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在時變衰減通道下之結合通道估測與信號偵測演算法

和低密度同位元檢查碼解碼之遞迴系統的編碼設計 

 

研究生：賴沛霓           指導教授：伍紹勳 

 

國立交通大學電信工程學系碩士班 

 

摘要 

在雷利衰減通道下，此研究利用結合通道估測與信號偵測演算法和

低密度同位元檢查碼解碼之遞迴系統來幫助我們在沒有任何領航信號

和訓練信號的情況下作解碼。然而在衰減通道下，低密度同位元檢查碼

之變數節點間的相互關係會依據其通道衰減速度緩慢遞減。為了達成低

密度同位元檢查碼的無迴圈條件，其變數節點間的獨立假設是必須的。

因此在本研究中，所有連接至相同檢查節點的變數節點必須限制在不同

的同調區間來達成上述獨立假設。而有限長度的低密度同位元檢查碼其

效能會受到其所經歷的同調區間個數和衰減速度的影響。 
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LDPC Code Design for Joint Channel Estimation, Symbol 

Detection and LDPC Decoding in Time-Varing Fading Channels 

 

Student: Pei-Ni Lai         Advisor: Sau-Hsuan Wu 

 

Department of Communication Engineering 

National Chiao Tung University 

 

Abstract 
Without using any pilot and training symbols, a serially concatenated 

turbo transceiver is proposed for joint channel estimation, symbol detection 
and LDPC decoding in Rayleigh fading channels. In fading channels, the 
dependence of variable nodes in the factor graph lingers slightly according 
to the fading speeds. However the independence assumption is necessary for 
the cycle-free condition of LDPC codes. Hence we added the design 
criterion that the variable nodes connected to the same check node are 
restricted to be in different coherence intervals to meet the constraint. The 
performance of finite-length LDPC codes would be affected both by the 
number of coherence intervals and the fading speed. 
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Chapter 1

Introduction

In wireless communications, data sequences are transmitted over time-varing fading

channels. And the channel state information (CSI) is usually unknown at the receiver.

Hence the channel estimation becomes an important task at the receiver. For easy

channel estimation, the pilot and training symbols are often used. However, in fast fad-

ing channels, large number of training and pilot symbols would make the performance

relative to the channel capacity degrades substantially. Pilot-symbol-aided or training

sequence based channel estimation can be substituted by the blind channel estimation.

The JED algorithm is firstly proposed in [1]. Based on the iterative procedure of EM

algorithm [2], the JED algorithm is used to do joint channel estimation and symbol de-

tection iteratively. Nevertheless, there are phase ambiguities associated with the channel

estimates obtained with the EM algorithm of joint channel estimation and symbol detec-

tion. And the differential code is used here to solve this problem. Besides, the differential

code can also serve as the inner code of a serially concatenated code in our system.

The low density parity check (LDPC) codes were firstly proposed by Gallager [3] in

1960 . LDPC code is a linear block code which provides near-capacity performance. In

1981, the Tanner graph [4] is proposed as a bipartite graph to specify the calculation in

error correcting codes. However the LDPC code is scarcely used until the mid-1990’s.
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The study of LDPC codes is rediscovered for its capacity-approaching performance [5–7].

In LDPC decoding [8], the message-passing algorithm (MPA), known as the sum-product

algorithm (SPA), is used.

In [9,10], the differential code is used with the LDPC code over flat Rayleigh fading

channels and the channel estimation is not required in their system. In [11–13], the

pilot symbols are employed in channel estimation over block fading channels. Combined

EM-JED algorithm and LDPC decoding are performed iteratively without any pilot and

training symbols in our system.

The density evolution [14] and EXIT chart [15] are often used to do the performance

analysis of iteratively-decoded error-correcting codes, such as LDPC codes. These two

methods are used to predict the performance of LDPC codes of the given degree profile

without a numerical simulation. In [16–19], the convergence behavior of EXIT chart is

explained. In [11], the EXIT chart analysis is used. The density evolution is modified

with the discretized density evolution in [20]. In [12, 13], the density evolution is used

to analyze the performance. The density evolution with Gaussian approximation [21]

is employed in our performance analysis. The EXIT chart analysis of combined JED

algorithm and LDPC decoding is referred to [16].
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Chapter 2

System Model

2.1 System model : Transmitter structure

The transmitter structure is shown in Fig. 2.1. The information bits are firstly

encoded by LDPC code. The output coded bits are then sent into DBPSK modulator.

Here the differential modulator, also known as the RA code, serves as the inner code,

and the LDPC code serves as the outer code of a serially concatenated turbo-like code.

One thing to be noted is that there is no interleaver added between the LDPC encoder

and DBPSK modulator. To prevent the short cycles from occurring in LDPC code and

differential encoder, it would become much easier to satisfy our design criteria of the

LDPC code by taking off the interleaver. The details are shown in Chapter 4.1.

2.2 System model : Receiver structure

A non-coherent time-varing fading channel is used in this paper. The recieved signal

is given by

ym = hmxm + nm,
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Figure 2.1: Transmitter Structure.
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Figure 2.2: Turbo-like iterative receiver structure.

where xm is the mth transmitted symbol, ym is the recieved signal, hm is the fading

channel coefficient, and nm is zero-mean and unit-variance complex Gaussian variables.

A serially concatenated iterative receiver is shown in Fig. 2.2. The extrinsic message

is iteratively passed between each block. All the extrinsic message is represented in

log likelihood ratio (LLR) form. The LLR of the a posteriori probability is firstly

generated based on joint channel estimation and symbol detection (JED) algorithm.

