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Subspace Decomposition of Perceptual Representations

for Speech Enhancement

Student: Hsiao, Jen-Po Advisor: Dr. Chi, Tai-Shih

Department of Communication Engineering
National Chiao-Tung University

Perception Signal Processing Laboratory

English Abstract

In early years, conventional speech enhancement techniques have been
developed separately in time domain and in frequency domain. Recent years, with the
auditory model being introduced, enhancement techniques are developed in joint
spectro-temporal domains to incorporate hearing perception perspectives to enhance
their robustness.

In this thesis, we use the auditory model, which simulates the hearing physiology
from cochlea to cortex, introduced by NSL ( Neural Systems Laboratory ) , Maryland
university. At first, the spectrograms are selected within speech regions in cortical
domain. Second, we adopt the subspace algorithm to filter the noise that exists in
speech regions. Finally, the Auditory Cepstrum Coefficients (ACC) is extracted for
HTK recognition task. From HTK evaluations, the robustness of the proposed

algorithm is proven.
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Chapter 1  Introduction

1.1 Introduction

In recent years, lots of speech applications, for instance, the cell phone, PDA,
hearing aid device, etc., have been developed to provide convenience for our life
activity. To conquer the noisy environment-around us, the functions of devices are
designed to be robust as human beings. Speech enhancement is one of the techniques
that against noisy environment. Those techniques are often utilized to improve the
speech recognition rate or the speech quality; depending on what applications on
hand.

During the past decades, conventional speech enhancement techniques have been
developed both in time domain and in frequency domain, such as spectral subtraction
[1, 2] , Wiener filter [3] , statistical-model-based method [4] and subspace method [5].
Later on, with the auditory model being introduced [6-9], enhancement techniques are
developed in separate or joint spectro-temporal domains to incorporate hearing
perception perspectives to enhance their robustness. Here, we adopt the subspace
method onto the joint spectro-temporal domain, an internal domain of our auditory

model which is specifically called cortical domain [10].



In this thesis, we use (1) HTK to evaluate the speech recognition and (2) the
speech distortion measure and (3) the noise residual error to examine the effectiveness
and robustness of our proposed subspace algorithm. We review works done by other
researchers in chapter 2. Our proposed method would be presented in Chapter 3. The
evaluation results will be shown in Chapter 4. Brief the discussions and the future

works will be given in chapter 5.

1.2 Motivation

Human-machine interface will be the killer application of next generation. Indeed,
there are many people that not able to write but to speak. Also, many people would
like to listen clearly instead of reading comprehensibly; apparently to the elder.
Therefore, speech enhancement is more and more important to our society with the
increasing elder population.

Auditory models have been evolved from one-dimensional into multi-dimensional
models. Therefore, auditory model based speech enhancement techniques should be
built on the multi-dimensional auditory representation. The preliminary work done by
Yung showed some significant achievements in speech recognition rate [11], hence
we propose a subspace decomposition coupled with Yung’s method to further explore

the robustness of the multi-dimensional speech enhancement technique.



Chapter 2
Literature Review

In this chapter, we briefly describe-the auditory model and the subspace
decomposition algorithm utilized in'this thesis. At first, the auditory model developed
by Shamma et al. is introduced [9, 10, 12, 13]. Our proposed approach works on the
representations from this auditory model. In section 2.2, we shortly review basic
subspace algorithms for speech enhancement [5, 14, 15]. Finally, the supervector
technique, which is used to express higher dimensional representations in our

subspace decomposition, will be described concisely [16, 17].

2.1 Hearing Physiology
During past decades, the idea of adopting properties of human hearing in
speech-related applications becomes more and more popular within the group of

speech researchers. Here, we adopt a similar idea to study the speech enhancement in



an internal perceptual representation of an auditory model. Basic hearing physiology
and the auditory model, which is proposed by Shamma et al, are introduced step by

step in this section

2.1.1 Hearing Physiology

Inner
Ear

Middle -
Outer| | “ Ear
Ear E

‘Malleus j.cous - Facial Nerve

FIGURE 2-1 The anatomy of the ear:
(http://www.advcoch.com/12_Hearing_Physiology.htm)

The ear could be divided into three parts — outer ear, middle ear and inner ear,
and the anatomy of the ear is shown in figure 2-1.

