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無線感測器自動化網路佈署協定設計與實作 

 
學生：劉葳庭  指導教授：林亭佑 博士 

國立交通大學電信工程學系﹙研究所﹚碩士班 

摘 要       
 

近年來無線感測網路的技術蓬勃發展，其應用也推陳出新，事實上，對於無線感測

網路而言，如何提供有效的感測覆蓋率是決定網路運作效率的重要因素。在這份三年的

計畫中，我們致力於設計居家智慧型無線感測網路，我們在感測器上配置行動裝置使其

具有行動能力，並針對居家環境設計一自動化感知傳測器佈署協定(Coverage-Aware 
Sensor Automation protocol，以下簡稱 CASA)，實現此居家型高智慧網路，藉由動態感

測器的自動佈署，以提供使用者所需的感測覆蓋率。此外，有別於其他先前的研究，我

們所設計的 CASA 協定允許網路中同時使用齊性或非齊性感測器，也就是說，CASA 協

定亦適用於感測範圍(sensing range)不同的感測器，在使用上具有較大的彈性。事實上，

CASA 協定主要由 EVFA-B、CFPP、SSOA 這三個機制構成。EVFA-B 會針對我們設計

的距離門檻值 thd 使感測器彼此之間運作引力或斥力，其合力結果會將感測器逐漸推向

合適的位置，以強化網路中的感測覆蓋率。為了達到高品質的感測覆蓋率，我們研究出

EVFA-B 中所使用的環境參數與網路拓墣有相當大的關係，例如:監控面積大小與網路中

的感測器數量，我們期望 EVFA-B 能提供有效的自動化佈署。此外，我們發現當感測器

重新佈署時，在移動的過程中可能會有碰撞問題發生，因此我們規劃 CFPP 演算法，針

對每一台感測器的移動路徑，事先偵測潛在的碰撞發生地點，並重新調整感測器的移動

時程，藉此避免碰撞發生。除此之外，當網路中有某些感測器發生故障或電力不足的情

形，我們設計 SSOA 演算法進行局部的修復行動，也就是說，當有感測破洞發生(sensing 
void)時，SSOA 會選擇此破洞周圍某些合適的感測器去修補它，而不是使用 EVFA-B 重

新佈署整個網路，藉此有效節省電力消耗。除此之外，我們發現如何選擇合適的救援感

測器，事實上屬於 Maximum-Weight Clique Problem(以下簡稱 MWCP)，此問題被公認為

NP-hard，我們將 MWCP 簡化(reduce)為選擇救援感測器的問題，發現我們的 weight 值
可能有正有負，然而目前能解決 MWCP 的演算法只考慮 weight 值恆正的情況。因此，

最終我們定義救援感測器選擇的問題時，只考慮 weight 值恆正的情況，如此一來才存在

有效率的 polynomial-time 演算法，而 weight 值為負的情況就使用 EVFA-B 代為解決，

藉由此合作機制，CASA 協定可以達到有效率的覆蓋率要求。在真實的環境中使用嵌入

式系統運行 CASA 協定，藉此設計一個可以容許感測器故障，藉由自動化佈署以延長網

路使用壽命的居家智慧型監控網路(MoNet)。此外我們會藉由觀察覆蓋率達成率、網路

自我修復能力、移動所耗費的電力，並實地模擬當緊急災害的發生時，MoNet 的事件回

報率，藉此估測 CASA 協定的效率。 
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ABSTRACT 

 
    For the wireless sensor network (WSN) to operate successfully, a critical issue is 
to provide sufficient sensing coverage. In this thesis, we target on the home 
environment and deal with both the homogeneous (having identical sensing radius) 
and heterogeneous sensors (having different sensing ranges) equipped with 
locomotion facilities to assist in the sensor self-deployment. A coverage-aware sensor 
automation (CASA) protocol is proposed to realize an automated home monitoring 
network. Three centralized algorithms are included in the CASA protocol suite: 
EVFA-B, CFPP, and SSOA. Unlike most previous works that tackle the deployment 
problem only partially, we intend to address the sensor deployment-related problems 
in a holistic manner. The enhanced virtual forces algorithm with boundary forces 
(EVFA-B) exerts weighted attractive and repulsive forces on each sensor based on 
predefined distance thresholds. The resultant forces then guide the sensors to their 
suitable positions with the objective of enhancing the sensing coverage (after a 
possibly random placement of sensors). To achieve high coverage ratio, we prove that 
good choices for the associated weight constants greatly depend on sensor population 
and monitored area size, while independent of sensing radius. When sensors move 
around to self-deploy, the collision-free path planning (CFPP) algorithm, based on 
geometric formulations, comes into play by carefully scheduling the moving paths to 
avoid sensors colliding each other. Furthermore, in the presence of sensor power 
depletions and/or unexpected failures, our sensor self-organizing algorithm (SSOA) is 
activated to perform local repair by repositioning sensors around the sensing void 
(uncovered area). This capability of local recovery is advantageous in terms of saving 
the communication and moving energies. Selection of local rescue sensors with mixed 
negative and positive weights is NP-hard, and can be reduced from the 
maximum-weight clique problem. We resolve this selection problem by considering 
only positive weights (leaving the negative weights to be handled by EVFA-B), so 
that efficient polynomial-time computation can be utilized. In the case that local 
repairing is unable to provide required sensing coverage, SSOA invokes EVFA-B to 
globally redeploy sensors. As a result, adequate sensing coverage can be maintained 
even in the face of sensor node failures, effectively extending network functioning 
time. Performance of the proposed sensor deployment strategies is evaluated in terms 
of surveillance coverage, network self-healing competence, and moving energy 
consumption. We also implement our CASA protocol suite in a real-life home 
monitoring network (MoNet) to demonstrate the protocol feasibility and validate the 
MoNet detection capability of emergency events. 
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Chapter 1

Introduction

Advances of micro-electromechanical system (MEMS), sensing technology, and wire-

less communication have significantly encouraged the development of wireless sensor net-

works (WSNs) in the past decade. A WSN is widely used for habitat and environmental

surveillance, medical application (with the purpose of improving quality of health care),

agricultural assistance, and as solutions to military problems [5, 11, 15, 16]. Several ex-

perimental testbeds are also implemented to investigate various aspects of WSN-related

performance issues [10,19,21,23]. Since different environments usually guide WSN studies

to distinct research directions and design considerations, it is necessary to firstly define

the target environment under investigation. In this thesis, we focus on the indoor home

environment, as depicted in Fig. 1.1. To furnish the home with monitoring capability, one

possibility could be embedding a secret compartment under the roof, and deploying smart

sensors inside the double-deck structure on the ceiling. For a successful home surveillance,

providing sufficient sensing coverage is essential. Manual placement of static sensors in-

volves labor effort (reaching the ceiling to perform the planned deployment) and lacks

network self-healing competence (when faulty sensors occur). Thanks to the availabil-

ity of motion facilities, we consider smart sensors with mobility capability to accomplish

self-deployment after an initial random placement of sensors. Furthermore, since sensing

devices are inherently unreliable, faulty sensors due to power depletions or unexpected

1
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Figure 1.1: Illustration of an automated home monitoring network, and the importance
of (movement-assisted) network self-healing capability to tolerate sensor faults (no need
to deploy new sensors).

errors may occur over time, leaving monitoring voids (uncovered sensing holes). With the

movement ability, instead of replacing faulty sensors with new ones, those smart sensors

reposition themselves to restore the sensing coverage, as illustrated in Fig. 1.1. According

to the above descriptions, several deployment-related issues need be addressed. First,

a coverage-aware sensor deployment scheme should be developed to ensure suf-

ficient sensing coverage. Second, when sensors reposition themselves, a collision-free

route scheduling strategy is required to prevent sensors colliding each other. Third,

in the face of sensing node failures, a sensor self-organizing mechanism need be

devised to efficiently recover the sensing void and restore the required sensing coverage.

In this work, we do not intend to study the energy-conserving sensor communication

behavior (though we try to reduce the moving energy by keeping sensors from moving

far away when performing self-deployment), nor the issue of required amount of sen-

sors to achieve certain degree of sensing coverage. Rather, given any number of sensors,

we investigate the deployment-related problems and propose a coverage-aware sensor au-
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tomation (CASA, which means ”home” in Spanish) protocol including the aforementioned

three deployment-related designs, with the objective of providing/maintaining high sens-

ing coverage. Our ultimate goal is to realize an automated home monitoring network, so

that detection applications of various emergence events can be practically implemented.

The remainder of this thesis is organized as follows. Chapter 2 reviews several prior

research efforts and summarizes our unique contributions. In Chapter 3, we introduce

the coverage-aware sensor automation (CASA) protocol and provide the environmen-

tal assumptions made by the protocol. The proposed CASA protocol consists of three

closely-related algorithms to address the sensor deployment scheme (EVFA-B), collision-

free route planning (CFPP), and sensor self-organizing mechanism (SSOA), respectively.

