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Abstract

Without using any pilot and training symbols, a serially concatenated
turbo transceiver is proposed for joint channel estimation, symbol detection
and LDPC decoding in Rayleigh fading channels. In fading channels, the
dependence of variable nodes‘in the factor graph lingers slightly according
to the fading speeds. However the independence assumption is necessary for
the cycle-free condition of LDPC codes. Hence we added the design
criterion that the variable nodes connected to the same check node are
restricted to be in different coherence intervals to meet the constraint. The
performance of finite-length LDPC codes would be affected both by the
number of coherence intervals and the fading speed.
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Chapter 1

Introduction

In wireless communications, data sequences are transmitted over time-varing fading
channels. And the channel state information (CSI) is usually unknown at the receiver.
Hence the channel estimation becomes an important task at the receiver. For easy
channel estimation, the pilot and 4raining symbols are often used. However, in fast fad-
ing channels, large number of training and pilot symbols would make the performance
relative to the channel capacity degrades substantially. Pilot-symbol-aided or training
sequence based channel estimation can' be substituted by the blind channel estimation.
The JED algorithm is firstly proposed in [1]. Based on the iterative procedure of EM
algorithm [2], the JED algorithm is used to do joint channel estimation and symbol de-
tection iteratively. Nevertheless, there are phase ambiguities associated with the channel
estimates obtained with the EM algorithm of joint channel estimation and symbol detec-
tion. And the differential code is used here to solve this problem. Besides, the differential
code can also serve as the inner code of a serially concatenated code in our system.

The low density parity check (LDPC) codes were firstly proposed by Gallager [3] in
1960 . LDPC code is a linear block code which provides near-capacity performance. In
1981, the Tanner graph [4] is proposed as a bipartite graph to specify the calculation in

error correcting codes. However the LDPC code is scarcely used until the mid-1990’s.



The study of LDPC codes is rediscovered for its capacity-approaching performance [5-7].
In LDPC decoding [8], the message-passing algorithm (MPA), known as the sum-product
algorithm (SPA), is used.

In [9,10], the differential code is used with the LDPC code over flat Rayleigh fading
channels and the channel estimation is not required in their system. In [11-13], the
pilot symbols are employed in channel estimation over block fading channels. Combined
EM-JED algorithm and LDPC decoding are performed iteratively without any pilot and
training symbols in our system.

The density evolution [14] and EXIT chart [15] are often used to do the performance
analysis of iteratively-decoded error-correcting codes, such as LDPC codes. These two
methods are used to predict the performance of LDPC codes of the given degree profile
without a numerical simulation. In [16-19], the convergence behavior of EXIT chart is
explained. In [11], the EXIT chart analysis is used. The density evolution is modified
with the discretized density evolution in [20]. In'[12;13], the density evolution is used
to analyze the performance. The density evolution with Gaussian approximation [21]
is employed in our performance analysis. The EXIT chart analysis of combined JED

algorithm and LDPC decoding is referred to [16].



Chapter 2

System Model

2.1 System model : Transmitter structure

The transmitter structure is shown in Fig.+.2.1. The information bits are firstly
encoded by LDPC code. The output [coded bits are then sent into DBPSK modulator.
Here the differential modulator,-also known as the RA code, serves as the inner code,
and the LDPC code serves as the-outer code of a serially concatenated turbo-like code.
One thing to be noted is that there is no interleaver added between the LDPC encoder
and DBPSK modulator. To prevent the short cycles from occurring in LDPC code and
differential encoder, it would become much easier to satisfy our design criteria of the

LDPC code by taking off the interleaver. The details are shown in Chapter 4.1.

2.2 System model : Receiver structure

A non-coherent time-varing fading channel is used in this paper. The recieved signal

is given by

Ym = hmwm + N,



LDPC DBPSK
encoder modulator

Figure 2.1: Transmitter Structure.

Y | EM-JED RA LDPC
algorithm decoder decoder

|

Figure 2.2: Turbo-like iterative receiver structure.

where x,, is the mth transmitted symbol, y,, is the recieved signal, h,, is the fading
channel coefficient, and n,, is zero-mean and unit-variance complex Gaussian variables.
A serially concatenated iterative receiversissshown in Fig. 2.2. The extrinsic message
is iteratively passed between each 'block. All the extrinsic message is represented in
log likelihood ratio (LLR) form: The LELR-eof the a posteriori probability is firstly
generated based on joint channel estimation and symbol detection (JED) algorithm.
The expectation and maximization (EM) is used to solve the optimization problem of
JED. This EM-JED algorithm will be introduced in the following Chapter. And the RA
decoder can be seen as the differential decoder. In each turbo iteration, a number of inner
iterations within LDPC decoder is performed. After a prescribed maximum number of
turbo iterations, the LDPC decoder computes the LLR from which the information bits

$ are decided.



