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摘       要 

 

    雙選擇性(衰減)通道造成載波間干擾(Inter-carrier Interference, ICI)的問

題並降低系統效能，受到鄰近子載波之能量擴散而產生的載波間干擾效

應，是本論文首要的估測目標，因而提出一種正交分頻多工(Orthogonal 

Frequency Division Multiplexing, OFDM)系統接收機，其為基於期望值最大

化演算法(Expectation-Maximization, EM)設計而成。在頻域模式下進行系統

分析，將 EM 演算法與馬可夫鏈蒙地卡羅法(Markov chain Monte Carlo, 

MCMC)結合，並以最大相似度(Maximum Likelihood, ML)作為判定準則，

我們得到一套有系統地估測載波間干擾的方法，稱之為「EM 通道估測法」。

此外，為了減低運算複雜度，以及充分利用時變通道所賦予的時間多樣性，

ML-EM 接收機採用「分群式載波間干擾消除器」，針對通過此消除器之後

的接收信號，估算適當的殘餘載波間干擾功率，以提高資料偵測的正確率。

電腦模擬結果顯示，相較於以往一階等化器，我們提出的 ML-EM 接收機在

錯誤率方面的表現，有著明顯的進步。 

 

 

 i



Design of an EM-based Receiver Using Markov Chain 
Monte Carlo Method for OFDM Systems in Doubly 

Selective Channels  
 

Student：Siao-Yi Jhong Advisor：Dr. Chia-Chi Huang 

 
 
 

 

Department of Communication Engineering 
National Chiao Tung University 

 

ABSTRACT 

 
     Doubly selective (fading) channels cause the inter-carrier interference (ICI) problem and 

thus degrade the system performance. In order to estimate the ICI effect made by the spreading 

energy of adjacent subcarriers, we propose an expectation-maximization (EM)-based receiver for 

orthogonal frequency division multiplexing (OFDM) systems. In this paper, we use the frequency 

domain model for system analysis and derive the EM channel estimation method by combining 

the Markov Chain Monte Carlo (MCMC) method with the EM algorithm according to the 

maximum-likelihood (ML) criterion. Besides, the proposed EM-based receiver is incorporated 

with the group-wise ICI cancellation method for reducing computational complexity and 

exploiting the inherent time diversity in time-variant channels. After the ICI cancellation, the 

residual ICI power is calculated for the ICI-reduced signals with the goal of making data 

detection more correctly. Results of computer simulation demonstrate that the ML-EM receiver 

performs much better than the conventional one-tap equalizer. 
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Chapter 1  Introduction 

     Over the last few years, the mobile communication technology develops rapidly, and 

so do the wireless techniques. The wideband transmission became an inevitable trend because 

of the data rate demanded by users. The wireless network has the advantage of the mobility, 

the convenience and the high-coverage. Limits of time and place do not restrain the 

communication among people. However, the channel of the wireless communication is 

interfered with by severe noise, and the multipath effect is also a problem which should be 

overcome. The multipath propagation causes the frequency selective fading and the 

inter-symbol interference (ISI), and thus harms the quality of transmission and degrades the 

system performance. It would be significant to choose an appropriate system model according 

to the channel conditions and the requirements for transmission.  

     There are many techniques invented for raising the utility rate and mitigating the 

influence of the multipath effect, and orthogonal frequency division multiplexing (OFDM) is 

one of the most famous schemes. In OFDM, subcarrier frequencies are chosen to be 

orthogonal to each other; namely, the crosstalk between the sub-channels is eliminated. The 

orthogonality also provides high spectral efficiency since almost the whole available 

frequency band can be utilized. The duration of each symbol is long enough to put in a guard 

interval to eliminate the ISI, and the cyclic prefix (CP) used as the guard interval consists of a 

copy of the end of the OFDM symbol. Besides, OFDM is equipped for coping with 
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attenuation of high frequencies in a long copper wire and narrowband interference. The effect 

of frequency selective fading can be considered as flat over an OFDM sub-channel if its band 

is sufficiently narrow. This makes the equalizer simpler at the receiver compared with 

conventional single-carrier modulation.   

     OFDM requires accurate frequency synchronization between the receiver and the 

transmitter. The subcarriers are no longer orthogonal if there is frequency deviation, inducing 

the inter-carrier interference (ICI). Frequency offsets are typically caused by mismatched 

transmitter and receiver oscillators, or by Doppler shift due to movement, and this effect 

worsens as speed increases or as the length of a symbol gets longer. In communication 

systems, the transmission often proceeds in the high- mobility condition, but the time-variant 

channels damage the orthogonality, cause the ICI effect and then lower the system 

performance. As a result, the ICI suppression is a significant issue for research in mobile 

communication, and it is also the main study in this paper.  

     There have been many techniques suggested for the ICI suppression; for example, 

minimum mean square error (MMSE) [3], minimum mean square error with successive 

detection (MMSE-SD) [3], polynomial cancellation coding (PCC) [4] and self-cancellation 

coding [5]. The method in [3] is efficient but with high computational complexity. The 

schemes in [4] and [5] provide good bit error rate (BER) performance at the expense of 

sacrificing bandwidth efficiency. In [6] and [7], the piece-wise linear model is proposed to 
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approximate the channel variation, helping the analysis of properties of the channel. It is 

explained that energy of a sub-carrier leaks to the adjacent sub-carriers owing to Doppler shift 

in [8] and [9]. The expectation-maximization (EM) algorithm can be utilized to solve the 

maximum-likelihood (ML) estimation problem in an iterative manner. Recently, some 

EM-based methods have been proposed for channel estimation and data detection in OFDM 

systems. But the wireless channel is assumed to be quasi-static, i.e., channel gain remains 

constant over the duration of one OFDM symbol. 

In this paper, we propose an EM-based receiver for OFDM systems in doubly selective 

fading channels. By assuming channel varies in a linear fashion, we analyze the ICI effect in 

frequency domain and derive a channel estimation method based on the EM algorithm in [10] 

and [11] under the ML criterion. A Gibbs sampler (a Markov chain Monte Carlo procedure) is 

used for the calculation of Bayesian estimates and also for data detection in the EM algorithm. 

Moreover, we combine the EM-based receiver with a group-wise ICI cancellation scheme for 

the sake of reducing the computational complexity. The ML-EM receiver is implemented to 

iterate between a group-wise ICI canceller and an EM detector (including the Gibbs samplers 

inside). The MMSE estimator is employed in the receiver for the initial setting by exploiting 

the pilot tones in each frame, and the accuracy of initialization can be refined successfully 

through the mechanism of decision feedback. 

     The rest of this paper is organized as follows. In Chapter 2, the system under study is 
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described and the ICI effect is analyzed in frequency domain. And the basic idea of the Gibbs 

sampling method is briefly introduced in Chapter 3. In Chapter 4, a channel estimation 

method is derived from the EM algorithm combined with a Gibbs sampler using the ML 

criterion, and accordingly, we propose an ML-EM receiver for OFDM systems. And the 

ML-EM receiver is further united with the group-wise method in chapter 4.The problem of 

computing the ICI power (or the variance of ICI) for the Gibbs sampling is treated in Chapter 

5. Results of computer simulation are presented and discussed in Chapter 6. In the final part 

of the paper, Chapter 7, we draw some conclusions for the study. 

The following are some interpretations of notations used in the paper. Boldface capital 

letters denote matrices, whereas boldface lowercase letters denote column vectors. The 

superscripts and  stand for the transpose and the Hermitian transpose of a matrix, 

respectively. The column vector  can be explicitly expressed by 

( )T⋅ ( )H⋅

x 1 2, , ,x x x x…  or 

{ }: 1, ,ix i∈ x… , where x  is the dimension of the vector . The notation x { }…  

represents a set, e.g. a set { }1x , , x= xx … , and the cardinality of the set  is denoted by x x . 

The set can also be expressed in a compact form: { }{ }: 1, ,ix i∈ x… . 
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Chapter 2  OFDM System Model 

2.1 Frame Format 

According to the frame format in IEEE 802.16e standard [12], a frame consists of the 

pilot preamble in the first symbol followed by many OFDM symbols carried by numerous 

subcarriers. The number of subcarriers depends on the size of the Fast Fourier Transform 

(FFT), and there are three types of subcarriers shown in Fig. 2.2. First, the data subcarriers are 

used to transmit data symbols. And the pilot subcarriers are used as virtual subcarriers to help 

the channel estimation. In an OFDM symbol, a sequence of values is inserted to be the pilot 

signals. Moreover, the null subcarriers can be the DC subcarriers or the guard band which 

alleviates the aliasing problem at the receiver.   

 

 

 

             Fig. 2.1  The allocation of subcarriers in OFDM systems.  

