
國 立 交 通 大 學

電信工程學系碩士班

碩 士 論 文

循序解碼演算法於有限堆疊下之路徑移除策略

Path Deletions for Finite Stack-Size Sequential-Type Decoding

Algorithms

研 究 生：王晨屹

指導教授：陳伯寧 教授

中 華 民 國 九 十 八 年 七 月

循序解碼演算法於有限堆疊下之路徑移除策略

Path Deletions for Finite Stack-Size Sequential-Type Decoding

Algorithms

研 究 生：王晨屹 Student：Chen-Yi Wang

指導教授：陳伯寧 教授 Advisor：Po-Ning Chen

國 立 交 通 大 學

電 信 工 程 學 系 碩 士 班

碩 士 論 文

A Thesis

Submitted to Institute of and Communication Engineering

College of Electrical and Computer Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Communication Engineering

July 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年七月

循序解碼演算法於有限堆疊下之路徑移除策略

研究生：王晨屹 指導教授：陳伯寧 教授

國立交通大學

電信工程學系碩士班

中文摘要

 本篇碩士論文針對循序解碼演算法的特有實作限制進行研究，即

路徑堆疊容量有限。在路徑堆疊容量有限的前提下，當路徑堆疊超過

上限時的有效路徑移除策略對於系統效能甚至解碼複雜度相當重

要。基於此一研究背景，我們論文針對即時輸出解碼結果模式下的循

序解碼演算法提出了若干有效路徑移除策略。而當系統容許「離線」

輸出解碼結果時 — 意即系統允許接收到所有接收向量值後才開始

進行解碼 — 我們提出了二階段解碼結構為基礎的路徑移除策略。簡

言之，我們提出於「反向階段」使用Ｍ演算法來估計啟發函數值

(heuristics function)以作為「順向階段」解碼所用之解碼量度參數。由

於Ｍ演算法可由硬體電路實現，因此我們論文中僅考慮順向階段的解

碼複雜度。模擬結果顯示，我們所提出的兩階段路徑移除策略在順向

階段的解碼複雜度不僅優於使用費諾測度的堆疊演算法，更低於

Sikora 與 Costelo 於 2008 年所提出的二階段超級碼(supercode)解碼器

[1]。
[1] M. Sikora and D. J. Costello, Jr., “Supercode heuristics for tree search

decoding,” in Proc. IEEE Inform. Theory Workshop, Porto, Portugal,
pp. 411-415, May 2008.

i

Path Deletions for Finite Stack-Size Sequential-Type Decoding

Algorithms

Student: Chen-Yi Wang Advisor: Prof. Po-Ning Chen

Institute of Communication Engineering

National Chiao Tung University

Abstract

In this thesis, we focus on a specific practical constraint on
sequential-type decoding algorithms, namely, the finite stack size. Under
such a finite-stack-size limitation, the path deletion policy that is effective
when the stack exceeds its limit becomes essential in performance and
decoding complexity. At this background, we proposed several path
deletion schemes for sequential-type decoding algorithms that can
produce decoding outputs in an on-the-fly or instantaneous fashion. When
``off-line'' decoding is allowed, where the decoding process starts after
the reception of the entire received word, we proposed an alternative path
deletion scheme based on a two-pass decoding structure. To be specific,
the backward pass estimates the heuristic function in terms of the
M-algorithm for use of the forward decoding search. As the M-algorithm
can be hardware-implemented, only the computational complexity of the
forward pass is accounted for. Simulations show that the computational
complexity of the forward pass not only outperforms the stack algorithm
with Fano metric but also is smaller than that of the two-pass supercode
decoder proposed by Sikora and Costello in 2008 [1].
[1] M. Sikora and D. J. Costello, Jr., “Supercode heuristics for tree search
decoding,” in Proc. IEEE Inform. Theory Workshop, Porto, Portugal, pp.
411-415, May 2008.

ii

Acknowledgements

I am deeply grateful to everyone who helps me to finish the thesis.

To my advisor, Professor Chen, for your patient instruction and brilliance guidance

throughout the research. This work would not been possible without your advise and com-

mitment. I learn a lot from you. It is my pleasure to be advised by you.

To Professor Han, thanks for your opinions and suggestions in our meeting. You make

me understand more about the research topic.

To Shin-Lin, thanks for your brilliant guidance through the research. This work cannot

be finished without you. I learn so much from you.

To my lab mates, you always listen to my problem, give me much help and more advises,

and encourage me when I am depressed.

And thanks National Chiao-Tung University for providing such good environment and

such many resources for me.

In the end, I would like to dedicate this thesis to my family for their support, love and

encouragement all the time.

iii

Contents

Abstract in Chinese i

Abstract in English ii

Acknowledgements iii

List of Tables vi

List of Figures vii

1 Introduction 1

2 Preliminaries 4

2.1 System Models . 4

2.2 Algorithm A and Algorithm A* . 5

2.3 Supercode Heuristics of Sikora and Costello 7

3 Path Deletion Schemes for Limited Stack-Size Sequential-Type Decoding

Algorithm 9

3.1 Path Deletion Based on ML Path Metric . 9

iv

3.2 Path Deletion Based on Path Levels . 10

3.3 Path Deletion Based on Fano Metric . 11

3.4 Summary . 12

4 A Novel Two-Pass Sequential-type Decoding Algorithm 13

4.1 Heuristics Analysis . 13

4.2 M -algorithm-Based Heuristics Estimate . 15

5 Simulation Results 18

5.1 The Path Deletion Schemes in Chapter 3 . 18

5.2 The Two-Pass Sequential-Type Decoding Algorithm in Chapter 4 35

6 Concluding Remark and Future work 92

References 93

v

List of Tables

4.1 The heuristic function values resulted from Figure 4.1. 16

vi

List of Figures

2.1 An exemplified (2, 1, 2) convolutional code tree with information length L = 3. . . 6

4.1 An example of M -algorithm-based heuristic function generation for (2, 1, 3) convo-

lutional code of length N = n(L + m) = 2(5 + 3) = 16. The maximum-likelihood

code word path is marked in red. 16

5.1 Word error rate (WER) performance of path deletion schemes for (2,1,8) con-

volutional code with generator polynomial [457,755]. The stack size is 26− 1,

and the information sequence length L = 100. 20

5.2 Bit error rate (BER) performance of path deletion schemes for (2,1,8) convo-

lutional code with generator polynomial [457,755]. The stack size is 26 − 1,

and the information sequence length L = 100. 21

5.3 Average computational complexity per information bit of path deletion schemes

for (2,1,8) convolutional code with generator polynomial [457,755]. The stack

size is 26 − 1, and the information sequence length L = 100. 22

5.4 Word error rate (WER) performance of path deletion schemes for (2,1,8) con-

volutional code with generator polynomial [457,755]. The stack size is 28− 1,

and the information sequence length L = 100. 23

vii

5.5 Bit error rate (BER) performance of path deletion schemes for (2,1,8) convo-

lutional code with generator polynomial [457,755]. The stack size is 28 − 1,

and the information sequence length L = 100. 24

5.6 Average computational complexity per information bit of path deletion schemes

for (2,1,8) convolutional code with generator polynomial [457,755]. The stack

size is 28 − 1, and the information sequence length L = 100. 25

5.7 Word error rate (WER) performance of path deletion schemes for (2,1,8) con-

volutional code with generator polynomial [457,755]. The stack size is 216−1,

and the information sequence length L = 100. 26

5.8 Bit error rate (BER) performance of path deletion schemes for (2,1,8) convo-

lutional code with generator polynomial [457,755]. The stack size is 216 − 1,

and the information sequence length L = 100. 27

5.9 Average computational complexity per information bit of path deletion schemes

for (2,1,8) convolutional code with generator polynomial [457,755]. The stack

size is 216 − 1, and the information sequence length L = 100. 28

5.10 Word error rate (WER) performance of path deletion schemes for (2,1,12)

convolutional code with generator polynomial [17663,11271]. The stack size

is 212 − 1, and the information sequence length L = 100. 29

5.11 Bit error rate (BER) performance of path deletion schemes for (2,1,12) con-

volutional code with generator polynomial [17663,11271]. The stack size is

212 − 1, and the information sequence length L = 100. 30

5.12 Average computational complexity per information bit of path deletion schemes

for (2,1,12) convolutional code with generator polynomial [17663,11271]. The

stack size is 212 − 1, and the information sequence length L = 100. 31

viii

5.13 Word error rate (WER) performance of path deletion schemes for (2,1,12)

convolutional code with generator polynomial [17663,11271]. The stack size

is 216 − 1, and the information sequence length L = 100. 32

5.14 Bit error rate (BER) performance of path deletion schemes for (2,1,12) con-

volutional code with generator polynomial [17663,11271]. The stack size is

216 − 1, and the information sequence length L = 100. 33

5.15 Average computational complexity per information bit of path deletion schemes

for (2,1,12) convolutional code with generator polynomial [17663,11271]. The

stack size is 216 − 1, and the information sequence length L = 100. 34

5.16 Word error rate (WER) performance of MHEM-enhanced two-pass decoder

for (2,1,8) convolutional code with generator polynomial [457,755]. The stack

size is = 24 − 1, and the information sequence length L = 100. 38

5.17 Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for

(2,1,8) convolutional code with generator polynomial [457,755]. The stack size

is = 24 − 1, and the information sequence length L = 100. 39

5.18 Average computational complexity per information bit of MHEM-enhanced

two-pass decoder for (2,1,8) convolutional code with generator polynomial

[457,755]. The stack size is 24 − 1, and the information sequence length L =

100. 40

5.19 Word error rate (WER) performance of MHEM-enhanced two-pass decoder

for (2,1,8) convolutional code with generator polynomial [457,755]. The stack

size is = 26 − 1, and the information sequence length L = 100. 41

ix

5.20 Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for

(2,1,8) convolutional code with generator polynomial [457,755]. The stack size

is = 26 − 1, and the information sequence length L = 100. 42

5.21 Average computational complexity per information bit of MHEM-enhanced

two-pass decoder for (2,1,8) convolutional code with generator polynomial

[457,755]. The stack size is 26 − 1, and the information sequence length L =

100. 43

5.22 Word error rate (WER) performance of MHEM-enhanced two-pass decoder

for (2,1,8) convolutional code with generator polynomial [457,755]. The stack

size is = 28 − 1, and the information sequence length L = 100. 44

5.23 Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for

(2,1,8) convolutional code with generator polynomial [457,755]. The stack size

is = 28 − 1, and the information sequence length L = 100. 45

5.24 Average computational complexity per information bit of MHEM-enhanced

two-pass decoder for (2,1,8) convolutional code with generator polynomial

[457,755]. The stack size is 28−1, and the information sequence length L = 100. 46