Chapter 3

Joint Channel Estimation and
Symbol Detection based on EM

Algorithm

In the non-coherent fading channels, the EM-JED- algorithm is proposed to do both
channel tracking and symbol detection. The fading channel coefficients and the transmit-
ted symbols can be modeled as hidden Markov processes. The maximization likelihood
(ML) is used to estimate these hidden Markov parameters. However it is difficult to
solve this maximization problem. The EM algorithm is an iterative procedure which is

suitable for solving the ML problem. The detail is introduced in the following.

3.1 EM-based joint channel estimation and symbol
detection in flat fading channels

The received signal y,, is given by

Ym = hm'xm + N,



where m is the time index.
Based on the autoregressive (AR) model, the fading channel coefficients h,, can be

written as
By = Fh,, | + BV, (3.1)
where

lE1m—1 - [hm—h hm—27 Tt 7hm—Lh]~

The notation of x,,, h,,, and y,, are shown as

Xm = [«Ttha e 7xm]T7

hm ST [h17h27 Pl 7hm]T7
and

}—/m = [y17y27 T 7ym]T'

Then, the ML estimation of the fading channel coefficients h,, is given by

ﬁm:ar maxlogp(y .h,,) = argmaxlo p(y ,h,.,X,,)-
g maxlogp(y, . L) gm g> ply, )

=m =m X
Sm



Based on the EM algorithm, it can be written as

N A1
h, = argmax ) logp(y ,h,,x,)p(X, |y ,h,
g > logpl(y,, )D(X, | )

-m
=m }—(m

- arg%axExm[logp(}_fm,hm,xm) |}_fm,£1;1],

=m

in the [th round of EM iteration.
Define@®,,(h,, | }:linl) of the E-step as

N A1

1
Qm(hm ‘ hm ) EXm [1ng<}_/m, hm? Xm) | Y hm]

= Ex _[logp(ym | s Tm) +log p(zm)

where

~l-1 ~l-1
Qm(hm—l | hm) = E)_(m[logp(ym_phm—l?}—(m—l) | y 7hm]

m

Then the EM algorithm performs by the iterative procedure as follows
E-step: Compute @,,(h,, | }:1;1)

M-step: lilin = arg maxy (@ (b, | Elfnl))

(3.3)

(3.4)

Since log p(y,) is constant, Ex [logp(zm) |y, , }:Iinl] can be neglected. The other equa-

tions are calculated as

A ~l-1
Ex [10gp(Ym | homs&m) |y, by, ] = =Ex 1705 | Ym = bt [y, b, ], (3.5)



and

log p(hu | 1y y) 2 (A — Fliy ) (BB™) ™ (hyy — Fhy,_y). (3.6)

Finally we substitute (3.5) and (3.6) into (3.3) and (3.2), and the M-step becomes

="
I

n = agmax(Qy(hy, |B,))

~l-1 ~l-1
— argH}llaX(Qm(hm—l | hm) - E}_im[l/az H Ym — hm:ﬂm H2| }_/m7hm]

=m

- (hm - F-Elm—l)H(BBH)_l(hm - F}:lm—l))

~1-1 1 - - ~
= arg I?laX(Qm_l(hm_l b, )+ ;[yﬁhmwm + YT h— || o [|* Ry

—m

— (hm — Fh,,_ )" (BB")"'(h,, — Fh,, ,)) (3.7)

where z,, and &m are defined as

A=
B = Ex At ly Dy (3.8)

~ A1
N, =0 Ex (| zm 2}y b, ] (3.9)

=m

To solve the M-step lilin = argmaxy, (Q,(h,, | Ein])), we have

-1
0@ (b, | by, ) _
o L g =0 (3.10)

Then the Newton-Raphson method is applied and it becomes

~l ~ -1 ~l-1
SRR Q. b5 .00, (b, | 55
h — m—1 . m\=m m . 1 m\=m m 311
b= (e - (el IO G ) e

where h,, is as shown in (3.1), and

N N

h, = [Fh, b 7.

= =m—1) *m—1



Ll
w) |h i |, we have

To obtain [( ) B

0Q,(h,, | b)) 1
oy 1= ol

=m =m g

~1

[[Zmys, — Rin(Fh, )] (3.12)

It

D =

1
To obtain [(%) ‘h T |, we have

92Q,,(h,, | by)

( oh;,oh;, M, -

L 22Q,h, | b))
p) = ()
1

- [l (BB -+

Besides, we define

02Q,, (b, | b))

—_p# £
P =1 oh* on’

