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Design of an EM-based Receiver Using Markov Chain
Monte Carlo Method for OFDM Systems in Doubly
Selective Channels

Student : Siao-Yi Jhong Advisor : Dr. Chia-Chi Huang

Department of Communication Engineering
National Chiao Tung University

ABSTRACT

Doubly selective (fading) channels cause the inter-carrier interference (ICI) problem and
thus degrade the system performance. In‘order to estimate.the ICI effect made by the spreading
energy of adjacent subcarriers, we proposg an-expectation-maximization (EM)-based receiver for
orthogonal frequency division multiplexing (OFDM) systems. In this paper, we use the frequency
domain model for system analysis and derive the EM channel estimation method by combining
the Markov Chain Monte Carlo (MCMC) method with the EM algorithm according to the
maximume-likelihood (ML) criterion. Besides, the proposed EM-based receiver is incorporated
with the group-wise ICI cancellation method for reducing computational complexity and
exploiting the inherent time diversity in time-variant channels. After the ICI cancellation, the
residual ICI power is calculated for the ICI-reduced signals with the goal of making data
detection more correctly. Results of computer simulation demonstrate that the ML-EM receiver

performs much better than the conventional one-tap equalizer.
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Chapter 1 Introduction

Over the last few years, the mobile communication technology develops rapidly, and
so do the wireless techniques. The wideband transmission became an inevitable trend because
of the data rate demanded by users. The wireless network has the advantage of the mobility,
the convenience and the high-coverage. Limits of time and place do not restrain the
communication among people. However, the channel of the wireless communication is
interfered with by severe noise, and the multipath effect is also a problem which should be
overcome. The multipath propagation causes thefrequency selective fading and the
inter-symbol interference (ISI), and thus harmsithe'quality of transmission and degrades the
system performance. It would be significant to choose an appropriate system model according
to the channel conditions and the requirements for transmission.

There are many techniques invented for raising the utility rate and mitigating the
influence of the multipath effect, and orthogonal frequency division multiplexing (OFDM) is
one of the most famous schemes. In OFDM, subcarrier frequencies are chosen to be
orthogonal to each other; namely, the crosstalk between the sub-channels is eliminated. The
orthogonality also provides high spectral efficiency since almost the whole available
frequency band can be utilized. The duration of each symbol is long enough to put in a guard
interval to eliminate the ISI, and the cyclic prefix (CP) used as the guard interval consists of a

copy of the end of the OFDM symbol. Besides, OFDM is equipped for coping with



attenuation of high frequencies in a long copper wire and narrowband interference. The effect

of frequency selective fading can be considered as flat over an OFDM sub-channel if its band

is sufficiently narrow. This makes the equalizer simpler at the receiver compared with

conventional single-carrier modulation.

OFDM requires accurate frequency synchronization between the receiver and the

transmitter. The subcarriers are no longer orthogonal if there is frequency deviation, inducing

the inter-carrier interference (ICI). Frequency offsets are typically caused by mismatched

transmitter and receiver oscillators, or by Deppler shift due to movement, and this effect

worsens as speed increases or as the length of'asymbol getslonger. In communication

systems, the transmission often-proceeds in the high-"mability condition, but the time-variant

channels damage the orthogonality, .cause the ICI'effect and then lower the system

performance. As a result, the ICI suppression.is.a.significant issue for research in mobile

communication, and it is also the main study in this paper.

There have been many techniques suggested for the ICI suppression; for example,

minimum mean square error (MMSE) [3], minimum mean square error with successive

detection (MMSE-SD) [3], polynomial cancellation coding (PCC) [4] and self-cancellation

coding [5]. The method in [3] is efficient but with high computational complexity. The

schemes in [4] and [5] provide good bit error rate (BER) performance at the expense of

sacrificing bandwidth efficiency. In [6] and [7], the piece-wise linear model is proposed to



approximate the channel variation, helping the analysis of properties of the channel. It is

explained that energy of a sub-carrier leaks to the adjacent sub-carriers owing to Doppler shift

in [8] and [9]. The expectation-maximization (EM) algorithm can be utilized to solve the

maximum-likelihood (ML) estimation problem in an iterative manner. Recently, some

EM-based methods have been proposed for channel estimation and data detection in OFDM

systems. But the wireless channel is assumed to be quasi-static, i.e., channel gain remains

constant over the duration of one OFDM symbol.

In this paper, we propose an EM-basedreceiver for OFDM systems in doubly selective

fading channels. By assuming channel variesiinalinear fashion, we analyze the ICI effect in

frequency domain and derive a-channel estimation‘method based on the EM algorithm in [10]

and [11] under the ML criterion, A Giblbs sampler;(a™arkov chain Monte Carlo procedure) is

used for the calculation of Bayesian estimates and.also for data detection in the EM algorithm.

Moreover, we combine the EM-based receiver with a group-wise ICI cancellation scheme for

the sake of reducing the computational complexity. The ML-EM receiver is implemented to

iterate between a group-wise ICI canceller and an EM detector (including the Gibbs samplers

inside). The MMSE estimator is employed in the receiver for the initial setting by exploiting

the pilot tones in each frame, and the accuracy of initialization can be refined successfully

through the mechanism of decision feedback.

The rest of this paper is organized as follows. In Chapter 2, the system under study is



described and the ICI effect is analyzed in frequency domain. And the basic idea of the Gibbs
sampling method is briefly introduced in Chapter 3. In Chapter 4, a channel estimation
method is derived from the EM algorithm combined with a Gibbs sampler using the ML
criterion, and accordingly, we propose an ML-EM receiver for OFDM systems. And the
ML-EM receiver is further united with the group-wise method in chapter 4.The problem of
computing the ICI power (or the variance of ICI) for the Gibbs sampling is treated in Chapter
5. Results of computer simulation are presented and discussed in Chapter 6. In the final part
of the paper, Chapter 7, we draw some conclusions for the study.

The following are some intérpretationstofinotations used in the paper. Boldface capital
letters denote matrices, whereas boldface lowercase.letters denote column vectors. The
superscripts ()T and ()H stand for the transpose-andthe Hermitian transpose of a matrix,
respectively. The column vector x can be explicitly'expressed by <X1, xz,...,x‘x‘> or
<xi e {1\x\}> where |x| is the dimension of the vector x. The notation {...}
represents a set, e.g. aset x= {X1 )ﬂx\} , and the cardinality of the set x is denoted by |x| .