The expectation and maximization (EM) is used to solve the optimization problem of

JED. This EM-JED algorithm will be introduced in the following Chapter. And the RA

decoder can be seen as the differential decoder. In each turbo iteration, a number of inner

iterations within LDPC decoder is performed. After a prescribed maximum number of

turbo iterations, the LDPC decoder computes the LLR from which the information bits

ŝ are decided.
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Chapter 3

Joint Channel Estimation and

Symbol Detection based on EM

Algorithm

In the non-coherent fading channels, the EM-JED algorithm is proposed to do both

channel tracking and symbol detection. The fading channel coefficients and the transmit-

ted symbols can be modeled as hidden Markov processes. The maximization likelihood

(ML) is used to estimate these hidden Markov parameters. However it is difficult to

solve this maximization problem. The EM algorithm is an iterative procedure which is

suitable for solving the ML problem. The detail is introduced in the following.

3.1 EM-based joint channel estimation and symbol

detection in flat fading channels

The received signal ym is given by

ym = hmxm + nm,

5



where m is the time index.

Based on the autoregressive (AR) model, the fading channel coefficients hm can be

written as

hm = F
¯
h̃
¯m−1 + BVm, (3.1)

where

h̃
¯m−1 = [hm−1, hm−2, · · · , hm−Lh].

The notation of x
¯m, h

¯m, and y
¯m

are shown as

x
¯m = [x1, x2, · · · , xm]T ,

h
¯m = [h1, h2, · · · , hm]T ,

and

y
¯m

= [y1, y2, · · · , ym]T .

Then, the ML estimation of the fading channel coefficients hm is given by

ĥ
¯m = arg max

h
¯m

log p(y
¯m

, h
¯m) = arg max

h
¯m

log
∑
x
¯m

p(y
¯m

, h
¯m, x

¯m).

6



Based on the EM algorithm, it can be written as

ĥ
¯

l

m = arg max
h
¯m

∑
x
¯m

log p(y
¯m

, h
¯m, x

¯m)p(x
¯m | y

¯m
, ĥ
¯

l-1

m )

= arg max
h
¯m

Ex
¯m

[log p(y
¯m

, h
¯m, x

¯m) | y
¯m

, ĥ
¯

l-1

m ], (3.2)

in the lth round of EM iteration.

DefineQm(h
¯m | ĥ

¯

l-1

m ) of the E-step as

Qm(h
¯m | ĥ

¯

l-1

m ) , Ex
¯m

[log p(y
¯m

, h
¯m, x

¯m) | y
¯m

, ĥ
¯

l-1

m ]

= Ex
¯m

[log p(ym | hm, xm) + log p(xm)

+ log p(hm | h̃
¯m−1) + log p(y

¯m−1
, h
¯m−1, x¯m−1) | y

¯m
, ĥ
¯

l-1

m ]

= Qm(h
¯m−1 | ĥ¯

l-1

m ) + Ex
¯m

[log p(xm) | y
¯m

, ĥ
¯

l-1

m ]

+ Ex
¯m

[log p(ym | hm, xm) | y
¯m

, ĥ
¯

l-1

m ] + log p(hm | h̃
¯m−1), (3.3)

where

Qm(h
¯m−1 | ĥ¯

l-1

m ) = Ex
¯m

[log p(y
¯m−1

, h
¯m−1, x¯m−1) | y

¯m
, ĥ
¯

l-1

m ]. (3.4)

Then the EM algorithm performs by the iterative procedure as follows

E-step: Compute Qm(h
¯m | ĥ

¯

l-1

m )

M-step: ĥ
¯

l

m = arg maxh
¯m

(Qm(h
¯m | ĥ

¯

l-1

m ))

Since log p(xm) is constant, Ex
¯m

[log p(xm) | y
¯m

, ĥ
¯

l-1

m ] can be neglected. The other equa-

tions are calculated as

Ex
¯m

[log p(ym | hm, xm) | y
¯m

, ĥ
¯

l-1

m ] ∼= −Ex
¯m

[1�σ2
n ‖ ym − hmxm ‖2| y

¯m
, ĥ
¯

l-1

m ], (3.5)

7



and

log p(hm | h̃
¯m−1)

∼= −(hm − F h̃
¯m−1)

H(BBH)−1(hm − F h̃
¯m−1). (3.6)

Finally we substitute (3.5) and (3.6) into (3.3) and (3.2), and the M-step becomes

ĥ
¯

l

m = arg max
h
¯m

(Qm(h
¯m | ĥ

¯

l-1

m ))

= arg max
h
¯m

(Qm(h
¯m−1 | ĥ¯

l-1

m )− Ex
¯m

[1�σ2
n ‖ ym − hmxm ‖2| y

¯m
, ĥ
¯

l-1

m ]

− (hm − F h̃
¯m−1)

H(BBH)−1(hm − F h̃
¯m−1))

= arg max
h
¯m

(Qm−1(h¯m−1 | ĥ¯
l-1

m ) +
1

σ2
[yH

mhmx̃m + ymx̃H
mhH

m− ‖ hm ‖2 ℵ̃m]

− (hm − F h̃
¯m−1)

H(BBH)−1(hm − F h̃
¯m−1)) (3.7)

where x̃m and ℵ̃m are defined as

x̃m = Ex
¯m

[xm | y
¯m

, ĥ
¯

l-1

m ] (3.8)

ℵ̃m = Ex
¯m

[‖ xm ‖2| y
¯m

, ĥ
¯

l-1

m ] (3.9)