Chapter 4, Chapter 5, and Chapter 6 elaborate on the detailed operations of EVFA-B,

CFPP, and SSOA separately. Chapter 7 presents the performance and comparison re-

sults, while Chapter 8 reports our prototype of a home monitoring network (MoNet) and

demonstrates the detection capability of CASA-enabled MoNet. Finally, we draw our

concluding remarks in Chapter 9.
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Chapter 2

Prior work

Depending on the target applications, earlier studies in WSNs generally focus on

either outdoor large-scale environments, where planned sensor deployment is difficult,

or indoor small-scale monitoring zones, where sensor deployment mechanism is feasible

and beneficial. For large-scale WSNs, several works have been proposed to address the

energy conservation issue [14, 22, 26, 29, 30]. Given sufficient number of sensors randomly

deployed (scattered) over the monitoring field to ensure a certain degree of redundancy

in sensing coverage, those proposals design node working schedules such that sensors can

rotate between active and sleep modes. The objective of those proposed working schedules

(node-scheduling protocols) is to achieve power conservation (prolonging system lifetime),

while preserving reasonable sensing coverage and network connectivity.

For the monitoring environments where planned sensor deployment is possible, various

static deployment strategies have been introduced to enhance the surveillance coverage

[7, 8, 12, 25, 27]. In this kind of research studies, one commonly considered metric is to

minimize the number of sensors required to achieve a certain sensing coverage. Due

to different sensor capabilities (e.g., distinct attainable sensing/detection ranges) and

manufacturing expenses, this metric is sometimes transformed into minimizing/optimizing

the required total device cost for those deployed sensors, making this research subject

4



more interesting yet challenging [7,25]. However, such static deployment involves manual

sensor placement/installation, and is incapable of dynamically repairing sensing voids

(uncovered areas) in the presence of unexpected sensor failures.

Consequently, a number of research efforts have explored the movement-assisted sensor

deployment techniques by utilizing mobile sensors to enhance the sensing coverage after

an initial random placement of sensors [24,28,31]. With the motion facilities equipped at

the sensing devices, sensors can move around to self-deploy. Given any number of ran-

domly placed sensors, in [31], the authors present a centralized force-guided algorithm,

inspired by the disk packing theory and virtual force field concept from robotics, to es-

tablish motion paths for sensors. Assuming there exists a powerful clusterhead, capable

of communicating with all sensors and obtaining sensor locations, the proposed algorithm

evaluates all attractive and repulsive forces and obtains the resultant force exerted on

each sensor. The computed resultant force then directs the sensor to move to a desired

position. Also utilizing mobile sensors, the authors in [24] introduce a distributed sensor

self-deployment scheme. They suggest to firstly identify the coverage holes (sensing voids)

based on Voronoi diagram, and then propose three algorithms (choices) to guide sensor

movements toward the detected holes. However, accurate Voronoi polygon constructions

are not always possible to achieve, due to unevenly distributed sensors with limited com-

munication distances. Therefore some optimization heuristic is needed to prevent sensors

from moving too far and keep a reasonable number of total movements, further complicat-

ing the deployment computations. Furthermore, since the termination condition for the

Voronoi-based deployment strategy is coverage, for a monitoring environment with sensor

number much larger than necessary, unbalanced sensor distribution (some areas are much

more highly populated than other areas, even with an overall sensing coverage required)

is likely to occur. As a result, the authors in [28] develop a scan-based movement-assisted

sensor deployment (SMART) method to address the unbalanced problem. Instead of tack-

5



ling the deployment problem directly, SMART focuses on sensor load balancing by using

2D scanning and dimension exchanges to achieve a balanced network state. As claimed by

the authors, SMART can operate on top of existing sensor deployment schemes, and pro-

duces good performance especially for unevenly distributed WSNs. The aforementioned

movement-assisted sensor deployment techniques all consider homogeneous sensors (with

equal sensing/detection radius), and no specific route planning strategies are available to

perform collision-free movements between sensors.

We observe that most previous works explore the sensor deployment problem only par-

tially, leaving issues such as heterogeneous sensors (with different sensing ranges), sensor

moving path scheduling, and locally recovering sensing holes (caused by sensor failures)

unaddressed. However, in practice, those closely-related deployment isues should be re-

solved as a complete protocol set to achieve an operative WSN with high detection ca-

pability. In light of this, we investigate the movement-assisted sensor deployment subject

by considering those deployment-related problems in a holistic manner. A coverage-aware

sensor automation (CASA) protocol suite is proposed to address the global sensor deploy-

ment scheme (EVFA-B), the sensor moving path planning (CFPP), and sensing coverage

recovery in the presence of sensor failures (SSOA). We summarize our unique contribu-

tions as follows. First, we develop the enhanced virtual forces algorithm with

boundary forces (EVFA-B) based on the concept of potential field and disk

packing theory. Though sharing similar idea of virtual forces with [31], our EVFA-B

deals with both the homogeneous and heterogeneous sensors, while [31] only discusses

the case of homogeneous sensors, where a global distance threshold value is adopted in

determining whether an attractive (with weight constant wa) or repulsive (with weight

constant wr) force should be applied on a sensor. However, in realistic settings, where

varying sensing distances are common, the distance threshold (determining the desirable

sensing overlapping degree) should be selected on a node-pair basis, instead of being set

6



globally. In addition, since the observed environment is usually in a bounded area, our

EVFA-B incorporates the boundary force (with weight constant wb) as a kind of repul-

sive force from the boundaries to keep sensors staying inside the monitoring area. Since

the boundary force is considered as a type of repulsive force, we use the same value for

wr and wb. In [31], no boundary force is modeled, and no specific design guidelines are

available for determining suitable wa and wr (=wb) weight constants. The authors only

suggest to select wr >> wa. However, we discover that arbitrary settings (even satisfying

wr >> wa) do not always yield desirable sensing coverage. Motivated by the observations,

we investigate and prove that good choices for wa and wr (=wb) greatly depend on sensor

population and monitored area dimensions, while independent of sensing radius. Second,

we propose a collision-free path planning (CFPP) strategy, based on geo-

metric formulations, to avoid sensors colliding each other when performing

self-deployment. This route scheduling is necessary in order to achieve effective sen-

sor deployment in real environments. Third, the sensor self-organizing algorithm

(SSOA) is devised to provide network self-healing (automated fault recovery)

capability, which most previous sensor deployment protocols do not handle. Fourth, we

observe that most existing works do not have a real-life testbed to demonstrate their

proposed protocols/algorithms. In this work, we implement a home monitoring

network (MoNet), based on embedded platforms, sensing components, communication

modules, and motion devices, to validate the proposed CASA protocol.

7



Chapter 3

Coverage-aware Sensor Automation

(CASA) Protocol

Three deployment-related mechanisms are incorporated in our CASA protocol set:

EVFA-B, CFPP, and SSOA. The detailed operations of respective mechanism, with the

objective of enhancing/preserving/recovering the sensing coverage for a home environ-

ment, are elaborated in Chapter 4, Chapter 5, and Chapter 6, respectively. Below we

summarize the environmental assumptions made in this work.

(A1) There exists a powerful clusterhead responsible for performing centralized compu-

tations. All sensors are able to communicate with the clusterhead via single-hop or

multi-hop wireless transmissions.

(A2) Sensors have the isotropic sensing shape and the binary sensing/detection behavior,

in which an event is detected (not detected) by a sensor with complete certainty if

this event occurs inside (outside) its sensing radius. Both the homogeneous (having

identical sensing range) and heterogeneous (having varying sensing ranges) sensors

are allowed in our model. Information of respective sensing ranges is provided by all

sensors and made available at the clusterhead for deployment-related computations.

8



(A3) We adopt the discrete coordination system, in which the monitoring area (sensing

field) is represented by a 2D grid network. Locations of all sensors are obtained

via the pre-deployed RFID platform or some existing localization technique, and

constantly updated to the clusterhead. Neighboring nodes under the adopted co-

ordination system are defined as sensors within the sensing range (rs), which is

normally much smaller than the radio communication distance (rc). Without loss

of generality, we assume that rc > 2rs in our model. According to the derivations

in [14,30], if the radio communication range (rc) is at least twice the sensing radius

(rs), complete coverage of a convex area implies connectivity among the working set

of sensor nodes. Consequently, in this work, we only deal with the sensing coverage,

and network connectivity follows accordingly.