The most important functions of the out ear are localization, amplification and
protection. Because of the paired ears, we could use the phase delay and amplitude
difference to judge the direction of sound source. Also, the ear canal is regarded as a
filter that gives the largest gain at about 3,300 Hz.

The middle ear is the portion of the ear internal to the eardrum, external to the
oval window of the cochlea. When the sound arrives at the eardrum, it is transferred
from wave to vibration. By passing through the three ossicles, known as malleus,
incus and stapes, the sound signal is conveyed to the oval window, the start of inner

ear.



The cochlea in the inner ear plays a significant role in the auditory system. It
consists of three chambers with full lymph, as shown in figure 2-2. By the time the
mechanical vibration arrives the oval window, a traveling wave is generated and
propagates along the basilar membrane (BM) of the cochlea. Different locations of the
BM reach maximum responses in pertain to traveling waves with different
frequencies. The basilar membrane is about 35mm in length with its width increasing
and elasticity decreasing progressively from base to apex. The left panel of figure 2-2
shows the diagram of basilar membrane and the right panel shows the maximum
responsive frequencies along the basilar membrane. The range of resonance frequency

is about 20-20,000 Hz, which is the audible frequency range of human being.

Side view of uncurled cachlea shawing the throe chambers
Stapes &t 4 ey
Oval Window Scala Vestibull (Perlymph)
Scala Media (Endolymph) )

Round Scala Tympani (Perilymph)
Window U i \

60 Hi sine wave

|
Membranous
Bony Wall Wal Helicotrema

Top view of uncurled cochlea looking down on the cochlear
parition (basilar membrane). /

Base [ Apex

2000 Hz sne wave

Narrower Wider
Stiffer ess Stf

FIGURE 2-2 The basilar membrane diagram (left) and the characteristic frequency at
the basilar membrane (right). (Hearing Physiology Handout, AAIP)

For a complex sound consisting of several frequencies, the overall pattern of the
BM would be determined by resonances of all input frequency components. The

mechanical inhibitions between neighboring frequencies on the BM might be the



main reason of the well-known “frequency masking” phenomenon of human audition.
The traveling wave generates displacement of the BM, then the hair cells
distributed along the basilar membrane transform the displacement pattern to
corresponding pattern of sensory nerve action potentials. There are two different hair
cells: inner hair cells (IHCs) and outer hair cells (OHCs). Most of the transformation
from mechanical vibrations to electrical potentials is done by the help of IHCs, a kind
of sensor connects with the auditory nerve. On the other hand, OHCs are often for the
amplification/reduction of action potentials through the auditory nerve to protect the
auditory sensory system. Due to the fact that a relaxation time is needed between
consecutive fires of auditory neurons, firing rates can not keep up with high frequency
components, as demonstrated in Figure 2-3. Firing rates of IHCs are bounded by 4-5k

Hz and rates of the midbrain are bounded by about 1k Hz.

Auditory Nerve Fiber Discharge:
Firimg Rate

1

JWWWWWLJM\/L—
VAVAVAVAVAVAVAVAVAVAVAVAVAVAVA

Time

FIGURE 2-3 The firing rate of auditory nerve correspond to the monotone
audio input. (Hearing Physiology Handout, AAIP)



2.1.2 Spectrum Estimation of Auditory Perceptual Model

The first stage of the auditory perceptual model is to simulate the sound pathway
from the cochlea, hair cells and auditory nerves to the midbrain. It is divided into
three substages — analysis stage, transduction stage and reduction stage, as shown in

figure 2-4.

