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使用基底擴展模型實現 OFDM 通道估測之

研究 

學生：張凱翔               指導教授：謝世福 

 

國立交通大學電信工程研究所碩士班 

 

中文摘要 

在無線通訊傳輸環境下，為了降低位元錯誤率，通道估測是一項重要的議題。

在本篇論文中，我們採用了近年受到廣泛地使用的正交分頻多工(OFDM)系統，

利用傑克模型來模擬雙重選擇通道環境，藉由基底擴展模型來實現通道估測的任

務。我們將分析常見的基底擴展模型，並推導出理論的估測錯誤率，以及使用維

納濾波器來提高已估測通道之訊雜比，可運用在不同的基底擴展模型上。同時也

考慮了實際環境中，載波頻率偏移以及相位雜訊的影響，我們提出改善的模型藉

此降低其效應。另外，為了降低運算複雜度以及提高收斂速率，我們提出了具有

不同調整步伐的最小均方演算法(LMS)以及遞迴最小平方演算法(RLS)，理論分

析出最佳的非時變調整步伐，在不同的投影係數上，其調整步伐將會與其基底的

重要性呈現正比關係。此外。如果當都普勒頻率在低頻區間改變的情況下，基底

也將隨之改變，我們則提出藉由少量的參數記憶以及冪法演算法來模擬追蹤出改

變後的基底，可有效節省運算複雜度或記憶空間的使用。 
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Study of Channel Estimation in OFDM 
Exploiting Basis-Expansion Model 

Student: Kai-Hsiang Chang    Advisor: Dr. Shih-Fu Hsieh 

Institute of Communications Engineering  
National Chiao Tung University 

Abstract 

    For reducing the bit-error rate (BER) in wireless communication systems, it is 

important to provide a channel estimator at receiver in orthogonal frequency-division 

multiplexing (OFDM) system. We use the basis-expansion model (BEM) to estimate 

the doubly-selective channel which is simulated by Jake's model. We would analyze 

and discuss some often seen BEMs, thus, we could derive the theoretical MSE and 

apply the Wiener filter to enhance the signal-to-noise ratio (SNR) for estimated 

channel. The carrier frequency offset (CFO) and phase noise (PHN) issues are also 

considered in our proposed scheme. Moreover, for reduce complexity, we update the 

BEM coefficients by different weighting corresponding to the significance of basis, 

which could be verify by the theoretic derivation. Besides, when Doppler frequency 

changes, we propose two methods to obtain the new bases, these two schemes use 

Power method and asymptotic sinusoidal function that need only few parameters and 

computation than conventional methods.  
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Chapter 1 

 

Introduction 

 
For wireless communication systems, it is important to provide users a better 

quality and stable transmission. The OFDM system has recently been applied widely 

in wireless communication systems due to its high data rate transmission capability 

with high bandwidth efficiency and its robustness to multi-paths delay [20,28,43]. It 

has been used in wireless LAN standards such as American IEEE802.11a and the 

European equivalent HIPERLAN/2 [27] and in multimedia wireless services such as 

Japanese Multimedia Mobile Access Communications. [20]  

Among many problems which degrade the performance in OFDM systems, 

frequency-selective channel is a major issue that leads to bad transmission quality. A 

channel estimator evaluating the wireless channel can offer an approximated channel 

for equalizer, and then the effect of the frequency-selective channel can be removed. 

Carrier frequency offset (CFO) and phase noise (PHN) are two serious problems in 

channel estimation which can fail to estimate the channel impulse response especially 

for pilot symbol assisted modulation [9,15,18-20,23-24,29-30,33-34,39,41]. 
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An OFDM system with channel estimator is shown in figure 1.1 where ĥ  is used 

to model the wireless channel h  between transmitter and receiver (users and 

base-station). Thus the replica transmitted signal x̂  is generated after equalizer, 

which is the result of the received signal y divided by the estimated channel vector 

ĥ . Then the original data could be decoded after the demodulator.  

The implementation of such a system is not easy as it seems. Due to the 

performance of the channel estimation scheme will be affected by the time-varying 

statistics of the Rayleigh channels because of the Doppler effect, therefore, the 

orthogonality between the sub-carriers of OFDM systems is lost in case of 

time-varying channels, and thus, the system performance is degraded because of the 

resulting Inter-Carrier Interference (ICI) phenomenon [30-31].  

Among all the estimation schemes to cope with this channel, the basis expansion 

model (BEM) is popular for their simplicity and robust behavior [32]. There are 

several often seen BEM methods (e.g. CE, Slepian and SVD-BEM) for time-variant 

channel estimation. In general, the Doppler spectrum is assumed to adhere to Jakes’ 

model [13]. The Jakes’ spectrum is valid for a dense scatterer model in the limit of an 

infinite number of scatterers around a linear omnidirectional antenna [49]. But this 

assumption is not fulfilled if a few dominant propagation paths are present only. It 

was shown by measurements in [17] that wireless channels at 5.3 GHz do not have a 

Jakes spectrum. Furthermore, the actual velocity of the user and the angles of arrival 

enter the autocorrelation as parameters and have to be estimated explicitly.  

Important issues such as CFO and PHN, and the conventional estimation method 

for time-invariant channel, compare several interpolation methods based on the 

frequency domain pilot tones. Finally, we introduce the time-varying channel model 

which is not easy implemented as before, so we model the channel as the Jake’s 

model [12-13], which the assumption is reasonable and often seen. 
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Figure 1.1 The structure of OFDM system 

 

In Chapter 3, several BEM schemes are introduced and analyzed such as CE, 

Slepian and SVD-BEM. Moreover, we apply the Wiener filter after these BEMs 

channel estimation to enhance the SNR and improve channel MSE. Certainly, we 

derive the theoretical mean square error for these BEM methods. Moreover, we 

consider both CFO and PHN into the OFDM transmission, which are not rare and 

practical conditions. 

In Chapter 4, in order to reduce the complexity, we would like to update the BEM 

parameters. First, we update the BEM coefficients using least mean squares (LMS) 

and exponentially-weighted recursive least square (EW-RLS) [33] algorithm, and we 

consider the significance of each BEM bases, which can improve the convergence rate. 

For the purpose to ensure the optimum stepsizes are proportional to the bases 

significance (eigenvalues), we derived the theoretical MSE for LMS and found the 

time-invariant stepsizes for each basis coefficient. Second, when the Doppler 
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frequency is not always fixed, we propose two ways that can obtain the new bases, 

which are the asymptotic curve for the new bases directly and the approximated 

eigenvalues with power method to get new bases. 

In Chapter 5, the simulations verify the result of our analysis in the Chapter 2-4 and 

the comparison between the proposed and other methods, and then the conclusions are 

in Chapter 6. 
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Chapter 2 

 

OFDM System Basics 

 

OFDM system exploits many orthogonal sub-carriers to transmit multiple 

sub-signals simultaneously. Each sub-carrier is modulated with a conventional 

odulation scheme such as phase shift keying (PSK) or quadrature amplitude 

modulation (QAM) at a low symbol rate, and the total data rate is similar to 

conventional single-carrier modulation schemes in the same bandwidth. 

The features of OFDM comprises good spectral efficiency, othogonality between 

sub-carriers, no inter-carrier guard band, easy implementation by fast Fourier 

transform, easy design for equalizer and in effective for multi-paths and frequency 

selective fading channel. Moreover, the key point for OFDM schemes are 

synchronization, carrier frequency offset, high PAPR (Peak to average power ratio) 

problem and sensitive to Doppler effect. [29,44-45]     

OFDM has developed for wideband digital communication. The applications 

include digital television and audio broadcasting. [45-46] 
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2.1 OFDM system description 
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Figure.2.1 OFDM system block diagram 

 

In fig.2.1, after QPSK, M-ary QAM modulation, the modulated data 

{ }0 1 1, , ,
T

N
X X X −=X L  is transferred into time domain signal vector x by N-points 

inverse discrete Fourier transform (IDFT) that is represented as H=x F X , where N 

denotes the FFT length, and the matrix F  defines a DFT matrix with 

H H

N
= =F F FF I  [20]. Afterwards, the vector { }0 1 1, , ,

T

N
x x x −=x L  adds the CP 

(cyclic prefix) which denotes a copy of tail part (Ng) of OFDM signal x  is attached 

to its front. (Figure 2.2), where Ng should not be less than length of channel impulse 

L . The CP is used to prevent intercarrier interference (ICI).   

  The multipath channel is assumed to be time-invariant during a data block 

transmission and the delay spread is L, in other hand, [ ] 0h l ≠  for [0, 1]l L∈ − . 

Therefore the effect of multipath ( { }[0], , [ 1]
T

h h L= −h L ) is linear convolution with 

transmitted signal, thanks to the cyclic prefix, the linear convolution can be replaced 

by circular convolution on account of that we only focus on the useful part of 
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complete OFDM signal.  

The received complete signal:  

*
cp cp

=y x h ,       

where 
cp

y : ( 1) 1N Ng L+ + − × . The received useful part signal (after CP removed):  

N
= ⊗y x h , 

where
N

⊗ denotes N-polnts circular convolution. The detected symbol after DFT: 

( ) ( )NDFT DFT= = ⊗ =Y y x h XH ,  

where ( )DFT=H h . 

 

 :OFDM signal x

NNg

CP

copy

 

0x 1x
1Nx −LLLN Ngx − 1N

x −L

CP  Useful part

( )cp   Complete OFDM signal N Ng+x
 

Figure 2.2 Cyclic prefix schematic 

 

2.2 Carrier frequency offset and phase noise 

The practical receiver encounters non-negligible phase noise (PHN) and carrier 

frequency offset (CFO), which result in substantial intercarrier interference that 

destroy the orthogonality of the system. The Tx/Rx structure and the channel model 

over a period of one OFDM symbol, taking into account the distortion caused by CFO 

and PHN, are illustrated in Figure 2.3 
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After CP is removed, we have the received OFDM symbol in time-domain as 

( )
2

( )

2
( )

0

[ ] [ ] [ ]                                                   (2.2.1)

φ

φ

y h x ω

n
j

N

n L
j

N
l

l

e

e h n x n l n

π ε

π ε

ω

+

+

=

= ⊗ +

= − +∑
 

where ⊗ denotes circular convolution, ω  is the AWGN, and ε  is the normalized 

CFO within a packet. [ [0] [1], , [ 1]]TNϕ ϕ ϕ= −φ K  is the phase noise sequence which 

can be modeled as two kinds of processes. First, Gaussian PHN, which is zero-mean, 

stationary, finite-power Gaussian distributed random process [7], . ., ~ ( , )i e Nφ 0 Φ .Φ  

is the covariance matrix of φ  and 0  is the zero vector. Second, Wiener PHN, and 

the discrete time equation can be written as [ ] [ 1] [ ],n n nϕ ϕ ξ= − +  where 

[ ]nξ 3~ (0,4 )
dB s

N f Tπ  is a Gaussian random variable [3]. 

 IDFT CP ADD P/S Channel
S/PCP OFFDFTEqualizerDetectorP/S

S/PModulation
De-Mod.

Fig.2.3 OFDM system and PHN/CFO channel model 

 

2.3 Time-invariant channel estimation 

A dynamic estimation of channel is necessary before the demodulation of OFDM 

signals since the radio channel is frequency selective and time-varying for wideband 

mobile communication systems [21]. In Section 2.3.1 we introduce the time domain 

approach for time-invariant channel estimation. Then in Section 2.3.2, we introduce 
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that the channel estimation scheme could be performed in frequency domain by either 

inserting pilot tones into all of the subcarriers of OFDM symbols with a specific 

period or inserting pilot tones into each OFDM symbol. 