9



Chapter 4

Enhanced Virtual Forces Algorithm

with Boundary Forces (EVFA-B)

The concept of virtual forces is inspired by the combined idea of potential field and disk

packing theory [9,13]. Each sensor behaves as a source giving a force to others. This force

can be either positive (attractive) or negative (repulsive). If two sensors are too close, they

exert repulsive forces to separate each other, otherwise they exert attractive forces to draw

each other. We quantify the definition of ”closeness” by using the distance threshold dij
th

for any two sensors si and sj with respective sensing radius ri and rj (design guidelines on

dij
th are provided in Chapter 4.1). Given k sensors (denoted as s1, s2, . . . , sk with sensing
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Figure 4.1: Concept of attractive, repulsive, boundary forces, and virtual movement ex-
erted on a sensor node.
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radius r1, r2, . . . , rk, respectively) deployed in the monitoring area, for any two sensors si

and sj located at coordinates (xi, yi) and (xj, yj), we adopt the Euclidean distance dij to

indicate how far the two sensors are spaced, where dij =
√

(xi − xj)2 + (yi − yj)2. As a

result, if dij > dij
th, then attractive force is applied. On the other hand, repulsive force is

generated if dij < dij
th. Define

−→
F ij as the directed virtual force acting on si from sj, now

we have

−→
F ij =





(wa(dij − dij
th), θij) for dij > dij

th

(0, 0) for dij
ij = dth

(wr(d
ij
th − dij), θij + π) otherwise





, (4.1)

where θij = tan−1 (yi−yj)

(xi−xj)
and wa (wr) represents the weight measurement for the attractive

(repulsive) force (detailed design guidelines on the two weight constants are elaborated

in Chapter 4.2). Take si in Fig. 4.1 for example, attractive force
−→
F ij from sj (to draw

si closer) and repulsive force
−→
F ik from sk (to repel si) are acting simultaneously on si.

In the case of setting distance threshold as the summation of two sensing ranges, the

virtual force
−→
F il from sl equals zero (no force imposed on si by sl). In addition, we

incorporate the boundary force
−→
F ib to quantify the virtual force acting on si from the

monitored boundaries. By boundary forces, we can significantly reduce the unwanted

coverage outside the sensing field. As depicted in Fig. 4.1, the magnitude of
−→
F ib should

be inversely proportional to the perpendicular distance between si and the boundary, and

is formulated as |−→F ib| = wb(
1

dib
), where wb represents the weight measurement for the

boundary force. In this work, we regard the boundary force as a type of repulsive force,

and use the same value for wr and wb. In a rectangular area, boundary forces could be

from the four boundaries surrounding the monitoring region. Thus
−→
F ib is actually the

combined force from all boundaries, where
−→
F ib =

−→
F x1

ib +
−→
F x2

ib +
−→
F y1

ib +
−→
F y2

ib . In Fig. 4.1,

since si resides at the center, boundary forces from the four boundaries are equal, leading

11



to a zero
−→
F ib. Considering all attractive, repulsive, and boundary forces, we have the

resultant force
−→
F i exerted on sensor si being defined as

−→
F i =

k∑

j=1,j 6=i

−→
F ij +

−→
F ib. (4.2)

The determined resultant force
−→
F i then guides si to virtually move to its next position.

Since we adopt the discrete coordination system, the next position for si is defined as the

closest possible grid point. As illustrated in Fig. 4.1, given the resultant moving angle

θi, with respect to the positive x axis in counterclockwise direction, we obtain the actual

motion angle θ
′
i by approximating θ

′
i = π

4
round( θi

π/4
). Consequently, sensor si moves to

grid point 4, shown in Fig. 4.1, as its next position.

Our EVFA-B mechanism terminates when either the required sensing coverage thresh-

old (cth) is achieved or the maximum allowable virtual movements performed by each

sensor (Maxloops) is reached.

4.1 Distance Threshold

The distance threshold effectively defines the desired overlapping degree of two sen-

sors. For homogeneous sensors, the distance threshold can be made as a global constant.

However, for heterogeneous sensors, the value of distance threshold should be designed

on per node-pair basis to obtain a similar degree of overlapping under different sensing

distances. Specifically, for two sensors with small sensing ranges, the distance threshold

should be made smaller than that of two sensors with large sensing distances, in order to

keep reasonably similar overlapping level for the two sensor pairs (couples). Besides sens-

ing ranges, the design of distance threshold also depends on the sensor density. Suppose

the monitoring area has size A, and the maximum area size covered by all sensors is As,

where As = π
∑k

i=1 r2
i . Define the maximum possible coverage ratio ã = As

A
. Coverage

12
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Figure 4.2: Distance threshold (dij
th) settings for two arbitrary sensors si and sj under

four different environmental conditions.

ratio ã < 1 implies the total number of sensors is insufficient to fully cover the monitoring

area. In this case, we cannot afford overlapping between sensors. On the other hand,

coverage ratio ã ≥ 1 indicates the sensor population is capable of fully covering the whole

area, in which case a certain degree of overlapping is desirable to minimize the sensing

holes (uncovered zones). Based on the above principles, we propose to separately design

the distance threshold dij
th for any two sensors si and sj under four environmental settings.

For homogeneous sensors, we use the abbreviation ISR to reflect the fact of having Iden-

tical Sensing Radius. For heterogeneous sensors, we use HSR to represent the condition

of possessing Heterogeneous Sensing Ranges. As illustrated in Fig. 4.2, Case I and Case

III deal with insufficient sensor population (reflected by ã < 1) for homogeneous and

heterogeneous sensors respectively, where overlapping is not desirable. As a result, the

distance threshold is simply designed as the sum of two sensing ranges. In Case II and

Case IV, where sensor population is sufficient to allow overlapping (due to ã ≥ 1), the

design of distance threshold should try to minimize the sensing holes. In Case II, it is

easy to obtain the perfect (minimum) overlapping by setting dij
th = 2r cos(π/6), while in

Case IV, we set dij
th = α(ri + rj) by introducing a system tunable factor α to control

the desired overlapping degree, where 0 < α < 1. Consequently, we have the distance

threshold dij
th being formulated in our model as

13



dij
th =





2r for ISR with ã < 1

2r cos(π
6
) for ISR with ã ≥ 1

ri + rj for HSR with ã < 1

α(ri + rj) for HSR with ã ≥ 1





. (4.3)

4.2 Weight Constants

For the self-deployment algorithm based on virtual forces to perform effectively in

achieving high sensing coverage in a bounded m× n area, the design of weight constants

wa and wr associated with the attractive and repulsive forces is a critical issue. Intuitively,

wr should be set much larger than wa (as suggested in [31]), considering the relatively small

number of neighboring sensors (exerting repulsive forces) compared to the large number

of non-neighboring nodes out there (exerting attractive forces). However, experimental

experiences reveal that arbitrary settings of a large wr and a small wa do not produce

effective sensing coverage in many cases. In this section, we attempt to characterize the

relationship between wr and wa by deriving a better formulated equation for setting the

two weight constants than simply suggesting to use wr >> wa (with arbitrary settings).

Consider an extreme node configuration shown in Fig. 4.3, where all the sensors (except

for si and sj) are located in one corner of the m×n sensing field. For sensor si, the virtual

forces it receives include the repulsive force from sj and attractive forces from all the other

(k−2) nodes. The magnitude of repulsive force from sj is denoted as |−→F R
i |. Based on the

definition of repulsive force provided in Eq. (4.1), we have |−→F R
i | = wr|dij

th − dij| = wr∆,

where ∆ is a small value that represents the tolerable overlapping between si and sj. On

the other hand, since the average distance between si and all the other (k − 2) nodes is

approximately (
√

m2 + n2−√2ri−
√

2rk), the magnitude of total attractive forces acting

on si is given by |−→F A
i | = (k− 2)wa(

√
m2 + n2 −√2(ri + rk)). Due to the relatively small

14
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ratio setting.

values of ri and rk compared to the area dimensions (m and n), we neglect the term
√

2(ri + rk). Moreover, by approximating (k − 2) ≈ k, we have |−→F A
i | = wak

√
m2 + n2.

−→
F R

i and
−→
F A

i are two forces that drive sensor si toward the opposite directions. To keep si

in a balanced state without being drawn toward the center or pushed outside the sensing

field, we adopt the equality of the two forces by making |−→F R
i | = |−→F A

i |. Consequently, we

have

wr

wa

=
k
√

m2 + n2

∆
, (4.4)

where m, n, and k are environmental constants, while ∆ (= |dij
th − dij|) varies with the

tolerable overlapping degree of respective sensor pair (related to the sensing ranges and

resultant dij
th). Based on the above derivations, proper choices for the weight constants

can be made by setting wr = k
√

m2 + n2 and wa = ∆.

Next, we intend to further relax wa from the dependency on sensing radius by consid-

ering setting wa inversely proportional to the sensor population k as another alternative

to the positive (attractive) weight value. In the case of having a large sensor population

(with large k), the weight associated with the positive force should be made small to

avoid exerting too much total attractive force on a sensor, and vice versa. To maintain a

balanced force interaction, it is reasonable to relate the attractive weight measurement to

the actual sensor population (parameter k). As a result, we propose another alternative
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Figure 4.4: Impact of wa, wr (= wb) parameter settings on the coverage ratio of monitored
200× 200 area (HSR with ã ≥ 1).

to proper weight choices by setting wr = k
√

m2 + n2 and wa = 1
k
.