5.25 Word error rate (WER) performance of MHEM-enhanced two-pass decoder

for (2,1,8) convolutional code with generator polynomial [457,755]. The stack

size is = 210 − 1, and the information sequence length L = 100. 47

5.26 Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for

(2,1,8) convolutional code with generator polynomial [457,755]. The stack size

is = 210 − 1, and the information sequence length L = 100. 48

x

5.27 Average computational complexity per information bit of MHEM-enhanced

two-pass decoder for (2,1,8) convolutional code with generator polynomial

[457,755]. The stack size is 210 − 1, and the information sequence length

L = 100. 49

5.28 Word error rate (WER) performance of MHEM-enhanced two-pass decoder

for (2,1,8) convolutional code with generator polynomial [457,755]. The stack

size is = 24 − 1, and the information sequence length L = 200. 50

5.29 Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for

(2,1,8) convolutional code with generator polynomial [457,755]. The stack size

is = 24 − 1, and the information sequence length L = 200. 51

5.30 Average computational complexity per information bit of MHEM-enhanced

two-pass decoder for (2,1,8) convolutional code with generator polynomial

[457,755]. The stack size is 24−1, and the information sequence length L = 200. 52

5.31 Word error rate (WER) performance of MHEM-enhanced two-pass decoder

for (2,1,8) convolutional code with generator polynomial [457,755]. The stack

size is = 26 − 1, and the information sequence length L = 200. 53

5.32 Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for

(2,1,8) convolutional code with generator polynomial [457,755]. The stack size

is = 26 − 1, and the information sequence length L = 200. 54

5.33 Average computational complexity per information bit of MHEM-enhanced

two-pass decoder for (2,1,8) convolutional code with generator polynomial

[457,755]. The stack size is 26−1, and the information sequence length L = 200. 55

xi

5.34 Word error rate (WER) performance of MHEM-enhanced two-pass decoder

for (2,1,8) convolutional code with generator polynomial [457,755]. The stack

size is = 28 − 1, and the information sequence length L = 200. 56

5.35 Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for

(2,1,8) convolutional code with generator polynomial [457,755]. The stack size

is = 28 − 1, and the information sequence length L = 200. 57

5.36 Average computational complexity per information bit of MHEM-enhanced

two-pass decoder for (2,1,8) convolutional code with generator polynomial

[457,755]. The stack size is 28−1, and the information sequence length L = 200. 58

5.37 Word error rate (WER) performance of MHEM-enhanced two-pass decoder

for (2,1,8) convolutional code with generator polynomial [457,755]. The stack

size is = 210 − 1, and the information sequence length L = 200. 59

5.38 Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for

(2,1,8) convolutional code with generator polynomial [457,755]. The stack size

is = 210 − 1, and the information sequence length L = 200. 60

5.39 Average computational complexity per information bit of MHEM-enhanced

two-pass decoder for (2,1,8) convolutional code with generator polynomial

[457,755]. The stack size is 210 − 1, and the information sequence length

L = 200. 61

5.40 Word error rate (WER) performance of MHEM-enhanced two-pass decoder

for (2,1,8) convolutional code with generator polynomial [457,755]. The stack

size is = 24 − 1, and the information sequence length L = 400. 62

xii

5.41 Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for

(2,1,8) convolutional code with generator polynomial [457,755]. The stack size

is = 24 − 1, and the information sequence length L = 400. 63

5.42 Average computational complexity per information bit of MHEM-enhanced

two-pass decoder for (2,1,8) convolutional code with generator polynomial

[457,755]. The stack size is 24−1, and the information sequence length L = 400. 64

5.43 Word error rate (WER) performance of MHEM-enhanced two-pass decoder

for (2,1,8) convolutional code with generator polynomial [457,755]. The stack

size is = 26 − 1, and the information sequence length L = 400. 65

5.44 Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for

(2,1,8) convolutional code with generator polynomial [457,755]. The stack size

is = 26 − 1, and the information sequence length L = 400. 66

5.45 Average computational complexity per information bit of MHEM-enhanced

two-pass decoder for (2,1,8) convolutional code with generator polynomial

[457,755]. The stack size is 26−1, and the information sequence length L = 400. 67

5.46 Word error rate (WER) performance of MHEM-enhanced two-pass decoder

for (2,1,8) convolutional code with generator polynomial [457,755]. The stack

size is = 28 − 1, and the information sequence length L = 400. 68

5.47 Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for

(2,1,8) convolutional code with generator polynomial [457,755]. The stack size

is = 28 − 1, and the information sequence length L = 400. 69

5.48 Average computational complexity per information bit of MHEM-enhanced

two-pass decoder for (2,1,8) convolutional code with generator polynomial

[457,755]. The stack size is 28−1, and the information sequence length L = 400. 70

xiii

5.49 Word error rate (WER) performance of MHEM-enhanced two-pass decoder

for (2,1,8) convolutional code with generator polynomial [457,755]. The stack

size is = 210 − 1, and the information sequence length L = 400. 71

5.50 Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for

(2,1,8) convolutional code with generator polynomial [457,755]. The stack size

is = 210 − 1, and the information sequence length L = 400. 72

5.51 Average computational complexity per information bit of MHEM-enhanced

two-pass decoder for (2,1,8) convolutional code with generator polynomial

[457,755]. The stack size is 210 − 1, and the information sequence length

L = 400. 73

5.52 Word error rate (WER) performance of MHEM-enhanced two pass decoder for

(2,1,8) convolutional code with generator polynomial [457,755]. Here, M = 32

and the information sequence length L = 400. 74

5.53 Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for

(2,1,8) convolutional code with generator polynomial [457,755]. Here, M = 32

and the information sequence length L = 400. 75

5.54 Average computational complexity per information bit of MHEM-enhanced

two-pass decoder for (2,1,8) convolutional code with generator polynomial

[457,755]. Here, M = 32, and the information sequence length L = 400. . . 76

5.55 Word error rate (WER) performance of MHEM-enhanced two-pass decoder

for (2,1,12) convolutional code with generator polynomial [17663,11271]. The

stack size is 28 − 1, and the information sequence length L = 200. 77

xiv

5.56 Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for

(2,1,12) convolutional code with generator polynomial [17663,11271]. The

stack size is 28 − 1, and the information sequence length L = 200. 78

5.57 Average computational complexity per information bit of MHEM-enhanced

two-pass decoder for (2,1,12) convolutional code with generator polynomial

[17663,11271]. The stack size is 28 − 1, and the information sequence length

L = 200. 79

5.58 Word error rate (WER) performance of MHEM-enhanced two-pass decoder

for (2,1,12) convolutional code with generator polynomial [17663,11271]. The

stack size is 210 − 1, and the information sequence length L = 200. 80

5.59 Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for

(2,1,12) convolutional code with generator polynomial [17663,11271]. The

stack size is 210 − 1, and the information sequence length L = 200. 81

5.60 Average computational complexity per information bit of MHEM-enhanced

two-pass decoder for (2,1,12) convolutional code with generator polynomial

[17663,11271]. The stack size is 210 − 1, and the information sequence length

L = 200. 82

5.61 Word error rate (WER) performance of MHEM-enhanced two-pass decoder

for (2,1,12) convolutional code with generator polynomial [17663,11271]. The

stack size is 212 − 1, and the information sequence length L = 200. 83

5.62 Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for

(2,1,12) convolutional code with generator polynomial [17663,11271]. The

stack size is 212 − 1, and the information sequence length L = 200. 84

xv

5.63 Average computational complexity per information bit of MHEM-enhanced

two-pass decoder for (2,1,12) convolutional code with generator polynomial

[17663,11271]. The stack size is 212 − 1, and the information sequence length

L = 200. 85

5.64 Word error rate (WER) performance of MHEM-enhanced two-pass decoder

for (2,1,16) convolutional code with generator polynomial [715022,514576].

The stack size is 212 − 1, and the information sequence length L = 100. . . . 86

5.65 Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for

(2,1,16) convolutional code with generator polynomial [715022,514576]. The

stack size is 212 − 1, and the information sequence length L = 100. 87

5.66 Average computational complexity per information bit of MHEM-enhanced

two-pass decoder for (2,1,16) convolutional code with generator polynomial

[715022,514576]. The stack size is 212 − 1, and the information sequence

length L = 100. 88

5.67 Word error rate (WER) performance of MHEM-enhanced two-pass decoder,

and low-complexity suboptimal decoding algorithm in [9] for (2,1,8) convolu-

tional code with generator polynomial [457,755]. The stack size is 218−1, and

the information sequence length L = 2048. 89

5.68 Bit error rate (BER) performance of MHEM-enhanced two-pass decoder, and

low-complexity suboptimal decoding algorithm in [9] for (2,1,8) convolutional

code with generator polynomial [457,755]. The stack size is 218 − 1, and the

information sequence length L = 2048. 90

xvi

5.69 Average computational complexity per information bit of MHEM-enhanced

two-pass decoder, and low-complexity suboptimal decoding algorithm in [9]

for (2,1,8) convolutional code with generator polynomial [457,755]. The stack

size is 218 − 1, and the information sequence length L = 2048. 91

xvii

Chapter 1

Introduction

In modern communication systems, Viterbi decoder is one of the most popular decoder for

convolutional codes. However, one limitation of the prevalent Viterbi decoder is that its

decoding complexity grows exponentially with code constraint length. This prevents its

practical use for codes of long constraint length. In contrast, the computational complexity

of the sequential decoding algorithm is independent of code constraint length. One can thus

adopt the sequential decoding search when codes of long constraint length is recommended

in certain applications.

