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Study of Channel Estimation in OFDM
Exploiting Basis-Expansion Model

Student: Kai-Hsiang Chang Advisor: Dr. Shih-Fu Hsieh

Institute of Communications Engineering
National Chiao Tung University

Abstract

For reducing the bit-error‘rate (BER) in wireless communication systems, it is
important to provide a channel estimator at receiver in orthogonal frequency-division
multiplexing (OFDM) system. We use the basis-expansion model (BEM) to estimate
the doubly-selective channel which is simulated by Jake's model. We would analyze
and discuss some often seen BEMs, thus, we could derive the theoretical MSE and
apply the Wiener filter to enhance the signal-to-noise ratio (SNR) for estimated
channel. The carrier frequency offset (CFO) and phase noise (PHN) issues are also
considered in our proposed scheme. Moreover, for reduce complexity, we update the
BEM coefficients by different weighting corresponding to the significance of basis,
which could be verify by the theoretic derivation. Besides, when Doppler frequency
changes, we propose two methods to obtain the new bases, these two schemes use
Power method and asymptotic sinusoidal function that need only few parameters and

computation than conventional methods.
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Chapter 1

Introduction

For wireless communication systems, it is-important to provide users a better
quality and stable transmission. The OFDM system has recently been applied widely
in wireless communication systems due to'its high data rate transmission capability
with high bandwidth efficiency and its robustness to multi-paths delay [20,28,43]. It
has been used in wireless LAN standards.suchas American IEEE802.11a and the
European equivalent HIPERLAN/2 [27] and in multimedia wireless services such as
Japanese Multimedia Mobile Access Communications. [20]

Among many problems which degrade the performance in OFDM systems,
frequency-selective channel is a major issue that leads to bad transmission quality. A
channel estimator evaluating the wireless channel can offer an approximated channel
for equalizer, and then the effect of the frequency-selective channel can be removed.
Carrier frequency offset (CFO) and phase noise (PHN) are two serious problems in
channel estimation which can fail to estimate the channel impulse response especially

for pilot symbol assisted modulation [9,15,18-20,23-24,29-30,33-34,39,41].



An OFDM system with channel estimator is shown in figure 1.1 where h is used
to model the wireless channel h between transmitter and receiver (users and
base-station). Thus the replica transmitted signal X is generated after equalizer,
which is the result of the received signal ydivided by the estimated channel vector
h. Then the original data could be decoded after the demodulator.

The implementation of such a system is not easy as it seems. Due to the
performance of the channel estimation scheme will be affected by the time-varying
statistics of the Rayleigh channels because of the Doppler effect, therefore, the
orthogonality between the sub-carriers of OFDM systems is lost in case of
time-varying channels, and thus, the system performance is degraded because of the
resulting Inter-Carrier Interference (ICI) phenomenon [30-31].

Among all the estimation schemes to cope with this channel, the basis expansion
model (BEM) is popular for their simplicity and robust behavior [32]. There are
several often seen BEM methods (e.g: CE, Slepian and. SVD-BEM) for time-variant
channel estimation. In general, the Doppler spectrum is assumed to adhere to Jakes’
model [13]. The Jakes’ spectrum is valid for a dense scatterer model in the limit of an
infinite number of scatterers around a linear omnidirectional antenna [49]. But this
assumption is not fulfilled if a few dominant propagation paths are present only. It
was shown by measurements in [17] that wireless channels at 5.3 GHz do not have a
Jakes spectrum. Furthermore, the actual velocity of the user and the angles of arrival
enter the autocorrelation as parameters and have to be estimated explicitly.

Important issues such as CFO and PHN, and the conventional estimation method
for time-invariant channel, compare several interpolation methods based on the
frequency domain pilot tones. Finally, we introduce the time-varying channel model
which is not easy implemented as before, so we model the channel as the Jake’s
model [12-13], which the assumption is reasonable and often seen.

2
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Figure 1.1 The structure of OFDM system

In Chapter 3, several BEM schemes are introduced. and analyzed such as CE,
Slepian and SVD-BEM. Moreover, we apply the ‘Wiener filter after these BEMs
channel estimation to enhance the’ SNR-and improve channel MSE. Certainly, we
derive the theoretical mean square error for these BEM methods. Moreover, we
consider both CFO and PHN into the OFDM transmission, which are not rare and
practical conditions.

In Chapter 4, in order to reduce the complexity, we would like to update the BEM
parameters. First, we update the BEM coefficients using least mean squares (LMS)
and exponentially-weighted recursive least square (EW-RLS) [33] algorithm, and we
consider the significance of each BEM bases, which can improve the convergence rate.
For the purpose to ensure the optimum stepsizes are proportional to the bases
significance (eigenvalues), we derived the theoretical MSE for LMS and found the

time-invariant stepsizes for each basis coefficient. Second, when the Doppler



frequency is not always fixed, we propose two ways that can obtain the new bases,
which are the asymptotic curve for the new bases directly and the approximated
eigenvalues with power method to get new bases.

In Chapter 5, the simulations verify the result of our analysis in the Chapter 2-4 and
the comparison between the proposed and other methods, and then the conclusions are

in Chapter 6.



Chapter 2

OFDM System Basics

OFDM system exploits “many —orthogonal sub-carriers to transmit multiple
sub-signals simultaneously.-~Each sub-carrier is modulated with a conventional
odulation scheme such as phase shift keying (PSK) or quadrature amplitude
modulation (QAM) at a low symbol: rate, and the total data rate is similar to
conventional single-carrier modulation schemes in the same bandwidth.

The features of OFDM comprises good spectral efficiency, othogonality between
sub-carriers, no inter-carrier guard band, easy implementation by fast Fourier
transform, easy design for equalizer and in effective for multi-paths and frequency
selective fading channel. Moreover, the key point for OFDM schemes are
synchronization, carrier frequency offset, high PAPR (Peak to average power ratio)
problem and sensitive to Doppler effect. [29,44-45]

OFDM has developed for wideband digital communication. The applications

include digital television and audio broadcasting. [45-46]



2.1 OFDM system description

XO
Serial ; - , Multipath
Modulation |—» to o N-points | x ) CP | % | CAWGN
» IDFT Add
Parallel |- Channe
X,
)20 YO
< <
: : CP Off
Parallel |4 < + Y,
Democ. = to > , > , -
Serial It Equalizer '« N-points
< < DFT
XN—I YNfl
Figure.2.1 OFDM system block diagram
In fig2.1, after QPSK, M-ary QAM modulation, the modulated data

X={X,,. X, X N_I}T is transferred into-time-domain signal vector x by N-points

inverse discrete Fourier transform (IDFT). that'is represented as x=F"X, where N

denotes the FFT length, and the matrix F defines a DFT matrix with

F'F=FF" =1, [20]. Afterwards, the vector Xz{xo,xl,---,xN_l}T adds the CP

(cyclic prefix) which denotes a copy of tail part (Ng) of OFDM signal x is attached
to its front. (Figure 2.2), where Ng should not be less than length of channel impulse
L. The CP is used to prevent intercarrier interference (ICI).

The multipath channel is assumed to be time-invariant during a data block

transmission and the delay spread is L, in other hand, A[l]#0 for le[0,L—-1].
Therefore the effect of multipath (h ={h[0],-~-,h[L—1]}T) is linear convolution with

transmitted signal, thanks to the cyclic prefix, the linear convolution can be replaced
by circular convolution on account of that we only focus on the useful part of

6



complete OFDM signal.

The received complete signal:
ycp = ch *h ’
where y_: (N+Ng+L-1)XI. The received useful part signal (after CP removed):

y=x®,h,

where ®,, denotes N-polnts circular convolution. The detected symbol after DFT:

Y =DFT(y)=DFT(x®, h)=XH,

where H=DFT (h).

-l
-l V“ |

CP Useful part
Complete OFDM signal X, (N +Ng)

Figure 2.2 Cyclic prefix schematic

2.2 Carrier frequency offset and phase noise

The practical receiver encounters non-negligible phase noise (PHN) and carrier
frequency offset (CFO), which result in substantial intercarrier interference that
destroy the orthogonality of the system. The Tx/Rx structure and the channel model
over a period of one OFDM symbol, taking into account the distortion caused by CFO

and PHN, are illustrated in Figure 2.3



After CP is removed, we have the received OFDM symbol in time-domain as

. 27wne

y:e']( v (h®x)+®

. 2wne
J( L

o' N “’”z h[n)xln—11+ @{n] (2.2.1)
1=0

where ®& denotes circular convolution, ® is the AWGN, and & is the normalized
CFO within a packet. @ =[¢[0] ¢[1],...,[N —1]]" is the phase noise sequence which
can be modeled as two kinds of processes. First, Gaussian PHN, which is zero-mean,
stationary, finite-power Gaussian distributed random process [7], i.e.,¢ ~ N(0,®). D
is the covariance matrix of ¢ and 0 is the zero vector. Second, Wiener PHN, and
the discrete time equation can be written as @[n]=¢@n—1]+&[n], where

&[nl ~ N(0,4x f,,T.) isa Gaussian random variable [3].

Modulation > S/P > IDFT_ ' +» CPADD" » P/S

A

Channel
CFO
HN
DFT
De-Mod. <« P/S < Equalizer | CPOFF <o S/P
Detector
Noise

Fig.2.3 OFDM system and PHN/CFO channel model

2.3 Time-invariant channel estimation

A dynamic estimation of channel is necessary before the demodulation of OFDM
signals since the radio channel is frequency selective and time-varying for wideband
mobile communication systems [21]. In Section 2.3.1 we introduce the time domain

approach for time-invariant channel estimation. Then in Section 2.3.2, we introduce



that the channel estimation scheme could be performed in frequency domain by either
inserting pilot tones into all of the subcarriers of OFDM symbols with a specific

period or inserting pilot tones into each OFDM symbol.

2.3.1 Time domain approach

In time-domain approach for channel estimation, we estimate the time-domain
channel impulse response A[l/], where [=0,1,---,L—1.

