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Student: Lin Gu-Rong Advisor: Prof. Stefan M. Moser

Department of Communication Engineering
National Chiao Tung University

Abstract

In this thesis the channel capacity of the noncoherent multiple-access Rician fading chan-
nel is investigated. In this channel, the transmitted signal is subject to additive Gaussian
noise and Rician fading, i.e., the fading process is Gaussian in addition to a line-of-sight
component. On the transmitter side the cooperation between users is not allowed, i.e., the
users are assumed to be statistically independent.

Based on the known result of the asymptotic capacity of a single-user fading channel,
our work is to generalize it to the multiple-user sum-rate capacity. We study the single-
antenna case only: all transmitters and the receiver use one antenna. We get a natural
upper bound on the capacity if the constraint of independence between the users is relaxed,
in which case the channel becomes a multiple-input single-output (MISO) channel. Also, a
lower bound can be obtained if all users apart from one are switched off, which corresponds
to a single-input single-output (SISO) channel. We improve these bounds and get an exact
formula of the asymptotic capacity.

The main concept we use in this thesis is escaping to infinity of input distributions,
which means that when the available power tends to infinity, the input must use symbols
that also tend to infinity. We propose that in the multiple-access fading channel, at least
one user’s distribution must escape to infinity. Based on this we obtain the result that the
asymptotic sum-rate capacity is identical to the previously mentioned lower bound: the
single-user SISO capacity. We conclude that in order to achieve the best sum-rate capacity
in the multiple-access system, we have to switch off the users with bad channels and only
allow those with the best channel to transmit.
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Chapter 1

Introduction

Wireless communication channels encounter additive Gaussian noise and a phenomenon
called fading. The fading phenomenon impacts the signal amplitude (often destructively)
and is usually modeled as a multiplicative noise. Due to this multiplicative noise, it is much
more difficult to design a good communication, system for such channels, and hence fading
is a hot research topic. Usuallyschannels with this fading phenomenon are called fading
channels.

In this thesis we investigate the multiple-access fading channel. We restrict ourselves
to the special case of Rician fading. This.means that the multiplicative noise process is
Gaussian distributed and that there is a‘line-of-sight path between the transmitter and the
receiver.

Multiple-access indicates that several users utilize the channel at the same time. These
users are assumed to be statistically independent, which distinguishes the multiple-user
channel from the channel with a single user having multiple antennas. Common examples
of the multiple-access channel (MAC) are a group of mobile phones communicating with a
base station or a satellite receiver with several ground stations.

The work in this thesis focuses on the capacity analysis of the multiple-access fading
channel. The concept of channel capacity was initially introduced in Shannon’s famous
landmark paper “A Mathematical Theory of Communication” [1]. In this paper, Shannon
proved that for every communication channel there exists a theoretically maximum rate —
denoted capacity—that can be transmitted reliably, ¢.e., for every transmission rate below
capacity the probability of making a decision error can be as small as one wishes. Therefore,
the capacity is fundamental for the understanding of the channel and also for the judgment
of efficiency for a designed system on a channel. However, capacity is defined in a single-
user system. To generalize it to the multiple-user situation, we consider the theoretically
maximum possible sum rate of all users. To be specific, we call this maximum possible sum
rate the sum-rate capacity, but simply use capacity exchangeably in both cases.

Though many systems and techniques have been developed for the wireless communica-
tion channel, the channel capacity of a general fading channel is not yet known. Researchers
have been trying to solve this problem via various approaches. One common approach is to
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analyze the channel based on the assumption that the receiver has perfect knowledge of the
channel state by estimating the channel state from training sequences. However, we cannot
ignore the bandwidth kept for these training sequences. Furthermore, we can never measure
the channel state perfectly even with a large amount of training data.

Another approach is to utilize joint estimation and detection: here we estimate the chan-
nel state by the received information data. No assumption of a particular estimation scheme
is then required. The only assumption is that both the transmitter and the receiver know
the channel characteristics (but not the realizations!). The capacity under this approach of
analysis is known as the noncoherent capacity.

However, no exact expression for the noncoherent capacity of a fading channel is known
so far. As a function of the signal-to-noise ratio (SNR), the noncoherent capacity is only
understood at asymptotic high and low SNR. Lapidoth and Moser have derived in [2] [3] [4]
the asymptotic high-SNR capacity of general single-user fading channels. The asymptotic
low-SNR capacity of fading channel has also been derived in [5]. In this work we extend the
result of the high-SNR asymptotic capacity to the multiple-access channel.

The evaluation of noncoherent capacity involves an optimization problem. To derive the
exact expression either analytically ot humerically is very difficult. One promising approach
is to derive upper and lower bounds to the capacity and try to make them close. Based on [6],
we know natural lower and upper bounds from the single-user single-input single-out (SISO)
channel and the multiple-input single-out! (MISO) channel. We also know that the upper
bound from the MISO channel is'loose. In“addition, a known upper bound is the duality-
based upper bound. This duality-baséd“upper-bound ‘comes from a successful technique
[7], [3] utilizing the dual expression of the-channel capacity where the maximization (of
mutual information) over distributions on the chamnel input alphabet is replaced with a
minimization (of average relative entropy) over distributions on the channel output alphabet.

The main contributions in this thesis are as follows. First we generalize the concept
of input distributions that escape to infinity to the multiple-user case. The rough idea
of escaping to infinity is that for input distributions, it is not favorable to use finite-cost
input symbols whenever the cost constraint is loosened completely. Secondly, relying on this
concept, we obtain the asymptotic capacity in both the two-user and general multiple-user
case.

The structure of this thesis is as follows. In the remainder of this chapter we will briefly
describe our notation. Next we will give a setup of the channel model in Chapter 2. The
subsequent Chapter 3 gives some mathematical preliminaries about the fading number and
input distributions that escape to infinity. In Chapter 4 we review the previous results
as the fundamental basis of this thesis. The main result and its derivation are shown in
Chapter 5 and Chapter 6, respectively. Some interesting observations not used in the proof
of the main result are provided in Chapter 7, and at last we give a conclusion in Chapter 8.

For random quantities we use uppercase letters such as X to denote scalar random
variables and for their realizations we use lowercase letters like x. For random vectors
we use bold-face capitals, e.g., X and bold lower-case letters for their realization, e.g., x.
Constant matrices are denoted by upper-case letters but of a special font, e.g., H. For
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random matrices we yet use another font, e.g., H. Scalars are typically denoted using Greek
letters or lower-case Roman letters.
Some exceptions that are widely used and therefore kept in their customary shape are:

e h(-) denotes the differential entropy.
e I(-;-) denotes the mutual information functional.

Moreover, we use the capitals () and W as the input probability distribution and the channel
law (distribution of the channel output conditioned on the channel input), and C exchange-
ably for the single-user capacity and the multiple-user sum-rate capacity. The energy per
symbol is denoted by &, and the signal-to-noise ratio SNR is denoted by SNR. Also note
that we use log(-) to denote the natural logarithmic function.
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Chapter 2

Channel Model

In this chapter, we will introduce the channel model of the multiple-access Rician fading
channel. In Section 2.1, we give the mathematical formula and some assumptions of this
multiple-access channel, but restrict ourselves only to the memoryless case. In Section 2.2,
we will describe the special cases of.thesmultiple-access channel when the users in the
transmitter side and the receiversiise one antenna‘only.

