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在感知訊號上使用子空間分析 

之語音增強技術 

 

學生：蕭任伯         指導教授：冀泰石 博士 

 

國立交通大學電信工程學系碩士班 

感知訊號處理實驗室 

 

中文摘要 

 

 在早期的語音訊號處理，是從時域或頻域兩種不同維度分開處理。近年來隨

著聽覺模型的建立，我們確認了人類在聽覺上是同時在時、頻兩的維度上處理，

基於這樣高維度的分析，人類比之現存的任何演算法擁有更高的健全性。 

 本論文中，使用了馬里蘭大學 NSL（Neural Systems Laboratory）實驗室所

開發出來的聽覺感知模型，模擬訊號透過耳朵往上傳遞到中腦聽神經的傳遞路

徑，在其時-頻域分析階段先濾出語音最顯著的區域，接著使用子空間分析進一

步壓抑殘存之雜訊。最後利用聽覺模型抽取出的語音特徵參數（Auditory 

Spectrogram Coefficients）在隱藏式馬可夫模型套件（HTK）上做連續數字的語

音辨識，由辨識率的提升來印證此演算法的強健性。 
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Subspace Decomposition of Perceptual Representations 

for Speech Enhancement 

 

Student: Hsiao, Jen-Po            Advisor: Dr. Chi, Tai-Shih 

 

Department of Communication Engineering 

National Chiao-Tung University 

Perception Signal Processing Laboratory 

 

English Abstract 

 In early years, conventional speech enhancement techniques have been 

developed separately in time domain and in frequency domain. Recent years, with the 

auditory model being introduced, enhancement techniques are developed in joint 

spectro-temporal domains to incorporate hearing perception perspectives to enhance 

their robustness. 

 In this thesis, we use the auditory model, which simulates the hearing physiology 

from cochlea to cortex, introduced by NSL（Neural Systems Laboratory）, Maryland 

university. At first, the spectrograms are selected within speech regions in cortical 

domain. Second, we adopt the subspace algorithm to filter the noise that exists in 

speech regions. Finally, the Auditory Cepstrum Coefficients (ACC) is extracted for 

HTK recognition task. From HTK evaluations, the robustness of the proposed 

algorithm is proven. 
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Chapter 1  Introduction 
 

1.1  Introduction 
In recent years, lots of speech applications, for instance, the cell phone, PDA, 

hearing aid device, etc., have been developed to provide convenience for our life 

activity. To conquer the noisy environment around us, the functions of devices are 

designed to be robust as human beings. Speech enhancement is one of the techniques 

that against noisy environment. Those techniques are often utilized to improve the 

speech recognition rate or the speech quality; depending on what applications on 

hand. 

During the past decades, conventional speech enhancement techniques have been 

developed both in time domain and in frequency domain, such as spectral subtraction 

[1, 2] , Wiener filter [3] , statistical-model-based method [4] and subspace method [5]. 

Later on, with the auditory model being introduced [6-9], enhancement techniques are 

developed in separate or joint spectro-temporal domains to incorporate hearing 

perception perspectives to enhance their robustness. Here, we adopt the subspace 

method onto the joint spectro-temporal domain, an internal domain of our auditory 

model which is specifically called cortical domain [10]. 
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 In this thesis, we use (1) HTK to evaluate the speech recognition and (2) the 

speech distortion measure and (3) the noise residual error to examine the effectiveness 

and robustness of our proposed subspace algorithm. We review works done by other 

researchers in chapter 2. Our proposed method would be presented in Chapter 3. The 

evaluation results will be shown in Chapter 4. Brief the discussions and the future 

works will be given in chapter 5. 

 

 

1.2 Motivation 
Human-machine interface will be the killer application of next generation. Indeed, 

there are many people that not able to write but to speak. Also, many people would 

like to listen clearly instead of reading comprehensibly; apparently to the elder. 

Therefore, speech enhancement is more and more important to our society with the 

increasing elder population. 

Auditory models have been evolved from one-dimensional into multi-dimensional 

models. Therefore, auditory model based speech enhancement techniques should be 

built on the multi-dimensional auditory representation. The preliminary work done by 

Yung showed some significant achievements in speech recognition rate [11], hence 

we propose a subspace decomposition coupled with Yung’s method to further explore 

the robustness of the multi-dimensional speech enhancement technique. 
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Chapter 2  
Literature Review 
 

 
In this chapter, we briefly describe the auditory model and the subspace 

decomposition algorithm utilized in this thesis. At first, the auditory model developed 

by Shamma et al. is introduced [9, 10, 12, 13]. Our proposed approach works on the 

representations from this auditory model. In section 2.2, we shortly review basic 

subspace algorithms for speech enhancement [5, 14, 15]. Finally, the supervector 

technique, which is used to express higher dimensional representations in our 

subspace decomposition, will be described concisely [16, 17]. 

 

 

2.1 Hearing Physiology 
 During past decades, the idea of adopting properties of human hearing in 

speech-related applications becomes more and more popular within the group of 

speech researchers. Here, we adopt a similar idea to study the speech enhancement in 
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an internal perceptual representation of an auditory model. Basic hearing physiology 

and the auditory model, which is proposed by Shamma et al, are introduced step by 

step in this section 

 

 

 2.1.1 Hearing Physiology 

 
FIGURE 2-1 The anatomy of the ear. 
(http://www.advcoch.com/I2_Hearing_Physiology.htm) 

 

 The ear could be divided into three parts – outer ear, middle ear and inner ear, 

and the anatomy of the ear is shown in figure 2-1.  

The most important functions of the out ear are localization, amplification and 

protection. Because of the paired ears, we could use the phase delay and amplitude 

difference to judge the direction of sound source. Also, the ear canal is regarded as a 

filter that gives the largest gain at about 3,300 Hz.  

The middle ear is the portion of the ear internal to the eardrum, external to the 

oval window of the cochlea. When the sound arrives at the eardrum, it is transferred 

from wave to vibration. By passing through the three ossicles, known as malleus, 

incus and stapes, the sound signal is conveyed to the oval window, the start of inner 

ear. 
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The cochlea in the inner ear plays a significant role in the auditory system. It 

consists of three chambers with full lymph, as shown in figure 2-2. By the time the 

mechanical vibration arrives the oval window, a traveling wave is generated and 

propagates along the basilar membrane (BM) of the cochlea. Different locations of the 

BM reach maximum responses in pertain to traveling waves with different 

frequencies. The basilar membrane is about 35mm in length with its width increasing 

and elasticity decreasing progressively from base to apex. The left panel of figure 2-2 

shows the diagram of basilar membrane and the right panel shows the maximum 

responsive frequencies along the basilar membrane. The range of resonance frequency 

is about 20-20,000 Hz, which is the audible frequency range of human being. 

 

 
FIGURE 2-2 The basilar membrane diagram (left) and the characteristic frequency at 
the basilar membrane (right). (Hearing Physiology Handout, AAIP) 

 

 

 For a complex sound consisting of several frequencies, the overall pattern of the 

BM would be determined by resonances of all input frequency components. The 

mechanical inhibitions between neighboring frequencies on the BM might be the 
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main reason of the well-known “frequency masking” phenomenon of human audition. 