 

2.2 Doubly Selective Channels 

   Nowadays, wireless applications are expected to operate at high level of mobility and at 
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high capacities that result in doubly selective channels. Doubly selective fading means 

frequency selective fading induced by the multipath propagation and time selective fading 

caused by the time-varying channel. 

The multipath propagation is a phenomenon that the transmitted signals arrive at 

different times at the receiver through more than one path. The time difference between the 

arrival moment of the first multipath component and the last one is called delay spread. The 

coherence bandwidth measures the separation in frequency which two signals experience 

uncorrelated fading. If the coherence bandwidth of the channel is smaller than the bandwidth 

of the signal, different frequency components of the signal suffer from decorrelated fading. 

    The channel varies with time due to Doppler shift resulted from rapid traversing of the 

transmitter or the receiver. The coherence time is a measure of the minimum time required for 

the magnitude change of the channel to become decorrelated from its previous value. When 

the coherence time of the channel is small relative to the symbol duration, the amplitude and 

phase of the signal change imposed by the channel varies considerably, causing a fast fading 

channel. 

     That is, the doubly selective channel is also called the frequency-selective fast-fading 

channel. The equivalent impulse response can be expressed as follows: 

                    ( ) ( ) ( ( )

1
,

L
l

l
l

h t t )τ α δ τ τ
=

=∑ −                           (2.1) 

where  and ( )l tα ( )lτ  are the complex fading gain and time delay of th path respectively l

 6



and ( )δ ⋅  is the Kronecker delta function. The complex fading gain is a function of  which 

denotes the time index, and the value  stands for the number of paths. Fig. 2.2 below is 

intended to show the equivalent impulse response. 

t

L

( )t    The variation of the fading gain, lα , which depends upon Doppler shift is proportional 

to the carrier frequency and the speed of a motor vehicle. The maximum Doppler frequency 

(MDF) is defined as  

                          D c
cf vf =                            (2.2) 

where  is the velocity of the source relative to the receiver, v cf  is the carrier frequency and 

 is the speed of light (e.g. 3×108 m/s for light travelling in a vacuum). In OFDM systems, 

the normalized MDF 

c

D sf T  (in which sT  is the sampling period) is used to indicate the range 

of variation in the channel. By keeping sT  and cf  constant, it can be observed from (2.2) 

that Df  becomes larger when the car is driven faster.   

t
( ),h t τ

2τ 4

0t

1t

2t

3t

1

( )3tτ

( )2tτ

( )1tτ

( )0tττ3τ 2Nτ − 1Nτ −τ0τ   

Fig. 2.2  An illustration of the equivalent impulse response. 
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2.3 Transmitted Signals and Received Signals  

[0]x
[1]x

[ 1]x N−

cpx

[ , ]h l n

[0]y
[1]y

[ 1]y N−

cpy

F[0]y

[ ]F 1y N −

izF[0]x

[ ]F 1x N−
 

Fig. 2.3  OFDM Systems. 

Fig.2.3 shows an OFDM system. The information source bits are mapped into MPSK 

data symbols and are converted into N parallel data streams through a serial to parallel (S/P) 

block. Then the data streams are modulated onto N subcarriers by an N-point inverse Fast 

Fourier Transform (IFFT) unit to produce samples in the time domain, and the transmitted 

signal is expressed as  

21

0

1[ ] [ ]
mnN j

N

m
x n X m e

N

π−

=

= ∑                          (2.3) 

where [ ]X m  represents the data in frequency domain at the th subcarrier. For the 

purpose of eliminating ISI due to multipath channels, a CP is added at the head of each data 

symbol, being presented as  

m

                    [ ] [ ]cx n x N n= + ,     , , 1Gn N= − … −                (2.4) 

where  is the length of the guard interval. We assume that the maximum delay spread of 

the channel is always smaller than  to make sure that there is no ISI after removing the 

guard interval.   

GN

GN

     It is assumed that both timing and carrier frequency synchronization are perfect. The 

 8



received OFDM symbols in time domain can be expressed as the circular convolution of the 

transmitted symbols and the channel impulse response; hence, received signals are given by 

                                         (2.5) 

1

[ ] [ ] [ , ] [ ]

      [ , ] [(( )) ] [ ]
L

N
l

y n x n h l n z n

h l n x n l z n
=

= ⊗ +

= −∑ +

where  represents the channel impulse response of the th channel tap at the th 

sample time,  is the delay time of the th path relative to the first path,  is the discrete 

time index,

[ , ]h l n

[

l n

l l n

]z n

2
z

 is a sample of additive white Gaussian noise (AWGN) with zero-mean and 

variance σ , and  means a cyclic shift in the base of .                      (( ))Ni N

After removing the guard interval and taking the Fast Fourier Transform (FFT), the 

received signals in frequency domain can be described by   

                    (2.6) 

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

1

F F F
0

1

F F
0,

ICI term

,

       , ,

N

m

N

m m k

y k H k m x m z k

H k k x k H k m x m z k

−

=

−

= ≠

= +

= + +

∑

∑ F

in which [ ]Fx k  is the transmitted signals in frequency domain and [ ],H k k  is the 

frequency response of the average gain of the channel. And [ ],H k m , which represents the 

leakage factor of ICI from the th subcarrier to the th subcarrier, is provided in the 

following: 

m k

                 [ ] [ ]
21

0
, , ,

mlL j
N

l
H k m k m l e

π

β
− −

=

=∑                        (2.7) 

where [ , , ]k m lβ  is the frequency response of the time-varying channel and can be given by  

2 (( ))1

0

1[ , , ] [ , ]
Nn k mN j

N

n
k m l h l n e

N

π

β
−− −

=

= ∑ .                   (2.8) 
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Accordingly, [ ],H k m  is regarded as the summation of [ , , ]k m lα  multiplied by the linear 

phase resulted from the time delay of the th tap. l

   If the channel is time-invariant in the OFDM symbol duration; namely, it is in the slow 

fading mode, [ ],H k m  turns out to be zero when  and  are different values, and thus k m

[ ],H k m  is equivalent to [ ],H k k . That is, there is no ICI among subcarriers. 

 

2.4 The ICI Model  

In [6] and [7], with the normalized MDF up to 0.1, a first-order polynomial function is 

adequate to model the time variation of each channel tap in an OFDM symbol and it  

is defined by 

                                          (2.9) [ , ] a[ ,1] a[ ,0]h l n l n l= +

where  is the coefficient of [ , ]a l p p th monomial in the function of the th path. By 

substituting (2.9) to (2.8),

l

[ , ,k m l]β  can be presented as follows:  

(i) :   m k= [ ] [ ] [1, , ,1 ,0
2

Nk m l a l a lβ −
= + ]                   (2.10) 

(ii) :   m k≠ [ ] [ ] [ ], , , ,1k m l k m a lβ = Φ                        (2.11) 

where [ ]
( )

( )( )
21

0

1 1 1,
2

2 tan

n k mN j
N

n
N

k m ne j
N k m

N

π

π

−− −

=

Φ = = − +
⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ .           (2.12) 

And the Malcaurin series can be used to replace the tangent function in (2.12). A parameter 

λ  is in the interval between 
2
π

−  and 
2
π , and then tanλ  can approximate to a polynomial 
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in one variable expressed as follows: 

                  3 51 2tan   ........
3 15

λ λ λ λ= + + +                        (2.13) 

in which the high-order terms, i.e. 3λ , 5λ , may be neglected as the value of λ  is smaller 

than one, and thus (2.13) can be written as 

                          tanλ λ≈ .                                  (2.14) 

The values of  and  are within the range from 0 to m k 1N − , so ( )( )N
k m−  is between 0 

and , and then 1N −
( )( )N
k m

N
π −

 in (2.12) is in the interval of (, N
N N
π π −1)⎡ ⎤
⎢ ⎥⎣ ⎦

 or ( )0,π . 

( )( )
tan N

k m
N

⎛ ⎞−
⎜
⎜
⎝ ⎠

π
⎟
⎟

 is simplified by the Malcaurin series, and so is [ ],k mΦ  which can be 

classified in the following cases: 

(i) (( )) (( ))  tan tan
2 2

N Nk m k m
N N

π ππ π− −⎛ ⎞ ⎛= ⇒ = ⎜⎜ ⎟
⎝ ⎠⎝ ⎠

⎞
⎟ , but tan

2
π⎛ ⎞
⎜ ⎟
⎝ ⎠

 is infinite, and 

therefore [ ] 1,
2

k mΦ = − . 

(ii) (( ))0
2

Nk m
N

π π−
< < , so [ ] ( )( )

1,
2 2

N

Nk m j
k mπ

Φ = − +
−

. 