To solve the M-step ĥ
¯

l

m = arg maxh
¯m

(Qm(h
¯m | ĥ

¯

l-1

m )), we have

∂Qm(h
¯m | ĥ

¯

l-1

m )

∂h
¯

T
m

|
h
¯m=

ˆh
¯

l

m

= 0 (3.10)

Then the Newton-Raphson method is applied and it becomes

ĥ
¯

l

m = [
F
¯
ĥ
¯

l

m−1

ĥ
¯

l

m−1

]− [(
∂2Qm(h

¯m | ĥ
¯

l-1

m )

∂h
¯
∗
m∂h

¯
T
m

) |
h
¯m=

˙h
¯m

]−1[(
∂Qm(h

¯m | ĥ
¯

l-1

m )

∂h
¯

T
m

) |
h
¯m=

˙h
¯m

], (3.11)

where hm is as shown in (3.1), and

ḣ
¯m = [F

¯
ĥ
¯

l

m−1, ĥ¯

l

m−1]
T .

8



To obtain [(
∂Qm(h

¯m|
ˆh
¯

l-1

m )

∂h
¯

T

m

) |
h
¯m=

˙h
¯m

], we have

[(
∂Qm(h

¯m | ĥ
¯

l-1

m )

∂h
¯

T
m

) |
h
¯m=

˙h
¯m

] =
1

σ2
n

[
1

0
¯

][x̃my∗m − ℵ̃m(F
¯
ĥ
¯

l

m−1)
∗] (3.12)

To obtain [(
∂2Qm(h

¯m|
ˆh
¯

l-1

m )

∂h
¯
∗
m∂h

¯
T

m

) |
h
¯m=

˙h
¯m

], we have

[(
∂2Qm(h

¯m | ĥ
¯

l-1

m )

∂h
¯
∗
m∂h

¯
T
m

) |
h
¯m=

˙h
¯m

] = [(
∂2Qm(h

¯m−1 | ĥ¯
l-1

m )

∂h
¯
∗
m∂h

¯
T
m

)]

− [
1

−F
¯

T
](B∗B)−1[1 | −F

¯
∗] +

1

σ2
n

[
1

0
¯

]ℵ̃m[1 | 0
¯
]

(3.13)

Besides, we define

−P
¯
−1
m , (

∂2Qm(h
¯m | ĥ

¯

l-1

m )

∂h
¯
∗
m∂h

¯
T
m

),

and the upper-left Lh × Lh submatrix of (P
¯
−1
m ) as (P

¯
−1
m )Lh×Lh

, where

[(
∂2Qm(h

¯m−1 | ĥ¯
l-1

m )

∂h
¯
∗
m∂h

¯
T
m

)] =




0 0
¯

0
¯
−(P

¯
−1
m−1)Lh×Lh


 .

9



We also define

−P−1
m|m−1 =

∂2Qm(h
¯m−1 | ĥ¯

l-1

m )

∂h
¯
∗
m∂h

¯
T
m

− [
1

−F
¯

T
](B∗B)−1[1 | −F

¯
∗]

Pm|m−1 = [




0 0
¯

0
¯

(P
¯
−1
m−1)Lh×Lh


 + [

1

−F
¯

T
](B∗B)−1[1 | −F

¯
∗]]−1

=




(B∗B)−1 −(B∗B)−1F
¯
∗

−F
¯

T (B∗B)−1 (P
¯
−1
m−1)Lh×Lh

+ F
¯

T (B∗B)−1F
¯
∗




−1

=




BB∗ + F
¯
∗P
¯m−1F¯

T F
¯
∗P
¯m−1

P
¯m−1F¯

T P
¯m−1


 . (3.14)

The above equation (3.14) is computed by matrix inversion lemma. Finally, it becomes

P
¯m = (P

¯
−1
m|m−1 +

1

σ2
n

[
1

0
¯

]ℵ̃n[1 | 0
¯
])−1

= Pm|m−1 − Pm|m−1[
J

0
¯

][σ2
n + [JH | 0

¯
]Pm|m−1[

J

0
¯

]]−1[JH | 0
¯
]Pm|m−1

= Pm|m−1 − [
BB∗ + F

¯
∗P
¯m−1F¯

T

P
¯m−1F¯

T
]J(σ2

n + JH(BB∗ + F
¯
∗P
¯m−1F¯

T )J)−1

× JH [BB∗ + F
¯
∗P
¯m−1F¯

T | F
¯
∗P
¯m−1], (3.15)

where ℵ̃n is positive definite and ℵ̃n = JJH . By substituting (3.12) and (3.15) into

(3.11), we finally have

ĥ
¯

l

m = [
F
¯
ĥ
¯

l

m−1

ĥl
m−1

] + [
BB∗ + F

¯
P
¯m−1F¯

T

P
¯m−1F¯

T
]

× [1− J [σ2
n + JH(BB∗ + F

¯
∗P
¯m−1F¯

T )J ]−1JH(BB∗ + F
¯
∗P
¯m−1F¯

T )]

× 1

σ2
n

[x̃my∗m − ℵ̃m(F
¯
ĥl

m−1)
∗] (3.16)

10



The joint channel estimation and symbol detection algorithm is summarized as fol-

lows. Starting from some initial value ĥ0
1, where l=0 and m=1. The EM algorithm is

iteratively solved for l times. For instance, the procedure of JED algorithm for mth

received signal is explained.

Step 1 : In flat-fading channels, the fading channel coefficients are correlated with each

other in the same coherence interval. So we take ĥ`
m−1 as the initial value of ĥ0

m.

