D) by

1 +D3 and has another equivalent parity-check matrix

H(D) =

 1 +D3 D +D4 D3

D3 D2 1


We refer this realization as ”direct II realization.” Using SPA decoder, we can have a

performance comparison between different realizations in Figure 3.1. The green line is the

performance of VA. The blue is the performance of direct realization II with termination

in length 3000. The cyan line is the performance of BPSK transmission. The red line is

the performance of direct I realization with termination in length 1000. From the figure,

we can observe that the performance of direct I realization is even poorer than that of

uncoded BPSK. The performance of direct realization is better than that of uncoded but 1

dB decrement than that of VA at BER 1e−5.
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Figure 3.1: Performance Comparison between different realizations in example 1.

3.1 Tanner Graph with Induced Variable Nodes for

Rational Entries in the Parity-Check Matrix

To solve the problem of high density of ones in scalar form of parity-check matrix in both

direct I and II realizations, we propose another realization trying to represent the rational

and make the Tanner graph suitable for SPA decoder.

We start from the idea of Tanner graph. There are two classes of nodes named bit

nodes and check nodes. There are no edges between the same class of nodes. A set of bit

nodes linked by a check node means the values of the set of bit nodes satisfy a parity-check

equations, for example, they sum to zero modulo 2 if the values are in binary field. For this

concept, Tanner graph is a graph representation describing the relations between bit nodes

and bit nodes.

From the example 1, the parity-check matrix describes two parity-check equations for
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codeword polynomial. Assume the codeword polynomial is V(D) = (V0(D),V1(D),V2(D)).

They must satisfy the two parity-check equations. V0(D) · 1 + V1(D) ·D + V2(D) · D3

1+D3 = 0

V0(D) ·D3 + V1(D) ·D2 + V2(D) · 1 = 0

For these two equations, if we can represent each time instant of each term in the equations

by a bit node then we have a graph with each check node linked by three bit nodes. The code

rate is R = 1/3, that is each time instant there are three coded bits, i.e. vt = (v
(0)
t , v

(1)
t , v

(2)
t )

for time t. So we use three bit nodes to represent the three coded bit and two check nodes

to describe the relations for bit nodes in each time instant. Therefore, in the second parity-

check equation, there is a check node linking to a bit node for v
(0)
t−3, a bit node for v

(1)
t−2, and

a bit node for v
(2)
t for time t. Here would be the problem that how to represent the one time

instant of the term V2(D) · D3

1+D3 by a bit node. We induce a dummy variable M(D) with

M(D) = V2(D) · D3

1+D3 . We also induce a bit node to represent each time instant of M(D).

The rest of the work would be find the relations between the induced bit nodes and the bit

nodes for V(D). From the equation

M(D) = V2(D) · D3

1 +D3

We multiply the denominator 1 +D3 and put M(D) at the left side of the equation and we

have

M(D) = V2(D) ·D3 + M(D) ·D3

We have an equation for M(D) and V2(D) and we can decide the value of M(D) once we

know V2(D); we can decide the value of each time instant of M(D) once we know the value

of bit nodes for V2(D). Figure 3.2 illustrates the representation of bit nodes for variable

V0(D), V1(D), V2(D), and M(D).

It is easy to know that both direct I and II realizations produce cycle of length 4 in

the corresponding Tanner graphs, while the proposed method has a girth equal to 8 in the

corresponding Tanner graph. Figure 3.3 illustrates the bit nodes and check nodes connection
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Figure 3.3: Subgraph of Example 1 with first parity-check equation

constrained by the first parity-check equation, while Figure 3.4 illustrates that by the second

parity-check equation. The bold red line indicates one possible cycle of length 8.