),

and the upper-left L, x L; submatrix of (P') as (P;,!) 1, xr,, where

O Qb y | By) | 0 0

[( * T
oh*,onl 0 — (Pl )r,xLs




We also define

Qb b)) 1

0 Q 1 * —1 *11—1
Popm—1 = | X + [_—FTKB B) 1| =E"]]
0 (E;%—I)LhXLh B
- -1
(B*B)—l _(B*B)—lE*

~EY(B*B)™" (P,L1)puxe, +E(B*B)TE

BB* +FP,,_,F' F*P,_,
_ , (3.14)

pP__.FT P

~m—1+ ~m—1

The above equation (3.14) is computed by matrix inversion lemma. Finally, it becomes

_ 1.1+ _
S 2 o Joapm
- Pm|m—1 - Pm|m—1[6][0n Sl [J [ Q]Pm|m—1[6]] [J | Q]Pm|m—1
BB* +H B EE R _
= Pojm-1— | T —1J(c>+ JH(BB* + F*P,, ,F1)J)~!
C,—1L
x JUBE 4 ER, ET PP, (3.15)

where R, is positive definite and X, = JJ7. By substituting (3.12) and (3.15) into

(3.11), we finally have

o [Eﬁfn_l] L (BB HER, ET
A T P, "
x [1—Jos+J"(BB" +FP,_F)J] " J(BB* + F'P,_F")]
L * X 7 *
X [ TmYm = N (Ehy, )] (3.16)

n

10



The joint channel estimation and symbol detection algorithm is summarized as fol-
lows. Starting from some initial value iL(l), where [=0 and m=1. The EM algorithm is
iteratively solved for [ times. For instance, the procedure of JED algorithm for mth

received signal is explained.

Step 1 : In flat-fading channels, the fading channel coefficients are correlated with each

other in the same coherence interval. So we take ﬁfn_l as the initial value of iL?n
Step 2 : &, and R, are calculated by the fact that

~0—1 ~l—1

Step 3 : k!, is then computed by (3.16). And return to step2 with the updated h’, .

The stable value of ﬁﬁl is obtained by ‘the iterative procedure between step 2 and step 3

for [ times.

Step 4 : For the next (m + 1)th received signal, Bﬁl is taken as the initial value of

iz?nﬂ and P, is also updated by (3.15). As in the step 2, Z,,,1 and Npni1 are computed.

Step 5 : ﬁan is similarly computed by (3.16).

Step 6 : Repeat the step 4 and step 5 iteratively for each signal.

The above procedure of JED algorithm is also shown in Fig. 3.1.

11
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Q:Calculating the log likelihood ratio
D :Updating the estimated channel based on JED algorithm

Figure 3.1: Hlustration of JED algorithm.
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Chapter 4

RA Decoder

The RA decoder, seen as the differential decoder, is connected to the EM-JED algo-
rithm and LDPC decoder. The RA code here serves as the inner code and the LDPC
code serves as the outer code of a serially concatenated turbo-like code. Besides, the
RA code is used to solve the phase ambiguities.associated with the channel estimates
obtained with the EM-JED algorithm. The phase ambiguities are shown in Fig. 4.1.

Besides, the differential encoder can be-seen as the combination of both variable
nodes and check nodes. Hence the RA encoder here is presented as some kind of Tanner
graph which contains both variable nodes and check nodes in Fig. 4.2. The conven-
tional BCJR algorithm, used as the differential decoder, can be referred to [22]. The
RA decoder here is modified with the extrinsic message computation of message passing
algorithm (MPA) at variable nodes and check nodes as in the LDPC code. This kind of
RA decoder helps us in adding some design criteria of LDPC codes shown in the next

chapter.

13
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Figure 4.1: The phase ambiguities associated with the channel estimates obtained with
the EM-JED algorithm.

4.1 Design Criteria of LDPC Code

Since the RA encoder is presented assseme kind of Tanner graph in Fig. 4.2, the
transmitter of both LDPC encoder and RA encoder c¢an be also shown with the Tanner
graph in Fig. 4.3. In Fig. 4.3, two classes-of-short cycles are both shown. One is the
shortest possible cycle in LDPC code denoted by four bold blue edges in the figure. The
other is the short length cycle constituted by both LDPC code and differential encoder
exemplified by five bold green edges. One thing to be noted is that this kind of short
cycles can be much easily detected without the interleaver added between the LDPC
encoder and the RA encoder. Hence it should be avoided the adjacent variable nodes
connected to the same check node. In fading channels, the dependence of variable nodes
lingers slightly for the correlated fading channel coefficients. Therefore the variable
nodes connected to the same check node are also restricted to be in different coherence
intervals (The coherence interval here is assumed to be the inverse of the fading speed.)

to satisfy the independence assumption for the cycle-free condition of LDPC code.