The received signal during N, training periods in time-domain can be represented
as y, [n]=h[l]1® x[n]+noise, where m=1,---,N,, and the matrix form

,,[0]

1
Y ’”:[ |- Xh 4 noise 23.1)

m

YulN =1]

h=[h,, hl,---,hL_l]T , and the eircular convelution matrix-form for training signal

x[0] x[N-=1] x[N=2] x[N=L+1]
x[1] x[0] XN =1]
X= x[1]
xIN-1] x[N-2] x[N-3] -- x[N —L]

NXL

In (2.3.1), we can obtain the estimated channel estimation via LS approach

A . 1 Ny . 1 Ny
h=X"| — ymj =X {— Xh + noisej
(NT 2 N, =
= X"Xh + noise term (2.3.2)

Then we can obtain frequency response H by applying the discrete Fourier
transform of Eq. (2.3.2) with zero padding. Note that the noise effect would be

smoothed out by time averaging.



The advantages of time-domain approach is fewer parameters are estimated given
a fixed amount of data rather than frequency-domain approach, and leading to more

accurate estimates. But there are more computations required for one estimation.

2.3.2 Frequency domain approach

In frequency-domain approach for channel estimation, we estimate H[k], the
Fourier transform of channel impulse response, where k =0,1,---, N b 1.

The channel estimation based on comb type pilot arrangement (Figure 2.4) is
through different algorithms for both estimating channel at pilot frequencies and
interpolating the channel. In comb-type pilot.based channel estimation, the N pilot
signals are uniformly inserted into according to the following equation:

X[k]l=X[mL+1],
where L denotes the period-of pilotinserting.-We define {H p[k], k=0,1,---,N p} as
the frequency response of the channel-at.the pilot subcarriers. The estimated channel
before interpolation is given by:

Y [k]
H[k]=—2—, k=0,1--,N, —1,
X [k] v

p

where Y, and X are output and input signal.

The estimation of channel at pilot frequencies is based on least-square (LS) while
the channel interpolation is done using linear interpolation, second order interpolation,
low-pass interpolation, spline cubic interpolation, and time domain interpolation
(Figure 2.5). Time-domain interpolation is obtained by passing to time domain

through IDFT, zero padding and going back to frequency domain through DFT. [REF

papers]
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Figure 2.4 Comb-type pilot arrangement

Hlk+1

HIk

k

AN A A
AHimL+11=(Hk +1] —H[k])%+ Ak

Frequency

Figure 2.5 Interpolation.example (linear interpolation)

In addition, the channel estimation based on block type pilot arrangement (Figure 2.6)
is performed by sending pilots at every sub-channel and using this estimation for a
specific number of following symbols.

In block-type pilot based channel estimation, OFDM channel estimation symbols
are transmitted periodically, in which all subcarriers are used as pilots. If the channel
is constant during the block, there will be no channel estimation error since the pilots
are sent at all carriers. The estimation can be performed by using either LS or MMSE

[18-19]. Given Y = XFh+W , where F denotes the DFT matrix.

H,, =FR,R,Y

MMSE

11



where R,, =E{hY}=R,F"X" and R, =E{YY}=XFR, F"X" +0°l, are the
cross covariance matrix between & and Y and the auto-covariance matrix of Y.

R,, is the auto-covariance matrix of i and o’ represents the noise power. And the

LS estimation can be represented as:
H,, = X"'Y which minimizes (Y — XFh)" (Y — XFh).

When the channel is slow fading, the channel estimation inside the block can be

updated using the decision feedback equalizer at each sub-carrier.
Y[k]

® The estimated transmitted signal X [k]=——F
H,[k]

® {X,} de-map to binary data and then back map to {X, }

Ylk]
Xpure [k]

® The estimated channel H, [k]=

Since the decision feedback equalizer has to assume that.the decisions are correct, the
fast fading channel will cause the loss of estimated channel parameters. Therefore, as
the channel fading becomes faster;.there happens to be a compromise between the
estimation error due to the interpolation and the error due to loss of channel tracking.
For fast fading channels, we will discuss in chapter 2.4 and chapter 3.

-~

OO000O OOO0O0O
OO0O0O0O OOO0O0O
OO000O OOO0O0O
O000O O0OO0O0O
00000 00000

OO000O OOO0O0O
O0000O OOOOO
O000O OOO0O0O
OO000O OOO0O0O
00000 00000

Time

»
| 4

Frequency subcarriers

Figure 2.6 Block-type pilot arrangement
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2.4 Time-varying channel model

In wireless communications such as satellite communication and cell-phones, the
information signal is transmitted across free space. Two principal factors which
influence the distortion of the signal transmitted across the wireless medium are
multipath fading and mobility as illustrated in Fig. 2.7.

Multipath phenomenon means the transmitted signal arrives at the receiver via
multiple propagation paths at different delays. As the matter of the fact, the multiple
signals arriving at the receiver may add constructively or destructively resulting in
wide variations in the signal strength.

Mobility is the phenomenon in which the relative positions of the different objects
change with time, causing the nature of channel distortion to vary with time. It will be

discussed in Section 2.4.2.

Figure 2.7 Multipath and mobility



2.4.1 Doubly-selective channel

All simple equalizers are based on the assumption that the channel is quasi-stationary
which means that channel is time-invariant during a transmitted block. However, in
wireless environment, the channel state may change within a transmitted block. This
time-varying multipath indicates frequency-selective channel.

Under frequency-selective fading, the channel bandwidth and delay spread are
smaller than the coherent bandwidth of signal and symbol period respectively,
moreover, the different frequencies of transmitted subcarriers correspond to different
channel frequency response.

Accordingly, we can denote the impulse response of time varying channel as h,[n],
where n can be interpreted as time index and- /< as channel tap index and /€ [0,L).
The received signal with Doppler effect corresponding to transmitted signal x[n]

(in the complex baseband) and can be represented as
L
ylnl= ; h[nlxin—11+ aln] (2.4.1)
Note that we usually use Jake’s Model to-describe #[n] which will be introduced
elaborately in section 2.4.3 and @{n] is additive noise term. The time-selectivity due

to Doppler effect and frequency-selectivity due to multipaths in the wireless channel,

which is usually called doubly-selective channel. [2,9,11,16]

2.4.2 Doppler frequency effect

Since the relative motion of transmitter and receiver, the Doppler effect must be

evaluated, and the corresponding mathematical equation can be represented [14] as

Ve _Ja
fa= T (2.4.2)

s N

where fd is the normalized Doppler frequency, with v (m/s) the speed of the mobile,

14



f. the carrier frequency in Hz, ¢ the speed of light, f, the actual Doppler
frequency, and 7, the subcarrier spacing.

The rate of variation of the channel response across time due to mobility is called
the Doppler spread. If the channel response varies significantly in the signaling
duration, it becomes time-selective. Note that channel are both time and frequency

selective are doubly-selective channels.

e fd=10 Td=100 fd=300 Hz

1.8
18 -
g =
1 1a

Figure 2.8 Channel vector in different Doppler frequency (10,100,300 Hz)

2.4.3 Jake’s model and channel statistics

In wireless channel, there does not exist the LOS (line-of-sight) signal, thus the
Rayleigh fading channel is always used to simulate the real channel. Moreover, if
there is Doppler effect in the multipath channel simultaneously, it is generally
believed that the Jake’s model is very appropriate for time-varying channel discussed
in Section 2.4.1.

Noted that the auto-correlation function [12-13]
n(0)=0.J,2x f,7)

Where J,(-) denotes the zeroth-order Bessel function of first kind and o, the power



of the [th channel tap. Therefore, we can obtain the auto-covariance matrix R, in
dimension N XN, whose (i, j)-th elementis r(i— j)= G,zJO(Zﬂfd i-1J).

The Doppler power spectral density

1
S(f)= - (2.4.3)
1%
Tf, 1= —
‘ [fd j
which is illustrated in Fig. 2.9
SCf)
~fd 0 fd

Figure 2.9 Power spectral density.of Jake’s model

2.4.4 Problems from Time-Varying Channel

When the transmitted signal goes through the time-varying channel, there are some
crucial problems induced, two of which will be depicted as follows.

1. Channel estimation issue

We use pilot sequences to estimate the channel information in conventional time
invariant channel, but doubly selective channel changes so fast that giving rise to two
successive time-domain channel tap #,[k] and i [k +1] are normally distinct.

Thanks to the estimation schemes of BEM, which is effective to be exploited to

overcome the time-varying channel, and we will discuss the issue in Chapters 3 and 4.
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Moreover, there are also some useful methods such as blind estimation scheme in
[8-9].

2. Equalization issue

In a time-varying channel, the channel matrix H in Eq.(3.2.2) is not circulant, thus, the
traditional equalizer [10] can not be applied. This problem is discussed in detail in

[11].

2.4.5 Data detection

Due to the equalization issue in Section 2.4.4, the data transmitting method in
doubly-selective channel is important. In [2], one data transmitting method will be
introduced in the following paragraph.

The input is made by time-division multiplexing pilot-and data symbols. The pilot
symbols are known to the receiver, and the data symbols.come from a finite alphabet.
The system uses zero-padded block transmission, where-each transmitted block, or

packet, is made of alternating data/pilot-sub-blocks. All pilot sub-blocks are assumed

to be of length N, =2L+1and of the form [0§ p 0{] . All data sub-blocks are of
length N , - If the number of pilot/data sub-blocks in a packet is Q + 1 (for even Q)
and the g-th data sub-block is denoted d, then the input is given by

S:[dooi p 0 - d,0; p OHT(as in [2]),

the fact that the final L symbols are zeros guards against inter-block interference. The

total number of pilot and data symbols is

Np=(Q+1)N, andNg=(Q+ 1) N, respectively.