Step 2 : x̃m and ℵ̃m are calculated by the fact that

p(xm | y
¯m

, ĥ
¯

`−1

m ) ∝ p(y
¯m

| xm, ĥ
¯

`−1

m )

Step 3 : ĥ`
m is then computed by (3.16). And return to step2 with the updated ĥ`

m.

The stable value of ĥ`
m is obtained by the iterative procedure between step 2 and step 3

for l times.

Step 4 : For the next (m + 1)th received signal, ĥ`
m is taken as the initial value of

ĥ0
m+1 and P

¯m is also updated by (3.15). As in the step 2, x̃m+1 and ℵ̃m+1 are computed.

Step 5 : ĥ`
m+1 is similarly computed by (3.16).

Step 6 : Repeat the step 4 and step 5 iteratively for each signal.

The above procedure of JED algorithm is also shown in Fig. 3.1.
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Figure 3.1: Illustration of JED algorithm.
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Chapter 4

RA Decoder

The RA decoder, seen as the differential decoder, is connected to the EM-JED algo-

rithm and LDPC decoder. The RA code here serves as the inner code and the LDPC

code serves as the outer code of a serially concatenated turbo-like code. Besides, the

RA code is used to solve the phase ambiguities associated with the channel estimates

obtained with the EM-JED algorithm. The phase ambiguities are shown in Fig. 4.1.

Besides, the differential encoder can be seen as the combination of both variable

nodes and check nodes. Hence the RA encoder here is presented as some kind of Tanner

graph which contains both variable nodes and check nodes in Fig. 4.2. The conven-

tional BCJR algorithm, used as the differential decoder, can be referred to [22]. The

RA decoder here is modified with the extrinsic message computation of message passing

algorithm (MPA) at variable nodes and check nodes as in the LDPC code. This kind of

RA decoder helps us in adding some design criteria of LDPC codes shown in the next

chapter.
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Figure 4.1: The phase ambiguities associated with the channel estimates obtained with
the EM-JED algorithm.

4.1 Design Criteria of LDPC Code

Since the RA encoder is presented as some kind of Tanner graph in Fig. 4.2, the

transmitter of both LDPC encoder and RA encoder can be also shown with the Tanner

graph in Fig. 4.3. In Fig. 4.3, two classes of short cycles are both shown. One is the

shortest possible cycle in LDPC code denoted by four bold blue edges in the figure. The

other is the short length cycle constituted by both LDPC code and differential encoder

exemplified by five bold green edges. One thing to be noted is that this kind of short

cycles can be much easily detected without the interleaver added between the LDPC

encoder and the RA encoder. Hence it should be avoided the adjacent variable nodes

connected to the same check node. In fading channels, the dependence of variable nodes

lingers slightly for the correlated fading channel coefficients. Therefore the variable

nodes connected to the same check node are also restricted to be in different coherence

intervals (The coherence interval here is assumed to be the inverse of the fading speed.)

to satisfy the independence assumption for the cycle-free condition of LDPC code.

14
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The design criteria are summarized as follows:

• Eliminating length-4 cycles in LDPC code.

• Preventing adjacent variable nodes from connecting to the same check node to

avoid short cycles appearing in the concatenated LDPC and RA code.

• The variable nodes connected to the same check node should be in different coher-

ence intervals to meet the independence assumption for the cycle-free condition of

LDPC. (The coherence time here is assumed to be the inverse of the fading speed.)

The fastest fading speed in our simulation results is 0.01. Therefore if the last design

criterion is fulfilled, the second design criterion is always satisfied. We compare the

performance of regular (3,6) degree profile with and without the last criterion in Fig.

4.4. The difference of these two performance curves occurs at high SNR region. Besides,

the ideal fading channel means that the fading channel coefficients are perfectly known

at the receiver.
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Figure 4.4: The performance of the regular (3,6) degree profile and codeword length
12000 in ideal fading channel.
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Chapter 5

Combined EM-JED algorithm and

LDPC Decoding

In this chapter, the message passing algorithm (MPA) of LDPC code is briefly intro-

duced. The MPA is also known as sum-product algorithm (SPA) and belief propagation

algorithm (BPA). In last section, the procedure of computing extrinsic information in

each block of the turbo-like iterative receiver is summarized.

5.1 LDPC Decoding

Low density parity check (LDPC) codes were firstly proposed by Gallager in 1960 [3].

LDPC code is a linear block code which provides capacity-approaching performance.

The LDPC code is scarcely used until the mid-1990’s. The study of LDPC codes is

rediscovered for its near-capacity performance. The Tanner graph of LDPC code is used

to described the decoding algorithm of MPA based on the given parity check matrix

H. By iteratively computing the a posteriori probability (APP) of the transmitted

codeword conditioned on the received word in each variable node and check node, the

reliability of the APPs can be improved after a number of LDPC iterations.
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Figure 5.1: Tanner graph of LDPC code.

5.1.1 Variable Nodes Analysis

Like finding the maximum a posteriori (MAP) in other trellis decoder, the APPs are

also considered in LDPC decoder. The APP is computed by the probability of a given

bit in the transmitted codeword c = [c0, c1, . . . , cn−1] that equals 1 or 0 conditioned on

the received word y = [y0, y1, . . . , yn−1]. The computation is extended to log-APP ratio

in general use, also known as log-likelihood ratio (LLR):

L(ci) , log

(
Pr(ci = 0 | y)

Pr(ci = 0 | y)

)

The half-iteration message passing of variable node ci is shown in Fig. 5.2. The

extrinsic message qij(b) serves as the APP along the edge passed from variable node ci

to check node fj. The prior message rji denotes the APP along the edge passed from

other check nodes except fj to the variable node ci. Hence the computation of the

extrinsic LLR L(qij) is written as

L(qij) = L(ci) + Σj′∈Ci\jL(rj′i), (5.1)
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Figure 5.2: The computation of extrinsic message qij at the variable node ci.

where L(ci) is the prior LLRs sent into LDPC decoder.