14
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Figure 4.2: The RA encoder associated with the Tanner graph.
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Figure 4.3: The Tanner graph of both LDPC encoder and RA encoder.
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The design criteria are summarized as follows:
e Eliminating length-4 cycles in LDPC code.

e Preventing adjacent variable nodes from connecting to the same check node to

avoid short cycles appearing in the concatenated LDPC and RA code.

e The variable nodes connected to the same check node should be in different coher-
ence intervals to meet the independence assumption for the cycle-free condition of

LDPC. (The coherence time here is assumed to be the inverse of the fading speed.)

The fastest fading speed in our simulation results is 0.01. Therefore if the last design
criterion is fulfilled, the second design criterion is always satisfied. We compare the
performance of regular (3,6) degree profile with and without the last criterion in Fig.
4.4. The difference of these two performance curves occurs at high SNR region. Besides,
the ideal fading channel means that the fading channel coefficients are perfectly known

at the receiver.

16
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Figure 4.4: The performance of the regular (3,6) degree profile and codeword length
12000 in ideal fading channel.
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Chapter 5

Combined EM-JED algorithm and
LDPC Decoding

In this chapter, the message passiug algorithm (MPA) of LDPC code is briefly intro-
duced. The MPA is also known ag sum-product algorithm (SPA) and belief propagation
algorithm (BPA). In last sectiomn, the procedure of computing extrinsic information in

each block of the turbo-like iterative rec¢eiver-is-summarized.

5.1 LDPC Decoding

Low density parity check (LDPC) codes were firstly proposed by Gallager in 1960 [3].
LDPC code is a linear block code which provides capacity-approaching performance.
The LDPC code is scarcely used until the mid-1990’s. The study of LDPC codes is
rediscovered for its near-capacity performance. The Tanner graph of LDPC code is used
to described the decoding algorithm of MPA based on the given parity check matrix
H. By iteratively computing the a posteriori probability (APP) of the transmitted
codeword conditioned on the received word in each variable node and check node, the

reliability of the APPs can be improved after a number of LDPC iterations.

18
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Figure 5.1: Tanner graph of LDPC code.

5.1.1 Variable Nodes Analysis

Like finding the maximum a posteriori (MAP) in other trellis decoder, the APPs are
also considered in LDPC decoder. The APP is computed by the probability of a given
bit in the transmitted codeword ¢ =feg, ¢1, ..., ¢1] that equals 1 or 0 conditioned on
the received word y = [yo, ¥1, - - - s¥Yn—1]. Lhe computation is extended to log-APP ratio

in general use, also known as log=likelithood ratio (LLR):

L(¢;) £ log (%)

The half-iteration message passing of variable node ¢; is shown in Fig. 5.2. The
extrinsic message ¢;;(b) serves as the APP along the edge passed from variable node ¢;
to check node f;. The prior message r;; denotes the APP along the edge passed from
other check nodes except f; to the variable node ¢;. Hence the computation of the

extrinsic LLR L(g;;) is written as

L(gij) = L(c;) + Zjrecy; L(rj), (5.1)

19



Figure 5.2: The computation of extrinsic message ¢;; at the variable node c;.

where L(¢;) is the prior LLRs sent into LDPC decoder.

5.1.2 Check Nodes Analysis

The half-iteration message passing of check node'f; is shown in Fig. 5.3. The extrinsic
message 7;;(b) is observed by the:sum modulo-2 of prior message ¢;;. The computation

of the extrinsic LLR L(rj;) is written as

L(rig) = (Mvevpicw) X ((Zaevi@(Bis)), (5.2)

where o = sign| L(a;)|, 5 = |L(g)|, and 6(x) = loa(51).

er—1

5.2 Combined EM-JED algorithm and RA decoder

with LDPC Decoding

The turbo-like iterative receiver can be seen as three connected blocks in Fig. 5.4.

The extrinsic message is iteratively passed between each block. The computation of the

20



q,(b)

Figure 5.3: The computation of extrinsic message r;; at the check node f;.

i

extrinsic LLRs of each block is summarized as follows.
e Stepl: In the initialization, the extrinsic LLRs Lr and Lp are set zero.

e Step2: With the received signal y and the prior information Lz passed from RA
decoder, the fading channel coefficients-are estimated based on EM-JED algorithm.
And the extrinsic LLRs Lg is then computed by both the estimated channel coef-

ficients and the received signal.

e Step3: The RA decoder here is combined with.the conventional forward-backward
algorithm of BCJR and the graph-based RA code in Fig. 4.2. The forward and
the backward probabilities or LLRs are computed by the prior information Lg
and Lp. The output extrinsic LLRs L¢ is then computed with forward, backward
LLRs and the prior information Lpg passed from EM-JED algorithm referred to
Fig. 4.2.

e Step4: The prior information L¢ is sent into the LDPC decoder. After the number

of LDPC iterations, the extrinsic LLRs Lp are passed back to the RA decoder.

e Stepb: Similar to step3, the forward and backward LLRs are computed by the
prior information Lp and Lp. The output extrinsic LLRs L is then computed
with forward , backward LLRs and the prior information Lp passed from LDPC

decoder.