The most well-known sequential-type decoding algorithm is perhaps the stack algorithm

with Fano metric [3][5][11]. This algorithm, although suboptimal in performance, is efficient

in computational complexity for medium to high signal-to-noise ratios (SNRs). In 2002,

another metric for use by the sequential-type decoding algorithm was derived based on the

Wagner rule [4]. It has been proved that adopting the new metric in place of the Fano metric

in the sequential decoding search guarantees optimal performance.

A common problem of sequential-type decoding algorithms is that the memory consump-

tion grows with the length of information sequence. In 2007, Shieh, Chen and Han proposed

a method, named “Early Elimination”, to alleviate this problem [8]. Specifically, the au-

1

thors proposed to directly eliminate the top path that is ∆-trellis-level prior to the farthest

one among all paths that have been expanded thus far by sequential search. In the same

work, the authors empirically showed that taking ∆ to be around three times code constraint

length suffices to achieve near optimal performance.

In this thesis, we attack the same problem from different standpoint. We assume in the

first place that the memory of the system has an upper limit. Therefore, some paths need to

be deleted when the stack is full. Several path deletion schemes are subsequently proposed

and examined.

The stack algorithm can be treated as a special case of the “best-first” algorithm A for

tree search in the computer science literature [7]. In its design, the algorithm A uses a cost

function µ to guide the search through the graph, where µ consists of the accumulated cost

g and the heuristic function h. With the help of a proper heuristic function, the decoding

complexity can be reduced significantly.

By further assuming that the decoding process can be launched after the reception of the

entire received vector, which we termed off-line decoding, a two-pass sequential-type decod-

ing algorithm is also proposed. In 2008, Sikora and Costello proposed a two-pass decoder [9],

where the backward pass generates proper heuristic function values, followed by the forward

pass that sequentially search the codeword with the lowest cost. Two heuristic functions

are designed in their paper. The first one is obtained by performing the Viterbi algorithm

backwardly on a super-code trellis. This design can secure the maximum-likelihood perfor-

mance; however, the decoding complexity for small to medium SNRs is larger than that of

the stack algorithm with Fano metric. In order to improve the decoding complexity, a second

heuristic function is proposed in the same paper, which is generated in a fashion similar to

the backward stage of the BCJR algorithm. With negligible performance degradation, the

decoding complexity in the forward pass becomes smaller than that of the stack algorithm

2

with Fano metric for all SNRs. The high computational complexity of the BCJR-like op-

erations, as well as the high memory requirement to store the heuristic function, however

becomes a burden for systems with limited computation power and memory space.

In this thesis, we proposed a new method to generate the heuristic function in the back-

ward pass. In our design, the M -algorithm [1] is executed over the backward code tree from

the single terminal node back to the 2L start nodes, where L is the length of the information

sequence. It keeps only the best M paths among the 2k ×M successor paths at each level,

when (n, k, m) convolutional codes are considered. Among the M best paths ending at the

same level, only the smallest path metric is stored, which will be used as the heuristic func-

tion value of all nodes in this level in the forward pass. As such, the memory requirement

for the heuristic function is greatly reduced when it is compared with the second heuristic

function in [9]. Obviously, as M increases, so does the accuracy1 of the heuristic estimate.

Our simulation results indicate that near optimal performance can be achieved by using

small M . Also, same as the second heuristic function in [9], our design outperforms the

stack algorithm with Fano metric in decoding complexity for all SNRs simulated.

The rest of the thesis is organized as follows. The background of this work is briefed

in Chapter 2. The proposed path deletion schemes are presented in Chapter 3. The M -

algorithm based heuristics estimation method for use by the two-pass sequential-type decoder

is introduced in Chapter 4. Simulation results are summarized and remarked in Chapter 5.

Chapter 6 concludes the paper and addresses some future work.

1Theoretically, the best heuristic function that can guarantee the finding of the optimal path in the
forward pass should take the values of the smallest path metric among all paths ending at the same level.
Here, we use the smallest path metric among the 2k × M successors paths instead for binary (n, k,m)
convolutional codes. Hence, the “accuracy” of the heuristic function grows as M increases.

3

Chapter 2

Preliminaries

In this chapter, the system model, the Wagner-rule based metric in [4], the supercode heuris-

tics in [9], as well as the algorithms A and A* are introduced.

2.1 System Models

We consider a binary (n, k, m) convolutional code C with finite input information sequence

of k × L bits, followed by k × m zeros to clear the encoder memory. Denote a codeword

of C by v , (v0, v1, . . . , vN−1), where each vj ∈ {0, 1}, and N , n(L + m). Assume

that v is transmitted over a binary-input time-discrete memoryless channel with channel

output r , (r0, r1, . . . , rN−1). Define the hard-decision sequence y , (y0, y1, . . . , yN−1)

corresponding to r as:

yj ,
{

1, if φj < 0;
0, otherwise,

where

φj , log
Pr(rj|vj = 0)

Pr(rj|vj = 1)
,

and Pr(rj|vj) denotes the channel transition probability of rj given vj.

By the Wagner rule, the maximum-likelihood decoding output v̂ with respect to the

4

received vector r satisfies:

v̂ = y ⊕ e∗, (2.1)

where e∗ is the error pattern with the smallest
∑N−1

j=0 ej|φj| among all patterns in {0, 1}N

satisfying eHT = yHT , and H is the parity check matrix of the equivalent (N, kL) block

code of C. Here, “⊕” is the bit-wise exclusive-or operation, and superscript “T” denotes

the matrix transpose operation. Based on (2.1), the authors in [4] proved that the sequen-

tial search result can be made maximum-likelihood if the Fano metric in the conventional

sequential decoding algorithm is replaced by a metric defined as:

ν
(
z(`n−1)

)
,

`n−1∑
j=0

ν(zj), (2.2)

where z(`n−1) , (z0, z1, . . . , z`n−1) ∈ {0, 1}`n represents the label of a path ending at level `

in the convolutional code tree1 (or trellis), and the bit metric is defined as

ν(zj) , (yj ⊕ zj)|φj|. (2.3)

In the rest of this thesis, the bit metric (2.3) is adopted if not particularly specified.

2.2 Algorithm A and Algorithm A*

The algorithms A and A* are sequential-type graph search algorithms. These two algorithms

separate the decoding metric µ(x`) associated with node x` (at level `) into two portions:

µ(x`) = g(x`) + h(x`), (2.4)

where g(x`) accumulates the cost from the start node to node x`, and h(x`) estimates the

remaining cost from node x` to the terminal node. Function h is called the heuristic function.

1For clarity, an exemplified (2, 1, 2) convolutional code tree is illustrated in Figure 2.1.

5

Figure 2.1: An exemplified (2, 1, 2) convolutional code tree with information length L = 3.

Suppose hideal(x`) is the best cost from node x` to the respective terminal node. In other

words, if hideal(x`) is used as the heuristic function in graph search, the algorithm A guaran-

tees the finding of the best solution with minimum search complexity. As such, the search

process goes all the way from the start node to the terminal node without diverging from

the best path. Nevertheless, such a genie-assisted heuristic function can only be obtained

with undue complexity.

The algorithm A*, a variation of the algorithm A, restricts the selections of heuristic

function h∗(x`) to

h∗(x`) ≤ hideal(x`). (2.5)

It can be shown that as long as the heuristic function satisfies (2.5), the algorithm A*

6

guarantees to find the best path. In addition, it can be shown that for all heuristic functions

satisfying (2.5), the sequential search using a larger heuristic function will expand less number

of nodes, and hence, has less decoding complexity.

2.3 Supercode Heuristics of Sikora and Costello

In 2008, Sikora and Costello proposed a two-pass decoder [9], of which the backward pass

generates the heuristic function values for use by the forward pass that sequentially search

the codeword with the lowest cost.

The main idea of Sikora and Costello’s work is to perform the backward pass not on

the actual trellis but on a supercode S with a simplified trellis representation S. Since the

code C is a proper subset of the supercode S, the best cost from node x` to the respective

terminal node hS(x`) must be no larger than the best cost from node x` to the respective

terminal node in the actual code C. Hence, hS(x`) satisfies the algorithm A* condition of

(2.5), which indicates that the maximum-likelihood performance is still guaranteed. By the

proposed proper simplification in the supercode trellis S, performing the Viterbi algorithm

backwardly on S is much simpler than performing the Viterbi algorithm on the actual trellis.

However, the decoding complexity for small to medium SNRs is nonetheless larger than that

of the stack algorithm with Fano metric.

In order to improve the decoding complexity, a second heuristic function is proposed in

the same paper, which is generated in a fashion similar to the backward stage of the well-

known BCJR algorithm. The second heuristics function proposed by Sikora and Costello is

given by:

hα
S(vs

`) = α log2

∑

(v0,v1,...,v`n−1,ṽ`n,...,ṽN−1)∈S

2
∑N−1

i=`n[log2 P (ri|ṽi)−Rs+R]/α,

where vs
` , (v0, v1, . . . , v`n−1) ∈ {0, 1}`n represents the label of a path ending at level ` in

7

the supercode S, and Rs is the rate of the supercode S. This heuristic function will then be

used together with

g(x`) =
`n−1∑
i=0

log2 P (ri|vi)

in the forward pass.

By varying the parameter α between 0 and 1, they found a trade-off between the decoding

complexity in the forward pass and the performance degradation. With the proper α, the

decoding complexity in the forward pass can then be made smaller than the stack algorithm

with Fano metric for all SNRs under negligible performance degradation. However, the

high computational complexity of the BCJR-like operations, as well as the high memory

requirement to store the heuristic function, becomes a burden for systems with limited

computation power and memory space.

8

Chapter 3

Path Deletion Schemes for Limited
Stack-Size Sequential-Type Decoding
Algorithm

By assuming a limited stack size for sequential-type decoding algorithm, some of the paths

have to be deleted when the stack exceeds its upper limit. A deletion scheme therefore is

essential such that the paths that are more unlikely to be the maximum-likelihood one should

be dropped first. In this chapter, we will introduce and examine several deletion schemes.