(iii) Subtracting π  from (( ))
2

Nk m
N

ππ π−
< < , we can get a new inequality of 

( )( )
0

2
N

k m N

N

ππ ⎡ ⎤− −⎣− < <⎦  which conforms to the range required by the 

    Malcaurin series, and thus [ ]
( )( )

1,
2 2

N

Nk m j
k m Nπ

Φ = − +
⎡ ⎤− −⎣ ⎦

.  

When  is different from , k m [ ],k mΦ  can be formed in accordance with the 

results of (i), (ii) and (iii), and given by 
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1      for 0 (( ))
2 2 (( )) 2

1[ , ] for (( ))   
2 2

1        for (( ))
2 2 [(( )) ] 2

N
N

N

N
N

N Nj k
k m

Nk m k m

N N

m

j k m N
k m N

π

π

⎧ − + < − <⎪ −⎪
⎪

Φ ≈ − − =⎨
⎪
⎪− + < − <⎪ − −⎩

.        (2.15) 

As a result, (2.12) can be replaced by the approximation in (2.15). 

    By making use of (2.11) and (2.15), the equation in (2.6) is rewritten as  

1

F F F
0

[ ] [ , ] [ ] [ , ] [ ] [ ] [ ]
N

m
m k

Fy k H k k x k k m w m x m z k
−

=
≠

= + Φ +∑           (2.16) 

where [ ] [ ]
21

0
,1

mlL j
N

l
w m a l e

π− −

=

= ∑  is defined as the channel variable in frequency domain and 

[ ],k mΦ  represents a fixed-valued coefficient of the ICI term. In order to provide a more 

compact representation, we rewrite (2.16) in a matrix form which is given by  

              ( )= + = + = +y Hx z M +ΦW x z Mx +ΦXw z                 (2.17) 

where the th entry of  is ( ,k m) H [ ],H k m , [ ] [ ] T
F F0 , , 1y y N⎡ ⎤= −⎣ ⎦y … , 

[ ] [{ ] }T
F F,diag x N= −X …0 ,x 1⎡ ⎤⎣ ⎦ , [ ] [ ] T

F F0 , , 1x x N⎡ ⎤= −⎣ ⎦…x ,    

[ ] [ ] T
F F0 , , 1z z N⎡ ⎤= −⎣ ⎦z … ,  [ ] [ ]{ }T

0,0 , , 1, 1diag H H N N⎡ ⎤= − −⎣ ⎦M … , 

[ ] [ ]{ }T
0 , , 1diag w w N⎡ ⎤= −⎣ ⎦W … , [ ] [ ] T

0 , , 1w w N⎡ ⎤= −⎣ ⎦w …  and Φ  is an  matrix 

expressed in (2.18) below in which 

N N×

[ ],k mΦ  represents the ( ),k m th entry. Furthermore, 

 where =w Fa [ ]0,1 , ,a a[ ] T
1,1L⎡ ⎤−= ⎣ ⎦

L

a  is a vector composed of slopes of channel paths 

and  is a DFT matrix of size 

…

F N ×  with the ( ),m l th entry provided by 

2[ , ] exp mlF m l j
N
π⎧ ⎫= −⎨ ⎬

⎩ ⎭
. 

 12



0 1 1 1
2

1 0 1 1
2

1 1 1 0
2 2

1

1 1 1 0
2

N N
j j

N N
j j

N N
j j

N
j

N N N
j j j

π π
N
j

N
j

π

π π π

π π

π

π π π

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛
− + − + − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝⎢ ⎥

⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎛⎢ ⎥− − − + − −⎜ ⎟ ⎜ ⎟ ⎜
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝
⎢ ⎥
⎛ ⎞ ⎛ ⎞⎢ ⎥≈ − − − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥

⎛ ⎞⎢ ⎥
− +⎜ ⎟⎢ ⎥
⎝ ⎠⎢ ⎥

⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− + − + − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

Φ

⎞
⎟
⎠
⎞
⎟
⎠

    (2.18) 
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Chapter 3  Gibbs Sampling  

      Named after the physicist J. W. Gibbs, Gibbs sampling is an algorithm invented by 

Stuart Geman and Donald Geman to generate a sequence of samples from the joint probability 

distribution of two or more random variables. The purpose of making such a sequence is to 

approximate the joint distribution, or to compute an integral such as an expected value. And it 

is a special case of the Metropolis-Hastings algorithm and also an example of a Markov chain 

Monte Carlo algorithm.  

Now we would like to interpret the concept of Gibbs sampling through the following 

case [18] [19]. Let T
1[θ θ= θθ ]  be a vector of unknown parameters and y  be the 

observed data. Suppose that we are interested in the a posteriori marginal distribution of jθ  

(where 1 j≤ ≤ θ ) conditioned on the observation y .  

j 1 2 j-1( | ) ( | )  P P d d d d j+1 dθ θ θ θ θ θ= ∫ ∫ ∫ θy θ y            (3.1) 

The calculation of integration in (2.19) may be infeasible if θ  is very large. Gibbs sampling 

is a Monte Carlo procedure for numerical evaluation of the multidimensional integrals. The 

basic idea is to generate random samples from the joint posterior distribution ( | )P θ y  and to 

estimate the marginal distribution by these samples.  

Given an initial vector (0) (0) (0) T
1[θ θ= θθ ] , the algorithm iterates from 1n =  to 

 and is implemented as follows. 0n n N= +

 Draw a sample ( )
1

nθ  from ( -1) ( -1) ( -1)
1 2 3( | , , , )n n nP θ θ θ θ θ y… . 
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 Draw a sample ( )
2

nθ  from ( -1) ( -1) ( -1)
2 1 3( | , , , )nθ θ

n nP θ θ θ y… . 

                     

 Draw a sample ( )nθ θ  from ( -1) ( -1) ( -1)
2 3 1( | , , , )nθ −

n nP θ θ θθ θ y… . 

After going through the iterations of Gibbs sampling, 0n N+  vectors will be obtained from 

the Gibbs sampler; however, only the last  vectors are regarded as samples that can be 

used. And the initial period of length  is known as the“burn-in＂ period for the transient 

period required to converge to equilibrium. Consequently, the distribution of 

N

0n

( )nθ  converges 

to ( | )P θ y  when  and  n →∞

0

0

( )

1

1( ) ( | ) ( )
n N

n

n n

f P d f
N

+

= +

≈ ∑∫ θ θ y θ θ , as , for any integrable function N →∞ f . 
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Chapter 4  The ML-EM Receiver 

4.1 Channel Estimation 

At the receiver, the channel information is an unknown factor for detecting the 

transmitted data. Based on (2.17), the optimal ML channel estimation problem can be 

formulated as  

          ( ) ( )ML arg max ( | ) arg max | ,L L= = ∫w w
w P dy w y w x x x             (4.1) 

where ( |L )y w  is a log-likelihood function given by taking logarithm of the corresponding 

probability density function (PDF) ( )|P y w ; that is, ( )|L y w  is equivalent to ( )ln |P y w . 

Nevertheless, if we directly calculate the integral in (2.20), the great complexity of 

multidimensional integrations is difficult to be solved. Thus the EM algorithm is used for 

avoiding direct calculation of those complicated integrals. And ( )|L y w  can be maximized 

by the way of iterating between the E-step and the M-step of the EM algorithm. 

      Applying Bayes’ theorem, ( )|P y w  is able to be expressed as 

( | )( | )  
( | )

PP
P

=
y,x wy w
x y,w

                             (4.2) 

and then ( |L )y w  is obtained by taking logarithm of (4.2) as 

( | ) ( | ) ( | )L L L= −y w y,x w x y,w .                      (4.3) 

And the expected value of ( |L )y w  with respect to  is given by (m-1)ˆ( | )P x y,w

              [ ] [ ]
1 1

ˆ ˆ( | ) ( | ) ( | )L E L E L
− −

= −
(m ) (m )x|y,w x|y,wy w y, x w x y, w             (4.4) 

where  represents the estimated channel information at the (m-1)th iteration. Because (m-1)ŵ
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of Jensen’s inequality, [ ]
1

ˆ ( | )E L
−(m )x|y,w x y, w  becomes smaller when m is larger, and hence 

[ ]
1

ˆ ( | )E L
−(m )x|y,w y, x w  is thought of as the dominant term. Therefore, we can rewrite (4.4) as  

[ ]
1

( | )L
− )

ˆ( | )L E∝
(mx|y,wy w y, x w                      (4.5) 

( |L )y,x w

(

 can be described by in which 

| ) ( | )L L= + ( | ) ( | ) (L L= +y,x w y x,w x )Lw y x,w x             (4.6) 

based on Bayes’ law. The second equality in (4.6) holds since the transmitted data  is 

independent of the channel information . Substituting (4.6) into (4.5), we find that (4.4) 

can also be written as  

x

w

[ ] [ ]
1

ˆ( | ) ( )E L
−

+
(m )x|y,wˆ) ( |L E L∝

(m )x|y,wy w y x,              
1−

w x               (4.7) 

[ ]
1

ˆ ( )E
−(m )x|y,w x

       

where L  is a constant rather than a function of . Consequently, the 

formulation of (4.1) is replaced by 

w

      .                 (4.8) 
[ ]{ }

ML

( | )L const= +

w

y x, w
1

ˆ

arg max ( | )

arg max

L

E
−

=

(m )

w

x|y,ww

w y

( )

 

4.1.1 E-step and M-step 

The E-step and the M-step associated with the optimization problem in (4.8) are 

described as follows: 

[ ]
1

ˆ1|  (E L
−

Ω =
(m )( ) x|y,w y x

(mˆ ax= Ω ( )w
w | y,w

m- | ) const+,wˆw y,w

arg( )w

E-step:                       (4.9) 

M-step:                                 (4.10) )m-1ˆ

)

m

where  is the expected complete log-likelihood (ECLL) function to be m-1ˆ(Ω ( )w | y,w
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maximized in the M-step of (4.10). 