17
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Figure 2.10 Packet transmission schematic

We have Q+1 received signal y” <o obtain - B x /L coefficients by exploiting the

known bases (obtained from the channel statistics). Find the optimum combination of

bases for h” as the whole channel vector h,(N x1), thus the channel tap that data

pass h?can be estimated. Since we also have the received signal resulted from data:
y?, thus the data detection can be accomplished.

To summarize this chapter, the OFDM and its main problems has been introduced.
For the channel estimation in time-varying channel with Doppler effect, we discussed
the issue in Section 2.4, which was prepared for Chapter 3, which will introduce and

analyze some estimation schemes.



Chapter 3

Basis Expansion Model
for Channel Estimation Schemes

In Section 2.4, the time selectivity causes the channel is time-invariant over a block
assumption does not hold, which assumption has been adopted by many existing
wireless environment. This doubly- selective channel would affect the communication
performance critically. The issue of estimation of this channel is getting more
attention due to the significance to the future wireless application.

Basis Expansion Model (BEM) is an effective scheme to overcome the difficulties
with a few complex exponentials and low-cost. [2,4,22-23,25,35-38,39-42]

The BEM that is optimal in terms of the mean square error (MSE) is the discrete
Karhuen-Loeve BEM (DKL-BEM or SVD-BEM) [36-38], the problem though is that
if the assumed channel statistics deviate from the true scenario, which is very likely in
practice, the SVD-BEM will perform suboptimally.

As a compromise, one can derive a BEM that is based on a general approximation

for all kinds of channel statistics. For instance, the discrete prolate spheroidal BEM
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(Slepian-BEM) [22-23]. It is featured by a set of orthogonal spheroidal functions that
are perfectly band-limited but have maximal time concentration within the considered
interval.

Note that it is also possible to construct BEMs that are not dependent on the
channel statistics like the complex-exponential BEM (CE-BEM) [35]. The CE-BEM
introduced in Section 3.1 exploits the Fourier basis expansion gained a great deal of
attention thanks to its algebraic ease [2,4,39-42], but fails to track the channel at the
edges of the block resulting in much more modeling error [25]. As we understand, the
CE-BEM can actually be viewed as a special SVD-BEM but based on a white
spectrum.

At first, we introduce the essence.of the basis expansion model in Section 3.1. Then
we introduce some BEM methods including the CE-BEM in Section 3.2, and then the
improvement by over-sampling ‘and non-uniform sampling version in Section 3.2.1
and 3.2.2. In Section 3.3, we introduce the singular value decomposition basis
expansion model, which exploits the principle eigen-vectors as the basis rather than
CE-BEM. In the following Section 3.4, the Slepian BEM would also be introduced. In
Section 3.5, we analyze the theoretical MSE of BEM and propose the Wiener filter
methods for enhancement. Moreover, we also consider the phase noise and the carrier

frequency offset problem in Section 3.6.

3.1 Introduction of basis expansion model

Rapidly time-varying channels may be normally encountered in highly mobile
wireless environment. We approximate the time-varying channel using the basis
expansion model (BEM) as a liner combination of finite number of complex

coefficients (Fig. 3.1). That can reduce the computation complexity and diminish the
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noise.
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h,=Dc. ' [=0,.,L,

Figure 3.1 BEM for real time-varying channel

The time-varying channel vector h, (NXx1) (note that N denotes the transmitting
block length or the length of one basis function, and L+1 is the number of multipath

channel impulse response) can be represented as BEM coefficients
T
¢=[ o Cpa ] (3.1.1)

(note that B denotes the number of basis functions we used) by a known bases matrix:

D:[do’dwds—l]

NXB

where d,,d,,,d; denote the basis functions in dimension N X1. And then we can
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express h, as Eq.(3.1.1)
h)=¢dy+c¢ d ++¢p dy (3.1.2)

The parameters we interested will decrease (N >> B), and moreover, we would like
to have the good bases D to model the real channel, and the following sections
introduce some often seen bases.

Given some bases (CE, SVD, or Slepian), we can obtain the estimated BEM

coefficients ¢ from the transmitting pilots and received signals by the least-squares

method:
B hy[0] 0 h, [0] h,[0]
h(l] Al 0 h[1 hll
Y01 1:[ ] ?F ] . M 2:[ P o
y= y[:l] = h[L-1] S[:l] +w
: L] : . :
y[N —1] 0 S[N —1]
| 0 BN —1] G- h[N-1]
=Hs+w
=ZS,h,+w
1=0
:iS,Dc,+w

1=0

=S[I,., ®D]c+w

where S, is defined in Eq.(3.3.8), S=[S,,"--,S,] and ¢=[c,,"--,¢,]" . The notation

® indicates the Kronecker product.
The advantages for BEM are the fewer parameters need to estimate (ce C°), in

contrast, the conventional ML method need to estimate more parameters (h,, € CY),

where N >>B.
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3.2 Complex exponential basis expansion model

The CE-BEM has been widely used to model time-varying communication
channels [1-2]. It represents the channel as the sum of complex exponentials, which
are uniform sampling in the frequency domain and symmetric about the zero

frequency. For the case where the channel has L+ taps, and the [ th

(I=0,1,...,L—-1.) tap, h[n] will be modeled using B + I basis coefficients ¢, (for

an even value of B):

B/2
hinl= D ¢,e™" where w=2"s (3.2.1)
k=B B/2

It can be interpreted as Fourier series approximation. This means that there are
(B+1)(L+1) coefficients to estimate,” note that there were N(L+1) coefficients to
estimate without BEM. For block transmission with packet length N, the received

signal y can be denoted as

y=Hs+w
B/2

= > DST +w

k=—B/2

=D[I,, ®S]c+w (3.22)

B+1

where S=NX(L+1)is lower triangular Toeplitz matrix with its first column
[s[0],...,s[N —-1]]",

1 0
D, = . , k=-B/2,...,B/2

0 ejwk(N—l)

D=[D_g,.... D), ]
¢ =[C»--¢, ', k=—-B/2,...,B/2

= _raT =T
C=[Cps0r 0l

The least-squares estimation of ¢ 1is:

c=(D[I,, ®S]'y (3.2.3)
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— |

Figure 3.2 CE-BEM sampling in Jake’s model PSD

3.2.1 Oversampling CE-BEM approach
Since the channel is limited in the Doppler range with non-uniform distribution, it

might be beneficial to reduce the sidelobes by taking more samples within the range

Therefore, we can rewrite Eq.(3.2.1) in

1 B/2 o
BB = Z(K) pi@an 3.2.4
= — Z/ (3.2.4)
where @' = 27, ,and n=0,1,..., KN —1
Define

T
>

h* =[*[0].....H " [KN —1]]

and

= (K)_ =(K) —(K)
¢, =1¢, 525> Crpnls

the least-squares fit for €%’ could be obtain by solving

! (3.2.5)

h,* - ) Koy
KN

9
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where DY is also the basis matrix that can be represented as

1 e 1
— jrB/KN o /BIKN
D(K) —
e—jﬂ'B(KN—l)/KN . ejﬂ'B(KN—l)/KN

We can derive the least-squares solution in Eq.(3.2.5)

¢ = KND®" h,® (3.2.6)

3.2.2 Non-uniform sampling approach CE-BEM

Because of the non-uniform distribution of the Doppler power spectral density, in
Section 3.2 the uniform sampling of the PSD does not sample the most important
frequency as the complex-exponential basis, it might be beneficial to sample more
significant frequencies, which ‘means the high frequency close to the maximum

Doppler frequency in the Jake’s model case:

Normalised Uoppler power spectral densiy

.
|
[}
I
i
I
-
I
I

L T e

-fd

Figure 3.3 Non-uniform sampling under Doppler PSD
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Assume the B+1 basis coefficients we use, from —f, to f, the overall interval,

the sampling frequencies we take could be represented as

(B + 2)7[).]7;1’0’ COS(M)fdacos(w)fd" . .,COS(%)f‘d’ fd}

—f ,...COS(————
{ Ja ( 2B 2B 2B

Each sector consists of two successive sampling frequencies has the same energy.
Note that the density is higher in both ends and the lengths of the every sector are the

Doppler shift. And then we can rewrite Eq.(3.2.1)

B/2

hinl= Y. ¢, (3.2.7)
q=—B/2 '
where o, = COS(M) fd
= 0
ejw"
D, = , ,g=—B12,."B/2
0 JERC

D=[D_g,,....Dp,]
The least-squares estimation of € is:

c=(D[1,, ®S])'y (3.2.8)

3.3 SVD Basis Expansion Model

We use the singular value decomposition to find the best basis from the Jake’s
model Rayleigh channel. In time-varying wireless channel, since only one block is

considered, the = th received sample can be expressed as in [4]

ylnl=Y hnlxln—11+ oln] (3.3.1)

=0

And the matrix representation in (3.2.2)
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'ho[()] 0 h, [0] h[0]
1 1 0 B 1
Y[0] hﬂ[ ] h“[ : . = . hz[ P o
_ yE” - -1 |
: hIL) :
MIN-1] . L, (V-
i 0 mIN-11 - h[N-1]]
= Hx (3.3.2)
hIn1=> ¢, fipaslnl, 1=0,....N-1 (3.3.3)

k=0

where f, ... denotes the SVD basis come from the eigenvectors channel correlation
matrix R, , following the Jake’s model in chapter 2. And we can obtain the singular

value decomposition of R, ,=Q,AQ," . (3.34)

And Eq.(3.3.3) could also be.represented using matrix notation

h[0] Co
BT _
h = . =D : =De,;, [=0,...,1L, (3.3.5)
h[N] Ci.B

where D and ¢, are NX(B+1) dimensional bases matrix and the projected BEM
coefficients respectively
According to the definition, Eq.(3.3.4) and (3.3.5), the channel correlation matrix
R,, = Elhh"1=DE[cc,” D" =QAQ,", [=0,....L (3.3.6)
We can conclude that D=Q,(:,1:(B+1)) from Eq.(3.3.6).
Based on Eq.(3.3.2) and (3.3.5), the BEM coefficients and estimated channel vector
through LS is
¢, =(S,D)"y and h, =D(S,D)"y (3.3.7)

where the transmitted signal matrix
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S, =%diag({x(N—l+n)m0dN}Iiv__(}) (3.3.8)

X

where [=0,...,L, 0,” : the variance of x

3.4 Slepian Basis Expansion Model

In [23], Zemen and Mecklenbr auker first applied the Slepian sequences to the BEM
for channel estimation. The Slepian method exploits a set of orthogonal functions that
optimize energy concentration both in time and frequency [22]. These basis functions

are the discrete prolate spheroidal sequences. We assume the length of Slepian

sequences Vv[n] is N, which are band-limited to the [—f,T,,f,T.] in frequency

domain. These sequences are generated from the following eigenvalue equation.

i SiIl(Z?Z'deS (I- n));/,[l] - /IZ(V N)V,- [n] (3.4.1).