3.1 Path Deletion Based on ML Path Metric

In 2002, a metric for use by the sequential-type decoding algorithm was derived based on the

Wagner rule [4]. The authors in [4] also proved that applying this metric in place of Fano

metric in the sequential decoding search guarantees ML performance. A straightforward

path deletion scheme is thus to drop the one with the largest ML path metric among all

paths currently in the stack. We refer this scheme as the ML metric-based path deletion

scheme. For completeness, the decoding procedure with ML metric-based deletion scheme

is illustrated below.

9

Step 1. Load the stack with the path consisting of the single start node x0, whose ML

metric µ(x0) = 0. Set ` = 0.

Step 2. Extend the top path in the stack to obtain its successor paths. Compute the ML

path metric of each successor path. Delete the top path from the stack.

Step 3. Insert the successors into the stack and reorder the stack according to ascending

ML path metric values µ. If the stack size exceeds its limit, recursively eliminate

the one whose ML metric is the largest until the stack size ≤ limit.

Step 4. If the top path in the stack ends at a terminal node in the code tree, the algorithm

stops; otherwise go to Step 2.

3.2 Path Deletion Based on Path Levels

In 2007, the authors in [8] proposed a computational complexity reduction method for their

previously proposed sequential-type decoding algorithm [4]. Specifically, their scheme drops

the paths of which the levels are smaller than the largest level being reached by the sequential

search minus a level threshold ∆. The intuition behind their scheme is that the path with

the smallest level among all paths currently in the stack usually tends to accumulate large

ML metrics after reaching the explored level (since the ML path metric is non-decreasing

along the path it traverses). Hence, we may for convenience simply delete the path with

the smallest level when the stack exceeds its limit. Notably, the authors in [8] do not

assume a finite stack size in their analysis and simulation, but apply their method to reduce

the computational complexity. In this thesis, we re-examine their idea by adding a finite

stack size assumption. We refer this scheme as the Level-based path deletion scheme. For

completeness, the decoding procedure with level-based deletion scheme is illustrated below.

10

Step 1. Load the stack with the path consisting of the single start node x0, whose ML

metric µ(x0) = 0. Set ` = 0.

Step 2. Extend the top path in the stack to obtain its successor paths. Compute the ML

path metric of each successor path. Delete the top path from the stack.

Step 3. Insert the successors into the stack and reorder the stack according to ascending

ML path metric values µ. If the stack size exceeds its limit, recursively eliminate

the one whose level is the smallest until the stack size ≤ limit.

Step 4. If the top path in the stack ends at a terminal node in the code tree, the algorithm

stops; otherwise go to Step 2.

3.3 Path Deletion Based on Fano Metric

The ML metric-based path deletion scheme in Section 3.1 drops the path with the largest

path metric when the stack is full. However, the path metrics that the deletion scheme

is based only accumulate those branch metrics that have been traversed thus far, and no

prediction on the future route is performed. Now if we can replace the ending level by a

metric that includes future route prediction, and use it as a base for path deletion, the

performance may be improved.

Based on Massey’s analysis in [6], Fano metric in [3] can be regarded as an average of

the future branch metrics, which have not been traversed. With this in mind, Fano metric

may be a good candidate to serve as the metric that the deletion scheme is based. We refer

this scheme as the Fano metric-based path deletion scheme. For completeness, the decoding

procedure with Fano metric-based deletion scheme is illustrated below.

Step 1. Load the stack with the path consisting of the single start node x0, whose ML

11

metric µ(x0) = 0. Set ` = 0.

Step 2. Extend the top path in the stack to obtain its successor paths. Compute the ML

path metric and Fano path metric of each successor path. Delete the top path from

the stack.

Step 3. Insert the successors into the stack and reorder the stack according to ascending

ML path metric values µ. If the stack size exceeds its limit, recursively eliminate

the one with the largest Fano path metric until the stack size ≤ limit.

Step 4. If the top path in the stack ends at a terminal node in the code tree, the algorithm

stops; otherwise go to Step 2.

3.4 Summary

The path deletion schemes introduced in this chapter are designed to target the goal that

the path that is the most unlikely to belong to the final ML decision is located and dropped

when the stack is full. Simulations in Section 5.1 show that given a finite stack size, the Fano

metric-based deletion scheme has better performance than the other two schemes. As far

as the computational complexity (i.e., the average number of ML metric computations per

information bit, or the average number of path expansions per information bit) is concerned,

the level-based deletion scheme becomes superior over the other two. Here, we exclude the

additional burden to maintain two indices for the stack in level-based and Fano metric-

based deletion schemes, which may not be practical. In order to alleviate such additional

burden, we will introduce an alternative decoding algorithm that use the same metric in path

expansion and path deletion, for which both the error rate and computational complexity are

comparable to the best among the three schemes just introduced, but without the burden

to maintain additional index for the stack.

12

Chapter 4

A Novel Two-Pass Sequential-type
Decoding Algorithm

This chapter will introduce a novel two-pass sequential-type decoding algorithm to alleviate

the decoding burden in both computational complexity and memory management. The

proposed algorithm is designed based on the well-known algorithm A [7]. In short, we

will devise an appropriate heuristic estimate in order to reduce decoding complexity with

negligible error performance loss. In addition, the heuristic estimate will simultaneously suit

the need for path deletion when the stack is full.

4.1 Heuristics Analysis

In this section, we analyze the heuristic function for the additive white Gaussian noise

(AWGN) channels. Our analysis will hint that a one-pass on-the-fly decoding procedure

may not be able to result in a good heuristic estimate that can improve the complexity

without sacrificing the performance.

For AWGN channels, the ML decision upon the reception of a received vector r ,

13

(r0, r1, . . . , rN−1) is given by:

v̂ = arg min
v∈C

‖r − v‖2

= arg min
v∈C

N−1∑
i=0

(ri − vi)
2

= arg min
v∈C

(
N−1∑
i=0

r2
i −

N−1∑
i=0

2rivi +
N−1∑
i=0

v2
i

)

= arg min
v∈C

N−1∑
i=0

(−rivi) .

The maximum-likelihood decision remains unchanged by adding a constant, independent of

the codeword v; hence, a constant is added to make non-negative the decision criterion as

v̂ = arg min
v∈C

N−1∑
i=0

(−rivi)

= arg min
v∈C

N−1∑
i=0

|rivi| −
N−1∑
i=0

rivi

= arg min
v∈C

N−1∑
i=0

(|ri| − rivi).

Since we desire an on-the-fly decoding metric, the accumulated path metric corresponding

to path v` is:

g(v`) =
`−1∑
i=0

(|ri| − rivi).

Then, it is clear that g can be recursively computed as:

g(v`+1) = g(v`) + (|r`| − r`v`)

It is known that in order to maintain optimality through sequential decoding search, it

suffices to have the heuristic function satisfying:

µ(v`) = g(v`) + h(v`) ≤ min
v′N=(v0,v1,...,v`−1,v′`,v

′
`+1,...,v′N−1)∈C

[g(v′N) + h(v′N)]

14

in addition to h(v′N) = 0. This results in:

h(v`) ≤ min
v′N=(v0,v1,...,v`−1,v′`,v

′
`+1,...,v′N−1)∈C

[
N−1∑

i=`

(|ri| − riv
′
i)

]
.

Without the knowledge of the code structure, we obtain:

h(v`) ≤ min
(v′`,v

′
`+1,...,v′N−1)∈{±1}N−`

[
N−1∑

i=`

(|ri| − riv
′
i)

]
= 0.

As a result, the largest heuristic function is the zero-heuristics function. This hints that as

aforementioned, an on-the-fly decoding procedure may not be able to result in a heuristic

estimate that can improve the complexity without sacrificing the performance. We therefore

turn our efforts to the off-line decoding algorithm in the next section, for which a heuristic

estimate is obtained through the knowledge of all receptions.

4.2 M-algorithm-Based Heuristics Estimate

In this section, we will introduce our proposed M-algorithm-based heuristics estimation

method (MHEM). Similar two-pass decoding idea has been appeared in [9]. Here, the key

difference of our work from [9] is that a new heuristic function is designed. Besides, our

two-pass decoding is performed respectively on the forward and backward code trees rather

than the supercode in [9].

The procedure to obtain our heuristic estimate h in the first pass can be described

as follows. Initially, we set the heuristic function value of the single terminal node on the

backward code tree as hL+m = 0. Then, we execute the M -algorithm from the single terminal

node at level L + m back to the 2L start nodes at level 0, using the metric defined in (2.2).

The heuristic function h` is the the minimum path metric value among the M survivor path

metrics at level `. It should be noted that our heuristic function, when it is applied to the

forward decoding pass, may not lead to the ML decision especially for small M . In the most

15

extreme case, where M = 2L, the optimal performance is actually guaranteed. We will show

by simulations that near optimal performance can be achieved for small to moderate M .

To be specific, we give an example of the backward pass in Figure 4.1. The heuristic

function values resulted are listed in Table 4.1.

Figure 4.1: An example of M -algorithm-based heuristic function generation for (2, 1, 3) convolu-
tional code of length N = n(L + m) = 2(5 + 3) = 16. The maximum-likelihood code word path is
marked in red.

Table 4.1: The heuristic function values resulted from Figure 4.1.

Level ` 0 1 2 3 4 5 6 7 8
h`(M = 2) 4.6 4.6 2.6 1.6 1.1 0.8 0.8 0.3 0.0
h`(M = 2L) 1.0 1.0 1.0 1.0 1.0 0.8 0.8 0.3 0.0

After we obtain the heuristic function, the forward pass performs the usual stack algo-

rithm with metric µ(x`) defined in (2.4), where g(x`) is the accumulated metric from the

start node to node x` according to (2.2), and h(x`) = h` that is obtained from the previous

backward pass. For clarity, we summarize the decoding procedure as follows.

16

Backward pass:

Step 1. Set ` = L + m and h` = 0. Let the path consisting of the single terminal node on

the backward code tree be the single survivor path for M -algorithm at level `.

Step 2. Backwardly extend all successors of the survivor paths at level `. Recursively

calculate the path metrics of the successor paths according to (2.2). Set h`−1 to be

the minimum path metric among all successor paths.

Step 3. Retain the M successor paths with the smallest path metrics as the new survivor

paths, and let ` = `− 1.

Step 4. If ` = 0, the backward pass stops; otherwise go to Step 2.

