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使用分散式低密度奇偶校驗碼之壓縮傳送合作式通訊 

 

Compressed-and-forward cooperation with distributed LDPC coding 

 

研究生:呂姵璁    指導教授:吳文榕 教授 

 

國立交通大學電信工程學系碩士班 

 

摘要 

    文獻指出合作式通訊(cooperative communication)是一種有效探索虛擬空間

多樣度的方法。除了傳統的放大傳送(AF)跟解碼傳送(DF)外，壓縮傳送(CF)也被

提議為合作式通訊的一種對策。壓縮傳送的方式為：中繼端(relay)將傳送位元的

Log-Likelihood Ratio (LLR)值先經量化、觀察或是估計後再傳送給終點端

(destination)。在本篇論文中，我們提議用壓縮傳送的結構搭配分散式低密度奇偶

校驗碼來做分析。傳統的壓縮傳送使用的是 BPSK 的調變方式且在中繼端的吞吐

量比較低。為了解決這個問題，我們提議在中繼端使用 QAM 的調變方式。為了

達到這個目的，我們必須估計每個位元 LLR 的分布情形。接著我們將此分布情

況模擬成高斯混和(Gaussian Mixture)並使用 EM algorithm 來識別高斯混和分布

中不知道的參數。模擬顯示所提出的壓縮傳送結構在性能上勝過放大傳送和解碼

傳送。 
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Compressed-and-forward cooperation with distributed LDPC coding 

 

Student : Pei-Tsung Lu  Advisor : Dr. Wen-Rong Wu 

 

Department of Communication Engineering 

National Chiao-Tung University 

 

Abstract 

    Cooperative communication has been shown to be an effective way to explore 

virtual spatial diversity. Except for conventional amplify-and-forward (AF) and 

decode-and-forward (DF), the compressed-and-forward (CF) has been proposed for 

the cooperative strategy. In CF, the relay forwards the quantized/observed/estimated 

data information, which is usually the LLR values of the transmit bits, to the 

destination. In this thesis, we propose a CF scheme with distributed LDPC coding. 

Conventional CF only uses BPSK modulation at the relay and the throughput in the 

relay link is low. To solve the problem, we propose to use a QAM modulation at the 

relay. To do that, we have to estimate the distribution of the likelihood-ratio (LLR) of 

each information bit. We then model the distributions as Gaussian mixtures, and use 

the expectation-maximization (EM) algorithm for the identification of the unknown 

parameters. Simulations show that the proposed CF scheme can outperform AF and 

DF.  

 
 



 iii

誌謝 

 

    首先要先感謝我的指導教授 吳文榕老師，在這兩年來在課業以及研究上的

用心指引以及努力教導，與我討論研究上的問題以及花許多的時間解決學習上的

困難和疑惑，使我在通訊的領域上受益良多，並順利的完成此論文。 

     還要感謝口試委員 黃家齊教授與李彥文教授給予這篇論文的寶貴意見與

指導，使這篇論文更加完善及嚴謹。感謝實驗室的博班學長們，在我遇到問題時

適時的給予意見及協助；還要感謝寬頻傳輸與訊號處理實驗室所有同學與學弟妹

們的支持與協助，使得研究的路上有許多寶貴的回憶。 

     另外還要感謝我的家人、親戚、朋友和奕嘉，給予我生活上無後顧之憂還

有精神上的支持與鼓勵，讓我能順利的完成碩士學位。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iv

Contents 

 
摘要……………………………………………………………………………………i 

Abstract………………………………………………………………………………..ii 

誌謝…………………………………………………………………………………...iii 

Contents……………………………………………………………………………….iv 

List of figures………………………………………………………………………...vii 

Chapter 1 Introduction………………………………………………………………...1 

Chapter 2 LDPC codes………………………………………………………………...4 

    2.1 Encoder………………………………………………………………………5 

    2.2 LDPC codes principle………………………………………………………..6 

          2.2.1 Message passing……………………………………………………6 

          2.2.2 Tanner graph………………………………………………………..7 

    2.3 Sum product algorithm in LDPC codes decoding……………………………9 

          2.3.1 Bit nodes to check nodes………………………………………….10 

          2.3.2 Check nodes to bit nodes………………………………………….11 

          2.3.3 Posteriori probability of bit node…………………………………14 

          2.3.4 Sum product algorithm in LDPC…………………………………15 

    2.4 LDPC in 802.15.3c………………………………………………………….16

 Chapter 3 Cooperative communication systems……………………………………..19 

    3.1 Cooperative communication………………………………………………...19 

    3.2 System model……………………………………………………………….20 

    3.3 Amplify-and-forward (AF)………………………………………………….21 

    3.4 MRC and demapping in MQAM…………………………………………...27 

          3.4.1 Demapping and combining………………………………………27 



 v

          3.4.2 MRC and demapping…………………………………………….28 

          3.4.3 Performance comparison………………………………………….29 

    3.5 Decode-and-forward (DF)…………………………………………………..30 

Chapter 4 Gaussian mixture identification with EM algorithm……………………...31 

    4.1 Maximum-likelihood estimation……………………………………………31 

    4.2 Basic expectation-maximization estimation………………………………...32 

    4.3 Gaussian mixture identification via EM algorithm…………………………34 

Chapter 5 Compress and forward in user cooperation……………………………….39 

    5.1 Compress-and-forward (CF) cooperation strategy………………………….39 

    5.2 System model……………………………………………………………….41 

    5.3 Quantizer optimization……………………………………………………...42 

    5.4 LLR computation at destination…………………………………………….44 

          5.4.1 BPSK modulation at the relay…………………………………….45 

          5.4.2 QPSK modulation at the relay…………………………………….47 

          5.4.3 16QAM modulation at the relay…………………………………..48 

Chapter 6 Simulations………………………………………………………………..51 

    6.1 Scenario 1…………………………………………………………………...52 

    6.2 Scenario 2………………………………………………………………...…56 

    6.3 Scenario 3………………………………………………………………...…57 

          6.3.1 Case 1……………………………………………………………..57 

          6.3.2 Case 2……………………………………………………………..58 

          6.3.3 Case 3……………………………………………………………..59 

          6.3.4 Case 4…………………………………………………………..…60 

    6.4 Scenario 4…………………………………………………………………...62 

          6.4.1 Case 1……………………………………………………………..62 

          6.4.2 Case 2…………………………………………………………..…63 



 vi

          6.4.3 Case 3…………………………………………………………..…64 

    6.5 Scenario 5…………………………………………………………………...66 

          6.5.1 Case 1……………………………………………………………..66 

          6.5.2 Case 2……………………………………………………………..67 

Chapter 7 Conclusion………………………………………………………………...69 

Reference……………………………………………………………………………..70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vii

List of figures 

 
Fig. 2-1 An example of message passing (intrinsic information)…………………….7 

Fig. 2-2 Extrinsic information flow…………………………………………………..7 

Fig. 2-3 An example of Tanner graph………………………………………………..8 

Fig. 2-4 Structure of LDPC decoder………………………………………………….9 

Fig. 2-5 Probabilities of bit nodes to check nodes…………………………………..10 

Fig. 2-6 Probabilities of check nodes to bit nodes…………………………………..11 

Fig. 2-7 Posteriori probabilities of bit nodes……………………………………...…14 

Fig. 2-8 Parity-check matrix for rate 1/2, 3/4 and 7/8 in 802.15.3c………………….16 

Fig. 2-9 LLR density functions in different UEP level……………………………....18 

Fig. 2-10 BER for each UEP level…………………………………………………...18 

Fig. 3-1 The scenario of relay channel……………………………………………….19 

Fig. 3-2 AF block diagram…………………………………………………………...22 

Fig. 3-3 Approximate versus exact LLR functions for the in-phase and quad-phase of   

       the 16QAM constellation…………………………………………………...24 

Fig.3-4 Partition of the 16QAM constellation…………………………………….....24 

Fig.3-5 Pdf of the LLR in DC and MD…………………………………………...….29 

Fig.3-6 DF block diagram…………………………………………………………....30 

Fig.5-1 Block diagram of hybrid compress-and-forward (CF)………………………39 

Fig.5-2 CF for BPSK modulation……………………………………………………40 

Fig.5-3 Bin boundaries and index-encoder…………………………………………..43 

Fig.5-4 CF for QPSK modulation………………………………………………...….47 

Fig.5-5 The region for ( ,0)tw and ( ,1)tw ………………………………………………...48 

Fig.5-6 CF for 16QAM modulation………………………………………………….48 



 viii

Fig.5-7 The region for ( )t
nw and ( )

1
t

nw + …………………………………………………..50 

Fig.6-1 BER comparison for AF cooperative/non cooperative systems with  

      LDPC codes and without LDPC codes………………………………………53 

Fig.6-2 BER comparison for various SNRSR in AF without LDPC codes…………...53 

Fig.6-3 BER comparison for various SNRRD in AF without LDPC codes…………..54 

Fig.6-4 BER comparison for various SNRSR in AF with LDPC codes……………....54 

Fig.6-5 BER comparison for various SNRRD in AF with LDPC codes……………...55 

Fig.6-6 BER comparison for NC, AF and DF, (SNRSR= SNRSD= SNRRD)………….56 

Fig.6-7 BER comparison for NC, DF, and CF in LOS channel,        

      (SNRSR=SNRRD - 8 and SNRSD=SNRRD – 10)……………………………….58 

Fig.6-8 BER comparison for NC, DF, and CF in LOS channel, 

      (SNRSR=7dB and SNRSD=5dB)……………………………………………...59 

Fig.6-9 BER comparison for NC, DF, and CF in LOS channel,  

      (SNRSR=8dB and SNRSD = SNRRD - 10dB)………………………………….60 

Fig.6-10 BER comparison for NC, DF, and CF in LOS channel,  

      (SNRSR=SNRRD, and SNRSD=SNRRD-10dB)……………………………...…61 

Fig.6-11 PER comparison for NC, DF, and CF in Rayleigh channel,  

      (SNRSR=SNRRD and SNRSD=SNRRD-10dB)……………………………...….62 

Fig.6-12 PER comparison for NC, DF, and CF in Rayleigh channel,  

      (SNRSR=7dB and SNRSD=SNRRD - 10dB)…………………………………...63 

Fig.6-13 PER comparison for NC, DF, and CF in Rayleigh channel  

      (SNRSR=7dB and SNRSD=SNRRD - 10dB)…………………………………...64 

Fig.6-14 PER comparison for NC, DF, and CF in Rayleigh channel  

      (SNRSR=SNRSD=SNRRD)…………………………………………………….65 

 



 1

1 Introduction 
 

Diversity, operated in the time, frequency or spatial domains, is an effective 

technique to combat fading. In practice, spatial diversity maybe most desirable since it 

does not have to scarify the spectrum efficiency. To have spatial diversity, multiple 

antennas are required. While this is feasible in base stations, it may be difficult in 

mobile stations due to size, costs, hardware complexity, or other constraints. To 

address this limitation, the concept of cooperative diversity was introduced. In 

cooperative communications, mobile stations can achieve uplink transmit diversity by 

relaying. In a simple case, a cooperative system consists of a source, a relay and a 

destination. The essential advantage of user cooperation is that the relay provides an 

additional transmission link by forwarding part or all of the signals originated from 

the source to the destination. Cooperative communication provides a simple but 

effective means to leverage the processing and transmit power of the relay, as well as 

the spatial diversity of the relay channel in a wireless scenario. 