3.2 Decoding Behavior for the New Tanner Graph

In the process of SPA, bit nodes assign the messages to the check nodes with channel value

in first iteration. But we can find out that the bit nodes for each time instant of M(D) do

not have channel values and therefore the outgoing message values are zero. This makes the

failure of update in step 2 of decoding for the associated check nodes because the outputs

of φ
(∑

i′∈Rj\i
φ(βi′,j)

)
equals to zero when there exist at least one βi′,j such that βi′,j = 0.
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Figure 3.4: Subgraph of Example 1 with second parity-check equation

When the message a check node sends to a bit nodes is zero, there is no information about

the value of the bit node and the bit node can not update.
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Figure 3.5: Subgraph of Example 1 with relations between M(D) and V0(D)

In first iteration, the check nodes in Figure 3.5 are failed due to each check node is

linked by two bit nodes for different time instants of M(D). The outgoing message from

each check node is zero. Luckily, the check equations

V0(D) · 1 + V1(D) ·D + V2(D) · D3

1+D3 = 0

⇒ V0(D) · 1 + V1(D) ·D + M(D) = 0

can help update the bit nodes for each time instant of M(D) with extrinsic information.

The bit nodes for each time instant of M(D) now have nonzero LLR. We say that those bit

nodes are recovered. In the next iteration, all the check nodes are no longer failed.

Here comes the question that is there always possible that the bit nodes for dummy

variable M(D) can be recovered? The answer is not.
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Example: 2 A good BER performance LDPC convolutional code [7]

H(D) =


D D252 D354 D377 D279

D20 D409 D344 D383 D107

D400 D181 D144 D82 D35


For this parity-check matrix, we try to generate another equivalent code with rational

parity-check matrix. For example,

H(D) =


D

1+D100
D252

1+D100
D354

1+D100
D377

1+D100
D279

1+D100

D20 D409 D344 D383 D107

D400 D181 D144 D82 D35


Observing the first row of equivalent parity-check matrix, if we replace V0(D) · D

1+D100 by a

dummy variable M(D), we have a parity-check equation

M(D) + V1(D) · D252

1 +D100
+ V2(D) · D354

1 +D100
+ V3(D) · D377

1 +D100
+ V4(D) · D279

1 +D100
= 0

and another relation equation about M(D) and V0(D)

M(D) = V0(D) · D

1 +D100

If we multiply the two equations by the denominator, 1 +D100, we have M(D) · (1 +D100) + V1(D) ·D252 + V2(D) ·D354 + V3(D) ·D377 + V4(D) ·D279 = 0

M(D) · (1 +D100) + V0(D) ·D = 0

That means all the check nodes linked to the bit node representing time instant t of M(D)

must also connect to the bit node representing time instant (t− 100). The check nodes can

not recover any bit node for different time instant of M(D) because the messages are always

zero in iterations.

To be free from the failure of recovery, we refer the two bit nodes for time instant t and

(t− 100) of M(D) as a super node that stores the LLR of the value equally to the XOR of

the values of bit nodes at time instant t and (t− 100). By doing so, we have super nodes in

different time instant and the super nodes can be updated now.
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After super nodes are induced, we can do SPA in decoding now. In the first iteration,

the bit nodes for codeword variable V0(D),V1(D),V2(D),V3(D),V4(D) pass extrinsic

information to the super nodes which then can be updated now. In the first iteration, the

outgoing messages from the check nodes linked to the super nodes are all zeros except the

message to the super nodes because that is the extrinsic information from the bit nodes

for V0(D),V1(D),V2(D),V3(D),V4(D). After first iteration, all the bit nodes in Tanner

graph can be updated as usual. The decoding stops when either all parity-check equations

are satisfied or the maximum number of iterations is reached.

3.3 Simulation Results

In this section, we present the simulation results of the realization for LDPC convolutional

codes with rational parity-check matrix.

Example 1: A LDPC-CC with small memory.

H(D) =

 1 D D3

1+D3

D3 D2 1


From previous method, the rational entry would be expand to infinite series (direct I real-

ization), or the parity-check matrix would be multiplied by (1 +D3) (direct II realization).

H(D) =

 1 D D3 +D6 +D9 + · · ·
D3 D2 1



H(D) =

 1 +D3 D +D4 D3

D3 D2 1


With our method , we induce a dummy variable M(D) to represent the rational entry, which

we may see the codeword polynomial become

V′(D) =
(

V0(D) , V1(D) , V2(D) , M(D)
)
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Figure 3.6: Performance Results of example 1.

And the parity-check matrix would become (another realization)

H ′(D) =


1 D 0 1

D3 D2 1 0

0 0 D3 1 +D3


And we have

V′(D) ·H ′T (D) = 0

The performance is in Figure 3.6 with maximum iteration 50 for all simulations. We

can observe that the performances of proposed realization with termination length 1000 and

10000 have almost 1dB improvement than that of direct II realization. The performance of

direct I realization is even poorer than that of uncoded system.