 

2.3.1 Time domain approach 

In time-domain approach for channel estimation, we estimate the time-domain 

channel impulse response [ ]h l , where 0,1, , 1l L= −L . 

The received signal during 
T

N  training periods in time-domain can be represented 

as [ ] [ ] [ ]
m

y n h l x n noise= ⊗ + , where 1, ,
T

m N= L , and the matrix form 

[0]

[1]

[ 1]

m

m

m

m

y

y

y N

 
 
 = = +
 
 

− 

y Xh noise
M

                               (2.3.1) 

0 1 1[ , , , ]T

L
h h h −=h L , and the circular convolution matrix form for training signal 

[0] [ 1] [ 2] [ 1]

[1] [0] [ 1]

[1]

[ 1] [ 2] [ 3] [ ]
N L

x x N x N x N L

x x x N

x

x N x N x N x N L
×

− − − + 
 

− 
 =
 
 
 − − − − 

X M O M

M M

L

 

In (2.3.1), we can obtain the estimated channel estimation via LS approach 

† †

1 1

†

1 1ˆ

                                                                              (2.3.2)

h X y X Xh + noise

X Xh noise term

T TN N

m

m mT TN N= =

   
= =   

   

= +

∑ ∑

 

Then we can obtain frequency response Ĥ  by applying the discrete Fourier 

transform of Eq. (2.3.2) with zero padding. Note that the noise effect would be 

smoothed out by time averaging. 
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The advantages of time-domain approach is fewer parameters are estimated given 

a fixed amount of data rather than frequency-domain approach, and leading to more 

accurate estimates. But there are more computations required for one estimation. 

 

2.3.2 Frequency domain approach  

In frequency-domain approach for channel estimation, we estimate [ ]H k , the 

Fourier transform of channel impulse response, where 0,1, , 1
p

k N= −L . 

The channel estimation based on comb type pilot arrangement (Figure 2.4) is 

through different algorithms for both estimating channel at pilot frequencies and 

interpolating the channel. In comb-type pilot based channel estimation, the 
p

N pilot 

signals are uniformly inserted into according to the following equation:  

[ ] [ ]X k X mL l= + ,  

where L  denotes the period of pilot inserting. We define { }[ ], 0,1, ,
p p

H k k N= L  as 

the frequency response of the channel at the pilot subcarriers. The estimated channel 

before interpolation is given by: 

[ ]
[ ] ,      0,1, , 1

[ ]

p

e p

p

Y k
H k k N

X k
= = −L ,  

where 
p

Y and 
p

X are output and input signal. 

The estimation of channel at pilot frequencies is based on least-square (LS) while 

the channel interpolation is done using linear interpolation, second order interpolation, 

low-pass interpolation, spline cubic interpolation, and time domain interpolation 

(Figure 2.5). Time-domain interpolation is obtained by passing to time domain 

through IDFT, zero padding and going back to frequency domain through DFT. [REF 

papers] 
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Figure 2.4 Comb-type pilot arrangement 

ˆ ˆ ˆ ˆ[ ] ( [ 1] [ ]) [ ]
l

H mL l H k H k H k
L

+ = + − +
 

Figure 2.5 Interpolation example (linear interpolation) 

 

In addition, the channel estimation based on block type pilot arrangement (Figure 2.6) 

is performed by sending pilots at every sub-channel and using this estimation for a 

specific number of following symbols.  

In block-type pilot based channel estimation, OFDM channel estimation symbols 

are transmitted periodically, in which all subcarriers are used as pilots. If the channel 

is constant during the block, there will be no channel estimation error since the pilots 

are sent at all carriers. The estimation can be performed by using either LS or MMSE 

[18-19]. Given Y XFh W= + , where F denotes the DFT matrix.  

1

MMSE hY YY
H FR R Y

−=   
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where { } H H

hY hhR E hY R F X= =  and { } 2H H

YY hh NR E YY XFR F X Iσ= = +  are the 

cross covariance matrix between h  and Y and the auto-covariance matrix of Y . 

hh
R  is the auto-covariance matrix of h  and 2σ represents the noise power. And the 

LS estimation can be represented as: 

1

LS
H X Y

−= which minimizes ( ) ( )HY XFh Y XFh− − . 

When the channel is slow fading, the channel estimation inside the block can be 

updated using the decision feedback equalizer at each sub-carrier.  

� The estimated transmitted signal
[ ]

[ ]
[ ]

e

e

Y k
X k

H k
=  

� { }eX  de-map to binary data and then back map to { }pure
X   

� The estimated channel 
[ ]

[ ]
[ ]

e

pure

Y k
H k

X k
=  

Since the decision feedback equalizer has to assume that the decisions are correct, the 

fast fading channel will cause the loss of estimated channel parameters. Therefore, as 

the channel fading becomes faster, there happens to be a compromise between the 

estimation error due to the interpolation and the error due to loss of channel tracking. 

For fast fading channels, we will discuss in chapter 2.4 and chapter 3.  

 

Figure 2.6 Block-type pilot arrangement 
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2.4 Time-varying channel model 

In wireless communications such as satellite communication and cell-phones, the 

information signal is transmitted across free space. Two principal factors which 

influence the distortion of the signal transmitted across the wireless medium are 

multipath fading and mobility as illustrated in Fig. 2.7.  

Multipath phenomenon means the transmitted signal arrives at the receiver via 

multiple propagation paths at different delays. As the matter of the fact, the multiple 

signals arriving at the receiver may add constructively or destructively resulting in 

wide variations in the signal strength.  

Mobility is the phenomenon in which the relative positions of the different objects 

change with time, causing the nature of channel distortion to vary with time. It will be 

discussed in Section 2.4.2. 

 

 

 

 

 

Figure 2.7 Multipath and mobility 
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2.4.1 Doubly-selective channel 

All simple equalizers are based on the assumption that the channel is quasi-stationary 

which means that channel is time-invariant during a transmitted block. However, in 

wireless environment, the channel state may change within a transmitted block. This 

time-varying multipath indicates frequency-selective channel. 

Under frequency-selective fading, the channel bandwidth and delay spread are 

smaller than the coherent bandwidth of signal and symbol period respectively, 

moreover, the different frequencies of transmitted subcarriers correspond to different 

channel frequency response. 

Accordingly, we can denote the impulse response of time varying channel as [ ]
l

h n , 

where n  can be interpreted as time index and l  as channel tap index and [0, )l L∈ .    

The received signal with Doppler effect corresponding to transmitted signal [ ]x n   

(in the complex baseband) and can be represented as  

 
0

[ ] [ ] [ ] [ ]
L

l

l

y n h n x n l nω
=

= − +∑                    (2.4.1)               

Note that we usually use Jake’s Model to describe [ ]
l

h n  which will be introduced 

elaborately in section 2.4.3 and [ ]nω  is additive noise term. The time-selectivity due 

to Doppler effect and frequency-selectivity due to multipaths in the wireless channel, 

which is usually called doubly-selective channel. [2,9,11,16] 

 

2.4.2 Doppler frequency effect 

Since the relative motion of transmitter and receiver, the Doppler effect must be 

evaluated, and the corresponding mathematical equation can be represented [14] as 

                                                                                           (2.4.2)c d
d

s s

f f
f

cT T

ν
= =%  

where 
d

f%  is the normalized Doppler frequency, with ν (m/s) the speed of the mobile, 
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c
f  the carrier frequency in Hz, c  the speed of light, 

d
f  the actual Doppler 

frequency, and 
s

T  the subcarrier spacing. 

The rate of variation of the channel response across time due to mobility is called 

the Doppler spread. If the channel response varies significantly in the signaling 

duration, it becomes time-selective. Note that channel are both time and frequency 

selective are doubly-selective channels.  

 

 

Figure 2.8 Channel vector in different Doppler frequency (10,100,300 Hz) 

 

2.4.3 Jake’s model and channel statistics 

In wireless channel, there does not exist the LOS (line-of-sight) signal, thus the 

Rayleigh fading channel is always used to simulate the real channel. Moreover, if 

there is Doppler effect in the multipath channel simultaneously, it is generally 

believed that the Jake’s model is very appropriate for time-varying channel discussed 

in Section 2.4.1. 

Noted that the auto-correlation function [12-13] 

2

0( ) (2 ) 
l l d

r fτ σ π τ= J %   

Where 0 ( )J ⋅  denotes the zeroth-order Bessel function of first kind and 2

l
σ the power 
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of the thl channel tap. Therefore, we can obtain the auto-covariance matrix R
l
 in 

dimension N N× , whose ( ,i j )-th element is 2

0( ) (2 ( ))J
l l d

r i j f i jσ π− = −% . 

The Doppler power spectral density  

2

1
( )  

1
d

d

S f

f
f

ν
π

=
 

−  
 

                                    (2.4.3) 

which is illustrated in Fig. 2.9 

 

Figure 2.9 Power spectral density of Jake’s model 

 

2.4.4 Problems from Time-Varying Channel 

When the transmitted signal goes through the time-varying channel, there are some 

crucial problems induced, two of which will be depicted as follows. 

1. Channel estimation issue 

We use pilot sequences to estimate the channel information in conventional time 

invariant channel, but doubly selective channel changes so fast that giving rise to two 

successive time-domain channel tap [ ] and [ 1]
l l

h k h k +  are normally distinct. 

Thanks to the estimation schemes of BEM, which is effective to be exploited to 

overcome the time-varying channel, and we will discuss the issue in Chapters 3 and 4. 
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Moreover, there are also some useful methods such as blind estimation scheme in 

[8-9].  

2. Equalization issue  

In a time-varying channel, the channel matrix H in Eq.(3.2.2) is not circulant, thus, the 

traditional equalizer [10] can not be applied. This problem is discussed in detail in 

[11]. 

 

2.4.5 Data detection 

Due to the equalization issue in Section 2.4.4, the data transmitting method in 

doubly-selective channel is important. In [2], one data transmitting method will be 

introduced in the following paragraph. 

The input is made by time-division multiplexing pilot and data symbols. The pilot 

symbols are known to the receiver, and the data symbols come from a finite alphabet. 

The system uses zero-padded block transmission, where each transmitted block, or 

packet, is made of alternating data/pilot sub-blocks. All pilot sub-blocks are assumed 

to be of length 2 1pN L= + and of the form   0 0T T

L L
p   . All data sub-blocks are of 

length 
d

N . If the number of pilot/data sub-blocks in a packet is Q + 1 (for even Q) 

and the q-th data sub-block is denoted d
q
 then the input is given by  

0       s d 0 0 d 0 0
T

T T T T

L L Q L L
p p =  L ( as in [2] ), 

the fact that the final L symbols are zeros guards against inter-block interference. The 

total number of pilot and data symbols is 

Np = (Q + 1) pN  and Nd = (Q + 1)
d

N  respectively.  
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Figure 2.10 Packet transmission schematic 

 

We have Q+1 received signal py
  

to obtain B L×  coefficients by exploiting the 

known bases (obtained from the channel statistics). Find the optimum combination of 

bases for h p  as the whole channel vector ( 1)h
l

N × , thus the channel tap that data 

pass hd can be estimated. Since we also have the received signal resulted from data: 

dy , thus the data detection can be accomplished. 

To summarize this chapter, the OFDM and its main problems has been introduced. 