5.1.2 Check Nodes Analysis

The half-iteration message passing of check node fj is shown in Fig. 5.3. The extrinsic

message rji(b) is observed by the sum modulo-2 of prior message qij. The computation

of the extrinsic LLR L(rji) is written as

L(rij) = (Πi′∈Vj\iαi′)× (φ(Σi′∈Vj\iφ(βi′j)), (5.2)

where α = sign|L(qij)|, β = |L(qij)|, and φ(x) = log( ex+1
ex−1

).

5.2 Combined EM-JED algorithm and RA decoder

with LDPC Decoding

The turbo-like iterative receiver can be seen as three connected blocks in Fig. 5.4.

The extrinsic message is iteratively passed between each block. The computation of the

20



Figure 5.3: The computation of extrinsic message rji at the check node fj.

extrinsic LLRs of each block is summarized as follows.

• Step1: In the initialization, the extrinsic LLRs LF and LD are set zero.

• Step2: With the received signal y and the prior information LF passed from RA

decoder, the fading channel coefficients are estimated based on EM-JED algorithm.

And the extrinsic LLRs LB is then computed by both the estimated channel coef-

ficients and the received signal.

• Step3: The RA decoder here is combined with the conventional forward-backward

algorithm of BCJR and the graph-based RA code in Fig. 4.2. The forward and

the backward probabilities or LLRs are computed by the prior information LB

and LD. The output extrinsic LLRs LC is then computed with forward, backward

LLRs and the prior information LB passed from EM-JED algorithm referred to

Fig. 4.2.

• Step4: The prior information LC is sent into the LDPC decoder. After the number

of LDPC iterations, the extrinsic LLRs LD are passed back to the RA decoder.

• Step5: Similar to step3, the forward and backward LLRs are computed by the

prior information LB and LD. The output extrinsic LLRs LF is then computed

with forward , backward LLRs and the prior information LD passed from LDPC

decoder.
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Figure 5.4: Illustration of the iterative procedure in the receiver.

The extrinsic messages are then iteratively passed between each block in the re-

ceiver with the step2, step3, step4 and step5.
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Chapter 6

Density Evolution

The density evolution is used to find the limits of performance of combined EM-JED

algorithm and LDPC decoding. The density evolution with Gaussian approximation

in [21] is summarized here for reference. Firstly, the output log-likelihood ratios (LLRs)

passed from EM-JED algorithm and RA decoder to LDPC decoder are generated by

Monte Carlo simulation. Then the probability density function (pdf) of these output

LLRs is modeled as a mixture of symmetric Gaussians based on the EM algorithm. With

the assumption of the symmetric Gaussian mixtures of the output LLRs, the evolution

of the pdfs can be easily tracked through message-passing algorithm within LDPC de-

coder. The pdf of the output extrinsic messages of the variable nodes would become

symmetric Gaussian mixtures due to both the irregularity of variable degree and the pdf

of the output LLRs of RA decoder. Similarly the pdf of the output extrinsic messages

of the check nodes is affected by the irregularity of the check degree. To reduce the

complexity of computing the pdf of the output extrinsic messages of the check nodes,

we only consider the check-regular degree profile here. With only check-regular degree

profile considered, there still occurs some differences in the histogram of variable-regular

degree profile and variable-irregular degree profile. The histogram is shown in the sequel.

In [21], the pdf of the output extrinsic messages of the check nodes is assumed Gaussian
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DETECTOR

Figure 6.1: Illustration of density evolution of the iterative receiver.

distributed. Nevertheless, it has not been suitable to make Gaussian approximation of

the output extrinsic messages of the check nodes with variable-irregular degree profile.

However, the density evolution with Gaussian approximation would become much easier

by only tracking the mean of the pdfs within the LDPC decoder.

The procedure of computing the pdfs of the extrinsic LLRs of LDPC decoding is

described as follows. The subscript D → L denotes quantities sent from the EM-

JED algorithm and RA decoder to LDPC decoder and vice versa, D ← L. Here the

subscript D denotes the DETECTOR which contains both the EM-JED algorithm and

RA decoder. The subscript b → c denotes quantities sent from variable nodes to check

nodes and vice cersa, b ← c. The superscript p denotes pth iteration time of LDPC

decoder. And the superscript q denotes the qth iteration time of the overall iterative

receiver. The superscript dl,max denotes the maximum variable degree and dr,max denotes

the maximum check degree.

• Initialization:

– Set f 0,0
b←c(x) = δ(x) and f 0

D←L(x) = δ(x).
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• Turbo iterations of receiver: (q = 1, 2, . . . Q)

– In the fading channel, the pdf of the extrinsic messages passed from DETEC-

TOR to LDPC decoder is modeled as symmetric Gaussian mixtures based on

the EM algorithm. The details can be referred to [21]. Hence, the pdfs of the

extrinsic messages passed from DETECTOR are computed as

f q
D→L =

J∑
j=1

πjN (µj, 2µj), (6.1)

where J is the number of Gaussian component.