Example 2: A LDPC-CC with large memory.
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Figure 3.7: Performance Results of example 2.

H(D) =


D D252 D354 D377 D279

D20 D409 D344 D383 D107

D400 D181 D144 D82 D35

1+D138


The proposed realization

H(D) =


D D252 D354 D377 D279 0

D20 D409 D344 D383 D107 0

D400 D181 D144 D82 0 1

0 0 0 0 D35 1 +D138


The direct II realization

H(D) =


D D252 D354 D377 D279

D20 D409 D344 D383 D107

D400 +D538 D181 +D319 D144 +D282 D82 +D220 D35


The performance is in Figure 3.7 with maximum iteration 50 for both simulations. We

can observe that the performance of proposed realization has about 0.7 dB improvement
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at BER 1e−5 than that of direct realization II. This illustrates that a LDPC convolutional

code with rational parity-check matrix can work fine by proposed decoding algorithm.

Example 3: A LDPC-CC with large memory.

H(D) =


D D252 D354 D377 D279

D20 D409 D344 D383 D107

D400 D181 D144 D82 D35


In this example, we try to find an equivalent parity-check matrix with rational entries. For

example

H(D) =


D D252 D354 D377 D279

D20 D409 D344 D383 D107

D400

1+D100
D181

1+D100
D144

1+D100
D82

1+D100
D35

1+D100


We replace theV3(D) · D82

1+D100 with M(D) and have

H ′(D) =


D D252 D354 D377 D279 0

D20 D409 D344 D383 D107 0

D400

1+D100
D181

1+D100
D144

1+D100 0 D35

1+D100 1

0 0 0 D82

1+D100 0 1



=


D D252 D354 D377 D279 0

D20 D409 D344 D383 D107 0

D400 D181 D144 0 D35 1 +D100

0 0 0 D82 0 1 +D100


with codeword polynomial becomes

V′(D) =
(

V0(D) , V1(D) , V2(D) , V3(D) , V4(D) , M(D)
)

The performance is in Figure 3.8 with maximum iteration 50 for all simulations. We

can observe that there are performance loss for our realization. Therefore, we try another

realization with the dummy variable replacing the whole column, i.e.,

H ′(D) =


D D252 D354 0 D279 D295(1 +D100)

D20 D409 D344 0 D107 D301(1 +D100)

D400 D181 D144 0 D35 (1 +D100)

0 0 0 D82 0 (1 +D100)


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Figure 3.8: Performance Results of example 3.

The performance is in Figure 3.9 with maximum iteration 50 for all simulations. We can

see with this realization, the performance of the parity-check matrix is comparable with

that of the monomial one.

Example 4: A LDPC-CC with large memory [11].

H(D) =


D +D144 0 D58 +D123 0 D199

D196 D161 D185 D54 D199

0 D +D144 0 D58 +D123 D199


This time, we directly use dummy variable M(D) to replace the last column and we have

H ′(D) =


D +D144 0 D58 +D123 0 0 1 +D123

D196 D161 D185 D54 0 1 +D123

0 D +D144 0 D58 +D123 0 1 +D123

0 0 0 0 D199 1 +D123


The performance is in Figure 3.10 with maximum iteration 50 for all simulations. We can
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Figure 3.9: Performance Results of example 3.

observe that the performance of the rational parity-check matrix is comparable with that

of the monomial one.
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Figure 3.10: Performance Results of example 4.
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Chapter 4

Bit-Flipping for LDPC Convolutional
Codes

The SPA utilities the soft value of received sequence and updates the LLR of each bit node

during iterations. There is bit-flipping (BF) decoding algorithm that deals with the hard

value of the received sequence because of the concern of complexity, power consumption,

and the implementation of the decoder. In this chapter, we propose a modified bit-flipping

decoding algorithm for LDPC convolutional codes, and the BER performance is better than

that of previous works.

The decoder for a rate R = b/c LDPC convolutional code with memory ms is equipped

with I processors corresponding the number of maximum iterations. Each processor cares

about c · (ms + 1) bit nodes and b · (ms + 1) check nodes. The I processors form a decoding

window that slide through the Tanner graph of the LDPC convolutional code. After an

initial delay, the outputs of the decoding window are continuously popped out. The parallel

processor and continuous outputs are the feature of the decoding for LDPC convolutional

codes.