Dropping the constant in (4.9) would not affect the result of the M-step and the 

conditional PDF (P )y | x,w  is observed to be a Gaussian distribution from (2.17), so the 

E-step can be presented as  

[ ]
[ ]

1

(m-1)

(m-1)

ˆm-1

ˆ

2
ˆ2

ˆ( | )  ( | )

                      ln ( )

1                       

E L

E P

E
σ

−
Ω =

=

− ⎡ ⎤= ⎣ ⎦

(m )( ) x|y,w

x|y,w

x|y,w

w y,w y x,w

y | x,w

y - Hx

                     (4.11) 

where 2y - Hx  is given by 

2 H H H H H H= − − +y - Hx y y y Hx x H y x H Hx .                  (4.12) 

By using (4.12), it is straightforward to calculate  

[ ]

(m-1)

(m-1)

(m-1) (m-1) (m-1) (m-1)

(m-1) (m-1) (m-1

2
ˆ

H H H H H H
ˆ

H H H H H H
ˆ ˆ ˆ ˆ

H H H H
ˆ ˆ ˆ

E

E

E E E E

E E E

⎡ ⎤
⎣ ⎦
⎡ ⎤= − − +⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡= − − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

⎡ ⎤= − − +⎣ ⎦

x|y,w

x|y,w

x|y,w x|y,w x|y,w x|y,w

x|y,w x|y,w x|y,w

y - Hx

y y y Hx x H y x H Hx

⎤⎦y y y Hx x H y x H Hx

y y y H x x H y

[ ] ( )
[ ] ( )

)

(m-1) (m-1) (m-1)

(m-1) (m-1) (m-1)

H H

H H H H H H
ˆ ˆ ˆ

H H H H H H
ˆ ˆ ˆ

E E tr E

E E tr E

⎡ ⎤⎣ ⎦

⎡ ⎤ ⎡ ⎤= − − +⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= − − +⎣ ⎦ ⎣ ⎦

x|y,w x|y,w x|y,w

x|y,w x|y,w x|y,w

x H Hx

y y y H x x H y x H Hx

y y y H x x H y H H xx

   (4.13) 

where we have =H M +ΦW  from (2.17), both y  and  contain nothing about the 

random variable ,  is a value so that it is obviously equal to the sum of 

the diagonal elements given by 

H

x
(m-1)

ˆEx|y,w
H H⎡⎣x H Hx⎤⎦

( )1)(m-
ˆtr E H H⎡ ⎤⎣ ⎦x H xx|y,w H , and the last equality is true because 

 can be always converted into ( *tr A B) ( )A*tr B  of which  and  are matrices.  A B
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With further calculation, we can obtain 

[ ] [ ]

( )
( ) ( )

(m-1)

(m-1) (m-1) (m-1)

(m-1) (m-1)

(m-1) (m-1)

2
ˆ

H H H H H
ˆ ˆ ˆ

H H H H H
ˆ ˆ

2 H H H H H
ˆ ˆ

H H

 

1

E

E E E

E tr E

tr E tr E

tr E

σ

⎡ ⎤
⎣ ⎦

⎡ ⎤− − − −⎣ ⎦

⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦−
=

⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦

x|y,w

x|y,w x|y,w x|y,w

x|y,w x|y,w

x|y,w x|y,w

x

y - Hx

y y y M x y ΦW x x M y

x W Φ y M M xx

xx M ΦW W Φ M xx

W Φ ΦW( )
[ ] [ ]

( )
( )

(m-1)

(m-1) (m-1) (m-1)

(m-1) (m-1)

(m-1) (m-1)

H
ˆ

H H H H H
ˆ ˆ ˆ

H H H H H
ˆ ˆ

2 H H H H
ˆ ˆ

1

E E E

E tr E

tr E tr Eσ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎡ ⎤⎣ ⎦⎪ ⎪⎩ ⎭

⎡ ⎤− − − −⎣ ⎦

⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦−
=

⎡ ⎤ +⎣ ⎦

|y,w

x|y,w x|y,w x|y,w

x|y,w x|y,w

x|y,w x|y,w

xx

y y y M x y ΦW x x M y

x W Φ y M M xx

xx M ΦW W Φ M x( )
( )

[ ] [ ]

( )
( )

(m-1)

(m-1) (m-1) (m-1)

(m-1) (m-1)

(m-1)

H

H H H
ˆ

H H H H H
ˆ ˆ ˆ

H H H H H H
ˆ ˆ

2 H H
ˆ

1

tr E

E E E

E tr E

Diag Eσ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬

⎡ ⎤ +⎪ ⎪⎣ ⎦
⎪ ⎪
⎪ ⎪⎡ ⎤⎣ ⎦⎪ ⎪⎩ ⎭

⎡ ⎤− − − ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦−
=

⎡ ⎤⎣ ⎦

x|y,w

x|y,w x|y,w x|y,w

x|y,w x|y,w

x|y,w

x

W xx W Φ Φ

y y y M x y Φ X Fa x M y

a F X Φ y M M xx

xx M Φ ( )
( )( )( )

−

[ ] [ ]

(m-1)

(m-1)

(m-1) (m-1) (m-1)

(m-1) (m-1

T
H H H H

ˆ

H H H
ˆ

H H H H H
ˆ ˆ ˆ

H H H H H
ˆ ˆ

2

1

Diag E

tr E

E E E

E tr E

σ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬⎡ ⎤ ⎡ ⎤+ +⎪ ⎪⎣ ⎦⎢ ⎥⎣ ⎦⎪ ⎪
⎪ ⎪⎡ ⎤⎣ ⎦⎪ ⎪⎩ ⎭

⎡ ⎤− − − ⎣ ⎦

⎡ ⎤ +⎣ ⎦−
=

x|y,w

x|y,w

x|y,w x|y,w x|y,w

x|y,w x|y,w

Fa a F Φ M xx

ww xx Φ Φ

y y y M x y Φ X Fa x M y

a F X Φ y M M( )
( ) ( )

( )( )( )

−

[ ] [ ]

)

(m-1) (m-1)

(m)

(m) (m) (m)

H

T
H H H H H H

ˆ ˆ

TH H H H
ˆ

H H H H H
ˆ ˆ ˆ

H H
ˆ

2

1

Diag E Diag E

tr E

E E E

E

σ

⎧ ⎫
⎪ ⎪
⎪ ⎪⎡ ⎤ +⎣ ⎦⎪ ⎪⎪ ⎪
⎨ ⎬⎡ ⎤⎡ ⎤ ⎡ ⎤+ +⎪ ⎪⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦⎪ ⎪
⎪ ⎪⎡ ⎤⎣ ⎦⎪ ⎪⎩ ⎭

⎡ ⎤− − − −⎣ ⎦

−
=

x|y,w x|y,w

x|y,w

x|y,w x|y,w x|y,w

x|y,w

xx

xx M Φ Fa a F Φ M xx

Faa F xx Φ Φ

y y y M x y Φ X Fa x M y

a F ( )
( ) ( )

( )( )

(m) (m)

(m) (m)

(m)

H H H H
ˆ

T
H H H H H H

ˆ ˆ

TH H H H
ˆ

tr E

Diag E Diag E

E

⎧ ⎫
⎪ ⎪
⎪ ⎪⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦⎪ ⎪⎪ ⎪
⎨ ⎬⎡ ⎤⎡ ⎤ ⎡ ⎤+ +⎪ ⎪⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦⎪ ⎪
⎪ ⎪⎡ ⎤⎣ ⎦⎪ ⎪⎩ ⎭

x|y,w

x|y,w x|y,w

x|y,w

X Φ y M M xx

xx M Φ Fa a F Φ M xx

a F xx Φ Φ Fa

  (4.14) 
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where  denotes the Hadamard product, the notation  represents taking the diagonal 

elements of a matrix to form a column vector,  is replaced with , and  is a vector of 

channel slopes in time domain turning out to be the new channel information that should be 

estimated. Therefore, the E-step of (4.9) and the M-step of (4.10) are redefined by  