Despite the many theoretic advances in wireless user cooperation, practical 

strategies at the relay mainly focus on three basic forms proposed by Cover and El 

Gamal in 1979 [1], namely, amplify-and-forward (AF), sometimes also appear in the 

name of scale-and-forward and reflect-and-forward, decode-and-forward (DF) and 

compress-and-forward (CF). In AF, it let the relay rescale, retransmit or reflect the 

analog signal waveforms received from the source. In DF, the source signals received 

at the relay are demodulated, decoded and possibly re-encoded before being 

forwarded to the destination. It has extended from its basic mode of the repetition DF 

to more complicated mode, such as distributed space time codes and network codes. 

CF is also referred to as observe-and-forward, quantize-and-forward or 
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estimate-and-forward. In CF, the relay forwards the quantized/observed/estimated 

data information. The information is usually the LLR values of the transmit data.  

The work in [2] introduces another form of the cooperative strategy, i.e., 

decode-amplify-forward (DAF). In DAF, the relay computes the decoder LLR, maps 

its analog value to the QAM plane, and then transmits to the destination. At the 

destination, the receiver can combine the LLR calculated from the source and that 

from the relay. It has been shown that the DAF can perform better than DF and AF. 

However, the problem with DAF is the mapping between the LLR and transmission 

signal. Except for BPSK and QPSK, there is not easy and straightforward approach 

for the mapping. Although a method was proposed for high QAM modulation 

schemes in [16], how to obtain a simple and effective mapping remains an open 

problem. 

In this thesis, we will focus on the CF strategy. A practical CF scheme was 

proposed in [11]. In the scheme, only BPSK was considered as the modulation 

scheme in the relay link. Also, the turbo code is used as the coding scheme. As we 

know, the QAM scheme is more frequently used in actual communication systems, 

and the LDPC code is becoming more and more popular. In this thesis, we will extend 

the method in [11] and develop a practical CF scheme with the LDPC code. 

Specifically, we will consider the QAM modulation scheme in the relay link. To do 

that, we have to estimate distribution of the likelihood-ratio (LLR) of each 

information bit. We then model the distributions as Gaussian mixtures, and use the 

expectation-maximization (EM) algorithm for the identification of the unknown 

parameters. Using the method, we can have a higher spectral efficiency for the relay 

link. Simulation shows that the proposed CF scheme can outperform AF and DF.  

This thesis is organized as follows: In Chapter 2, we brief review the LDPC 

codes. In Chapter 3, we describe the principle of cooperative communication and its 
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two basic forwarding strategies, amplify-and-forward (AF) and decode-and-forward 

(DF). In Chapter 4, we review the expectation-maximization (EM) algorithm for 

Gaussian mixture identification. This algorithm will be used in modeling the LLR 

distribution. This distribution is required for the soft relaying method in our CF 

scheme. Then in Chapter 5, we describe the details of the proposed CF scheme. 

Finally, we give simulation results in Chapter 6 and draw conclusions in Chapter 7. 
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2  LDPC Codes 
 

     LDPC coding history starts with seminal work of Claude Shannon on his most 

important paper, "A Mathematical Theory of Communication", in 1948[4]. He 

demonstrated that there exists a coding method which can reduce the errors induced 

by a noisy channel to any desired level as long as the information rate is less than the 

capacity of the channel. The theoretical maximum information transfer rate is called 

Shannon limit. Although he didn’t tell how to design this error correction code, his 

theory provided a specific goal of communication engineering. Linear Block Codes, 

Hamming Codes, Convolutional Codes, and Reed-Solomon Codes are well known 

error correction codes these days. In recent years, people start to pay much attention 

to Turbo Codes and LDPC Codes, and both of them are considered most complicated 

error correction codes.  

In 1962, Gallager proposed a low-density parity-check code in his doctoral 

dissertation[3]. It provides near-capacity performance but the computational 

complexity is very high and its implementation is difficult. Also, the concatenated RS 

and convolutional codes were considered perfectly suitable for error control coding. 

Thus, his remarkable thesis was forgotten by coding researchers for almost 30 years. 

In 1981, Tanner generalized LDPC codes and created a bipartite graph used to 

represent those codes[5]. However, it was still ignored by coding theorists. LDPC 

codes were noticed again by some researchers until the mid-1990’s because by that 

time the VLSI technology is mature enough to implement the code. Since that time, a 

lot of papers have been published and LDPC codes have become popular again. 

      Low-density parity-check (LDPC) codes are a class of linear block codes. The 

name comes from the characteristic of their parity-check matrix which contains only a 
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few 1’s in comparison to the amount of 0’s. Generally, the performance of a long 

LDPC codeword is better than a short one. The iterative decoding principle of the 

LDPC code is similar to that of the Turbo Code. However, the LDPC decoding allows 

a parallel processing architecture, a feature that the Turbo code does not have. As a 

result, the LPDC code can be used in very high-speed transmission systems. Another 

advantage is that the patent of the LDPC code was overdue, which facilitate its wide 

spread real-world applications.  

 

2.1 Encoder  

LDPC encoder uses a generator matrix G  multiplying the information 

vector uv  to produce a codeword vector vv ; it can be expressed as uG=vv v . Since the 

LDPC code is linear, vv  multiplies to the parity check matrix pH  should become a 

zero vector. It can be written as T
pH v =0

vv .   

                    
⇒

T T
p p

T
p

H v =H (uG) =0

H G =0

vv v

v                      (2.1) 

Thus, the generator matrix G  can be founds using the above equation. We now use 

an (6,3) LDPC code as an example. In (N,K)=(6,3) LDPC codes, there are M=N-K 

parity check bits. Let the parity check matrix pH  is given by  

1 1 1 1 0 0
0 0 1 1 0 1
1 0 0 1 1 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

pH   

Using Gaussain elimation, we can have 
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3 3 3 3

1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0
0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0
1 0 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 1 1 0 0 0 1

1 1 1 1 0 0
0 1 1 0 1 0 [ ] [ ] (2.2)
1 1 0 0 0 1

p

'
p M K M M

H

H P I P I× × × ×

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥= = =⎢ ⎥
⎢ ⎥⎣ ⎦

M M

where M KP × is an M×K matrix, and M MI × is an M×M identity matrix. Then its 

generator matrix G  can be found using the following equation. 

3 3 3 3

1 0 0 1 0 1
[ ] [ ] 0 1 0 1 1 1

0 0 1 1 1 0

T T
K K K MG I P I P× × × ×

⎡ ⎤
⎢ ⎥= = = ⎢ ⎥
⎢ ⎥⎣ ⎦

M M                   (2.3)  

[ ]
M K

' T
p M M M K M K M K

K K

P
H G I P P P 0

I

×

× × × ×

×

⎡ ⎤
⎢ ⎥= = ⊕ =⎢ ⎥
⎢ ⎥⎣ ⎦

v
M L  

Generally, the generator matrix G  is not a sparse matrix. 

 

2.2 LDPC Codes Principle [3][5] 

2.2.1 Message passing 

     A LDPC decoder uses the message passing principle to conduct decoding. We 

can use a simple example to explain the idea of message passing. Assuming that there 

is a line, and you want to know how many people are in it, you can use the following 

steps to obtain the answer: 

Step 1: While you are informed the number from the person at a location, plus 1 and 

transmitting to the other side. The idea is that if a person receives a number N, 

that means there are N people at his/her right or left side now. 

Using Figure 2-1 to illustrate the idea. At first, everyone knows there is at least one 

person (himself/herself), it is called intrinsic information. 
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             Figure 2-1 : An example of message passing (intrinsic information)  

Step 2: The most left or right person transmits the 1 to his/her right/left side. Then the 

person receives this message add the number by 1, and informs the next 

person (See Figure 2-2). For the second person, he/her knows two messages; 

the first one is that there are 1 person at his/her left side, and the other is that 

there are 4 people at his/her right side. Both messages are called extrinsic 

information. 

                Figure 2-2 : Extrinsic information flow 

Step 3: After step 2, everyone will know the total number in the line. For the second 

person, the total number is equal to 1(intrinsic) + 1(extrinsic) + 4(extrinsic) = 

6. We then have the formula that Total number = intrinsic information + 

extrinsic information. 

 

2.2.2  Tanner Graph 

     Analyzing the LDPC decoder with the Tanner graph is necessary for message 

passing decoding. An LDPC parity check matrix can be depicted in a Tanner graph, it 

is an effective graphical representation for LDPC codes. Not only provide these 
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graphs a complete representation of the code, they also help to describe the decoding 

algorithm. 

Tanner graphs are bipartite graphs meaning that the nodes of the graph are 

separated into two distinctive sets and edges are only connecting nodes of two 

different types. The two types of nodes in a Tanner graph are called variable nodes 

(v-nodes) and check nodes (c-nodes). Figure 2-3 is an example for such a graph. The 

creation of such a graph is straightforward; it consists of m check nodes (the number 

of parity bits) and n variable nodes (the number of bits in a codeword). Check node 

iC  is connected to bit node iB  if the corresponding element in pH  is 1. 

1

2

3

1 2 3 4 5 6

1 1 1 1 0 0
0 0 1 1 0 1
1 0 0 1 1 0

pH
C
C
C

B B B B B B

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

Figure 2-3: An example of Tanner Graph 



 9

2.3 Sum Product Algorithm in LDPC Codes Decoding [6] 

     There are many decoding algorithms for LDPC Codes, such as Majority-logic 

(MLG) decoding, Bit-flipping (BF) decoding, and Sum product algorithm (SPA). The 

last one is also called Belief propagation algorithm (BPA) and Message passing 

algorithm (MPA). The sum product algorithm is the basic and standard decoding 

algorithm for LDPC codes.  

Figure 2-4 depicts the structure of a LDPC decoder. In the figure, bit nodes and 

check nodes compute the bit probabilities in their nodes before send the message to 

each others. The probability in one of the bit nodes is decoded by all the check nodes 

(except for the check node receives the probability from the bit node) and another 

node connect to that bit node. After the computation, the bit node will send this 

probability to one of check nodes. In a similar way, the probability in one of the check 

nodes is decoded by all the bit nodes (except for the bit node receives the probability 

from the check node) connect to that bit node.  

         
Figure 2-4 : Structure of LDPC decoder 
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2.3.1 Bit nodes to Check nodes 

jC

iB
iN

ijr

ijq

ip

Check node Bit node Another node  

Figure 2-5 : Probabilities of bit nodes to check nodes 

 

     From Figure 2-5, we see that ip  is the probability transmitted from another 

node iN  to bit node iB ; ijr  the probability transmitted from check node jC  to bit 

node iB ; ijq  the probability transmitted from bit node iB  to check node jC . If bit 

node iB  connects to another node iN  and K check nodes, and they are independent, 

we then have 

{ }
'

' ( )\

( ) ( ) ( ) (2.4)ij i ij
j M i j

P q P p P rζ ζ ζ
∈

= = = =∏
    

 

Where { }0 or 1ζ = , )(iM  is the set of the i th row of pH  is 1, and { }jiM \)(  the 

set of )(iM excluding the j th element. Define the Log-Likelihood Ratio (LLR) of a 

bit as 

( 1)( ) log (2.5)
( 0)

P aLLR a
P a

=
=

=
 

We can then compute )( ijrLLR , )( ipLLR , and )( ijqLLR . Using them in (2.4), we 
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have 

{ }
'

' ( )\

( ) ( ) ( ) (2.6)ij i ij
j M i j

LLR q LLR p LLR r
∈

= + ∑  

Thus, )( ijqLLR is the probability message transmitted from bit node to check node. 

 

2.3.2 Check nodes to Bit nodes 

 

jC
ijq

ijr

 

Figure 2-6: Probabilities of check nodes to bit nodes 

 

From Figure 2-6, we see that check node jC  is independent to K of bit nodes. 