21
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Figure 5.4: Illustration of the iterative procedure in the receiver.

The extrinsic messages are then iteratively passed between each block in the re-

ceiver with the step2, step3, step4 and stepb.

22



Chapter 6

Density Evolution

The density evolution is used to find the limits of performance of combined EM-JED
algorithm and LDPC decoding. The density evolution with Gaussian approximation
in [21] is summarized here for reference. Firstly; the output log-likelihood ratios (LLRs)
passed from EM-JED algorithm and/RA -decoder to LDPC decoder are generated by
Monte Carlo simulation. Then the probability density function (pdf) of these output
LLRs is modeled as a mixture of symmetric-Gaussians based on the EM algorithm. With
the assumption of the symmetric Gaussian mixtures of the output LLRs, the evolution
of the pdfs can be easily tracked through message-passing algorithm within LDPC de-
coder. The pdf of the output extrinsic messages of the variable nodes would become
symmetric Gaussian mixtures due to both the irregularity of variable degree and the pdf
of the output LLRs of RA decoder. Similarly the pdf of the output extrinsic messages
of the check nodes is affected by the irregularity of the check degree. To reduce the
complexity of computing the pdf of the output extrinsic messages of the check nodes,
we only consider the check-regular degree profile here. With only check-regular degree
profile considered, there still occurs some differences in the histogram of variable-regular
degree profile and variable-irregular degree profile. The histogram is shown in the sequel.

In [21], the pdf of the output extrinsic messages of the check nodes is assumed Gaussian
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Figure 6.1: Illustration of density evolution of the iterative receiver.

distributed. Nevertheless, it has not been suitable to make Gaussian approximation of
the output extrinsic messages of the check nodes with variable-irregular degree profile.
However, the density evolution with Gaussian approximation would become much easier

by only tracking the mean of the pdfs within the LDPC decoder.

The procedure of computing the pdfs of the extrinsic LLRs of LDPC decoding is
described as follows. The subscript D=L denotes quantities sent from the EM-
JED algorithm and RA decoder to LDPC decoder and vice versa, D <« L. Here the
subscript D denotes the DETECTOR which contains both the EM-JED algorithm and
RA decoder. The subscript b — ¢ denotes quantities sent from variable nodes to check
nodes and vice cersa, b < c. The superscript p denotes pth iteration time of LDPC
decoder. And the superscript ¢ denotes the gth iteration time of the overall iterative
receiver. The superscript d 4, denotes the maximum variable degree and d; .4, denotes

the maximum check degree.

e Initialization:

— Set f° () = d(z) and fP_, () = é().
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e Turbo iterations of receiver: (¢ =1,2,...Q)

— In the fading channel, the pdf of the extrinsic messages passed from DETEC-
TOR to LDPC decoder is modeled as symmetric Gaussian mixtures based on
the EM algorithm. The details can be referred to [21]. Hence, the pdfs of the

extrinsic messages passed from DETECTOR are computed as

fgﬁL Zﬂj Nja 2/“L] (6'1)

where J is the number of Gaussian component.

— Computing the pdf of the extrinsic messages within LDPC iteration. (p =
1,2,...P)

% At a variable node of degree i:
The pdf of the extrinsic messages passed along an edge from variable node
of degree ¢ is denoted by fb_m and it is computed by the convolution of

f& ., with (i — 1)-convolutions of ff=".

b—c

b—»cz = fD—>L ® fb<—c7q & fb<—c7q ®...® fgi_?q (62)

(i-1) convolutions

- If f7 1% i5 assumed Gaussian distributed, it means that

b—c

p—1l,q __
b—c

N(mly—c ) 2mb<—1 q)
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Figure 6.2: Illustration of half-iteration message passing at variable node in density
evolution.

Hence,

fD—>L ® N ((Z . 1)mb<—cq7 2(2 - 1)mb<707q)

= (éﬁjN(w,%)) SN ((i = Dmp_.",2(i = 1)my ") (6.3)

b~>c J

= Z N (g 3 (= DmiZy?, 2[p; + (i — 1mp "))

x The pdf of the extrinsic messages passed from the variable nodes to the

check nodes along an edge:

dl ,max

bHc: Z )\ b~>C'L (64)

(A;: fractions of the edges connected to variable nodes of degree i)

x At a check node of degree [: The computation of the tanh rule at the

check nodes is shown as

l
tanh(Z5C)) = [T tanh(Z=sl)), (6.5)
k=1,k#r
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Figure 6.3: Illustration of half-iteration message passing at check node in density evolu-
tion.