In addition, since the monitored home environment is usually in a bounded area, we

also incorporate the boundary forces (with weight constant wb) in our EVFA-B mecha-

nism. We use the same value for wr and wb, considering the boundary force is also a kind

of repulsive force. In Fig. 4.4, we perform EVFA-B (with Maxloops = 100, cth = 0.95,

α = 0.9) and experiment on two sensor populations (k = 50 and k = 70) under three

different settings of wr and wa as discussed earlier. As we can see from the figure, ar-

bitrary setting (though wr >> wa) without boundary forces performs poorly, while the

third alternative by making wa inversely proportional to k performs the best with the

highest coverage ratio achieved. Interestingly, by setting wa = 1
k

(independent of sens-

ing radius), we actually obtain a better sensing coverage than that by setting wa = ∆

(sensing radius dependent), which implies that good choices for the weight constants de-
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pend on the sensor population (parameter k) and monitoring dimensions (m and n), and

can be made independent of sensing radius. This implication greatly simplifies the de-

sign of weight constants when dealing with heterogeneous sensors (having varying sensing

ranges). Therefore we adopt the third alternative by setting wr = k
√

m2 + n2 and wa = 1
k

in our EVFA-B mechanism thereafter.

4.3 Verification of Parameter Settings

We conduct more EVFA-B experiments (Maxloops = 100, cth = 0.95) in this section

to observe the combined impact of dij
th, wa, wr settings on the attainable coverage ratio. In

Fig. 4.5, two dij
th designs are experimented (where r̄ = 1

k

∑k
i=1 ri, representing the average

sensing radius), both with three different wa, wr settings. As depicted in the figure, by

setting wa = 1
k

and wr = k
√

m2 + n2, we obtain the highest coverage under both dij
th val-

ues. Moreover, even higher coverage ratio is attainable if we make the distance threshold

on per node-pair basis by setting dij
th = α(ri + rj). The results indicate the importance of

proper parameter settings on the distance threshold (dij
th) and weight constants (wa, wr,

wb), further validating our parameter designs proposed in Chapter 4.1 and Chapter 4.2.
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Figure 4.5: Performance justification of proper choices for dij
th, wa, wr(wb) values in our

EVFA-B algorithm.
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4.4 EVFA-B Algorithm Summary

Table 4.1: Summary of notations used in our EVFA-B
Notation Description

m Length of the monitored field
n Width (breadth) of the monitored field
k Total number of sensor nodes (denoted as s1, s2, · · · , sk with radius

r1, r2, · · · , rk)
(xi, yi) Coordinate (position) of sensor si

dij
th Distance threshold for two arbitrary sensors si and sj (j 6= i)

wa Tunable measure weight for the attractive force
wr(wb) Tunable measure weight for the repulsive force (boundary force)−→

Fi Resultant force exerted on sensor si (attractive, repulsive, boundary
forces considered)

Maxloops Maximum number of virtual movements performed by each sensor
cth Desired coverage ratio threshold

Algorithm 1 Enhanced Virtual Forces Algorithm with Boundary Forces (EVFA-B)
1: set loops = 0;
2: set cnow = cinit; // initial coverage ratio
3: while (loops < Maxloops) && (cnow < cth) do
4: for each sensor si ∈ {s1, s2, ..., sk} do
5: compute

−→
F i=

∑k
j 6=i,j=1

−→
F ij +

−→
F ib;

6: end for
7: perform virtual movements; // all sensors virtually move to their next positions
8: update coverage ratio cnow;
9: set loops = loops + 1;

10: end while

Table 4.1 summarizes the notations used in the EVFA-B mechanism, and Algorithm

1 provides the pseudocode for EVFA-B operations. Note that in the end of each loop,

every sensor performs virtual movement without physically moving to the new position.

Physical movements are conducted once the EVFA-B process terminates (either cth or

Maxloops has been reached), and this is when our collision-free path planning (CFPP)

algorithm (detailed in Chapter 5) comes into play.
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Chapter 5

Collision-Free Path Planning

(CFPP)

In practical deployment, a collision-free moving path scheduling is essential, so that

mobile sensors can reach their destinations without colliding with each other. However,

the scheduling strategy is non-trivial for various collision cases need be systematically

classified and handled/resolved in different ways. In this work, we assume the sensor

volume is neglected and regarded as a moving point on a 2D plane, while every moving

path (performed by a sensor) regarded as a line. Suppose no two moving paths share the

same line (i.e., no path lies in the sub-path of another). We identify the collision cases

based on the following geometric theorem.

Theorem 1. With respect to the line ax + by + c = 0 on a 2D plane, points Q1(x1, y1)

and Q2(x2, y2) fall in the same side if (ax1 + by1 + c)(ax2 + by2 + c) > 0, in different sides

if (ax1 + by1 + c)(ax2 + by2 + c) < 0, while one or both reside(s) exactly on the line if

(ax1 + by1 + c)(ax2 + by2 + c) = 0.

For an arbitrary sensor si departing from point pi (with coordinate (xi, yi)) to point

p
′
i (with coordinate (x

′
i, y

′
i)), the moving path can be formulated as a line, denoted as
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Figure 5.1: Possible intersection (collision) cases generated by moving paths of any two
sensors si and sj, where pi (pj) denotes the original position of si (sj) and p

′
i (p

′
j) indicates

the physical movement destination for sensor si (sj).

Li. Similarly, the moving path of another sensor sj is given as Lj. Define pij as the

intersection point of lines Li and Lj, which can be easily obtained by solving the two

line equations. According to Theorem 1, we can now classify five possible intersection

(collision) cases for any two sensors si and sj, as illustrated in Fig. 5.1, where d(pi, pij)

and d(pj, pij) represent the Euclidean distances from pi to pij and from pj to pij. Case

I shows the case in which points pi and p
′
i fall in different sides of line Lj, while points

pj and p
′
j fall in different sides of line Li as well. In Case II, the departure point pj of

sensor sj gets in the way of the moving path of si, while in Case IV, on the contrary,

the departure point pi of sensor si blocks the moving path of sj. Case III draws the

condition in which the destination point p
′
j of sensor sj lies on the moving path of si,

while Case V, on the opposite side, displays the condition that destination point p
′
i of

sensor si falls on the moving path of sj.

5.1 Path Planning Strategy

Given the five potential collision (intersection) cases caused by any two moving paths,

we establish colliding set Ci, which includes all sensors whose moving paths intersect

with that of si, for each sensor. Instead of performing one-time physical movements, we

propose to use batched movements such that the scheduling complexity can be reduced
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at the expenses of increased moving latency. Define orderi as the cardinality of set Ci

(orderi = |Ci|) for sensor si, indicating its moving order. We start from performing

movements for sensors with the least order value. All sensors with the currently least

(smallest) order value are contained in set Mmin order. Intuitively, sensors with order value

of zero can move simultaneously since no other sensors pose potential colliding sources

to them. For any sensor si with non-zero orderi value, potential colliding conditions

(on per node-pair basis) caused by all members in its Ci set should be analyzed and

handled case by case. Specifically, all sensors are divided into moving groups (batches)

based on their order values and processed round by round (batch by batch). Sensors in

set Mmin order are evaluated in the same round. The evaluation and processing details

will be provided later in this section. After the evaluations, a subset of Mmin order (or

probably the whole Mmin order set) is determined and all sensors included in the subset

are allowed to move simultaneously in the current round. For sensor si that has been

evaluated and permitted to move, the tflagi is set true, indicating its moving intention.

Once the physical movement has been successfully performed by sensor si, moving flag

mflagi is set true and si is removed from the consideration list. All order values for the

remaining sensors (physical movements not performed yet) should be refreshed, and the

batched scheduling procedure starts over accordingly.