For the channel estimation in time-varying channel with Doppler effect, we discussed 

the issue in Section 2.4, which was prepared for Chapter 3, which will introduce and 

analyze some estimation schemes. 
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Chapter 3 

 

Basis Expansion Model  

for Channel Estimation Schemes 

 

In Section 2.4, the time selectivity causes the channel is time-invariant over a block 

assumption does not hold, which assumption has been adopted by many existing 

wireless environment. This doubly- selective channel would affect the communication 

performance critically. The issue of estimation of this channel is getting more 

attention due to the significance to the future wireless application.     

Basis Expansion Model (BEM) is an effective scheme to overcome the difficulties 

with a few complex exponentials and low-cost. [2,4,22-23,25,35-38,39-42] 

  The BEM that is optimal in terms of the mean square error (MSE) is the discrete 

Karhuen–Loève BEM (DKL-BEM or SVD-BEM) [36-38], the problem though is that 

if the assumed channel statistics deviate from the true scenario, which is very likely in 

practice, the SVD-BEM will perform suboptimally. 

 As a compromise, one can derive a BEM that is based on a general approximation 

for all kinds of channel statistics. For instance, the discrete prolate spheroidal BEM 
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(Slepian-BEM) [22-23]. It is featured by a set of orthogonal spheroidal functions that 

are perfectly band-limited but have maximal time concentration within the considered 

interval. 

 Note that it is also possible to construct BEMs that are not dependent on the 

channel statistics like the complex-exponential BEM (CE-BEM) [35]. The CE-BEM 

introduced in Section 3.1 exploits the Fourier basis expansion gained a great deal of 

attention thanks to its algebraic ease [2,4,39-42], but fails to track the channel at the 

edges of the block resulting in much more modeling error [25]. As we understand, the 

CE-BEM can actually be viewed as a special SVD-BEM but based on a white 

spectrum.  

At first, we introduce the essence of the basis expansion model in Section 3.1. Then 

we introduce some BEM methods including the CE-BEM in Section 3.2, and then the 

improvement by over-sampling and non-uniform sampling version in Section 3.2.1 

and 3.2.2. In Section 3.3, we introduce the singular value decomposition basis 

expansion model, which exploits the principle eigen-vectors as the basis rather than 

CE-BEM. In the following Section 3.4, the Slepian BEM would also be introduced. In 

Section 3.5, we analyze the theoretical MSE of BEM and propose the Wiener filter 

methods for enhancement. Moreover, we also consider the phase noise and the carrier 

frequency offset problem in Section 3.6.  

 

3.1 Introduction of basis expansion model 

Rapidly time-varying channels may be normally encountered in highly mobile 

wireless environment. We approximate the time-varying channel using the basis 

expansion model (BEM) as a liner combination of finite number of complex 

coefficients (Fig. 3.1). That can reduce the computation complexity and diminish the 
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noise.  
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Figure 3.1 BEM for real time-varying channel 

 

The time-varying channel vector ( 1)h   l N ×  (note that N denotes the transmitting 

block length or the length of one basis function, and L+1 is the number of multipath 

channel impulse response) can be represented as BEM coefficients  

,0 ,1 , 1 ( 1)
, , ,

T

l l l l B B
c c c − ×
  c = L                                       (3.1.1) 

(note that B denotes the number of basis functions we used) by a known bases matrix:  

[ ]0 1 1, , , B N B− ×
=D d d d  

where 1 2, , ,
B

d d d  denote the basis functions in dimension 1N × . And then we can 
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express lh  as Eq.(3.1.1) 

,0 0 ,1 1 , 1 1l l l l B Bc c c − −= + + +h d d dL                                (3.1.2) 

The parameters we interested will decrease ( N B>> ), and moreover, we would like 

to have the good bases D  to model the real channel, and the following sections 

introduce some often seen bases.  

Given some bases (CE, SVD, or Slepian), we can obtain the estimated BEM 

coefficients ĉ  from the transmitting pilots and received signals by the least-squares 

method: 

0 1

1 0 2

0

0

0

[0] [0] [0]

[1] [1] [1] [1]
[0] [0]

[1] [1]
[ 1]

[ ]
[ 1] [ 1]

[ 1] [ 1]

 

  

     

0

0

y + w

0

0
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S + w

h

Dc

L

L

L

L

l

l

L

L

l

l

L

l

l

h h h

h h h h
y s

y s
h L

h L
y N s N

h N h N

=

=

 
 
    
    
    = = −    
    

− −    
 
 − − 

=

=

=

∑

∑

L L

L

M O O O M

M O O
M M

O O

O O

L

[ ]1

        

 S I D c + wL+= ⊗

 

where S
l
is defined in Eq.(3.3.8), 0[ , , ]S S S

L
= L  and 0[ , , ]c c c

T

L
= L . The notation 

⊗  indicates the Kronecker product.  

The advantages for BEM are the fewer parameters need to estimate ( c∈ ), in 

contrast, the conventional ML method need to estimate more parameters ( h
ML

∈ ), 

where N B>> . 
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3.2 Complex exponential basis expansion model 

The CE-BEM has been widely used to model time-varying communication 

channels [1-2]. It represents the channel as the sum of complex exponentials, which 

are uniform sampling in the frequency domain and symmetric about the zero 

frequency. For the case where the channel has L+1 taps, and the l th  

( 1,...,1,0 −= Ll .) tap, [ ]
l

h n  will be modeled using B + 1 basis coefficients ,l k
c  (for 

an even value of B): 

/2

,

/2

2
[ ]   where 

/ 2

B
j kn d

l l k

k B

f
h n c e

B

ω π
ω

=−

= =∑                          (3.2.1) 

It can be interpreted as Fourier series approximation. This means that there are  

(B+1)(L+1) coefficients to estimate, note that there were N(L+1) coefficients to 

estimate without BEM. For block transmission with packet length N , the received 

signal y can be denoted as  

[ ]

/ 2

/ 2

1                                                                                 (3.2.2)

y = Hs + w

D Sc + w

D I S c + w

B

k k

k B

B

=−

+

=

= ⊗

∑  

where ( 1)S N L= × + is lower triangular Toeplitz matrix with its first column 

[ [0], , [ 1]]Ts s N −K , 

( 1)

/ 2 / 2

0, ,

/ 2 / 2

1 0

,      / 2, , / 2

0

[ , , ]

[ , , ] ,      / 2, , / 2

[ , , ]

D

D D D

c

c c c

j k

k

j k N

B B

T

k k L k

T T

B B

e
k B B

e

c c k B B

ω

ω −

−

−

 
 
 = = −
 
 
 

=

= = −

=

K
O

K

K K

K

 

The least-squares estimation of c  is: 

[ ] †

1
ˆ ( )B+= ⊗c D I S y                                         (3.2.3) 
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max max-                                             0                                             f f
 

Figure 3.2 CE-BEM sampling in Jake’s model PSD 

 

3.2.1 Oversampling CE-BEM approach 

Since the channel is limited in the Doppler range with non-uniform distribution, it 

might be beneficial to reduce the sidelobes by taking more samples within the range. 

Therefore, we can rewrite Eq.(3.2.1) in 

/ 2
( ) ( ) '

,

/ 2

1
[ ]                                                                    (3.2.4)  

2
where ' , and  0,1, , 1

/ 2

B
K K j qn

l l q

q B

d

h n c e
KN

f
n KN

KB

ω

π
ω

=−

=

= = −

∑

K

 

Define  

( ) ( ) ( )[0], , [ 1] ,
T

K K K

l l l
h h KN = − h K   

and 

  ( ) ( ) ( )

, /2 , /2  [ , , ],K K K

l l B l Bc c−=c K  

the least-squares fit for ( )  K
l

c  could be obtain by solving 

( )

( ) ( ) ( )

   

1
min    ,

K
l

K K K

l l
KN

−
c

h D c                          (3.2.5) 
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where ( )KD  is also the basis matrix that can be represented as 

/ /

( )

( 1)/ ( 1)/

1 1
j B KN j B KN

K

j B KN KN j B KN KN

e e

e e

π π

π π

−

− − −

 
 
 =
 
 
 

D

L

M M

L

   

We can derive the least-squares solution in E q.(3.2.5) 

( ) ( )� ( )   =  K K K

l l
KNc D h                                         (3.2.6)  

 

3.2.2 Non-uniform sampling approach CE-BEM 

Because of the non-uniform distribution of the Doppler power spectral density, in 

Section 3.2 the uniform sampling of the PSD does not sample the most important 

frequency as the complex-exponential basis, it might be beneficial to sample more 

significant frequencies, which means the high frequency close to the maximum 

Doppler frequency in the Jake’s model case.    

 

 

Figure 3.3 Non-uniform sampling under Doppler PSD 



 26 

Assume the B+1 basis coefficients we use, from 
d

f− %  to 
d

f%  the overall interval, 

the sampling frequencies we take could be represented as  

( 2) ( 2) ( 4)
, cos( ) ,0,cos( ) ,cos( ) , , cos( ) ,

2 2 2
d d d d d d

B B B
f f f f f f

B B B B

π π π π+ − − 
− 
 

% % % % % %K K  

Each sector consists of two successive sampling frequencies has the same energy. 

Note that the density is higher in both ends and the lengths of the every sector are the 

Doppler shift. And then we can rewrite Eq.(3.2.1) 

/ 2

,

/ 2

[ ] q

B
j n

l l k

q B

h n c e
ω

=−

= ∑                                         (3.2.7) 

where 
( 2 )

cos( )
2

q d

B q
f

B

π
ω

−
= %  

( 1)

/2 /2

1 0

, / 2, , / 2

0

[ , , ]

q

q

j

q

j N

B B

e
q B B

e
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ω −

−

 
 
 = = − 
 
  

=

D

D D D

K
O
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The least-squares estimation of c  is: 

[ ] †

1
ˆ ( )B+= ⊗c D I S y                                         (3.2.8) 

 

3.3 SVD Basis Expansion Model 

We use the singular value decomposition to find the best basis from the Jake’s 

model Rayleigh channel. In time-varying wireless channel, since only one block is 

considered, the n th received sample can be expressed as in [4] 

0

[ ] [ ] [ ] [ ]
L

l

l

y n h n x n l nω
=

= − +∑                                      (3.3.1) 

And the matrix representation in (3.2.2) 
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, ,

0

[ ] [ ],   n=0, ,N-1 
B

l l k k Basis

k

h n c f n
=

=∑ K                               (3.3.3) 

where ,k Basis
f  denotes the SVD basis come from the eigenvectors channel correlation 

matrix ,  
h l

R following the Jake’s model in chapter 2. And we can obtain the singular 

value decomposition of , = H

h l l l lR Q Λ Q .                           (3.3.4) 

And Eq.(3.3.3) could also be represented using matrix notation  

,0

,1

,

[0]

[1]
,          0, , ,                                    (3.3.5)

[ ]

h D Dc

ll

ll

l l

l Bl

ch

ch
l L

ch N

  
  
  = = = =
  
  

   

K
MM

 

where D  and c
l
 are ( 1)N B× +  dimensional bases matrix and the projected BEM 

coefficients respectively 

According to the definition, Eq.(3.3.4) and (3.3.5), the channel correlation matrix  

,  E[ ] [ ] ,       0, ,LR h h D c c D Q Λ QH H H H

h l l l l l l l lE l= = = = K         (3.3.6) 

We can conclude that (:,1: ( 1))D Q
l

B= +  from Eq.(3.3.6).  