The set can also be expressed in a compact form: {xi e {l, e |x|}} .



Chapter 2 OFDM System Model

2.1 Frame Format

According to the frame format in IEEE 802.16e standard [12], a frame consists of the
pilot preamble in the first symbol followed by many OFDM symbols carried by numerous
subcarriers. The number of subcarriers depends on the size of the Fast Fourier Transform
(FFT), and there are three types of subcarriers shown in Fig. 2.2. First, the data subcarriers are
used to transmit data symbols. And the pilot.subcarriers are used as virtual subcarriers to help
the channel estimation. In an OFDM symboljalsequence of values is inserted to be the pilot
signals. Moreover, the null subearriers can be the DC subcarriers or the guard band which

alleviates the aliasing problem at the receiver:

Data Subcarriers DC subcarrier Pilot Subcarriers

| Il X

- ~han
‘\ Guard Band Channel Guard band /

Fig. 2.1 The allocation of subcarriers in OFDM systems.

2.2 Doubly Selective Channels

Nowadays, wireless applications are expected to operate at high level of mobility and at



high capacities that result in doubly selective channels. Doubly selective fading means
frequency selective fading induced by the multipath propagation and time selective fading
caused by the time-varying channel.

The multipath propagation is a phenomenon that the transmitted signals arrive at
different times at the receiver through more than one path. The time difference between the
arrival moment of the first multipath component and the last one is called delay spread. The
coherence bandwidth measures the separation in frequency which two signals experience
uncorrelated fading. If the coherence bandwidth of.the channel is smaller than the bandwidth
of the signal, different frequency,components'ofthe signal suffer from decorrelated fading.

The channel varies with time' due to Doppler:shift resulted*from rapid traversing of the
transmitter or the receiver. The coherence time isa-measure of the minimum time required for
the magnitude change of the channel to become decarrelated from its previous value. When
the coherence time of the channel is small relative to the symbol duration, the amplitude and
phase of the signal change imposed by the channel varies considerably, causing a fast fading
channel.

That is, the doubly selective channel is also called the frequency-selective fast-fading
channel. The equivalent impulse response can be expressed as follows:
L
h(t,r)=2a, (t)5(T—T(I)) (2.1)
1=1

where ¢, (t) and 7" are the complex fading gain and time delay of |th path respectively



and 5() is the Kronecker delta function. The complex fading gain is a function of t which
denotes the time index, and the value L stands for the number of paths. Fig. 2.2 below is
intended to show the equivalent impulse response.

The variation of the fading gain, ¢, (t) which depends upon Doppler shift is proportional
to the carrier frequency and the speed of a motor vehicle. The maximum Doppler frequency

(MDF) is defined as

fo=—2 (2.2)

where v is the velocity of the source relative to.the receiver, f_ is the carrier frequency and

c is the speed of light (e.g. 3x10%m/s for light travelling in‘a vacuum). In OFDM systems,
the normalized MDF T, (inswhich T, is the sampling period) is used to indicate the range

of variation in the channel. By Keeping. T..-andr~fzrconstant,.it can be observed from (2.2)

that f, becomes larger when the car is driven faster:

t
? (R >z (t,)
4 [ - vo(t,)

TS ~2(t)

j A ()

Fig. 2.2 Anillustration of the equivalent impulse response.



2.3 Transmitted Signals and Received Signals

Xep AWGN Ve
_ noise 1
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Fig. 2.3 OFDM Systems.
Fig.2.3 shows an OFDM system. The information source bits are mapped into MPSK
data symbols and are converted into N parallel data streams through a serial to parallel (S/P)
block. Then the data streams are modulated onto N subcarriers by an N-point inverse Fast
Fourier Transform (IFFT) unit to produce-samples inthe'time domain, and the transmitted

signal is expressed as

. 27zmn
]

X[n] = %NZ_ X[m]e N (2.3)

where X [m] represents the data in frequency domain at the m th subcarrier. For the

purpose of eliminating ISI due to multipath channels, a CP is added at the head of each data
symbol, being presented as

x.[n]=x[N+n], n=-Ng,...,-1 (2.4)
where N, is the length of the guard interval. We assume that the maximum delay spread of
the channel is always smaller than N to make sure that there is no ISl after removing the
guard interval.

It is assumed that both timing and carrier frequency synchronization are perfect. The



received OFDM symbols in time domain can be expressed as the circular convolution of the

transmitted symbols and the channel impulse response; hence, received signals are given by
y[n] = x[n]®h[l, n]+ z[n]

. (2.5)
= > hll nIx[((n—=1)), ]+ z[n]

1=1
where h[l,n] represents the channel impulse response of the |th channel tap at the nth

sample time, | is the delay time of the |th path relative to the first path, n is the discrete
time index, z[n] is a sample of additive white Gaussian noise (AWGN) with zero-mean and
variance o, and ((+)), means a cyclic shift in the base of N .

After removing the guard interval and taking the Fast.Fourier Transform (FFT), the

received signals in frequency demain can-be described by

K] Hfl m] . [} o2 [K]
m=0 < (2.6)
= H [k, k]*Jk]+ H [k, m]xe[m]+ 2z [k]

inwhich x_[k] is the transmitted signals in frequency domain and H [k,k] is the
frequency response of the average gain of the channel. And H [k, m] , Which represents the
leakage factor of ICI from the m th subcarrier to the k th subcarrier, is provided in the

following:
L-1 27rml
H[k,m]=> B[k,m1I]e (2.7)
1=0

where pS[k,m,1] is the frequency response of the time-varying channel and can be given by

2en((k-m))y

Blk,m,1]=— Zh[l e’ N (2.8)




Accordingly, H [k, m] is regarded as the summation of af[k,m,l] multiplied by the linear
phase resulted from the time delay of the |th tap.

If the channel is time-invariant in the OFDM symbol duration; namely, it is in the slow

fading mode, H [k,m] turns out to be zero when k and m are different values, and thus

H[k,m] isequivalenttoH[k,k]. Thatis, there is no ICI among subcarriers.