2.1 The General Channel Model

In our analysis, we consider the nonecoherent-channel in“the sense that both the transmitter
and the receiver do not know the:channel staterealization, but only have knowledge about
the channel characteristics, e.g., the distribution‘of the channel state.

We restrict ourselves to the memoryless ease in our work. Distributions of the input and
the channel are IID at every time step. Therefore, we will drop the time index.

We consider a channel as illustrated in Figure 2.1 with m users each having n; transmit
antennas for ¢ = 1,...,m. The total number of transmit antennas is then

m
Zni = np. (2.1)
i=1

We then assume one receiver with ng receive antennas whose output Y € C"® is given by
Y =Hx + Z. (2.2)

Here x € C™T denotes the input vector consisting of m subvectors of length n; for each user;
the random matrix H € C"R*"T denotes the fading matrix; the random vector Z € C"®
denotes the additive noise vector.

We assume the fading H and the additive noise Z are independent and of a joint law that
does not depend on the channel input x. The different users are assumed to have access to
a common clock, resulting in the output at a discrete time. Note that different users are
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not allowed to cooperate, i.e., for the input vector

X1
X=| : (2.3)
Xm

the subvectors X; € C™ denoting the input vectors of each user are statistically independent
XL X, Vi # j. (2.4)

We assume that the random vector Z is a spatially white, zero-mean, circularly symmetric,
complex Gaussian random vector, i.e., Z ~ N¢ (07 O'2|) for some o2 > 0. Here | denotes the
identity matrix.

As for the fading matrix H, in general it can be of any distribution. In this thesis, we
restrict ourselves to the Rician fading case, i.e., every component H; ; in the fading matrix
is given by

Hij NN(C(di,jvaz'Q,j) . (2.5)

where d; ; € C represent the line-ofssight components and UZ ; denotes the variance of each
component for i =1,... ng and 7 = 1,... | npt

As for the input, two different constraints are used: a peak-power constraint or an
average-power constraint. We use £ to denoté the maXimum allowed total instantaneous
power in the former case, and to denote‘the allowed total average power in the latter case.
For both cases we get

&
SNR = = (2.6)

Note that the total power still must be split and distributed among all users. The peak-
power constraint is

|X|*> <&, almost surely. (2.7)
The average-power constraint is given by

E[IIX]2] < €. (2.8)

2.2 The Simplified Channel Model

For simplicity, we first assume that each user and the receiver use only one antenna, i.e.,
ny = ng = -+ = ny, = 1, such that np = m, and ng = 1. This reduces (2.2) to the
multiple-access SISO case: the channel output Y € C is:

Y=H'x+7 (2.9)
=dx+H'x+Z (2.10)
=diz1 4+ dmZm + Hiz1 + - + Hpm + Z. (2.11)
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Here x € C™ denotes the input vector. The components z; in x are the input of each user.
H denotes the fading vector where each component is a random variable representing the
channel state for each user. By the assumption of Rician fading we have

H; +d; = Hy ~ Ne(di, 1), i=1,...,m, (2.12)

i.e., H; are zero-mean, circularly symmetric, complex Gaussian random variables with vari-
ance 1. Moreover, the channels are assumed to be independent

HiALHj, i,j=1,...,m,i# ] (2.13)

and Z ~ N¢ (0, 02) denotes additive, zero-mean, circularly symmetric Gaussian noise.

A special simplified case is the two-user multiple-access Rician fading channel as shown
in Figure 2.2. We use this most simplified case at the beginning of our analysis. In this
case we assume there are only two users, i.e., m = 2, and ny = ng = 1 so that np = 2, and

nr, = 1. The channel output can be written as

Y = Hix1.+Howort Z (2.14)
= dijx1 + ﬁlxl + doxo™+ 1{[21'2 + Z, (2.15)

where H; and Z are as described before.=Also tecall that the two users are not allowed to
cooperate, i.e.,

Xyl (2.16)

is required.
Given X7 = x1 and X9 = z9 the channel output is Gaussian distributed:

Y ~ Nc(d1x1 + doxs, ’.7:1|2 + |CCQ|2 + 02) . (2.17)
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« P

Receiver

Figure 2.1: The general multiple-access channel with multiple antennas at transmitter and
receiver sides.

Figure 2.2: The two-user SISO MAC.
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Chapter 3

Mathematical Preliminaries

In this chapter we review some important concepts mainly related to the analysis of the
single-user memoryless case. The channel model considered is (2.2). In Section 3.1 we
review the channel capacity and make a further generalization to the maximum possible
sum rate of multiple users. In Section 3.2,we.introduce the fading number. In Section 3.3 we
provide the concept of input distributions that escape to infinity and a lemma which shows
that under some conditions the input distribution must escape to infinity. The concepts
mentioned in this chapter are strongly based on [2] and [3].

3.1 The Channel Capacity

In this section we first review “the definition of channel capacity provided by Shannon in
[1]. Further we give the definition of the maximum possible sum rate of the multiple-
access channel; it is basically identical to the channel capacity, but takes multiple users into
consideration.

Recall that in a discrete memoryless channel (DMC), the channel capacity is defined as

C £ maxI(X;Y) (3.1)

Qx
where the maximization is taken over all possible input distributions Qx(-). When the
concept is generalized to the continuous case, i.e., the input and output take values in
continuous alphabet, a power constraint must be taken into consideration: for the peak

power constraint (2.7)
£ max I(X;Y), (3.2)
Qx
|XPP<e
or for the average power constraint (2.8)

C2 ma
Qx

x I(X;Y), (3.3)
E[x?]<¢
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where the maximization is taken over all the input distributions satisfying the constraint.
In the generalization to the memoryless multiple-user channel, we use C to denote the
maximum possible sum rate. The (sum-rate) capacity of the channel (2.2) is given by

C=supI(X;Y) (3.4)
Qx

where the supremum is taken over the set of all probability distributions on X for which
the m subvectors are independent and which satisfy the power constraint, i.e.,

|X|> <&, almost surely (3.5)
for a peak-power constraint, or
E[IX)?] <& (3.6)

for an average-power constraint.

3.2 The Fading Number

In the asymptotic analysis of channel capacity at high,SNR, it has been shown in [2],[3] that
at high SNR capacity grows enly double-logarithmically in the SNR. This means that at
high power these channels beeome-extremely poewer-inefficient because we have to square the
SNR to get an additional bitiimprovement:in capacity. Eurthermore, the difference between
channel capacity and loglog SNR is:bounded as the SNR tends to infinity, i.e.,

—— 5
élTIglo {C(E) — log log ;} < 0. (3.7)

This bounded term is called the fading number. A precise definition of the fading number
is as follows.

Definition 3.1. The fading number x of a memoryless fading channel with fading matrix
H is defined as

x(H) £ élgo {C(é’) — log log :2} . (3.8)

Whenever the limit in (3.8) exists and x is finite, the expression of capacity is
&
C(€) = loglog 2 + x + o(1) (3.9)

where o(1) denote terms that tend to zero as the SNR tends to infinity. Thus, at high SNR
the channel capacity of a fading channel can be approximated by

&
C(&) =~ loglog 2 + X (3.10)

Hence we can say that the fading number is the second term in the asymptotic expression
of the channel capacity at high SNR. Note that the approximation of capacity in (3.10) is
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not always valid. In the low-SNR to medium-SNR regime, the capacity is dominated by
the o(1) term that cannot be neglected in that regime. In the analysis of the asymptotic
capacity, however, we are only concerned with the high-SNR regime and in particular when
the SNR tends to infinity. Thus, we usually use the approximation of (3.10) instead of the
intractable exact expression. Furthermore, we can even only consider the fading number
because the first term of the capacity is always the same.