Based on Eq.(3.3.2) and (3.3.5), the BEM coefficients and estimated channel vector 

through LS is  

ˆˆ ( )  and ( )c S D y h D S D yH H

l l l l
= =                             (3.3.7) 

where the transmitted signal matrix  
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1

02

1
({ ( ) mod }| )N

l n

x

diag x N l n N
σ

−
== − +S                           (3.3.8) 

where 2=0, ,L, : the variance of 
x

l σ xK  

 

3.4 Slepian Basis Expansion Model 

In [23], Zemen and Mecklenbr¨auker first applied the Slepian sequences to the BEM 

for channel estimation. The Slepian method exploits a set of orthogonal functions that 

optimize energy concentration both in time and frequency [22]. These basis functions 

are the discrete prolate spheroidal sequences. We assume the length of Slepian 

sequences [ ]v n  is N, which are band-limited to the [ ]s sT , Td df f−  in frequency 

domain. These sequences are generated from the following eigenvalue equation. 
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−
∑                        (3.4.1). 

To solve the eigen-equation and acquire the eigenvector solutions, we can see it as the 

thing to get the eigenvectors from a square matrix A : 
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The eigenvectors are normalized so that:    

( )
2

1

[ ] 1
N

i

n

v n
=

=∑                                             (3.4.3) 

where the matrix 
N N×A  can be considered as the channel correlation matrix and 



 29 

compared to the ,h l
R  in Eq. (3.3.6). 

Therefore, 
l

h can be approximated as a linear combination of the Slepian 

sequences [ ]
i

v n  of length N, which are bandlimited to [ ]s sT , Td df f−  as  

1

[ ] [ ] ,                 1, ,
B

l i i

i

h n v n c n N
=

≈ =∑ L                          (3.4.4) 

where s2 T 1dB f N= +    is the number of principle eigenvectors we choose.  

When the relative mobility between the transmitter and the receiver is small (i.e., 

when the Doppler frequency is small), this method requires very much long Slepian 

sequences to accurately model the channel. This is because we should take a long 

period time to observe the slow variation channel.  

In the right part of Table 3.1 shows that for a given length sequences, as the 

maximum normalized Doppler frequency sT
d

f  increases, λ  increases, which 

means the Slepian BEM requires longer sequences to accurately model the channel in 

low sT
d

f . And then, we can continue observe the left part, the length of the Slepian 

sequences should be increased for a given sT
d

f . This implies that we need to observe 

more samples to estimate the channel especially in low Doppler frequency, which 

high computational complexity for decoding. Therefore, in a low mobility 

environment, the time-domain Slepian basis expansion model cannot represent the 

channel effectively.  
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Table 3.1 λ  for different length of sequence and Doppler frequency 

fdTs =0.001 N=130 

N B λ1 λ2 λ3 fdTs B λ1 λ2 λ3 λ4 

130 1 0.25 small small 0.001 1 0.25 small small small 

250 1 0.48 small small 0.005 2 0.88 0.35 small small 

500 2 0.79 0.22 small 0.008 3 0.92 0.71 0.25 small 

1000 3 0.99 0.78 0.27 0.01 4 0.99 0.9 0.52 0.11 

 

3.5 Analysis of the basis expansion model  

In this section, we analyze and discuss some issue for BEM. First of all, we derive the 

theoretical channel estimation MSE in Section 3.5.1. In order to enhance the channel 

estimation performance using BEM, we apply the Wiener filter to adjust the power 

spectral density of the estimated channel in Section 3.5.2 that aims to filter out the 

noise and achieve the best signal to noise ratio. In Section 3.5.3, we discuss and 

compare the UB basis schemes to SVD-BEM, the UB is a post bases projection 

method. Finally, we discuss the difference of the conventional estimation method 

without applying basis expansion model (called non-BEM) and BEM methods in 

Section 3.5.4. 

 

3.5.1 Derivation of the theoretical MSE 

The total mean square error (MSE) of the channel is defined by 

J=

2

0

ˆ|| ||
L

l l

l

E
=

  
− 

  
∑ h h                                        (3.5.1) 

where L is the number of multipath taps and lh  is an N-dimensional channel vector. 

The received signal in Eq.(3.3.2) can be rewritten as 
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2

0

L

x l l

l

y σ
=

= +∑S h w                                         (3.5.2) 

where 2

x
σ  is the transmitting signal power and 

l
S  is denoted in Eq.(3.3.8) with 

2
S S I

H

x l l
σ = , and then we note that the estimated channel vector 

ˆ ˆ ( )h Dc D S D yH

l l l== ,                                      (3.5.3) 

from Eq.(3.5.2) and (3.5.3), the channel estimated error  

0,

ˆ ( ) ( ) ( )
L

H H H

l l l l i i l

i i l= ≠

− = − − −∑h h I DD h D S D S h D S D w             (3.5.4)    

If the transmitting signal { }[ ] , ( 0 ~ 1)x n n N= −  is the PSK or QAM constellation, 

then from the Central Limit Theorem, the second term in Eq.(3.5.4), 

0,

( )
L

H

l i i

i i l= ≠
∑D S D S h  is equal to zero, therefore.  

ˆ ( ) ( )H H

l l l l− ≈ − −h h I DD h D S D w                             (3.5.5)                                   

since lh and w are uncorrelated, we note that the total MSE in Eq.(3.5.5) can be 

considered as two part: the channel modeling error and the channel identification error, 

the modeling error can be rewritten from Eq. (3.5.5) as 

( )

( ) ( )

2

0

0

0

( )

( ) (( ) )

( ) ( ) ( ) ( )

I DD h

I DD h I DD h

I DD h h I DD

L
H

l

l

L
H H H

l l

l

L
H H H H

l l

l

E  

E trace

E trace    trace AB trace BA  

=

=

=

 
− 

 

 
= − − 

 

 
= − − = 

 

∑

∑

∑ Q

 

( )
0

( ) ( ) ( ( ) ( ))I DD I DD h h I DD I DD
L

H H H H H H H

l l

l

E trace    
=

 
= − − − = − 

 
∑ Q  

( )
0

( ) ( ) [ ]I DD I DD h h
L

H H H H

l l

l

trace E
=

= − −∑  

( ) 2

0

( )( ) ( ( ) ( ))I DD I DD R I DD I DD
L

H H H H

l

l

trace                   
=

= − − − = −∑ Q  
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( )( 1) ( ) (3.5.6)I DD RH

l
L trace                                                                  = + −                         

Similarly, the channel identification error that resulted from AWGN is 

( )

( )

( )

( ) ( )

2

0

0

0

0

0

2

2

( )

( ) ( ( ) )

( ) ( )

( 1) [ ]

1
( 1)

D S D w

D S D w D S D w

D S D w w S D D

ww S DD DD S

ww S DD S w w D S S D

L
H

l F
l

L
H H H

l l

l

L
H H H

l l

l

L
H H H H

l l

l

L
H H H H H H

l l l l

l

w

x

E

E trace

E trace

E trace

E trace L E trace

L traceσ
σ

=

=

=

=

=

 
 
 

 
= ⋅ 

 

 
= ⋅ 

 

 
=  

 

 
= = + 

 

= +

∑

∑

∑

∑

∑

( ) ( )2

12

2

2

1
( 1)

( 1)( 1) (3.5.7)

D D I
H

w B

x

w

x

L trace

L B                                                                                 

σ
σ

σ

σ

+= +

= + +                  

where 2

wσ and 2

xσ  denote the variances of the noise and the transmitted signal, 

respectively. Eventually, by summing up Eq.(3.5.6) and (3.5.7), the total mean square 

error of channel vector estimation in Eq.(3.5.1) is  

2 2

2
0

ˆ|| || ( 1) ( ) ( 1)
L

H w
l l l l

l x

E L trace B
σ

σ=

    
− = + − + +   

    
∑ h h R DD R       (3.5.8) 

Obviously, to minimize the channel estimation MSE in Eq.(3.5.8), we need to 

minimize both the channel modeling error and the channel identification error. For a 

fixed B, L, as well as SNR, we just need to minimize the modeling error which 

corresponds to the channel modeling MSE:  
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( )

( )

( )
1

0

min ( )

max

max (3.5.9)

D

D

D

I DD R

DD R

D R D

H

l

H

l

B
H

l i

i

 trace

 trace

 trace                                                                   λ
−

=

−

=

= ≤∑

 

where iλ  denotes the eigenvalues from the real channel correlation matrix Rl , 

which comes from Jake’s model in this thesis.  

The equality holds true if and only if the basis matrix D  is taken from the first B 

columns of Q
l
 in Eq.(3.3.6) which correspond to the B significant eigenvalues. Thus, 

the SVD-BEM will offer the minimum mean squared channel estimation error.  

 

3.5.2 Wiener filter 

We would like to enhance the channel estimation that can achieve the maximum 

SNR and conform to the theoretical power spectral density by utilizing the Wiener 

filter [14]. Consider the block diagram of Fig. 3.4 built around a linear discrete-time 

Wiener filter. The filter input consists of a time series ˆ ˆ[0], [1],h h L , and the filter is 

itself characterized by the impulse response 0 1 2, , ,...w w w . At some discrete time n, the 

filter produces an output ˆ [ ]wh n . The output is used to provide an estimate of a desired 

response designated by [ ]h n  (real channel: d). Where the power spectrum density of 

d was defined in Eq.(2.4.3),  

0

21 /
P

d

d

P
(f)=

(f f )−
,                                         (3.5.10)  

With the filter input and the desired response representing single realizations of 

respective stochastic processes, the estimation is ordinarily accompanied by an error 

with statistical characteristics of its own. In particular, the estimation error, denoted 

by [ ]e n , is defined as the difference between the desired response and the filter output. 
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ˆ ˆ[0], [1],h h L

[0], [1],e e L

[ ]h nˆ [ ]
w

h n

0 1 2, , ,...w w w

 

Figure 3.4 Block diagram representation of the statistical filtering problem 

 

The optimum linear filter in Fig.3.4 is shown in Eq.(3.5.11), where the input 

(estimated channel vector) can see as the desired signal (real channel vector) add the 

noise vector w, which can be expressed as w=x-d, and the variance of noise vector w 

is 
2

w
σ . Assuming that x (f) 0≠P for all f , we find the following transfer function of 

the non-causal Wiener filter: 

0

2

20

2

1 /

1 /

dxd d

x d w
w

d

P

(f f )(f) (f)
(f)= = =

P(f) (f) (f)

(f f )
σ

−

+ +
−

P P
G

P P P
                 (3.5.11) 

If the weights (importance) of each basis do not conform to the Jake’s PSD as in 

Fig. 2.9 (like Fig.5.17 in fd=10), the Wiener filter may not valid.  

 

3.5.3 Comparison of UB-BEM  

UB-BEM is post-processing method to project the estimated channel onto a set of 

orthogonal functions known as the Universal Basis (UB) that were defined in [26]. 

The PDP (power delay profile) of the multipath channel is defined as ( )F τ . The 

channel autocorrelation matrix R can be expressed as  

2

1

M
T

i i i

i

σ
=

=∑R g g ,                                           (3.5.12)  
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where g  is defined in [24], denoted the combined impulse response of the 

band-limiting filters. 

( )F τ

τ

( )uF τ

τ

(a) (b)

 

Figure 3.5 (a) Universal power delay profile.  (b) Particular power delay profile. 

 

The UB (universal basis) is formed by the significant eigenvectors of a specific 

universal channel autocorrelation matrix 
u

R , which is obtained as 
1

Q
T

u i i

i=

=∑R g g . 