Analysis Transduction Feduction
7| Cochlea Filter Hair Cells | Lateral Inhihition [~
z"!'[{i':,.'.} %
‘ Nk

]

0
Auditary
Acoustic [‘"L&. | .ycad! Wa) il ] Yo o ol Yiar . At -
Signal .' ™ e
Sl:t ‘ ¥ “u : y_’;l‘l:l-mf
w ) -
{
Hiz ) ‘ hair cell stages *
_.F
] ;‘

basilar membrane fiters lzteral inhibition metwork,

FIGURE 2-4 The diagram of first stage of auditory model. (Auditory Model
Handout, AAIP)

The cochlea is often thought as a frequency analyzer, hence modeled by a bank
of 128 constant-Q bandpass filters in the analysis stage. Figure 2-5 shows a filterbank
consisting of 128 IIR filters uniformly distributed among 5.3 octaves with 24
filters/octave frequency resolution. The bandwidth and the center frequency of each
filter satisfy the following equation:

/bandwidth =Q (2-1)

Center

where Q isa constant (= 4) in our implementation. It is obviously that with the



center frequency increasing, the corresponding bandwidth is increasing gradually.
This property describes the general idea that the cochlea possesses higher frequency
resolution (i.e., narrower bandwidth) at low frequency regions than at high frequency

regions.

Subband Response(constant ()
T T T

0.8 -

0.4fF Al i

0.2 —

a 500 1000 1500 2000 2500 3000 3500 4000
(Hz)

FIGURE 2-5 The filterbank consists-of 129 filters which conforms to
/bandwidth =Q-.

fcenter

In the analysis stage, outputs of the cochlear filterbank can be represented by the
following equation:

Yeoon (t: X) = s(t) @ h(t, ) (2-2)
where x encodes the location of a particular cochlear filter along the BM (i.e., the
log-frequency axis from engineering point of view) and h(t, x) are impulse responses
of the filterbank.

The transduction stage then models the behaviors of inner hair cells including (1)
the transduction of the traveling pressure to the velocity in the lymph; (2) the neural

saturation and (3) current leakages. This stage can be formulated as

Y an (6:%) = 90, Yoo (£, X)) @ (1) (2-3)



where 0, models the transduction of the hydraulic pressure to velocity; the sigmoid
function g is used to simulate the neural saturation as follows:

gu)=1/L+e”) (2-4)
and the low-pass function a)(t) is used to account for current leakages of auditory
neurons.

The last reduction stage addresses two important observations in the auditory
sensory system: (1) the lateral inhibition of auditory neurons, which might account for
the frequency masking phenomenon shown in human hearing; and (2) the observed
temporal dynamics reduction from the cochlea to the midbrain. The following two

equations are formulated in the auditory model we used.
Yun (t,) = max(9, y u (t,).0) (2-5)
Yinar = Yin ()@ p(ti7) (2-6)
where the first-order derivative 8.y .y (t, x) simply-approximates the lateral
inhibition between neighboring neurons, the half-wave-rectifier puts the constraint on
the negative potential, and the low-pass filter u(t;z)=e""'" -u(t) with atime

constant z models the temporal dynamics reduction of the midbrain.

The output of these three stages is a two-dimensional representation in the
spectral (log-frequency) and temporal domain and is referred to as the auditory
spectrogram [12]. Yung’s study showed features extracted from auditory spectrograms
are more robust in speech recognition tasks [11]. One example of the auditory

spectrogram is shown in figure 2-6.



Acoustic Signal "come home right away"

Amplitude

05t i

1 1 1 1 1 1 1 1 1 1
] 100 200 300 400 500 E00 Foo ano 900 1000
Tirme {ms)
Auditory Spectrogram

2000

iy
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]
]
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100 200 300 400 s00 E00 Joo 00 Q00 1000
Time (ms)

FIGURE 2-6 An example of wav2aud using sentence “come home right away”.

2.1.3 Cortical Analysis

The processing of generating the auditory spectrogram, an estimate of the
spectrum by the inner ear, is introduced in the previous section. Furthermore,
neurophysiological evidences reveal that neurons in the higher auditory cortex (Al)
respond to different frequencies as well as to temporal structures of patterns generated
by inner ears. In other words, Al’s neurons exhibit different spectro-temporal tunings
and can be characterized by Spectro-Temporal Receptive Fields (STRFs), which can
be considered as spectro-temporal two-dimensional impulse responses from
engineering perspectives. To measure the 2D impulse responses of neurons in Al, one
has to use orthogonal basis signals in the spectro-temporal domain to drive the cortex.
Such spectro-temporal basis signals are so called moving ripple stimuli. Figure 2-7

shows one example of the moving ripple stimulus of rate=+4 (Hz, the temporal

10



velocity in time) and scale=0.5 (cycle/octave, the density in log-frequency). In
addition to the rate and scale parameters, directional selectivity of the FM sweep is
encoded by the sign of the rate parameter, in which positive sign of rate represents the
downward direction, i.e., frequency decreasing with time, and negative sign

represents the upward direction.