Forward pass:

Step 1. Load the stack with the path consisting of the single start node x0, whose metric

µ(x0) = g(x0) + h0 = h0. Set ` = 0.

Step 2. Extend the top path in the stack to obtain its successor paths. Compute the path

metric of each successor path according to (2.4). Delete the top path from the

stack.

Step 3. Insert the successors into the stack and reorder the stack according to ascending

path metric values µ. If the stack size exceeds its limit, recursively eliminate the

one whose µ metric is the largest until the stack size ≤ limit.

Step 4. If the top path in the stack ends at a terminal node in the code tree, the algorithm

stops; otherwise go to Step 2.

17

Chapter 5

Simulation Results

In this chapter, we will examine our proposed schemes in Chapters 3 and 4. The channel

model simulated is the additive white Gaussian noise (AWGN) channel.

5.1 The Path Deletion Schemes in Chapter 3

In this section, we examine the path deletion schemes we proposed in Chapter 3. Also

examined is the path deletion scheme that uses the Fano metric to select the top path to

be extended, and to delete the path when the stack is full. This scheme is referred to as

Fano metric delete by Fano metric in the legend. By following similar naming rule, the Fano

metric-based path deletion scheme is referred to as MLSDA delete by Fano metric, and the

level-based path deletion scheme is briefed as MLSDA delete by path level in the legend. The

ML metric-based path deletion scheme is likewisely referred to as MLSDA delte by Wagner

metric.

We compare these path deletion schemes using (2, 1, 8) convolutional codes with generator

polynomial [457,755] (in octal) and (2, 1, 12) convolutional codes with generator polynomial

[17663,11271] (in octal). Simulations for (2, 1, 8) convolutional code are summarized in Fig-

ures 5.1–5.9.

18

Figures 5.1–5.6 show that Fano metric-based path deletion scheme is the best in error

performance when the stack size is upper-bounded by 26−1 and 28−1. The ML metric-based

path deletion scheme performs apparent worse than all the other schemes, and also requires

the largest computational complexity. More specifically, we observe from Figure 5.1 that the

word error rate (WER) of the MLSDA delete by Fano Metric performs 0.5 dB better than

the MLSDA delete by level when the stack size is limited to 26 − 1. In comparison with the

Fano metric delete by Fano metric, MLSDA delete by Fano Metric is still 0.2 dB superior

in WER performance. However, Figure 5.3 shows that the computational complexity of the

MLSDA delete by Fano Metric is around two times larger than both Fano metric delete by

Fano metric and MLSDA delete by level. This leads to a tradeoff between error rate and

computational complexity when one wishes to select among these schemes.

When the stack size is enlarged to a big size, e.g., 216− 1, Figures 5.7–5.9 show that near

optimal performance can be achieved by all three schemes we proposed in Chapter 3. Yet,

with a large stack size, the average computational complexity of the three proposed schemes

will become much larger than Fano metric delete by Fano metric.

For (2,1,12) convolutional codes with generator polynomial [17663,11271] (in octal), we

observe from Figures 5.10–5.15 that the proposed MLSDA delete by Fano Metric is still

the best in error performance when stack size is limited to 212 − 1, but its computational

complexity is again higher than Fano metric delete by Fano metric and MLSDA delete by

level. Figures 5.13–5.15 indicates that optimality can be achieved when the stack size further

increases up to 216 − 1.

From the above simulations, we conclude that Fano metric-based path deletion scheme

can achieve better performance when the memory saving is critical in the system design.

19

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−3

10
−2

10
−1

10
0

Eb/N0

W
E

R

MLSDA delete by Fano metric
MLSDA delete by path level
MLSDA delete by Wagner metric
Fano metric delete by Fano metric
ML

Figure 5.1: Word error rate (WER) performance of path deletion schemes for (2,1,8) convolu-
tional code with generator polynomial [457,755]. The stack size is 26−1, and the information
sequence length L = 100.

20

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−4

10
−3

10
−2

10
−1

10
0

Eb/N0

B
E

R

MLSDA delete by Fano metric
MLSDA delete by path level
MLSDA delete by Wagner metric
Fano metric delete by Fano metric
ML

Figure 5.2: Bit error rate (BER) performance of path deletion schemes for (2,1,8) convolu-
tional code with generator polynomial [457,755]. The stack size is 26−1, and the information
sequence length L = 100.

21

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

10

20

30

40

50

60

70

80

90

Eb/N0

A
ve

ra
ge

 c
om

pu
ta

tio
na

l c
om

pl
ex

ity
 p

er
 in

fo
rm

at
io

n
bi

t

MLSDA delete by Fano metric
MLSDA delete by path level
MLSDA delete by Wagner metric
Fano metric delete by Fano metric

Figure 5.3: Average computational complexity per information bit of path deletion schemes
for (2,1,8) convolutional code with generator polynomial [457,755]. The stack size is 26 − 1,
and the information sequence length L = 100.

22

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−5

10
−4

10
−3

10
−2

Eb/N0

W
E

R

MLSDA delete by Fano metric
MLSDA delete by path level
MLSDA delete by Wagner metric
Fano metric delete by Fano metric
ML

Figure 5.4: Word error rate (WER) performance of path deletion schemes for (2,1,8) convolu-
tional code with generator polynomial [457,755]. The stack size is 28−1, and the information
sequence length L = 100.

23

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−6

10
−5

10
−4

10
−3

10
−2

Eb/N0

B
E

R

MLSDA delete by Fano metric
MLSDA delete by path level
MLSDA delete by Wagner metric
Fano metric delete by Fano metric
ML

Figure 5.5: Bit error rate (BER) performance of path deletion schemes for (2,1,8) convolu-
tional code with generator polynomial [457,755]. The stack size is 28−1, and the information
sequence length L = 100.

24

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

20

40

60

80

100

120

140

160

180

200

Eb/N0

A
ve

ra
ge

 c
om

pu
ta

tio
na

l c
om

pl
ex

ity
 p

er
 in

fo
rm

at
io

n
bi

t

MLSDA delete by Fano metric
MLSDA delete by path level
MLSDA delete by Wagner metric
Fano metric delete by Fano metric

Figure 5.6: Average computational complexity per information bit of path deletion schemes
for (2,1,8) convolutional code with generator polynomial [457,755]. The stack size is 28 − 1,
and the information sequence length L = 100.

25

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−5

10
−4

10
−3

10
−2

Eb/N0

W
E

R

MLSDA delete by Fano metric
MLSDA delete by path level
MLSDA delete by Wagner metric
Fano metric delete by Fano metric
ML

Figure 5.7: Word error rate (WER) performance of path deletion schemes for (2,1,8) con-
volutional code with generator polynomial [457,755]. The stack size is 216 − 1, and the
information sequence length L = 100.

26

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−6

10
−5

10
−4

10
−3

Eb/N0

B
E

R

MLSDA delete by Fano metric
MLSDA delete by path level
MLSDA delete by Wagner metric
Fano metric delete by Fano metric
ML

Figure 5.8: Bit error rate (BER) performance of path deletion schemes for (2,1,8) convolu-
tional code with generator polynomial [457,755]. The stack size is 216−1, and the information
sequence length L = 100.

27

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

50

100

150

200

250

300

Eb/N0

A
ve

ra
ge

 c
om

pu
ta

tio
na

l c
om

pl
ex

ity
 p

er
 in

fo
rm

at
io

n
bi

t

MLSDA delete by Fano metric
MLSDA delete by path level
MLSDA delete by Wagner metric
Fano metric delete by Fano metric

Figure 5.9: Average computational complexity per information bit of path deletion schemes
for (2,1,8) convolutional code with generator polynomial [457,755]. The stack size is 216− 1,
and the information sequence length L = 100.

28

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−6

10
−5

10
−4

10
−3

10
−2

Eb/N0

W
E

R

MLSDA delete by Fano metric
MLSDA delete by path level
MLSDA delete by Wagner metric
Fano metric delete by Fano metric
ML

Figure 5.10: Word error rate (WER) performance of path deletion schemes for (2,1,12)
convolutional code with generator polynomial [17663,11271]. The stack size is 212 − 1, and
the information sequence length L = 100.

29

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

Eb/N0

B
E

R

MLSDA delete by Fano metric
MLSDA delete by path level
MLSDA delete by Wagner metric
Fano metric delete by Fano metric
ML

Figure 5.11: Bit error rate (BER) performance of path deletion schemes for (2,1,12) convo-
lutional code with generator polynomial [17663,11271]. The stack size is 212 − 1, and the
information sequence length L = 100.

30

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

500

1000

1500

2000

2500

3000

Eb/N0

A
ve

ra
ge

 C
om

pl
ex

ity
 p

er
 in

fo
rm

at
io

n
bi

t

MLSDA delete by Fano metric
MLSDA delete by path level
MLSDA delete by Wagner metric
Fano metric delete by Fano metric

Figure 5.12: Average computational complexity per information bit of path deletion schemes
for (2,1,12) convolutional code with generator polynomial [17663,11271]. The stack size is
212 − 1, and the information sequence length L = 100.

31

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−4

10
−3

10
−2

10
−1

10
0

Eb/N0

W
E

R

MLSDA delete by Fano metric
MLSDA delete by path level
MLSDA delete by Wagner metric
Fano metric delete by Fano metric
ML

Figure 5.13: Word error rate (WER) performance of path deletion schemes for (2,1,12)
convolutional code with generator polynomial [17663,11271]. The stack size is 216 − 1, and
the information sequence length L = 100.

32

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−5

10
−4

10
−3

10
−2

10
−1

Eb/N0

B
E

R

MLSDA delete by Fano metric
MLSDA delete by path level
MLSDA delete by Wagner metric
Fano metric delete by Fano metric
ML

Figure 5.14: Bit error rate (BER) performance of path deletion schemes for (2,1,12) convo-
lutional code with generator polynomial [17663,11271]. The stack size is 216 − 1, and the
information sequence length L = 100.