One possible universal PDP ( )
u

F τ  associated to the matrix 
u

R  is given by 

1,       
( )

0,  otherwise
u

N
F

τ
τ

≤
= 


                                      (3.5.13) 

Once the receiver does not have the knowledge of the channel PDP, this method offers 

good bases for channel approximation. Given a estimated channel vector ĥ  in 

conventional method such as [25], (Fig. 3.6) we can project ĥ  onto the UB subspace 

in order to constrain the estimator to the admissible subspace of channel realizations.  

ˆ ˆH

u
= ∆∆h h                                                (3.5.14) 

where the matrix ∆  contains the eigenvectors from 
u

R .  

The projection improved channel estimation when compared to raw superimposed 

training (ST) based channel estimation schemes. The performance depends on the raw 

ST method effective or not. If the method works with much error, the post projection 

would not remove the distortion entirely. Compare to Section 3.3 (SVD-BEM), we 

directly exploit the same bases as UB (post BEM) to estimate channel but with the 
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same or better performance.   

 

 

Fig.3.6 The UB flowchart 

 

3.5.4 Complexity comparison with the conventional method 

Without exploiting the BEM methods for time-varying channel estimation, [18] 

used a traditional MMSE estimate of channel based on the cost function from the 

Maximum a posteriori (MAP) method. 

 
2 1

2

2 1 1

ˆ arg max ( | ) ( )

1
arg max

( )                                                                            (3.5.15)

h

h
h

h

h y h h

y Sh h R h

S S R S y

H

H H

p p

σ

σ

−

− −

=

= − +

= +

 

where S  is the stacked 
l

S  matrices, 0 1 1[ , , , ]
L−=S S S SL , 

l
S  are the same in Eq. 

(3.3.8), and h  is also the stacked 
l

h  matrices, 0 1 1[ , , , ]
L−=h h h hL  

,0

,1

, 1L−

 
 
 =
 
 
 

h

h

h

h

R 0

R
R

0 R

O
                                 (3.5.16) 

Comparison of two channel estimation by exploiting between BEM and non-BEM 

respectively, in the equation for estimated channel Eq.(3.3.7) and (3.5.15), we can 

discover that there is a matrix inverse which should be calculated in the receiver, on 

the other hand, the traditional method needs much more computations than BEM 
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system, and more parameters to calculate. We can also compare the performance 

under criterion of the accuracy of estimated channel in MSE in Chapter 5.  

 

3.6 Consideration of CFO and PHN 

Due to the mismatch of oscillator and receiver, the phase noise and the carrier 

frequency offset effects are key problems that can lead to severe system performance 

degradation (Fig.3.7). To solve these problems, we use the mixed channel of PHN and 

TVCIR (Time-Varying Channel Impulse Response) based on the SVD-BEM method 

in Section 3.3 to reduce the PHN effect in Section 3.6.1. And apply the modified 

Moose CFO estimator under PHN existing condition in Section 3.6.2. 

 

3.6.1 Mixed channel in the presence of PHN 

The receive signal could be rewrote from Eq. (3.6.1) in consideration of PHN ( )nϕ  

 ( )

0

[ ] [ ] [ ] [ ]
L

j n

l

l

y n h n x n l e n
ϕ ω

=

= − +∑                              (3.6.1) 

The PHN ( )nϕ is generally modeled as a Wiener process [3]. The phase noise 

discrete time equation is denoted as  

[ ] [ 1] [ 1]n n nϕ ϕ ξ= − + −                                      (3.6.2) 

where ( )nξ  is a random variable following the Gaussian distribution, 

2( ) ~ (0, )n N ξξ σ   

with 2

3dB s=4 f Tξσ π  

 

Fig.3.7 OFDM system in the presence of phase noise 
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We define the mixed channel ( )
l

g n is equal to ( )( ) j n

l
h n e

ϕ , as the same as before  

, ,

0

[ ] [ ] 
B

l l k k Basis

k

g n c f n
=

=∑                                      (3.6.3) 

The expression Eq. (3.2.4) could be modified still using matrix notation  

,0

,1

,

[0]

[1]
' ' ,                                                            (3.6.4)

[ ]

g D D c

ll

ll

l l l l

l Bl

cg

cg

cg N

  
  
  = = =
  
  

   

MM  

The mixed channel correlation matrix of th tapl : 

, [ ] [ ' ' ] ' [ ] 'H H H H H

g l l l l l l l l l l lE E E= = =R g g D c c D D c c D              (3.6.5) 

and the SVD of , ' ' ' H

g l l l l=R Q Λ Q                                (3.6.6) 

Observing the above two equation, we could find that  

' ' (:,1: ( 1))
l l

B= +D Q                                        (3.6.7) 

Based on the Eq.(3.6.4) and (3.6.5), the ( , )m n th elements of ,g l
R denotes 

* ( ( ) ( ))[ [ ] [ ]] [ [ ] [ ]] [ ]H j m n

l l l l
E g m g n E h m h m E e

ϕ ϕ−= , where  ( ) ( )m nϕ ϕ− is also a 

Gaussian random variable 2( ) ( ) ~ (0,| - | ),  m n N m n ξϕ ϕ σ− so ( ( ) ( ))[ ]j m nE e ϕ ϕ−  

conforms to the characteristic function 

2

| |
2(1)

m n

mn
e

ξσ
− −

Φ = . Note the first part 

*[ [ ] [ ]]
l l

E h m h m  is the same as Section 3.3. Finally, the '
l

D  in Eq.(3.6.7) can be 

obtained, so the LS channel estimate 

ˆ ' ( ' )H

l l l l
=h D S D y                                          (3.6.8) 

 

3.6.2 The CFO estimation scheme 

It is beneficial to obtain a closed-form for CFO ε  where the receiver has very 

limited computational power. In [5], the Moose’s CFO estimator has the extraordinary 
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performance only when no PHN is present. First, pilot signal we transmit is easily 

generated [6] by transmitting the same 
2

N training symbols on the even subcarriers 

and zero on the odd. The received signal T T T

1 2=[  ]r r r , the dimension of 1r and 2r  

are the equal to 
2

N , and the estimated Moose’s CFO  

1 2

1
ˆ=  r r

Hε
π

∠                                               (3.6.9) 

In the presence of PHN, the Eq.(3.6.9) fails. The closed-form that optimally accounts 

for PHN can be derived [7], which is a similar form to Eq.(3.6.9) except for the 

weighting matrix that account for the distortion caused by PHN.    

H 2 1

1 1 1 2

1
ˆ=  (diag( ) diag( ) +4 )r r Φ r I r

Hε σ
π

−
∆∠                      (3.6.10) 

where T

N
2

=2∆ − ϒ − ϒΦ Φ  and the PHN correlation matrix 
N

2

T

N
2

=

ϒ 
 

ϒ 
 

Φ

Φ
Φ

. 

To summarize this chapter, the often seen BEM methods for channel estimation in 

doubly-selective channel have been introduced. We proposed the post Wiener filter to 

enhance the accuracy after using BEM, and we derived the theoretical MSE for BEMs. 

The CFO and PHN problems were also considered. But for reduce computational 

complexity, we will propose the adaptive BEM methods to track channel, and the 

asymptotic bases when Doppler frequency changes.   
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Chapter 4 

 

Adaptive BEM Estimation 

 
In Chapter 3, we introduced the several BEMs method for channel estimation. It 

works fine in time variant channel with Doppler effect. In this chapter, the problems 

which are the Doppler frequency changes and the projected coefficients updating will 

be discussed.  

This chapter is organized as follows. A brief introduction of the BEM coefficients 

adaptive using LMS and EW-RLS method based on the past receiving information is 

given in Section 4.1.1. And the theoretical MSE analysis for LMS is derived in 

Section 4.1.2. The modified method which takes the significance of the basis into 

account applying the results of Section 4.1.2 is proposed in Section 4.1.3.  

Furthermore, when the Doppler frequency changes in different blocks due to the 

mobility problem, the eigenvalues and eigenvectors adaptive schemes for the new 

bases methods (can reduce the complexity) are derived in Section 4.2.1 and 4.2.2.  
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4.1 BEM parameters tracking 

Since the time-varying nature of the channel is well captured in Section 3 by the 

known bases, the time variation of the (unknown) BEM coefficients is likely much 

slower than that of the channel. We would like to track the coefficients variation 

(fewer parameters for consideration) rather than the real channel using adaptive 

algorithms (the LMS and RLS algorithms in Section 4.1.1 and 4.1.3 respectively). 

 

4.1.1 Adaptive algorithm 

1. Exponential Weighted RLS 

This method for tracking BEM coefficients is the subblockwise tracking [16] with 

recursive least-squares (RLS) algorithm. Stack the BEM coefficients in Eq. (3.1.1) of 

p -th block into vectors 

[ ]

,- 2 , 2

0 1

( ):

( ) :  

c

c c c c

T

l l B l B

T

L

p c c

p

 =  

=

L

L

  

of size 1B ×  and ( 1)B L +  respectively. We emphasize that the p -th block and the 

( 1)p + -st block differ by 
s

m  symbols. Based on Eq. (3.2.2), the received signal at 

time  n  can be written as   

[ ]1
[ ] ( ) ( ) ( ) [ ]T

L
y n n n p n+= ⊗S I D c + w    

where 2 2( ) : [ ] and ( ) : [ ( ) ( 1)  ( )] ,B Bj j T Tn e e n s n s n s n L
ω ω−− −

= = − −D SL L  

Further defining 

[ ]1 0 1 1( ) : ( ) ( ) ,     ( ) : [ ( ) ( )  ( )] ,G S I D G G G G
s

HT T T T T

i s L s m
p pm pm i p p p p+ −= ⊗ + = L

we have 
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( )

( 1)
( ) ( ) ( ) ( )                                  (4.1.1)

( 1)

y G c w

ms s

ms s

ms ms

ms s s

y pm

y pm
p p p p

y pm m

 
 + = = +
 
 

+ − 

M
 

Based on Eq. (4.1.1), our objective is apply exponentally-weighted RLS (EW-RLS) 

algorithm [14] to track an unknown ( )c p . Choose c  to minimize the cost function 

2
2

0

( ) ( ) ( )                                                            (4.1.2)

where 0 denotes a regularization parameter, and

0< <1 denotes the forgetting factor.

c y G c
p

p i

ms

i

i i pβ λ

β

λ

−

=

+ −

>

∑

 

EW-RLS tracking comprised the following steps: 

1

1
ˆ1. Initialization: ( 1)=  and P( 1)= I                                 c 0M Mβ −

×− −  

2. For 0,1,p = L  

( )  I ( ) ( 1) ( ),Γ G P G
H

ms
p p p pλ= + −                            (4.1.3) 

1( ) ( 1) ( ) ( ),K P G ΓHp p p p−= −                                (4.1.4) 

1( ) [I ( ) ( )] ( 1),P K G P
M

p p p pλ −= − −                           (4.1.5)     

ˆ ˆ ˆ( ) ( 1)+ ( )[ ( ) ( ) ( 1)],c c K y G cmsp p p p p p= − − −                    (4.1.6)  

 

2. Least mean squares (LMS) 

  ( )ˆ ˆ ˆ( ) ( 1)+ ( ) ( 1) ,c c y ccp p p pµ= − − −                           (4.1.7) 

Similar as Eq. (4.1.6), ˆ( )c p  can also be updated using least mean squares algorithm 

in Eq. (4.1.7). The µ  denotes the time-invariant stepsize for every coefficients 

updating. 
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After RLS and LMS recursion for every p , we can generate the estimated channel 

coefficients by CE-BEM or SVD-BEM in chapter 3. To predict the channel ˆ [ ]
l

h n , the 

BEM coefficient estimates in our receiver are given by multiplying the basis matrix : 