There are many modified bit-flipping decoding algorithms for different type of LDPC

block codes such as using gradient decent method to decide whether to flip the value of

the bit or not in decoding LDPC codes [9]. The modified algorithms performs better than

Gallager bit-flipping decoding algorithm does. However, the decoder must collect all the

information of bits and compute the objective function to determine the behavior of the
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decoder in the next iteration. For this reason, the modified bit-flipping decoding algorithms

for LDPC block codes are not suitable for LDPC convolutional codes because each processor

of the LDPC convolutional decoder only sees a part of bit nodes, and the processors deal

with the information locally. That means the bit-flipping decoding algorithms for LDPC

convolutional code must consider the structure of the codes and try to keep the good feature

of the decoder.

4.1 Previous Works for Modified Bit Flipping Algo-

rithms for Decoding LDPC Convolutional Codes

There is a modified BF algorithm for decoding LDPC convolutional codes [10]. For a column

weight wc = 3 LDPC convolutional code, the algorithm assigns each processor of the LDPC

convolutional decoder a threshold with threshold pattern ”3− 2− 3− 2−· · · ”, i.e., the first

processor is assign a threshold by 3, the second one is assign a threshold by 2, the third one

is assign a threshold by 3 and so on.

By assigning each processor a threshold, the processor does not need to care about the

information of all the bits. The processor counts the number of unsatisfied equations the

bit involved and flips the bit if the unsatisfied number is greater than the threshold.

Figure 4.1 illustrates the performance of Gallager bit-flipping decoding algorithm and

decoder with threshold pattern. The performance of the modified algorithms has about 3

dB improvement than that of Gallager bit-flipping decoding algorithm at BER 1e−5.

There is some pattern such as ”3−3−2−3−3−2−· · · ”, ”3−3−3−2−3−3−3−2−· · · ”

are tested as well, but the performance of the pattern ”3− 2− 3− 2− 3− 2− · · · ” has the

most significant improvement.

4.2 Proposed Bit Flipping Algorithms for LDPC Con-

volutional Codes

The previous work assigns each processor a threshold by user-defined threshold pattern be-

fore decoding. The processor does not care about the real situation of bits; for example, the
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Figure 4.1: The Performance Comparison between Gallager Bit Flipping and Modified
Algorithms for a (128,3,6) LDPC Convolutional Code

average number of unsatisfied equations for a bit is decreasing when the SNR is increasing.

If the number of unsatisfied equations is one for most bits, the processor can not do any-

thing under this circumstance; besides, the further iterations are wasted because there are

no longer bits get flipped.

Instead of predefine a threshold pattern, we want the processors change their thresh-

old over time. We conjecture that the greater the number of unsatisfied equations a bit

involved, the more likelihood the error occurs. Besides, when SNR is high, the average

number of unsatisfied equations for a bit is small. If the predefined threshold pattern does

not consider the case that the maximum number of unsatisfied equations is smaller than

any value in the pattern, there would be no bits to be flipped and no update for further

iterations. Considering on this case, we propose an idea that makes each processor flip the

most probable error bits. Each iteration, we want to flip the bits with greatest number of

unsatisfied equations among all bits.

Applying this idea to the LDPC convolutional decoder, there is a problem to solve.
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Each processor sees only part of bits, it can not decide whether the number of unsatisfied

equations for these bits is the greatest number among all bits or not. Each processor sees

only locally maximum number of unsatisfied equations. This difficulty may make each

processor flip bits erroneously.

To solve this problem, we let the threshold of processor can be increased if the number of

unsatisfied equations for bits in the influence of that processor is larger than the threshold.

For each processor, the threshold is initially assign a small value larger than one. When the

decoding window slides through the Tanner graph, there are bits leaving the influence of

a processor and entering into the influence of another processor at each time instant. The

processor see new nodes and compute the syndrome for the bits that is goring to leave. If

the number of unsatisfied equations for leaving bits is greater than the threshold, those bits

are flipped by the processor and the processor increases the threshold to the value equally

to the number of unsatisfied equations the leaving bits involved.