2.4 The ICI Model
In [6] and [7], with the normalized MDFsup:to 0.1, a first-order polynomial function is
adequate to model the time variation of eachichannel'tap inan OFDM symbol and it
is defined by
h[l,n] =2a[l,1]n+afl;0] (2.9
where a[l, p] is the coefficient of p th-monomial-inthe function of the |th path. By

substituting (2.9) to (2.8), S[k,m,l] can be presented as follows:

Om=k:  plkmi]=""ta[l1]+a[1.0] (2.10)

(iiym=k:  Blk,m,I]=d[k,m]a[l 1] (2.11)
N-1 2zn(k-m)

where CID[k,m]ziZnefJ N :—£+j L (2.12)

N 2 Ztan(n«k—m))N]'
N

And the Malcaurin series can be used to replace the tangent function in (2.12). A parameter

A isin the interval between —% and %,and then tan A can approximate to a polynomial

10



in one variable expressed as follows:
tand = A+=-A"+—=A +........ (2.13)
3 15
in which the high-order terms, i.e. 1>, 1°, may be neglected as the value of A is smaller
than one, and thus (2.13) can be written as

tanl~ 4. (2.14)

The values of m and k are within the range from0Oto N -1, so ((k - m))N IS between O

k—m _
and N -1, and then ﬁ((N—))N in (2.12) is in the interval of {%w} or (0,7).

tan[”((k _m))N

N ] is simplified by the Malcaurin series, and so is ®[k,m] which can be

classified in the following cases:

(1) 7[((k|:|—m))“‘:% = tan (7Z((k;|—m))Nj =tan (%j buts tan (%) is infinite, and

therefore d)[k,m]:—%.

iy 0<ZE=Mh 7 o prem]=-tij N
N 2 2 "2x((k-m))
(iii) Subtracting 7 from %<@<n , We can get a new inequality of
7| ((k=m)) —N
T [(( ))N }<0 which conforms to the range required by the

2 N

N

27| ((k-m)), -N]

Malcaurin series, and thus @[k, m]= —%+ j

When k is different from m, CD[k,m] can be formed in accordance with the

results of (i), (ii) and (iii), and given by

11



1 N

g
2" 2n((k-m)),

o[k, m] ~ 1 for (k—m)), :% | (2.15)

for 0 < ((k —m)), <%

2
. N
2 " 2x[((k =m)), —N]

for %<((k—m))N <N

As a result, (2.12) can be replaced by the approximation in (2.15).

By making use of (2.11) and (2.15), the equation in (2.6) is rewritten as

Yelk]=HIk,k]x.[k]+ Ef@[k, miwim]x.[m] + z[k] (2.16)

L-1 . 2zml

where w[m]=> af[l.1]e "W js defined as the channel variable in frequency domain and
|=

(D[k, m] represents a fixed-valued coefficient of the ICIrterm. In order to provide a more

compact representation, we rewrite (2.16)-in asmatrix form which is given by

y = Hx+z=(M+®W)x+z=Mx + ®Xw +27 (2.17)
where the (k,m)thentry of H 'is H[kim], y=[y.[0].s" ve [N -1]]",
X = diag {[x:[0],... x:[N-1]]'}, x=Dxfo].x [N -1]]",
2=[2:[0],....2:[N-1]]', M=diag{[H[0,0],....H[N-LN-1]]'},
W:diag{[w[o],...,w[N —1]]T}, w=[w[0],...,w[N —l]:|T and ® isan NxN matrix
expressed in (2.18) below in which CD[k,m] represents the (k,m)th entry. Furthermore,

w=Fa where a= [a[O,l] ,....a[L —1,1]]T is a vector composed of slopes of channel paths

and F isa DFT matrix of size NxL withthe (m,l)thentry provided by

F[m,l]:exp{—j Z”Nm'}.

12
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Chapter 3 Gibbs Sampling

Named after the physicist J. W. Gibbs, Gibbs sampling is an algorithm invented by
Stuart Geman and Donald Geman to generate a sequence of samples from the joint probability
distribution of two or more random variables. The purpose of making such a sequence is to
approximate the joint distribution, or to compute an integral such as an expected value. And it
is a special case of the Metropolis-Hastings algorithm and also an example of a Markov chain
Monte Carlo algorithm.

Now we would like to interpret the concept of Gibbs sampling through the following

case [18] [19]. Let 6 =[G, --------" qo‘]T be awector of unknown parameters and y be the
observed data. Suppose that we-are interested in the a posteriork marginal distribution of 6,
(where 1< j<|8|) conditioned 0n the observation/ -y

P@O;1y) =] [ PO]¥)d6db,-d05d0,, - dg (3.1)

o
The calculation of integration in (2.19) may be infeasible if |9| is very large. Gibbs sampling
is a Monte Carlo procedure for numerical evaluation of the multidimensional integrals. The

basic idea is to generate random samples from the joint posterior distribution P(0|y) and to

estimate the marginal distribution by these samples.
Given an initial vector 0 =[g®-........ qéf)]T, the algorithm iterates from n=1 to

n=n,+N and is implemented as follows.

® Drawasample 4" from P(6,|6f"", 0" ..., 60",y).

14



® Draw asample 6 from P(02|01(”'1),03(”'1)...,t%‘“'l),y).

® Drawasample 65 from P(q, |65 ,6™ ...,607y).

o
After going through the iterations of Gibbs sampling, n,+ N vectors will be obtained from
the Gibbs sampler; however, only the last N vectors are regarded as samples that can be

used. And the initial period of length n, is known as the “burn-in” period for the transient

period required to converge to equilibrium. Consequently, the distribution of 0" converges
to P(0]y) when n— o and

ng+N
If(e)P(9|y)d9z% > £(0"), as |N-—soo, for any.integrable function f .

n=ny+1

15



Chapter 4 The ML-EM Receiver
4.1 Channel Estimation
At the receiver, the channel information is an unknown factor for detecting the
transmitted data. Based on (2.17), the optimal ML channel estimation problem can be
formulated as
Wy =arg max L(y|w)=arg mvng'L(y|w,x)P(x)dx (4.1)
where L(y | w) is a log-likelihood function given by taking logarithm of the corresponding
probability density function (PDF) P(y|w,); thatis, L(y|w) isequivalentto InP(y|w).
Nevertheless, if we directly calculate the integraliin(2.20), the great complexity of
multidimensional integrations is difficult to be solved. Thus the’EM algorithm is used for
avoiding direct calculation of those complicated-integrals. Ad L (y|w) can be maximized
by the way of iterating between the E-step-and. the M=step of the EM algorithm.
Applying Bayes’ theorem, P(y|w) is able to be expressed as
Py |w) =P X1 @2)