ˆ ( )D c
l l

p  

 

4.1.2 Derivation of the theoretical MSE and the optimum 

time-variant stepsize matrix 

The estimated channel ˆ ( )h p is a linear combination of basis functions where is a 

matrix whose columns are the B basis functions, ˆ ˆ( ) ( )h Dcp p=  

As before in Eq.(3.5.1), the channel MSE can be represented as ( )J p , 

( ) ( )ˆ ˆ( ) ( ) ( ) ( ) ( )h Dc h Dc
T

J p E p p p p = − −
 

                      

       ( ) ( ) ( ) ( ) 2 ( ) ( )e e v v v D eT T T T

o o o
E p p E p p E p p     = + −            (4.1.8) 

Eq.(4.1.8) can be rewritten as the following with ˆ( ) ( )c c v
o

p p= + and 

0 ( ) ( )e h Dc
o

p p= − , where c
o

denotes the true BEM coefficients, we set 

( ) ( ) ( )e eo T

o o
J p E p p =   , and ( ) ( ) ( ) 2 ( ) ( )v v v D eex T T T

o
J p E p p E p p   = −    , 

where ( )( ) ( ) ( )D e D DD h D n D nT T T T T

o o
p I p p= − + = , thus 

( ) ( ) ( ) 2 ( ) ( )v v v D nex T T TJ p E p p E p p   = −     

( )oJ p is the same as derivation in Section 3.5.1.  

we can obtain the LMS expression by the ( 1) ( )
2

c c
c

J
p p

µ ∂ 
+ = −  

∂ 
, where 

2 2T T
D Dc D h

c

J∂
= −

∂
, thus, 

( )ˆ ˆ ˆ( 1) ( ) ( ) ( )c c D Dc hTp p p pµ+ = − −                         (4.1.9) 
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The scalar stepsize in this equation is replaced by a stepsize matrix A, 

where 

1 0

0
B

a

A

a

 
 

=  
 
 

O denotes the stepsize matrix and we assume TD D I=  , then 

we can obtain 

( )ˆ ˆ( 1) ( ) ( ) ( )c c D hT
p I A p A p p+ = − +                           (4.1.10)  

The weight error vector at p-th occurrence 0( ) ( )v c cp p= − can be written as 

( 1) ( ) ( ) ( )v v G nTp I A p A p+ = − +                             (4.1.11) 

1
1

0

0

            ( ) ( ) ( )v G n
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P p j T
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I A A I A j
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− −

=

= − + −∑                  

Therefore the ( ) ( ) ( ) 2 ( ) ( )v v v D nex T T TJ p E p p E p p   = −     can be calculated as 
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1
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1
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                            ( ) ( )

                            

v v v v

v G n

n G v

T p T

p
T p p j T

j

p
T p j

j

E p p trace I A E

E I A A I A j

E j I A

−
− −

=

−
− −

=

   = −   

 
+ − − 

 

 
+ − 

 

+

∑

∑

1
2 2( 1 )

0

( ) G R G
p

p j T

N

j

trace A I A
−

− −

=

  
−  

   
∑

 

Where R
N

 denotes the noise correlation matrix 

Note if TD D I≠  like CE-BEM, 

( ) ( )1 1( 1) ( 1) ( ) ( ) (0) (0)v v D D D D v v
T T p T T p T

E p p E trace I A I A E trace
+ +    + + = − − +      ∑ L

is hard to simplify. Thus we consider only the orthogonal bases. 

1
1

0

0

0

(2) ( ) ( ) ( 2 ) ( ) ( 2 ) ( ) ( )

                                 ( 2 ) ( )

v D n v D n n DD n

v D n

p
T T p T T p j T

j

p T T

E p p I A E p I A E j p

I A E p

−
− −

=

     = − + −     

 = −  

∑
 

So the ( )exJ p is equal to (1)+(2), and the total MSE= ( )oJ p + ( )exJ p , 



 45 

For the converging steady state ( p → ∞ ), the total MSE can be simplified as 

( )

1
2 2( 1 )

0

1
2 2

( ) + ( )

( ) + 2                                                   (4.1.12)

D R D

D R D

p
o p j T

N

j

o T

N

J J trace A I A

J trace A A A

−
− −

∞
=

−

  
= ∞ −  

   

 = ∞ −  

∑

               

In case of white noise, Eq. (4.1.11) can be written as 

( )
1

2 2 2( )  + 2 D Do T

w
J J trace A A A σ

−

∞
 = ∞ −  

                        

( )
1 2    ( ) + 2o

B wJ trace A I A σ
− = ∞ −

 
                           (4.1.13) 

The total MSE are correlated with the bases type, stepsize matrix and the noise. 

Moreover, we would like to find the optimum time-variant stepsizes for each BEM 

coefficient which could minimize the coefficient MSE ( 1) ( 1)v vTE p p + +  , where 

( 1)v p +  can be represented as Eq. (4.1.11), we use the column matrix property: 

( )T Tv v trace vv= , thus 

 

( )

( )

( )

2( 1) ( 1) ( ) ( ) ( )

                                 ( ) ( ) ( )

                                 ( ) ( ) ( )

                                 

v v v v

D v

v n D

T T

T T T

T

E p p E trace I A p p

E trace A n p p I A

E trace I A p p A

  + + = −   

 + − 

 + − 

+ ( )( ) ( )D n n DT TE trace A p p A 
 

 

then  

( )
( )
( )

2( 1) ( 1) ( ) ( ) ( )

                                ( ) ( ) ( )

                                ( ) ( ) ( )

                                

v v v v

D n v

D v n

T T

T T

T

E p p trace I A E p p

trace I A A E p p

trace A I A E p p

trac

   + + = −   

 + −  

 + −  

+ ( )( )2 ( ) ( )D D n nT Te A E p p

               (4.1.14) 

And we assume ( )n p  and ( )v p  are zero mean and mutually statistically 

independent stationary signal, thus we can simplify Eq. (4.1.14) as 
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( )

2 2 2 2 2

1 1

2 2 2

1

( 1) ( 1) (1 ) ( ) 4      ( ( ) [ ( ) ])

                                (1 ) ( ) 4

v v d d
B B

T T

i i i i i i i

i i

B

i i i

i

E p p a b p trace a b p E v p

a b p a

σ

σ

= =

=

 
 + + = − + =  

 

= − +

∑ ∑

∑

And then we can derive the optimum stepsize 
i

a  as discussed in [48], 

( 1) ( 1)
0

v v
T

i

E p p

a

 ∂ + +  =
∂

 

The result is 
2

2

2 2

( )
( )

( ) 4

i
i i

i

B

b p
a b p

b p σ
= ∝

+∑
,                           (4.1.15) 

where 2 ( )
i

b p  denotes the each coefficient MSE ( ( ) ( ), ,( ) ( )
T

i o i i o i
E c p c c p c − −
 

)  

At initial state (p=0), c 0
o

= , then 

2 (0) c c D h h D D h h D D R D
T T T T T T

o o o o o oi l
i

E E Eb
a

const const const const const

          = = = = =      (4.1.16) 

Note the D R D
T

l
 denotes the diagonal matrix whose diagonal elements contains the 

eigenvalues of the real channel correlation matrix R
l
.  

In practice 2 ( )
i

b p  is unknown and 
i

a  should be adjusted for each step p since 

2 2

1 ( ), , ( )
B

b p b p  L  changes as the algorithm converges. As discussed in [48], when 

i
a  are set proportional to (0)

i
b , the optimum time-invariant stepsizes can be 

obtained.  

 

4.1.3 Eigen weighted for adaptive algorithms 

Knowledge of the significance of Jake’s bases is rarely used in conventional 

algorithms. An adaptive algorithm taking into account the importance weights of the 

basis is expected to improve convergence.  

From the derivation of Section 4.1.2, the proposed eigen-weighted EW-RLS 

algorithm uses a different stepsizes for each principle basis. These stepsizes are 
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time-invariant and weighted proportional to the importance of the eigenvectors. The 

algorithm is based on the fact that the importance of the eigenvectors becomes 

progressively smaller along diagonal elements of the matrix 
l
Λ  in Eq.(3.3.4) as the 

importance decay. As a result, the algorithm adjusts coefficients with more important 

basis in large steps, and coefficients with less important basis in small steps. The 

proposed algorithm requires only the same amount of computation as the 

conventional LMS and RLS. 

Incorporating this knowledge of the significance of the bases into the conventional 

EW-RLS, we propose to adjust coefficients with more importance in more adaptive 

information and coefficients with less importance in less adaptive information. For 

this purpose, a stepsize matrix S  with diagonal form is introduced: 

0

1

0

0
B

a

A

a −

 
 

=  
 
 

O                                           (4.1.17) 

As discussed in last section, (0)i i ia b λ∝ ∝  

where 
1

0

i
i B

i

i

a B
λ

λ
−

=

= ×

∑
 ( 0, , 1i B= −L ) and B is the number of principle bases we 

exploited, elements 
i

u  are time-invariant and decreasing from 0u . The modified 

adaptive algorithm compared to Eq.(4.1.3)-(4.1.6), called the eigen-weighted 

EW-RLS algorithm from [48] is expressed as 

1( ) ( )( I ( ) ( ))U C C IC
H H

ms
p A p p pλ −= +  

ˆ ˆ ˆ( ) ( 1)+ ( )[ ( ) ( ) ( 1)],c c U y G cmsp p p p p p= − − −                     (4.1.18) 

The scalar stepsize in EW-RLS is replaced by a stepsize matrix S , and the eigen 

weighted LMS can be also expressed by replacing µ  in Eq.(4.1.7) as time-invariant 

stepsize matrix S . 
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4.2 BEM bases tracking 

In both Slepian and SVD BEM methods, we obtain the bases by means of the 

channel correlation matrix 
l

R  which can be decomposed by the 

eigen-decomposition, then we acquired the eigenvalues and eigenvectors. The 

eigenvectors denote the bases we exploited to approximate the channel, and the 

eigenvalues corresponding to the eigenvectors denote the weight of eigenvectors 

importance. When 
d

f  changing, we need to a Doppler frequency estimator like 

[52-53], then we have to calculate the new bases, this task has much more difficulty 

than CE-BEM.  

The channel correlation matrix 
l

R  could be composed through the Jake’s model 

or the Slepin model with two parameters: the symbol rate 
1

s
T

 and the Doppler 

frequency 
d

f . The symbol rate are almost fixed in communication procedure, 

therefore, we focus on the influence when Doppler frequency changes.  

In Section 3.4, we face a problem that in a low mobility (low Doppler frequency) 

environment, the time-domain Slepian basis expansion model cannot represent the 

channel effectively. As the result, we would like to track the BEM bases when 

Doppler frequency changes within the low frequency range.  

Thus, we will propose the numerical method to track the variation of the principle 

eigenvalues and eigenvectors in Section 4.2.1 and 4.2.2 respectively.   

 

4.2.1 Principle eigenvalues adaptive 

Figure 4.1 and 4.2 shows the eigenvalues variation under Doppler frequency 

changes. We can observe that in low Doppler frequency (about 10 to 30 for Slepian 

bases and 10 to 40 for Jake’s bases) the number of principle eigenvalues might be two 

to four, which conclude most importance in corresponding principle eigenvectors. 
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Focus on Jake’s bases, we like to track the eigenvalues when Doppler frequency 

does not fixed. After Doppler frequency shifts, the basis also changes due to the 

channel correlation changes, hence if we can track the new eigenvalue, the new basis 

can be obtained easily than before. 