The fading number also plays a role as a qualitative criterion for the communication
system. Since in the high-SNR regime the capacity is extremely power-inefficient, we should
avoid transmission in this severe regime. The fading number can provide a threshold of
how high the rate can be before entering the high-SNR regime, i.e., the fading number can
provide a certain threshold SNRg such that once the available SNR is above SNRg, we are in
the loglog SNR dominated regime, and should not stick on this system. Instead we should
use other schemes, e.g., use more antennas in order to reach a higher transmission rate.

3.3 Escaping to Infinity

A sequence of input distributions parameterized by the allowed cost (in our case the cost of
fading channels is the available power or the SNR respectively) is said to escape to infinity
if it assigns to every fixed compact! set a probability that tends to zero as the allowed cost
tends to infinity. In other words this means that in the=limit—when the allowed cost tends
to infinity—such a distribution does not use-finite-cost symbols.

We give the definition of €scaping t6-infinity“for the fading channel under consideration
in this thesis; the definition for general channels can' be found in [2], [3].

Definition 3.2. Let {Qg}e>0 be @ family of imput distributions for the memoryless fading
channel (2.2), where this family is parameterized by the available average power € such that

Eo: [IX[?] <& €>0. (3.11)
We say that the input distributions {Qg}e>0 escape to infinity if for every &

éle Qs (IX]* < &) =0. (3.12)

This notion is of importance because the asymptotic capacity of the fading channels can
only be achieved by input distributions that escape to infinity. As a matter of fact one can
show that to achieve a mutual information of only identical asymptotic growth rate as the
capacity, the input distribution must escape to infinity. The following lemma describes this
fact.

Lemma 3.3. Assume a single-user memoryless multiple-input multiple-output (MIMO) fad-
ing channel as given in (2.2) and let W (-|-) denote the corresponding conditional channel
law. Let {Qgle>o0 be a family of input distributions satisfying the power constraint (3.11)
and the condition

I(Qe, W)
— = L =1, .1
A e log € (3.13)

10
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Then {Qs}e>0 escapes to infinity.
Proof. A proof can be found in [2], [3]. O

From the engineering point of view, this concept matches the intuition: as the available
power tends to infinity, the input should utilize the resource (available power) completely,
therefore any fixed symbol is not used in the limit.

Remark 3.4. When computing the bounds of the fading number (which is part of the capac-
ity in the limit when & tends to infinity), we can therefore assume that for any fized value

&o

Pr(||X|? < &) = 0. (3.14)

11
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Chapter 4

Previous Results

In this chapter we review some known results of the simplified two-user SISO case (2.14)
and (2.15). In Section 4.1 we show that the sum rate of the two users is bounded between
the single-user MISO capacity and the single-user SISO capacity. In Section 4.2 we review
a known bound of the sum-rate capacity,in.our case. The content in this chapter is mainly
based on [6].

4.1 Natural Upper and Lower Bounds

We consider the channel model of a two-tiser SISO fading channel as in (2.14) and (2.15).
Note that the difference between the-MACand-the MISO fading channel with two transmit
antennas and one receive antenna‘is that in the latter both transmit antennas can cooperate,
while in the former they are assumed to.be independent. Hence, it immediately follows from
this that the MAC sum-rate capacity can 'be upper-bounded by the MISO capacity:

Cwmac(€) < Casol(€). (4.1)

On the other hand, the sum rate cannot be smaller than the single-user rate that can be
achieved if the weaker of the two users is switched off, i.e.,

Cuac(€) 2 max Csrso,i(€)- (4.2)
Based on (4.1), (4.2) and (3.8), we define the MAC fading number by
. &
XMAC = lim {CMAC(E) — loglog 2} : (4.3)
EToo o
From [3] we know that
xuiso = log (|du|* + [da|?) — Ei(—|d1|* — |do|?) — 1 (4.4)

where Ei(—-) is the exponential integral function defined as

€_t

Ei(—¢) £ —/g Tdt, £>0. (4.5)

12
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Therefore, from (4.1) we obtain
xmac < xmiso = log (|di|* + |do|?) — Ei(—|di|* — |daf?) — 1. (4.6)
On the other hand from (4.2)
XMAC = Max Xsis0,i = max {log (|di|*) — Ei(—|di|*) —1}. (4.7)

Using the monotonicity of £ — log(§) — Ei(—¢) as shown in Figure 4.3 and Figure 4.4 and
comparing (4.6) and (4.7), the sum-rate capacity of two-user MAC can be written as a
similar expression

xmac = log (dac) — Ei(—diiac) — 1 (4.8)

where dyiac is a nonnegative real number satisfying

max {|da, |d[} < dac < v/[di2 + [dal. (4.9)

Note that the difference between xmac, XMi1so, and xsiso is the parameter of the function
log(-) — Ei(—-). Thus, we can investigatepdyiag instead of the whole fading number.
Furthermore, from [8] we actually know that

dyviad < V/|dy |2+ 1dal? (4.10)

with strict inequality.

4.2 An Upper Bound on.the Sum-Rate Capacity and Fading
Number

Since the multiple-access channel is quite similar to the MISO channel, we review an upper
bound on the MISO capacity. This upper bound comes from the dual expression of the mu-
tual information by choosing the output distribution as a generalized Gamma distribution.
A detailed proof of this lemma can be found in [2] and [3].

Lemma 4.1. Consider a memoryless MISO fading channel with input x € C™T and output
Y € C such that

Y =H'x+ Z. (4.11)

Then the mutual information between input and output of the channel is upper-bounded as
follows:

I(X;Y) < —h(Y|X) + logm + alog 5 + log’ <a, ;)
+ (1 - )E[log ([Y[* +v)] +;E[|Y\2] +% (4.12)

where o, B> 0 and v > 0 are parameters that can be chosen freely, but must not depend on
X.

13
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Figure 4.3: Thé'plot of € Flog(&) = Ei(=¢) for £ from 0 to 2.5.

log(€) — Ei(=¢)

25

Figure 4.4: The plot of & — log(§) — Ei(—¢) for £ from 0 to 10.
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4.2 AN UPPER BOUND ON THE SUM-RATE CAPACITY AND FADING NUMBERCHAPTER 4

Applying Lemma 4.1 to the Rician fading channel (2.15), we have:

I1(X1,X9;Y) < —h(Y|Xy, X2) +logm + alog B+ logT (a, ;)

1 v
+ (1 - a)E[log ([Y]* +v)] +BE[|Y|2] t5 (4.13)
Using the fact in (2.17) that given X; = x; and Xy = x9, Y is Gaussian distributed, and
choosing the parameters a, 3 and v appropriately, (4.13) can be further simplified to obtain

an upper bound on the fading number of the MAC:

Theorem 4.2. The fading number of a two-user Rician fading MAC as defined in (2.14)
and under the average-power constraint (2.8) is upper-bounded as follows:

— di1 X1 + do Xo|?
XMAng,im sup {IOgE[‘ Lo 2‘]

% Qx,-Qx, | X1]2 4 | Xof?
) !d1X1+d2X2|2]>
— Ei| —E —15. 4.14
(e[ 1
Proof. The theorem is a specialicase of the Pxoposition 6.1. The proof can be found in
Appendix A or in [6]. O

Note that & — log(¢) —Ei(=§) is monotonically increasing, thus according to Theo-
rem 4.2, the parameter dyjae defined in'(4.8) is.upper-bounded as follows:

diag S sup E
Ox:Qx,

2
[|d1X1+d2X2| ] (4.15)

X312 + | X2|?