— ﬂ'(l—l’l) max ?

To solve the eigen-equation and-acquire the eigenvector solutions, we can see it as the

thing to get the eigenvectors from a square matrix A :

2T sinzf,T,)  sin@WN-Dzf,T) |
T (N-Drx
sin (227 f,T.) o T sin 2(N =2)zf,T))
Ay = -

e (N-2)x (3.4.2)

sin@(1-N)zf,T.) sin(22—-N)zf,T)

2f,T.
(-N)z 2-N)z L
The eigenvectors are normalized so that:
Y 2
D (vn]) =1 (3.4.3)

n=1

where the matrix A can be considered as the channel correlation matrix and

NxN
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compared to the R, in Eq. (3.3.6).
Therefore, h, can be approximated as a linear combination of the Slepian

sequences v,[n] of length N, which are bandlimited to [-f,T,, f,T.] as
hlnl=Y vlnlc, n=1,--,N (3.4.4)

where B = f2 f, TN 1 +1 is the number of principle eigenvectors we choose.

When the relative mobility between the transmitter and the receiver is small (i.e.,
when the Doppler frequency is small), this method requires very much long Slepian
sequences to accurately model the channel. This is because we should take a long
period time to observe the slow variation channel.

In the right part of Table 3.1 ‘shows that for a given length sequences, as the
maximum normalized Doppler frequency. f, T, increases, A increases, which
means the Slepian BEM requires longer sequences to accurately model the channel in
low f,T . And then, we can continue observe the left part, the length of the Slepian
sequences should be increased fora given f, T« This implies that we need to observe
more samples to estimate the channel especially in low Doppler frequency, which
high computational complexity for decoding. Therefore, in a low mobility
environment, the time-domain Slepian basis expansion model cannot represent the

channel effectively.
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Table 3.1 A for different length of sequence and Doppler frequency

faTs =0.001 N=130

N B M A2 A3 JaTs B M A2 A3 A4

130 1 0.25 | small | small | 0.001 1 0.25 | small | small | small

250 1 0.48 | small | small | 0.005| 2 0.88 | 0.35 | small | small

500 2 0.79 | 0.22 | small |0.008 | 3 092 | 0.71 | 0.25 | small

1000 3 0.99 | 0.78 | 0.27 | 0.01 4 099 | 09 | 052 | 0.11

3.5 Analysis of the basis expansion model

In this section, we analyze and discuss some issue for BEM. First of all, we derive the
theoretical channel estimation MSE in Section 3:5.1..In order to enhance the channel
estimation performance using BEM; we apply the Wiener filter to adjust the power
spectral density of the estimated channel in Section 3.5.2 that aims to filter out the
noise and achieve the best signal to.noise ratio. In Section 3.5.3, we discuss and
compare the UB basis schemes to SVD-BEM, the UB is a post bases projection
method. Finally, we discuss the difference of the conventional estimation method
without applying basis expansion model (called non-BEM) and BEM methods in

Section 3.5.4.

3.5.1 Derivation of the theoretical MSE

The total mean square error (MSE) of the channel is defined by

J=E{ZL:IIh,—ﬁ, I } (3.5.1)

where L is the number of multipath taps and h, is an N-dimensional channel vector.

The received signal in Eq.(3.3.2) can be rewritten as
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L
y=0.>YSh, +w (3.5.2)

=0

where o, is the transmitting signal power and S, is denoted in Eq.(3.3.8) with
0.’S,”S, =1, and then we note that the estimated channel vector

h, =D¢,=DS,D)"y, (3.5.3)
from Eq.(3.5.2) and (3.5.3), the channel estimated error

h, —ﬁ, =(I-DD")h, - D(S,D)” ZL: Sh,—-DES,D)"w (3.54)

i=0,i#l

If the transmitting signal {x[n]},(n=0~ N—1) is the PSK or QAM constellation,

then from the Central Limit Theorem, the second term in Eq.(3.5.4),

L
D(S,D)" > Sh, isequal to zéto, therefore.

i=0,i#l
h, —ﬁ, ~ (I-DD")h, —D(S,D)" w (3.5.5)
since h,and ware uncorrelated, we note that the total MSE in Eq.(3.5.5) can be

considered as two part: the channel modeling error and the channel identification error,

the modeling error can be rewritten from Eq. (3.5.5) as

E{ZL:H(I —DD” )thZ}

d

M=

trace ((I —DD")h, (I-DD")h)" )}

T
S

trace((I-DD")hh,” (I-DD")" )} (- trace(AB) =trace(BA))

Il
f—/hL\
M- I

1]
t
—

trace((I-DD")" 1-DD")hh,” )} (- (I-DD")" = (1-DD"))

l

Il
o

I
M=

trace((1-DD")" (1-DD*)E[h/h," 1)

= I

= trace((1-DD")(I-DD")R, ) (- @-DD")* =(1-DD"))

~
(=]
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= (L+Dtrace((I-DD")R, ) (3.5.6)

Similarly, the channel identification error that resulted from AWGN is
L - 2
E{ZHD(S,D) WHF}
=0
L
= E{Ztrace(D(SlD)H w-(D(S,D)" w)” )}
L
=E {Ztrace(D(SlD)H w-w" (S,D)D" )}

=E {ZL: trace(ww"S,DD"DD"S " )}

=0

=E {ZL: trace(ww"S,DD"S " )} = (L+1)E[w" wltrace(D"S,"S D)

=(L+1)o’ %trace(DHD) =(L+1)o %tmce(lw)

X X

= (L+1)(B+D) T (3.57)
o

X

where o, ’and o, denote the variances of the noise and the transmitted signal,

respectively. Eventually, by summing up Eq.(3.5.6) and (3.5.7), the total mean square

error of channel vector estimation in Eq.(3.5.1) is

o

L 2 2
E{lehl —h, Il }: (L+1){trace(Rl ~DD"R,))+(B+1) O—sz (3.5.8)
=0 x
Obviously, to minimize the channel estimation MSE in Eq.(3.5.8), we need to
minimize both the channel modeling error and the channel identification error. For a

fixed B, L, as well as SNR, we just need to minimize the modeling error which

corresponds to the channel modeling MSE:
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min trace((I-DD")R,)
D

= max trace(DD"R, )

=max race(D"RD) <34, (3.5.9)

=
—_

l

Il
[=)

where 4, denotes the eigenvalues from the real channel correlation matrix R,,
which comes from Jake’s model in this thesis.

The equality holds true if and only if the basis matrix D is taken from the first B

columns of Q, in Eq.(3.3.6) which correspond to the B significant eigenvalues. Thus,

the SVD-BEM will offer the minimum mean squared channel estimation error.

3.5.2 Wiener filter

We would like to enhancethe channel estimation that can achieve the maximum
SNR and conform to the theoretical power spectral density by utilizing the Wiener

filter [14]. Consider the block diagram of Fig.-3.4 built around a linear discrete-time

A

Wiener filter. The filter input consists of ‘a time series h[O],ﬁ[l],n- , and the filter is

itself characterized by the impulse response w,, w,, w,,.... At some discrete time n, the

filter produces an output ﬁw[n]. The output is used to provide an estimate of a desired
response designated by A[n] (real channel: d). Where the power spectrum density of
d was defined in Eq.(2.4.3),

B

P,(f)=———r—=.
NI=(F 11,

With the filter input and the desired response representing single realizations of

(3.5.10)

respective stochastic processes, the estimation is ordinarily accompanied by an error
with statistical characteristics of its own. In particular, the estimation error, denoted

by e[n], is defined as the difference between the desired response and the filter output.
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Input:x Output Desired:d
A[0], A1], - h,[n] h[n]

w

»  Wiener filter

Wy Wis Wy,

Error
e[0],e[1],---

Figure 3.4 Block diagram representation of the statistical filtering problem

The optimum linear filter in Fig.3.4 is shown in Eq.(3.5.11), where the input
(estimated channel vector) can see as the desired signal (real channel vector) add the

noise vector w, which can be expressed as w=x-d, and the variance of noise vector w

is 0. Assuming thatP, (f) #0for-allf , we find thefollowing transfer function of

the non-causal Wiener filter:
P

G(ﬂ=P’“’(f)= P VI=(F7 1 ) (3.5.11)
Px(f) Pd(f)"'Pw(f) #4_ 2

JI=-F1f )7

If the weights (importance) of each basis do not conform to the Jake’s PSD as in

Fig. 2.9 (like Fig.5.17 in fd=10), the Wiener filter may not valid.

3.5.3 Comparison of UB-BEM

UB-BEM is post-processing method to project the estimated channel onto a set of
orthogonal functions known as the Universal Basis (UB) that were defined in [26].

The PDP (power delay profile) of the multipath channel is defined as F(7). The

channel autocorrelation matrix R can be expressed as

M
R=>o’gs’, (3.5.12)

i=1
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where g is defined in [24], denoted the combined impulse response of the

band-limiting filters.

(@ Fu (T) b)) 4 F (/z')

z 1],

Figure 3.5 (a) Universal power delay profile. (b) Particular power delay profile.