- If fi9 is assumed Gaussian distributed, we can firstly take the ex-

pectation of both sides in (6.5) and it becomes

E{tanh( ”HC T))} E{

[E {tanh(M)H o

where L}? (ey) and L (ep) are identically distributed and indepen-

b—c

I tanh (=) >)] }

k=1,k#r
(6.6)

dent for k # s.
Denote ¢(z) £ E {tanh(%)}, where L ~ N (z, 2z).

Taking the definition of ¢ function and (6.3), the equation becomes

dl ,mazx

w@”b«—cl) [Z Z TN (g + (Z_l)mb<—c )]
(6.7)

Jj=1

J dl,maz =1
=X 22 Winw(mi)ﬂc,i,j)
1=

Hence,

-1
J dl,maw
mgﬁc,l =4 (Z ; Trj)‘iw<m€f>c,i,j)> (6.8)

J=1
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Finally, =N (miﬁc 1 2mb<—c -

b<—cl
x The pdf of the extrinsic messages passed from the check nodes to the

variable nodes:

d?" max

b<—c_ Z pLf; b<—cl (6.9)

(pi: fractions of the edges connected to check nodes of degree [)

x Messages passed back to the DETECTOR at a variable node of degree i:
The pdf of the extrinsic messages passed along an edge from variable
node of degree 7 back to the DETECTOR is denoted by ff_; ; and it is

computed by ¢ convolutions of f?..

fg<—L,i = b<—c ® fb<—c -® fb%c (610)

1 convolutlons

- If fP is assumed Gaussian distributed, it becomes

fge—[/,i L N(Zmlu—c? 27’m1b7£c) (611)

*x Message passed back to the DETECTOR:

dr,maz

=2

(\;: fractions of the variable nodes of degree 1)
e Finding the minimum SNR:

1. With Gaussian approximation of the pdf of the extrinsic messages passed
from check nodes to variable nodes, find the minimum SNR at which m%_,

or my.~. PQ tens to oo.
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2. Find the minimum SNR at which the residual error ffoo fi(z)dz tends to

J ~
zero, where fl = ff)HLﬂ- ® fpor and 7= "5 A fi.

Obviously, the density evolution becomes much easier with the Gaussian approx-
imation. Considering the check-regular degree profiles, we show the histograms
of LLRs passed from check nodes to variable nodes with variable-regular degree
profile in Fig. 6.4 and variable-irregular degree profile in Fig. 6.5. Hence, we find
that Gaussian approximation can work well at the output extrinsic messages of
check nodes with variable-regular degree profile but might fail with the irregular-

variable degree profile.
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Figure 6.4: The histogram of output LLRs passed from check nodes to variable nodes
with regular (3,6) degree profile.
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Figure 6.5: The histogram of output LLRs passed from check nodes to variable nodes
with variable-irregular and check-regular degree profile.
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Chapter 7

EXIT Chart Analysis

The extrinsic information transfer (EXIT) chart is used to predict the performance
of iteratively-decoded error-correcting codes, such as LDPC codes and Turbo codes. Di-
vide the iterative receiver into two segmients. These two segments of the iterative receiver
exchange messages with each other. Instead of tracking the pdfs of the exchanged mes-
sages, we track the mutual information between the message and the codeword. In each
segment, we can derive its transfer functions-of the mutual information. Hence, the it-

erative message passing can be plotted by these two transfer functions in the EXIT chart.

Here we divide our iterative receiver into two segments. One is the combined DE-
TECTOR and the variable nodes of LDPC code. The other is the check nodes of LDPC
code. The EXIT chart analysis in [16] is summarized for reference. Besides, the prior
information is assumed symmetric Gaussian distributed in the Appendix of [16] summa-
rized as follows.

1

Consider Y = X + N,where Pr(X = £1) = 5 and N is zero-mean, Gaussian noise

with variance 02. The LLR L. (Y) conditioned on X = 41 is Gaussian with mean

n:
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Figure 7.1: Hlustration of density evolution of the iterative receiver.

_ £2 : 2 _ 4
fien = 5z and variance og, = Z5. That means

=G

Heh—= T

S

Define J(o.,) be the mutual information I(X; L (Y)). The definition of o4 = J71(14) is
based on the symmetric Gaussian approximation of the prior information. Hence it might
also suffer the same problem mentioned above. The symmetric Gaussian approximation
might be not always suitable for every degree profile.