Now we detail on the evaluation procedures for determining a set of movable sensors

in a single round (batch). Based on the idea of batched movements, we regard all sensors

with the currently minimum order value as a potential moving batch and include them

in set Mmin order. We then analyze all members in set Mmin order one by one to determine

their moving possibilities. In our design, we start the evaluation from sensor with the

smallest ID, say s1, and identify all possible collision cases caused by members in its

colliding set C1. For any two sensors si and sj with moving orders orderi and orderj,

the previously five collision cases can be further classified into ten cases according to the
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relationship of orderi and orderj. Suppose si ∈ Mmin order, sj ∈ Ci, and orderi = orderj,

we term the five collision cases as Case S-I, Case S-II, Case S-III, Case S-IV, and

Case S-V, where ’S’ indicates that sensors si and sj are potentially scheduled to move

in the ”same” round due to equal order value. On the other hand, if orderi < orderj

(note that orderi > orderj is not possible since si ∈ Mmin order), we define another five

collision cases as Case D-I, Case D-II, Case D-III, Case D-IV, and Case D-V,

where ’D’ means si and sj are potentially scheduled to move in ”different” rounds due

to their unequal order values. In each potential collision case, on detecting a colliding

possibility, si tries to resolve the collision by adjusting/prolonging the waiting time Tj

or increasing the moving speed Vj of sensor sj. Originally all waiting times are set to

zero, and moving speeds all set at a constant velocity V . If the adjustment (on either

waiting time or moving speed) is successful, the colliding possibility is eliminated and

si moves on to evaluate collision cases with other members in Ci. To avoid repeated

adjustments on a single sensor, in our design, each sensor is allowed to be adjusted (either

on waiting time or moving velocity) once. In addition, si itself cannot be adjusted by

other sensors in set Mmin order that are evaluated after it, if si is indeed scheduled to

move in the current round. We keep track of the adjustment possibility for sensor si

by the dirtyi bit, implying adjustable if set false and not adjustable if set true. When

si intends to resolve a collision by adjusting another sensor with dirty bit set true, the

adjustment is prohibited and si is not allowed to move in the current round (tf lagi set to

false), since the collision remains. Only when all members in Ci with various colliding

possibilities are all resolved can sensor si be included into the movable set and perform

physical movement. Upon receiving the moving instruction from the clusterhead, si waits

for Ti (possibly adjusted) and then moves with speed Vi (possibly adjusted). In our route

scheduling strategy, we try to include as many sensors as possible to move simultaneously

in the same round (batch).
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For each of the ten collision cases identified, we define corresponding actions (Action

D-I, Action D-II, · · · , Action S-I, Action S-II, · · · ) to evaluate respective case and

perform necessary adjustments. If colliding possibility remains due to unsuccessful ad-

justment, physical movement by sensor si is not allowed and should be deferred. Thus we

additionally define Action Deferred to perform corresponding operations. Note that

in Case D-I, Case D-III, and Case D-IV, no action is needed since si and sj are

scheduled in different rounds (no collision is likely to happen in the three cases despite

intersection exists between the two moving paths). For the rest of seven cases, we describe

the evaluation principles exercised by respective action as follows (detailed operations are

available in Algorithm 2, Chapter 5.2).

Action D-II In this case, since sj gets in the way of si’s moving path, the clusterhead

instructs sj to slightly adjust its location along line
−−→
pjp

′
j to avoid collision. Assume the

location adjustment is small enough to have no effect on other moving paths.

Action D-V Sensor si is not allowed to move, for its destination point p
′
i will block

the moving path of sj in a later round. In this case, the moving order of si should be set

to be larger than that of sj (orderi = orderj +1) to postpone si’s physical movement after

sj. In addition, a fix orderi flag should be set true, indicating no updates on orderi will

be performed in later rounds to ensure the delayed movement after sj, and then Action

Deferred is invoked for si.

Action S-I Define the traveling time from pi to the intersection point pij as tpi→pij

(obtained from available d(pi, pij) and Vi), the clusterhead evaluates if Ti + tpi→pij
=

Tj + tpj→pij
, where Ti and Tj are the waiting times of si and sj as defined earlier. If

equality holds, a collision at the intersection is expected, and the waiting time Tj of sj

should be increased by a small amount of ∆t to avoid the collision. However, in case sj

has already been processed with dirtyj set true, the adjustment is prohibited and si is

not allowed to move in the current round. Consequently, moving order of si is increased
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(orderi = orderi + 1) and Action Deferred is invoked for si.

Action S-II If si reaches the intersection point pij no later than sj’s departure time,

the clusterhead should instruct sj to slightly adjust its location along line
−−→
pjp

′
j to avoid

collision.

Action S-III If sj reaches the intersection point pij no later than si, the destination

point p
′
j of sj will block the moving path of si. In this case, the clusterhead should instruct

sj to increase its waiting time Tj by setting Tj = Ti + (tpi→pij
− tpj→pij

) + ∆t to ensure

the delayed arrival of sj at pij (p
′
j). If the adjustment of Tj is not successful due to a true

flag of dirtyj, then sj is not allowed to move in the current round. Consequently, moving

order of sj is increased (orderj = orderj + 1) and Action Deferred is invoked for sj.

Action S-IV If sj reaches the intersection point pij no later than si’s departure time,

the clusterhead should increase the waiting time of sj by setting Tj = Ti− tpj→pij
+∆t. In

case the adjustment is not allowed due to a true value of dirtyj, the clusterhead instructs

si to slightly adjust its location along line
−→
pip

′
i to avoid collision.

Action S-V If si reaches the intersection point pij no later than sj, the destination

point p
′
i of si will block the moving path of sj. In this case, the clusterhead should

instruct sj to increase its moving speed Vj by setting Vj =
Vi·d(pj ,pij)

d(pi,pij)+Vi(Ti−Tj)
+ ∆v, where

∆v is a small amount of speed increment to ensure sj’s earlier arrival at pij (p
′
i) than si.

However, if the adjusted Vj is larger than the maximum possible moving speed Vmax or

the adjustment of Vj is prohibited due to a true value of dirtyj, then si is not allowed

to move in the current round. Moving order of si is increased (orderi = orderi + 1) and

Action Deferred is invoked for si.

Action Deferred Since si (sj) is not allowed to move in the current round, tflagi

(tflagj) is set false. In addition, the clusterhead should confirm if this not-moving

decision leads to moving path blocking of any sensor in Mmin order set that is already

allowed to move in the current round (with tf lag set true), and do necessary slight
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Figure 5.2: Every sensor si in the potential moving set Mmin order should be analyzed
by identifying its intersection (collision) relationship with each member in Ci, in which
intersection cases D-II, D-IV, S-I, S-II, S-III, S-IV, and S-V require further considera-
tion/processing, before including si into the moving set (allowed to move in the current
round).

location adjustment to resolve the blocking.

Fig. 5.2 illustrates a snapshot of the CFPP operations. Note that s4 has more inter-

sections with other sensors, which are not shown in the figure (omitted for brevity). In

the current round, potential moving set Mmin order includes s1, s2, and s3, all having the

currently smallest order value of 3. For s1, colliding conditions caused by all members in

C1 are analyzed and handled case by case. In this example, since s1 and s2 are evaluated

to reach intersection p12 simultaneously, the clusterhead adjusts the waiting time of s2 by

setting T2 = T2 + ∆t to resolve the collision. Next, since s3 is found to reach intersection

p13 earlier than s1, blocking s1’s moving path, the clusterhead instructs s3 to increase its

waiting time by setting T3 = T1 + (tp1→p13 − tp3→p13) + ∆t. As to s4 (scheduled to move

in a later round), no action is required since no collision is likely to happen between s1

and s4. Consequently, the clusterhead includes s1 into the moving set. Similar operations
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apply to s2. In our example, s2 has no colliding possibilities with s1 and s3. However,

since the departure location p4 of s4 blocks s2’s moving path, the clusterhead instructs s4

to slightly move from p4 (original) to p4 (adjusted), as shown in Fig. 5.2 (b). As a result,

s2 is also included into the moving set. For s3, in our example, both s1 and s2 do not

pose colliding sources to s3. Unfortunately, since the destination point p
′
3 of s3 will block

the moving path of s4 in a future round, s3 is not allowed to move before s4 (not included

into the moving set), and order3 should be updated to 6 (order4 + 1) with fix order3 set

true. After the evaluations, sensors included in the moving set (i.e., s1 and s2) perform

physical movements simultaneously, and order4 and set C4 are updated accordingly.

5.2 CFPP Algorithm Summary

Table 5.1: Summary of notations used in the CFPP algorithm
Notation Description

Ci Set of potential colliding sensors against si

orderi Moving order of si, where orderi = |Ci|
fix orderi Indicates the order value of si is henceforth fixed

dirtyi Indicates whether si has been processed in the current round
tflagi Indicates whether si is allowed to move in the current round
mflagi Indicates whether si has moved from pi to p

′
i

Mmin order Set of sensors with the minimum order value in the current round

Table 5.1 summarizes the notations used in CFPP, and Algorithm 2 provides the

pseudocode for CFPP operations. In addition, a running example illustrating the CFPP

route scheduling procedures is available in Fig. 5.3. Note that in Round 3 of this example,

s9 is excluded from the moving set due to a unsuccessful adjustment of s11’s waiting time

(since T11 has been adjusted by the clusterhead to resolve collision with s7 and can only

be adjusted once according to the scheduling principles adopted by CFPP). After the

clusterhead decides that s9 is not allowed to move in the current round, s9 no longer

poses as a colliding source to s11. Consequently, s11 can be included into the moving set
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Figure 5.3: Example illustrating the operations of our proposed CFPP algorithm for
sensor physical movements.

by the clusterhead.