Diag

w Fa a

E-step: 

[ ] [ ]

( )
( ) ( )

(m) (m) (m)

(m) (m)

(m) (m)

(m)

m-1

H H H H H
ˆ ˆ ˆ

H H H H H H
ˆ ˆ

T2 H H H H H H
ˆ ˆ

H H
ˆ

ˆ( | )

1

E E E

E tr E

Diag E Diag E

E

σ

Ω

⎡ ⎤− − − −⎣ ⎦

⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦−
=

⎡ ⎤⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

( )

x|y,a x|y,a x|y,a

x|y,a x|y,a

x|y,a x|y,a

x|y,a

a y,a

y y y M x y Φ X Fa x M y

a F X Φ y M M xx

xx M Φ Fa a F Φ M xx

a F x ( )( )TH H

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎡ ⎤⎣ ⎦⎪ ⎪⎩ ⎭

x Φ Φ Fa

  (4.15) 

M-step:                                   (4.16) mˆ arg max ( )= Ω( ) ( )a
a a | y m-1ˆ,a

 

4.1.2 Derivation of Estimated Channel Slopes 

In order to find  which maximizes mˆ ( )a m-1ˆ( | )Ω ( )a y,a , we have to differentiate (4.15) 

with respect to  by using complex differentials introduced briefly in the following:   Ha

k 2  

1
2

k k k
k kv g jh

k k k

J JJ j
v g

J J Jj
v g h

∗
= +

∗

k

J
h

∂ ∂ ∂
∇ = = +

∂ ∂

⎧ ⎫∂ ∂ ∂
⇒ = +⎨ ⎬∂ ∂ ∂⎩ ⎭

∂
                 (4.17) 

where a complex value consists of a parameter  of which  and  are the real part 

and the imaginary part respectively and the superscript 

J kv kg kh

( )∗⋅  stands for the complex conjugate 

of a value. Then the complex differentiation of vectors can be presented as  
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[ ]( ) 1 1
2

j j∂
= + ⋅ =

∂

H
H

H

r s r
s

0                              (4.18) 

[ ]( ) 1 1 ( )
2

j j∂  = + ⋅ − =
∂

H

H

s r r r
s

                           (4.19) 

( ) ( )∂ ∂ ∂
= ⋅ + =

∂ ∂ ∂

H H
H

H H H

s Qs s sQs s Q Qs
s s s

                        (4.20) 

where  and  denote complex vectors and  is a matrix without the parameter  

inside. Suppose that  represents the function of  in (4.15), and thus the 

maximization in the M-step can be derived as below,  

r s Q s

( )f a a

( )
( )( )

(m) (m)

(m)

H H H H H H
ˆ ˆH

H H H
ˆ

( )

              
t

f E Diag E

E

∂ ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦∂

⎡ ⎤⎣ ⎦

x|y,a x|y,a

x|y,a

a F X Φ y F Φ M xx
a

F xx Φ Φ Fa

−
          (4.21) 

1
mH

( ) ˆ0    f −∂
= ⇒ =

∂ ( )
a a C

a
b                                       (4.22) 

where we define ( )( )(m-1)

TH H H
ˆE ⎡ ⎤= ⎣ ⎦x|y,aC F xx Φ Φ F  which is an invertible matrix of size 

 and N N× ( )(m-1)

H
ˆ ˆiag E ⎡ ⎤⎣ ⎦x|y,aM xx

(m-1)

H H H HE D⎡ ⎤= −⎣ ⎦x|y,ab F X Φ y F Φ

N

H  which is a column 

vector of length . As a result, we can get the vector of estimated slopes  at the mth 

EM iteration based on some given information such as the observed data 

mˆ ( )a

y  and the vector of 

previous estimated slopes . As for the expected values of  and  needed in 

(4.22), we will obtain by applying Gibbs sampling method in next section. 

m-1ˆ ( )a HX Hxx
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4.2 Data Detection by Gibbs sampling 

       Now we consider the problem of computing the joint a posteriori probabilities of the 

transmitted signals 

( )(m-1)ˆP x | y,a .                            (4.23) 

Based on Gibbs sampling, we estimate the PDF of (4.23) by using the probabilities of samples 

drawn uniformly from the marginal PDF illustrated as follows. The following case shows the 

way of drawing a sample for, 1x , one of the unknown parameters in the vector . By using 

Bayes’ theorem and given the initial values of , the marginal 

probability of 

x

(0) (0) (0) T
1[x x=x d ]

1x  is calculated as 

( )
( )

( )
( ) ( )

( ) ( )
1

1 (m-1) 2 3 d

1 (m-1) 2 3 d 1 (m-1) 2 3

(m-1) 2 3 d

1 (m-1) 2 3 d 1

1 (m-1) 2 3 d 1 (m-1) 2 3 d

1 (m

ˆ1| , , , , ,

ˆ ˆ| 1, , , , , ( 1| , , , ,
ˆ| , , , ,

ˆ| 1, , , , , 1
ˆ ˆ| , , , , , | , , , ,

ˆ| 1,
x

P x x x x

P x x x x P x x x x

P x x x

P x x x x P x

P x x x x P x x x x

P x

= +

= + = +
=

= + = +
=

= +
=

∑

y a

y a a

y a

y a

y a a

y a

…

… …

…

…

… …

( ) ( )
( ) ( )

d )

( )( ) ( )
( ) ( )

1

1

1

-1) 2 3 d 1

1 (m-1) 2 3 d 1

(m-1) 11

(m-1) 1

, , , , 1
ˆ| , , , , ,

ˆ| , 1

ˆ| ,

x

x

x

x x x P x

P x x x x P x

P P x

P P x
=+

= +

= +
=

∑

∑

y a

y x a

y x a

…

…

     (4.24) 

where  is the prior symbol probability of 1(P x = +1) 1x  and the subscript d stands for the 

size of , or precisely, the depth of the Gibbs sampler. When no prior information is 

available, it is assumed that

x

1
1( 1)
2

P x = + = , i.e., all symbols are equally likely. Then (4.24) 

can be written as  
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          ( ) ( )( )
( )

1

1

(m-1)1
1 (m-1) 2 3 d

(m-1)

ˆ| ,
ˆ1| , , , , ,

ˆ| ,
x

x

P
P x x x x

P
=+

= + =
∑

y x a
y a

y x a
… .         (4.25) 

Since  is a Gaussian vector,  can be derived as z (m-1)ˆ( | , )P y x a

( ) 2
(m-1) 2

1ˆ| , expP
σ

⎛∝ −⎜
⎝ ⎠

⎞
⎟y x a y - Hx                       (4.26) 

where we define 2 2 2
z ICIσ σ σ= +  and 2

ICIσ  is the ICI power calculated in next chapter. Thus 

we can get the posterior probability of 1x 1= +

d )

 by substituting (4.26) into (4.25), and 

 is also obtained through the same method. With these 

posterior probabilities, we know about the probability of choosing one from all of the symbols. 

Let  be , and suppose that U is a uniform-distributed 

value bound in the interval of 

1 (ˆ( 1| ,P x = − y a

1P P x

m-1) 2 3, , , ,x x x…

1 (mˆ( 1| , x= − y a

[

d )

-1) 2, , x3, , x…

]0,

1 1x

1 . U combined with  can be used to make a decision, 

e.g., a sample of 

1P

= +  is chosen if U is smaller than , whereas a sample of 1P 1 1x = −  is 

chosen when U is within the range of . 1( ,P 1]

After a sample of 1x  is drawn, 2x  is the next parameter to draw a sample with a 

given value of 1x . As above, the samples of 2 , , dx x…  can be drawn from their a posteriori 

probabilities like the PDF in (4.25) and then a vector of samples is acquired. The vector of 

samples denoted as ( )
( )i-1
m-1x  is considered to be the given values for the ith iteration of Gibbs 

sampling, and the execution of drawing samples is presented in the following. 

At the (m-1)th EM iteration: 

 Draw a vector of samples ( )
( )1
m-1x̂  from ( )(m-2)ˆP x | y,a  given ( )

( )d
m 2ˆ −x  and (m-2)â . 

 Draw a vector of samples ( )
( )2
m-1x̂  from ( )(m-2)ˆP x | y,a  given ( )

( )1
m-1x̂  and (m-2)â . 
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 Draw a vector of samples ( )
( )d
m-1x̂  from ( )(m-2)ˆP x | y,a  given ( )

( )d-1
m-1x̂  and (m-2)â . 

At the mth EM iteration: (Assume that m is the final number of iteration.) 