The procedure of computing the EXIT curves of the extrinsic LLRs of LDPC decod-

ing is described as follows.

e Stepl: Use Monte Carlo simulation to measure the EXIT curve of DETECTOR

as

Ig per(Iaper, SNR), (7.1)
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where I4 ppr = J(04) and

+o0
IEDET— Z / Pp(C| X =x)-

r=+1,-1
o 2'PE(C|X:$)
B2 Pu(C] X = —1) + Pul(C | X = +1)

d¢

e Step2: The EXIT curve of both DETECTOR and variable nodes is shown as

— The relationship of 14 prpr and 14,y np is showed as

Inper = J(Vdy - T (Iaynp)) (7.2)

— Hence the EXIT function of combined DETECTOR and variable nodes is

showed as

Ipvnp = J(\/(dv = D[ Lavnp))? + [/ (Ug,peT)]?), (7.3)

where d, denotes the variable degree.

e Step3: Measure the EXIT curve of check nodes by

r max

Ipenp =1 — Z b - J(\/de, - J N1 = ILacnp)), (7.4)

where
d.;: check degree i

b;: the fraction of the edges connected to the check nodes of degree d.;

e Step4: The EXIT curves are iteratively measured by (7.1), (7.2), (7.3), and (7.4).
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Chapter 8

Simulation Results

8.1 Performance of EM-JED algorithm in different
fading speeds

The performance of employing the EM-JED algorithm and RA decoder is shown in
Fig. 8.1-8.4. Here the differential codeis necessary for solving the phase ambiguities
associated with the channel estimates obtained with EM-JED algorithm. We measure
the performance of the output message of combined EM-JED algorithm and RA decoder
in different fading speeds.

From the simulation results, the performance gap between fading channel (noncoher-
ent detection) and ideal fading channel (coherent detection which means that the fading
channel coefficients are perfectly known in the receiver) becomes smaller in slower fading
speed. It seems that the EM-JED algorithm works better in slower fading speed. In
the fading speed 0.01, the performance curve in fading channel becomes much close to
the one with perfectly known fading channel coefficients. In Fig. 8.4, the performance

curves of coherent detection in different fading speeds are very close.
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Figure 8.1: Performance of EM-JED_ algorithm in the fading speed 0.01.
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Figure 8.2: Performance of EM-JED algorithm in the fading speed 0.005.
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o row data at fdTs=0.001 (50 packets) (codeword length=120000) regular(3,6)
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Figure 8.3: Performance of EM-JED algorithm in the fading speed 0.001.
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Figure 8.4: Performance of EM-JED algorithm in different fading speeds.
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8.2 Performance of combined EM-JED algorithm and

LDPC decoding in fading channels

8.2.1 The performance of the same codeword length 12000 in

different fading speeds

In Fig. 8.5, the performance of regular (3,6) LDPC codes with codeword length
12000 in different fading speeds is shown. The LDPC code were both designed by the
design criteria in Chapter 4.1. The coherence interval here is given with the inverse of
the fading speed. With the same codeword length 12000, there are about 120 coherence
intervals in the fading speed 0.01, 60 coherence intervals in the fading speed 0.005, and

12 coherence intervals in the fading speed 0.001.

"he performance .of regular(3,6) and the same codeword length 12000 in different fading speed
F T

! —¥— coh.-time=100 - coh. detection (fdTs=0.01)
+ coh.-time=100 - noncoh. detection (fdTs=0.01)

- Q- coh.-time=200 - coh. detection (fdTs=0.005)
=W~ coh.-time=200 - noncoh. detection (fdTs=0.005)
-= —E— coh.-time=1000 - coh. detection (fdTs=0.001)

= S~ —HE— coh.~time=1000 - noncoh. detection (fdTs=0.001)

Figure 8.5: Performance of the same codeword length 12000 in different fading speeds.

In the simulation results, the slope of the performance curves with the maximum

number of coherence intervals is steepest in these three fading speeds. Both in the ideal
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fading channel and fading channel, the performance in the fading speed 0.01 is best and
the performance in fading speed 0.001 is worst. Besides, the performance gap between
the ideal fading channel and fading channel becomes smaller in the lower fading speed

as mentioned above.

8.2.2 The performance of the same number of coherence inter-

vals in different fading speeds

The performance of regular(3,6) and the same number of coherence intertals 120
T T T T T

P

—©— 120000 (coh-time=1000)-coh. detection (fdTs=0.001)
—E— 120000 (coh-time=1000)-noncoh. detection (fdTs=0.001)
—e— 24000 (coh-time=200)-coh. detection (fdTs=0.005)
=X/~ 24000 (coh-time=200)-noncoh. detection (fdTs= 0.005)
—3¥— 12000 (coh-time=100)-coh. detection (fdTs= 0.01)

; + 12000 (coh-time=100)-noncoh. detection (fdTs=0.01)

2 3 4

5
SNR

Figure 8.6: Performance of the same number of coherence intervals in different fading
speeds.

In Fig. 8.6, the performance of regular (3,6) LDPC codes with 120 coherence
intervals in different fading speed is shown. The codeword length becomes 24000 in
the fading speed 0.005 and 120000 in the fading speed 0.001. With the same number
of coherence intervals, the performance curves of ideal channel case in different fading

speeds become much close. Even with the different codeword length, the performance
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curves here are dominated by the number of coherence intervals.