15



MAIN RESULT CHAPTER 5

Chapter 5

Main Result

In this chapter, the exact MAC fading number is provided. In Section 5.1 we extend the
notion of escaping to infinity to multiple users. In Section 5.2, we will show the two-user
SISO MAC sum-rate fading number. In Section 5.3, we generalize to the m-user SISO MAC
and provide its sum-rate fading number; and in Section 5.4 we discuss the power constraints.

5.1 Generalization,of Escaping to Infinity to Multiple Users
The following proposition is.a generalization'of Lemma.3.3.

Proposition 5.1. Let {Q¢ }e>0 be a fumilyofjoint input distributions of the multiple-access
fading channel given in (2.2),%where" the family is parameterized by the available average
power € such that

Eoe [IXI2] <€, €20, 5.1
Let W(-|-) be the channel law, and {Qg} be such that

1(Qe, W)
—F = 1. 2
Snglo loglog & (5:2)

Then at least one user’s input distribution must escape to infinity, i.e., for any & > 0,

lim Qe (6 {HXiHQ > if;}) =1 (5.3)

=1

5.2 The Fading Number of The Two-User SISO MAC

Theorem 5.2. Assume a two-user SISO Rician fading MAC channel as defined in (2.15).
Then the sum-rate fading number is given by

XMAC — lOg (d12\/IAC) — El(_dIZ\/IAC) -1 (54)

16



5.3 THE FADING NUMBER OF GENERAL SISO MAC CHAPTER 5

where

duvac = max {|dq], |da]}. (5.5)

This sum-rate MAC fading number holds in both cases when the peak-power constraint (2.7)
or the average-power constraint (2.8) is considered.

This shows that the lower bound in (4.2) is tight. Note that if the magnitude of the
line-of-sight component of one user is strictly smaller than of the other user, then this sum
rate can only be achieved if the user with the weaker |d;| is switched off. If both line-of-sight
components have identical magnitudes, then the sum rate can be achieved by time-sharing.

Remark 5.3. Recall that in [6, Lemma 17] the distribution taking only two symbols causes
an opposite result: the natural upper bound to the MAC fading given in (4.6) can be achieved
by the binary input distribution. Relying on Proposition 5.1, any input distribution that takes
value in finite-cost symbols is excluded from being the capacity achieving distribution of the
multiple-access fading channel.

5.3 The Fading Number of ,General SISO MAC

Theorem 5.4. Assume a SISO.Rician fading multiple-access channel as defined in (2.9).
Then the sum-rate fading number s given by

xvia@ = og(diiaa) = Fi (=diiac) — 1 (5.6)
where

dMAC:maX{’d1’7’d2‘7-~-7‘dm’}' (57)

This sum-rate MAC fading number holds in both cases when the peak-power constraint (2.7)
or the average-power constraint (2.8) is considered.

The result for the general m users is similar to the two-user case. The SISO MAC fading
number is exactly the same as the single-user SISO fading number. To achieve the fading
number, the input should only allow the user with the largest line-of-sight component to
transmit, and switch off all users with weaker |d;|. If several users encounter channels with
a line-of-sight component of maximum magnitude, time-sharing among these users can be
used to achieve the fading number.

5.4 Discussion on Power Constraints

In our channel model, we consider the average total power constraint of all users, and even
allow power allocation among the users, i.e., the users can share the total power and the
power constraints for individual user are loosened.

17
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However, note that both Theorem 5.2 and Theorem 5.4 continue to hold even if we do
not allow power optimization over the users, i.e., if we constrain the inputs to satisfy

| X5)? < %, almost surely, Vi. (5.8)

Because both the looser and the more stringent cases lead to the same result, the re-
sults hold implicitly for other cases in between these two cases with respect to the power
constraints.

18



DERIVATION OF RESULTS

Chapter 6

Derivation of Results

CHAPTER 6

In this chapter, the derivations of the results shown in Chapter 5 are provided. In Section 6.1,

the generalization of the concept of escaping to infinity to multiple users is mainly based

on the proof of the single-user case in [3, Theorem 2.6]. In Section 6.2 and Section 6.3, the

SISO MAC sum-rate fading number of the two-user and m-user cases are derived strongly

relying on the concepts provided in'Section 3.3 and Section 5.1.

6.1 Derivation of Proposition 5.1

From (4.1) and (4.2) we know that the.asymptotic behavior of Cyac(€) is equivalent to

the behavior of the single-user fading’ chanmeleapacity.shown in (3.9), i.e., we can write

E
Cumac(E)=loglog =7 +xmac +o(1).

Note that this expression is also valid in the general m-user case.

So we have the following:

Cumac(é) _

Eroo loglog &
Moreover note that
£1oo | pe(ouo] loglog€

Fix some &) > 0 and let

v {ie > 21,

s
I

E £ o

0 it {HXZ»H2 < ‘;j}

and

ploglog €
hm{ sup “}<1, VO < pug<l1.
“w

(6.1)

(6.5)
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Then

I(X:Y) = I (X, E;Y) (6.6)
=I(E;Y)+1(X;Y | E)
=I1(E;Y)+ 1 (X;Y | E=0) Pr[E =0]

FIXY | E=1) PrE = 1] (6.8)
<log2+ I (XY |E=0)+ul (X;Y |E=1)
&
<log2 + Cyac(&) + nCumac <[L> , (6.10)

where the first inequality follows because F is a binary random variable and because
Pr[E = 0] < 1; the subsequent inequality follows from that conditional on E = 0,

E[IX|?| E=0] < &, (6.11)
and
E[IX)?] = wE[ |X{FFE=1] AL - WE[IX[?| E = 0] (6.12)
>0
> (B[ I1XI2] E{=1] (6.13)

from which follows that

X1

ST TEE| £
EfIX|>|:B="1]< . gﬂ. (6.14)

To show u T 1, let &, be a sequence with &€, T co. Let {Qg,} be a family of joint input
distributions on the MAC channel (2.2) such that

I(Qg 7W)
n =1 6.15
nTIglo loglog &, ( )

and define

m

po £ Qe (U {7 iﬁ}) (6.16)

=1

By contradiction, assume p, — pu* < 1. Then 3 o < 1 such that
tn < o, n sufficiently large. (6.17)

From (6.10) we have

£n
[(X;Y) _log2+ Cuac(&) | Caac (/Tn) i log log 7

6.18
loglog &, — loglog &, log log an loglog &, (6.18)
(s

-1 —0 1

20



6.2 DERIVATION OF THEOREM 5.2 CHAPTER 6

Here the limiting behavior of the LHS follows from (6.15); the first term on the RHS tends
to zero because Cyac(&p) < oo; the second term on the RHS

b

Cumac (g”>
— 1 (6.19)
log log s

follows because &, T oo implies &, /iy, T 0o and because of (6.2). So, when n | oo we obtain
the following contradiction

in log log £2

1 <1 6.20

- n%lo loglog &y, ( )
loglog £

<lm{ sp Sk (6.21)
E1oo | pe(0,u0) loglogé

<1, (6.22)

where the first inequality follows from (6.18); the second inequality follows from (6.17), and
the last inequality follows from (6.3),

6.2 Derivation of Theorem- 5.2

The proof of Theorem 5.2 consists of two-parts. The first part is given already in (4.9).
There it is shown that max{|di|, |d2}} is"alower bound t6 dyac. Note that this lower bound
can be achieved by using an input that satisfies-the peak-power constraint.