P(x|y,w)

and then L(y|w) is obtained by taking logarithm of (4.2) as
L(y [w)=L(y,x|w)—-L(x]y,w). (4.3)
And the expected value of L(y | w) with respect to P(x| y,v?f(m_l)) is given by

Ly W) =Eyq [LOXIW)]-Eqys_ [LGxIy,W)] (4.4)

(m-1)

where w . represents the estimated channel information at the (m-1)th iteration. Because

16



of Jensen’s inequality, E, ¢ [L(x|y,w)] becomes smaller when m is larger, and hence
*7 (m-1)

E [L(y,x | w)] is thought of as the dominant term. Therefore, we can rewrite (4.4) as

X|Y9w(m71)

L(y|w) o Eyys [L(¥>x[W)] (4.5)

-1)

in which L(y,x|w) can be described by

L(y,x[w)=L(y[x,w)+L(x|w)=L(y|x,w)+L(x) (4.6)
based on Bayes’ law. The second equality in (4.6) holds since the transmitted data x is
independent of the channel information w . Substituting (4.6) into (4.5), we find that (4.4)

can also be written as
L(y | W) o By gt Ly | xam)] kB L ()] (4.7)

where E [L(x)] is a constant rather than a function‘of w . Consequently, the

xly’w(mil)

formulation of (4.1) is replaced by

Wy = argmax LCy lw)

: (4.8)
= arg max { Evyir, [C(yTx,w)]+ const}
4.1.1 E-step and M-step
The E-step and the M-step associated with the optimization problem in (4.8) are
described as follows:
E-step:  Q(W|y, W)= E s, , [LOVI%w)]+const (4.9)
M-step: W, =arg mvzvixQ(w ¥+ W) (4.10)

where Q(w | y,v“v(m_l)) is the expected complete log-likelihood (ECLL) function to be
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maximized in the M-step of (4.10).

Dropping the constant in (4.9) would not affect the result of the M-step and the

conditional PDF P(y|x,w) is observed to be a Gaussian distribution from (2.17), so the

E-step can be presented as

QW] ¥ W01) = Euys, [LOI5W)]
= Exlyﬁv(m_l) [In P(y|x, W)] (4.11)

-1
ey, [I-mf]

where |y - Hx||2 is given by
||y-Hx||2 =y'y -y "Hx—x"H"y +x"H"Hx. (4.12)
By using (4.12), it is straightforward to-calculate

s, Iy - B[]

Ay [yHy —-y"Hx—x"H"y + XHHHHx]
> (m1)

- Exly’w(m—l) I:yHy:I B Exly’w(m—l) I:yHHX] . Ex|y";v(m-1) I:XHHHy:I " Exly";’(m—l) I:XHHHHX]
=y'y-y"HE ; [x]-E,, [x"]HY*E; [x"H"Hx]
= yHy . yHHExly,W(m,l) [X] — Exly,v”v(mrl) [XH :I HHy +tr ( Ex|y,€v(mrl) I:XHHHHX:I)

= yHy - yHHExly’VAV(m—l) [X] B Exly’vﬁv(mrl) [XH :I HHy * tr (HHHExly’W(m—l) |:XXH ])

(4.13)

where we have H=M+®W from (2.17), both y and H contain nothing about the

random variable x, E

X|y,W

[x”H”Hx] is a value so that it is obviously equal to the sum of
(m-1)

the diagonal elements given by tr(Exly,w( i [x”H”Hx]) , and the last equality is true because

tr(A*B) can be always converted into tr(B*A) of which A and B are matrices.
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With further calculation, we can obtain

XYW (1) [

A

A

3

3

v~ |

yHy . yHMEx|y,W(m_1) [X] — yH(DWEXIy,W(m_l) [X] - EXIy,W I:XH :|MHy —

(m-1)

By, [ X W D'y +tr(MHMExly,w(m_U [xx“])+

tr(Eyys,, [0 IMIOW ) +tr(WHOME, ,  [xx"])+
tr(WoorowE, [xx])

yHy—yHMEXIy’W - [X] yH(I)WEx|yw o [X]_Exly,W [XH]MHy—

(m-1)

E [XH]WH(I)Hy +tr(M ME, | [xx“])+

XIYsW )

tr(Eys, , [0 IMPOW ) tr(WHOME,,  [xx"])+

tr(WE,,,  [x"]W'o'o)

y'y—-y"ME [x]—yHCI)E [X]Fa_E,qu"v [XH}MHy—

XYW (g "W

XIYsW )

a"FUE,,  [X"]@"y +tr(MHMEX|y,;v(m_l) [xx“])+

=
[Diag ( Exly,w(m_n [XXH ]MHq))] Fa+a"F"Diag (‘I’HMExw,v”v(m_l) [XXH ]) +

tr(((wwH)@ Ex|yw [xx ])(I) (I))
Y'y-y'™ME,, [x]-y"®E . [X]Fa=E  ; [XH}MHy_

(m-1) (m-1) (m-1)

HEHE
a F'E XY g

[X* oy +tr(MAME, ;  [xx"])+
[Diag( e, [ X" ]MHG))} Fa+a"F"Diag(®"ME,,,  [xx"])+
tr(FaaHFH (Exly’w(m) [xx”} @(CI)H(I))))

yHy_yHMEXIy,Mm) [X]—y XIyw [X]Fa EXIYW [ :'M Y-

a"FE,,, [X"]@"y +tr(M ME, [x" ])+

.
[Diag(qu,w(m) [XXH:IMH(D):| Fa+a"F"Diag (‘DHMqu,W(m) |:XXH:|)+

2"F (B, [w'] ©(0"®))Fa

> (m)
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where © denotes the Hadamard product, the notation Diag represents taking the diagonal
elements of a matrix to form a column vector, w is replaced with Fa,and a isa vector of
channel slopes in time domain turning out to be the new channel information that should be
estimated. Therefore, the E-step of (4.9) and the M-step of (4.10) are redefined by