 The traveling wave generates displacement of the BM, then the hair cells 

distributed along the basilar membrane transform the displacement pattern to 

corresponding pattern of sensory nerve action potentials. There are two different hair 

cells: inner hair cells (IHCs) and outer hair cells (OHCs). Most of the transformation 

from mechanical vibrations to electrical potentials is done by the help of IHCs, a kind 

of sensor connects with the auditory nerve. On the other hand, OHCs are often for the 

amplification/reduction of action potentials through the auditory nerve to protect the 

auditory sensory system. Due to the fact that a relaxation time is needed between 

consecutive fires of auditory neurons, firing rates can not keep up with high frequency 

components, as demonstrated in Figure 2-3. Firing rates of IHCs are bounded by 4-5k 

Hz and rates of the midbrain are bounded by about 1k Hz. 

 

 
FIGURE 2-3 The firing rate of auditory nerve correspond to the monotone 
audio input. (Hearing Physiology Handout, AAIP) 
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 2.1.2 Spectrum Estimation of Auditory Perceptual Model 

 The first stage of the auditory perceptual model is to simulate the sound pathway 

from the cochlea, hair cells and auditory nerves to the midbrain. It is divided into 

three substages – analysis stage, transduction stage and reduction stage, as shown in 

figure 2-4. 

 

 
FIGURE 2-4 The diagram of first stage of auditory model. (Auditory Model 
Handout, AAIP) 

 

 

 The cochlea is often thought as a frequency analyzer, hence modeled by a bank 

of 128 constant-Q bandpass filters in the analysis stage. Figure 2-5 shows a filterbank 

consisting of 128 IIR filters uniformly distributed among 5.3 octaves with 24 

filters/octave frequency resolution. The bandwidth and the center frequency of each 

filter satisfy the following equation:  

Qbandwidthfcenter =                        (2-1) 

where Q  is a constant (= 4) in our implementation. It is obviously that with the 
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center frequency increasing, the corresponding bandwidth is increasing gradually. 

This property describes the general idea that the cochlea possesses higher frequency 

resolution (i.e., narrower bandwidth) at low frequency regions than at high frequency 

regions.  

 

 
FIGURE 2-5 The filterbank consists of 129 filters which conforms to  
   Qbandwidthfcenter = . 

 
 

In the analysis stage, outputs of the cochlear filterbank can be represented by the 

following equation:  

( ) ( ) ( )xthtsxtycoch ,, ⊗=                       (2-2) 

where x  encodes the location of a particular cochlear filter along the BM (i.e., the 

log-frequency axis from engineering point of view) and ( )xth ,  are impulse responses 

of the filterbank. 

The transduction stage then models the behaviors of inner hair cells including (1) 

the transduction of the traveling pressure to the velocity in the lymph; (2) the neural 

saturation and (3) current leakages. This stage can be formulated as 

( ) ( )( ) ( )txtygxty cochtAN ω⊗∂= ,,                  (2-3) 
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where t∂  models the transduction of the hydraulic pressure to velocity; the sigmoid 

function g  is used to simulate the neural saturation as follows: 

( ) ( )ueug −+= 11                           (2-4)  

and the low-pass function ( )tω  is used to account for current leakages of auditory 

neurons. 

 The last reduction stage addresses two important observations in the auditory 

sensory system: (1) the lateral inhibition of auditory neurons, which might account for 

the frequency masking phenomenon shown in human hearing; and (2) the observed 

temporal dynamics reduction from the cochlea to the midbrain. The following two 

equations are formulated in the auditory model we used. 

( ) ( )( )0,,max, xtyxty ANxLIN ∂=                    (2-5) 

( ) ( )τµ ;, txtyy LINfinal ⊗=                     (2-6) 

where the first-order derivative ( )xtyANx ,∂  simply approximates the lateral 

inhibition between neighboring neurons, the half-wave-rectifier puts the constraint on 

the negative potential, and the low-pass filter ( ) ( )tuet t ⋅= − ττµ /;  with a time 

constant τ  models the temporal dynamics reduction of the midbrain.  

 

The output of these three stages is a two-dimensional representation in the 

spectral (log-frequency) and temporal domain and is referred to as the auditory 

spectrogram [12]. Yung’s study showed features extracted from auditory spectrograms 

are more robust in speech recognition tasks [11]. One example of the auditory 

spectrogram is shown in figure 2-6. 
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FIGURE 2-6 An example of wav2aud using sentence “come home right away”. 

 

 

 

 2.1.3 Cortical Analysis 

 The processing of generating the auditory spectrogram, an estimate of the 

spectrum by the inner ear, is introduced in the previous section. Furthermore, 

neurophysiological evidences reveal that neurons in the higher auditory cortex (AI) 

respond to different frequencies as well as to temporal structures of patterns generated 

by inner ears. In other words, AI’s neurons exhibit different spectro-temporal tunings 

and can be characterized by Spectro-Temporal Receptive Fields (STRFs), which can 

be considered as spectro-temporal two-dimensional impulse responses from 

engineering perspectives. To measure the 2D impulse responses of neurons in AI, one 

has to use orthogonal basis signals in the spectro-temporal domain to drive the cortex. 

Such spectro-temporal basis signals are so called moving ripple stimuli. Figure 2-7 

shows one example of the moving ripple stimulus of rate=+4 (Hz, the temporal 
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velocity in time) and scale=0.5 (cycle/octave, the density in log-frequency). In 

addition to the rate and scale parameters, directional selectivity of the FM sweep is 

encoded by the sign of the rate parameter, in which positive sign of rate represents the 

downward direction, i.e., frequency decreasing with time, and negative sign 

represents the upward direction. 

 

 

 

FIGURE 2-7 An example of moving ripple stimulus. 

( Auditory Model Handout, AAIP) 

 

 

 By measuring impulse responses of many neurons, researchers conclude 

different AI’s neurons roughly tune to combinations of different rate, scale and 

direction. Therefore, the auditory cortex can be modeled as a bank of 2D bandpass 

filters to analyze the input 2D auditory spectrogram. The schematic plot in figure 2-8 

demonstrates the 2D cortical filtering of AI on a sample spectrogram. The small top 

panels on each subplot are the impulse responses of different typical neurons tuning to 

slow/fast rates and coarse/fine scales. The bottom panels are outcomes of these 2D 

spectro-temporal filters. 
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Overall outputs of the 2D filtering construct a four-dimensional representation 

(in rate, scale, log-frequency and time), which is hard for illustration. Therefore, we 

integrate the 4D output along both spectral and temporal axes to generate an energy 

pattern on the remaining rate-scale axes. Figure 2-9 shows auditory spectrograms ((a), 

(b)) and rate-scale energy representations ((c), (d)) of clean speech and white noise. 

This figure demonstrates that most of the spectro-temporal modulations of speech are 

within the range of rate=2-16 Hz and scale=0.5-4 cyc/oct, while the white noise has 

modulations distributed to high rates and all possible scales. 