The second part will be to”prove that max{ldi|,|d2|} is also an upper bound. We
will prove this under the assumption of an average-power constraint. Since a peak-power
constraint is more stringent than an average-power constraint, the result follows.

The proof of this upper bound relies strongly on the Proposition 5.1. From that the
supremum in (4.14) should be replaced by the supremum taken over all joint distributions
such that at least one user’s input distribution escapes to infinity. So (4.14) becomes

xMac < lim sup < logE Plel + d2X2|2]
T EloQeea | X[+ [ Xaf?

. !d1X1+d2X2\2]>
— Eil —-E —15. 6.23
(el (0:23)
Here we define A to be the set of joint input distributions such that X7 1L X5 and the input
distribution of at least one user escapes to infinity when the available power £ tends to

infinity, i.e.,

A= {Qxl,x2 XL X, élglo Qe ({IX11* = &/2} U{|X,2]* > &/2}) =1

for any fixed & > 0}. (6.24)
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6.2 DERIVATION OF THEOREM 5.2 CHAPTER 6

Following the same argument as given after Theorem 4.2, we note that since £ — log(§) —
Ei(—¢) is monotonically increasing, finding the MAC fading number is reduced to finding
dyvac which is upper-bounded by

X Xo|2
[!dl 1+ do 2\] (6.25)

d3 < sup E
MAC = Sup X112 + | X2 2

QecA

6.2.1 Symmetric Case

In the following we will first prove the theorem for the special case when di = do = d. The
proof for general dy, ds will be provided later.
Continuing from (6.25) and writing X; = R;e®, we have

= s £ Ve e 6
- g Efap sl o) 629
- g (1 = e %)D (629
< |ap <1 o E [%%D , (6.30)

where in the last inequality wé.apper-bounded cos(®; — ®2) < 1. The result now follows
once we can show that

To that goal let
E[|X1°] <& (6.32)
B[l X2l < & (6.33)
where
Ei+&E=E. (6.34)

Note that from Proposition 5.1 we know that if £ T oo then & T oo or & T oo or both.
Without loss of generality assume that & T co. Note further that
2
<1 (6.35)
r{ +r3

and that r1 — 2ryre/ (7’% + r%) is monotonically decreasing in 7y if r1 > ro as shown in
Figure 6.5. Therefore, for an arbitrary choice of a > 1,
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1 Pk ~ T
\\‘\ ro =1
/ N T Tr2=2
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Figure 6.5: The plot of r| — 21"17"2/(7’% + r%) forrg= 1,2,4. It shows the monotonicity of

2ri7ro/(r? + 1r3) in ry if r; > rp andithe/fact that it is upper-bounded by 1.
1T

lim sup E

[ 2R R ]
EToo QeEA

RT+ R3

<sup lim Ssup. E
Qr, 110 QR €A}

82
=sup lim sup / / -2 dQRl(Tl)dQRz(T2)

QRry ZRES Qr, €A1

2
<sup lim sup / / TITZ dQRl(Tl)dQRz(W)

QRry ZEES Qr, €A1

2RIR>
R? + R2

& 2
+ sup hm sup / / e dQR1(T1>dQR2(r2)

QR, & OOQR eA

(6.36)

(6.37)

(6.38)

Here in the first inequality we define A; as the set of all input distributions of the first
user that escape to infinity, we use that from £ T oo we know that £ T oo and take the
supremum over all (), without any constraint on the average power and no dependence

on QRI'

The last inequality then follows from splitting the integration into two parts and

from the property that the supremum of a sum is always upper-bounded by the sum of the

suprema.
Next, let’s look at the first term in (6.38):

lim sup / / 27"17'2 dQRl(Tl)dQRQ(TQ)

&1100 Qp, €Ay

23
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< lim sup / / dQRr, (r1) dQr,(r2) (6.39)
ngOOQR1€A1

<fm [ sup / AQr, (1) dQp, (1) (6.40)
€100 Jo Qg €A1 /0
co arz

:/ lim sup / dQg, (m1)dQr,(r2) (6.41)
0 ngOOQR cAL

- / 0dQn, () (6.42)
0

=0. (6.43)

Here, (6.42) follows because Qg, escapes to infinity; and in (6.41) we exchange the limit
and the integration which can be justified as follows: let

ars
g (r2) £ sup / dQr, (r1) (6.44)

Qr, €A1 J0
< sup / dQg, (1) (6.45)

Qp A1 J0
=1 = gupper(TZ) (646)

Then note that
/ upper(r2) dQR, (2) :/ dQr,(r2) = 1, (6.47)
0 0

i.€., gupper(-) is independent of £, and integrable. Thus, by the Dominated Convergence
Theorem (DCT) [10, Chapter 4] we are allowed t0 swap limit and integration.
Continuing with (6.38) we get:

lim sup E[ 281 ey ]
Elo0 Qe A R%""R%
o[ 2
<Zup glllgonugA /0 / 12 dQRl(rl)dQRQ(rg) (6.48)
Ro Rq 1
o[ 2(ary)r
< s .33%’30@8“& /0 / are)? 2 : (ara)? 12 4@ (1) dQry(r2) (6.49)
R R €A1 arg
=sup lim sup dQr, (r1) dQr, (2) (6.50)
Qr, €110 Qp, eA1 Jo a2+1 ' ’
<o Jm o, s / Q1) 0Qny (1) (6.51)
Ry R 1
2a
- e s, / /0 dQn, (r1) dQn, (1) (6.52)
R R 1
2
= T—il <e€ if a large enough. (6.53)

Here (6.49) follows because 71 +— 2rira/ (r%—l—r%) is monotonically decreasing in 71 if 1 > rs.
Since a > 1 is arbitrary, (6.31) holds and the result follows.
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6.2.2 Asymmetric Case

Next we will investigate the general di, d2. Assuming that |di| > |d2| without loss of
generality, we again start with (6.25) and write d; = |d;|e'¥" and X; = R;e'®i.

[|d1 X1 + doXo|?
Biac < sup E | 6.54
MAC S e L XX (6.54)
— sup E ‘d1X1|2 + |d2X2|2 + dIerQXQ + leld;X; (6 55)
QeeA | [ X1 + | X2f? '
— sup E _|d1|2R% + ‘dQ‘QR% + 2|d1||d2|R1R2 COS((PQ + ’QZJQ — ‘I>1 — ’gZJl):| (6 56)
QeeA L R% +R§
-|d1|2R2 =+ ‘dQ‘QRz + 2|d1||d2|R1R2
< sup E L i i 2 (6.57)
QeeA L 1 2
< sup E |da°R; + d2‘2R%] sup E 2’d1Hd2‘R1R2] (6.58)
CQeea L R% + R% QeeA R% + R%

Here the first inequality follows from cos(®2 + 12 — ®1 — t1) < 1, and the subsequent
inequality follows from that the supremum of the sum is less equal to the sum of the
suprema.