E-step:

Q(a Ya{‘(m-l))

y'y —yHMExly,ﬁ(m) [x]—yH(I)Exly’ﬁ(m) [X]Fa- Exly’ﬁ(m) [XH}MHy—
HpH H e H H H
|, (X" y+tr(M ME,; [x ])+ .15
= T
o’ [Diag(Exly,a(m) [xx”]M“cpﬂ FasalFiDiag (0"ME,,, [xx"])+
a"F" (Exly,ﬁ(m, [XXH]T O((I)H(I)))Fa
M-step: a,, =arg max Q(a | y>a ) (4.16)

4.1.2 Derivation of Estimated'Channel Slopes

In order to find a  which maximizes Q(aly,a,, ), we have to differentiate (4.15)

)

with respect to a"™ by using complex differentials introduced briefly in the following:

0J

*

k

o .dJ
=—+

= j—
V=0 + ihy 6gk 6hk (417)

8l 1{a1 . &
> —="9—+j—
ov,  2|eg, oh,

where a complex value J consists of a parameter v, of which g, and h, are the real part

V=2

and the imaginary part respectively and the superscript () stands for the complex conjugate

of a value. Then the complex differentiation of vectors can be presented as
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é’(r“s)_iH —
PR [1+j-j]=0 (4.18)
8(s“r)_£ o
P —2[1+J (-)]r=r (4.19)
d(s"Qs) _a(s") Hpy OS
W og Qs+s Q—asH =Qs (4.20)

where r and s denote complex vectors and Q is a matrix without the parameter s

inside. Suppose that f (a) represents the function of a in (4.15), and thus the

maximization in the M-step can be derived as below,

of (a) _

H H H H[MG H H
~ V=R (X" @"y-F Dlag((I) ME,,; [xx ])— o
H H H
(€5, [T o(0'a) Fs
of (a) A L
e =0 = a,,=C'b (4.22)

x|y,a

where we define C =F" (E [xxH ]T @((I)'*CI)))F whichis an invertible matrix of size

(m-1)

NxN and b=F" B, [X“ :|(I)Hy —F"Diag ((I)”MExly,ﬁ(m_l) [xx“ }) which is a column

vector of length N . As a result, we can get the vector of‘estimated slopes a,_, at the mth

(m)

EM iteration based on some given information such as the observed data y and the vector of

previous estimated slopes ﬁ(m_l) . As for the expected values of X" and xx" needed in

(4.22), we will obtain by applying Gibbs sampling method in next section.
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4.2 Data Detection by Gibbs sampling

Now we consider the problem of computing the joint a posteriori probabilities of the
transmitted signals

P(X]¥s8y). (4.23)

Based on Gibbs sampling, we estimate the PDF of (4.23) by using the probabilities of samples
drawn uniformly from the marginal PDF illustrated as follows. The following case shows the
way of drawing a sample for, x,, one of the unknown parameters in the vector x. By using
Bayes’ theorem and given the initial values of x% =[x ......... x?1", the marginal

probability of x, is calculated as

P (%, = +11¥, 8 150X, K510 %)

CP(Y 1 =LAy X X X JPOG = 1] s X, X, %)
_ B (¥ by e,

B P()’lX1:+l,ﬁ(m_1),x2,x3,...,xd)P(x1=+1)

) ;P(YIXl,ﬁ(m.l),xz,xg,...,xd)P(xllﬁ(m_l),xz,x3,...,xd)

_ P(y|xl:+1,ﬁ(m_l),xz,x3,...,xd)P(x1:+1)
ZP(y|xl,ﬁ(m_l),x2,x3,...,xd)P(x1)

X

P35 PO =1

ZP(Y|X’5(m-1))P(X1)

. (4.24)

where P(x, =+1) isthe prior symbol probability of x, and the subscript d stands for the
size of x, or precisely, the depth of the Gibbs sampler. When no prior information is
available, it is assumed that P(x, = +1) = % i.e., all symbols are equally likely. Then (4.24)

can be written as
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X, ) _ P (y | X(x1:+1)’a(m'1))

P(X =+1]y,2 00, X X310 Xy ) = — : (4.25)
( > P(y | X’a(m-l))
Since z isa Gaussian vector, P(y|x,a, ) can be derived as
- 1 2
P(y | x, a(m_l)) oc exp —?”y - Hx” (4.26)

where we define o =0’ +0%, and o, isthe ICI power calculated in next chapter. Thus
we can get the posterior probability of x, =+1 by substituting (4.26) into (4.25), and
P(% =-1]y,2.,.1), %, X,..., %) IS also obtained through the same method. With these
posterior probabilities, we know about the probability of choosing one from all of the symbols.
Let B be P(x,=-1|y,a,. %, X%, %), and suppose that U is a uniform-distributed
value bound in the interval of [0,1]. U combined with, P, “can be used to make a decision,
e.g., asample of x =+1 ischosen if U is smaller than P,, whereas a sample of x, =-1 is
chosen when U is within the range of . (P 1].

After a sample of x, isdrawn, X, is'the next parameter to draw a sample with a
given value of x, . As above, the samples of x,,...,x, can be drawn from their a posteriori
probabilities like the PDF in (4.25) and then a vector of samples is acquired. The vector of

samples denoted as x(")

(m1) 1S considered to be the given values for the ith iteration of Gibbs

sampling, and the execution of drawing samples is presented in the following.
At the (m-1)th EM iteration:
® Draw avector of samples X} from P(x|y,a,, ) given X

® Draw avector of samples X2, from P(x|y,a.,) given X(), and &, .

23



® Draw avector of samples X{; from P(x|y,a.,) given x>} and &, .

At the mth EM iteration: (Assume that m is the final number of iteration.)

® Draw a vector of samples %"

(m

) from P(x|y,ﬁ(m,1)) given ?}E?n).l) and a, .

® Draw avector of samples X2 from P(x|y,a., ) given X[} and &, .