,_,_i 4000

2000

l ™

500

Frequency (Hz)

250

250 500 750 1000

Time (ms)

FIGURE 2-7 An example-of moving ripple stimulus.

(Auditory Model Handout, AAIP)

By measuring impulse responses of many neurons, researchers conclude
different Al’s neurons roughly tune to combinations of different rate, scale and
direction. Therefore, the auditory cortex can be modeled as a bank of 2D bandpass
filters to analyze the input 2D auditory spectrogram. The schematic plot in figure 2-8
demonstrates the 2D cortical filtering of Al on a sample spectrogram. The small top
panels on each subplot are the impulse responses of different typical neurons tuning to
slow/fast rates and coarse/fine scales. The bottom panels are outcomes of these 2D

spectro-temporal filters.

11



Overall outputs of the 2D filtering construct a four-dimensional representation
(in rate, scale, log-frequency and time), which is hard for illustration. Therefore, we
integrate the 4D output along both spectral and temporal axes to generate an energy
pattern on the remaining rate-scale axes. Figure 2-9 shows auditory spectrograms ((a),
(b)) and rate-scale energy representations ((c), (d)) of clean speech and white noise.
This figure demonstrates that most of the spectro-temporal modulations of speech are
within the range of rate=2-16 Hz and scale=0.5-4 cyc/oct, while the white noise has

modulations distributed to high rates and all possible scales.

Auditory Spectrogram

10 E 3 400 500 s

Time jms) ‘

Multiresolution Cortical Filters and Qutputs

Fast Rate
Fine Scale

Slow Rate
Fine Scale

Slow Rate
Fine Scale

Fast Rate
Fine Scale

Upward Downward

Fast Rate
Coarse Scale

Slow Rate
Coarse Scale

Slow Rate
Coarse Scale

Fast Rate
Coarse Scale

FIGURE 2-8 The response for 8 basic nerves in the cortex. (Auditory Model

Handout, AAIP)
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clean speech : "come home right away” white noise

2000

Frequency (Hz)
L=
) =)
[ [
Frequency (Hz)

[l
(a5}
[}

[}
(a5}

200 400 500 800 1000 200 400 500 800
Time (ms) Time (ms)

(a) ]

8.00 .00 [ 8.00

i 0.09
400 400 400
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200 200 200}
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0.05 0m
0.50 1 1 A 0.50 L IEE 0
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FIGURE 2-9 (a) clean speech. (b) white noise. (c) clean speech in rate-scale domain

with rate and scale in x- and y- axis. (d) white noise in rate-scale domain.

2.2 Basic Subspace Algorithms in Speech Enhancement

There are many speech enhancement algorithms, such as spectral subtraction [1,
2], Wiener filtering [3] and statistical-model-based method [4]. In this study, a
subspace decomposition algorithm based on linear algebra theory is utilized and
introduced in this section. Subspace algorithms suppress noise by including signal
components falling in “speech” space while excluding components in the “noise”

space. In this section, we first introduce the time-domain linear optimal estimator

13



which minimizes the speech distortion from white noise under certain constraints.
Next, the colored noise, which is similar to the real noise around us, will be

considered in our algorithm.

2.2.1 Time-Domain Constrains

Consider the noisy speech signal y=x+d containing samples of clean speech

X and noise d . The cross-correlation matrix of y (of length K) is defined as:

R, EE[y-yT}

=E[x-x" |+E[d-d" |+ E[x-d" [+E[d-X"] 2-7)

The cross-correlation matrix R, (K xK') is a symmetric and positive

semi-definite, assuming x and d are wide-sense stationary signals. We postulate
that the signal and the noise vectors.are uncorrelated and zero mean, then the

preceding equation can be reduced-to:
R, =R, #R, (2-8)
where R, = E[x-xT] and Ry = E[d -dT] are the auto-correlation matrices of

the signal and noise, respectively. If we further assume that the noise is white,
the noise correlation matrix will be diagonal and the equation (2-8) can be

rewritten as:
R, =R, +0," -1 (2-9)

where o’ is the noise variance.