The initial value is greater than one because we observe that the bits with one unsatisfied

equation are correct in most cases. There is error bit involved in the same parity-check

equation and makes the nonzero syndrome. Hence, if we set the threshold equal to one, we

may flip the correct bits very often, which results worse correcting behavior.

4.3 Simulation Results

In this section, we present the results of proposed bit-flipping decoding algorithms for LDPC

convolutional codes. The results are compared with previous works. Our performances have

improvements than that of previous works in every case.

Example 1: Bit-flipping decoding for a LDPC-CC with parity-check matrix given by

H(D) =


D D252 D354 D377 D279

D20 D409 D344 D383 D107

D400 D181 D144 D82 D35


The performance results are in Figure 4.2 with maximum iteration 50 for all simulations.

The column weight of this code is three. According to the idea of the previous work, we
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Figure 4.2: Bit-Flipping For LDPC Convolutional Codes in example 1.

define the threshold pattern ”3− 2− 3− 2− · · · ”, and we set the threshold equal to three

for Gallager BF algorithm. We have tried to set the threshold equal to two for Gallager

BF algorithm, but it works worse than threshold 3 does. We can observe that our proposed

algorithm has almost 2 dB improvement than that of previous work and is 4dB improvement

than that of Gallager bit-flipping decoding.

Example 2: Bit-flipping decoding for a LDPC-CC with parity-check matrix given by

H(D) =


D +D144 0 D58 +D123 0 D199

D196 D161 D185 D54 D199

0 D +D144 0 D58 +D123 D199


The performance results are in Figure 4.3 with maximum iteration 50 for all simulations.

The column weight of this code is three. According to the idea of the previous work, we

define the threshold pattern ”3− 2− 3− 2− · · · ”, and we set the threshold equal to three

for Gallager BF algorithm. We have tried to set the threshold equal to two for Gallager
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Figure 4.3: Bit-Flipping For LDPC Convolutional Codes in example 2.

BF algorithm, but it works worse than threshold 3 does. We can observe that our proposed

algorithm has about 1.5 dB improvement than that of previous work and 3 dB improvement

than that of Gallager bit-flipping decoding.

Example 3: Bit-flipping decoding for a LDPC-CC with parity-check matrix given by

H(D) =


D +D2 0 D4 +D8 0

D5 D9 D10 D20

0 D25 +D19 0 D7 +D14


The performance results are in Figure 4.4 with maximum iteration 50 for all simulations.

The column weight of this code is three. According to the idea of the previous work, we

define the threshold pattern ”3− 2− 3− 2− · · · ”, and we set the threshold equal to three

for Gallager BF algorithm. We have tried to set the threshold equal to two for Gallager

BF algorithm, but it works worse than threshold 3 does. We can observe that our proposed

algorithm has about 1.7 dB improvement than that of previous work and almost 4 dB than
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Figure 4.4: Bit-Flipping For LDPC Convolutional Codes in example 3.

that of Gallager bit-flipping decoding.
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Chapter 5

Conclusion

In traditional, many people construct LDPC convolutional codes from QC-LDPC codes.

Therefore, only zero, monomial or binomial parity-check matrix for a LDPC convolutional

code is discussed. In ML decoding, the performance of equivalent parity-check matrices

with polynomial entries or rational entries is the same. We want to figure out that is there

any possibility that the performance of rational parity-check matrix is better than that of

the equivalent polynomial parity-check matrix in suboptimal decoding such as SPA.

If we want to use Tanner graph for the graph decoding for decoding LDPC convolutional

codes with rational parity-check matrix, there is modification must be done to prevent cycles

of length four. In our works, we propose a realization of Tanner graph for rational parity-

check matrix and the BER performance is better than that of the parity-check matrix with

rational directly expanded into polynomial. We also generate rational parity-check matrices

from equivalent monomial ones. The decoding results are comparable after we modified our

decoding method.

We also discussed the hard decision decoding algorithms for LDPC convolutional codes.

Previous works are done by predefining a threshold pattern for each processor of LDPC

convolutional decoder. We proposed an algorithm that can make each processor adaptive

to the situations of bits. In decoding process, each processor can update its own threshold

without increasing complexity. Besides, the BER performance is better than previous works.
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