Since it is necessary to satisfy the equation T
pH v =0

vv , all the bit nodes connect to the 

same check node also need to satisfy equation shown below: 

1 2 3 1 1 0 (2.7)i i i KB B B B B B B− +⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ =L L    

Then from (2.7), we have 

1 2 3 1 1

1 2 3 1 1

( 1) ( 1)
(2.8)

( 0) ( 0)

ij i i i K

ij i i i K

P r P B B B B B B B

P r P B B B B B B B

− +

− +

= = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ =

= = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ =

L L

L L
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Using the mathematical induction, we can the general expressions for (2.8). 

(i) K=2, 2211 )1(,)1( aBPaBP ====  

1 2 1 2 2 1

1 2 1 2 1 2

( 1) (1 ) (1 )
(2.9)

( 0) (1 )(1 )

P B B a a a a

P B B a a a a

⊕ = = − + −

⊕ = = + − −
 

Then we can rewrite the result in (2.9) as: 
2

11 2
1 2

2

11 2
1 2

1 (1 2 )
1 (1 2 )(1 2 )( 1)

2 2
(2.10)

1 (1 2 )
1 (1 2 )(1 2 )( 0)

2 2

i
i

i
i

a
a aP B B

a
a aP B B

=

=

− −
− − −

⊕ = = =

+ −
+ − −

⊕ = = =

∏

∏
 

(ii) If K=n-1, the equation is satisfied, then 
1

1
1 2 3 1 1

1

1
1 2 3 1 1

1

1
1

1 (1 2 )
( 1)

2
(2.11)

1 (1 2 )
( 0) 1

2

2 1 (1 2 ) (2.12)

n

i
i

n n

n

i
i

n n

n

n i
i

a
P B B B B M

a
P B B B B M

M a

−

=
− −

−

=
− −

−

−
=

− −
⊕ ⊕ ⊕ ⊕ = = =

+ −
⊕ ⊕ ⊕ ⊕ = = = −

+ = −

∏

∏

∏

L

L  

(iii) K=n, nn aBP == )1(  

1 2 3 1 1 1

1 2 3 1 1 1

( 1) (1 ) (1 )
(2.13)

( 0) (1 )(1 )

n n n n n n

n n n n n n

P B B B B B a M M a

P B B B B B a M a M

− − −

− − −

⊕ ⊕ ⊕ ⊕ ⊕ = = − + −

⊕ ⊕ ⊕ ⊕ ⊕ = = + − −

L

L

 

Then it can be spread as (2.14): 

1 1
1 2

1 1
1 2

1 (1 2 )
1 (1 2 )(1 2 )( 1)

2 2
(2.14)

1 (1 2 )
1 (1 2 )(1 2 )( 0)

2 2

n

i
n n i

n

n

i
n n i

n

a
a MP B B B

a
a MP B B B

− =

− =

− −
− − −

⊕ ⊕ ⊕ = = =

+ −
+ − −

⊕ ⊕ ⊕ = = =

∏

∏

L

L

 

Thus, we can the general expressions as 
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{ }

{ }

'
''

'
''

( )\
1 2

( )\
1 2

1 (1 2 )
( 1) ( 1)

2
(2.15)

1 (1 2 )
( 0) ( 0)

2

i j
i L j i

ij K

i j
i L j i

ij K

Q
p r P B B B

Q
p r P B B B

∈

∈

− −

= = ⊕ ⊕ ⊕ = =

+ −

= = ⊕ ⊕ ⊕ = =

∏

∏

L

L

Where )1( '' ==
jiji

qPQ , )( jL is the set of nonzero row indexes in the j th column of 

pH , and {}ijL \)(  is the set of )( jL excluding the i th element. From the definition 

of LLR in (2.5), we then have  

{ }

{ }

'
'

'
'

( )\

( )\

1 (1 2 )
( 1)

( ) log log (2.16)
( 0) 1 (1 2 )

i j
i L j iij

ij
ij i j

i L j i

Q
P r

LLR r
P r Q

∈

∈

− −
=

= =
= + −

∏

∏

Consider the following two equations.

 
' ''

'

' '

( )
( ) log (2.17)

1 1

1tanh( ) tanh (2.18)
2 1

i j
LLR qi j i j

i j
i j i j

x x x

x x x

Q Q
LLR q e

Q Q

e e x ex
e e e

−

−

= ⇒ =
− −

− −⎛ ⎞= ⇒ =⎜ ⎟+ +⎝ ⎠

Now, letting )( ' ji
qLLRx = in (2.18) and using (2.17), we have 

'

' '

'
'

'

1
( ) 1

tanh 2 1 (2.19)
2

1
1

i j

i j i j

i j
i j

i j

Q

LLR q Q
QQ

Q

−
−⎛ ⎞

⎜ ⎟ = = −
⎜ ⎟
⎝ ⎠ +

−

Substituting (2.19) into (2.16) leads to 

{ }

{ }

'

'

'

'

| ( )| 1

( )\

| ( )| 1

( )\

( )
1 ( 1) tanh

2
( ) log (2.20)

( )
1 ( 1) tanh

2

i jL j

i L j i
ij

i jL j

i L j i

LLR q

LLR r
LLR q

−

∈

−

∈

⎛ ⎞
− − ⎜ ⎟⎜ ⎟

⎝ ⎠=
⎛ ⎞

+ − ⎜ ⎟⎜ ⎟
⎝ ⎠

∏

∏

           

1 11 1 1tanh ( ) log 2 tanh ( ) log (2.21)
2 1 1

y yy y
y y

− −+ −
= ⇒ − =

− +  
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Let 
{ }

∏
∈

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

ijLi

jijL
qLLR

y
\)(

1)|(|

'

'

2

)(
tanh)1( in (2.21). Then, we can write )( ijrLLR as: 

{ }

'

'

| ( )| 1

( )\

( )
( ) 2 ( 1) tanh tanh (2.22)

2
i jL j

ij
i L j i

LLR q
LLR r −

∈

⎛ ⎞⎛ ⎞
= × − × ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∏

So )( ijrLLR in equation (2.22) is the probability message transmitted from check 

nodes to bit nodes. 

 

2.3.3 Posteriori Probability of Bit Node 

jC

iB
iN

ijr

ip

 
Figure 2-7: Posteriori probabilities of bit nodes 

 

      From Figure 2-7, we see that the codeword bit iB  is decided by another node 

iN  and all the connected check nodes. Then we know that                                    

( )

( ) ( ) ( ) (2.23)i i ij
j M i

P B P p P rζ ζ ζ
∈

= = = =∏
 

Then, 

( )
( ) ( ) ( ) (2.24)i i ij

j M i
LLR B LLR p LLR r

∈

= + ∑
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So )( iBLLR in (2.24) is the posteriori probability for bit node iB . 

     Finally, we can make the decision for iB . If 0)( ≥iBLLR , we can decide bit 

iB  as 1. Otherwise, iB  is 0. 

1 , ( ) 0
(2.25)

0 , ( ) 0
i

i
i

LLR B
B

LLR B
≥⎧

= ⎨ <⎩  

 

2.3.4 Sum Product Algorithm in LDPC 

We now summarize the procedure to conduct the sum product decoding 

algorithm for LPDC codes as follows: 

Step 1: Initialization: Set the maximum iteration number MAXk , and assume the initial 

probabilities of check nodes to bit nodes as 

(0) 0.5( ) log 0 (2.26)
0.5ijLLR r = =

 

Step 2: Computation of the probability message from bit nodes to check nodes: 

{ }
'

'

( ) ( 1)

( )\

( ) ( ) ( ) (2.27)k k
ij i ij

j M i j

LLR q LLR p LLR r−

∈

= + ∑        

Where the superscript indicate the result of the the k th iteration.  

Step 3: Computation of the probability message from check nodes to bit nodes: 

{ }

'

'

( )
( ) | ( )| 1 1

( )\

( )
( ) 2 ( 1) tanh tanh (2.28)

2

k
i jk L j

ij
i L j i

LLR q
LLR r − −

∈

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= × − ×

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∏

Step 4: Computation of the posteriori probability message for iB  and making the   

decision: 
( ) ( )

( )

( )
( )

( )

( ) ( ) ( ) (2.29)

1 , ( ) 0
(2.30)

0 , ( ) 0

k k
i i ij

j M i

k
k i

i k
i

LLR B LLR p LLR r

LLR B
B

LLR B

∈

= +

⎧ ≥
= ⎨

<⎩

∑

 

Step 5: Iteration until the codeword satisfy T
pH v =0

vv  or MAXk k= . 
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2.4 LDPC in 802.15.3c  

In this section, we will introduce the LDPC parity-check matrix in IEEE 

802.15.3c systems [7]. First, we should notice about the UEP (Unequal Error 

Protection) property in LDPC Codes. In [8], it mentions that bit nodes with differet 

degrees have different UEP. The error protection capability of irregular LDPC Codes 

is improved with its higher degree. We can call these higher degree bit nodes the 

higher error protection nodes. In the other words, with the lower numbers of 

connected check nodes, the bit node has the lower error protection. Figure 2-8 is the 

LDPC parity-check matrix in IEEE 802.15.3c systems with different code rates. 
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     Figure 2-8: Parity-check matrices for rate 1/2, 3/4, and 7/8 in 802.15.3c 

    In Figure 2-8, the integrate number in a grid indicate the shifting number of a 

21x21 unit matrix. And, L1, L2, L3, and L4 indicate the UEP level in the parity-check 

matrix; L1 has better performance than L2, and so on. The shifting operation in an 

unit matrix is illustrated below. For example, for a shift number S=0,1,2 in a 8x8 unit 

matrx, we have 

 

0 1 2
8 8 8 8 8 8

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

J , J , J
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

x x x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

(2.31)
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

       Figure 2-9 shows the density function of decoded LLR’s (16QAM) in different 

UEP levels at SNR=25dB, and code rate=1/2. We can see that in L1, the distance 

between the two modes (corresponding to bit 1 or 0) is largest. In other words, the 

probability of decision errors will be the smallest. Figure 2-10 shows the BER for 

each UEP level. The result conforms the assertion we just made. In the simulation and 
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later chapter, we will need to use the UEP property to facilitate our analysis. 

       

   

               Figure 2-9: LLR density functions in different UEP level 

 

     

                Figure 2-10: BER for each UEP level 
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3  Cooperative Communication Systems 
           

3.1 Cooperative Communication 

       Figure 3-1 shows a simplest three-terminal network consisting of a source, a 

relay and a destination, showing the basic idea behind this concept. Since each of the 

users sees an independent fading path to the destination, diversity is obtained by 

transmitting the data through the relay. By using this approach, multiple 

virtual-antennas can be constructed in the transmitter. Many research works also show 

that considerable benefits result from signal relaying in fading environments 

especially over slow fading channels, including the reduction in outage probability, 

high capacity, less power consumption and wider dynamic range. 

 

 

                Figure 3-1: The scenario of relay channel 

       Despite the theoretic advances in wireless user cooperation, practical signal 

relaying strategies have not evolved much out of the three basic forms proposed by 

Cover and El Gamal in 1979, namely, amplify-and –forward (AF), 

decode-and-forward (DF) and compress-and-forward (CF). In section 3.3 to 3.5, we 

will review two basic strategies AF and DF, and also the scenarios including LDPC 
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Codes in these two strategies, after the system model is first given in section 3.2. 

       A particular powerful variation of user cooperation is coded cooperation. 