33

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

500

1000

1500

2000

2500

3000

3500

4000

Eb/N0

A
ve

ra
ge

 c
om

pu
ta

tio
na

l c
om

pl
ex

ity
 p

er
 in

fo
rm

at
io

n
bi

t

MLSDA delete by Fano metric
MLSDA delete by path level
MLSDA delete by Wagner metric
Fano metric delete by Fano metric

Figure 5.15: Average computational complexity per information bit of path deletion schemes
for (2,1,12) convolutional code with generator polynomial [17663,11271]. The stack size is
216 − 1, and the information sequence length L = 100.

34

5.2 The Two-Pass Sequential-Type Decoding Algorithm

in Chapter 4

In this section, we turn to examine the performance of the M-algorithm-based heuristics

estimation method (MHEM). Since the routine work in the backward pass can be hardware-

implemented [2][10], only the computational complexity in the forward pass is recorded in

the following simulations. Same premise is also made in [9].

From Figures 5.16–5.18, we found that the performance of the MEHM-enhanced two-pass

decoder is limited by the small stack size 24−1, i.e., the performance cannot be improved by

increasing M . In comparison with Fano metric delete by Fano metric, the MHEM-enhanced

two-pass decoder with small stack size is still 0.5 dB better at WER= 10−1. Moreover, the

computational complexity of the MHEM-enhanced two-pass decoder is 2/3 times lower than

Fano metric delete by Fano metric at Eb/N0 = 2.0 dB. Since the small stack size in these

simulations limits the performance, and since the small stack size also controls the average

computational complexity, M becomes an irrelevant parameter in the system.

By further increasing the stack size up to 26 − 1, Figures 5.19–5.21 show that the larger

M is, the better the performance. Interestingly, the computational complexities for all M

simulated in these three figures are lower than the Fano metric delete by Fano metric.

For stack sizes of 28 − 1 and 210 − 1, Figure 5.22–Figure 5.27 show that taking M = 64

has less than 0.1 dB improvement over M = 32 in error performance. Hence, taking M = 32

is sufficient in the sense that no apparent improvement can be obtained by further increasing

M . In comparison with Fano metric delete by Fano metric, our simulation indicates that

it has comparable performance with our (M = 32)-MHEM-enhanced two-pass decoder, but

requires two times larger computational complexity at Eb/N0= 2.0 dB.

The same phenomenon can be observed in Figures 5.28–5.51, in which the lengths of

35

information sequence increase to L = 200 and L = 400. In other words, these figures show

that no apparent performance improvement can be obtained after M > 32, and the average

computational complexity of Fano metric delete by Fano metric is much higher than the

(M = 32)-MHEM-enhanced two-pass decoder.

We also investigate the relation between M and the stack size. We found from Fig-

ures 5.52–5.54 that the proposed MHEM-enhanced two-pass decoder is more insensitive to

the stack size than the Fano metric delete by Fano metric.

Figures 5.55–5.63 continue to examine the proposed MHEM-enhanced two-pass decoder

using (2, 1, 12) convolutional codes with generator polynomial [17663,11271] (in octal). For

length of information sequence L = 200, we observe that the performance improvement of

M = 256 over M = 128 is less than 0.1 dB, and the stack size to have less than 0.1 dB

performance degradation from the (M = 128)-MHEM-enhanced two-pass decoder to the

optimal performance is 210 − 1.

We again do the same examination for (2, 1, 16) convolutional code with information

length L = 100. The results are summarized in Figures 5.64–5.66. The simulations show

that with M = 512 and stack size of 212 − 1, the performance degradation with respect to

the ML performance can be made less than than 0.3 dB. Moreover, our (M = 512)-MHEM-

enhanced two-pass decoder can perform 0.2 dB better than the Fano metric delete by Fano

metric with seemingly smaller decoding complexity.

All the previous simulations consider code word length of hundred bits. What if the

code word length extends to thousand bits? This query is answered by the following simula-

tions. We re-examine our decoder for (2, 1, 8) convolutional codes with generator polynomial

[457,755] (in octal) by taking L = 2048. The results are summarized in Figures 5.67–5.69 It

can be observed from Figure 5.67 that the performance degradation with respect to ML de-

coding is negligible for M = 64. Even for M = 32 and M = 16, the performance degradations

36

are still less than 0.1 dB and 0.3 dB, respectively. In these simulations, the performances

for the low-complexity suboptimal decoding algorithm proposed in [9] respectively using 16-

and 32-state supercodes are also illustrated. The parameters α are set as 0.94 and 0.9 for 16-

and 32-state supercodes, respectively, as suggested in Table I in [9].1 The figure indicates

that the performance degradations of Sikora and Costellos’s algorithm can also be made less

than 0.1 dB with the parameter α chosen.

We observe from Figure 5.69 that our decoder still has much less computational com-

plexity than the Fano metric delete by Fano metric (which is now termed as Fano metric in

the legend). In particular, the decoding complexity of our algorithm remains small at low

SNR whereas that of the stack algorithm with Fano metric become almost unbounded when

the code word length is large. In comparison with the low-complexity suboptimal decoding

algorithm using 32-state supercode in [9], the average decoding complexity of our algorithm

(M = 32) is about 2/3 times lower at Eb/N0 = 1.5 dB.

It is worth mentioning that the backward M -algorithm in the first pass may have al-

ready generated reliable output. This can be examined through the error detection coding

technique such as CRC. In such case, no forward pass is necessary. In Figure 5.69, we ob-

serve that the decoding complexity can be further reduced, e.g., from 2.54 down to 0.54 per

information bit at Eb/N0 = 2.5 dB, provided that perfect error detection scheme is employed.

In the end, it is interesting to note from Figures 5.25 and 5.67 that when the stack

size is sufficiently large, the selection of M that can achieve near optimal performance is

independent of the code word length, which is 32 in both cases. Hence, the factor that

controls the M selected for near optimal performance is more relevant to the code itself, but

not on the code word length.

1It should be noted that in the forward pass, Sikora and Costello’s algorithm extends only one code bit in
each iteration, instead of two code bits (i.e., one tree branch for half-rate codes) per iteration as our proposed
algorithm does. Since it requires two code bits to identify a branch on the tree of half-rate codes, we will
count two (code bit) extensions on the same branch as one (branch) metric computation in Figure 5.69.

37

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−3

10
−2

10
−1

10
0

Eb/N0

W
E

R

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric
ML

Figure 5.16: Word error rate (WER) performance of MHEM-enhanced two-pass decoder for
(2,1,8) convolutional code with generator polynomial [457,755]. The stack size is = 24 − 1,
and the information sequence length L = 100.

38

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−4

10
−3

10
−2

10
−1

10
0

Eb/N0

B
E

R

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric
ML

Figure 5.17: Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for
(2,1,8) convolutional code with generator polynomial [457,755]. The stack size is = 24 − 1,
and the information sequence length L = 100.

39

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
2

4

6

8

10

12

14

Eb/N0

A
ve

ra
ge

 c
om

pu
ta

tio
na

l c
om

pl
ex

ity
 p

er
 in

fo
rm

at
io

n
bi

t

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric

Figure 5.18: Average computational complexity per information bit of MHEM-enhanced
two-pass decoder for (2,1,8) convolutional code with generator polynomial [457,755]. The
stack size is 24 − 1, and the information sequence length L = 100.

40

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−3

10
−2

10
−1

10
0

Eb/N0

W
E

R

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric
ML

Figure 5.19: Word error rate (WER) performance of MHEM-enhanced two-pass decoder for
(2,1,8) convolutional code with generator polynomial [457,755]. The stack size is = 26 − 1,
and the information sequence length L = 100.

41

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−4

10
−3

10
−2

10
−1

10
0

Eb/N0

B
E

R

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric
ML

Figure 5.20: Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for
(2,1,8) convolutional code with generator polynomial [457,755]. The stack size is = 26 − 1,
and the information sequence length L = 100.

42

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

5

10

15

20

25

30

35

Eb/N0

A
ve

ra
ge

 c
om

pu
ta

tio
na

l c
om

pl
ex

ity
 p

er
 in

fo
rm

at
io

n
bi

t

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric

Figure 5.21: Average computational complexity per information bit of MHEM-enhanced
two-pass decoder for (2,1,8) convolutional code with generator polynomial [457,755]. The
stack size is 26 − 1, and the information sequence length L = 100.

43

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−3

10
−2

10
−1

10
0

Eb/N0

W
E

R

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric
ML

Figure 5.22: Word error rate (WER) performance of MHEM-enhanced two-pass decoder for
(2,1,8) convolutional code with generator polynomial [457,755]. The stack size is = 28 − 1,
and the information sequence length L = 100.

44

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−4

10
−3

10
−2

10
−1

Eb/N0

B
E

R

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric
ML

Figure 5.23: Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for
(2,1,8) convolutional code with generator polynomial [457,755]. The stack size is = 28 − 1,
and the information sequence length L = 100.

45

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

10

20

30

40

50

60

Eb/N0

A
ve

ra
ge

 c
om

pu
ta

tio
na

l c
om

pl
ex

ity
 p

er
 in

fo
rm

at
io

n
bi

t

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric

Figure 5.24: Average computational complexity per information bit of MHEM-enhanced
two-pass decoder for (2,1,8) convolutional code with generator polynomial [457,755]. The
stack size is 28 − 1, and the information sequence length L = 100.

46

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−3

10
−2

10
−1

10
0

Eb/N0

W
E

R

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric
ML

Figure 5.25: Word error rate (WER) performance of MHEM-enhanced two-pass decoder for
(2,1,8) convolutional code with generator polynomial [457,755]. The stack size is = 210 − 1,
and the information sequence length L = 100.

47

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−4

10
−3

10
−2

10
−1

Eb/N0

B
E

R

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric
ML

Figure 5.26: Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for
(2,1,8) convolutional code with generator polynomial [457,755]. The stack size is = 210 − 1,
and the information sequence length L = 100.

48

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

10

20

30

40

50

60

70

80

Eb/N0

A
ve

ra
ge

 c
om

pu
ta

tio
na

l c
om

pl
ex

ity
 p

er
 in

fo
rm

at
io

n
bi

t

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric

Figure 5.27: Average computational complexity per information bit of MHEM-enhanced
two-pass decoder for (2,1,8) convolutional code with generator polynomial [457,755]. The
stack size is 210 − 1, and the information sequence length L = 100.