 

 

 

 

 

FIGURE 2-8 The response for 8 basic nerves in the cortex. (Auditory Model 

Handout, AAIP) 
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 FIGURE 2-9 (a) clean speech. (b) white noise. (c) clean speech in rate-scale domain 

with rate and scale in x- and y- axis. (d) white noise in rate-scale domain. 

 

 

 

 

2.2 Basic Subspace Algorithms in Speech Enhancement 
 There are many speech enhancement algorithms, such as spectral subtraction [1, 

2], Wiener filtering [3] and statistical-model-based method [4]. In this study, a 

subspace decomposition algorithm based on linear algebra theory is utilized and 

introduced in this section. Subspace algorithms suppress noise by including signal 

components falling in “speech” space while excluding components in the “noise” 

space. In this section, we first introduce the time-domain linear optimal estimator 
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which minimizes the speech distortion from white noise under certain constraints. 

Next, the colored noise, which is similar to the real noise around us, will be 

considered in our algorithm.  

 

 2.2.1 Time-Domain Constrains 

 Consider the noisy speech signal dxy +=  containing samples of clean speech 

x  and noise d . The cross-correlation matrix of y (of length K ) is defined as: 

T
y

T T T T

R E y y

E x x E d d E x d E d x

⎡ ⎤≡ ⋅⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⋅ + ⋅ + ⋅ + ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

           (2-7) 

 The cross-correlation matrix yR  ( K K× ) is a symmetric and positive 

semi-definite, assuming x  and d  are wide-sense stationary signals. We postulate 

that the signal and the noise vectors are uncorrelated and zero mean, then the 

preceding equation can be reduced to: 

dxy RRR +=                            (2-8) 

where [ ]T
x xxER ⋅≡  and [ ]T

d ddER ⋅≡  are the auto-correlation matrices of 

the signal and noise, respectively. If we further assume that the noise is white, 

the noise correlation matrix will be diagonal and the equation (2-8) can be 

rewritten as: 

IRR dxy ⋅+= 2σ                       (2-9) 

where 2
dσ  is the noise variance.  

 

Now let yHx ⋅=ˆ  be a linear estimator of the clean speech x , where H  

is a KK ×  matrix. The residual error ε  of this estimator is then given by: 
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( )
dx

dHxIH
xx

εε

ε

+=
⋅+⋅−=

−= ˆ
                  (2-10) 

where xε  represents the speech distortion, and dε  represents the residual noise. 

Next we define the energy of xε  and dε  as: 

 
[ ]
[ ]d

T
dd

x
T

xx

E

E

εεε

εεε

⋅=

⋅=
2

2

                      (2-11) 

Thus we can obtain the optimum linear estimator by solving the following 

time-domain constrained problem: 

22

2

1:

min

ζε

ε

≤d

xH

K
tosubject

                 (2-12) 

where ζ  is a positive constant. This constrained optimization problem can be solved 

as in [18]: 

( ) 1−⋅+= dxxopt RRRH µ                   (2-13) 

where µ  is the Lagrange multiplier. The formula of this optimal estimator 

optH  is similar to the formula of the Wiener filter when 1=µ . The major 

difference is that optH  works on the time domain, on the other hand, the Wiener 

filter performs on the frequency domain. In addition, the constant µ  gives us 

lots of degrees of freedom in designing our estimator. 

 

  

 Furthermore, equation (2-13) can be simplified by using eigen-decomposition of 

T
xx UUR Λ=  yielding: 

T
optopt UUH Λ=                       (2-14) 
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where optΛ  is a KK ×  diagonal matrix given by: 

( ) 12 −
⋅⋅+ΛΛ=Λ Idxxopt σµ                (2-15) 

 

 

 2.2.2 Pre-whitening for Colored Noise 

 Only white noise with diagonal correlation matrix is considered in the previous 

section. However, in practical world, background noises are seldom white, but colored 

instead. A simple way to deal with colored noises is to transform them to white noises 

by a pre-whitening process which is introduced in this section. 

 The correlation matrix dR  of noise, which can be extracted from the speech 

absent segments, is factorized by the Cholesky factorization: 

TT
d LLRRR ⋅==                       (2-16) 

where L  is a unique lower triangular KK ×  matrix. Multiplying the pre-whitening 

matrix 1−L  to the equation (2-8) yields: 

'''

111

dxy
dLxLyL

+=
+= −−−

                     (2-17) 

where d ′ becomes white after the pre-whitening procedure.（See Appendix I for the 

proof.） Therefore, the correlation matrix 'yR  of the noisy speech can be rewritten 

as: 

IR

ILRLR

x

T
xy

+=

+= −−

'

1
'                      (2-18) 

 

 After deriving the linear estimator of 'x  as mentioned in the previous section, 

we should multiply L  to the estimator 'x̂  to have the post-whitening estimator x̂ . 

These procedures can be formulated as: 
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yLHLx 1'ˆ −⋅⋅=                       (2-19) 

where 'H , the optimal estimator solution for pre-whitening elements as in equation 

(2-18), has the same form as the optH  in equation (2-13). 

 

 

 The noise correlation matrix is not diagonal since U, the eigenvector matrix of 

xR , diagonalizes xR  not dR . It is shown [19] that there exists a matrix V  which 

can diagonalize xR  and dR  simultaneously in the following way: 

IVRV

VRV

d
T

xx
T

=

∆=
                         (2-20) 

where x∆  and V  are the eigenvalues matrix and eigenvector matrix respectively of 

xd RR 1−=Σ . Note that the eigenvector matrix V  is not orthogonal. Hence, we can 

rewrite the optimal linear estimator from equation (2-15) as: 

( ) T
xxopt VIVH 11 −− ⋅+∆∆= µ                   (2-21) 

 

 

 

2.3 Supervector : 2D image processing 
 Many perceptual properties in hearing and in vision share similar sensory 

mechanisms [20]. For example, the principles to group sounds from a spectrogram are 

the same principles to group objects from an image. Therefore, in this study, we treat 

the speech enhancement in spectrograms as a 2D image enhancement problem. The 

most common technique in 2D image enhancement is using the supervector technique 

to transform the 2D task into a 1D task, as shown in some eigenface studies [16, 17]. 
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 In image processing applications, the pattern of N by N elements is usually 

rearranged to a vector of 1 by N2. This implies that characteristics of a NN ×  matrix 

are equal to those of a 21 N×  vector, as shown in figure 2-10. 

 

  
FIGURE 2-10 The realignment diagram showing the transition of 2D to 1D. 
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Chapter 3   
Subspace Decomposition of Perceptual  
Representations for Speech Enhancement 
 

 

The auditory model and the basic subspace algorithm were described in Chapter 2. 

The subspace decomposition of perceptual representations will be fully expressed in 

this chapter.  

 

 

3.1 Introduction 
Most speech processing algorithms are developed in either temporal domain 

(channel by channel) or in spectral domain (frame by frame). However, from 

neuro-physiological evidence, human brain analyzes speech in a joint 

spectro-temporal fashion of considering temporal dynamics with spectral contents at 

the same time. Our approach of taking the joint spectro-temporal domain into 

consideration is inspired by such scientific findings. For example, one could easily 
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understand speech in noisy environments merely because of significant differences 

shown in spectro-temporal structures between speech and noise, as in figure 3-1. 