The UB (universal basis) is formed by the significant eigenvectors of a specific

0
universal channel autocorrelation matrix R ,“which is obtained as R, =z gg'.
i=1

One possible universal PDP ‘F (7) -associated to the matrix R, 1is given by

Fu(f)z{l’ el (3.5.13)

0, otherwise

Once the receiver does not havethe knowledge of the channel PDP, this method offers
good bases for channel approximation. Given a estimated channel vector h in

conventional method such as [25], (Fig. 3.6) we can project h onto the UB subspace

in order to constrain the estimator to the admissible subspace of channel realizations.

A

h, = AAPh (3.5.14)
where the matrix A contains the eigenvectors from R, .

The projection improved channel estimation when compared to raw superimposed
training (ST) based channel estimation schemes. The performance depends on the raw
ST method effective or not. If the method works with much error, the post projection
would not remove the distortion entirely. Compare to Section 3.3 (SVD-BEM), we

directly exploit the same bases as UB (post BEM) to estimate channel but with the
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same or better performance.

Estimated Project to Back to
hest ™ KL g h
(by any way) Bases o

Fig.3.6 The UB flowchart

3.5.4 Complexity comparison with the conventional method

Without exploiting the BEM methods for time-varying channel estimation, [18]
used a traditional MMSE estimate of channel based on the cost function from the

Maximum a posteriori (MAP) method.

A

h =argmax p(y [h) p(h)
1 2 Hyp -1
:argmlfle”y—Sh” +h”“R, 'h

=(S"S+0’R, 'Sy (3.5.15)
where S is the stacked S, matrices, S=[S,,S,,---,S, ], S, are the same in Eq.

(3.3.8), and h is also the stacked h, matrices, h=[h h,---,h,_]

R,, 0
R, = . (3.5.16)

0 R

h,L-1

Comparison of two channel estimation by exploiting between BEM and non-BEM
respectively, in the equation for estimated channel Eq.(3.3.7) and (3.5.15), we can
discover that there is a matrix inverse which should be calculated in the receiver, on

the other hand, the traditional method needs much more computations than BEM
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system, and more parameters to calculate. We can also compare the performance

under criterion of the accuracy of estimated channel in MSE in Chapter 5.

3.6 Consideration of CFO and PHN

Due to the mismatch of oscillator and receiver, the phase noise and the carrier
frequency offset effects are key problems that can lead to severe system performance
degradation (Fig.3.7). To solve these problems, we use the mixed channel of PHN and
TVCIR (Time-Varying Channel Impulse Response) based on the SVD-BEM method
in Section 3.3 to reduce the PHN effect in Section 3.6.1. And apply the modified

Moose CFO estimator under PHN existing condition in Section 3.6.2.

3.6.1 Mixed channel in the presence of PHN

The receive signal could be rewrote from Eq. (3.6.1) in consideration of PHN ¢(n)

L

yinl1= hlnlxdn—11e’* "+ aln] (3.6.1)

=0

The PHN ¢@(n)is generally modeled as”a Wiener process [3]. The phase noise

discrete time equation is denoted as
plnl=gln—11+¢[n-1] (3.6.2)

where &(n) is a random variable following the Gaussian distribution,
f(n) ~ N(O’ sz)

with o, =47f, ;T

Time-Varying

Receiver —»
Channel

— Transmitter

e 2™ w(n)

Fig.3.7 OFDM system in the presence of phase noise
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(n)

We define the mixed channel g,(n)is equal to A, (n)e’?™ , as the same as before

gln1=Y ¢, fopuslnl] (3.6.3)

k=0

The expression Eq. (3.2.4) could be modified still using matrix notation

g,10] Cro
1 c

g, g[ Hop, =D, (3.6.4)
g[N] Ci B

The mixed channel correlation matrix of /[th tap:
R, , =E[gg"1=E[D' cc"D""1=D", E[c,c,” D" (3.6.5)
and the SVDof R, =Q' A, i (3.6.6)

Observing the above two equation, we could find that

D', =Q'(:1:(B+1)) (3.6.7)

Based on the Eq.(3.6.4) .and (3.6.5), the (m,n) th. elements of R, denotes
Elg,[mlg,” [n]]= E[h[m]h [m]]E[e"*™*""] , ~where @(m)—@(n) is also a

Gaussian random variable @(m)—@(n) ~ N(O,Im-nlo,”), so E[¢/"" "]

o2
—Im—nli

conforms to the characteristic function @, (I)=e 2 . Note the first part
E[hl[m]hl*[m]] is the same as Section 3.3. Finally, the D', in Eq.(3.6.7) can be
obtained, so the LS channel estimate

h,=D'(S,D')"y (3.6.8)

3.6.2 The CFO estimation scheme

It is beneficial to obtain a closed-form for CFO & where the receiver has very
limited computational power. In [5], the Moose’s CFO estimator has the extraordinary
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performance only when no PHN is present. First, pilot signal we transmit is easily

generated [6] by transmitting the same ]% training symbols on the even subcarriers
and zero on the odd. The received signal r=[r," r,"]", the dimension of rand T,

are the equal to N/ and the estimated Moose’s CFO

2’

o=l rr, (3.6.9)
V4

In the presence of PHN, the Eq.(3.6.9) fails. The closed-form that optimally accounts
for PHN can be derived [7], which is a similar form to Eq.(3.6.9) except for the

weighting matrix that account for the distortion caused by PHN.
! . . _
é=— 2 1" (diag(r)® diag(r))" +40°D)'r, (3.6.10)
/4

where ®,=20® Y-Y" and the PHN correlation matrix ®= T2

Y, @,

To summarize this chapter, the often seen BEM methods for channel estimation in
doubly-selective channel have'been introduced. We proposed the post Wiener filter to
enhance the accuracy after using BEM, and we derived the theoretical MSE for BEMs.
The CFO and PHN problems were also considered. But for reduce computational
complexity, we will propose the adaptive BEM methods to track channel, and the

asymptotic bases when Doppler frequency changes.

39



Chapter 4

Adaptive BEM Estimation

In Chapter 3, we introduced the several BEMs method for channel estimation. It
works fine in time variant channel with Doppler effect: In this chapter, the problems
which are the Doppler frequency changes and the projected coefficients updating will
be discussed.

This chapter is organized as follows:-A. brief introduction of the BEM coefficients
adaptive using LMS and EW-RLS method based on the past receiving information is
given in Section 4.1.1. And the theoretical MSE analysis for LMS is derived in
Section 4.1.2. The modified method which takes the significance of the basis into
account applying the results of Section 4.1.2 is proposed in Section 4.1.3.

Furthermore, when the Doppler frequency changes in different blocks due to the
mobility problem, the eigenvalues and eigenvectors adaptive schemes for the new

bases methods (can reduce the complexity) are derived in Section 4.2.1 and 4.2.2.
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4.1 BEM parameters tracking

Since the time-varying nature of the channel is well captured in Section 3 by the
known bases, the time variation of the (unknown) BEM coefficients is likely much
slower than that of the channel. We would like to track the coefficients variation
(fewer parameters for consideration) rather than the real channel using adaptive

algorithms (the LMS and RLS algorithms in Section 4.1.1 and 4.1.3 respectively).

4.1.1 Adaptive algorithm

1. Exponential Weighted RLS

This method for tracking BEM coefficients is the subblockwise tracking [16] with
recursive least-squares (RLS) algorithm. Stack the BEM coefficients in Eq. (3.1.1) of

p -th block into vectors

_ _ T
¢, (p)= [Cl,fB/Z “'CZ,B/Z}
T
c(p) ::[co cl"'cL]
of size Bx1 and B(L+1) respectively. We emphasize that the p -th block and the

(p+1)-st block differ by m_ symbols. Based on Eq. (3.2.2), the received signal at

time »n can be written as

ynl=8"m[I,,, ®D(m)[c(p) + wln]
where D(n):=[e¢ ™" ---e”" 1 and S(n) =[s(n) s(n—1) - s(n—L)I,
Further defining
G,(p)=S"(pm)[I,, ®D(pm +)]". G(p)=[G,(p) G (p) - G, (P,

we have
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Vs (P)

Vs (P +1)

Y, (D)= =G(p)e(p)+w, (p) 4.1.1)

Vs (P +m 1)

Based on Eq. (4.1.1), our objective is apply exponentally-weighted RLS (EW-RLS)

algorithm [14] to track an unknown ¢(p). Choose ¢ to minimize the cost function
2 & - 2
Bl +> 27 |y, D -Gie(p) 4.1.2)
i=0

where £ >0 denotes a regularization parameter, and

0<A<1 denotes the forgetting factor.
EW-RLS tracking comprised the following steps:

1. Initialization: ¢(—1)=0,,, and P(=D=4"1,,

2. For p=0,1,---
T(p)= AL_+G(p)P(p=DG (p), (4.1.3)
K(p)=P(p-DG"(p)I'(p), 4.1.4)
P(p)=2"[1,, —K(p)G(p)IP(p-1), (4.1.5)
¢(p) =¢(p -D+K(p)ly,,(p)-G(p)e(-1)], (4.1.6)

2. Least mean squares (LMS)
&p)=ep-D+u(y.(p)—ep-1), 4.1.7)
Similar as Eq. (4.1.6), €¢(p) can also be updated using least mean squares algorithm

in Eq. (4.1.7). The u denotes the time-invariant stepsize for every coefficients

updating.
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After RLS and LMS recursion for every p, we can generate the estimated channel
coefficients by CE-BEM or SVD-BEM in chapter 3. To predict the channel ﬁ,[n] , the

BEM coefficient estimates in our receiver are given by multiplying the basis matrix :

Dlél(p)

4.1.2 Derivation of the theoretical MSE and the optimum
time-variant stepsize matrix
The estimated channel ﬁ( p)is a linear combination of basis functions where is a

matrix whose columns are the B basis functions, ﬁ( p)=Dc(p)

As before in Eq.(3.5.1), the channel MSE can be represented as J (p),
J()=E| (h(p)-Dep)) (n(p)=Dép)) ]