® Draw avector of samples X{;) from P(x|y,a, ) given X)) and &, .
The probabilities of the last drawing through EM: iterations are utilized to be the joint a
posteriori probabilities for estimating the channelinformation. The samples generated at the

final EM iteration are formed into'a sequence of vectors: {i(i)): ie {1d}} , and an average

(m

of the samples, denoted as ™ represents the output of the EM detector where the

superscript (-)(m) stands for the number of EM.-iteration.
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4.3 Initial Setting

The EM algorithm guarantees to converge to a local maximum instead of a global
one, so the initialization of data and an initial channel estimate are significant for locating the
global maximum. The initial channel estimation (CE) is accomplished by the use of pilot
tones in the specific positions of an OFDM symbol, and it can be improved through the
decided data symbols. Let x, be a vector of J pilot tones situated at the indices
{00, 9,,....0,,} ofasymbol,and d,,d,,...,d, are defined as the channel delay of paths.
Then the system model related to pilot symbols:is expressed as

Vo =X, Frh+z, (4.27)

where y, = [y[%],---, y[(pH]]T is the received data of size J x1 in the positions of pilot

tones, X, =diag {[x[%] x[(pH]]T} stands-forardiagonal matrix of pilot symbols whose

Flpy.d] @i El g, de]
sizeis JxJ,and F = : : is a matrix of size JxL which

F[¢J—l7dl] F[(o.]—l’dL]
composed of some elements of F. Utilizing the MMSE-based CE method, we obtain an

estimated channel impulse response [15] presented as

h=argmin|y, - X,F.h|’
h ) (4.28)
- (FPHXEXPFP +(o-z2 +o%, )) F'Xly,

where the variance of ICI, o7, , equals (27 f, )2 /12 approximately by applying the central
limit theorem [16]. Accordingly, the initial channel estimate in frequency domain is described

as
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-1
i =F (F' X)X, F, +(0? + 07, )) FI'Xy, (4.29)
and thus the initial data %'® can be derived from the one-tap equalizer.
As shown in Fig.4.1, making use of the decided data %'°’, we can further generate

an updated channel estimate m via the similar formula in (4.29) and produce a vector of

new decided data symbols denoted as X* . Then X and M =diag{m} are exploited by

the EM algorithm,

MMSE
Channel
Estimator

for ML-EM
One—tap receiver —(0)
|

Equalizer J

Fig. 4.1 Initialization for ML-EM receivers.
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4.4 EM-based Channel Estimation Method
Applying the description in the preceding sections, the ML-EM algorithm for

channel estimation can be summarized as follows.

Initialization:
Calculate M, produce an initial X by zero-forcing (ZF), set a,, =0, and let the subscript

m be zero.

Procedure of the ML.-EM algorithm:
® m=m+l
® Draw samples {xginl) e {1d}} , compute the*probabilities of symbols by using the
; H H
samples, and then obtain Exly’ﬁ(m_n [xx ] and Ex|y,a(m_l) [X ] :

® Estimate the channel information throughrthe-derivation .a )=C’1b where

(m

b—F" Ex|y’;‘(m.1) [XH ](DHy —F"Diag ((I)HMExly,ﬁ(m_l) [xx” ]) and

C=F" (E [xx"']' O((I)H(I)))F.

XIYA )

® |nitial setting for next iteration:

Set %™ be the initial data of the Gibbs sampler and let a , be the updated channel

(m

information.

Stopping criterion:

The algorithm stops only when the iteration number reaches to a predefined limit.
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4.5 Group-wise Method

JECERE
XO o0 0 :X((le))R X((k*Q))R e 00 XRfl
Vet W
|
yO ) ) | y((k_Q)>R L) yR—l

Fig. 4.2 Anillustration of group-wise detection.

The aforementioned ML-EM algorithm has high computational complexity, and
hence we use the group-wise methodto provide a practical implementation for the ML-EM
receiver. N subcarriers are partitioned-into R groups, and'each group contains G subcarriers.
The jth group of subcarriers is given by Gy={jG,...,(j+1)G -1}, for j=0,..,R-1.
Define the jth data group as x,*= [x[jG],..., x[(j+1)6 —1HT, the j th observation group
as y, =[y[jG],..., y[(i+1)G —1HT, two sets B, :{((j -Q-1)). ,...,((j+Q+1))R} and
D, = {(( i-Q)). (i +Q))R} . In order to simplify the interpretation, the concept of
grouping is demonstrated with one of the data groups e.g. the k th data group and illustrated
in Fig.4.2. The energy of x, spreads over the adjacent 2Q+1 groups (involving y, itself),
o) {y jtle Dk} is the corresponding set of observation groups. Moreover, the set
{y jile Dk} consists of the interference resulted from the spreading energy made by a set of
neighboring data groups denoted as {xj 1 jeB, \{k}} :

Outside the EM detector, there is an outer iteration loop iterating between the
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ML-EM detector and the ICI canceller as depicted in Fig.4.3. During an outer iteration, we
diminish the ICI term by subtracting the leakage of other groups from the set of observation

groups and then obtain the 1CI-reduced signals:

Y=Yy~ Z ITIj’iii,for jeD, (4.30)

ieB Mk}

where the (r,s)thentry of H,; isgivenbythe (jG+r,iG+s)thentry of H representing
anestimate of H for r,se{l...,G-1}. H and X, come from the output of the EM
detector at the previous outer iteration or from the initialization in the beginning. After
eliminating the ICI effect, the EM detector, is performed by using EM-based channel
estimation together with the group=wise method:

When Gibbs sampling is ‘executed, samples are drawn by applying a ZF sampler.
Every data group, which belongs to.the sampler; takes turn by:iteration loops to be calculated
with the corresponding observation groups {yi e Dk} , and thus a large number of samples
are acquired. Then x\™" is the decided data group at the (m—1)th EM iteration defined by
an average of the collected samples drawn for the group x,.And X" is sent back to be an
initial data group for the ZF sampler at the mth EM iteration, while x\” given from the
initial setting is an initial data group at the first EM iteration. Going through the iteration of
Gibbs sampling, we obtain d —n, sets of detected data groups (for neglecting n, sets of
burn-in samples).