Following this concept, we propose the subspace decomposition algorithm in the joint 

spectro-temporal domain to extract speech-related features. 

 

 

FIGURE 3-1 The auditory spectrogram of the clean speech (left) and the speech 

with 0dB car noise (right). 

 

 

The spectro-temporal auditory representation used in this study was proposed in 

[9]. As pointed out in [9], the four-dimensional cortical impulse response is given by: 

( ) ( ) ( )θωφω ,;,;,;, thxRFtxSTRF IR⋅Ω=Ω              (3-1) 

where ( )xRF  is the response field along the log-frequency (tonotopic) axis, ( )thIR  

is the temporal impulse response. It has been shown that most of the modulations of 

speech signals fall in the range of rate = 2~16 Hz, scale = 0.5~8 cyc/oct [11]. Thus, 

we would use modulations within those ranges to extract spectro-temporal structures 

of speech in our enhancement application as: 

( )
⎩
⎨
⎧ ≤≤≤Ω≤Ω

=
otherwise

txSTRF
STRFspeech ,0

85.0,162,,;, ωω
     (3-2) 

  

The Spectro-Temporal Cortical Response ( )txSTCR ,,ωΩ within speech regions 
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can then be written as: 

( ) ( ) ( )
8,4,2,1,5.0

16,8,4,2, ,;,,,
=

±±±±=ΩΩ Ω⊗=
ω

ω ωtxSTRFtxytxSTCR             (3-3) 

where ( ),y x t  is an input spectrogram and ⊗  is the 2D convolution. For every input 

spectrogram ( ),y x t , we obtain 40 STs given the ( ) 2, 4, 8, 16rateω = ± ± ± ±  Hz and 

( ) 0.5,1, 2, 4, 8scaleΩ =  cycle/octave. Next, we adopt the subspace decomposition 

via the supervector technique to each STCR separately.  

 

 

 As shown in figure 2-10, we transfer each 2D STCR to a 1D vector, i.e., 

( ) ( )1×⋅⇒× NMvectoraNMmatrixa , by: 

( ) ( )[ ]
.12

,,,,

DtoDoffunctiontransitiontheis
txSTist

Φ

Φ= ΩΩ ωω           (3-4) 

Transferring a 2D matrix to a 1D vector is a conventional way to allow us applying 

the subspace decomposition to the perceptual representation STCR. 

 

In the proposed subspace decomposition approach, better or worse noise estimate 

would definitely affect the enhancement result. In this study, we do not treak around 

this issue and roughly estimate the noise from a few ms at the beginning of the input 

signal, which will be described in the next section. 

 

Figure 3-3 illustrates signal flows of our proposed algorithm. Panel (a), (b) and 

(c) shows the original time domain waveform, the original auditory spectrogram and 

the spectro-temporal modulation energies at different (rate, scale) combinations, 

respectively. Panel (d) shows filtered spectro-temporal responses ST within speech 

regions and the enhanced responses by our proposed subspace decomposition 
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algorithm is shown in panel (f). Panel (e) shows the enhanced spectrogram by 

reconstruction of responses from (d), modulations of speech only [11]. Furthermore, 

panel (g) shows the final enhanced spectrogram by reconstruction of all enhanced 

responses in (f) from (d).  

 

 
FIGURE 3-2 Flowchart of the proposed algorithm. 
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3.2 The 2D Neural Patterns in the Cortex 
 Equation (3-3) indicates the speech region in the cortical domain. Figure 3-3 

shows STCRs in rate=1, 2, 4, scale=0.5, 1, 2, 4 combinations. It is noteworthy that (1) 

the lower the rate, the more time delay the STCR shows; (2) from the sampling theory, 

the upper bound of scale to avoid aliasing is 12 for the 24 samples per octave 

sampling in scale axis. In this section, we will discuss several issues related to the 

proposed algorithm, including (1) reduction of the computation and (2) a simple 

estimation of noise. 

 

FIGURE 3-3 The STCRs of clean speech from fig 3-1 (left). Top to bottom are rate=  

-4, -2, -1, +1, +2, +4 and left to right are scale= 0.5, 1, 2, 4 respectively. 
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 3.2.1 Dimension Redundancy Problem 

 Due to the high dimension of our spectrogram, our eigen-decomposition 

algorithm inherits much heavier computation than other speech enhancement 

algorithms, such as spectral-subtraction and Wiener filtering. To tackle such a 

problem, we can (1) reduce the dimension of the spectrogram or (2) partition the 

whole spectrogram into smaller segments for eigen-decomposition.  

According to the sampling theory, bandwidth can be saved by down sampling the 

low-passed signals which has no high frequency components. Theoretically, in 

log-frequency dimension, we could downsample 3 times in the scale=4 cyc/oct 

channel since the upper bound of scale is 12 cyc/oct. However, in practice, we use 

less aggressive multiply numbers to avoid any possible aliasing. Table 3-1 shows the 

downsample multiply we use for channels at certain scales. 

scale (cyc/oct) 0.5 1 2 4 8 

downsample multiply 8 8 4 2 1 

Table 3-1 The downsample multiply for scales. 

 

 For the same reason, in temporal dimension, we could downsample 25 times in 

the rate=2 Hz channel since the upper bound of rate is 50 Hz. Table 3-2 shows the 

downsample multiply we use corresponding to various rates. 

rate (Hz) 2 4 8 16 

downsample multiply 4 4 2 1 

Table 3-2 The downsample multiply for rates. 
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 Figure 3-4 shows original and downsampled versions of STCRs at various (rate, 

scale) combinations with downsample multiply as in Table 3-1 and 3-2. In the 

extreme case of rate=2 Hz and scale=0.5 cyc/oct, the size of the downsampled ST is 

reduced to 1/32 times of the original size. This downsampling dramatically decreases 

the overall computation.  

 

FIGURE 3-4 Examples of downsampled STCRs at various (rate, scale) combinations. 
Left column are the original STCRs and right column are the downsampled STCRs. 

 

 

3.2.2 Frequency Band Division 

 In this work, we define four consecutive frames as a 40 ms “block” to be our 2D 

processing unit. In addition to downsampling the size of STCRs as mentioned in 

previous section, we further divide the processing unit along the frequency axis into 

several smaller units to reduce the computation. Another motivation of doing this is to 
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match hearing perceptions about frequency weighting. Dividing frequency bands in 

our auditory spectrogram might gives us the flexibility of adjusting parameters in each 

band to fit certain noise sources, for instance, car noise in specific bands. However, 

more detailed study on frequency weighting is beyond the scope of this work. Here, 

we mainly consider computation reductions by this frequency band division. 

 Dorman et al. explored the influence of frequency bands on speech intelligibility 

[21]. From our viewpoints, the goal of speech enhancement is to sustain speech 

harmonics as much as possible while reducing the noise simultaneously. As shown in 

figure 3-5, we observe that most of the speech harmonics show up within the 

frequency range of around cochlear channel 28 (200 Hz) to channel 100 (1584 Hz). 