 Draw a vector of samples ( )
( )1
mx̂  from ( )(m 1)ˆP −x | y,a  given ( )

( )d
m-1x̂  and (m 1)ˆ −a . 

 Draw a vector of samples ( )
( )2
mx̂  from ( )(m 1)ˆP −x | y,a  given ( )

( )1
mx̂  and (m 1)ˆ −a . 

                             

 Draw a vector of samples ( )
( )d
mx̂  from ( )(m 1)ˆP −x | y,a  given ( )

( )d-1
mx̂  and (m 1)ˆ −a . 

The probabilities of the last drawing through EM iterations are utilized to be the joint a 

posteriori probabilities for estimating the channel information. The samples generated at the 

final EM iteration are formed into a sequence of vectors: ( )
( ) { }{ }i
mˆ :  i 1, ,d∈x … , and an average 

of the samples, denoted as ( )mx̂ , represents the output of the EM detector where the 

superscript ( )( )m⋅  stands for the number of EM  iteration.  
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4.3 Initial Setting 

      The EM algorithm guarantees to converge to a local maximum instead of a global 

one, so the initialization of data and an initial channel estimate are significant for locating the 

global maximum. The initial channel estimation (CE) is accomplished by the use of pilot 

tones in the specific positions of an OFDM symbol, and it can be improved through the 

decided data symbols. Let Px  be a vector of  pilot tones situated at the indices J

{ }0 1 -1, , , Jϕ ϕ ϕ…  of a symbol, and  are defined as the channel delay of paths. 

Then the system model related to pilot symbols is expressed as                    

1 2, , ,d d … Ld

P p P p= ⋅ ⋅ +y X F h z                         (4.27) 

where  is the received data of size [ ] [ ] T
0 , ,P y yϕ ϕ −⎡= ⎣y 1J ⎤⎦ 1J ×  in the positions of pilot 

tones, [ ] [{ ] }T
1ϕ −0 , ,P diag x xϕ J⎡ ⎤= ⎣ ⎦X

J J×
[

 stands for a diagonal matrix of pilot symbols whose 

size is , and 
] [ ]

[ ]1 1

⎢
⎢

[

0 L

1 L

, ,

, ,J J

d d

d d

ϕ ϕ

ϕ ϕ− −

⎡ ⎤

⎢ ⎥⎣ ⎦

F F

F F ]

⎥
⎥

F

0 1

p =F  is a matrix of size  which 

composed of some elements of . Utilizing the MMSE-based CE method, we obtain an 

estimated channel impulse response [15] presented as 

LJ ×

                    
( )( )

2

1H H 2 2 H H

ˆ arg min

  

P P P

P P P P z ICI P P Pσ σ
−

= −

= + +

h
h y X F h

F X X F F X y
                (4.28) 

where the variance of ICI, 2
ICIσ , equals ( )2

D2 fπ 12  approximately by applying the central 

limit theorem [16]. Accordingly, the initial channel estimate in frequency domain is described 

as  
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                 ( )( 1H H 2 2 H Hˆ )P P P P z ICI P P Pσ σ
−

= + +m F F X X F F X y              (4.29) 

and thus the initial data ( )0x̂  can be derived from the one-tap equalizer.  

        As shown in Fig.4.1, making use of the decided data ( )0x̂ , we can further generate 

an updated channel estimate m  via the similar formula in (4.29) and produce a vector of 

new decided data symbols denoted as ( )0x . Then ( )0x  and { }diag=M m  are exploited by 

the EM algorithm. 

 

y M̂ ( )0x

M

( )0x̂

            

Fig. 4.1  Initialization for ML-EM receivers. 
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4.4 EM-based Channel Estimation Method 

 ML-EM algorithm for         Applying the description in the preceding sections, the

channel estimation can be summarized as follows. 

Initialization: 

( )0x  by zero-forcing (ZF), set 0ˆ 0=( )aCalculate M , produce an initial , and let the subscript 

 

-EM algorithm

m be zero.

Procedure of the ML : 

ples 

 m=m+1 

( )
( ) { }{ }i
m : i 1, ,d∈x …

en obtain 
(m-1)

 Draw sam , compute the probabilities of symbols by using the 

samples, and th H
ˆE ⎡ ⎤⎣ ⎦x|y,a xx  and 

(m-1)

H
ˆE ⎡ ⎤⎣ ⎦x|y,a X . 

 Estimate the channel infor =( )a Cmation through the derivation b  where 1
mˆ −

( )(m-1) (m-1)

H H H H H H
ˆ ˆE Diag E⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦x|y,a x|y,ab F X Φ y F Φ M xx  and  

.  

 Initial setting for next iteration

( )( )(m-1)

TH H H
ˆE ⎡ ⎤= ⎣ ⎦x|y,aC F xx Φ Φ F

:  

Set ( )mx̂  be the initial data of the Gibbs sampler and let be the updated channel 

at

Stopping criterion

mˆ ( )a  

inform ion. 

: 

nly when the iteration number reaches to a predefined limit. The algorithm stops o
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4.5 Group-wise Method 

G ICIx

1R−yky( )( )R
k Q−y

0y

kx0x ( )( )Rk Q−x( )( )1
R

k Q− −x
1R−x( )( )R

k Q+x ( )( )1k Q+ +x
R

( )( )k Q+y
R

 

Fig. 4.2  An illustration of group-wise detection. 

      The aforeme  complexity, and 

 

rs. 

ntioned ML-EM algorithm has high computational

hence we use the group-wise method to provide a practical implementation for the ML-EM

receiver. SN  subcarriers are partitioned into R groups, and each group contains G subcarrie

The j th group of subcarriers is given by ( ){ }, , 1 1j jG j G= + −G … , for 0, , 1j R= −… . 

Define the j th data group as [j x jG] ( )
T

, , 1 1x j G⎡ ⎤−= +⎡ ⎤⎣ ⎦⎣ ⎦… , thex  j th ro

as [ ] ( ), , 1j y jG y j G⎡= +⎡⎣⎣y … )

 observation g up 

T
1⎤⎦⎤− ⎦ , two sets (( ) ( )( ){ }1 ,j j Q= − −B , 1

R R
j Q+ +…  and 

( )( ) ( )( ){ }, ,
R

j Q+…

grouping is demonstrated with

jD

e of the data groups e.g. the k th data group and illustr

in Fig.4.2. The energy of kx  spreads over the adjacent 2 +1Q groups (involving k

R
. In order to sim

 on

j Q= − plify the interpretatio

 

n, the concept of 

ated 

y  itself), 

so { }:j kj∈y D  is the corresponding set of observation groups. Moreover, the set 

{ }:j j k∈y D  

ing d

co

ig r

nsists of the interference resulted from the spreading energy made b

ata groups denoted as 

y a set of 

ne hbo { }{ }: \j kj k∈x B . 

Outside the EM detector, there is an outer iteration loop iterating between the 
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ML-EM d e 

 

etector and the ICI canceller as depicted in Fig.4.3. During an outer iteration, w

diminish the ICI term by subtracting the leakage of other groups from the set of observation

groups and then obtain the ICI-reduced signals: 

              
{ }

,
\k

j j j i i
i k∈

= − ∑
B

y y H x kj∈D, for                    (4.30) 

where the ( ),r s th entry of ,j iH  is given by the ( ) H representing ,jG sr iG+ + th entry of 

an estimate  for  of H { }, 1 , 1r s G∈ − . ,… H  and ix  come from the output of the EM 

detector at the p vious  fr  the initialization in the beginning. After 

eliminating the ICI effect, the EM detector is performed by using EM-based channel 

estimation together with the group-wise method. 

        When Gibbs sampling is executed, samp

re outer iteration or om

les are drawn by applying a ZF sampler. 

d Every data group, which belongs to the sampler, takes turn by iteration loops to be calculate

with the corresponding observation groups { }:j kj∈y D , and thus a large number of samples 

are acquired. Then ( )m-1
kx  is the decided data group at the ( )m 1− th EM iteration defined by 

an average of the co d samples drawn for the group xllecte k . And ( )m-1
kx  is sent back to be an 

initial data group for the ZF sampler at the mth EM iterat , whileion  ( )0
kx  given from the 

initial setting is an initial data group at the first EM iteration. Going ugh the iteration o

Gibbs sampling, we obtain 0d n−  sets of detected data groups (for neglecting 0n  sets of 

burn-in samples). 