 

Figure 4.1 Eigenvalues variation under 
d

f  changes in Slepian bases 

 

Figure 4.2 Eigenvalues variation under 
d

f  changes in Jake’s bases 
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� Linear fitting 

In order to find the relationship of the eigenvalues and Doppler frequency below forty 

hertz, we first use two straight lines to fit the curve in Fig. 4.2. 

Assume the eigenvalue locus can be approximated in a linear form  

K 1,K 2,Kλ p p
d

f= +                                           (4.2.1) 

Where K denotes the K -th principle eigenvalues (here we consider K=1,2 ), and 

1,Kp  and 2,Kp  are parameters must to obtained. 

The solutions for 
1,K

2,K

p

p

 
 
 

 can be derived using least-square numerical method, 

1,1 H 1 H

1

2,1

p 0.60
(A A) A b =

p 36.75

−
−   

=   
  

                              (4.2.2) 

1,2 H 1 H

2

2,2

p 0.42
(A A) A b =

p 30.22

−
−   

=   
  

                              (4.2.3) 

Where 

10  1

11  1
A

   

40  1

 
 
 =
 
 
 

M
 and 

K,fd=10

K,fd=11

K

K,fd=40

b =
   

λ

λ

λ

 
 
 
 
 
  

M
. 

Thus we can obtain Eq. (4.2.1) in  

1

2

λ 0.60 36.75

λ 0.42 30.22

d

d

f

f

= − +


= − +
                                     (4.2.4) 

 

� Quadratic fitting 

Assume the eigenvalue locus can be approximated in a quadratic form  

2

K 1,K 2,K 3,Kλ p p pd df f= + +                                   (4.2.5) 
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The solutions for 

1,K

2,K

3,K

p

p

p

 
 
 
  

 can be derived using least-square numerical method, 

1,1

H 1 H

2,1 1

3,1

p 0.025

p (A A) A b = 1.86

p 50.42

−

   
   = −   
     

                              (4.2.6) 

1,2

H 1 H

2,2 2

3,2

p 0.008

p (A A) A b = 0.84

p 34.75

−

   
   = −   
     

                              (4.2.7) 

Where 

2

2

2

10  10  1

11  11  1
A

      

40  40  1

 
 
 =  
 
  

M
 and 

K,fd=10

K,fd=11

K

K,fd=40

b =
   

λ

λ

λ

 
 
 
 
 
  

M
. 

Thus we can obtain Eq. (4.2. 5) in  

2

1

2

λ 0.025 1.86 50.42

λ 0.008 0.84 34.75

d d

d d

f f

f f

 = − +


= − +
                              (4.2.8) 

 

� Exponential fitting 

Assume the eigenvalue locus can be approximated in a exponential decayed form  

K 1,K 3,K

2,K
 p

λ p p
dfe= × +                                    (4.2.9) 

The solutions for 

1,K

2,K

3,K

p

p

p

 
 
 
  

 can be derived using least-square numerical method, 

Just a little difference from above procedure, we first omit the constant 3,Kp , and then  

K 1,K K 1,K 2,K

2,K
 p

λ p   ln(λ ) ln(p ) p
d

df
fe= × → = +    

1,K H 1 H

K  

2,K

ln(p )
(A A) A b                  K 1, 2

p

− 
= = 

 
                   (4.2.10) 
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where 

10  1

11  1
A

   

40  1

 
 
 =
 
 
 

M
 and 

K,fd=10

K,fd=11

K

K,fd=40

ln( )

ln( )
b =

       

ln( )

λ

λ

λ

 
 
 
 
 
  

M
. 

Then we would obtain 
1,K

2,K

ln(p )

p

 
 
 

then to easily obtain 
1,K

2,K

p

p

 
 
 

. 

Do not forget there is a constant 3,Kp  must to calculate. Run a loop for the constant 

changes, we can quickly choose 3,Kp  is equal to 14 and 10 for the best 

1,K

2,K

3,K

p

p

p

 
 
 
  

 

(K=1,2) in Eq. (4.2.9) that can approximate the true line with minimum square error. 

Thus we already obtain Eq. (4.2.9) in  

1

2

 -0.09 

 -0.044

λ 53.69 14

λ 27.18 10

d

d

f

f

e

e

 = × +

 = × +

                                 (4.2.11) 

With the eigenvalues, we can obtain the corresponding eigenvectors (bases) through 

the power method algorithm in Table 4.1: 

Table 4.1 The power method algorithm 

0

1
1

1 1 1 2

ˆ ˆ

: 1 1 1

1

ˆ( ) ;

/ ;

0)  Goals:     

1)  Initialization

2)     

       

       

     

N

T

L ii

i i i

given to find v

v

for i to m

v R I v

v v v

end

λ

λ −
+

+ + +

  =

=

= −

=

L L
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4.2.2 Principle eigenvectors adaptive 

After Doppler frequency shifts, the bases also change due to the channel correlation 

changes. More directly than Section 4.2.1, we like to track the principle eigenvectors 

when Doppler frequency does not fixed. 

At first, we observe the principle basis waveform in several Doppler frequency in 

Fig. 4.4. Then we suppose these basis waveforms could be approximated through the 

sine function instead of the exponential or polynomial function in Section 4.2.1.  

 

Figure 4.4 The principle bases waveform in different Doppler frequency. (N=64) 

 

We assume the eigenvector shape can be approximated in a sinusoidal wave form in 

a fixed Doppler frequency 
d

f :  

b 1,b 2,b 3,b[ ] p p p ,   0 ~ 1sin( )v n n n N= × + = −                     (4.3.12)             

where b denotes the b -th principle eigenvector (here we consider b=1,2 ), and 

1,bp , 2,bp  and 3,bp are parameters must to obtained, which all are the function of 
d

f .   
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The similar procedure as 4.2.1, we would obtain three parameters 

1,b

2,b

3,b

p

p

p

 
 
 
  

 ( b =1,2) for 

each Doppler frequency ( 10 ~ 40
d

f = ), and then the next step we would like to find 

the relationship between parameters and the 
d

f . 

 

1. 1,bp  versus  
d

f : 

We do not care 1,Kp , the scalar of eigenvectors, we can simply set 1,Kp  a constant.  

2. 2,bp  versus  
d

f : 

For several 2,bp  (frequency component of the sine wave) under 
d

f , we plot the 

Fig. 4.5(a) for observation. Then we suppose we can use a straight line with positive 

slope to fit. Repeat the procedure from Eq. (4.2.1) to (4.2.3), the linear fitting curve 

would be calculated as: 

2,1

2,2

p 0.0059 0.025

p 0.0061 0.023

d

d

f

f

= −


= −
                                    (4.3.13) 

For simplicity, we even see 2,2p  as 2,1p  because of the root mean square error 

(RMSE) for these two different lines are 0.00845 and 0.008464, which are both 

almost identical and small enough.   

 



 55 

 

Figure 4.5 (a) 2,1p versus Doppler frequency 

 

Figure 4.5 (b)Linear fitting for 2,1p  

 

3. 3,bp  versus  
d

f : 

For several 3,bp  under 
d

f , we plot the Fig. 4.6 for observation. We normalized 

the 3,Kp (phase component of the sine wave) in the range [0, ]π . Then we suppose we 
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can use the piecewise-linear function to fit like before or directly establish a 

dictionary for 3,bp . 

 

 

Figure 4.6 3,2p versus Doppler frequency 

 

Finally, we could easily know the new three parameters 

1,b

2,b

3,b

p

p

p

 
 
 
  

based on the 

relationship, and then quickly obtain the new approximated principle basis in Eq.  

(4.3.11).   

To summarize, when Doppler frequency changes, there are four possible ways to 

derive the new bases, which can be roughly depicted in figure 4.7, where the methods 

1 and 2 are the conventional schemes, and they waste either computational 

complexity or memory.  And the proposed methods 3 and 4 are discussed in Section 

4.2, the Table 4.2 depicts all the complexity and memory needed for them. Where 

N denotes the length of bases, d denotes the range of Doppler frequency, here we 



 57 

choose 10~40 in our simulation, b is the number of the principle bases, here we 

choose 2~4 that ensure contain about 80% energy, and K represents the times of 

power method iterations (K>4, RMSE<10
-3

). 
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Figure 4.7 Four methods to obtain the new bases after 
d

f  changes. 

 

Table 4.2 Complexity and memory needed for four methods. 

Way 1 2 3 4 

Memory store 0  Nd  3b  2d +  

Complexity 312N N+  0  3 2K( ) 4N N+ +  1b +  
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To summarize this chapter, the eigen weighted adaptive algorithms (RLS and LMS) 

has been proposed. Since the BEM coefficients have different importance, we can 

derive the optimum stepsizes for each coefficient as discussed in [48]. Moreover, we 

can acquire the new bases when Doppler frequency changes with less complexity and 

memories.  
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Chapter 5 

 

Computer Simulations 
 

In this chapter, computer simulations are used to verify the algorithms and 

methods discussed in Chapter 2 to Chapter 4. At first we define some parameters of 

OFDM system we used in the whole thesis in Section 5.1, and in Section 5.2, we 

compare the conventional time and frequency-domain channel estimation and 

interpolation methods, then observe the constellation for BER-SNR curve, which has 

much relevance for channel MSE-SNR curve. The performance of the CE-BEM, 

SVD-BEM and their modified methods will be shown in Section 5.3 and 5.4 

respectively. The issue of carrier frequency offset and phase noise will also be 

discussed in Section 5.5. 

Adaptive method is a practical problem for BEM. In Section 5.6, we will update 

the BEM coefficients by exploiting EW-RLS algorithm, and then propose a method to 

enhance the convergence rate in fixed Doppler frequency.  Moreover, when Doppler 

frequency unfixed environment, we compare two proposed methods to track the new 

basis under the new Doppler frequency in Section 5.7. 
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5.1 Simulation parameters 

OFDM system parameters similar to those used in IEEE 802.11a are adopted here:  

the number of subcarriers is  64N = , and the system sampling rate is  1
s

f =  KHz 

leading to a subcarrier spacing can be calculated as  s
f

f
N

∆ = , number of OFDM 

signals per packet  10
s

N = and the QPSK modulation is selected. 

We assume to have perfect synchronization since the aim is to observe channel 

estimation performance. Moreover, we have chosen the guard interval to be greater 

than the maximum delay spread  L  in order to avoid inter-symbol interference.  

In these simulations the signal to noise ratio (SNR) was varied from 0 to 40 dB. For 

each SNR value 300 Monte Carlo independent trials were conducted and the 

mean-square-error (MSE) and root-mean-square-error (RMSE) defined below was 

employed as a performance measure of the channel estimates: 

2

1

1
ĥ h

tN

i

it

MSE
N =

= −∑           

2

1

1
ĥ h

tN

i

it

RMSE
N =

= −∑  

where 
t

N  is the number of Monte Carlo trials, h  is the vector comprising the 

true channel coefficients, and ĥ
i
 is the estimate of the channel coefficients in the 

i -th trial.  
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5.2 Time-invariant channel estimation 

The multi-path fading channel is Rayleigh fading has a power delay profile (PDP) 

of 0.81.2257    (0 10)le l−× ≤ <  in Fig.5.1, which is normalized to unit energy. 

 

Figure 5.1 The power delay profile of the multi-path channel. 

 

The conventional time and frequency-domain time-invariant channel estimation 

method are introduced in Section 2.3.   