Our choices of channel 28 and 100 are for convenient implementation of 

down-sampling along the log-frequency axis. At the end, we divide each processing 

unit into three smaller units: below channel 28, from channel 28 to channel 100 and 

above channel 100.  

 

FIGURE 3-5 Example of an auditory spectrum along the cochlear channel 

(log-frequency) axis.  
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 3.2.3 Window Length for Noise Estimation 

 The performance of each speech enhancement algorithm is largely affected by its 

accuracy in noise estimation. Considering different delays shown in STCRs in figure 

3-4, estimating noise simply from a window with fixed duration at the beginning of 

signals is no longer valid. In this work, the 40 ms window selected has the strongest 

energy in that longer window. However, the duration of the longer window in lower 

rate STCRs is lengthened due to the severe temporal delays. Table 3-3 summarizes the 

longer window durations used here to find the 40 ms window to estimate noise for 

different rate STCRs. 

 

rate (Hz) 2 4 8 16 

estimated noise region (ms) 320 320 240 160 

Table 3-3 The estimated noise region corresponding to each rate. 

 

 

 

 

 

3.3 The weighted mask for HTK evaluation 
 Although the enhanced auditory spectrogram looks clean as shown in figure 3-2 

(g), we still need to match testing features to training features as close as possible in 

order to achieve good recognition rates by HTK evaluations. 
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FIGURE 3-6 Silence/noise frame from clean speech (top), enhanced speech (middle) 

and noisy speech (bottom) at the 150th frame in the same speech as in figure 3-2. 

 

 As seen in Figure 3-6, the proposed algorithm does not make the noise spectrum 

identical to the silence spectrum after enhancement even though the noise energy is 

clearly suppressed. Such enhanced but distorted spectra won’t give good performance 

while being used in HTK recognition evaluation. Therefore, a two-dimensional 

“mask” is generated by our enhancement algorithm and applied to the noisy 

(non-enhanced) spectrogram to reduce discrepancies between training and testing 

spectra in HTK evaluation. 

 

First, we generate a binary mask by thresholding the enhanced spectrogram from 

our subspace decomposition algorithm. We set a small number instead of zero as the 

weight for non-speech portions and unity as the weight for speech portions in the 

spectrogram. Figure 3-7 shows the average recognition rates between 0 and 20 dB for 

various non-speech weights while 3=µ  (used in the subspace decomposition 



 

 29

algorithm) and (max. value of the spectrogram)*6%threshold = . Different 

thresholds show similar performance curves as in Figure 3-7. Evidently, choosing 

lower weight for non-speech parts is not helpful to the speech recognition rates since 

highly suppressed non-speech bands in a speech frame make the spectrum easily 

mismatch to training spectra. Finally, the (1, 0.3) binary mask is smoothed by a 2D 

lowpass filter to avoid any sharp edges in the binary mask. Figure 3-8 shows the 

binary mask before and after smoothing.  
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FIGURE 3-7 The noise weighting curve. 

 



 

 30

 

FIGURE 3-8 Binary mask derived from our enhancement algorithm. The left panel 
shows the original mask and the right panel shows the smoothed mask. 

 

 

 

3.4 Summary 
 In this chapter, we present details of the proposed algorithm with following 

procedures: 

1. Obtain the auditory spectrogram from auditory model analysis. 

2. Generate smoothed spectrograms within speech regions in cortical domain (rate = 

2~16 Hz, scale = 0.5~8 cyc/oct). 

3. Downsample smoothed spectrograms by different multiply based on their rate and 

scale, divide each processing block into three broad subbands in frequency, and 

estimate noise in subbands as illustrated in section 3.2.2. 

4. Align each subbanded segment of the spectrogram to an 1D representation (matrix 

=> vector, equation 3-4) and apply the subspace decomposition algorithm in each 

segment as follows: 

 Apply eigen-decomposition of xn RR 1−=Σ . (equation 2-20) 

 Derive the optimal filter by: ( ) T
xxopt VIVH 11 −− ⋅+∆∆= µ . 

 Obtain enhanced vector yHx opt ⋅=ˆ . 
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5. Reconstruct the 40 STCRs back to an auditory spectrogram and generate the 

weighting mask based on the enhanced spectrogram. 

6. Multiply the weighting mask to the original spectrogram, as shown in figure 3-9, 

for HTK speech recognition evaluation. 

 

In section 3.2, we depict the proposed enhancement algorithm in full details 

including (1) dimension reductions by downsampling, (2) frequency band division 

and (3) noise estimations in STCRs. Processes (1) and (2) above are purely for the 

sake of reducing computation complexity. As presented in section 3.3, we apply a 

weighting mask to reduce the discrepancies of silence between training and testing 

phases in the HTK evaluation.  

 

Adjustable parameters in this proposed algorithm are the Lagrange multiplier 

µ and the threshold which determines the noise region in the enhanced auditory 

spectrogram. If we set the 1=µ , the equation of the subspace algorithm will become 

similar to the frequency-domain Wiener filter. However, unlike the Wiener filter, the 

subspace algorithm is in the eigen-space domain. Note, from equation 2-15, higherµ  

has similar effects as with larger noise. Hence, with higherµ , the optimal filter would 

not only eliminate more noise but also produce more speech distortions at the same 

time. Not surprisingly, the choice of the Lagrange multiplier is a trade-off decision 

between speech distortion and residual noise (quantitative evaluation will be given in 

next chapter). Similarly, the threshold that determines the noise region also has a 

trade-off effect between speech distortion and residual noise. 
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FIGURE 3-9 (a) The original noisy auditory spectrogram, (b) the enhanced auditory 

spectrogram, (c) the smoothed weighting mask and (d) the spectrogram, obtained by 

multiplying (c) to (a), used in HTK evaluation. 
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Chapter 4   
Evaluation 
 

 

In this chapter, we first introduce the (1) AURORA 2.0 database, (2) the compared 

algorithm, Advance Front-end feature Extraction (AFE), published by ETSI [22] and 

(3) the evaluation measurements used in this thesis. The HTK simulation results will 

be shown in section 4.2. Section 4.3 gives the speech distortion and residual noise 

error results from our proposed subspace decomposition algorithm. Summaries for 

these evaluations will be given at the end. 

 

 

4.1 Database and Evaluation Measurements Introduction 
 AURORA 2.0 database is intended for the evaluation of front-end feature 

extraction algorithms in background noise and is used widely by speech researchers to 

evaluate and compare the performance of noise robust speech recognition algorithms. 

 The subspace algorithm is developed to minimize the speech distortion subject to 

certain levels of residual noise error. Therefore, we define measures of the speech 
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distortion and residual noise error to evaluate the proposed subspace algorithm. 

 4.1.1 AURORA 2.0 

 AURORA 2.0 is published by ETSI, European Telecommunication Standards 

Institute, for Distributed Speech Recognition (DSR) where the speech analysis is done 

at the telecommunication terminal and the recognition at central location in the 

telecom network. 