– Computing the pdf of the extrinsic messages within LDPC iteration. (p =

1, 2, . . . P )

∗ At a variable node of degree i:

The pdf of the extrinsic messages passed along an edge from variable node

of degree i is denoted by f p,q
b→c,i and it is computed by the convolution of

f q
D→L with (i− 1) convolutions of fp−1,q

b←c .

fp,q
b→c,i = f q

D→L ⊗ f p−1,q
b←c ⊗ f p−1,q

b←c ⊗ . . .⊗ f p−1,q
b←c︸ ︷︷ ︸

(i-1) convolutions

(6.2)

· If f p−1,q
b←c is assumed Gaussian distributed, it means that

fp−1,q
b←c = N (mp−1,q

b←c , 2mp−1,q
b←c )
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Figure 6.2: Illustration of half-iteration message passing at variable node in density
evolution.

Hence,

f p,q
b→c,i = f q

D→L ⊗N
(
(i− 1)mp−1,q

b←c , 2(i− 1)mp−1,q
b←c

)

=

(
J∑

j=1

πjN (µj, 2µj)

)
⊗N (

(i− 1)mp−1,q
b←c , 2(i− 1)mp−1,q

b←c

)

=
J∑

j=1

πjN
(
µj + (i− 1)mp−1,q

b←c , 2[µj + (i− 1)mp−1,q
b←c ]

)
(6.3)

∗ The pdf of the extrinsic messages passed from the variable nodes to the

check nodes along an edge:

fp,q
b→c =

dl,max∑
i=2

λif
p,q
b→c,i

(6.4)

(λi: fractions of the edges connected to variable nodes of degree i)

∗ At a check node of degree l: The computation of the tanh rule at the

check nodes is shown as

tanh(
Lp,q

b←c(er)

2
) =

l∏
k=1,k 6=r

tanh(
Lp,q

b→c(ek)

2
). (6.5)
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Figure 6.3: Illustration of half-iteration message passing at check node in density evolu-
tion.

· If f p,q
b←c is assumed Gaussian distributed, we can firstly take the ex-

pectation of both sides in (6.5) and it becomes

E
{

tanh(
Lp,q

b←c(er)

2
)
}

= E

{[
l∏

k=1,k 6=r

tanh(
Lp,q

b→c(ek)

2
)

]}

=
[
E

{
tanh(

Lp,q
b→c(ek)

2
)
}]l−1

,

(6.6)

where Lp,q
b→c(es) and Lp,q

b→c(ek) are identically distributed and indepen-

dent for k 6= s.

Denote ψ(x) , E
{
tanh(L

2
)
}
, where L ∼ N (x, 2x).

Taking the definition of ψ function and (6.3), the equation becomes

ψ(mp,q
b←c,l) =

[
J∑

j=1

dl,max∑
i=2

πjλiψ(µj + (i− 1)mp−1,q
b←c )

]l−1

=

[
J∑

j=1

dl,max∑
i=2

πjλiψ(mp,q
b→c,i,j)

]l−1 (6.7)

Hence,

mp,q
b←c,l = ψ−1




(
J∑

j=1

dl,max∑
i=2

πjλiψ(mp,q
b→c,i,j)

)l−1

 (6.8)
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Finally, fp,q
b←c,l = N (mp,q

b←c,l, 2m
p,q
b←c,l).

∗ The pdf of the extrinsic messages passed from the check nodes to the

variable nodes:

fp,q
b←c =

dr,max∑
l=2

ρlf
p,q
b←c,l

(6.9)

(ρl: fractions of the edges connected to check nodes of degree l)

∗ Messages passed back to the DETECTOR at a variable node of degree i:

The pdf of the extrinsic messages passed along an edge from variable

node of degree i back to the DETECTOR is denoted by f q
D←L,i and it is

computed by i convolutions of f p,q
b←c.

f q
D←L,i = fp,q

b←c ⊗ fp,q
b←c ⊗ . . .⊗ fp,q

b←c︸ ︷︷ ︸
i convolutions

(6.10)

· If f p,q
b←c is assumed Gaussian distributed, it becomes

f q
D←L,i = N (imp,q

b←c, 2im
p,q
b←c). (6.11)

∗ Message passed back to the DETECTOR:

f q
D←L =

dr,max∑
i=2

λ̃if
q
D←L,i (6.12)

(λ̃i: fractions of the variable nodes of degree i)

• Finding the minimum SNR:

1. With Gaussian approximation of the pdf of the extrinsic messages passed

from check nodes to variable nodes, find the minimum SNR at which mQ
D←L

or mP,Q
b←c tens to ∞.
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2. Find the minimum SNR at which the residual error
∫ 0

−∞ f q(z)dz tends to

zero, where f q
i = f q

D←L,i ⊗ fD→L and f q =
∑dr,max

i=2 λ̃if
q
i .

Obviously, the density evolution becomes much easier with the Gaussian approx-

imation. Considering the check-regular degree profiles, we show the histograms

of LLRs passed from check nodes to variable nodes with variable-regular degree

profile in Fig. 6.4 and variable-irregular degree profile in Fig. 6.5. Hence, we find

that Gaussian approximation can work well at the output extrinsic messages of

check nodes with variable-regular degree profile but might fail with the irregular-

variable degree profile.
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Figure 6.4: The histogram of output LLRs passed from check nodes to variable nodes
with regular (3,6) degree profile.