Coded cooperation integrates cooperation into channel coding. The codeword will 

experience two independent channels before it is received by the destination.  

 

3.2 System Model [2] 

       Consider the basic relay system in Figure 3-1 that comprises a source node, a 

relay node and a destination node. We consider the half-duplex transmit mode which 

means that the system cannot send and receive data at the same time. The user 

cooperation is operated in two stages: the broadcasting stage, where the source 

broadcasts a packet of data to both the destination and the relay, and the relaying stage, 

where the relay processes and forwards part or all of the observations to the 

destination. The destination then combines the signals received from both stages to 

make a best estimation of the original data. Throughout the paper, we will use 

subscripts S, R, D and SR, SD, RD to denote the quantities pertaining to the source, 

relay, and destination nodes, and those pertaining to the source-to-relay, 

source-to-destination and relay-to-destination channels, respectively. 

We take AWGN and block Rayleigh fading as our channel models, which 

are described as 

( ) ( ) ( ) (3.1)
( ) ( ) ( ) (3.2)
( ) ( ) ( ) (3.3)

SR SR S SR

SD SD S SD

RD RD R RD

y i h x i n i
y i h x i n i
y i h x i n i

= +
= +

= +
 

where Sx  is the transmitted signal from the source, Rx  is the transmitted signal from 

the relay, y is the received signal and h is the channel state information. In the case of 

AWGN, h is a constant of 1. In the case of block fading, h follows a Rayleigh 

distribution with a variance of 1, remains fixed over a block of fixed size, and changes 
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independently between successive blocks. When we consider a binary-shift keying 

(BPSK) modulation, {1, 1} (0 1,1 1)Sx ∈ − → − → . The AWGNs, SDn  , SRn  and 

RDn  , have zero mean and the variances of 2
SDσ , 2

SRσ and 2
RDσ , respectively. We 

consider spatially independent channels among the source, the relay, and the 

destination. We also assume that the instantaneous channel condition is known to the 

receivers, so that the decoder can exploit efficient soft decoding algorithms.  
        With LDPC Codes in the system, we consider the LDPC Code defined in 

IEEE 802.15.3c, i.e., r=1/2 and (N,K)=(672,336). In the cooperative system, we let 

the packet size for transmission is 672 bits. And, the transition protocol is TDMA 

which means that in the first time slot the source transmits a data packet to both the 

destination and the relay, and in the second time slot the relay forwards the packet to 

the destination. In the second time slot, the source neither transmits nor receives 

signal.   

      

3.3 Amplify-and-Forward (AF) 

      In the AF scenario, the relay only amplifies and retransmits the analog signal 

waveform received from the source. The operation of AF is quite straightforward, 

requiring a lower implementation complexity in digital signal processing. More 

importantly, AF can operate at all times, even when the source-to-relay channel 

experiences outage. 

      In the first time slot, the relay receives the data packet from the source. Due to 

the channel SRh  , the packet will experience fading and be contaminated with noise 

SRn . In the second time slot, the relay just amplifies and re-transmits the received 

signal to the destination. Finally, the destination uses the maximum ratio combining 

(MRC) detector to combine the received signals from the both time slots and recover 
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the original transmitted data 

  
                      Figure 3-2: AF block diagram 

Mathematically, the transmit signal at the relay is formulated as 

( )( ) 1, 2, , (3.4)SR
R

y

y ix i i N
P

= = K  

where N is the length of the codeword (block), ( )Rx i  is the retransmitted signal at 

the relay, and yP  is the average power of the received signals: 

2

2 21
| ( ) |

| | (3.5)

N

SR N
i

y SR SR

y i
P h

N
σ

→∞
== → +
∑

 

The destination observes from the source-relay-destination (S-R-D) channel a noisy 

signal of the form: 

   

( ) ( )( ) ( )

( ) ( ) ( ) (3.6)

SR S SR
RD RD RD

y

RD SR S RD SR
RD

y y

h x i n iy i h n i
P

h h x i h n i n i
P P

⎛ ⎞+⎜ ⎟= +
⎜ ⎟
⎝ ⎠

= + +

 

Equation (3.6) makes the cascade channel behave like a single (block) fading channel 

with fading coefficient RD SR

y

h h
P

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

, and a complex Gaussian noise of variance 

2 2
2| |RD SR
RD

y

h
P
σ σ

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠
. Where h is CSI and 2σ  is the noise variance. 

   To conduct decoding, the LLR of the transmit bit must be calculate first. In 
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cooperative communication, the LLR in the destination can be calculated by an 

efficient way. Upon receiving a symbol, we then have to calculate the LLR of a 

certain bit. This is referred to soft demapping and it can be derived as follows [9] : 

First, if we receive a signal r, we can get equalized signal y, it will formulate as (3.7). 

( )( ) ( ) ( ) ( ) ( ) ( ) (3.7)
( )

n ir i h i x i n i y i x i
h i

= ⋅ + → = +

Then the conditional pdf of y is (3.8) and the LLR is (3.9): 

2

2

1 | ( ) ( ) |( ( ) | ( ) ) exp (3.8)
22

r i h ip r i x i αα
σπσ

⎧ ⎫− ⋅
= = −⎨ ⎬

⎩ ⎭

(1)
,

(0 )
,

(1)
,

(0 )
,

,
,

,

log max log

( ( ) | ( ))
( 1| ( ))

( ) log log
( 0 | ( )) ( ( ) | ( ))

( ( ) | ( ) )

log
( ( ) | ( ) )

max
log

I k

I k

I k

I k

j j
jj

I

SI k
I k

I k
S

By equal distributed S

Bayes Rule

S

Z Z

S

p x i r i
p b r i

LLR b
p b r i p x i r i

p r i x i

p r i x i

α

α

α

α

α

α

α

α

α

∈

∈

∈

∈

≈

∈

=
=

= =
= =

=

=
=

∑
≈

∑

∑

∑

∑

(1)
,

( 0)
,

( ( ) | ( ) )
(3.9)

max ( ( ) | ( ) )
k

I kS

p r i x i

p r i x i
α

α

α
∈

=

=

Where SI.k
(0) is the in-phase part region of 0 in the kth bit,α is {-1,1,-3,3} in the 

SI.k
(0)and SI.k

(1), and bI,k is the kth in-phase part bit.
 

Using (3.7) and (3.8) in (3.9), we have 

(1)
,

(0)
,

(1) (0)
, ,

(1)
,

2

2

, 2

2

2 2

2 2

2 2
2

| ( ) ( ) |max exp( )
2( ) log

| ( ) ( ) |max exp( )
2

| ( ) ( ) | | ( ) ( ) |log max exp( ) log max exp( )
2 2

1 1min | ( ) | | ( ) |
2 2

I k

I k

I k I k

I k

S
I k

S

S S

S

r i h i

LLR b
r i h i

r i h i r i h i

h i y i

α

α

α α

α

α
σ

α
σ

α α
σ σ

α
σ σ

∈

∈

∈ ∈

∈

− ⋅
−

=
− ⋅

−

− ⋅ − ⋅
= − − −

−
= ⋅ − +

(0 )
,

2 2
2 min | ( ) | | ( ) |

I kS
h i y i

α
α

∈
⋅ −
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(0) (1)
, ,

2
2 2

2

2

,2

| ( ) | min | ( ) | min | ( ) |
2

2 | ( ) | (3.10)

I k I kS S

I k

h i y i y i

h i D

α α
α α

σ

σ

∈ ∈

∆

⎧ ⎫= − − −⎨ ⎬
⎩ ⎭

=

Where 
(0) (1)
, ,

2 2
,

1 min | ( ) | min | ( ) |
4 I k I k

I k
S S

D y i y i
α α

α α
∈ ∈

⎧ ⎫= − − −⎨ ⎬
⎩ ⎭  

For a 16 QAM symbol mapping, the function of DI,K is plotted in Figure 3-3 and the 

16QAM constellation is in Figure 3-4. If we only see the area where y(i)>0, we can 

find that the function is nonlinear for two mapped bits. For simplicity, we can 

approximate it as a linear function.  

     

    Figure 3-3: Approximate versus exact LLR functions for the in-phase and 

quad-phase of the 16QAM constellation 
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      Figure 3-4: Partition of the 16QAM constellation 

 

We then have 

,

( ) , 1
(3.11)

| ( ) | 2 , 2
I

I k
I

y i k
D

y i k
=⎧

≈ ⎨− + =⎩
  

  

The destination then gathers the signals received from both the cascade channel and 

the direct source-to-destination channel using maximal ratio combining (MRC), 

which in effect is to extract and combine the log-likelihood ratios (LLR) from the 

channels, i.e., 
 

2 22

, ,2 2 2 2

2 | | | |2 | |( ) ( ) ( ) (3.12)
| |

y SR RDSD
AF SD RD I k I k

SD RD SR y RD

P h hhLLR i LLR i LLR i D D
h Pσ σ σ

= + = +
+   

Where LLRSD
ch and LLRRD

ch are the LLR of channel S-D and R-D. 

  Here, we prove that the LLRs of BPSK signals obtained by the summation of LLRs 

caculated from the direct and the relay link is equivalent to that caculated from the 

received signal after MRC : 

Assume the destination receives ySD from the source and yRD from the relay: 
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0

                                           

                                                                          (3.13)

where  , , (0, ) and  is

SD SD s SD

SR RD RD
RD s SR RD

y y

SD SR RD y

y h x n
h h hy x n n

p p

n n n CN N p

= +

= + +

∈ the average power of the received signals.

 

Then we sum two paths LLR in (3.14). 

2
0

0

2
0

0

2 2

2
2

2
2

1

2
2 ( ) ( )                               

1

2
(1 )

SR RD

ySD
AF SD RD SD RD

RD

y

SR RD

ySD SR RD RD
SD s SD s SR RD

y yRD

y

SR RD

y
SD s SD SD

RD

y

h h
phLLR LLR LLR y y

N hN
p

h h
ph h h hh x n x n n

N p phN
p

h h
p

h x h n x
h
p

⋅

= + = +
⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠

⋅

= + + + +
⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠

⋅ + +
+

=

2

2 2

0

(1 ) (1 )
                             (3.14)

SR RD SR RD

y y
s SR RD
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Then we arrange (3.14) to get (3.15) 
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Thus, the LLR obtained by the summation of LLRs calculated from the two 

paths is equivalent to that calculated from the received signal after MRC. 

 

3.4 MRC and Demapping in MQAM 

  In the last section, we discuss the LLRs of BPSK signals obtained by the 

summation of LLRs calculated from the two paths is equivalent to that calculated 

from the received signal after MRC. In the following subsection, we try to analysis in 

higher level constellation, and we show that the results for these approaches are 

different.  

 

3.4.1 Demapping and Combining  

From the reference [9], the soft bit value can express as (3.10): 
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(0) (1)
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For the in-phase bits of a 16QAM symbol, we have 

,

( ) , 1
(3.17)

| ( ) | 2 , 2
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Then we sum two paths LLR: 
2 2
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The definition of every symbol is as before, and we call this DC. 