Let’s first look at the first-term in (6:58)." We define a matrix D as a diagonal matrix
where the components on its*diagonal are [d;|%; i.e.;

= 212 i 0
D S diog (4L ldaf2) = ) (6.59)
0 |da|
Note that
d 2 P2 d 2 pR2 d 2,.2 d 2,.2
sup E ‘ 1‘ R§+| §| R2:| S sup ‘ 1‘ Té+’22’ 7'2 (660)
Qe€A R + R 71,72 i+ 73
r’Dr (6.61)
= sup .
T2
= Amax(D) (6.62)

where in the first equality r £ (r,72)7, and in the subsequent equality Amax(D) denotes the
maximum eigenvalue of the matrix D. Here the last equality follows from the Rayleigh-Ritz
%,

Theorem [11, Theorem 4.2.2]. The maximum eigenvalue of D is evidently |d;|?, so we know

£ [1 PR + |daf* R
R? + R3

sup

] < | ? (6.63)
QecA

Next, note that for the second term in (6.58)

— 2|d1|!dleR2] e [ 2R Ry }

lim sup E[ = |dy||de| lim sup E|———= 6.64

Elogeea | RY+R3 il i 5 | 7 7 (061
= |d1||d2[ - 0 (6.65)
—0 (6.66)
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where (6.65) follows from (6.31). Note that (6.31) also holds for asymmetric |d;| and |da|.
We have shown that (6.31) is true by assuming R; escapes to infinity in Section 6.2.1; for
Ry escaping to infinity the proof is identical so we omit it.

From (6.58), (6.63) and (6.66) we obtain the following:

|:le1 + d2 X5 |?
| X1 %+ [ X2|?

lim sup E

< |di]? 6.67

therefore our result follows for the asymmetric case.

6.3 Derivation of Theorem 5.4

In this section, we step further to general m-user SISO MAC. Our goal is to derive upper
and lower bounds to dyac. From the same argument in Section 4.1 we know that

XMAC 2 IAX X§i50,i = Max {log (|di|*) — Ei(—|di*) — 1} . (6.68)

goee

and hence we get
digac > max{|dil; &, |dn |} (6.69)

Once the upper bound to dyae can be showh to be equivalent to the lower bound in (6.69),
we complete the proof of the.result. Note that-the lower bound (6.69) can be achieved by
using an input that satisfies the peak-powerconstraint, while we will derive the upper bound
under the average-power constraint,

Using the upper bound in"(4:13) for the channelsmodel (2.11), we can get after some
steps the bound

di1 Xy + -+ dpXom|? di X1+ 4 dpXon|?
I(X;Y)g—l—i—Elog’l Lt ot Xl —E'( (i X1 £ -+ dinXom] )]ﬂu

P+ Xl T P Xl
8

+ a(log B —log 6% + ) 4 log T’ <a, ’y) + ; ((1+ d?nax) E+ 02) + % (6.70)

which with the right choice of the free parameters «, 3, and v leads to the following propo-
sition.

Proposition 6.1. For the Rician fading MAC (2.9), an upper bound of the sum-rate fading
number under the average-power constraint (2.8) is given as follows:

|d1 X1 +---+dem|2]
I X1 4+ [ X[?

. |1 X1+ -+ dp X n|?
E1< E[ SOCE o 1y, (6.71)

xmac < lim sup 10gE[
5T00Q56.A

Here we define A to be the set of joint input distributions such that all users are independent
and at least one user’s input distribution escapes to infinity when the available power £ tends
to infinity.
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Proof. A proof is provided in Appendix A. O

Since & — log(§) — Ei(—¢) is monotonically increasing, the problem of deriving an upper
bound to dyac can be transformed to finding an upper bound of the expression:

E[ld1X1+--~+demT
[ X124 4 [ X |2

(6.72)

Note that (6.72) is equivalent to

e [FAPIE 4t P ] | R [ deXX (6.73)
P+ [P peEarEap o] R

Assume |di| > |da| > -+ > |d;,| without loss of generality. For the first term in (6.73), we
can upper-bound it as follows:

d2X2 deXm2 d22 dm22
sup E|:‘ 1‘ | 1|2+ +| | |2 | :| = sup E|:| 1| R12+ +| 2‘ Rm:| (674)
QecA (X124 4 [ X QecA Ri+---+ Ry,
jda?rf + -+ + |dm[*r
g o 6.75
. o i+ 2, (6.75)
r'Dr
L5 e (6.76)
e [IE
= Aol ) (6.77)
=% (6.78)
Here in (6.76) we define
D = diag (|d1[%, ..., |dn|?) . (6.79)
and
™
r= (6.80)
'm

In (6.77) we use Rayleigh-Ritz Theorem as in Section 6.2.2, and (6.78) follows because the
maximum eigenvalue of D is |dy |2

As for the second term in (6.73), we write X; = R;el® and d; = |d;|e!¥ and get

* *
i i e did; X X;
L X+ X

2|dy| Ry

=E [M<|d2|R2 cos(®Py +1hg — @1 —Py) + - -+

+ ‘dm|Rm COS((I)m + ¢m - & — ¢1))
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6.3 DERIVATION OF THEOREM 5.4 CHAPTER 6

2|da| R
m <‘d3‘33 cos(®3 + 1P3 — Py — o) +
[ B 0S(@i -+ o — B2 — 1))
2‘dm 1|Rm 1
2!d1!R1(\d2\R2 + -+ |dm|Rin) E 2|da|Ra (|d3|Rs + - - - + |dm|Rin)
B R? + +R2 RP+. -+ R
2|dm—1’Rm—1|dm’Rm
...+ E 6.82
o [ R +---+ R2, (6.82)
Assuming that Q g, escapes to infinity, we can separate (6.82) into two kinds of products as
follows
2|dy||d;| R1 R; )
E [M fOI' 1= 2, eIy (683)
and
2|d;||d;| Ri R; " .
[m foriyjp=2,...,m, i#j. (6.84)
Firstly, we look at (6.83) and,fiote that
2| &1\ dil i R 2R\ R;
lim E | o dy||d;|E =0 6.85
T oo, €| e U L o e | 2 (6.85)

where in the first inequality we.upper-bound by drepping terms in the denominator, and
the last equality follows from (6.31).
In (6.84) we upper-bound by dropping terms in the denominator as follows:

2|d;||d;| R; R; 2|d;||d;| R; R; 2R;R;
| < e | SR | <l | | 050
R{+---+ R, R{ + R; + Ry Ri + R; + Ry
Hence, the problem lies in to show that
2R;R;
lim sup E|———>2—| =0. 6.87
STOOQgepA R} + R} + R} (6.87)
To that goal again we let
E[lX:)*]=¢& i=1,....m (6.88)
where
m
Y &a=¢ (6.89)
i=1
Assume if £ T 0o then & T oo without loss of generality. Moreover, note that
. 2
21t 2 (6.90)

<
2 2 2 =3 2 =
i+t r{ + 27}
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Figure 6.6: The plot of 71 +— 2r2/(ef+ 2r?) for .= 1,2,4. It shows the monotonicity of
2r2/(r? 4+ 2r?) in r; and the faet that itisjupper-bounded by 1.

and that 71 — 2r2/(rf + 2r2)is monotonically decreasing in r; as shown in Figure 6.6. For
an arbitrary choice of a > 0, ‘we have

2R, R,

lim sup E —R% TR R

STOOQEGA
N /OO/OO > 27’Z7"]
< sup lim sup
Qr; QR ngOOQR €A1 Jo 0 0 Tl —i—?" +T
-dQg, (1) dQr,(r;) dQr,(r;)  (6.91)
< sup im B d 6.92
sup lim sup / /0 m Qr, (r1) dQr, (r3) (6.92)

Qr; ZUES Qr, €A1

oo par; 27,2
<sup lim sup / / mdQlﬁ (r1) dQr, (r4)
2 .