Now let X=H -y be a linear estimator of the clean speech x, where H

isa KxK matrix. The residual error ¢ of this estimator is then given by:

14



X—X
(H=1)-x+H-d (2-10)
8X+6‘d

&

where ¢, represents the speech distortion, and &, represents the residual noise.

Next we define the energy of ¢, and ¢, as:

g’ = E[ng 'EXJ

Ed2 =E ng -gd] (1)
Thus we can obtain the optimum linear estimator by solving the following
time-domain constrained problem:
min g’
(2-12)

subject to :iéd2 <(?
K
where ¢ is a positive constant. This constrained optimization problem can be solved
as in [18]:
Hopt N Rx (Rx + U Rd )_1 (2'13)

where u is the Lagrange multiplier. The formula of this optimal estimator

H,: is similar to the formula of the Wiener filter when . =1. The major

difference isthat H__. works on the time domain, on the other hand, the Wiener

opt
filter performs on the frequency domain. In addition, the constant x gives us

lots of degrees of freedom in designing our estimator.

Furthermore, equation (2-13) can be simplified by using eigen-decomposition of

R, =UA U vyielding:

Hop =UA U (2-14)

15



where A_, isa KxK diagonal matrix given by:

opt

Mg = AN, +u0 1) (2-15)

2.2.2 Pre-whitening for Colored Noise

Only white noise with diagonal correlation matrix is considered in the previous
section. However, in practical world, background noises are seldom white, but colored
instead. A simple way to deal with colored noises is to transform them to white noises
by a pre-whitening process which is introduced in this section.

The correlation matrix R, of noise, which can be extracted from the speech

absent segments, is factorized by the Cholesky factorization:
R =RIRZE-E (2-16)

where L isa unique lower triangular. K x K _matrix. Multiplying the pre-whitening

matrix L™ to the equation (2-8) yields:
L'y =L"x+L"d

y'=Xx'+d' (-17)

where d’becomes white after the pre-whitening procedure. ( See Appendix | for the

proof.) Therefore, the correlation matrix R,. of the noisy speech can be rewritten

as:

R, =L'R,LT +1

(2-18)
=R, +1

After deriving the linear estimator of x' as mentioned in the previous section,

A
1

we should multiply L to the estimator X' to have the post-whitening estimator X.

These procedures can be formulated as:

16



X=L-H'L"'y (2-19)
where H', the optimal estimator solution for pre-whitening elements as in equation

(2-18), has the same form as the H__ in equation (2-13).

opt

The noise correlation matrix is not diagonal since U, the eigenvector matrix of
R,, diagonalizes R, not R;. Itisshown [19] that there exists a matrix V which

can diagonalize R, and R, simultaneously in the following way:

VIRV =A,

2-20
VIRV =1 (2:20)

where A, and V are the eigenvalues matrix and eigenvector matrix respectively of
> =R, 'R, . Note that the eigenvector matrix.-\V'“is not orthogonal. Hence, we can
rewrite the optimal linear estimator from eguation (2-15) as:

Hop =V "AA T+ 1)V (2-21)

2.3 Supervector : 2D image processing

Many perceptual properties in hearing and in vision share similar sensory
mechanisms [20]. For example, the principles to group sounds from a spectrogram are
the same principles to group objects from an image. Therefore, in this study, we treat
the speech enhancement in spectrograms as a 2D image enhancement problem. The
most common technique in 2D image enhancement is using the supervector technique

to transform the 2D task into a 1D task, as shown in some eigenface studies [16, 17].
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In image processing applications, the pattern of N by N elements is usually

rearranged to a vector of 1 by N2. This implies that characteristics of a N x N matrix

are equal to those of a 1x N? vector, as shown in figure 2-10.

frame | = H™
frame 1
frame 2
frarme 2
= \
2 o
'é_ ]
& i
= . "
1 Erome
™
time > | frame 4
1’

FIGURE 2-10 The realignment diagram showing the transition of 2D to 1D.
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Chapter 3
Subspace Decomposition of Perceptual
Representations for.Speech Enhancement

The auditory model and the basic subspace-algorithm were described in Chapter 2.
The subspace decomposition of perceptual representations will be fully expressed in

this chapter.