Figure 6.5: The histogram of output LLRs passed from check nodes to variable nodes
with variable-irregular and check-regular degree profile.
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Chapter 7

EXIT Chart Analysis

The extrinsic information transfer (EXIT) chart is used to predict the performance

of iteratively-decoded error-correcting codes, such as LDPC codes and Turbo codes. Di-

vide the iterative receiver into two segments. These two segments of the iterative receiver

exchange messages with each other. Instead of tracking the pdfs of the exchanged mes-

sages, we track the mutual information between the message and the codeword. In each

segment, we can derive its transfer functions of the mutual information. Hence, the it-

erative message passing can be plotted by these two transfer functions in the EXIT chart.

Here we divide our iterative receiver into two segments. One is the combined DE-

TECTOR and the variable nodes of LDPC code. The other is the check nodes of LDPC

code. The EXIT chart analysis in [16] is summarized for reference. Besides, the prior

information is assumed symmetric Gaussian distributed in the Appendix of [16] summa-

rized as follows.

Consider Y = X + N ,where Pr(X = ±1) = 1
2

and N is zero-mean, Gaussian noise

with variance σ2
n. The LLR Lch(Y ) conditioned on X = ±1 is Gaussian with mean
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Figure 7.1: Illustration of density evolution of the iterative receiver.

µch = ±2
σ2

n
and variance σ2

ch = 4
σ2

n
. That means

µch =
±σ2

n

2

Define J(σch) be the mutual information I(X; Lch(Y )). The definition of σA = J−1(IA) is

based on the symmetric Gaussian approximation of the prior information. Hence it might

also suffer the same problem mentioned above. The symmetric Gaussian approximation

might be not always suitable for every degree profile.

The procedure of computing the EXIT curves of the extrinsic LLRs of LDPC decod-

ing is described as follows.

• Step1: Use Monte Carlo simulation to measure the EXIT curve of DETECTOR

as

IE,DET (IA,DET , SNR), (7.1)
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where IA,DET = J(σA) and

IE,DET =
1

2

∑
x=+1,−1

∫ +∞

−∞
PE(ζ | X = x) ·

log2

2 · PE(ζ | X = x)

PE(ζ | X = −1) + PE(ζ | X = +1)
dζ

• Step2: The EXIT curve of both DETECTOR and variable nodes is shown as

– The relationship of IA,DET and IA,V ND is showed as

IA,DET = J(
√

dv · J−1(IA,V ND)) (7.2)

– Hence the EXIT function of combined DETECTOR and variable nodes is

showed as

IE,V ND = J(
√

(dv − 1)[J−1(IA,V ND)]2 + [J−1(IE,DET )]2), (7.3)

where dv denotes the variable degree.

• Step3: Measure the EXIT curve of check nodes by

IE,CND = 1−
dr,max∑

i=2

bi · J(
√

dc,i − 1 · J−1(1− IA,CND)), (7.4)

where

dc,i: check degree i

bi: the fraction of the edges connected to the check nodes of degree dc,i

• Step4: The EXIT curves are iteratively measured by (7.1), (7.2), (7.3), and (7.4).
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Chapter 8

Simulation Results

8.1 Performance of EM-JED algorithm in different

fading speeds

The performance of employing the EM-JED algorithm and RA decoder is shown in

Fig. 8.1-8.4. Here the differential code is necessary for solving the phase ambiguities

associated with the channel estimates obtained with EM-JED algorithm. We measure

the performance of the output message of combined EM-JED algorithm and RA decoder

in different fading speeds.

From the simulation results, the performance gap between fading channel (noncoher-

ent detection) and ideal fading channel (coherent detection which means that the fading

channel coefficients are perfectly known in the receiver) becomes smaller in slower fading

speed. It seems that the EM-JED algorithm works better in slower fading speed. In

the fading speed 0.01, the performance curve in fading channel becomes much close to

the one with perfectly known fading channel coefficients. In Fig. 8.4, the performance

curves of coherent detection in different fading speeds are very close.
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Figure 8.1: Performance of EM-JED algorithm in the fading speed 0.01.
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Figure 8.2: Performance of EM-JED algorithm in the fading speed 0.005.
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Figure 8.3: Performance of EM-JED algorithm in the fading speed 0.001.
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Figure 8.4: Performance of EM-JED algorithm in different fading speeds.
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8.2 Performance of combined EM-JED algorithm and

LDPC decoding in fading channels

8.2.1 The performance of the same codeword length 12000 in

different fading speeds

In Fig. 8.5, the performance of regular (3,6) LDPC codes with codeword length

12000 in different fading speeds is shown. The LDPC code were both designed by the

design criteria in Chapter 4.1. The coherence interval here is given with the inverse of

the fading speed. With the same codeword length 12000, there are about 120 coherence

intervals in the fading speed 0.01, 60 coherence intervals in the fading speed 0.005, and

12 coherence intervals in the fading speed 0.001.
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coh.−time=1000 − coh. detection (fdTs=0.001)
coh.−time=1000 − noncoh. detection (fdTs=0.001)

Figure 8.5: Performance of the same codeword length 12000 in different fading speeds.

In the simulation results, the slope of the performance curves with the maximum

number of coherence intervals is steepest in these three fading speeds. Both in the ideal
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fading channel and fading channel, the performance in the fading speed 0.01 is best and

the performance in fading speed 0.001 is worst. Besides, the performance gap between

the ideal fading channel and fading channel becomes smaller in the lower fading speed

as mentioned above.

8.2.2 The performance of the same number of coherence inter-

vals in different fading speeds
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24000 (coh−time=200)−noncoh. detection (fdTs= 0.005)
12000 (coh−time=100)−coh. detection (fdTs= 0.01)
12000 (coh−time=100)−noncoh. detection (fdTs=0.01)

Figure 8.6: Performance of the same number of coherence intervals in different fading
speeds.