 The speech for this database is from TIdigits, consisting of connected digits 

spoken by American English speakers (downsampled to 8k Hz). A selection of 8 

different real-world noises has been added to the speech over a range of signal to 

noise ratios. The 8 different noises are half grouped into class A (stationary noise), 

consisting of suburban train, babble, car and exhibition hall, and class B 

(non-stationary noise), consisting of restaurant, street, airport and train station. 

 The training data includes 8440 clean sentences spoken by 55 males and 55 

females and the testing data is recorded by 52 males and 52 females who are different 

from those in clean dataset. The 8 different noises are added in 1001 sentences at 7 

different SNR levels, including clean, 20dB, 15dB, 10dB, 5dB, 0dB and -5dB. 

Therefore, there are 56056 sentences for testing in total. 

 

 

 4.1.2 Advance Front-end feature Extraction 

 ETSI in 2003 specified algorithms for advanced front-end feature extraction and 

their transmission which form part of a system for distributed speech recognition. 

Figure 4-1 shows the AFE terminal block scheme. VAD, in noise reduction, labels the 

non-speech frames. If VAD is enabled, non-speech frames could not be transmitted 

and therefore, it reduces the loading in the network transmission.  
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In this study, the VAD is disabled in order to emphasize and compare the noise 

reduction ability. 

 

 

FIGURE 4-1 The AFE block scheme: (a) the terminal diagram and (b) the noise 

reduction block. 

 

 

 4.1.3 HTK Setting 

 We follow the training procedures presented in the AURORA 2.0 [23]. We use 

clean data training and match condition testing in this study. The match condition 

means the clean training data as well as testing data are both processed by the same 

enhancement algorithm. 

 Digits are modeled as whole-word HMMs with following parameters: 



 

 36

 16 states per word (18 states in HTK notation with 2 dummy states at beginning 

and end). 

 Simple left-to-right models without skips over states. 

 3 Gussian mixtures per state. 

 A feature vector size of 36 is used per frame for speech recognition. It is 

composed of 12 cepstral coefficients plus corresponding delta and acceleration 

coefficients. 

 

Two pause models are defined. The first one called “sil” consists of 3 states with 

a mixture of 6 Gaussian models per state. The second pause model called “sp” is to 

model pauses between words. It consists of a single state which is tied with the middle 

state of the first pause model. 

In this study, we use Auditory Cepstral Coefficients (ACCs) as the recognition 

feature and compare its performance to that of conventional Mel-Frequency Cepstral 

Coefficients (MFCCs). The robustness of ACCs over MFCCs has been demonstrated 

in [11]. 

 HTK recognition results are expressed by three errors whose combinations 

determine the correct rate and accuracy rate. Related terminologies are defined as 

following: 

 D：Deletion error, the number of non-recognized syllables. 

 S：Substitution error, the number of wrongly recognized syllables. 

 I：Insertion error, the number of syllables been recognized but not existed in 

answers. 

 N：The total number of syllables. 

 Correct rate ＝（N－D－S）/ N × 100％ 

 Accuracy rate ＝（N－D－S－I）/ N × 100％ 
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In this study, the recognition rate stands for the accuracy rate. Figure 4-2 shows 

the ACC baseline and the performance of Yung’s algorithm averaged over all kinds of 

noise in AURORA 2.0 database. Detailed results in each noise source are shown in 

Appendix II. 
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FIGURE 4-2 Recognition rate of ACC Baseline and Yung’s result. 

 

 

 4.1.4 Speech Distortion and Residual Noise 

 As mentioned in Chapter 3, the Lagrange multiplierµ  of the subspace algorithm 

would have opposite influences on speech distortion and residual noise. To calculate 

both measures, we first define the speech region and noise region in the spectrogram. 

The speech region is composed of those frames whose energies are greater than 2% of 

the maximum energy of the auditory spectrogram of clean speech. Other frames are 

considered as the noise region as shown in figure 4-3. 
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FIGURE 4-3 Speech region and the noise region from the clean auditory spectrogram 

(left). The middle and right subplot show the speech frames and noise frames cover 

the original noisy auditory spectrogram, respectively. 

 

 

 Measures of speech distortion and residual noise are defined by: 

speech frame

ˆ1Speech Distortion
# of speech frame

X X

X

−
= ∑        (4-1) 

non-speech frame

1 ˆResidual Noise
# of non-speech frame

X X= −∑         (4-2) 

where X  and X̂  are auditory spectra of a certain frame of the clean speech and the 

enhanced speech. Note, X  is close to zero in non-speech (silence) frames, hence, 

the residual noise measurement is not normalized by X . In addition, X  and X̂  

are first normalized by maximum values in auditory spectrograms of the whole clean 

sentence and the whole enhanced sentence, respectively. 
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4.2 HTK Results 

 
FIGURE 4-4 The simulation for different µ  and threshold. 

 

 Figure 4-4 shows the recognition rate of different µ  and threshold. We observe 

that the higherµ  has to be coupled with the lower threshold to achieve the same 

recognition rate. Not surprisingly, the higher theµ is, the more severe the speech is 

degraded even the more suppressed the noise is. The highest speech recognition rate is 

achieved with 1=µ  and threshold= 6%. Details of recognition rates under such 

conditions are given in Appendix III.  

 

Figure 4-5 shows the average recognition rates of AFE, Yung’s method and the 

proposed algorithm. It shows our largest improvement over Yung’s algorithm is in 

babble noise. This significant improvement is due to the decrease of the insertion 

errors as shown in table 4-1(a). On the other hand, the insertion errors in the car noise 

are low enough originally to not have further significant improvement, as shown in 

table 4-1(b).  
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FIGURE 4-5 Average recognition rates (between 0~20 dB) of AFE, Yung’s and the 

proposed algorithm in different noises. 

 

The insertion error is the key factor to our improvement over Yung’s method. In 

car noise environment, it is comparably easy to clean the noisy speech because of its 

stationarity. On the other hand, the babble noise is hard to compress by speech 

enhancement algorithms because it is relatively non-stationary and with 

characteristics (spectro-temporal modulations) comparatively close to speech. From 

our low insertion error in babble noise, we can say that our proposed algorithm not 

only enhances the speech but also suppresses the noise successfully.（Appendix II 

shows the details about the hit and insertion rate.） 
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(b) AFE Yung The_Proposed 

SNR/dB Car Car Car 

clean 98.78  0.89  98.84  0.69  98.51  0.75  

20 97.58  0.78  97.38  0.42  96.96  0.48  

15 95.91  0.78  96.06  0.42  95.47  0.60  

10 90.40  0.54  92.48  0.48  92.01  0.63  

5 74.11  0.21  81.69  0.45  81.66  0.36  

0 39.01  0.03  49.63  2.51  54.28  0.69  

-5 18.43  0.00  19.15  2.06  20.13  2.77  

Average  79.40  0.47  83.45  0.85  84.07  0.55  

Table 4-1 Hit / insertion rate of AFE, Yung’s and the proposed algorithm in (a) babble 

and (b) car noise. 

 

Figure 4-6 shows average recognition rates of AFE, Yung’s method and our 

proposed algorithm. It shows the performance boost of around 4% in 0dB and 3% in 

5dB over Yung’s algorithm; and of around 6% in 0dB and 8% in 5dB over the AFE. In 

high SNR conditions, our performance is comparable to Yung’s performance because 

less noise exists to work with. Overall speaking, our proposed algorithm performs 

better than Yung’s and AFE algorithm, hence it’s more robust. 