 

3.4.2 MRC and Demapping 

   From the last section 3.3, we find the MRCy ,  

( ) ( )

2 2 2
2

2 2 2

2 22 2 2 4
2 2 2

0 2 22 2 2

 (3.19)

, variance of noise  is 
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Where Gc is considered as equivalent channel coefficient, and w is three noise part 

combination. Then we can demap the MRCy : 

(1) (0)
, ,
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, 2 2
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We know that  can arrange to the form of (3.21):

                                                                                                          (3.21)
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MRC s
c

y
wr x
G

= +

Put this relation into (3.20), and then we can find the result and here we call it MD: 

    
(0) (1)
, ,

(0 ) (1)
, ,

2
2 2

, , , , ,2

, , , , ,

| |( ) min | | min | |      (3.22)
2

1Assume min ( ) min ( )
4

I II k I k

I II k I k

c
I k MRC I s I MRC I s I

x S x S
n

I k MRC I s I MRC I s I
x S x S

GLLR b r x r x

D r x r x

σ ∈ ∈

∈ ∈

⎧ ⎫= − − −⎨ ⎬
⎩ ⎭

⎧ ⎫= − − −⎨ ⎬
⎩ ⎭

 



 29

2
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3.4.3 Performance comparison 

    From Figure 3-4, if we choose a symbol (-1+j) , then the first bit is 0 and second 

is 1. If we consider the fist bit : 
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From the (3.23) and (3.24), we can find that the means are both zero in the noise part. 

But the variance in DC is bigger than the variance in MD. Figure 3-5 shows the pdf of 

the first bit LLR in both approaches. 

    

              Figure 3-5: Pdf of the LLR in DC and MD 

The result is MD is better than DC. In the latter simulations in Chapter 6, we 

will show the performance of these two different methods at the receiver. 
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3.5 Decode-and-Forward (DF) 

   In DF, when the relay has successfully decoded all the bits in the received packet, 

it re-encode a set of bits and re-transmit to the destination. DF typically includes an 

option to switch to the non-cooperation mode when the relay fails to decode the 

packet correctly. This is to prevent error propagation and improve overall system 

performance. In repetition-DF, the destination will combine the signals received 

from the source and the relay, i.e.  
2 2

, ,2 2

2 | | 2 | |( ) ( ) ( ) (3.25)SD RD
DF SD RD I k I k

SD RD

h hLLR i LLR i LLR i D D
σ σ

= + = +
 

The definition of received signals and symbols in (3.25) is the same in AF. Figure 3-6 

is the block diagram of DF. 

 
Figure 3-6 : DF block diagram 
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4  Gaussian Mixture Identification With 
EM Algorithm 

        

We specify the maximum-likelihood parameter estimation problem and 

introduce the Expectation-Maximization (EM) algorithm to solve the parameter 

estimation problem in this chapter[10]. First we define the maximum-likelihood 

parameter estimation problem, then describe the EM algorithm, and finally use the 

EM algorithm to identify a Gaussian mixture. 

 

4.1 Maximum-likelihood Estimation 

       The maximum-likelihood estimation problem can be defined as follows: 

We have a density function ( | )p x Θ  that is governed by the set of parameters Θ  , 

and also have a data set of size N which drawn from this distribution, 

1 2{ , , , }Nx x xΧ = K . We assume that these data are independently and identically 

distributed (i.i.d.) with the density function p , so the density for the data set is 

1

( | ) ( | ) (4.1)
N

i
i

p p x
=

Χ Θ = Θ∏

Equation 4.1 is called the likelihood of the parameters given the data, which is 

thought of as a function of parametersΘ . Here, the data Χ  is considered as fixed. 

Then in the maximum-likelihood estimation problem, the main goal is to find 

optΘ which maximizes (4.1). 

arg max ( | ) (4.2)opt p
Θ

Θ = Χ Θ

To make the analysis easier, we often maximize log( ( | ))p Χ Θ instead of ( | )p x Θ .  

       Depending on the form of ( | )p x Θ , the problem could be easy or difficult. If 

( | )p x Θ is simply a single Gaussian distribution with parameter 2( , )µ σΘ = , then we 
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can just set the derivative of log( ( | ))p Χ Θ to zero, then directly findµ and 2σ . 

However, for many problems, it is difficult to find such analytical expressions, so we 

have to find more elaborate techniques to solve the problem. 

 

4.2 Basic Expectation-maximization Estimation 

        EM algorithm is one such elaborate technique. The EM algorithm is 

generally used in statistics for finding maximum-likelihood estimates of parameters in 

probabilistic models, which is an underlying distribution from a given data set when 

the data is incomplete or has missing values. There are two main applications of the 

EM algorithm. The first occurs when the data indeed has missing values, due to 

problems with or limitations of the observed process. The second occurs when 

optimizing the likelihood function is analytically intractable but when the likelihood 

function can be simplified by assuming the existence of additional but missing (or 

hidden) parameters. The second application is the solution what we are concerned 

later. 

       We assume that a data set Χ  is observed and is generated by some 

distribution, and we call it incomplete data. We also assume a complete data set 

Z=(X,Y), and a jointly density function arises from the marginal density function 

( | )p x Θ  and the assumption of hidden variable and parameter guesses: 

( | ) ( , | ) ( | , ) ( | ) (4.3)p z p x y p y x p xΘ = Θ = Θ Θ

Now we can define a complete-data likelihood function ( , Y | )p Χ Θ . Note that this 

function is a random variable since the missing information Y is unknown, random, 

and presumably governed by an underlying distribution. Since X andΘ can be seen as 

constants and Y is a random variable, the original complete-data likelihood function 

can be thought of some function as ,( ,Y | ) (Y)p hΧ ΘΧ Θ = .  
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       The first step of the EM algorithm is finding the expected value of the 

complete-data log-likelihood log( ( ,Y | ))p Χ Θ with respect to the unknown data Y 

given the observed data X and the current parameter estimation.  

( 1) ( 1)( , ) [log( ( ,Y| )) | , ] (4.4)i iQ E p− −Θ Θ = Χ Θ Χ Θ

Where ( 1)i−Θ  are the current parameters, Θ  are the new parameter. We use ( 1)i−Θ  

to evaluate the expectation and optimize Θ  to increaseQ . Note that in (4.4), X and 

( 1)i−Θ are constants, Θ  is a normal variable that we want to adjust and Y is a random 

variable governed by the distribution ( 1)( | , )if y −Χ Θ . Then the right-hand side of (4.4) 

can be rewritten as (4.5): 

( 1) ( 1)[log( ( ,Y| )) | , ] log( ( ,Y| )) ( | , ) (4.5)i i

y
E p p f y dy

γ

− −

∈
Χ Θ Χ Θ = Χ Θ Χ Θ∫

Where ( 1)( | , )if y −Χ Θ  is the marginal distribution of the unobserved data which is 

dependent on both the observed data X and the current parameters ( 1)i−Θ , and γ  is 

the region where the Y can take on. If this marginal distribution is a simple analytical 

expression of the assumed parameters ( 1)i−Θ  and perhaps the data, the problem will 

be easier to solve. However, sometimes this density function might be difficult to find. 

The evaluation of this expectation is called the E-step in the EM algorithm. 

The second step of the EM algorithm, M-step, has a goal to maximize the 

expectation we computed in the E-step. Mathematically, it can be expressed as, 

( ) ( 1)arg max ( , ) (4.6)i iQ −

Θ
Θ = Θ Θ

Then, the two steps are iterated, and it has been shown that each iteration is 

guaranteed to increase the log-likelihood. The EM algorithm will converge to a local 

maximum of the likelihood function. There are many works discussing the 

convergence problem, but we will not pursue that here. From the description we give, 

it is not very clear how to exactly conduct the EM algorithm, this is because the 

details of the steps need to compute the given quantities which are strongly dependent 
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on the particular application considered. 

 

4.3 Gaussian Mixture Identification via EM Algorithm 

       The mixture-density parameter estimation problem is one of the most widely 

used applications of the EM algorithm. For this case, we have the density to be 

identified as 

                   
1

( | ) ( | ) (4.7)
M

i i i
i

p x p xα θ
=

Θ =∑  

Where the parameters are 1 2 1 2{ , , , , , , , }M Mα α α θ θ θΘ = K K ,
1

1M
ii

α
=

=∑ , and ip  is a 

density function parameterized by iθ . It can be also considered as we have M 

component densities mixed together with mixing coefficients iα . 

           
1 11

log( ( | )) log ( | ) log( ( | )) (4.8)
N N M

i j j i j
i ji

p p x p xα θ
= ==

Χ Θ = Θ =∑ ∑∏  

Even with the Gaussian assumption of pj(.), (4.8) is difficult to maximize since it is 

highly nonlinear. If we consider X as incomplete, and posit the existence of 

unobserved data N
i i=1Y={y }  whose values indicating which the component density 

generated each data item, the likelihood expression can be significantly simplified and 

the solution is easier to obtain. Assuming that {1,2, , }iy M∈ K  for each i , and 

iy k=  if the thi  sample is generated by the thk  mixture component. If we know the 

data Y, the likelihood can be expressed as: 

1 1

log( ( ,Y | )) log( ( | ) ( )) log( ( | )) (4.9)
i i i

N N

i i i y y i y
i i

p p x y p y p xα θ
= =

Χ Θ = =∑ ∑  

which is a particular form of the component densities, and it can be easily optimized 

using a variety of techniques. However, we do not know the values of Y. If we assume 

Y is a random vector, we can proceed.  

       First, we must derive an expression for the distribution of the unobserved 
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data. In the beginning, we guess that 1 2 1 2{ , , , , , , , }g g g g g g g
M Mα α α θ θ θΘ = K K . Given gΘ , 

we can easily compute ( | )g
j i jp x θ  for each i  and j . Besides, the mixing 

parameters jα  can be thought of as the priori probability of each mixture component, 

that is ( )j p component jα = . Using Bayes’ rule, we can know: 

1

( | ) ( | )
( | , ) (4.10)

( | ) ( | )
i i i i i i

g g g g
y y i y y y i yg

i i Mg g g
i k k i kk

p x p x
p y x

p x p x

α θ α θ
θ α θ

=

Θ = =
∑

 

and 

         
1

( | , ) ( | , ) (4.11)
N

g g
i i

i

p y p y x
=

Χ Θ = Θ∏  

Where 1 2( , , , )Ny y y y= K  is the independent unobserved data. 

       For the Gaussian mixture case, (4.4) can be expressed as: 

1 2

(4.9)

(4.11) 1 1

1 1 1 1 1

,
1 1 1

( , ) log( ( , | )) ( | , )

log( ( | )) ( | , )

log( ( | )) ( | , ) (4.12)
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y y i y j jand y i j
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y y y i j
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l y l l i l
y i l

Q p X y p y X

p x p y x

p x p y x

p x

γ

γ

α θ

α θ
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∈

∈ = =

= = = = =

= = =

Θ Θ = Θ Θ

= Θ

= Θ

=

∑

∑∑ ∏

∑∑ ∑∑ ∏

∑∑

L

L
1 2

1 2

1 1 1

,
1 1 1 1 1 1

( | , )

log( ( | )) ( | , )
i

N

NM M M
g

j j
y y j

NM N M M M
g

l l i l l y j j
l i y y y j

p y x

p x p y xα θ δ

= = =

= = = = = =

Θ

= Θ

∑∑ ∑ ∏

∑∑ ∑∑ ∑ ∏L

 

Then, we can simplify (4.12) as 

       

1 2

1 1 1

,
1 1 1 1

1 1 1 1 1,

11,

( | , )

( | , ) ( | , ) (4.13)

( | , ) ( | , ) ( | , )

i

N

i i N

j

NM M M
g

l y j j
y y y j

NM M M M
g g

j j i
y y y y j j i

N M
g g g

j j i i
yj j i

p y x

p y x p l x

p y x p l x p l x

δ

− +

= = = =

= = = = = ≠

== ≠

Θ

⎛ ⎞
= Θ Θ⎜ ⎟
⎝ ⎠

⎛ ⎞
= Θ Θ = Θ⎜ ⎟⎜ ⎟

⎝ ⎠

∑∑ ∑ ∏

∑ ∑ ∑ ∑ ∏

∑∏

L

L  

Note that 1,2, ,l M∈ K , and that 
1

( | , ) 1M g
ji

p i x
=

Θ =∑ .Using (4.13), we can write 
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(4.12) as (4.14): 

1 1

1 1 1 1

( , ) log( ( | )) ( | , )

log( ) ( | , ) log( ( | )) ( | , ) (4.14)

M N
g g

l l i l i
l i

M N M N
g g

l i l i l i
l i l i

Q p x p l x

p l x p x p l x

α θ

α θ

= =

= = = =

Θ Θ = Θ

= Θ + Θ

∑∑

∑∑ ∑∑
 

In order to maximize (4.14), we can maximize the term containing lα  and the term 

containing lθ  independently since they are not uncorrelated. 