Qr; SEES Qr, €A1

+ sup hm sup / / 2 +2 2 dQr, (r1) dQRg, (14). (6.93)
1

QR &1 OOQR €A

Here in (6.91) we define A; as the set of all input distributions such that the first user
escapes to infinity, and take the supremum over all joint distributions of Qg, and Qr;. In
the subsequent inequality we apply (6.90) to replace r; by r;. In the last inequality we split
the integration into two parts as in Section 6.2.1.
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For the first term in (6.93), we have

lim [ d

11m su - E— T ATy

v [ e e aere)
——

&1100 Qp, €Ay
<1
< Tm  sup / / " dQn, (1) dQn, (1) (6.94)
&ilooQr,edr Jo Jo
o (6.95)

Here (6.95) follows from the fact that Qr, escapes to infinity and equivalent derivation as
in Section 6.2.1.
As for the second term in (6.93), we have

i I 2L 4Qm () Q)
sup lim sup ———— dQRg, (r1 R, (75
Qr, E110Qp eArJo  Jar, 77207 T '

— o0 00 272
<sup lim su —t——d r1) dQRg, (7 6.96
B QRIjngOOQRlepA1/O /ari (CLT‘Z‘)2 +2T22 QRI( 1) QRz( Z) ( )
o0
2
Szup /0 2 +2dQRi(7”i) (6.97)
R;
2
=22 <.e _if @ large enough. (6.98)
a

Here in the first inequality we use that#ri— 2¢2/(r? £2r?) is monotonically decreasing in
r1. The last inequality follows.because a can -bée chosen arbitrarily.

We have shown that if Qr, escapes to infinity, then (6.85) and (6.87) hold. As for other
users’ distribution escaping to infinity, we can easily reformulate (6.82) and follow the same
steps to obtain

lim sup E 6.99
STooQgeAjz;; I X124+ | X |2 ( )

i#]

m m * *
[ did, X; X ]:o

Therefore, the result follows from (6.78) and (6.99).
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Chapter 7

Other Observations

This chapter contains some observations not related to the proof of the main results but
still interesting. In Section 7.1 we review what a scale family is, and provide a proposition
of previous results. In Section 7.2 we give an observation on the power usage of a capacity-
achieving distribution in the multiple-access channel.

7.1 Generalization of Scale Family

The definition of a scale family is given in [3]: a scale family of input distributions {Qs} is
generated by a random vectér with a given distribution ()1 that is then multiplied by the
factor 3 > 0. Note that the 'Gaussian dinputrsignal is a scale family. In [3, Theorem 6.11]
it was shown that in the MIMO fading channel a’scale family is sub-optimal in the sense
that the mutual information is bounded in the available £. As to the multiple-access fading
channel, we have a proposition for the special case (2.14).

Proposition 7.1. Consider the channel given in (2.14). Assume that E [|X1]* 4 |X2]?] =
E[IX|]?] =1. Then

lim sup I (VEX; VEH'X + Z) < oo, (7.1)
EToo g0

Proof. Expanding the mutual information we get

I (\/EX; VEHX + Z) <1 (\/EX; \/EHTX) (7.2)
= h(H™X) — h(H'X | X) (7.3)
= h(H™X) — E[log e[| X||?] (7.4)
= h(H"X) — E[log | X||*] — log e (7.5)
r X og e
_h<H HXII) log (7.6)
< log meVar (HTX) — log e (7.7)
= log Var(HTX> . (7.8)
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Here the first inequality follows from data processing inequality, and (7.4) follows because

h(H'X | X = x) = log meVar(Hyx1 + Hoxs) (7.9)
=logme(|z1|* + |z2f?) (7.10)
= log me||x||? (7.11)

then we take the expection over X; (7.6) follows from the scale property of the differen-
tial entropy; in (7.7) we upper-bound the differential entropy by the Gaussian differential
entropy.

Continuing on (7.8), we look at Var(HTX>:

Var (H™X) = E[[HX "] - (E[H"X] )2 (7.12)

<E UHTX 2} (7.13)

< sup E [‘HTX 2} (7.14)

fIx]I=1

< ||Slﬁ£1 EQIE1%/1%] (7.15)

— EfIE)] (7.16)

— Dy |24 |2 (7.17)

which is finite and therefore eompletes the proof.

O]

Thus we learn that any scalefamily. including’ Gaussian input is sub-optimal for this
special two-user SISO MAC. Note that in this proposition the noise is assumed Gaussian,
while in [3, Theorem 6.11] the noise can be any additive noise.

7.2 Observation on Power Usage

Consider the two-user multiple-access fading channel given in (2.14). If the input vector

uses full available average power, i.e.,
EIXI?) =&, (7.18)

then one can define a new input vector as

1
X=——X. (7.19)

)

In this case note that

JEHE E!H\}EX

2
] = 1. (7.20)
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Therefore X is a scale family of X. This input vector X cannot achieve the asymptotic
capacity when £ tends to infinity.

It is an unexpected observation that in order to achieve the asymptotic capacity, the
input cannot use the full available average power. However, we also know from escaping
to infinity that in order to achieve the asymptotic capacity, the cost function ||X||? should
take values that also tend to infinity with £. We conclude that the capacity-achieving input
cannot have an average power with linear growth rate as the available power £, but should
have an average power that goes to infinity with £ with a slower growth rate than the linear
growth rate.

The following example shows this behavior. Consider one of the capacity-achieving
distributions of the single-user SISO fading channel

log | X |> ~ U([loglog £,log &]) . (7.21)

Note that this distribution also achieves the MAC fading number if we only allow the users
with the best channel to transmit using this distribution. The average power of this input
distribution can be computed as follows: first. let

YzlogIX]~M(Bloglog€,§log€}>. (7.22)
By changing the variable
|X|=¢", (7.23)
we have
fix|(z) = 2 m ve [@7 \/f} ’ (7.24)
0 otherwise.
After a few steps of integration, the average power can be obtained:
E[|x[2] = &~ l8¢ (7.25)

~ log& —loglog &’

We can observe that this distribution does not use full power £ but its average power also
tends to infinity with £, which fits the previous discussion.
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Chapter 8

Discussion and Conclusion

In this thesis, the fading number of the multiple-access fading channel is provided in the
two-user SISO and the m-user SISO case. The results of this study indicate that the MAC
fading number is exactly equivalent to the single-user SISO fading number. In order to
be able to achieve the fading number,,we need to reduce the multiple-user channel to a
single-user channel. This single usér must have a miaximum line-of-sight component and use
a input distribution that escapes to infinity:

A possible reason for this rather-pessimistic, result. might be that cooperation among
users is not allowed. Therefore, the best strategy in thesingle-user MISO fading channel—
beam-forming among antennas on the transmitter side—can not be implemented. The users
interfere with each other and'this causesttherdegression in performance, i.e., without coop-
eration between the users, signals transmitted from other users can only be interferences.