—(m-1)

With the obtainment of all the groups {xk kefl,..., R}} we can form d —n,
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vectors of N transmitted data symbols entirely and store up a sequence of probabilities of

the final drawing within the (m—1)th EM iteration denoted as P . Because of the

probabilities P the expected values required in (4.22) can be calculated, and hence

m-1)

derive the channel information a for the (m—l) th EM iteration. a and X' are

(m-1) (m-1)

m)

both provided for the given knowledge at next EM iteration. Besides, a,_. and x™ are

(m)
yielded as the way described above and become the output of the EM detector at the mth EM

iteration. After cancelling the ICI effect, M can be modified by substituting the updated data
m)

3™ into (4.29) via the unit of channel estimationsupdate shown in Fig.4.3. M is replaced

by M, and then H is calculatedias M + ®Fa ).Therefore, another outer iteration starts

(m
with the given information H=and x™ from thé olitput of thé previous outer iteration.

The intuition of combining our-designmwith the group-wise method is presented as
below. The data group x, contributes most.of energy to'the ICI-reduced observation groups
{yj fje Dk} ; thus, we can obtain diversity gains and draw samples for the k th group data by
performing only through x, and {y,: j € D, }.And itis obvious that the full diversity gain
is attainable when the ICI effect is completely eliminated as well as the value of Q is large
enough. Because spreading energy of a group mostly affects the neighboring 2Q groups, i.e.,
the observation group Y(ea), is interfered by the data groups {xi je {k((k + 2Q))R}} :
so the data groups used for the ICI cancellation should be a set of (4Q+1) groups. However,

we can use (2Q + 3) data groups to achieve the comparable performance by observing the
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experimental trials.

Initialization

OFDM
Demodulator

ICI
Canceller

EM (ML)
Detector

Channel
Estimation
Update

Fig. 4.3 The ML-EM receiver for OFDM systems.
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Chapter S Residual ICI Power

When the received signals pass through a group-wise ICI canceller within an outer
iteration, the ICI effect in those signals are cancelled by using the decided data at the previous
outer iteration. If CE is perfect and the decided data are detected correctly, we assume that
there is no ICI power after ICI cancellation. However, it is almost impossible to make all data
correct; thus, some ICI power would be left and turns to be the so-called residual 1CI power
discussed as follows.

And accordingly, the quantity of the residual 1CI power contained in the ICI-reduced
signals varies with the correctness'of the detected data.used in the ICI canceller. Furthermore,
the residual ICI power differs from'the ICI power, &, , which also means the variance of ICI,
because the latter represents the,original powerof the'ICI effect without any subtraction of
power from the received signals. The‘accuracy.of the'residual 1CI power we estimate plays an
important role in Gibbs sampling for the reason that the appropriate residual ICl power makes
the a posteriori probabilities more reliable.

Following the group-wise EM-based data detection described in section 4.5, the
calculation of the residual ICI power can be performed through the group-wise method as
well and then illustrated with the subsequent case by employing the detected data groups
{X;:jeB,\{k}} and the observation groups {y;:jeD,} thatare shown in Fig.4.2. Each

observation group consists of G subcarriers which suffer from different levels of residual ICI
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power. For a subcarrier in the kth observation group, we calculate its residual ICI power by

summing up the interference power caused by the incorrectness of the adjacent subcarriers in

the set {ij 1 jeB, \{k}} . The observation groups of received signals are expressed as

Yi= Z(M,—,i +<I>j,in,i)xi tZj (5.1)

iEBk

where jeD, and W =Fa.Now it is assumed that an initial channel estimate M and the

channel information W are perfectly estimated, and the ICI-reduced signals are given by

vi=yi— >, HyX
IeBk\{k}

= (M + @ W) x; 4205 (M + @ W)X

Jil Bl

ieBy ieBk\{k}
_ (5.2)
=2 (M +@;, W, )x; +2, - - (M +®,; W, )X,
i<B, ieB VK]
:(Mj,k +(I)j,ij’k)xk + BZ\{k}(M“ (XX )+®, W, (x; —ii))+zj
Sk

The term causés the residual ICI.

The first two terms of (5.2) represent the signal energy of the kth data group, and the third
term and the fourth term are caused by the mismatch between the transmitted data and the
decided data and induce the residual ICI.
Supposing that X are the same as the transmitted signals, the 1CI-reduced signals
are free from the ICI effect and presented as
Y :Mj’kxk+(I)j,ij,ka+zj (5.3)
where we find that the kth data group produces the remaining energy spreading over the

ICI-reduced signals. In case that some of the detected signals are wrong, there is not only the
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energy of the kth data group but also the residual 1CI power resulted from the incorrect
cancelling in the ICI-reduced signals. According to (5.2), the residual ICI power is defined by
ol and calculated as below.

At the first outer iteration:

We have no information about the channel variable W at the first outer iteration, and thus
(5.2) is rewritten as

Vi=Mpx +®, Wyx+ > Mji(xi-X)+ > ®;W;xj+z;. (54)
ieB \(k} ieBy \(k}

ol inthe ICI-reduced signals is expressed as

Ohe = BZ\:{k}MJ—,iM’j,iE[(xi S6)O(x %) |+
By
(5.5)

| BZ\{k} E[®, @),W,W, ] E[xi @xi*]
IS K

E|(x=X)" |=P(x=1)(1-%)" *P(x=1)(-1-X)" and E[x*]=1 for xex; .
Besides, P(x=1) and P(x=-1) canbe regarded as 1/2 if no prior probability is given.

At other outer iterations:

After executing the previous outer iteration, we obtain P(x=1) and P(x=-1) from the

last drawing in Gibbs sampling and have the estimated channel information W from the

output of the EM detector. (5.2) shows the ICI-reduced signals in this case and o7, is

provided by
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Ghe= > M MjE|(x-%)0(x %) |+

B V(K|

. . B o (5.6)
2 E[‘I’j,iq’j,iwj,iwj,i]E[(Xi -X;)O(x - %) J
IeBk\{k}

where E [(I)j,i(I)“}’in,iW}"i] can be defined by « and approximated by the percentage of

spreading energy of one subcarrier through the computer simulation. And (5.6) is rewritten as