With the o

thro f 

btainment of all the groups ( ) { }{ }m-1 : 1, ,k k R∈x … , we can form 0d n−  
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vectors o ly and store up a sequ ilities of f SN  transmitted data symbols entire ence of probab

the final dr ng within the ( )m 1− th EM iteration denoted as awi ( )m-1P . Because of the 

probabilities ( )m-1P , the expected values required in (4.22) can b ulated, and hence

derive the channel information ( )m 1ˆ

e calc  

−a  for the ( )m 1− th EM iteration. ( )m 1ˆ
−a  and ( )m-1x

both provided for the given knowledge at next EM iteration. Besides, a nd 

 are 

( )mˆ  a ( )mx e 

yielded as the way described above and become the output of the EM detector at the mth EM

iteration. After cancelling the ICI effect, 

 ar

 

M  can be modified by substituting the updated data 

( )mx  into (4.29) via the unit of channel estimation update shown in Fig.4.3. M  is replaced 

by M , and then H is calculated as ( )mˆ+M ΦFa . Therefore, another outer iteration starts 

with the given inf ation orm H and ( )mx  output of the previous outer iteration. 

         The intuition of c bining r design with the group-wise method is presented

 from

 ou  as 

 the

om

below. The data group kx  contributes most of energy to the ICI-reduced observation groups 

{ }:j kj∈y D ; thus, we can obtain diversity gains and draw samples for the k th group data by

nly through kx  and 

 

performing o { }:j kj∈y D . And it is obvious that the f l diversity gain 

is attainable when the ICI iminated as well as the value of Q  is large 

enough. Because spreading energy of a group mostly affects the neighboring 2Q groups, i.e

the observation group ( )( )

ul

 effect is co

., 

mpletely el

 

R
k Q+y  is interfered by the data groups ){ (( ) }{ }: , 2j R

j k k Q∈ +x … , 

so the data groups used for the ICI cancellation should be a set of

,

 ( )4 1+

nce b

Q

rma

 groups. However, 

we can use ( )2 3Q +  data groups to achieve the comparable perfo y observing the 
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experimenta

 

l trials. 

Y Y

( )mx

M

M

( )0x

( )mâ

         

Fig. 4.3 The ML-EM receiver for OFDM systems. 
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Chapter 5  Residual ICI Power 

oup-wise ICI canceller within an outer 

s 

ta 

ly, the quantity of the residual ICI power contained in the ICI-reduced 

signals v

       When the received signals pass through a gr

iteration, the ICI effect in those signals are cancelled by using the decided data at the previou

outer iteration. If CE is perfect and the decided data are detected correctly, we assume that 

there is no ICI power after ICI cancellation. However, it is almost impossible to make all da

correct; thus, some ICI power would be left and turns to be the so-called residual ICI power 

discussed as follows.  

And according

aries with the correctness of the detected data used in the ICI canceller. Furthermore, 

the residual ICI power differs from the ICI power, 2
ICIσ , which also means the variance of ICI, 

because the latter represents the original power of the ICI effect without any subtraction of 

power from the received signals. The accuracy of the residual ICI power we estimate plays a

important role in Gibbs sampling for the reason that the appropriate residual ICI power makes 

the a posteriori probabilities more reliable. 

      Following the group-wise EM-based

n 

 data detection described in section 4.5, the 

s calculation of the residual ICI power can be performed through the group-wise method a

well and then illustrated with the subsequent case by employing the detected data groups 

{ }{ }: \j kj k∈x B  and the observation groups { }:j kj∈y D  that are shown in Fig.4.2. Ea

 consists of G subcarriers wh m different levels of residual ICI 

ch 

observation group ich suffer fro
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power. For a subcarrier in the kth observation group, we calculate its residual ICI power by 

summing up the interference power caused by the incorrectness of the adjacent subcarriers in

the set 

 

{ }{ }: \j kj k∈x B . The observation groups of received signals are expressed as 

      ( ), , ,              
k

j j i j i j i i j
i∈

+= +∑
B

y M Φ W x z                    (5.1) 

. Now it is assumed that an initiwhere kj∈D  and =W al channel estimate Fa M  the and 

channe ation  perfectly estimated, and the ICI-reduced signals are given by l inform Ŵ  are

{ }

( ) ( )
{ }

( ) ( )
{ }

( ) ( ) ( )( )
{ }

,j j j i i= − ∑y y x
\

, , , , , ,
\

, , , , , ,
\

, , ,, , ,
\

The term ca

    

    

    

ˆ
k

k

k

k

k

k

k

j i j i j i i j j i j i j i i
i k

j i j i j i i j j i j i j i i
i k

j i i i j i j i i ij k j k j k k
k

i

i

i

i

∈

∈

∈

∈

∈

∈

⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

=

= + − +

+ − +

+ + − + −

∑ ∑

∑ ∑

∑

B

B

B

B

B

B

H

M Φ W x z M Φ W x

M Φ W x z M Φ W x

M Φ W x M x x Φ W x x

uses the residual ICI. 

j+ z

 (5.2) 

The first two terms of (5.2) represent the signal energy of the kth data group, and the third 

term and the fourth term are caused by the mismatch between the transmitted data and the 

decided data and induce the residual ICI.  

Supposing that x  are the same as the transmitted signals, the ICI-reduced signals 

are free from the ICI effect and presented as        

, , ,j j k k j k j k k= + j+y M x Φ W x z                      (5.3) 

where we find that the kth data group produces the remainin e 

 the 

g energy spreading over th

ICI-reduced signals. In case that some of the detected signals are wrong, there is not only
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energy of the kth data group but also the residual ICI power resulted from the incorrect 

cancelling in the ICI-reduced signals. According to (5.2), the residual ICI power is defin

2
RIP

ed by 

σ  and calculated as below.  

he first outer iteration:  At t

 channel variable at the first outer iteration, and thus We have no information about the Ŵ 

(5.2) is rewritten as  

     ( )
{ } { }

, , ,, ,
\ \k k

,j j i i i j i j i i jj k j k k
k ki i∈ ∈

j k k + ++ −= + ∑ ∑
B B

Φ W x M x x Φ W x z .   (5.4) y M x

2
RIPσ  in the ICI-reduced signals is expressed as  

( ) ( )
{ }

{ }

\

, , , ,
\

                
k

k

i i i
k

2
, ,j i j i iRIP

j i j i j i j i i i

i

i k
E E

∗Eσ ∗

∗ ∗ ∗

∈

∈

⎤
⎣ ⎦
⎡

⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦

−= − +∑ M M x x

∑
B

B

x x

Φ Φ W W x x
 (5.5) 

( ) ( )( ) ( )( )2 2 2 2 1E x1 1 1 1E P x x P x xx x⎡ ⎤
⎢ ⎥⎣ ⎦

= = − + = − − −−  and ⎡ ⎤⎣ ⎦ =  for  . 

Besides,  and  can be regarded a

ix∈x

( )1P x = ( )1P x = − s 1 2  

At other

if no prior probability is given.  

 outer iterations: 

uter iteration, we obtain ( )1P x =After executing the previous o  and  from the ( )1P x = −

tion Ŵ  fr

d 

last drawing in Gibbs sampling and have the estimated channel informa om the 

output of the EM detector. (5.2) shows the ICI-reduced signals in this case an 2
RIPσ  is 

provided by  
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( ) ( )
{ }

( ) ( )
{ }

2
, ,

\

, , , ,
\

           

RIP

k

k

j i j i i i i i
k

j i j i j i j i

i

i i i i
i k

E

E E

σ ∗∗

∗ ∗

∈

∗

∈

⎡ ⎤=
⎣ ⎦

⎡ ⎤⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦

− − +

− −

∑

∑
B

B

M M x x x x

Φ Φ W W x x x x
   (5.6) 

where , , , ,j i j i j i j iE ∗⎡⎣Φ Φ W W∗ ⎤⎦  can be defined by μ  and approximated by the percentage of 

spreading energy of one subcarrier through the computer simulation. And (5.6) is rewritten as      

( ) ( )
{ }

( ) ( )
{ }

2
, ,

\ \
RIP

k k

j i j i i i i i
k

i i i i
i i k

E Eσ μ∗∗ ∗

∈ ∈

⎡ ⎤⎡ ⎤= ⎢ ⎥⎣ ⎦ ⎣ ⎦
− − + ⋅ − −∑ ∑

B B
M M x x x x x x x x  

A subcarrier spreads the energy over the neighboring subcarriers, and the spreading energy 

becomes smaller when the distance is long between two subcarriers. The percentages of 

spreading energy resulted from one subcarrier are generated according as the normalized 

maximized Doppler frequencies are 0.05 and 0.1, and depicted in Fig.5.1 and Fig.5.2 

respectively. As shown in these two figures, it is found that the percentages are very much 

alike. Varying with the accuracy of the detected data, 2
RIPσ  is used to be the adaptive ICI 

power for the a posteriori probabilities in Gibbs sampling. 
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Fig. 5.1  The ICI power percentage for the normalized MDF=0.05. 