In the CFPP strategy, we propose batched movements to successfully resolve moving

collisions between sensors at the cost of global deployment latency. While most existing

self-deployment works do not handle this collision problem, our proposed CFPP strategy is

essential in practical deployment, and we believe the disadvantage of increased deployment

time can be effectively reduced by the local recovery capability provided by our SSOA

mechanism (detailed in Chapter 6), which leads to infrequent global redeployments.
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Algorithm 2 Collision-free Path Planning (CFPP)
1: include all sensors in set S;
2: establish set Ci for ∀si ∈ S ; // i = 1, · · · , k
3: evaluate orderi for ∀si ∈ S;
4: clear fix orderi, dirtyi, tflagi, mflagi for ∀si ∈ S; // all set to false
5: while (S !empty) do
6: re-establish set Ci for ∀si ∈ S;
7: re-evaluate orderi for ∀si ∈ S with fix orderi == false;
8: reset Ti = 0, Vi = V for ∀si ∈ S;
9: include all si with the minimum orderi value into the Mmin order set;

10: for (each si ∈ Mmin order) do
11: set dirtyi = true; set tflagi = true;
12: for (each sj ∈ Ci) do
13: classify the intersection (collision) case for si and sj ;
14: switch (case)
15: Case D-II: do Action D-II;
16: Case D-V: do Action D-V;
17: Case S-I: do Action S-I;
18: Case S-II: do Action S-II;
19: Case S-III: do Action S-III;
20: Case S-IV: do Action S-IV;
21: Case S-V: do Action S-V;
22: end for
23: end for
24: perform simultaneous physical movements for ∀si with tflagi == true;
25: set mflagi = true for such sensor si; // indicating physical movement performed
26: remove all si with mflagi == true from sensors set S;
27: end while
28: procedure Action D-II
29: slightly adjust location of sj from pj (original) to pj (adjusted);
30: procedure Action D-V
31: set orderi = orderj + 1; set fix orderi = true; invoke Action Deferred (si);
32: procedure Action S-I
33: if Ti + tpi→pij = Tj + tpj→pij then
34: if dirtyj == false then set Tj = Tj + ∆t; dirtyj = true;
35: else set orderi = orderi + 1; invoke Action Deferred (si);
36: procedure Action S-II
37: if Ti+tpi→pij ≤ Tj then slightly adjust location of sj from pj (original) to pj (adjusted);
38: procedure Action S-III
39: if Ti + tpi→pij ≥ Tj + tpj→pij then
40: if dirtyj == false then set Tj = Ti +(tpi→pij − tpj→pij )+∆t; set dirtyj = true;
41: else set orderj = orderj + 1; invoke Action Deferred (sj);
42: procedure Action S-IV
43: if Ti ≥ Tj + tpj→pij then
44: if dirtyj == false then set Tj = Ti − tpj→pij + ∆t; set dirtyj = true;
45: else slightly adjust location of si from pi (original) to pi (adjusted);
46: procedure Action S-V
47: if Ti + tpi→pij ≤ Tj + tpj→pij then

48: if dirtyj == false then set Vj = Vid(pj ,pij)
d(pi,pij)+Vi(Ti−Tj)

+ ∆v; set dirtyj = true;
49: if Vj > Vmax then set orderi = orderi + 1; invoke Action Deferred (si);
50: else set orderi = orderi + 1; invoke Action Deferred (si);
51: procedure Action Deferred (si)
52: set tflagi = false; do necessary slight adjustment of si’s departure location to resolve
53: moving path blocking possibly caused by this not-moving decision;
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Chapter 6

Sensor Self-Organizing Algorithm

(SSOA)

Wireless sensors are inherently unreliable. Due to sensor power depletions or unex-

pected failures over time, the decreased sensing coverage deteriorates the event detection

capability of a WSN. To preserve the required sensing coverage, one alternative is to

perform EVFA-B (presented in Chapter 4) periodically for global redeployments. How-

ever, such constant global redeployment is costly in terms of communication overhead

and consumed moving energy, and should be kept infrequent. Therefore, we propose the

sensor self-organizing algorithm (SSOA) to firstly repair the sensing void (uncovered area

caused by some broken sensor) by locally repositioning sensors around the sensing hole.

Two issues need be addressed to realize this local recovery: selection of repairing sensors

(Chapter 6.1) and physical movements performed by the selected sensors (Chapter 6.2).

In case the local repairing is unable to recover the required sensing (detection) capability,

SSOA then invokes EVFA-B to globally redeploy sensors.
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6.1 Local Selection of Rescue Sensors

The first challenge of accomplishing partial repair is to locally select the rescue sensors

around the sensing hole. Given a sensing hole caused by some broken sensor (sdead), all

active sensors nearby (not necessarily the immediate neighbors of sdead) can be potential

candidates to perform the local repair. Theoretically, every combination of rescue sensor

candidates along with various moving strategies should be examined to obtain the most

desirable coverage improvement. However, this approach is intractable, and not imple-

mentable. Therefore, we limit the search of rescue sensors to the neighboring nodes of

sdead, defined as set Ndead. Our objective is to select a subset Rdead of local rescue sensors

from Ndead (i.e., Rdead ⊆ Ndead) for repairing the sensing hole.

In order to evaluate the recovering capability of each sensor si ∈ Ndead, we try to

quantify the overlapping degree possessed by each sensor, and associate an overlapping

weight wi with sensor si. As shown in Fig. 6.1, for any two sensors si and sj with sensing

radius ri and rj respectively, the overlapping degree wij is defined as the overlapped area

between the two sensors, and can be easily obtained as wij = r2
i θi + r2

jθj − dijri sin θi.

Then the overlapping degree wi can be approximated by summing up overlapping weights

contributed from all neighbors of si, thus we have wi =
∑

sj∈Ni
wij (recall that Ni repre-

sents the neighbor set of si). However, considering the existing sensing hole(s) around si,

the overlapping degree should be adjusted by deducting the uncovered area(s) from wi to

reflect this fact. Thus we have the modified wi =
∑

sj∈Ni
wij−wh, where wh represents the

area size collectively contributed by sensing hole(s) around si. The estimation of wh can

be obtained by some existing geometric calculations [19]. As a result, the quantified over-

lapping degree wi can be either positive or negative, reflecting the recovering capability of

rescue sensor candidate si (si ∈ Ndead).

Intuitively, higher overlapping degree wi implies better recovering ability of a sensor

candidate si. Define the total overlapping degree of a selected rescue sensors set Rdead
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Figure 6.1: Experiments on possible selections of rescue sensors set Rdead to locally recover
the sensing void caused by faulty sensor sdead.

as w(Rdead), where w(Rdead) =
∑

si∈Rdead
wi. A selected rescue sensors set Rdead with

a higher w(Rdead) is expected to achieve better coverage improvement. However, as

illustrated in Fig. 6.1, our experiments on 30 heterogeneous sensors deployed in a 125×125

area reveal that the highest w(Rdead) by selecting Rdead = {s2, s5, s6} does not produce

the best coverage performance. On the other hand, also containing three rescue sensors,

the set Rdead = {s2, s4, s6} with the fifth highest w(Rdead) leads to the best coverage

improvement among the six cases. From extensive experiments conducted (not shown

in the thesis), we observe that selecting adjacent sensors (though with high overlapping

degrees) to move simultaneously usually leads to unnecessary overlapping and cannot

effectively cover the sensing hole. On the contrary, selecting non-adjacent sensors, such as

Rdead = {s2, s4, s6}, to cooperatively repair the sensing void generally produces effective

coverage. The results suggest that the impact of locations of selected rescue sensors

(non-adjacent nodes preferred) seems to be more pronounced than that of overlapping
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Figure 6.2: Construction of graph Gr for our rescue sensors selection problem (RSSP).

degrees. Nonetheless, overlapping degree is still important, for the selection of Rdead =

{s1, s3, s5}, as shown in Fig. 6.1, results in imperfect coverage due to its insufficient

w(Rdead). Consequently, in this work, we propose to select a rescue sensors set Rdead that

contains non-adjacent sensors in Ndead with the highest w(Rdead) value.

Given both positive and negative overlapping weights, however, the Rdead combinations

of non-adjacent nodes selected from Ndead can be many (with various Rdead set sizes).

Specifically, the best Rdead (including non-adjacent sensors) with the highest w(Rdead)

that we intend to obtain may contain 1, 2, . . . , and up to b |Ndead|
2

c nodes. In other words,

C
|Ndead|
1 +C

|Ndead|
2 +· · ·+C

|Ndead|
b |Ndead|

2
c
candidate combinations should be tried out to obtain the

best set containing only non-adjacent nodes and having the highest overlapping degree.

Due to the inefficient computational complexity required by the above selection approach,

we try to further reduce the candidate space. Suppose θi denotes the angle produced by

line segment sisdead (si ∈ Ndead) with respect to the positive x axis in counterclockwise

direction. We construct a complementary graph Gr of Gr, where Gr is a undirected

graph with all sensor nodes in Ndead connected in order of θi, as illustrated in Fig. 6.2.