Figure 5.2 illustrates he performances of these schemes, we can find out that they 

have the almost the same performance, but there are some advantages and drawbacks 

for them, based on the purpose to choose from them.  

Figure 5.3 and figure 5.5 both compare the different interpolation methods of comb 

type by using different criterion. And the received constellation can be shown in 

figure 5.4, it illustrates if there is not channel estimation before detection, the bit error 



 62 

rate will be very terrible. 

Figure 5.6 shows the performance comparison in different pilot ratio in block type, 

the result tells the more pilots we use, the lower MSE we have. 

 

 

Figure 5.2 Comparison of time and frequency domain channel estimation 

 

� Block type pilot arrangement 

Each block consists of a fixed number of symbols, which is 30 in the simulation. 

Pilots are sent in all the sub-carriers of the first symbol of each block and channel 

estimation is performed by using LS estimation. 

� Comb type pilot arrangement 

All of the possible interpolation techniques (linear interpolation, second order 

interpolation, low-pass interpolation, spline cubic interpolation, and time domain 
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interpolation) are applied to LS estimation with pilot ratio 0.125. 

 

 

Figure 5.3 Comparison of different interpolation methods of comb type 
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Figure 5.4 Received constellation with (*) and without (o) channel estimation (ZP) 

 

Figure 5.5 Comparison of different interpolation methods of comb type 
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Figure 5.6 Comparison of different pilot ratio in block type 

 

In figure 5.3 to 5.5, we conclude the estimated channel MSE and the BER for 

detector have the much highly relationship. We can depend on the MSE-SNR curve to 

estimate the tendency of BER-SNR curve. 
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5.3 CE-BEM 

The complex-exponential basis expansion model is discussed in Section 3.1.1. And 

the modified methods (oversampling and non-uniform sampling) for CE-BEM are in 

Section 3.1.2 and 3.1.3. 

Figure 5.7 illustrates he performances of these schemes, we can find out that the 

over-sampling (K=2) method and the non-uniform sampling method both also can 

enhance the CE-BEM.   

 

Figure 5.7 Comparison of different CE-based methods. 
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5.4 SVD-BEM 

There are some basis expansion model discussed in Section 3.2, which are 

SVD-BEM, Wiener SVD-BEM, Slepian-BEM and UB-BEM. We will compare their 

performance in MSE criterion through computer simulation in this section. 

Figure 5.8 distinguish the two main kind of basis, Jake’s basis are derived from the 

zero-order Bessel function of first kind and the Slepian basis are generated from the 

Slepian sequence in (3.200). The ACF in figure 5.8 denotes the auto-correlation 

function and 50,  0.001
d s

f T= = . Moreover, figure 5.9 illustrates the principle basis 

for Jake’s and Slepian model in 18
d

f =  and 0.001
s

T = . 

Figure 5.10 illustrates the enhancement for SVD-BEM in different number of basis 

by adding the Wiener filter to increase the SNR. And for the purpose to compare their 

performance, Figure 5.11 plot their estimated channel MSE to the SNR curves, we 

could conclude that the SVD-BEM and UB-BEM have the almost same performance, 

but if the pre-estimator does not good (like CE in Jake’s model), the UB would not as 

good as SVD-BEM.   
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Figure 5.8 ACF of Jake’s and Slepian basis ( 50,  0.001
d s

f T= = ) 

 

Figure 5.9 Principle basis for Slepian and Jake’s model ( 18,  0.001
d s

f T= = ) 
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Figure 5.10 Comparison of SVD-BEM and Wiener filter applied 

 

Figure 5.11 Comparison of SVD and UB. 
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5.5 Consideration of CFO and PHN 

There is a practical issue that the effect of CFO and PHN discussed in Section 2.2, 

and we propose a method in Section 3.3 to deal with this problem. 

Figure 5.12 illustrate the performance of mixed channel method in Section 3.3.1 

when PHN occurs and them apply it. The phase noise is generated by the Wiener 

process with 3 100
dB

f Hz=  If without any mechanism for PHN effect, the channel 

estimator will fail. 

In figure 5.13, we investigate the accuracy of CFO estimation. This figure plots the 

residual CFO at different SNRs. For each SNR, 300 independent CFO estimation are 

performed at the presence of phase noise, (Phase noise is simulated by passing a white 

Gaussian process through a one-pole Butterworth low pass filter with 3dB bandwidth 

100
o

f KHz= . The covariance matrix of phase noise 

2 | |2

,( ) exp
180

o

s

f m n

frms
m n

π

ϕ

πϕ
−

− 
=  
 

R , 

and the CFO ε  is generated as a uniform distribution over [-1,1].). From this figure, 

it is obvious that the residual CFO is consistently close to zero. 

 Table 5.1 emphasizes it again, in different SNR, the CFO MSE are shown. 

Through the CFO estimator, the CFO effect can be removed clearly. 
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Figure 5.12  The mixed PHN channel estimation performance 

 

 

Table 5.1 CFO estimation MSE in different SNR 

SNR (dB) 10 15 20 

CFO MSE 7.18×10
-4

 2.19×10
-4

 7.23×10
-5
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Figure 5.13 CFO estimation error in different SNR (a) SNR=10 (b) SNR=20 (dB) 
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5.6 EW-RLS with eigen weighting 

We have discussed the EW-RLS BEM coefficients updating algorithm in fixed 

Doppler frequency environment in Section 4.2.1 and its modified method by 

exploiting the significance of each basis in Section 4.2.2.  

Figure 5.14(a-b) illustrate the practical CE and SVD-BEM coefficients state change 

in five iterations (p), due to the slight difference in each iteration, we would like to 

track the BEM coefficients instead of the real channel. 

Figure 5.15(a-i) illustrate the coefficients tracking under increasing iteration. We 

use nine basis (B + 1=9) in CE-BEM. After several iterations, the tracking line would 

lock the real value, despite the coefficients still varies due to time-invariant channel, 

the algorithm can always follow the variation. And Fig.5.16(a-c) are the similar but 

following the SVD-BEM, moreover, there is one more eigen weighted tracking line.    

Figure 5.17 illustrates the learning curve of CE-BEM coefficients tracking in 
d

f  

changes at the 200-th iteration. And figure 5.18 also illustrates the learning curves of 

SVD-BEM coefficients tracking in 
d

f  changes at the 200-th iteration, these two 

curves tell us the faster convergence rate the eigen-weighted EW-RLS method has. 

Finally, figure 5.19 illustrate MSE versus SNR curve by using different ms (number 

of points consideration each iterations) after the algorithm converges.   
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Figure 5.14(a) CE-BEM coefficients changes in successive iteration 

 

Figure 5.14 (b) SVD-BEM coefficients changes in successive iteration 
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Figure 5.15(a) CE-BEM 1
st
-coefficient tracking 

 

Figure 5.15 (b) CE-BEM 2
nd

-coefficient tracking 
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Figure 5.15 (c) CE-BEM 3
rd

-coefficient tracking 

 

 

Figure 5.15 (d) CE-BEM 4
th

-coefficient tracking 
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Figure 5.15 (e) CE-BEM 5
th

-coefficient tracking 

 

 

Figure 5.15 (f) CE-BEM 6
th

-coefficient tracking 
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Figure 5.15 (g) CE-BEM 7
th

-coefficient tracking 

 

 

Figure 5.15 (h) CE-BEM 8
th

-coefficient tracking 
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Figure 5.15 (i) CE-BEM 9
th

-coefficient tracking 

 

 

Figure 5.16(a) SVD-BEM 1
st
-coefficient tracking 
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Figure 5.16(b) SVD-BEM 2
nd

-coefficient tracking 

 

Figure 5.16(c) SVD-BEM 3
rd

-coefficient tracking 
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Figure 5.17 The weights of each basis in CE-BEM. (B=9) 

 

 

Figure 5.18(a) Learning curve of CE-BEM coefficients tracking 
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Figure 5.18(b) Learning curve of Slepian-BEM coefficients tracking 

 

 

Figure 5.18(c) Learning curve of SVD-BEM coefficients tracking 
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Figure 5.18(d) Comparison of three BEMs with eigen weighting 

 

Figure 5.19(a) SVD-BEM coefficients tracking in 
d

f  changes with new bases 
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Figure 5.19(b) SVD-BEM coefficients tracking in 
d

f  changes without new bases 

 

 

 

 

 

 

 

 

 

 



 85 

5.7 BEM basis tracking 

We have discussed the two basis tracking methods in unfixed Doppler frequency 

environment in Section 4.2.1 and 4.2.2.  

Figure 5.20 illustrates the practical 1
st
-eigenvalue-to-

d
f  curve marked as (*) and 

three asymptotic line (1inear, quadratic and exponential fitting) in SNR=40 dB and 

s
T =0.001. And we can realize that the mean square error of estimated and real 

principle eigenvalue in different fitting schemes. 

Figure 5.21 and 5.22 illustrate the examples of two kind of basis tracking discussed 

in Section 4.2.1 and 4.2.2 respectively, which both have the ability of tracking the 

new basis (when 
d

f  changes). And the comparison of these two methods under the 

channel MSE criterion is shown in figure 5.23. 

 

Figure 5.20 Three fitting methods for 1
st
-eigenvalue variation in 

d
f  changes 
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Table 5.2 Three fitting methods for principle eigenvalues variation 

 Linear Quadratic Exponential 

1
st
-eigenvalue MSE 3.968 0.758 0.334 

2
nd

-eigenvalue MSE 1.269 0.530 0.532 

 

 

 

 

 

Figure 5.21 Eigenvalue estimated error between Exponential and Linear methods. 
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Figure 5.22 Bases estimated RMSE Under different Power method iteration times 

(fd=10) 

 

Figure 5.23 Bases estimated RMSE by way 3 
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Figure 5.24 Bases estimated RMSE by way 4 

 

Figure 5.25 Example of basis estimation by the power method. (K=6 

1st
λ =29.2

d
f =13) 
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Figure 5.26 Example of basis estimation by directly eigenvector fitting. (
d

f =20) 

 

Figure 5.27 Comparison of principle eigenvalues and eigenvectors tracking 
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Chapter 6 

 

Conclusions 
 

In this thesis, we employ the basis expansion model to deal with the time varying 

channel estimation in OFDM system.  

For the sake of lower data error rate at receiver, we have to estimate the wireless 

channel before detection. In Chapter 2, we introduce the OFDM structure and the 

practical channel model, and take CFO, PHN and Doppler frequency into account.  

In Chapter 3, we compared several BEM schemes, and propose a post Wiener 

filtering scheme to achieve better MSE under the Jake’s model environment. Besides, 

we also improve the CE-BEM with changing the sampling manner in Section 3.2 and 

resist the disturbance of CFO and PHN in Section 3.6. 

For the purpose to reduce complexity, we updated the BEM coefficients and 

considered the importance of each basis. We derive the theoretical MSE and obtain 

the optimum time-invariant stepsizes for each BEM coefficients. Moreover, we 

approximated the bases curves with very few parameters, which could reduce the 

complexity effectively. The computer simulations such as theoretical analysis 

validation, Un-weighting, and weighted adaptive algorithm for BEM coefficients 

tracking are shown in Chapter 5, which could justify our analysis and show the 
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improved performance such as the proposed eigen-weighting scheme can accelerate 

convergence rate, the Wiener filter can enhance the channel estimation accuracy, the 

bases tracking can save the complexity for getting the new bases. These proposed 

models demonstrate a significantly better performance than the conventional methods 

when they are applied in OFDM system.  
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