O = Z Mj,iNr},iE[(Xi _ii)Q(xi _ii)*:|+ Z ,U'E[(Xi _ii)Q(Xi _ii)*}

ieB, \[k} ieBy \[k|
A subcarrier spreads the energy over the neighboring subcarriers, and the spreading energy
becomes smaller when the distance is long, between two subcarriers. The percentages of
spreading energy resulted from one subcarrierare generated according as the normalized
maximized Doppler frequencies are 0.05 and 0.1,.and depictedin Fig.5.1 and Fig.5.2
respectively. As shown in these'two. figures; itis found that the percentages are very much
alike. Varying with the accuracy of the detected data;” G, is used to be the adaptive ICI

power for the a posteriori probabilities in Gibbs sampling.
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Fig. 5.2 The ICI power percentage for the normalized MDF=0.1.
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Chapter 6 Computer Simulation
6.1 System Parameters

Results of computer simulation in this section demonstrate the performance of the
ML-EM receiver. Based on the parameters defined in the 802.16e OFDM standard [12], we
know that the system occupies a bandwidth of 5MHz and the carrier frequency is 2.3GHz. The
entire bandwidth is divided into 256 sub-bands for N = 256 subcarriers among which J = 8
subcarriers carry the pilot tones, N = 192 subcarriers transmit data and the remaining 56
subcarriers are used as virtual subcarriers. These:pilot subcarriers transmit the pilot tones
adopting the BPSK modulation scheme and eachrhaving the'same power as the data carried by
a data subcarrier. The length of-guard interval is N = 64 (i.e. one quarter of 256 for the
cyclic prefix). Each OFDM frame consists.ofNz=40-0FDM data symbols and one OFDM
symbol used for the CP-added preamble. Besides, the parameter of Q is set to 4 through the
observation from experimental trials. The numbers of the EM iteration and the outer iteration
are selectedas N, =2and N, =4.

A two-path channel and an International Telecommunication Union (ITU) Veh-A
channel are simulated with the path delays uniformly distributed from 0 to 50 sample periods.
The relative path power profiles are set as 0, 0 (dB) for the two-path channel and set as 0, -1,
-9, -10, -15, -20 (dB) for the ITU Veh-A channel, where the fading channel can be generated

with Jake’s Model by setting the normalized MDF equal to 0.05 and 0.1. And it is assumed
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that both symbol synchronization and carrier synchronization are perfect and the receivers
have some of the statistical information like noise power, power delay profiles and Doppler
frequency. In addition, the parameter E, /N, represents a ratio of received bit energy to the

power spectral density of noise.

6.2 Simulation Results
The following three cases are used in the simulation for comparison.
(A) CSI and data known: The curves withdeal €SI initialization and perfect initial data can
be regarded as a performance lower bound:
(B) CSI known: This kind of ecurves is generated-by using ideal CSI initialization and initial
data given from the one tap equalizer.
(C) CSI est: The curves labeled as “CSl est”.are made by setting initial CSI estimated and
initial data given from the one tap equalizer.
The ways to produce initial data make difference between (A) and (B), and the modes of
CSl initialization make (B) perform better than (C) if other conditions remain the same.
Most of the figures come from the simulation in the two-path channel, while Fig.6.9 and
Fig.6.10 are given by the simulation in both the two-path channel and the ITU Veh-A
channels.

The group size of the ML-EM receiver must be decided first of all, and the BER

38



performance curves are compared with each other in the case of “CSI and data known”. As

depicted in Fig.6.1 and Fig.6.2 for the normalized MDF=0.05 and 0.1 respectively, joint

detection of more subcarriers improves the performance, so the receiver with group sizes of 1

and 2 are worse than with group sizes of 4 and 8 which have nearly identical performance,

and we choose the group size of 4 for the reason that a smaller group size takes less

computational time. Next, the BER performance makes progress by applying the residual ICI

power described in chapter 5 to the Gibbs sampling. Based on the case of “CSI known”, it can

be shown in both Fig.6.3 and Fig.6.4 for comparisen between the performance of the ML-EM

receiver with 1CI power update and without ICIpower. update, and then the former is proved

to be better. We subsequently develop the receiver'combined with 1Cl power update.

Fig.6.5 and Fig.6.6 demonstrate'the' BER performance of the ML-EM receiver with

ICI power update in the cases of “CSI known” and “CSl est”. It is observed that the curves

with perfect CSI initialization perform better than the curves with CSI initialization estimated

by zero forcing criteria and the performance improves as the outer loop iterates more times.

Moreover, Fig.6.7 and Fig.6.8 show that the ML-EM receiver with CE refinement has better

performance than without CE refinement in the case of “CSI est”. And the “CSI est” curve

with CE refinement is quite close to the “CSI known” curve, which means the receiver with

CE refinement decrease the gap between the two modes of CSlI initialization. CE refinement

can obviously make the performance better for a channel with more paths, i.e. the ITU Veh-A
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channel, and the BER performance is illustrated in Fig.6.9 and Fig.6.10.

Fig.6.11 and Fig.6.12 demonstrate the BER performance of the ML-EM receiver with
the group size of 4 and CE refinement. Compared with the “CSI and data known” curve for
the normalized MDF=0.05, the “CSI and data known” curve for the normalized MDF=0.1 has
lower BER at the same E, /N, , because time-variant channels introduce more diversity gains
for higher speed when the initial CSI and data are both perfect. And it is seen from Fig.6.11
that the three curves in different cases are rather close; however, there is a gap between the
performance lower bound and the two curyveselse due to the error propagation effect observed
from Fig.6.12. Finally, the number.of samplesrequired for Gibbs sampling affects the BER
performance shown in Fig.6.13-and Fig.6.14, and.thus we find that the receiver with more
samples attain better performance, and the.improvement is gradually saturated as the number

of samples increases.
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Chapter 7 Conclusions

In this paper, we investigate an EM-based iterative receiver under the ML criterion
for OFDM systems in doubly selective channels. The receiver consists of an initialization unit,
an ICI canceller, a CE update unit and an ML-EM detector. First, the initial setting of CSI and
data can be executed through the use of the MMSE-based CE method and a decision-directed
approach with the one-tap equalizer. Next, the ML-EM algorithm is proposed for channel
variable estimation by using the samples given from Gibbs sampling. Incorporated with the
group-wise processing, the ICI cancellation.is:developed to reduce the computational
complexity and to exploit the time:diversity inherentin time=variant channels. And the CE
update unit provides better CSI-to improve the performance at high E, /N, especially.
Simulation results indicate that the ML-EM receiversignificantly outperforms the one-tap

equalizer.
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