8.2.3 The performance of the same codeword length 120000 in

different fading speeds

The longest codeword length we can generate is 120000. Here we compared the
performance of regular (3,6) LDPC codes with codeword length 120000 in different
fading speeds. With the same codeword length 120000, there are about 1200 coherence
intervals in the fading speed 0.01, 600 coherence intervals in the fading speed 0.005, and

120 coherence intervals in the fading speed 0.001.

The performance of regular(3,6) and codeword length 120000
T T T T T

T

0™*H —¥— (coh—-time=100)-coh. detection (fdTs=0.01) E
H + (coh-time=100)-noncoh. detection (fdTs=0.01) ]
H —©— (coh-time=200)—coh. detection (fdTs=0.005)

t| =/ (coh-time=200)-noncoh. detection (fdTs=0.005)
|| —=©— (coh-time=1000)-coh. detection (fdTs=0.001)
—HE— (coh-time=1000)-noncoh. detection (fdTs=0.001)

2 25 3 35 4 4.5 5 5.5 6 6.5

SNR

Figure 8.7: Performance of the same codeword length 120000 in different fading speeds.

The performance curves in ideal fading channels are still dominated by the number
of coherence intervals. Besides, the performance gap between ideal fading channel and

fading channel is still decided by the fading speed. In fading channel, the performance
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in fading speed 0.001 becomes the best in these three fading speeds in Fig. 8.7.

8.3 Performance of different degree profiles with den-
sity evolution analysis

In our simulation results, we found some degree profiles which contain minimum

variable degree 2 would suffer the serious error floor such as in Fig. 8.8. The degree

T T T T 3
—©— codeword 120000 in ideal fading channel ]
= % - codeword 120000 in fading speed 0.01 |4

BER

Figure 8.8: Performance of given regular-check degree profile which contains the mini-
mum variable degree 2.

distribution pairs are shown as

Mz) = 0.42537 4 0.03712% + 0.01592° + 0.52172* (8.1)

plz) = 2°
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However, the error floor doesn’t appear in the ideal fading channel. The extrinsic
message computed at the variable nodes of degree 2 might become worse with only one

prior information passed from check nodes to variable nodes in fading channels.

To prevent the above situation, we only consider the degree profile in which the
minimum variable degree must be larger than 3. Based on the nonlinear optimization
algorithm of differential evolution, we found several check-regular degree profiles and

computed its density evolution threshold in Fig. 8.9-8.14.

The density evolution threshold becomes away from the simulations with higher
maximum variable degree. For example, the density evolution threshold of the degree
profiles of maximum variable degree 11 is about 0.5dB away from the simulations. And
the density evolution threshold of the degree profiles of maximum variable degree 19 is
about 0.6dB away from the simulations: It might. be caused by the mentioned problem
of Gaussian approximation described in Chapter 6. The density evolution performs well

in other degree profiles which contains smaller maximum variable degree.
Besides, the performance of other variable-irregular degree profiles which contain the

minimum variable degree 3 are worse than the performance of regular (3,6) degree profile

and so does the regular (4,8) degree profile.
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Figure 8.9: Performance of regular (3,6) LDPC code.
0

6.5

10° .

- A - DE threshold with GA for var=4,chk=8

T I T ]
—A— codelength 120000 (var=4,chk=8) fdTs=0.01]]

Figure 8.10

SNR

: Performance of regular (4,8) LDPC code.
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Figure 8.11: Performance of given.regular-check degree profile with maximum variable
degree 4.
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Figure 8.12: Performance of given regular-check degree profile with maximum variable
degree 7.
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Figure 8.13: Performance of given regular-check degree profile with maximum variable
degree 11.
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Figure 8.14: Performance of given regular-check degree profile with maximum variable
degree 19.
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Thg performance of several check-regular degree profiles of codeword length 120000 in the fading speed 0.01
F T T T T T T
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Figure 8.15: Performance of the overall generated regular-check degree profiles.
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Chapter 9

Conclusions

A serially concatenated turbo transceiver of EM-JED algorithm, RA decoder and
LDPC decoding is proposed in the noncoherent system. Hence without using any pi-
lot and training symbols, the proposed serially:concatenated turbo transceiver try to
approach the noncoherent capacity with the LDPC code optimization. The analysis
methods, such as density evolution and EXIT chart, are generally used with the sym-
metric Gaussian approximation. Hewever the‘approximation has not been suitable for
some degree profiles in the flat-fading channel.” Besides, we also found that the per-
formance of the combined EM-JED algorithm and LDPC decoding is also affected by
the number of coherence intervals. Hence it might be the interesting problem to find
the optimal shortest LDPC codeword length which contains the sufficient number of
coherence intervals in different fading speeds. The proposed design criterion of LDPC

code can be also modified for other MIMO OFDM systems.
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