=E[e,(p) e, (p) [+ E[ ) ¥(p) |=2E[ v’ D'e, (p) ] (4.1.8)
Eq.(4.1.8) can be rewritten as .the following with ¢&(p)=c,6+v(p) and
e,(p)=h(p)—Dc, , where ¢, denotes the true BEM coefficients, we set
J°(p)=E[e,(p)e,(p)].and J*(p)=E[v(p)'v(p) |- 2E[v(p)'D"e,(p)].

where D'e,(p)=D" (1-DD")h,+D'n(p)=D"n(p), thus

T ()= E[ v(p)'v(p) |-2E[ v(p)' D'n(p) |
J?(p) is the same as derivation in Section 3.5.1.

we can obtain the LMS expression by the c(p+1):c(p)—§(g—Jj, where
c

‘3_" =2D"Dc—-2D"h, thus,
C

&(p+1)=¢&(p)—uD" (D&(p)—h(p)) (4.1.9)
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The scalar stepsize in this equation is replaced by a stepsize matrix A,

a 0

where A= denotes the stepsize matrix and we assume D'D=1 ,then

0
we can obtain
¢(p+)=(I-A)¢(p)+AD" (p)h(p) (4.1.10)
The weight error vector at p-th occurrence v(p)=c¢(p)—c,can be written as
v(ip+1) = -A)v(p)+AG'n(p) (4.1.11)

=(I-A)"v,+ Ai (I-A)""'G"n())

Therefore the J*(p) = E[ v(p)' v(p) |~ 2E[ v(p)'D'n(p) ] can be calculated as
¢y E[V(P)Tv(p)} = trace ((I - AYE [VOVOT :‘)

+E|v, (I=A)" AE (I= A" G "n( j)}

Jj=0

+E in( DGU=a)" vo}

L j=0

j=0

p-1
+trace l:A2 (z (I £ Ay #7=2 J GTRNG}

Where R, denotes the noise correlation matrix

Note if D"D#17 like CE-BEM,

E[v(p+D)'v(p+1)|= E[tmce((l —AD'D)"" (I — AD"D)" "' v(0)v(0)" )}, E[S trace(-)]

is hard to simplify. Thus we consider only the orthogonal bases.

(2) E[v(p)'D'n(p) |=(I-2A)" E[ v,/ D'n(p) |+ S(I ~2A)"E[n(;j)DD'n(p) |

=(I-24)"E[v,/'D'n(p)]

Sothe J“(p)is equal to (1)+(2), and the total MSE=J"(p) +J“ (p),
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For the converging steady state ( p — o), the total MSE can be simplified as

p-1 )
J_=J°(c0) + tmc{A2 (Z (I-A)7"P j DTRND:I

j=0

=J () + trace[Az (24-4%)" DTRND} (4.1.12)
In case of white noise, Eq. (4.1.11) can be written as
J.=J() + trace[Az (24-42)" ajDTD}
= J"(o0) + trace| A(21,-A)" |07 (4.1.13)
The total MSE are correlated with the bases type, stepsize matrix and the noise.
Moreover, we would like to find the optimum time-variant stepsizes for each BEM
coefficient which could minimize the coefficient' MSE E[v(p+1)TV(p+1)] , where

v(p+1) can be representedas Eq. (4.1.11), we use the column matrix property:

v v—trace( ) thus

E[v(p+1)fv(p+1)]:E[rmce(u A)v(p) v(p))}
[ race(AD"n(p) v(p)" (1 - 4)) |
| rrace((1 = A)v(p)n(p) DA) |
+E[zmce(ADTn(p)n(p)TDA)}

+E
+E

then
E[v(p+1)Tv(p+1)]=trace((1—A)2E[v(p)Tv(p)])
+trace((I - A)AD"E[ n(p)v(p)" )
+1race(DAU - AE[ v(p)n(p)" ) &L
(

+trace(DA’D"E (n(p)n(p)" )
And we assume n(p) and v(p) are zero mean and mutually statistically

independent stationary signal, thus we can simplify Eq. (4.1.14) as
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M=

E[V(p +1) ' v(p +1)] =Y (1-a,)b’(p)+ 4(72trace(zg: aizdidiTj (b’ (p)=E.(p)’]

i=1 i=1

M=

=Y (1-a)b’(p)+40°a;)

1

1l
—_

And then we can derive the optimum stepsize a; as discussed in [48],

aE[v(p+1)Tv(p+1)]
da,

1

b’ (p)

S () 1457 o« b2(p), (4.1.15)

The resultis a, =

where b’(p) denotes the each coefficient MSE (E[(ci (p)—c,; )T (ci(p) -c,; )} )

At initial state (p=0), ¢, =0, then

“ - b (0) _ E[cocoT] _ E[DThohoTD] 1 DTE[hohoT}D _ D'R,D

const const const const const

(4.1.16)

Note the D'R,D denotes the diagonal matrix whose diagonal elements contains the
eigenvalues of the real channel correlation matrix R, .

In practice b’°(p) is unknown and” a, should bé adjusted for each step p since

[blz( p),-~-,b32( p)] changes as the algorithm converges. As discussed in [48], when

a; are set proportional to b,(0), the optimum time-invariant stepsizes can be

obtained.

4.1.3 Eigen weighted for adaptive algorithms

Knowledge of the significance of Jake’s bases is rarely used in conventional
algorithms. An adaptive algorithm taking into account the importance weights of the
basis is expected to improve convergence.

From the derivation of Section 4.1.2, the proposed eigen-weighted EW-RLS
algorithm uses a different stepsizes for each principle basis. These stepsizes are
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time-invariant and weighted proportional to the importance of the eigenvectors. The
algorithm is based on the fact that the importance of the eigenvectors becomes
progressively smaller along diagonal elements of the matrix A, in Eq.(3.3.4) as the
importance decay. As a result, the algorithm adjusts coefficients with more important
basis in large steps, and coefficients with less important basis in small steps. The
proposed algorithm requires only the same amount of computation as the
conventional LMS and RLS.

Incorporating this knowledge of the significance of the bases into the conventional
EW-RLS, we propose to adjust coefficients with more importance in more adaptive
information and coefficients with less importance in less adaptive information. For

this purpose, a stepsize matrix S with diagonal form is introduced:

A= (4.1.17)

exploited, elements u, are time-invariant and decreasing from u,. The modified
adaptive algorithm compared to Eq.(4.1.3)-(4.1.6), called the eigen-weighted

EW-RLS algorithm from [48] is expressed as

U(p)=AC" (p)(AL,, +C(PIC" (p))”

¢(p) =¢c(p-D+U(p)ly,,(P)—G(p)e(p—-D], (4.1.18)

The scalar stepsize in EW-RLS is replaced by a stepsize matrix S, and the eigen

weighted LMS can be also expressed by replacing g in Eq.(4.1.7) as time-invariant

stepsize matrix S .
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4.2 BEM bases tracking

In both Slepian and SVD BEM methods, we obtain the bases by means of the
channel correlation matrix R, which can be decomposed by the
eigen-decomposition, then we acquired the eigenvalues and eigenvectors. The
eigenvectors denote the bases we exploited to approximate the channel, and the
eigenvalues corresponding to the eigenvectors denote the weight of eigenvectors
importance. When f, changing, we need to a Doppler frequency estimator like
[52-53], then we have to calculate the new bases, this task has much more difficulty
than CE-BEM.

The channel correlation matrix R, could be composed through the Jake’s model

or the Slepin model with two parameters: the Symbol rate 1 and the Doppler

N

frequency f,. The symbol rate are almost fixed in communication procedure,
therefore, we focus on the influence when Doppler frequency changes.

In Section 3.4, we face a problem that in a low mobility (low Doppler frequency)
environment, the time-domain Slepian basis expansion model cannot represent the
channel effectively. As the result, we would like to track the BEM bases when
Doppler frequency changes within the low frequency range.

Thus, we will propose the numerical method to track the variation of the principle

eigenvalues and eigenvectors in Section 4.2.1 and 4.2.2 respectively.

4.2.1 Principle eigenvalues adaptive

Figure 4.1 and 4.2 shows the eigenvalues variation under Doppler frequency
changes. We can observe that in low Doppler frequency (about 10 to 30 for Slepian
bases and 10 to 40 for Jake’s bases) the number of principle eigenvalues might be two

to four, which conclude most importance in corresponding principle eigenvectors.
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Focus on Jake’s bases, we like to track the eigenvalues when Doppler frequency
does not fixed. After Doppler frequency shifts, the basis also changes due to the

channel correlation changes, hence if we can track the new eigenvalue, the new basis

can be obtained easily than before.

1

09

08

0.7

06

0.5

0.4

0.3

0.z

01

15t eigenvalue —
2nd eigenvalue
3rd eigenvalue
— 4th eigenvalue -
Sth eigenvalue
Bth eigenvalue

. 4
10 12 14 18 18 20
Doppler frequency

Figure 4.1 Eigenvalues variation under f, changes in Slepian bases

40 T T

3k

1st eigenvalue
2nd sigenvalue
3rd eigenvalue

—— 4th eigenvalue ||

0 1 1
o 20 30 40 50 [=in}
Doppler frequency

Figure 4.2 Eigenvalues variation under
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® Linear fitting
In order to find the relationship of the eigenvalues and Doppler frequency below forty
hertz, we first use two straight lines to fit the curve in Fig. 4.2.

Assume the eigenvalue locus can be approximated in a linear form
M =PixJa T Pax 4.2.1)
Where K denotes the K-th principle eigenvalues (here we consider K=1,2), and

p,x and p,, are parameters must to obtained.