Recall that it is shown in [6, Lemma 6] that'a capacity-achieving input distribution can
be assumed to be circularly symmetricin the single-user fading channel. Also note that in
[6, Proposition 19] if at least one user uses circularly symmetric input, then the MAC fading
number is the same as the SISO fading number. From the results in this thesis, we learn
that the capacity-achieving input distribution reduces the MAC to a single-user channel.
Hence one can assume the input distribution to be circularly symmetric, which exactly fits
the two previous results.

The result shown in this thesis using the noncoherent capacity approach is obviously far
below that of assuming the perfectly known channel state. Since the users on the transmitter
side have no knowledge of the channel state, some techniques such as successive interference
canceling cannot be utilized. However, real systems operate at low SNR. This is theoretical
result when SNR tends to infinity; in practical situation, it is not necessary to reduce a
multiple-access channel to a single-user channel for designing a system.

Possible future works for the multiple-access fading channel might be as follows:

e Generalizing to the MIMO case: the users and the receiver use multiple antennas. A
possible approach could be first to consider the MISO case.

e Considering the case with memory.

34



APPENDIX

e Considering the case with side-information.
e Loosening the restriction of Rician fading and considering a general fading process.

e Deriving the nonasymptotic capacity. This is related to the upper and lower bounds
to the nonasymptotic capacity of the fading channel.
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Appendix A

Derivation of Proposition 6.1

To derive the upper bound in Proposition 6.1, we follow steps in [6, Section 4.2]. From
Lemma 4.1 we have

I(X;Y) < —h(Y[X) + logat + alog 3 + log I ( ;)
+

+ (1 — DE [log (VIR ], + 6E[[Y| ] % (A1)
—h(YIX) + log 7 + alog B + log T <a ;)

+ (1 =a)E [log 2 =ent ﬁE[!Y! ]+ ; (A.2)
= —E[log me(I X2 + o) #1og T + alog 8+ log I (a, ;)

+(1-a)E[E[log|Y*| X=x]] +&

+;mew+ﬁ¥+hfxﬁy+; (A.3)
:—EmngP+ﬂ%}—1+abgﬁ+bgf@xg>

+ (1 — @)E[log (|X[* + 02)]

T oE llog <||>|<(T|T2}fa2> ()

+fy+BEmXW%%T+kFX|} % (A.4)

=_1+E

| ‘delZ - |de‘2
gl o —— | Bl <5
ELIXP+ o2 IX[? + o2

+ a<logﬁ — E[log (IX[|* + 0?)]

|dTX|2 ) |de‘2
—E|log | —— | —Ei —ro—
!Og (IIXHQ +o2 ) T PUTIXE + o2
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1
+ logT (a, ;) +e + EE[HXH2 + o+ [d"X[*] + % (A.5)

Here the first inequality follows from Lemma 4.1; in the subsequent equality we assume
0 < a < 1 such that 1 — a > 0 and define

€, 2 sup {E[log (YP+v)| X =x] —E[log|Y]*| X = x] } (A.6)
such that

(1—a)Eflog (|[Y*+v)] = (1 —a)E[log|[Y[)] + (1 — a)E[log ([Y* +v)] (A7)
< (1-a)E[log ([Y]*+v)]

+(1- a)sgp{E[log (YP?P+v)| X =x]

—E[log|Y|*| X = x] } (A.8)
=(1—a)E[log|Y]?] + (1 —a)e, (A.9)
< (1—a)E|log \Y!Q] + €5 (A.10)

in the subsequent equality we use the fact that given X = x the channel output is Gaussian
distributed; in the subsequent equality wejevaluate the expected logarithm of a noncentral
chi-square random variable as.derived-in [12],/[2; Lemma 10.1], [3, Lemma A.6]; and the last
equality follows from simple algébraic rearrangements.

Next we bound the following expressions:

Ellog (J|X[*4+07)] > log o%; (A.11)

[ [? x|’
E|log | ——5—— J EBif
X" + o2 X" + o

E[[IX]* + 02+ [d7X[*] <&+ 0+ E[lld) X)) (A.13)
=&+ 0% + ||d|PE[|IX]?] (A.14)

(A.15)

(A.16)

> —; (A.12)

and

<E+0°+|d|*E

= (14 |d|*)€ + o>
Here, (A.11) follows from dropping some nonnegative terms; (A.12) follows because log§ —
Ei(—¢) > —v where v =~ 0.57 denotes Euler’s constant; and to derive (A.16) we used the
Cauchy-Schwarz inequality and the fact that the input needs to satisfy the average-power

constraint.

Moreover, we bound

)] e
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which follows from the monotonicity of £ — log & — Ei(—£).
Together with (A.5) we then get

() ()

+ a(log B —logo® +7) + logT’ (a, ;) + ;((1 +[|d|*)€ + 02) + % (A.18)

(o)) el ]) e

+ a(log B — log o +7) +logl’ <a, ;) + ;((1 + Hd||2)€ + 02) + % (A.19)

I(X;Y)< -1+E

+ €y

Here the last inequality follows from Jensen’s inequality, the fact that log& — Ei(—¢) is
concave.
We will now make the following choices of the free parameters a and :

14

a s a(f)e (A.20)
log ((1 Ld|2)E + 02)
A = 1 el//a(é')
5 20(E=as (A21)

for some constant v > 0, which|leads to the following asymptotic behavior:
2k v 1 —v
;%10 logI{ o, 5 log (= log (1 —e ); (A.22)
T 4T 2 —_ .
g‘lTI& a(logﬁ log o~ + 7) v; (A.23)
— [ 1 v
lim ¢ —( (1 +|d|? )+ =0 =0; :
8%130{6« +|d|| )5+0>+6} 0; (A.24)

— 1
lim {log — — log (1 + log (1 + )) = —logv. (A.25)
EToo « o

(Compare with [2, Appendix VII], [3, Sec. B.5.9].)
Hence, we have derived the following upper bound on the fading number of a Rician
MAC:

— &
XMAC = ngm {CMAc(S) — log <1 + log <1 + U2>>} (A.26)
= lim {sup I(X;Y) —log (1+1o 1—1—£ (A.27)
- Etoo Qf ’ g g 0_2 .

<mae e (o)) = ()

v
—i—ey—l—a(logﬁ—logJQ—&—'y) +logT’ (a, ﬂ)
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+ %((1 +[|d|I*)€ + 02) - % — log <1 + log <1 + %)) } (A.28)

< lim {1 (E[‘dTX|2 ) E( E[’dTXFD 1}+ +
< lim sup og — ka| — — €, + Vv
€10 Ox [k 1x]*

+ log (1 —€e™") —logu, (A.29)

where the supremum is taken over distributions QJx that satisfy the average-power con-
straint.

By letting v tend to zero which makes sure that ¢, — 0 as can be seen from (A.6) and
using Proposition 5.1 we complete the proof.
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