 

 

Fig. 5.2  The ICI power percentage for the normalized MDF=0.1. 
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Chapter 6  Computer Simulation 

6.1 System Parameters 

    Results of computer simulation in this section demonstrate the performance of the 

ML-EM receiver. Based on the parameters defined in the 802.16e OFDM standard [12], we 

know that the system occupies a bandwidth of 5MHz and the carrier frequency is 2.3GHz. The 

entire bandwidth is divided into 256 sub-bands for N = 256 subcarriers among which J = 8 

subcarriers carry the pilot tones, = 192 subcarriers transmit data and the remaining 56 

subcarriers are used as virtual subcarriers. Those pilot subcarriers transmit the pilot tones 

adopting the BPSK modulation scheme and each having the same power as the data carried by 

a data subcarrier. The length of guard interval is = 64 (i.e. one quarter of 256 for the 

cyclic prefix). Each OFDM frame consists of = 40 OFDM data symbols and one OFDM 

symbol used for the CP-added preamble. Besides, the parameter of Q is set to 4 through the 

observation from experimental trials. The numbers of the EM iteration and the outer iteration 

are selected as = 2 and = 4. 

SN

OL

GN

FN

EMN N

A two-path channel and an International Telecommunication Union (ITU) Veh-A 

channel are simulated with the path delays uniformly distributed from 0 to 50 sample periods. 

The relative path power profiles are set as 0, 0 (dB) for the two-path channel and set as 0, -1, 

-9, -10, -15, -20 (dB) for the ITU Veh-A channel, where the fading channel can be generated 

with Jake’s Model by setting the normalized MDF equal to 0.05 and 0.1. And it is assumed 
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that both symbol synchronization and carrier synchronization are perfect and the receivers 

have some of the statistical information like noise power, power delay profiles and Doppler 

frequency. In addition, the parameter 0bE N  represents a ratio of received bit energy to the 

power spectral density of noise.  

 

6.2 Simulation Results 

The following three cases are used in the simulation for comparison. 

(A) CSI and data known: The curves with ideal CSI initialization and perfect initial data can 

be regarded as a performance lower bound. 

(B) CSI known: This kind of curves is generated by using ideal CSI initialization and initial 

data given from the one tap equalizer. 

(C) CSI est: The curves labeled as “CSI est” are made by setting initial CSI estimated and 

initial data given from the one tap equalizer. 

The ways to produce initial data make difference between (A) and (B), and the modes of 

CSI initialization make (B) perform better than (C) if other conditions remain the same.  

Most of the figures come from the simulation in the two-path channel, while Fig.6.9 and 

Fig.6.10 are given by the simulation in both the two-path channel and the ITU Veh-A 

channels. 

The group size of the ML-EM receiver must be decided first of all, and the BER 
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performance curves are compared with each other in the case of “CSI and data known”. As 

depicted in Fig.6.1 and Fig.6.2 for the normalized MDF=0.05 and 0.1 respectively, joint 

detection of more subcarriers improves the performance, so the receiver with group sizes of 1 

and 2 are worse than with group sizes of 4 and 8 which have nearly identical performance, 

and we choose the group size of 4 for the reason that a smaller group size takes less 

computational time. Next, the BER performance makes progress by applying the residual ICI 

power described in chapter 5 to the Gibbs sampling. Based on the case of “CSI known”, it can 

be shown in both Fig.6.3 and Fig.6.4 for comparison between the performance of the ML-EM 

receiver with ICI power update and without ICI power update, and then the former is proved 

to be better. We subsequently develop the receiver combined with ICI power update. 

 Fig.6.5 and Fig.6.6 demonstrate the BER performance of the ML-EM receiver with 

ICI power update in the cases of “CSI known” and “CSI est”. It is observed that the curves 

with perfect CSI initialization perform better than the curves with CSI initialization estimated 

by zero forcing criteria and the performance improves as the outer loop iterates more times. 

Moreover, Fig.6.7 and Fig.6.8 show that the ML-EM receiver with CE refinement has better 

performance than without CE refinement in the case of “CSI est”. And the “CSI est” curve 

with CE refinement is quite close to the “CSI known” curve, which means the receiver with 

CE refinement decrease the gap between the two modes of CSI initialization. CE refinement 

can obviously make the performance better for a channel with more paths, i.e. the ITU Veh-A 
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channel, and the BER performance is illustrated in Fig.6.9 and Fig.6.10.  

Fig.6.11 and Fig.6.12 demonstrate the BER performance of the ML-EM receiver with 

the group size of 4 and CE refinement. Compared with the “CSI and data known” curve for 

the normalized MDF=0.05, the “CSI and data known” curve for the normalized MDF=0.1 has 

lower BER at the same 0bE N , because time-variant channels introduce more diversity gains 

for higher speed when the initial CSI and data are both perfect. And it is seen from Fig.6.11 

that the three curves in different cases are rather close; however, there is a gap between the 

performance lower bound and the two curves else due to the error propagation effect observed 

from Fig.6.12. Finally, the number of samples required for Gibbs sampling affects the BER 

performance shown in Fig.6.13 and Fig.6.14, and thus we find that the receiver with more 

samples attain better performance, and the improvement is gradually saturated as the number 

of samples increases.  
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Fig. 6.1  BER performance of the ML-EM receiver with different group sizes for the 

normalized MDF=0.05. 
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Fig. 6.2  BER performance of the ML-EM receiver with different group sizes for the 

normalized MDF=0.1. 
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Fig.6.3  BER performance of the ML-EM receiver with/w.o. ICI power update for the 

normalized MDF=0.05. 
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Fig.6.4  BER performance of the ML-EM receiver with/w.o. ICI power update for the 

normalized MDF=0.1. 
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Fig.6.5  BER performance of the ML-EM receiver for the normalized MDF=0.05. 
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Fig.6.6  BER performance of the ML-EM receiver for the normalized MDF=0.1. 
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Fig.6.7  BER performance of the ML-EM receiver with/w.o. CE refinement for the 

normalized MDF=0.05. 

 

 

 

 

 47



 

 

 

12 14 16 18 20 22 24 26 28 30
10

-4

10
-3

10
-2

10
-1

Eb/No(dB)

B
E

R

FdT=0.1

 

 
CSI known (iter.=4)
CSI est (iter.=4) (w.o CE refined)
CSI est (iter.=4) (with CE refined)

 

Fig.6.8  BER performance of the ML-EM receiver with/w.o. CE refinement for the 

normalized MDF=0.1. 
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Fig.6.9  BER performance of the ML-EM receiver with different cases in the ITU Veh-A  

channel for the normalized MDF=0.05. 

 

 

 

 

 49



 

 

 

12 14 16 18 20 22 24 26 28 30
10

-4

10
-3

10
-2

10
-1

Eb/No(dB)

B
E

R

FdT=0.1

 

 
CSI known (iter.=4)
CSI est (iter.=4) (w.o CE refined)
CSI est (iter.=4) (with CE refined)

 

Fig.6.10  BER performance of the ML-EM receiver with different cases in the ITU Veh-A  

channel for the normalized MDF=0.1. 

 

 

 

 

 50



 

 

 

12 14 16 18 20 22 24 26 28 30
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Eb/No(dB)

B
E

R

FdT=0.05

 

 

EM(CSI and data known)
EM (CSI known)
EM (CSI est with CE refined)

 

Fig.6.11  BER performance of the ML-EM receiver in different cases for the normalized 

MDF=0.05. 

 

 

 

 

 51



 

 

 

12 14 16 18 20 22 24 26 28 30
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Eb/No(dB)

B
E

R

FdT=0.1

 

 

EM(CSI and data known)
EM (CSI known)
EM (CSI est with CE refined)

 

Fig.6.12  BER performance of the ML-EM receiver in different cases for the normalized 

MDF=0.1. 
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Fig.6.13  BER performance of the ML-EM receiver with various numbers of samples for the  

normalized MDF=0.05.  
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Fig.6.14  BER performance of the ML-EM receiver with various numbers of samples for the  

normalized MDF=0.1. 
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Chapter 7  Conclusions 

       In this paper, we investigate an EM-based iterative receiver under the ML criterion 

for OFDM systems in doubly selective channels. The receiver consists of an initialization unit, 

an ICI canceller, a CE update unit and an ML-EM detector. First, the initial setting of CSI and 

data can be executed through the use of the MMSE-based CE method and a decision-directed 

approach with the one-tap equalizer. Next, the ML-EM algorithm is proposed for channel 

variable estimation by using the samples given from Gibbs sampling. Incorporated with the 

group-wise processing, the ICI cancellation is developed to reduce the computational 

complexity and to exploit the time diversity inherent in time-variant channels. And the CE 

update unit provides better CSI to improve the performance at high 0bE N  especially. 

Simulation results indicate that the ML-EM receiver significantly outperforms the one-tap 

equalizer.  
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