In Fig. 8.6, the performance of regular (3,6) LDPC codes with 120 coherence

intervals in different fading speed is shown. The codeword length becomes 24000 in

the fading speed 0.005 and 120000 in the fading speed 0.001. With the same number

of coherence intervals, the performance curves of ideal channel case in different fading

speeds become much close. Even with the different codeword length, the performance
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curves here are dominated by the number of coherence intervals.

8.2.3 The performance of the same codeword length 120000 in

different fading speeds

The longest codeword length we can generate is 120000. Here we compared the

performance of regular (3,6) LDPC codes with codeword length 120000 in different

fading speeds. With the same codeword length 120000, there are about 1200 coherence

intervals in the fading speed 0.01, 600 coherence intervals in the fading speed 0.005, and

120 coherence intervals in the fading speed 0.001.

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

The performance of regular(3,6) and codeword length 120000

 

 

(coh−time=100)−coh. detection (fdTs=0.01)
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(coh−time=1000)−coh. detection (fdTs=0.001)
(coh−time=1000)−noncoh. detection (fdTs=0.001)

Figure 8.7: Performance of the same codeword length 120000 in different fading speeds.

The performance curves in ideal fading channels are still dominated by the number

of coherence intervals. Besides, the performance gap between ideal fading channel and

fading channel is still decided by the fading speed. In fading channel, the performance
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in fading speed 0.001 becomes the best in these three fading speeds in Fig. 8.7.

8.3 Performance of different degree profiles with den-

sity evolution analysis

In our simulation results, we found some degree profiles which contain minimum

variable degree 2 would suffer the serious error floor such as in Fig. 8.8. The degree
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codeword 120000 in ideal fading channel
codeword 120000 in fading speed 0.01

Figure 8.8: Performance of given regular-check degree profile which contains the mini-
mum variable degree 2.

distribution pairs are shown as

λ(x) = 0.4253x + 0.0371x2 + 0.0159x3 + 0.5217x4 (8.1)

ρ(x) = x5
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However, the error floor doesn’t appear in the ideal fading channel. The extrinsic

message computed at the variable nodes of degree 2 might become worse with only one

prior information passed from check nodes to variable nodes in fading channels.

To prevent the above situation, we only consider the degree profile in which the

minimum variable degree must be larger than 3. Based on the nonlinear optimization

algorithm of differential evolution, we found several check-regular degree profiles and

computed its density evolution threshold in Fig. 8.9-8.14.

The density evolution threshold becomes away from the simulations with higher

maximum variable degree. For example, the density evolution threshold of the degree

profiles of maximum variable degree 11 is about 0.5dB away from the simulations. And

the density evolution threshold of the degree profiles of maximum variable degree 19 is

about 0.6dB away from the simulations. It might be caused by the mentioned problem

of Gaussian approximation described in Chapter 6. The density evolution performs well

in other degree profiles which contains smaller maximum variable degree.

Besides, the performance of other variable-irregular degree profiles which contain the

minimum variable degree 3 are worse than the performance of regular (3,6) degree profile

and so does the regular (4,8) degree profile.
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codelength 120000 (var=3,chk=6) fdTs=0.01
DE threshold with GA for var=3,chk=6

Figure 8.9: Performance of regular (3,6) LDPC code.
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codelength 120000 (var=4,chk=8) fdTs=0.01
DE threshold with GA for var=4,chk=8

Figure 8.10: Performance of regular (4,8) LDPC code.
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λ(x)=0.4285x2+0.5714x3  ρ(x)=x6

 

 

codelength 120000 (var=3~4,chk=7) fdTs=0.01
DE threshold with GA for var=3~4,chk=7

Figure 8.11: Performance of given regular-check degree profile with maximum variable
degree 4.
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codelength 120000 (var=3~7,chk=7) fdTs=0.01
DE threshold with GA for var=3~7,chk=7

Figure 8.12: Performance of given regular-check degree profile with maximum variable
degree 7.

43



4 4.5 5 5.5 6 6.5 7
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

λ(x)=0.7969x2+0.0029x3+0.0002x5+0.0054x6+0.0062x7+0.0245x8+0.0002x9+0.1623x10  ρ(x)=x6

 

 

codelength 120000 (var=3~11,chk=7) fdTs=0.01
DE threshold with Gaussian approximation(30 Gaussian components)
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Figure 8.13: Performance of given regular-check degree profile with maximum variable
degree 11.
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codelength 120000 (var=3~19,chk=7) fdTs=0.01
DE threshold with GA for var=3~19,chk=7

Figure 8.14: Performance of given regular-check degree profile with maximum variable
degree 19.
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Figure 8.15: Performance of the overall generated regular-check degree profiles.
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Chapter 9

Conclusions

A serially concatenated turbo transceiver of EM-JED algorithm, RA decoder and

LDPC decoding is proposed in the noncoherent system. Hence without using any pi-

lot and training symbols, the proposed serially concatenated turbo transceiver try to

approach the noncoherent capacity with the LDPC code optimization. The analysis

methods, such as density evolution and EXIT chart, are generally used with the sym-

metric Gaussian approximation. However the approximation has not been suitable for

some degree profiles in the flat-fading channel. Besides, we also found that the per-

formance of the combined EM-JED algorithm and LDPC decoding is also affected by

the number of coherence intervals. Hence it might be the interesting problem to find

the optimal shortest LDPC codeword length which contains the sufficient number of

coherence intervals in different fading speeds. The proposed design criterion of LDPC

code can be also modified for other MIMO OFDM systems.
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