. P . . .
The solutions for { I’K} can be derived using least-square numerical method,

P2k
P | ~0.60
PLil Z (AMA)AMD, = 4.2.2)
| P2 36.75
P | —0,42
Pial - (AMA) AN, = 4.2.3)
| P2 30.22
10 1 _ﬂ'K,fd:IOT
111 ’
Where A=| . and by = ;LK_’fd'“
40 1 _ﬂ“K,fd:40_
Thus we can obtain Eq. (4.2.1) in
A, =—0.60f,+36.75
: Ja (4.2.4)
A, =—0.42 f, +30.22
®  Quadratic fitting
Assume the eigenvalue locus can be approximated in a quadratic form
A = pl,de2 + pz,de *+Psx (4.2.5)

50



Pix
The solutions for | p,, | can be derived using least-square numerical method,

Psk
Dy | 0.025
p,, |=(A"A)'A"b,=| -1.86 (4.2.6)
Py | 50.42
Dis | 0.008
D, |=(A"A)"A"b,=| -0.84 4.2.7)
P | 34.75
[10% 10 1] [ A saio |
2 ~
Where A= 1 _11 ! and b= /1'(_’“:“ :
407 40 1) A a0

Thus we can obtain Eq. (4.2. 5) in

A, =0.025F,*—1.86 50.42
{ 1 fd fd + (428)

A, =0.008 f, —0.84 f, 434.75

® Exponential fitting

Assume the eigenvalue locus can be approximated in a exponential decayed form

Prx/.
e =pcxe Ky (4.2.9)
Pix
The solutions for | p,, | can be derived using least-square numerical method,
Pix

Just a little difference from above procedure, we first omit the constantp,, , and then

Py,
e = pix X€ PR In(Ay ) = ln(pl,K)+p2,de
In
{ (p"")} =(A"A)'A"b, K=12 (4.2.10)
P2k
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10 1 _ln(ﬂk,fdzlo)_

11 In _
where A=| . and b= MK,’fd_“) .

40 1 | In(A faso) |

In
Then we would obtain { (pl’K)} then to easily obtain {pl’K } .
P>k P2k

Do not forget there is a constant p,, must to calculate. Run a loop for the constant

Pix
changes, we can quickly choose p,, is equal to 14 and 10 for the best | p,y

Ps3x

(K=1,2) in Eq. (4.2.9) that can approximate the true line with minimum square error.

Thus we already obtain Eq. (4.2.9)in

A =53.69xe 00 gy

4.2.11)
\, =27.18xe MMaiqo

With the eigenvalues, we can obtain the corresponding eigenvectors (bases) through

the power method algorithm in Table 4-1.

Table 4.1 The power method algorithm

e Power method algorithm N

0) Goals: given Ato find v
1) Initialization:vy=[1 1 - - 1]

2) fori=1tom
Vit =(RL_j'IN)_1vi;

Vi = Vi / H‘G‘H‘ 2

K end /
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4.2.2 Principle eigenvectors adaptive

After Doppler frequency shifts, the bases also change due to the channel correlation
changes. More directly than Section 4.2.1, we like to track the principle eigenvectors
when Doppler frequency does not fixed.

At first, we observe the principle basis waveform in several Doppler frequency in
Fig. 4.4. Then we suppose these basis waveforms could be approximated through the

sine function instead of the exponential or polynomial function in Section 4.2.1.

n.z 0.3

a5 =20 | |

0.1
0.1

o
]
-0.1 A
-0.2 -2
0 20 40 =l &0 a 20 40 &0 a0
0.z

0.1

0

-0.1

f02
0

Figure 4.4 The principle bases waveform in different Doppler frequency. (N=64)

We assume the eigenvector shape can be approximated in a sinusoidal wave form in

a fixed Doppler frequency f,:
v,[n]=p,,xsin(p, n+p,,), n=0~N-1 (4.3.12)
where b denotes the b-th principle eigenvector (here we consider b=1,2), and

P.»-P,, and p,, are parameters must to obtained, which all are the function of f,.
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Piyv
The similar procedure as 4.2.1, we would obtain three parameters | p,, | (b=1,2) for

Psp

each Doppler frequency ( f, =10 ~ 40), and then the next step we would like to find

the relationship between parameters and the f,.

l. p,, versus f,:
We do not care p,, the scalar of eigenvectors, we can simply set p,, a constant.
2. p,, versus f,:

For several p,, (frequency component of the sine wave) under f,, we plot the

Fig. 4.5(a) for observation. Then we suppose we can use a straight line with positive
slope to fit. Repeat the procedure from Eq. (4.2:1) to (4.2.3), the linear fitting curve

would be calculated as:

=0.0059 £, —0.025
{p“ Ja (4.3.13)

p,, =0.0061 f, —0.023

For simplicity, we even see p,, as p,, because of the root mean square error

(RMSE) for these two different lines are 0.00845 and 0.008464, which are both

almost identical and small enough.
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Figure 4.5 (a) p,, versus Doppler frequency
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Figure 4.5 (b)Linear fitting for p,

3. ps, versus f,:
For several p,, under f,, we plot the Fig. 4.6 for observation. We normalized

the p,y (phase component of the sine wave) in the range [0, 7]. Then we suppose we
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can use the piecewise-linear function to fit like before or directly establish a

dictionary for py, .

1.2 ——P3 for k=2

10 i) 20 23 30 2] 40
fd

Figure 4.6 p,,versus Doppler frequency

Py
Finally, we could easily know the new three parameters |p,, |based on the

Psp

relationship, and then quickly obtain the new approximated principle basis in Eq.
(4.3.11).

To summarize, when Doppler frequency changes, there are four possible ways to
derive the new bases, which can be roughly depicted in figure 4.7, where the methods
1 and 2 are the conventional schemes, and they waste either computational
complexity or memory. And the proposed methods 3 and 4 are discussed in Section
4.2, the Table 4.2 depicts all the complexity and memory needed for them. Where
N denotes the length of bases, d denotes the range of Doppler frequency, here we
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choose 10~40 in our simulation, bis the number of the principle bases, here we
choose 2~4 that ensure contain about 80% energy, and K represents the times of

power method iterations (K>4, RMSE<1 0'3).

1 2. 3 4,
3 Y Y
Online Calculat
In advance, build a Calculate new A of bases alcuiate
construct a new dici forb b bases parameters
1ctionary 1or pases =qp Jd
R (NXN) Sy Afpzae re o (). pu(f)
in different f,
Power method substitute into
SVD (K-iterations) sin(p,n+p;)

decomposition

New bases

Figure 4.7 Four methods to obtain the new bases after f, changes.

Table 4.2 Complexity and memory needed for four methods.

Way 1 2 3 4
Memory store 0 Nd 3b d+2
Complexity 12N’ + N 0 KN’ +N?)+4 b+1
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To summarize this chapter, the eigen weighted adaptive algorithms (RLS and LMS)
has been proposed. Since the BEM coefficients have different importance, we can
derive the optimum stepsizes for each coefficient as discussed in [48]. Moreover, we
can acquire the new bases when Doppler frequency changes with less complexity and

memories.
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Chapter 5

Computer Simulations

In this chapter, computer simulations are.used to verify the algorithms and
methods discussed in Chapter.2 to Chapter 4. At first we define some parameters of
OFDM system we used in the whole thesis in Section.5.1, and in Section 5.2, we
compare the conventional .time @and frequency-domain channel estimation and
interpolation methods, then observe.the constellation for BER-SNR curve, which has
much relevance for channel MSE-SNR' curve. The performance of the CE-BEM,
SVD-BEM and their modified methods will be shown in Section 5.3 and 5.4
respectively. The issue of carrier frequency offset and phase noise will also be
discussed in Section 5.5.

Adaptive method is a practical problem for BEM. In Section 5.6, we will update
the BEM coefficients by exploiting EW-RLS algorithm, and then propose a method to
enhance the convergence rate in fixed Doppler frequency. Moreover, when Doppler
frequency unfixed environment, we compare two proposed methods to track the new

basis under the new Doppler frequency in Section 5.7.
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5.1 Simulation parameters

OFDM system parameters similar to those used in IEEE 802.11a are adopted here:

the number of subcarriers is N =64, and the system sampling rate is f, =1 KHz

leading to a subcarrier spacing can be calculated as Af = %, number of OFDM

signals per packet N, =10 and the QPSK modulation is selected.

We assume to have perfect synchronization since the aim is to observe channel
estimation performance. Moreover, we have chosen the guard interval to be greater
than the maximum delay spread L in order to avoid inter-symbol interference.

In these simulations the signal to noise ratio (SNR) was varied from O to 40 dB. For
each SNR value 300 Monte Carlo independent trials were conducted and the
mean-square-error (MSE) and toot-mean-square-etror (RMSE) defined below was

employed as a performance measure of the channel estimates:

~ g 1 doix 2
_ b, —h| RMSE = /Fr;Hhi—hH

1 &
MSE =—

N, &
where N, is the number of Monte Carlo trials, h is the vector comprising the

true channel coefficients, and ﬁi is the estimate of the channel coefficients in the

i -th trial.
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5.2 Time-invariant channel estimation

The multi-path fading channel is Rayleigh fading has a power delay profile (PDP)

of 1.2257xe™®¥ (0<1<10) in Fig.5.1, which is normalized to unit energy.

1""1 T T T T T T T T

1.7%

amplitude
=
o

=
fug]

0.4

0.2

D | | | |
0 1 2 3 4 5 5 7 g 9

tap delay

Figure 5.1 The power delay profile of the multi-path channel.

The conventional time and frequency-domain time-invariant channel estimation
method are introduced in Section 2.3.

Figure 5.2 illustrates he performances of these schemes, we can find out that they
have the almost the same performance, but there are some advantages and drawbacks
for them, based on the purpose to choose from them.

Figure 5.3 and figure 5.5 both compare the different interpolation methods of comb
type by using different criterion. And the received constellation can be shown in

figure 5.4, it illustrates if there is not channel estimation before detection, the bit error
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rate will be very terrible.
Figure 5.6 shows the performance comparison in different pilot ratio in block type,

the result tells the more pilots we use, the lower MSE we have.