 

(a) AFE Yung The_Proposed 

SNR/dB Babble Babble Babble 

clean 98.76  1.00  98.58 0.60  98.37 0.60  

20 96.95  4.66  97.10 0.63  97.04 0.67  

15 94.47  4.84  95.62 0.79  95.41 0.67  

10 87.94  4.90  91.93 2.63  91.29 1.12  

5 72.04  4.47  80.26 10.40 81.65 4.14  

0 44.35  3.23  50.76 19.47 52.84 15.39  

-5 19.92  1.15  24.61 20.68 24.24 21.86  

Average  79.15  4.42  83.13 6.78  83.65 4.40  
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FIGURE 4-6 Average recognition rate of AFE, Yung’s and the proposed algorithm. 

 

 

4.3 Performance Evaluation on Speech Distortion and 

Residual Noise 
 Average measures of speech distortion and residual noise between 20 ~ 0dB are 

shown in figure 4-7 and 4-8. Numbers are calculated by treating enhanced, masked 

clean speech as the clean pattern, and treating enhanced, masked noisy speech as the 

test pattern. Such procedures are designed to match the “match condition” scheme in 

HTK recognition. Obviously, the results reveal the effectiveness of the proposed 

algorithm. Distortions decrease gradually as µ  increases, especially visible in the 

measure of the residual noise. 

 The speech distortion and residual noise are proportional to the hit and insertion 

rate in HTK tasks in some way. From figure 4-7 and 4-8, our proposed algorithm has 
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superior performance in these two distortion measures than Yung’s previous study, 

which is also consistent to the performance shown in the HTK recognition task. 

However, the mathematical correlation between these two measures and the speech 

recognition rate is beyond the scope of this thesis. 
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FIGURE 4-7 Average speech distortion shown in spectrograms. 

Residual Noise for HTK Recognition
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FIGURE 4-8 Average residual noise shown in spectrograms. 
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Figure 4-9 and 4-10 illustrate the trade-off phenomenon between speech 

distortion and residual noise. These two quantities are measured between the original 

clean speech and the enhanced noisy speech (which is not a “match condition” 

comparison as in the preceding comparison). When the parameter µ increases, the 

speech distortion gradually increases but the residual noise gradually decreases. These 

results clear confirm that µ controls degrees of speech distortion and residual noise in 

opposite directions. 

 

Speech Distortion

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20 15 10 5 0 -5

SNR (dB)

N
or

m
al

iz
ed

 E
ne

rg
y

μ=1

μ=3

μ=5

μ=10

 
FIGURE 4-9 Speech distortion measures for different µ  and SNR. 
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FIGURE 4-10 Residual noise measures for different µ  and SNR. 
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4.4 Summary 
 In this chapter, we introduced the AURORA 2.0 database, AFE algorithm and 

two evaluation measurements: (1) HTK speech recognition and (2) speech distortion 

and residual noise. Our goal of improving the recognition rate for DSR systems over 

AFE algorithm is reached by enhancing the speech and suppressing the noise 

simultaneously, especially in babble noise. In addition, the trade-off between speech 

distortion and residual noise was investigated and demonstrated. However, lack of 

methods of transferring auditory spectrogram back into waveform makes listening 

tests for enhanced speech quality infeasible. Although the auditory spectrogram looks 

clean, it does not guarantee the quality of the enhanced speech which is usually not 

considered in DSR systems.  
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Chapter 5   
Conclusion and Future Works 
 

The proposed subspace decomposition algorithm is performed on 

multi-dimensional cortical representations of the speech region（rate=2-16 Hz, 

scale=0.5-8 cycle/octave）. In each (rate, scale) combinational cortical representation, 

our algorithm suppresses the noise in the eigen-space domain through the 

eigen-decomposition analysis. We exhibit every aspect of the proposed algorithm in 

details and its performance in chapter 3 and 4. For HTK evaluations, the proposed 

algorithm gives the improvement of around 6% in 0dB and 8% in 5dB over the AFE. 

As for speech distortion and residual noise measurements, they clear confirm that µ 

controls the trade-off phenomenon between both. 

 

Here, we address major disadvantages of our proposed system: 

(1) The 2D eigen-decomposition analysis is with high computational 

complexity. It is not practical for real-time on-line systems. 

(2) Lack of phase information. The proposed algorithm works on various 

degrees of filtered modulations of the auditory spectrogram. It then 
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reconstructs the enhanced spectrogram, which is short of the phase 

information of the time-domain waveform. Therefore, it is not possible 

to invert our enhanced spectrograms back to acoustical sounds without 

further distortions for subjective sound quality listening tests. 

(3) The rough noise estimation. Noise estimation techniques play the 

important role in most of the speech enhancement algorithms. This work 

focuses on adopting the subspace decomposition to the perceptual 

representations; noise estimation should be fully studied in the future. 

 

Finally, we point out several directions for future evolution of our speech 

enhancement algorithm. First, the noise estimation process needs further investigation 

since many speech enhancement techniques work well due to their accurate noise 

estimates. Second, build an inverse process to invert the auditory spectrogram back to 

time-domain waveform with acceptable distortions. A successful real-time one-shot 

inverse would be a huge contribution to our auditory model. Once it is done, any 

manipulations on the spectrogram can then be heard as acoustical sounds to make 

interactive listening tests feasible. Third, apply other feature normalization processes, 

such as Cepstral Mean Subtraction (CMS) and Cepstral Mean and Variance 

Normalization (CMVN), to our Auditory Cepstral Coefficients to further improve the 

performance of this perceptual feature. 
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Appendix I   
Pre-whitening Verification 
 
 

 Here, we prove the pre-whitening approach that is used in the proposed 

algorithm. Recall equation (2-16),  

TT
d LLRRR ⋅==                        (2-16) 

where ][ T
d ddER ⋅=  is the auto-correlation matrix of noise vector d , L  is the 

transpose of R  which is the factor of Cholesky factorizing to dR . 