    To find lα , we introduce the Lagrange multiplier λ  with the constraint that 

1ll
α =∑ . The Lagrange multipliers provide a strategy for finding the 

maximum/minimum of a function subject to constraints. For example, if we want to 

maximize ( , )f x y , and the constraint is ( , )g x y c= , then the cost function can be 

re-defined with the Lagrange multiplier λ  as follows: 

               ( , , ) ( , ) ( ( , ) ) (4.15)x y f x y g x y cλ λΛ = + −  

Now, we can solve the following equation for lα : 

1 1
[ log( ) ( | , ) ( 1)] 0 (4.16)

M N
g

l i l
l i ll

p l xα λ α
α = =

∂
Θ + − =

∂ ∑∑ ∑  

or 

1

1 ( | , ) 0 (4.17)
N

g
i

i l

p l x λ
α=

Θ + =∑  

Summing both sides over l , we find that Nλ = − . Then we can get the expression for 

lα  as 

 
1

1 ( | , ) (4.18)
N

g
l i

i
p l x

N
α

=

= Θ∑  

Note that in our scenario, we do not need to consider the parameters lα  since we 

assume that all component densities mixed together with the same mixing 

coefficient lα . 

    We then want to find lθ . For some distributions, it is possible to get an analytical 

expression for lθ . In our scenario, the distribution is a mixture of two one-dimensional 
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Gaussian distributions with mean 1 2µ µ= −  and variance 2 2
1 2σ σ= , which is shown 

below: 

               
2

2
( )

22

2

1( | , ) , {1, 2} (4.19)
2

l

l

x

l l l

l

p x e l
µ
σµ σ

πσ

−
−

= ∈  

Taking the logarithm of (4.19), ignoring constant terms, and substituting the result 

into the right side last term of (4.14), we can obtain 

           

1 1

2
2

2
1 1

2
2 1

2
1 1 1

log( ( | )) ( | , )

( )1 log( ) ( | , ) (4.20)
2 2

( )1 log( ) ( | , ) ( | , ) (4.21)
2 2

M N
g

l i l i
l i

M N
gl

l i
l i l

M N N
g gi l

l i i
l i i l

p x p l x

x p l x

xp l x p l x

θ

µσ
σ

µσ
σ

= =

= =

−

= = =

Θ

⎛ ⎞−
= − − Θ⎜ ⎟

⎝ ⎠
⎛ ⎞−

= Θ − Θ⎜ ⎟
⎝ ⎠

∑∑

∑∑

∑ ∑ ∑

 

Taking the derivative of (4.20) with respect to lµ  and setting it equal to zero, 

                       2
1

( ) ( | , ) 0       (4.22)
N

gl
i

i l

x p l xµ
σ=

−
Θ =∑  

we can then easily solve for lµ , 

                      1

1

( | , )
          (4.23)

( | , )

N
g

i i
i

l N
g

i
i

x p l x

p l x
µ =

=

Θ
=

Θ

∑

∑
 

     We can use the same method to derive the estimation of the variance. Using the 

(4.21), we take derivative with respect to 2 1( )lσ
−  and set the result to zero, 

               
2

2
2

1 1

( )1 log ( | , ) ( | , ) 0 (4.24)
2 2

N N
g gi l

l i i
i i l

xp l x p l xµσ
σ= =

−
Θ − Θ =∑ ∑  

Finally, we can obtain the estimation for 2
lσ : 

                     

2

2 1

1

( ) ( | , )
     (4.25)

( | , )

N
g

i l i
i

l N
g

i
i

x p l x

p l x

µ
σ =

=

− Θ
=

Θ

∑

∑
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Now, a complete EM algorithm for the Gaussian mixture identification is derived. To 

sum up, the E-step finds the expected value of the complete-data log-likelihood. The 

M-step obtains a new estimation by maximizing the expectation computed in the 

E-step. The estimation of the new parameters in terms of the old parameters is 

summarized as below: 

                 ; 1

1

( | , )

( | , )

N
g

i i
new i
l N

g
i

i

x p l x

p l x
µ =

=

Θ
=
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∑

∑
 ; 

2

2 1

1

( ) ( | , )

( | , )
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i l i
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l N
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i
i

x p l x

p l x
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σ =

=

− Θ
=

Θ

∑

∑
 

                              (4.26) 

With the EM algorithm, it is guaranteed to increase the log-likelihood and converge to 

a local maximum of the likelihood function. Since the EM algorithm is not guaranteed 

to find the global maximum, we need to choose the initial values carefully.  
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5  Compress and Forward in User 
Cooperation 

        

    In Chapter 3, we have described two cooperative protocols, i.e., AF and DF. In 

this chapter, we investigate another cooperative scheme, called compress-and-forward 

(CF). In CF, the relay forwards the quantized/observed/estimated version of its 

observations. In [11], the CF for turbo decoder was introduced. In this chapter, we 

will extend its use to the LDPC decoder. 

        Since the SR channel may have deep fades with a high probability, the DF 

scheme cannot operate in the cooperative mode all the time and this will cause 

performance degradation. The AF does not have the problem. However, the SR 

channel may be noisy and retransmission will further amplify the noise. The CF can 

alleviate the problems mentioned above. Under the CF, the relay, whether the 

decoding is successful or not, retransmits the information from the source to the 

destination. Then the destination can combine both the LLR from the source and the 

relay for data detection. We will have more details in the later section. 

 

5.1 Compress-and-forward (CF) Cooperation Strategy 

                
          Figure 5-1: Block diagram of hybrid compress-and-forward (CF) 
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      Figure 5-1 shows the block diagram of the hybrid CF cooperative strategy, but 

for simplicity, we just call it CF. In DF, when the decoding in the relay fails, the relay 

switches to the non-cooperation mode. As a result, the destination only have the 

information from the source; However, in the CF scheme, when the decoding fails, 

the relay will switches to a mode which will retransmit the quantized LLR 

information to the destination. Figure 5-2 shows the CF cooperative protocol.  

              

Figure 5-2: CF for BPSK modulation 

In Figure 5-2, xs denotes the transmit signal at the source, vs its received signal at the 

destination, ( )ˆ tr  the LLR of a decoded bit at the relay, and w (t) an modulated index 

for the quantized LLR (here only one bit quantization), and z (t) the received index at 

the destination. Then the destination collects sv  and z (t) to recover the transmit data. 

Here, we assume that the LDPC code is used at the source. The overall approach can 

be summarized as follows: 

1) In the first time slot, the source broadcasts signal sx  to the relay and the  

    destination simultaneously.  

2)  The relay performs LDPC decoding to estimate sx . If sx  is decoded 

successfully, the relay use traditional DF scheme. If the decoding fails, the relay 

quantizes the LDPC-decoder LLR, encodes the index, conduct symbol mapping 

with BPSK, QPSK, or M-QAM, and transmits the resultant signal to the 

destination.  

3) The destination combines the information received form the source and relay to 

recovery the information bits.  



 41

Note that in the second time slot, an indicating bit may be piggybacked on the 

relay packet, so the destination knows if information bits or LLR indices are 

re-transmitted. Besides, if the error rate at the relay is too high, we may also switch to 

the non- cooperative mode. This is because if the SR channel is very poor, not much 

information can be explored in the relay.  

 

5.2 System Model 

    Here we consider the same scenario as that in Chapter 3, a typical three-node 

relay system. Let the channels be block Rayleigh fading, the variances of all channels 

be one, and all noises are AWGNs, The received signal at the relay and the destination 

can be expressed as follow: 

                      

( ) ( ) ( ) (5.1)
( ) ( ) ( ) (5.2)
( ) ( ) ( )     (5.3)

SR SR S SR

SD SD S SD

RD RD R RD

r i h x i n i
r i h x i n i
r i h x i n i

= +
= +
= +  

where Sx  is the transmitted signal from the source, Rx  is the transmitted signal from 

the relay, rSR  and SRn  are the received signal and noise at the relay, rSD,, rRD and 

SDn , RDn  are the received signals and noise at the destination (first and second time 

slot). All noises have zero mean and the variance of, nSD, nSR , nRD are 2
SDσ , 2

SRσ and 

2
RDσ , respectively.  

    For decoding, we have to calculate the channel LLR upon receiving the signal at 

the relay and destination. For retransmission at the relay, we have to calculate the 

decoder LLR. For a received signal r , the LLR can be written as: 
2

2
2

2( | 1)log , ~ (0, ) (5.4)
( | 1)r r r r

hp r xLLR x n n N
p r x

σ
σ

= +
= = +

= −
 

Where rLLR  is the demapping value for each bit in a LDPC code block, and x is 

BPSK signal. Note that we have assumed ( 1) ( 1) 0.5p x p x= + = = − = . For the decoder 
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LLR r̂ , we can model it as a binary signal corrupted by a Gaussian noise, i.e,: 

ˆ ˆ ˆ                 (5.5)r r rLLR x nµ= +   

Where r̂LLR is the decoder LLR, r̂µ is the mean of LLRs pdf, and the noise variance 

2
ˆ ˆ~ (0, )r rn N σ . The probability density function (PDF) of the decoder LLR is then 

             

2
ˆ

1 1 22
ˆˆ

2
ˆ

1 1 22
ˆˆ

ˆ( )1ˆ ˆ( ) ( ) exp
22

    (5.6)

ˆ( )1ˆ ˆ( ) ( ) exp
22

r
x

rr

r
x

rr

rp r p r

rp r p r

µ
σπσ

µ
σπσ

=+ +

=− −

⎧ ⎫− −
= = ⎨ ⎬

⎩ ⎭

⎧ ⎫− +
= = ⎨ ⎬

⎩ ⎭

 

In the next section, we will discuss the quantizer and index encoder at the relay. 

 

5.3 Quantizer Optimization [11] 

   In this section, we address how to quantize ( )ˆ tr  at the relay, where the 

superscript t is the index of a signal in a packet. In CF, an index encoder (IE) typically 

succeeds the quantizer to compress the indices of the quantization bins for further rate 

reduction. Design of a CF quantizer needs to consider the index encoder type. Here 

for simplicity, we consider a fixed-rate index encoding. We discuss the design 

procedure by considering a four-level scalar quantizer. However, one can extend the 

method to a higher-level quantizter.  