In the constructed graph Gr, our goal becomes to find a clique set with the maximum

total weight, defined as the rescue sensors selection problem (RSSP). Recall that, given a

graph G = (V,E), a clique set is a subset of V , any two of which are adjacent (connected

32



by an edge). By constructing Gr, we can guarantee the discovered clique set contains

only non-adjacent nodes in Ndead (since edges connecting adjacent nodes in Gr are all

removed). For the problem of finding a clique set with the maximum total weight, we

recall the maximum-weight clique problem (MWCP) and formally define as follows.

Definition 1. Given a weighted undirected graph G = (V,E, w), where V = {v1, v2, . . . , vn}
is the vertex set, E ⊆ V × V is the edge set and w ∈ Rn is the weight vector. Each vi

has a corresponding wi. Two distinct vertices vi, vj ∈ V are adjacent if they are con-

nected by an edge. Given a subset of vertices Vc ⊆ V , the weight corresponds with Vc is

w(Vc) =
∑

vi∈Vc
wi. A clique set Vc is a subset of vertices set V , any two of which are

adjacent. The MWCP is the problem that finds a clique Vc in G having maximum weight

w(Vc), and the clique Vc is constructed by kc vertices which represents the clique size.

The MWCP is known as an NP-hard problem [18]. By defining Gr = (Ndead, Er,wr),

the MWCP can be reduced to our RSSP, proving RSSP is also NP-hard.

Theorem 2. The rescue sensors selection problem (RSSP) is NP-hard.

Proof. To prove RSSP is NP-hard, we reduce the MWCP to RSSP by showing MWCP

≤p RSSP. In other words, any instance of MWCP can be reduced in polynomial time to

an instance of RSSP. Let G = (V, E, w) represent an arbitrary instance of the MWCP.

We can transform G to an instance of the RSSP Gr by taking Ndead = V , Er = E and

wr = w in polynomial time. We claim that we can find the maximum-weight clique

Vc with w(Vc) for the MWCP if and only if we can find rescue sensors set Rdead with

w(Rdead) for the RSSP. For the if part, suppose that G has a maximum-weight clique

Vc ⊆ V with w(Vc) = w containing kc vertices. By taking G = Gr, V = Ndead, E = Er

and w = wr, we can find a rescue sensors set Rdead ⊆ Ndead with w(Rdead) = w containing

kc vertices. Conversely, we prove the only if part. Suppose that Gr has a rescue sensors

set Rdead ⊆ Ndead with w(Rdead) = w containing |Rdead| vertices. By taking Gr = G,
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Ndead = V , Er = E and wr = w, there must exist a maximum-weight clique Vc ⊆ V with

w(Vc) = w containing |Rdead| vertices, which completes the proof.

Several approximating algorithms exist to solve the MWCP in efficient computational

time [6, 17]. However, only positive weights are considered in these solutions, for no

efficient algorithm is available yet to handle the negative weights [20]. In light of this, and

considering the high complexity of estimating wh [19], we formulate only positive weights

by using wi =
∑

sj∈Ni
wij in this work so that efficient algorithms can be applied to solve

the RSSP. Furthermore, by adopting positive weights associated with sensor candidates

in Ndead, we observe a nice property of RSSP that the selected rescue sensors set Rdead

(maximum-weight clique in Gr) is guaranteed to contain exactly b |Ndead|
2

c nodes (clique size

of b |Ndead|
2

c), since no negative weights are possibly to reduce the set size beyond b |Ndead|
2

c.
This is contrary to the case of arbitrary graph handled by MWCP, in which the size of

maximum-weight clique is unknown (even only positive weights are considered). In Gr of

our RSSP, given only positive weights, the size of maximum-weight clique (MWC) is fixed

at b |Ndead|
2

c and the search for MWC can be easily accomplished by trying combinations of

every other nodes in Gr, leading to time complexity of Θ(|Ndead|). The obtained MWC is

then selected as the rescue sensors set Rdead. We term this selection procedure as MWC-

FS (maximum-weight clique with fixed size) approach operated on graph Gr. In this way,

we convert the originally intractable subject into a solvable problem, for which a suitable

rescue sensors set Rdead can be obtained within a reasonable computation time. We intend

to keep the selection mechanism at a moderate complexity for practical concerns, leaving

the suboptimality caused by this imperfect selection strategy to be handled by possibly

EVFA-B global redeployments.
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6.2 Physical Movements Performed by Selected Res-

cue Sensors

Once the rescue sensors set Rdead is determined, we propose to perform two-tier phys-

ical movements to gradually recover the sensing hole. As displayed in Fig. 6.3, for each

selected rescue sensor sr ∈ Rdead, the 1st-tier movement is applied such that the center

of sdead can be exactly covered by sr. Specifically, the clusterhead instructs sr to move

toward the center of sdead by the amount of ∆r offset. Given the coordinates of sr, sdead,

and sensing radius rr, ∆r can be easily obtained. After performing the 1st-tier movement,

some neighbors of sr may become disconnected. For those affected immediate neighbors of

sr, we suggest to apply the 2nd-tier movement. Suppose sri
represents some disconnected

neighbor of sr. The clusterhead then instructs sri
to move toward sr by the amount of

∆ri
offset. In this work, we attempt to restore the originally balanced distance relation-

ship between sr and sri
, and therefore set ∆ri

= d(sr, sri
)− drri

th . All affected immediate

neighbors of sr should perform the 2nd-tier movements, as illustrated in Fig. 6.3.

One may argue that more-tier physical movements with gradually decreased move-

ment (offset) amounts should be performed. However, this complicates the computation,

and does not produce significant coverage improvement in our experiments. As a result,
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Figure 6.3: 1st-tier and 2nd-tier physical movements applied on selected rescue sensors
and their affected immediate neighbors, respectively.
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we restrict our local repairing within two tiers. For cases that are beyond the recovery

capability of two-tier movements due to insufficient sensors available around the sensing

hole, we simply activate EVFA-B for global redeployments.

6.3 SSOA Algorithm Summary

Experimental experiences reveal that the local recovery mechanism exercised by SSOA

provides the network an effective self-healing capability in many faulty cases, where faulty

sensors are generally evenly distributed across the network. In extreme cases, where sensor

faults are concentrated at certain locations, leading to a reduced sensing coverage below

cth even after the local repairing is performed, then EVFA-B should be utilized to globally

redeploy the sensors. We outline the SSOA operations by providing the pseudocode in

Algorithm 3.
Algorithm 3 Sensor Self-organizing Algorithm (SSOA)

1: while (sdead detected) do
2: evaluate cnow;
3: if (cnow < cth) then
4: perform EVFA-B to redeploy the entire WSN;
5: else
6: obtain the overlapping degree wi of each si ∈ Ndead;
7: construct graph Gr;
8: apply MWC-FS approach to determine the maximum-weight clique set in Gr;
9: rescue sensors set Rdead is selected as the determined clique set;

10: for each sr ∈ Rdead do
11: perform the 1st-tier physical movement;
12: for each affected neighbor sri ∈ Nr do
13: perform the 2nd-tier physical movement;
14: end for
15: end for
16: end if
17: end while
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Chapter 7

Performance Evaluation

In this section, we validate the proposed CASA protocol by comparing the performance

with two other self-deployment mechanisms in terms of coverage ratio, network self-healing

capability, and total energy consumed by sensor physical movements. The comparison

targets include mechanisms also based on virtual forces. We implement Zou (introduced

in [31]) and Zou-B (improved Zou mechanism by incorporating boundary forces into the

force calculations) with fixed weight settings. Since there is no specific design guidelines

provided by [31] on setting the weights except for suggesting to use wr >> wa, we try

on several wr and wa combinations and select (wa = 1, wr = 1000) to be utilized by Zou

and Zou-B for its best coverage performance. On the other hand, the weight settings in

CASA follow the derivations presented in Chapter 4.2 and are made as (wa = 1
k
, wr =

k
√

m2 + n2). For the weight wb associated with the boundary force (considered by both

CASA and Zou-B), we use the same value set for wr (i.e., wb = wr = k
√

m2 + n2 in CASA

and wb = wr = 1000 in Zou-B). Since there is no route planning strategy available in Zou

and Zou-B, we simply assume no collisions happen and sensors can always reach their

destinations accurately (though this represents a serious problem in real deployment).

When faulty sensors occur, Zou and Zou-B have no local recovery technique and can only

perform global redeployment on being triggered by the reduced coverage lower than cth,
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Initial: 45.2665% covered Zou: 62.9045% covered Zou-B: 70.4902% covered CASA: 84.7352% covered

Figure 7.1: Sensor deployment status after 50 rounds (virtual movements) using Zou,
Zou-B, and our proposed CASA strategies, respectively (m = 200, n = 200, k = 80, HSR
with ã ≥ 1).

while CASA is able to quickly react to the faults by constantly applying SSOA for local

repairs. We simulate heterogeneous sensors, having sensing radius uniformly distributed

in [10, 20], in a rectangular grid-based region. The distance threshold in Zou and Zou-B

is set as twice the average sensing radius (i.e., dij
th = 2r, where r = 1

k

∑k
i=1 ri), while

CASA follows Eq. (4.3) on setting the threshold (with overlapping factor α = 0.9). All

three mechanisms use Maxloops = 100 and cth = 0.95 as their deployment termination

conditions.