 Thus, the pre-whitening equation is given by (2-17): 

'''

111

dxy
dLxLyL

+=
+= −−−

                      (2-17) 

 Our goal is to demonstrate that 'dR  is a identical matrix. The proof is as 

following: 
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Appendix II  The AFE and Yung’s Result 
 
The AFE HTK result. 
SNR/dB Subway Babble Car Exhibition A-Average 

clean 98.00  97.76  97.88 97.90 97.89  

20 95.49  92.29  96.81 95.53 95.03  

15 92.88  89.63  95.14 92.97 92.66  

10 85.29  83.04  89.86 86.52 86.18  

5 69.67  67.56  72.41 68.59 69.56  

0 40.13  41.44  38.98 38.11 39.67  

-5 21.83  18.77  18.43 18.51 19.39  

Average 76.69  74.79  78.64 76.34 76.62  

SNR/dB Restaurant Street Airport Train-station B-Average Total Average

clean 98.00  97.76  97.88 97.90 97.89  97.885 

20 91.80  95.95  94.21 95.00 94.24  94.635 

15 89.07  93.23  92.63 93.52 92.11  92.38375 

10 82.78  86.46  87.24 88.58 86.27  86.22125 

5 68.59  71.52  73.64 73.93 71.92  70.73875 

0 44.55  42.50  48.58 44.46 45.02  42.34375 

-5 19.47  20.86  22.40 20.95 20.92  20.1525 

Average 75.36  77.93  79.26 79.10 77.91  77.2645 

The hit and insertion rate of AFE. (hit / insertion) 

SNR/dB Subway Babble Car Exhibition 

clean 98.99  0.98  98.76 1.00 98.78 0.89 96.42  1.30 

20 96.25  0.77  96.95 4.66 97.58 0.78 96.82  1.30 

15 93.52  0.64  94.47 4.84 95.91 0.78 94.17  1.20 

10 85.97  0.68  87.94 4.90 90.40 0.54 56.96  1.30 

5 70.10  0.43  72.04 4.47 74.11 0.21 69.36  0.77 

0 40.22  0.09  44.35 3.23 39.01 0.03 38.35  0.25 

-5 21.83  0.00  19.92 1.15 18.43 0.00 18.73  0.22 

SNR/dB Restaurant Street Airport Train-station 

clean 98.99  0.98  98.76 1.00 98.78 0.89 99.20  1.30 

20 97.39  5.59  96.77 0.82 97.44 3.22 97.47  2.47 

15 94.93  5.89  93.98 0.76 95.65 3.01 95.56  2.04 

10 88.70  5.93  87.03 0.57 90.40 3.16 90.74  2.16 

5 74.24  5.65  71.89 0.36 76.71 3.07 75.81  1.88 

0 49.65  5.10  42.62 0.12 50.28 1.70 45.45  0.99 

-5 21.86  2.39  20.86 0.00 23.74 1.34 5.92  0.40 
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Yung’s Result 
SNR/dB Subway Babble Car Exhibition A-Average 

clean 98.31  97.97  98.15 98.33 98.19  

20 97.02  96.46  96.96 95.80 96.56  

15 95.76  94.83  95.65 94.97 95.30  

10 91.62  89.30  92.01 90.77 90.93  

5 79.61  69.86  81.24 81.61 78.08  

0 51.27  31.29  47.12 55.23 46.23  

-5 20.69  3.93  17.09 22.83 16.14  

Average 83.06  76.35  82.60 83.68 81.42  

SNR/dB Restaurant Street Airport Train-station B-Average Total Average

clean 98.31  97.97  98.15 98.33 98.19 98.19 

20 96.96  96.92  96.90 97.25 97.01 96.78375 

15 94.60  95.68  95.26 95.80 95.34 95.31875 

10 87.53  91.44  89.98 90.65 89.90 90.4125 

5 67.79  79.84  72.89 75.55 74.02 76.049125 

0 34.94  52.15  39.19 43.32 42.40 44.31375 

-5 6.36  21.01  12.65 15.33 13.84 14.98625 

Average 76.36  83.21  78.84 80.51 79.73 80.575575 

 
The hit rate and insertion rate of Yung’s result. (hit / insertion) 
SNR/dB Subway Babble Car Exhibition 

clean 98.96 0.64  98.58 0.60 98.84 0.69 98.98  0.65 

20 97.61 0.58  97.10 0.63 97.38 0.42 97.44  1.64 

15 96.56 0.80  95.62 0.79 96.06 0.42 96.36  1.39 

10 92.94 1.32  91.93 2.63 92.48 0.48 92.81  2.04 

5 83.88 4.27  80.26 10.40 81.69 0.45 83.71  2.10 

0 58.95 7.68  50.76 19.47 49.63 2.51 57.33  2.10 

-5 25.82 5.13  24.61 20.68 19.15 2.06 24.38  1.54 

SNR/dB Restaurant Street Airport Train-station 

clean 98.96 0.64  98.58 0.60 98.84 0.69 98.98  0.65 

20 97.88 0.92  97.34 0.42 97.32 0.42 97.78  0.52 

15 96.59 2.00  96.13 0.45 95.85 0.60 96.58  0.77 

10 92.69 5.16  92.23 0.79 91.89 2.06 92.59  1.94 

5 80.84 13.05  81.35 1.51 79.78 6.89 79.91  4.38 

0 55.51 20.57  54.38 2.15 52.22 13.03 50.85  7.53 

-5 25.67 19.31  23.46 2.45 25.56 12.91 22.34  7.00 
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Appendix III  The Proposed algorithm 
HTK Recognition Result 

SNR/dB Subway Babble Car Exhibition A-Average 

clean 98.10  97.76  97.76 98.58 98.05  

20 96.75  96.37  96.48 96.39 96.50  

15 95.12  94.74  94.87 94.11 94.71  

10 91.74  90.18  91.38 89.97 90.82  

5 81.52  77.51  81.30 81.46 80.45  

0 53.82  37.45  53.59 55.82 50.17  

-5 19.04  2.39  17.36 21.47 15.07  

Average  83.79  79.25  83.52 83.55 82.53  

SNR/dB Restaurant Street Airport Train-station B-Average Total Average

clean 98.10  97.76  97.76 98.58 98.05  98.05 

20 96.81  96.55  96.48 97.04 96.72  96.60875 

15 95.09  94.71  95.05 95.06 94.98  94.84375 

10 89.38  91.41  90.55 90.31 90.41  90.615 

5 72.55  80.08  77.30 77.17 76.78  78.61125 

0 36.66  54.05  45.21 48.16 46.02  48.095 

-5 7.28  21.37  11.60 15.77 14.01  14.535 

Average  78.10  83.36  80.92 81.55 80.98  81.75475 

The proposed algorithm HTK result. (hit / insertion) 

SNR/dB Subway Babble Car Exhibition 

clean 98.65  0.55  98.37 0.60 98.51 0.75 99.11  0.52 

20 97.51  0.77  97.04 0.67 96.96 0.48 97.53  1.14 

15 95.95  0.83  95.41 0.67 95.47 0.60 95.83  1.73 

10 92.60  0.86  91.29 1.12 92.01 0.63 92.10  2.13 

5 83.88  2.36  81.65 4.14 81.66 0.36 83.83  2.38 

0 60.42  6.60  52.84 15.39 54.28 0.69 57.88  2.07 

-5 26.90  7.86  24.24 21.86 20.13 2.77 23.26  1.79 

SNR/dB Restaurant Street Airport Train-station 

clean 98.65  0.55  98.37 0.60 98.51 0.75 99.11  0.52 

20 97.82  1.01  97.04 0.48 97.14 0.66 97.56  0.52 

15 96.44  1.35  95.28 0.57 95.65 0.60 95.68  0.62 

10 92.82  3.44  92.08 0.67 91.86 1.31 91.92  1.60 

5 81.09  8.54  81.23 1.15 80.58 3.28 80.50  3.33 

0 55.66  19.01  55.65 1.60 54.91 9.69 54.12  5.95 

-5 24.04  16.76  23.85 2.48 25.26 13.66 22.28  6.51 
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