    Let { , 0,1,2,3,4}iu i =  be the bin-boundaries where 0u  and 4u  are set to be 

−∞  and ∞  respectively. We assume that the value of r̂  has a symmetric PDF with 

respect to the origin. Due to the symmetric property, it is reasonable to let 1 du u= −  , 

2 0u =  , 3 du u=  , where du ( > 0 ) is to be determined. Using the scheme, each soft 

output of the LDPC decoder is mapped to a two-bit bin-index ( ) ( ,0) ( ,1)( , )t t tw w w= . Let 

( )
0 1 2 3 4{ , , , , }t

lu u u u u u∈  and ( )
0 1 2 3 4{ , , , , }t

hu u u u u u∈  denote the low-end bin-boundary 
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and the high-end bin-boundary for ( )ˆ tr . Figure 5-3 shows the bin boundaries and an 

example of the index-encoder. For a specific bin-index ( )tw , we have 
( ) ( )

( )( ) ( )

( ) ( )
1ˆ ˆ ˆ ˆ( | ) ( ) ( )  (5.7)

t t
h h

tt tsl l

u ut t
s xu u

p w x p r dr p r dr±= =∫ ∫        

and             
( )

( )

( ) ˆ ˆ( ) ( )          (5.8)
t

h

t
l

ut

u
p w p r dr= ∫  

Where ( )t
sx  is the transmitted signal from the source, and the superscript t is the index 

of a signal in a packet. 

            

Figure 5-3: Bin boundaries and index-encoder 

    The general design goal for a CF scheme, as well as other cooperative schemes, 

is for the relay to maximize the amount of “new” information about signal sx . Where 

the new, we mean non-overlap information that complements the information 

conveyed directly to the destination by the source. Mathematically, this criterion to 

maximize can be expressed as, 

                     ( ) ( )arg min ( | )  (5.9)
d

t t
s

u
H x w  

Where ( ) ( )( | )t t
sH x w  is the conditional entropy defined as: 

            
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

,

( | ) ( , ) log ( | )  (5.10)
t t

s

t t t t t t
s s s

x w

H x w p x w p x w= − ∑  

and where  

                  
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( , ) ( | ) ( )    (5.11)

( | ) ( , ) / ( )    (5.12)

t t t t t
s s s
t t t t t

s s

p x w p w x p x

p x w p x w p w

=

=
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Substituting (5.11) and (5.12) into (5.10), we can have 

( ) ( )

( )

( ) ( )( )
( ) ( )

( )

( )

( )( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

( )
,

( ) ( ) ( )
( )

,

,

( , )( | ) ( | ) ( ) log
( )

( | ) ( )ˆ ˆ( ) ( ) log
ˆ ˆ( )

ˆ ˆ( )

t t
s

t
h

t tt s hlt t
s

t
l

t
h

tt slt t
s

t t
t t t t t s

s s s t
x w

t t tu t s s
sx uu

x w
u

u

xu
x w

p x wH x w p w x p x
p w

p w x p xp r dr p x
p r dr

p r dr p

= − ⋅

= − ⋅ ⋅

= − ⋅

∑

∑ ∫
∫

∑ ∫
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( )

( )

( )

( )
( ) ( )

( )

( )

( )

( )

2
ˆ

22
, ˆˆ

2
ˆ

22
ˆˆ
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ˆ( )1 1ˆexp
2 22

ˆ( )1 1ˆlog exp (5.13)
2 22

ˆ(1log exp
2

t
h

tt sl
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t
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t
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t
l

u t
sxut

s u

u

u
r

u
x w rr

u
r

u
rr

p r dr p x
x

p r dr

r dr

r dr

r

µ
σπσ

µ
σπσ

⋅
⋅

⎧ ⎫−
= − ×⎨ ⎬

⎩ ⎭

⎡ ⎧ ⎫−
⎢× ×⎨ ⎬
⎢ ⎩ ⎭⎣

−
− ×

∫

∫

∑ ∫

∫

m

m

( )

( )

2 2
ˆ ˆ

2 2
ˆ ˆ

ˆ) ( ) ˆexp
2 2

t
h

t
l

u
r r

u
r r

r drµ µ
σ σ

⎤⎛ ⎞⎧ ⎫ ⎧ ⎫− − +
+ ⎥⎜ ⎟⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎥⎩ ⎭ ⎩ ⎭⎝ ⎠ ⎦

∫  

We observe from (5.13) that ( ) ( )( | )t t
sH x w  is a function of du , the mean of LLR r̂µ  

and the variance 2
r̂σ . With the LLRs of a packet available, r̂µ  and 2

r̂σ  can be 

computed by the EM algorithm described in Chapter 4.  

 

5.4 LLR Computation at Destination 

    Another important issue in CF is how the destination exploits the information 

received from the relay. As mentioned, the LLR is what we need for LDPC decoding. 

In this section, we will derive the formula to compute the LLR at the destination using 

the observations. In Figure 5-2 , z(t) and ( )t
sv  Define ( ) ( ,0) ( ,1)( , )t t tz z z= , 

(1) (2) ( ){ , , , }k kd d d d= K , and ( ) ( ) ( ) ( ) ( ,0) ( ,1){ , } { , , }t t t t t t
s sd v z v z z= = , where k is the length 

of the signal in one packet.  
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5.4.1 BPSK Modulation at the Relay 

    First, we consider a simple case where BPSK is used at the relay for the 

modulation of the quantized LLR. Let 

             
( )

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( | 1) ( | ) ( | 1)

  (5.14)
( | 0) ( | ) ( | 0)

t

t

t t t t t t

w

t t t t t t

w

p z x p z w p w x

p z x p z w p w x

= = =

= = =

∑

∑
 

and 

           
( ) ( )

( ) ( )

( ) ( ) ( ,0) ( ,0) ( ,1) ( ,1)

( ) ( ) ( ) ( )
1

( )
'( )

( | ) ( | ) ( | )  (5.15)

ˆ ˆ ˆ ˆ( | ) ( ) ( )  (5.16)

                                                                 

t t
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t ts
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u ut t t t
s xu u

t
t

RD

p z w p z w p z w

p w x p r dr p r dr

zz
h

±

=

= =

=

∫ ∫

                 (5.17)

 

Where ( ,0)tz , ( ,1)tz are the first bit and the second bit quantized index received from the 

relay, and RDh  is the CSI of R-D. 

    The LLR we want to calculate is 

         
( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( )

( 1| ) ( 1| , )( ) log log  (5.18)
( 0 | ) ( 0 | , )

t t t t t
t

t t t t t

p x d p x v zLLR x
p x d p x v z

= =
= =

= =
 

Note that ( )tv  is the channel LLR of ( )t
sv and which is computed by the destination. 

Assuming that ( ) ( )( 1) ( 1) 0.5t tp x p x= = = − = , we can combine (5.14), (5.15), (5.16), 

(5.17), and (5.18) to obtain the LLR which combined the information from the source 

and the relay at the destination. 
( ) ( ) ( ) ( ) ( )

( )
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Due to v(t)and z(t)are independent, we can arrange the equation as: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( | 1) ( | 1)     log                                  (5.19)
( | 1) ( | 1)

t t t t

t t t t
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Then use the (5.15) and (5.16), 
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Here we can find the first part in (5.20) is the same as the LLR we consider in Chapter 

3, so we can rewrite as:         
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Where '( )tv  is the value through channel equalizer from ( )tv . Then we can get (5.22): 
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Where we assume 
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We also assume that the destination will receive the value of 
( )

( )
ˆ( )

t
h

t
l

u

u
dr⋅∫  from the 

relay by a side information channel.  

 

5.4.2  QPSK Modulation at the Relay 

    Note that in Figure 5-2, ( ) ( ,0) ( ,1){ , }t t tw w w=  has two bits. Thus, for BPSK, it 

needs two symbols to transmit. For QPSK, we only need one symbol. We can let w(t) 

be a complex number, i.e., ( ) ( ,0) ( ,1){ }t t tw w w j= + . Now, we can re-plot the Figure 5-2 

to 5-4. 

           

                 Figure 5-4: CF for QPSK modulation 

The LLR can then be expressed as: 
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Where '( )t
Iz  and '( )t

Qz  is the real part and the image part of '( )tz , and '( )tz is the same 

definition as in Section 5.4.1.  For each bit of the QPSK signal, we can find that the 

region for ( ,0)tw and ( ,1)tw  to demap. With the Gray coding, the regions are shown in 

Figure 5-5. Bit 1 is from ( ,0)tw , and bit 2 is from ( ,1)tw . 

            

                  Figure 5-5 : The region for ( ,0)tw and ( ,1)tw  

 

5.4.3 16QAM Modulation at the Relay 

    The idea is similar to QPSK, and the system model is also similar to Figure 5-4. 

However, there are 4 bits carried in a 16QAM signal, so we need to modulate two 

bin-indices ( ,0) ( ,1){ , }t t
n nw w  and ( ,0) ( ,1)

1 1{ , }t t
n nw w+ +  to a 16QAM symbol. Therefore, the 

symbol we send from the relay is 16 ( ,0) ( ,1) ( ,0) ( ,1) ( ) ( )
1 1 1( , , , ) ( )QAM t t t t t t

n n n n n nw w w w w w w j+ + += = + , 

where ( ) ( )
1, { 1 , 3}t t

n nw w + = ± ± . Figure 5-6 is the corresponding system model. 

            

                 Figure 5-6 : CF for 16QAM modulation 
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The two LLR can be expressed as: 
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Where '( )t
Iz  and '( )t

Qz  is the real part and the image part of '( )tz . For the each bit of the 

16QAM symbol, we can find that the region for ( )t
nw and ( )

1
t

nw +  to demap. With Gray 

coding, the regions are shown in Figure 5-7. Bit 1 and bit 2 are from ( )t
nw , and bit 3 

and bit 4 are from ( )
1

t
nw + . 
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Figure 5-7 : The region for ( )t
nw and ( )

1
t

nw +  

    Similarly, we assume that the destination will receive the value of 
( )

( )
ˆ( )

t
h

t
l

u

u
dr⋅∫  

from the relay by a side information channel. After computing the LLR, we can use it 

as the input to the LDPC decoder to find the soft decoder LLR. Finally, we make data 

decisions as that in (2.30). 
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6 Simulations 
 

     In this chapter, we will report simulate results evaluating the performance of 

different cooperative schemes in different scenarios. In the simulations, we assume 

that the instantaneous CSI SDh , SRh , and RDh  are known.to the receivers, and BPSK, 

QPSK, and 16QAM are used as the modulation schemes. The bit error rate (BER) and 

packet error rate (PER) are used as the performance measures.   

     We also assume that SDh , SRh , and RDh  are spatially independent and 

experience slow Rayleigh fading. The variance of each channel is one. We also 

consider the line-of-side (LOS) channel in which each channel has an unit gain. As to 

the noise, we consider the AWGN. The means of SDn , SRn , and RDn are zeros and 

the variances are 2
SDσ , 2

SRσ , and 2
RDσ , respectively. Given the SNR and the average 

power of a signal Pk , we can compute the noise variance easily. For reference 

simplicity, we let the SNR of the SR channel be denoted as SNRSR
, that of the SD as 

SNRSD, and that of RD as SNRRD. 

    At the source, we encode the original information bits with the LDPC encoder 

defined in IEEE 802.15.3c with code rate=1/2. We let the packet size be equal to the 

coding-block size. In other words, there is one LDPC codeword (672 bits) in one 

packet. Five scenarios are considered. We use the DC scheme for Scenario 1 to 

scenario 4, and the MD scheme for Scenario 5.  
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6.1 Scenario 1 

     In this scenario, we consider the LOS channel, i.e, the gain of each channel is 

always one. We evaluate the performance of the non-cooperative (NC), the 

cooperative, and the cooperative LDPC-coded schemes. Here let 

SNRSD=SNRSR=SNRRD. Figure 6-1 shows the simulation results. As we can see, at 

BER=10-3 the cooperative scheme outperforms the NC about 2 dB. Also, AF with 

LDPC coding outperforms AF without coding about 4 dB. 