LA T T
—#—time-domain approach
—=—freq.-domain approach

BER

SR (B

Figure 5.2 Comparison of time and frequency domain channel estimation

® Block type pilot arrangement

Each block consists of a fixed number of symbols, which is 30 in the simulation.
Pilots are sent in all the sub-carriers of the first symbol of each block and channel
estimation is performed by using LS estimation.

® Comb type pilot arrangement

All of the possible interpolation techniques (linear interpolation, second order

interpolation, low-pass interpolation, spline cubic interpolation, and time domain
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interpolation) are applied to LS estimation with pilot ratio 0.125.

% zarg padding
—=— 15t arder

MSE

Figure 5.3 Comparison of different interpolation methods of comb type
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Received constellation
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Figure 5.4 Received constellation with (*) and without (o) channel estimation (ZP)
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Figure 5.5 Comparison of different interpolation methods of comb type
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Figure 5.6 Comparison of different pilot ratio in block type

In figure 5.3 to 5.5, we conclude the estimated channel MSE and the BER for
detector have the much highly relationship. We can depend on the MSE-SNR curve to

estimate the tendency of BER-SNR curve.
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5.3 CE-BEM

The complex-exponential basis expansion model is discussed in Section 3.1.1. And
the modified methods (oversampling and non-uniform sampling) for CE-BEM are in
Section 3.1.2 and 3.1.3.

Figure 5.7 illustrates he performances of these schemes, we can find out that the
over-sampling (K=2) method and the non-uniform sampling method both also can

enhance the CE-BEM.

—+— CE-BEM 1

Man-uniform |]
—=— Owersample
— — — Theoretical

.................................................................

............................................................

..............................................................

MSE

......................................................................................

SNR (dE)

Figure 5.7 Comparison of different CE-based methods.
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5.4 SVD-BEM

There are some basis expansion model discussed in Section 3.2, which are
SVD-BEM, Wiener SVD-BEM, Slepian-BEM and UB-BEM. We will compare their
performance in MSE criterion through computer simulation in this section.

Figure 5.8 distinguish the two main kind of basis, Jake’s basis are derived from the
zero-order Bessel function of first kind and the Slepian basis are generated from the
Slepian sequence in (3.200). The ACF in figure 5.8 denotes the auto-correlation
function and f, =50, T, =0.001. Moreover, figure 5.9 illustrates the principle basis
for Jake’s and Slepian model in f, =18 and 7, =0.001.

Figure 5.10 illustrates the enhancement for SVD-BEM in different number of basis
by adding the Wiener filter to increase the SNR. And for the purpose to compare their
performance, Figure 5.11 plot their-estimated channel-MSE to the SNR curves, we
could conclude that the SVD-BEM and UB-BEM have the almost same performance,
but if the pre-estimator does not good (like CE: in Jake’s model), the UB would not as

good as SVD-BEM.

67



1 T T T T T T T T T

Jake's basis (1st Bessel) ACF
Slepian basis ACF
0aF .
D -
_DE | | | 1 | | | | |
1] 10 20 a0 40 50 B0 7o ] a0 100
t
Figure 5.8 ACF of Jake’s and Slepian basis ( f, =50, T, =0.001)
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Figure 5.9 Principle basis for Slepian and Jake’s model ( f, =18, 7, =0.001)
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Figure 5.10 Comparison of SVD-BEM and Wiener filter applied
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Figure 5.11 Comparison of SVD and UB.
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5.5 Consideration of CFO and PHN

There is a practical issue that the effect of CFO and PHN discussed in Section 2.2,
and we propose a method in Section 3.3 to deal with this problem.

Figure 5.12 illustrate the performance of mixed channel method in Section 3.3.1
when PHN occurs and them apply it. The phase noise is generated by the Wiener
process with f, . =100Hz If without any mechanism for PHN effect, the channel
estimator will fail.

In figure 5.13, we investigate the accuracy of CFO estimation. This figure plots the
residual CFO at different SNRs. For each SNR, 300 independent CFO estimation are
performed at the presence of phase noise, (Phase noise is simulated by passing a white

Gaussian process through a one-pole Butterworth low pass filter with 3dB bandwidth

2 2z f,lm—nl
f, =100KHz . The covariance matrix of phasenoise. (R,), , = (%) exp

and the CFO ¢ is generated-as a uniform distribution over [-1,1].). From this figure,
it is obvious that the residual CFO:is consistently ¢lose to zero.
Table 5.1 emphasizes it again, in different SNR, the CFO MSE are shown.

Through the CFO estimator, the CFO effect can be removed clearly.
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Figure 5.12 The mixed PHN channel estimation performance

Table 5.1 CFO estimation MSE in different SNR

SNR (dB) 10 15 20

CFO MSE 7.18x10™ 2.19x10™ 7.23x107
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Figure 5.13 CFO estimation error in different SNR (a) SNR=10 (b) SNR=20 (dB)

72



5.6 EW-RLS with eigen weighting

We have discussed the EW-RLS BEM coefficients updating algorithm in fixed
Doppler frequency environment in Section 4.2.1 and its modified method by
exploiting the significance of each basis in Section 4.2.2.

Figure 5.14(a-b) illustrate the practical CE and SVD-BEM coefficients state change
in five iterations (p), due to the slight difference in each iteration, we would like to
track the BEM coefficients instead of the real channel.

Figure 5.15(a-1) illustrate the coefficients tracking under increasing iteration. We
use nine basis (B + 1=9) in CE-BEM. After several iterations, the tracking line would
lock the real value, despite the coefficients still varies due to time-invariant channel,
the algorithm can always follow.the variation. - And Fig.5.16(a-c) are the similar but
following the SVD-BEM, moreover, there is one more eigen weighted tracking line.

Figure 5.17 illustrates the-learning curve of CE-BEM coefficients tracking in f,
changes at the 200-th iteration. And figure 5.18 also illustrates the learning curves of
SVD-BEM coefficients tracking in f, changes at the 200-th iteration, these two
curves tell us the faster convergence rate the eigen-weighted EW-RLS method has.

Finally, figure 5.19 illustrate MSE versus SNR curve by using different ms (number

of points consideration each iterations) after the algorithm converges.
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Figure 5.14(a) CE-BEM coefficients changes in successive iteration
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Figure 5.14 (b) SVD-BEM coefficients changes in successive iteration
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Figure 5.15(a).CE-BEM 1*-coefficient tracking
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Figure 5.15 (b) CE-BEM 2"-coefficient tracking
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Figure 5.15 (d) CE-BEM 4"-coefficient tracking
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Figure 5.15 (f) CE-BEM 6"-coefficient tracking
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Figure 5.15 (h) CE-BEM 8"-coefficient tracking
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Figure 5.16(c) SVD-BEM 3"-coefficient tracking
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Figure 5.17 The weights of each basis in CE-BEM. (B=9)
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Figure 5.18(a) Learning curve of CE-BEM coefficients tracking
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Figure 5.18(b) Learning curve of Slepian-BEM coefficients tracking
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Figure 5.18(c) Learning curve of SVD-BEM coefficients tracking
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Figure 5.19(a) SVD-BEM coefficients tracking in f, changes with new bases
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Figure 5.19(b) SVD-BEM coefficients tracking in * f, changes without new bases
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5.7 BEM basis tracking

We have discussed the two basis tracking methods in unfixed Doppler frequency
environment in Section 4.2.1 and 4.2.2.

Figure 5.20 illustrates the practical 1*-eigenvalue-to- f, curve marked as (*) and
three asymptotic line (linear, quadratic and exponential fitting) in SNR=40 dB and
T.=0.001. And we can realize that the mean square error of estimated and real
principle eigenvalue in different fitting schemes.

Figure 5.21 and 5.22 illustrate the examples of two kind of basis tracking discussed
in Section 4.2.1 and 4.2.2 respectively, which both have the ability of tracking the

new basis (when f, changes). And the comparison of these two methods under the

channel MSE criterion is shown in'figure 5.23.
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Figure 5.20 Three fitting methods for 1*-eigenvalue variation in f, changes
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Table 5.2 Three fitting methods for principle eigenvalues variation

Linear Quadratic Exponential
1*-eigenvalue MSE 3.968 0.758 0.334
2"_eigenvalue MSE 1.269 0.530 0.532
—4— Exp sigenvalue — = Linear eigervalue 1
—4— Exp eigenvalue 2 — &= Linear eigenvalue 2
025- . 025+ g

0.2 02r .

0.15

0.1 0.1 2

Mormalize eigeny alue est. error
Mormalize eigeny alue est. error

0.05 0.05

0 iy : A 0
10 10

Figure 5.21 Eigenvalue estimated error between Exponential and Linear methods.
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Figure 5.23 Bases estimated RMSE by way 3
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Chapter 6

Conclusions

In this thesis, we employ the basis expansion model to deal with the time varying
channel estimation in OFDM system.

For the sake of lower data error rate at receiver, we have to estimate the wireless
channel before detection. In-Chapter 2, we introduce the OFDM structure and the
practical channel model, and take CFO, PHN and Doppler frequency into account.

In Chapter 3, we compared several BEM schemes, and propose a post Wiener
filtering scheme to achieve better MSE under the Jake’s model environment. Besides,
we also improve the CE-BEM with changing the sampling manner in Section 3.2 and
resist the disturbance of CFO and PHN in Section 3.6.

For the purpose to reduce complexity, we updated the BEM coefficients and
considered the importance of each basis. We derive the theoretical MSE and obtain
the optimum time-invariant stepsizes for each BEM coefficients. Moreover, we
approximated the bases curves with very few parameters, which could reduce the
complexity effectively. The computer simulations such as theoretical analysis
validation, Un-weighting, and weighted adaptive algorithm for BEM coefficients

tracking are shown in Chapter 5, which could justify our analysis and show the
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improved performance such as the proposed eigen-weighting scheme can accelerate
convergence rate, the Wiener filter can enhance the channel estimation accuracy, the
bases tracking can save the complexity for getting the new bases. These proposed
models demonstrate a significantly better performance than the conventional methods

when they are applied in OFDM system.
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