49

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−3

10
−2

10
−1

10
0

Eb/N0

W
E

R

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric
ML

Figure 5.28: Word error rate (WER) performance of MHEM-enhanced two-pass decoder for
(2,1,8) convolutional code with generator polynomial [457,755]. The stack size is = 24 − 1,
and the information sequence length L = 200.

50

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−4

10
−3

10
−2

10
−1

10
0

Eb/N0

B
E

R

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric
ML

Figure 5.29: Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for
(2,1,8) convolutional code with generator polynomial [457,755]. The stack size is = 24 − 1,
and the information sequence length L = 200.

51

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
2

4

6

8

10

12

14

Eb/N0

A
ve

ra
ge

 c
om

pu
ta

tio
na

l c
om

pl
ex

ity
 p

er
 in

fo
rm

at
io

n
bi

t

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric

Figure 5.30: Average computational complexity per information bit of MHEM-enhanced
two-pass decoder for (2,1,8) convolutional code with generator polynomial [457,755]. The
stack size is 24 − 1, and the information sequence length L = 200.

52

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−3

10
−2

10
−1

10
0

Eb/N0

W
E

R

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric
ML

Figure 5.31: Word error rate (WER) performance of MHEM-enhanced two-pass decoder for
(2,1,8) convolutional code with generator polynomial [457,755]. The stack size is = 26 − 1,
and the information sequence length L = 200.

53

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−4

10
−3

10
−2

10
−1

10
0

Eb/N0

B
E

R

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric
ML

Figure 5.32: Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for
(2,1,8) convolutional code with generator polynomial [457,755]. The stack size is = 26 − 1,
and the information sequence length L = 200.

54

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

5

10

15

20

25

30

Eb/N0

A
ve

ra
ge

 c
om

pu
ta

tio
na

l c
om

pl
ex

ity
 p

er
 in

fo
rm

at
io

n
bi

t

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric

Figure 5.33: Average computational complexity per information bit of MHEM-enhanced
two-pass decoder for (2,1,8) convolutional code with generator polynomial [457,755]. The
stack size is 26 − 1, and the information sequence length L = 200.

55

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−3

10
−2

10
−1

10
0

Eb/N0

W
E

R

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric
ML

Figure 5.34: Word error rate (WER) performance of MHEM-enhanced two-pass decoder for
(2,1,8) convolutional code with generator polynomial [457,755]. The stack size is = 28 − 1,
and the information sequence length L = 200.

56

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−4

10
−3

10
−2

10
−1

Eb/N0

B
E

R

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric
ML

Figure 5.35: Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for
(2,1,8) convolutional code with generator polynomial [457,755]. The stack size is = 28 − 1,
and the information sequence length L = 200.

57

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

5

10

15

20

25

30

35

40

45

50

Eb/N0

A
ve

ra
ge

 c
om

pu
ta

tio
na

l c
om

pl
ex

ity
 p

er
 in

fo
rm

at
io

n
bi

t

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric

Figure 5.36: Average computational complexity per information bit of MHEM-enhanced
two-pass decoder for (2,1,8) convolutional code with generator polynomial [457,755]. The
stack size is 28 − 1, and the information sequence length L = 200.

58

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−3

10
−2

10
−1

10
0

Eb/N0

W
E

R

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric
ML

Figure 5.37: Word error rate (WER) performance of MHEM-enhanced two-pass decoder for
(2,1,8) convolutional code with generator polynomial [457,755]. The stack size is = 210 − 1,
and the information sequence length L = 200.

59

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−4

10
−3

10
−2

10
−1

Eb/N0

B
E

R

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric
ML

Figure 5.38: Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for
(2,1,8) convolutional code with generator polynomial [457,755]. The stack size is = 210 − 1,
and the information sequence length L = 200.

60

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

10

20

30

40

50

60

70

80

Eb/N0

A
ve

ra
ge

 c
om

pu
ta

tio
na

l c
om

pl
ex

ity
 p

er
 in

fo
rm

at
io

n
bi

t

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric

Figure 5.39: Average computational complexity per information bit of MHEM-enhanced
two-pass decoder for (2,1,8) convolutional code with generator polynomial [457,755]. The
stack size is 210 − 1, and the information sequence length L = 200.

61

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−3

10
−2

10
−1

10
0

Eb/N0

W
E

R

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric
ML

Figure 5.40: Word error rate (WER) performance of MHEM-enhanced two-pass decoder for
(2,1,8) convolutional code with generator polynomial [457,755]. The stack size is = 24 − 1,
and the information sequence length L = 400.

62

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−4

10
−3

10
−2

10
−1

10
0

Eb/N0

B
E

R

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric
ML

Figure 5.41: Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for
(2,1,8) convolutional code with generator polynomial [457,755]. The stack size is = 24 − 1,
and the information sequence length L = 400.

63

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
2

4

6

8

10

12

14

Eb/N0

A
ve

ra
ge

 c
om

pu
ta

tio
na

l c
om

pl
ex

ity
 p

er
 in

fo
rm

at
io

n
bi

t

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric

Figure 5.42: Average computational complexity per information bit of MHEM-enhanced
two-pass decoder for (2,1,8) convolutional code with generator polynomial [457,755]. The
stack size is 24 − 1, and the information sequence length L = 400.

64

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−3

10
−2

10
−1

10
0

Eb/N0

W
E

R

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric
ML

Figure 5.43: Word error rate (WER) performance of MHEM-enhanced two-pass decoder for
(2,1,8) convolutional code with generator polynomial [457,755]. The stack size is = 26 − 1,
and the information sequence length L = 400.

65

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−4

10
−3

10
−2

10
−1

10
0

Eb/N0

B
E

R

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric
ML

Figure 5.44: Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for
(2,1,8) convolutional code with generator polynomial [457,755]. The stack size is = 26 − 1,
and the information sequence length L = 400.

66

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

5

10

15

20

25

30

35

Eb/N0

A
ve

ra
ge

 c
om

pu
ta

tio
na

l c
om

pl
ex

ity
 p

er
 in

fo
rm

at
io

n
bi

t

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric

Figure 5.45: Average computational complexity per information bit of MHEM-enhanced
two-pass decoder for (2,1,8) convolutional code with generator polynomial [457,755]. The
stack size is 26 − 1, and the information sequence length L = 400.

67

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−3

10
−2

10
−1

10
0

Eb/N0

W
E

R

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric
ML

Figure 5.46: Word error rate (WER) performance of MHEM-enhanced two-pass decoder for
(2,1,8) convolutional code with generator polynomial [457,755]. The stack size is = 28 − 1,
and the information sequence length L = 400.

68

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−4

10
−3

10
−2

10
−1

10
0

Eb/N0

B
E

R

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric
ML

Figure 5.47: Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for
(2,1,8) convolutional code with generator polynomial [457,755]. The stack size is = 28 − 1,
and the information sequence length L = 400.

69

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

5

10

15

20

25

30

35

40

45

50

Eb/N0

A
ve

ra
ge

 c
om

pu
ta

tio
na

l c
om

pl
ex

ity
 p

er
 in

fo
rm

at
io

n
bi

t

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric

Figure 5.48: Average computational complexity per information bit of MHEM-enhanced
two-pass decoder for (2,1,8) convolutional code with generator polynomial [457,755]. The
stack size is 28 − 1, and the information sequence length L = 400.

70

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−3

10
−2

10
−1

10
0

Eb/N0

W
E

R

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric
ML

Figure 5.49: Word error rate (WER) performance of MHEM-enhanced two-pass decoder for
(2,1,8) convolutional code with generator polynomial [457,755]. The stack size is = 210 − 1,
and the information sequence length L = 400.

71

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−4

10
−3

10
−2

10
−1

10
0

Eb/N0

B
E

R

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric
ML

Figure 5.50: Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for
(2,1,8) convolutional code with generator polynomial [457,755]. The stack size is = 210 − 1,
and the information sequence length L = 400.

72

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

10

20

30

40

50

60

70

80

Eb/N0

A
ve

ra
ge

 c
om

pu
ta

tio
na

l c
om

pl
ex

ity
 p

er
 in

fo
rm

at
io

n
bi

t

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
Fano metric delete by Fano metric

Figure 5.51: Average computational complexity per information bit of MHEM-enhanced
two-pass decoder for (2,1,8) convolutional code with generator polynomial [457,755]. The
stack size is 210 − 1, and the information sequence length L = 400.

73

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−3

10
−2

10
−1

10
0

Eb/N0

W
E

R

MHEM, M = 32, stack size = 26−1

MHEM, M = 32, stack size = 28−1

MHEM, M = 32, stack size = 210−1

Fano metric, stack size = 26−1

Fano metric, stack size = 28−1

Fano metric, stack size = 210−1
ML

Figure 5.52: Word error rate (WER) performance of MHEM-enhanced two pass decoder
for (2,1,8) convolutional code with generator polynomial [457,755]. Here, M = 32 and the
information sequence length L = 400.

74

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−4

10
−3

10
−2

10
−1

10
0

Eb/N0

B
E

R

MHEM, M = 32, stack size = 26−1

MHEM, M = 32, stack size = 28−1

MHEM, M = 32, stack size = 210−1

Fano metric, stack size = 26−1

Fano metric, stack size = 28−1

Fano metric, stack size = 210−1
ML

Figure 5.53: Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for
(2,1,8) convolutional code with generator polynomial [457,755]. Here, M = 32 and the
information sequence length L = 400.

75

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

10

20

30

40

50

60

70

80

Eb/N0

A
ve

ra
ge

 c
om

pu
ta

tio
na

l c
om

pl
ex

ity
 p

er
 in

fo
rm

at
io

n
bi

t

MHEM, M = 32, stack size = 26−1

MHEM, M = 32, stack size = 28−1

MHEM, M = 32, stack size = 210−1

Fano metric, stack size = 26−1

Fano metric, stack size = 28−1

Fano metric, stack size = 210−1

Figure 5.54: Average computational complexity per information bit of MHEM-enhanced
two-pass decoder for (2,1,8) convolutional code with generator polynomial [457,755]. Here,
M = 32, and the information sequence length L = 400.