7.1 Improved Surveillance Coverage

Fig. 7.1 displays the deployment results accomplished by Zou, Zou-B, and CASA

respectively at the 50th round, halfway to the maximum allowable loops of 100. We observe

that, given the same computation time, CASA is able to make the most effective progress

toward the required sensing coverage. On the other hand, due to lack of boundary forces,

Zou makes many unnecessary movements outside the sensing field. By incorporating the

boundary forces to keep sensors from drifting away, Zou-B outperforms Zou as a result

of reducing unwanted coverage outside the monitoring region. However, due to improper

distance threshold and weight settings, Zou-B is unable to cover the area as effectively as
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Figure 7.2: Coverage performance accomplished by Zou, Zou-B, and our CASA deploy-
ment strategies under various amounts of sensor nodes in a monitored 200 × 200 area.
Note that the results are obtained after the first redeployment (no faulty sensor occurs
yet).

CASA does.

The results in Fig. 7.1 motivate us to conduct another set of experiments investigat-

ing the coverage improvement rate of respective mechanism under different environmental

settings. We define the coverage improvement rate as the average amount of coverage

ratio improved/increased per round/loop, regarded as the progressing speed on enhancing

sensing coverage. Since the three mechanisms have different progressing speeds, intu-

itively, the one with the highest coverage improvement rate is expected to produce the

best coverage ratio. We experiment on various sensor populations in the same monitor-

ing region as Fig. 7.1 to observe the coverage improvement rate and achieved coverage

ratio. As shown in Fig. 7.2, after the first redeployment, CASA achieves the best sens-

ing coverage due to its highest coverage improvement rate under all sensor populations.

Moreover, we observe that both the coverage improvement rate and achieved coverage

ratio of CASA increase monotonically as number of sensors grows. The reason attributes

to the judicious designs of distance threshold and weight constants, making the deploy-

ment strategy adopted by CASA adaptive to environmental parameters (such as sensor

numbers, area dimensions, and heterogeneous sensing ranges). On the other hand, Zou

and Zou-B do not have steadily increasing performance as sensor population grows, due

to their improper parameter designs, making the two mechanisms incapable of utilizing

39



CASA

90%downc

Zou Static Zou-B

2 18 22 35

Figure 7.3: Network self-healing performance comparison in a monitored 120 × 120 en-
vironment with 70 sensors where some faulty sensor occurs every unit time (number of
sensors reduced to only 32 at the 38th time unit).

the benefit brought by increased number of deployable sensors.

7.2 Network Self-healing Capability

Once the desired sensing coverage is achieved by the first redeployment, how to main-

tain an effective surveillance coverage as faulty sensors occur over time is an important

issue. In this section, we investigate this issue by simulating an environment where faulty

sensor occurs at every time unit. We additionally implement the Static mechanism, which

applies EVFA-B deployment strategy as CASA does and remains statically without any

further redeployments, for comparison purpose. We observe the unmonitored area and

attainable coverage ratio, as illustrated in Fig. 7.3. Due to the capability of local re-

pairing enabled by SSOA, CASA is able to quickly react to sensor faults and recover the

sensing voids. For Zou and Zou-B, the global redeployment is triggered only when the

sensing coverage is reduced below cth, leading to slow reactions and inefficient coverage

recovery. Suppose the network is considered to be invalid/down when sensing coverage is

below 90% (cdown = 0.9). Fig. 7.3 (right) depicts the operative network lifetime yielded

by respective mechanism. Under the same environmental settings with the same faults

occurrence behavior, CASA maintains the longest functioning time (35 time units) by its
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Coverage
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Figure 7.4: Physical movement energy consumption comparison after the first redeploy-
ment is respectively completed by Zou, Zou-B, and CASA under various amounts of sensor
nodes in a monitored 200× 200 area.

best network self-healing capability. We also observe that the operation time produced

by Static is longer than Zou and comparable with Zou-B. This is interesting since Static

only deploys the network once using our EVFA-B mechanism adopted by CASA, implying

the inherently nice property of tolerating unexpected faults possessed by our proposed

deployment strategy.

7.3 Energy Conservation on Physical Movements

Due to the centralized computations and communications exercised by Zou, Zou-B,

and CASA, the major source of energy consumption is from sensor physical movements.

To model the energy consumed by the motion device moving for one grid unit, we do

real measurements on the sensor robot used in our implementation testbed with grid size

equal to 1 cm. The robot assembles six 1.2 V 2000 mAh rechargeable NiMH batteries with

measured 200 ∼ 290 mA moving current and average moving speed at 0.06 m/sec (216

m/hr). Consequently, the average moving energy consumption per grid (unit distance)

can be estimated by 0.29× 7.2× (0.01
216

) = 9.667× 10−5 Joule. We obtain the total energy

consumed by physical movements performed by respective deployment strategy based on

the estimated energy model, and conduct experiments to observe the energy performance

41



under different sensor populations. Fig. 7.4 shows the results of both energy consumption

and achieved coverage ratio. CASA yields the highest coverage ratio, while consuming the

least energy on physical movements, due to its capability of keeping sensors from moving

far away. The results indicate that CASA is both coverage effective and energy efficient,

which encourages us to implement the CASA protocol suite in a practical home testbed.
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Chapter 8

Implementation of an Automated

Home Monitoring Network (MoNet)

As pointed out in [10] that simulation models do not sufficiently capture the radio and

sensor irregularity in a real-world environment, a proof-of-concept implementation is thus

needed to demonstrate the feasibility of our proposed CASA protocol. In this section,

we briefly report our prototyping experiences on an automated home monitoring network

WebCam

LEGO

robot

Stargate SensorWLAN

card

Power 

supply

Server

Mobile sensor

Emergency event 

Data collector

Figure 8.1: Validation of the proposed CASA protocol suite by implementing a real-world
home monitoring network (MoNet) via commodity hardware components.
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(MoNet) enabled by CASA.

Fig. 8.1 illustrates the hardware architecture and communication protocols used by

our MoNet. the mobile sensor is basically a moving robot (LEGO MINDSTORMS NXT

9797 [2]) carrying a single-board computer (Crossbow Stargate [1]), a sensor-equipped

mote (Crossbow MICAz [1]), and a webcam device (Logitech QuickCam Pro 4000 [3]).

The server acts as the clusterhead performing deployment-related computations required

by CASA, while the data collector is responsible for gathering necessary data (such as

sensor locations and sensing ranges) from all sensors via ZigBee protocol and providing

them to the server. In our testbed, the location information is obtained via a pre-deployed

RFID positioning system with grid granularity of 1 cm. To demonstrate the emergency

response capability of MoNet, we randomly place six mobile sensors in a 2m×2m area, and

generate four emergency events (using desk lamps instead of real fire for safety concerns)

at the four corners, as shown in Fig. 8.2. We configure the sensors to regard a light

event with reading above 900 as an abnormal event (emergency) and report the detected

event back to the server upon the detection. In addition, we simulate faulty sensors by

turning off s1 and s2 at demonstration time snapshots t1 and t2 respectively, leading to

more detection holes as time advances, to test the network self-healing competency. As
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Figure 8.2: Performance results obtained from our home MoNet prototype.
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revealed in Fig. 8.2, the Original mechanism represents that none of redeployment or self-

healing strategies is applied to improve the detection ratio, while CASA is always able to

detect all the four emergency events even in the face of faulty sensors. The results obtained

from our MoNet testbed further justify the CASA designs. A brief demonstration video

on this experiment is available in [4].
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Chapter 9

Conclusions

In this thesis, we propose a coverage-aware sensor automation (CASA) protocol with

the objective of providing effective surveillance coverage for the home environment. Three

centralized algorithms are included in the CASA protocol suite, namely EVFA-B, CFPP,

and SSOA, to separately handle the global sensor self-deployment, sensor moving path

scheduling when executing self-deployment, and sensor self-organization in the presence of

node failures. By the current definition of sensing coverage, we adopt the 1-covered detec-

tion model (area considered fully monitored if every grid point is covered by at least one

sensor). To enhance the surveillance reliability, one may expect to have k-covered sensing

model (every grid point is covered by at least k sensors). Such extension can be generally

achieved by decreasing the distance threshold values to allow a certain level of sensing

redundancy (though specific relationship between the threshold value adjustment and at-

tainable coverage degree still need be further characterized). In this work, we attempt to

realize a practical home surveillance system by addressing the sensor deployment-related

problems in a unified framework. An automated home monitoring network (MoNet) pow-

ered by our proposed CASA protocol set is implemented as a proof-of-concept prototype

to corroborate the protocol feasibility and demonstrate the emergency detection capability

of MoNet.
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