We then conduct more simulations for AF without LDPC coding. Let 

SNRSD=5dB, SNRRD=1, 5, 9 dB, and SNRSR be varied. Figure 6-2 shows the 

performance comparison. From the figure, we see that the higher the SNRSR, the 

better the performance we can have. Then, we let SNRSD =5dB, SNRSR=5, 9dB, and 

SNRRD be varied. Figure 6-3 shows the performance comparison. From the figure, we 

see that the higher channel SNRRD, the better the performance we can have. 

Then we conduct simulations for AF with LDPC coding. Let SNRSD=1dB, 

SNRRD=1, 5 dB, and SNRSR be varied. Figure 6-4 shows the performance comparison. 

From the figure, we see that the higher the SNRSR, the better the performance we can 

have. Because of with LDPC coding, the performance is much better than the 

situation without LDPC coding. Then, we let SNRSD =1dB, SNRSR=1, 5dB, and 

SNRRD be varied. Figure 6-5 shows the performance comparison. From the figure, we 

also see that the higher channel SNRRD, the better the performance we can have. Sum 

up, cooperative systems with LDPC codes can work better than without LDPC codes. 
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    Figure 6-1 : BER comparison for AF cooperative/non cooperative systems with  

              LDPC codes and without LDPC codes 

 

   

   Figure 6-2 : BER comparison for various SNRSR in AF without LDPC codes 
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    Figure 6-3 : BER comparison for various SNRRD in AF without LDPC codes 

 

   

       Figure 6-4 : BER comparison for various SNRSR in AF with LDPC codes 
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        Figure 6-5 : BER comparison for various SNRRD in AF with LDPC codes 
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6.2 Scenario 2 

      In this scenario, we consider the system with Rayleigh fading channels. We 

compare the PER performance between the NC, AF, and DF systems with BPSK 

modulation. The channel SNRs are set as SNRSD=SNRSR=SNRRD. In AF, the relay 

just amplifies the signals and transmits to the destination, so the relay will propagate 

the noise. However, it does not have the decision errors. In DF, it is degenerated to the 

NC mode when decision error occurs at relay. Despite of that, DF has 1~2.5dB gain 

over AF. 

 

 

Figure 6-6 : BER comparison for NC, AF and DF, 

                         (SNRSR= SNRSD= SNRRD) 
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6.3 Scenario 3 

      In this scenario, we assume the LOS channel in the system. That means in 

every packet, the SNR is always fixed. We include the CF scheme in our simulations. 

In CF, if the relay decodes the information bits correctly, it will choose the DF mode 

to re-encode and re-transmits the information bits to the destination. If it decodes the 

bits incorrectly, the relay will have two modes to choose, the CF or NC modes. Here, 

we set a threshold for the mode selection. If the BER is higher than the threshold at 

the relay, the relay will choose the CF mode; otherwise, the relay will switch to NC 

mode. The threshold we set is 0.5.  

      For cooperative systems, the source uses the 16QAM modulation scheme. At 

the first time slot, it transmits the modulated signal to the relay and the destination. At 

the second slot, the relay uses DF or CF to transmit the processed signal to the 

destination. In DF, the 16QAM scheme is used, while for CF, BPSK, QPSK, and 

16QAM modulation schemes are used. We use CF (BPSK), CF (QPSK) , and 

CF(16QAM) to denote the various CF schemes we consider. Note that the data rates 

in the RD channel are different for different modulation/cooperative schemes. In 

general, the CF scheme requires a higher data rate. However, as the typical case, the 

PER is small, the overhead introduced by the CF scheme will be slightly higher than 

the DF scheme.  

 

6.3.1 Case 1 

      We set the channel SNRs as SNRSR=SNRRD - 8 and SNRSD=SNRRD - 10. 

Figure 6-7 shows the simulation results and we can find that the performance of CF is 

much better than DF. Also, the performance of CF(BPSK), CF(QPSK), and 

CF(16QAM) is very close. Below SNRRD=15 dB, the performance of DF is almost 
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the same as NC. This is because SNRSR is low and the DF always switches to the NC 

mode most of the time. 

 

 
   Figure 6-7 : BER comparison for NC, DF, and CF in LOS channel,        

             (SNRSR=SNRRD - 8 and SNRSD=SNRRD – 10) 

 

6.3.2 Case 2 

      We set the channel SNRs as SNRSR=7dB and SNRSD=5dB, and vary SNRRD. 

Figure 6-8 shows the results and we can find that in this case the DF is still close to 

NC. The performance of the CF scheme improves very quickly as SNRRD is getting 

higher. Finally, the BER will saturate around 10-2. 
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Figure 6-8 : BER comparison for NC, DF, and CF in LOS channel 

  (SNRSR=7dB and SNRSD=5dB) 

 

6.3.3 Case 3 

  We set the channel SNRs as SNRSR=8dB and SNRSD = SNRRD - 10dB. Figure 

6-9 shows the simulation results and we can find that the performance of CF is much 

better than that of DF while SNRRD is higher than 5dB. The higher the SNRRD, the 

larger gain we can obtain with CF.  
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Figure 6-9 : BER comparison for NC, DF, and CF in LOS channel  

(SNRSR=8dB and SNRSD = SNRRD - 10dB) 

 

6.3.4 Case 4 

We set the channel SNRs as SNRSR=SNRRD, and SNRSD=SNRRD-10dB. Figure 

6-10 shows the result. From the figure, we can see that the performance of NC and DF 

curve is almost the same when SNRRD is less than 7dB. Also, and the DF is worse 

than AF in this SNR region. The reason, as mentioned, DF switches to the NC mode 

most of the time. When SNRRD is higher than 7dB, the performance of DF starts to 

improve and becomes better than that of CF. As we can see, CF always gives the best 

performance among all the cooperative schemes. 
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Figure 6-10 : BER comparison for NC, DF, and CF in LOS channel  

(SNRSR=SNRRD, and SNRSD=SNRRD-10dB) 
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6.4 Scenario 4 

  In this scenario, we assume Rayleigh fading channels in our system. At the 

source, the transmitter uses QPSK as the modulation scheme. At the relay, DF uses 

QPSK as the modulation scheme, while CF uses BPSK, QPSK, or 16QAM. Since a 

two-bit quantizer is used in CF, the transmit bits at the relay is doubled. We use DC at 

the destination. As a result, if BPSK or QPSK is used the data rate of CF is higher 

than that of DF. However, if 16QAM is used, the data rate for CF is then the same as 

that of DF.  

6.4.1 Case 1 

    We set SNRSR=SNRRD and SNRSD=SNRRD-10dB. Figure 6-11 shows the 

simulation result. From the figure, we can find that the performance of CF is slightly 

better than that of DF. This indicates that the relay either uses DF or NC most of the 

time. Also, the performance of the AF scheme is about 2dB worse than the DF and CF 

schemes. 

   
      Figure 6-11 : PER comparison for NC, DF, and CF in Rayleigh channel  

(SNRSR=SNRRD and SNRSD=SNRRD-10dB) 
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6.4.2 Case 2 

We consider two scenarios that SNRSR=7dB and SNRSD=SNRRD - 10dB and 

SNRSR=15dB and SNRSD=SNRRD - 10dB. The results are shown in Figures 6-12 and 

6-13. From the figures, we see that the performance trend is the same. When SNRSR is 

higher, CF and DF can have more gains over NC and AF. Also, CF outperform DF by 

1.5~2dB when SNRRD is 15dB. This indicates that the BER at the relay is main factor 

influencing the CF performance. When the BER is low at the relay, the CF can then 

forward useful LLR information to the destination. When the BER is high, the relay 

will either switch to the NC model or forward insignificant LLR information.  

 

 
       Figure 6-12 : PER comparison for NC, DF, and CF in Rayleigh channel  

                  (SNRSR=7dB and SNRSD=SNRRD - 10dB) 
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       Figure 6-13 : PER comparison for NC, DF, and CF in Rayleigh channel  

                  (SNRSR=7dB and SNRSD=SNRRD - 10dB) 

 

6.4.3 Case 3 

 We set the channel SNRs as SNRSR=SNRSD=SNRRD. Figure 6-14 shows the 

result. From the figure, we see that AF has more than 2dB gains over NC, but 

performs worse than DF and CF. The performance of CF(16QAM) is slightly better 

than DF. As mentioned, since the PER is usually small at the relay, we can actually 

use CF(QPSK) or CF(BPSK) instead of CF(16QAM) at the relay. In case, we can 

obtain 0.5~1dB gain. 
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       Figure 6-14 : PER comparison for NC, DF, and CF in Rayleigh channel  

                  (SNRSR=SNRSD=SNRRD) 
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6.5 Scenario 5 

    In this scenario, we assume Rayleigh fading channels in our system. The source 

uses QPSK as the modulation scheme while the relay with DF uses QPSK and that 

with CF uses BPSK, QPSK, or 16QAM. Since a two-bit quantizer is used in CF, the 

transmit bits at the relay is doubled. Thus, if BPSK or QPSK is used, the data rate of 

CF is higher than that of DF. However, if 16QAM is used, the data rate for CF is the 

same as that of DF. At the destination, we use the MD scheme to recover the 

transmitted data. 

6.5.1 Case 1 

    We consider two scenarios that SNRSR=7dB and SNRSD=SNRRD - 10dB, and 

SNRSR=15dB and SNRSD=SNRRD - 10dB. The results are shown in Figures 6-15 and 

6-16. From the figures, we see that CF outperform DF by 0.5~1dB when PER is 10-1.  

    

      Figure 6-15 : PER comparison for NC, DF, and CF in Rayleigh channel  

                  (SNRSR=7dB and SNRSD=SNRRD - 10dB) 
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      Figure 6-16 : PER comparison for NC, DF, and CF in Rayleigh channel  

                  (SNRSR=15dB and SNRSD=SNRRD - 10dB) 

 

6.5.2 Case 2 

 We let the channel SNRs as SNRSR=SNRSD=SNRRD. Figure 6-17 shows the 

result. From the figure, we see that AF can have more than 5dB gains over NC, but 

performs worse than DF and CF. The performance of CF(16QAM) is better than DF. 

In this case, we can obtain 0.5~1dB gain when CF(16QAM) is used. 
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      Figure 6-17 : PER comparison for NC, DF, and CF in Rayleigh channel  

                  (SNRSR=SNRSD=SNRRD) 
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7 Conclusions  
 

    Diversity is known to be an effective technique to combat fading. With multiple 

transmit/receive antennas, spatial diversity, which does not scarify the spectrum 

efficiency, can be realized. Cooperative communication has been recently proposed to 

achieve virtual spatial diversity. AF and DF are two commonly used cooperative 

strategies. Although they are simple to apply, the performance may not be always 

satisfactory. In this thesis, we focus on the CF strategy. We extend the method in [11] 

and develop a practical CF scheme with the LDPC code. Specifically, we consider the 

QAM modulation scheme in the relay link. To estimate the LLRs of information bits, 

we model the distributions as Gaussian mixtures, and use the EM algorithm to 

identify the unknown parameters. Using the method, we can then have a higher 

spectral efficiency for the relay link. Simulation shows that the proposed CF scheme 

can outperform AF and DF. 

   In concluding the work, we outline some possible topics for further research. First, 

in this thesis, we assume that the BER at the relay is known and this may be not 

realistic. We may use the LLR distribution to obtain an estimate of the BER to solve 

the problem. Also, the LDPC coding conducted at the relay is a repetition of that at 

the source, and all the coded bits are transmitted. Instead, we may use a different 

LDPC code or just transmit some of the coded bits at the relay. This may also serve a 

potential topic for further research. 
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