76

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−4

10
−3

10
−2

10
−1

10
0

Eb/N0

W
E

R

MHEM, M = 64
MHEM, M = 128
MHEM, M = 256
Fano metric delete by Fano metric
ML

Figure 5.55: Word error rate (WER) performance of MHEM-enhanced two-pass decoder for
(2,1,12) convolutional code with generator polynomial [17663,11271]. The stack size is 28−1,
and the information sequence length L = 200.

77

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0

B
E

R

MHEM, M = 64
MHEM, M = 128
MHEM, M = 256
Fano metric delete by Fano metric
ML

Figure 5.56: Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for
(2,1,12) convolutional code with generator polynomial [17663,11271]. The stack size is 28−1,
and the information sequence length L = 200.

78

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

20

40

60

80

100

120

140

Eb/N0

A
ve

ra
ge

 c
om

pu
ta

tio
na

l c
om

pl
ex

ity
 p

er
 in

fo
rm

at
io

n
bi

t

MHEM, M = 64
MHEM, M = 128
MHEM, M = 256
Fano metric delete by Fano metric

Figure 5.57: Average computational complexity per information bit of MHEM-enhanced
two-pass decoder for (2,1,12) convolutional code with generator polynomial [17663,11271].
The stack size is 28 − 1, and the information sequence length L = 200.

79

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−4

10
−3

10
−2

10
−1

10
0

Eb/N0

W
E

R

MHEM, M = 64
MHEM, M = 128
MHEM, M = 256
Fano metric delete by Fano metric
ML

Figure 5.58: Word error rate (WER) performance of MHEM-enhanced two-pass decoder
for (2,1,12) convolutional code with generator polynomial [17663,11271]. The stack size is
210 − 1, and the information sequence length L = 200.

80

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−5

10
−4

10
−3

10
−2

10
−1

Eb/N0

B
E

R

MHEM, M = 64
MHEM, M = 128
MHEM, M = 256
Fano metric delete by Fano metric
ML

Figure 5.59: Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for
(2,1,12) convolutional code with generator polynomial [17663,11271]. The stack size is 210−1,
and the information sequence length L = 200.

81

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

50

100

150

200

250

300

Eb/N0

A
ve

ra
ge

 c
om

pu
ta

tio
na

l c
om

pl
ex

ity
 p

er
 in

fo
rm

at
io

n
bi

t

MHEM, M = 64
MHEM, M = 128
MHEM, M = 256
Fano metric delete by Fano metric

Figure 5.60: Average computational complexity per information bit of MHEM-enhanced
two-pass decoder for (2,1,12) convolutional code with generator polynomial [17663,11271].
The stack size is 210 − 1, and the information sequence length L = 200.

82

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−4

10
−3

10
−2

10
−1

10
0

Eb/N0

W
E

R

MHEM, M = 64
MHEM, M = 128
MHEM, M = 256
Fano metric delete by Fano metric
ML

Figure 5.61: Word error rate (WER) performance of MHEM-enhanced two-pass decoder
for (2,1,12) convolutional code with generator polynomial [17663,11271]. The stack size is
212 − 1, and the information sequence length L = 200.

83

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−5

10
−4

10
−3

10
−2

10
−1

Eb/N0

B
E

R

MHEM, M = 64
MHEM, M = 128
MHEM, M = 256
Fano metric delete by Fano metric
ML

Figure 5.62: Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for
(2,1,12) convolutional code with generator polynomial [17663,11271]. The stack size is 212−1,
and the information sequence length L = 200.

84

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

50

100

150

200

250

300

350

400

450

Eb/N0

A
ve

ra
ge

 c
om

pu
ta

tio
na

l c
om

pl
ex

ity
 p

er
 in

fo
rm

at
io

n
bi

t

MHEM, M = 64
MHEM, M = 128
MHEM, M = 256
Fano metric delete by Fano metric

Figure 5.63: Average computational complexity per information bit of MHEM-enhanced
two-pass decoder for (2,1,12) convolutional code with generator polynomial [17663,11271].
The stack size is 212 − 1, and the information sequence length L = 200.

85

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−4

10
−3

10
−2

10
−1

10
0

Eb/N0

W
E

R

MHEM, M = 64
MHEM, M = 128
MHEM, M = 256
MHEM, M = 512
Fano metric delete by Fano metric
ML

Figure 5.64: Word error rate (WER) performance of MHEM-enhanced two-pass decoder for
(2,1,16) convolutional code with generator polynomial [715022,514576]. The stack size is
212 − 1, and the information sequence length L = 100.

86

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−5

10
−4

10
−3

10
−2

10
−1

Eb/N0

B
E

R

MHEM, M = 64
MHEM, M = 128
MHEM, M = 256
MHEM, M = 512
Fano metric delete by Fano metric
ML

Figure 5.65: Bit error rate (BER) performance of MHEM-enhanced two-pass decoder for
(2,1,16) convolutional code with generator polynomial [715022,514576]. The stack size is
212 − 1, and the information sequence length L = 100.

87

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

200

400

600

800

1000

1200

1400

Eb/N0

A
ve

ra
ge

 C
om

pl
ex

ity
 p

er
 in

fo
rm

at
io

n
bi

t

MHEM, M = 64
MHEM, M = 128
MHEM, M = 256
MHEM, M = 512
Fano metric delete by Fano metric

Figure 5.66: Average computational complexity per information bit of MHEM-enhanced
two-pass decoder for (2,1,16) convolutional code with generator polynomial [715022,514576].
The stack size is 212 − 1, and the information sequence length L = 100.

88

1 1.5 2 2.5 3 3.5 4
10

−4

10
−3

10
−2

10
−1

10
0

Eb/N0

W
E

R

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
[10] 16 states
[10] 32 states
Fano metric
ML

Figure 5.67: Word error rate (WER) performance of MHEM-enhanced two-pass decoder,
and low-complexity suboptimal decoding algorithm in [9] for (2,1,8) convolutional code with
generator polynomial [457,755]. The stack size is 218 − 1, and the information sequence
length L = 2048.

89

1 1.5 2 2.5 3 3.5 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0

B
E

R

MHEM, M = 16
MHEM, M = 32
MHEM, M = 64
[10] 16 states
[10] 32 states
Fano metric
ML

Figure 5.68: Bit error rate (BER) performance of MHEM-enhanced two-pass decoder, and
low-complexity suboptimal decoding algorithm in [9] for (2,1,8) convolutional code with
generator polynomial [457,755]. The stack size is 218 − 1, and the information sequence
length L = 2048.

90

1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

30

35

40

Eb/N0

A
ve

ra
ge

 c
om

pu
ta

tio
na

l c
om

pl
ex

ity
 p

er
 in

fo
rm

at
io

n
bi

t

MHEM, M = 32
MHEM, M = 32 with perfect error detection
MHEM, M = 64
MHEM, M = 64 with perfect error detection
[10] 16 states
[10] 32 states
Fano metric

Figure 5.69: Average computational complexity per information bit of MHEM-enhanced
two-pass decoder, and low-complexity suboptimal decoding algorithm in [9] for (2,1,8) con-
volutional code with generator polynomial [457,755]. The stack size is 218 − 1, and the
information sequence length L = 2048.

91

Chapter 6

Concluding Remark and Future work

In this thesis, subject to the practical consideration of finite stack size, we first proposed

several path deletion schemes for use of sequential-type decoding algorithm. Afterwards,

considering the possibility of off-line decoding, in which the decoding process launches after

the reception of entire received vector, we further improved these path deletion schemes by

proposing an alternative heuristics estimation method based on two-pass decoding structure.

It is empirically shown that the computational complexity of the forward pass not only

considerably improves over the stack algorithm with Fano metric under the premise that the

backward M -algorithm can be hardware-implemented, but also is smaller than that of the

two-pass supercode decoder proposed in [9].

At the current stage, the appropriate M is still obtained through simulations. It would

be of practical interest if M can be identified analytically for a given code parameters as

well as structure.

92

References

[1] J. B. Anderson and S. Mohan, “Sequential coding algorithms: A survey and cost

analysis,” IEEE Trans. Commun., vol. COM-32, pp. 169-176, February 1984.

[2] P. A. Bengough and S. J. Simmons,“Sorting-based VLSI architectures for the M -

algorithm and T -algorithm trellis decoders,” IEEE Trans. Commun., vol. 43(2/3/4),

pp. 514–522, April 1995.

[3] R. Fano, “A heuristic discussion of probabilistic decoding,” IEEE Trans. Inform. The-

ory, vol. IT-9, no. 2, pp. 64–73, April 1963.

[4] Y. S. Han, P.-N. Chen and H.-B. Wu, “A maximum-likelihood soft-decision sequential

decoding algorithm for binary convolutional codes,” IEEE Trans. Commun., vol. 50,

no. 2, pp. 173–178, February 2002.

[5] F. Jelinek, “A fast sequential decoding algorithm using a stack,” IBM J. Res. Develop.,

vol. 13, pp. 675–685, November 1969.

[6] J. L. Massey, “Variable-length codes and the Fano metric,” IEEE Trans. Inform. The-

ory, vol. 18, no. 1, pp. 196–198, 1972.

[7] N. J. Nilsson, Principle of Artificial Intelligence. Palo Alto, CA: Tioga Publishing Co.,

1980.

93

[8] S. L. Shieh, P.-N. Chen, Y. S. Han,“Reduction of computational complexity and suffi-

cient stack size of the MLSDA by early elimination,” in IEEE International Symposium

on Information Theory, Nice, France, pp. 1671-1675, June 2007.

[9] M. Sikora and D. J. Costello, Jr., “Supercode heuristics for tree search decoding,” in

Proc. IEEE Inform. Theory Workshop, Porto, Portugal, pp. 411-415, May 2008.

[10] S. J. Simmons, “A bitonic-sorter based VLSI implementation of the M -algorithm,” in

IEEE Pacific Rim Conference on Communications, Computer ans Signal Processing,

pp. 337–340, June 1989.

[11] K. Zigangirov, “Some sequential decoding procedures,” Probl. Peredach. Inform., vol. 2,

no. 4, pp. 13–15, 1966.

94

	cover.pdf
	book.pdf
	abstract in Chinese.pdf
	abstract in English.pdf
	bbn-thesis-new.pdf