3.1 Introduction

Most speech processing algorithms are developed in either temporal domain
(channel by channel) or in spectral domain (frame by frame). However, from
neuro-physiological evidence, human brain analyzes speech in a joint
spectro-temporal fashion of considering temporal dynamics with spectral contents at
the same time. Our approach of taking the joint spectro-temporal domain into

consideration is inspired by such scientific findings. For example, one could easily
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understand speech in noisy environments merely because of significant differences
shown in spectro-temporal structures between speech and noise, as in figure 3-1.
Following this concept, we propose the subspace decomposition algorithm in the joint

spectro-temporal domain to extract speech-related features.

clean speech noisy speech

2000 2000

1000 1000

500 500 I

Frequency (Hz)
Frequency (Hz)

250 250

125 125

500 1000 1500 500 1000 1500
Tirne (ms) Tirne {ms)

FIGURE 3-1 The auditory spectrogram of the clean speech (left) and the speech

with 0dB car noise(right).

The spectro-temporal auditory representation used in this study was proposed in
[9]. As pointed out in [9], the four-dimensional cortical impulse response is given by:
STRF(x,t;Q, @)= RF(x;Q,¢)- hy (t; »,0) (3-1)
where RF(x) is the response field along the log-frequency (tonotopic) axis, h,R(t)
is the temporal impulse response. It has been shown that most of the modulations of
speech signals fall in the range of rate = 2~16 Hz, scale = 0.5~8 cyc/oct [11]. Thus,
we would use modulations within those ranges to extract spectro-temporal structures

of speech in our enhancement application as:

STRF(x,t;Q,®), 2<Q<16,05<w<8

. (3-2)
0, otherwise

STR Fspeech = {

The Spectro-Temporal Cortical Response STCR,, ,, (x,t)within speech regions
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can then be written as:

STCRQ,w(X’t): Y(X’t)® STRF(X,t;Q,a) Q=12 +4,48,+16 (3-3)

+4,
@0=05,1,2,4,8

where y(x,t) IS an input spectrogram and ® is the 2D convolution. For every input

spectrogram y(,t), we obtain 40 STs given the e(rate) =+2,+4,+8,+16 Hzand

Q(scale) =0.5,1, 2, 4,8 cycle/octave. Next, we adopt the subspace decomposition

via the supervector technique to each STCR separately.

As shown in figure 2-10, we transfer each 2D STCR to a 1D vector, i.e.,
a matrix (M x N)= a vector (M - N x1), by:

sty (1) = ®[STy (. 1))

3-4
@ is the transition function of 2D to 1D. (3-4)

Transferring a 2D matrix to a 1D vector is a conventional way to allow us applying

the subspace decomposition to the perceptual representation STCR.

In the proposed subspace decomposition approach, better or worse noise estimate
would definitely affect the enhancement result. In this study, we do not treak around
this issue and roughly estimate the noise from a few ms at the beginning of the input

signal, which will be described in the next section.

Figure 3-3 illustrates signal flows of our proposed algorithm. Panel (a), (b) and
(c) shows the original time domain waveform, the original auditory spectrogram and
the spectro-temporal modulation energies at different (rate, scale) combinations,
respectively. Panel (d) shows filtered spectro-temporal responses ST within speech

regions and the enhanced responses by our proposed subspace decomposition
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algorithm is shown in panel (f). Panel (e) shows the enhanced spectrogram by
reconstruction of responses from (d), modulations of speech only [11]. Furthermore,
panel (g) shows the final enhanced spectrogram by reconstruction of all enhanced

responses in (f) from (d).
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FIGURE 3-2 Flowchart of the proposed algorithm.
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3.2 The 2D Neural Patterns in the Cortex

Equation (3-3) indicates the speech region in the cortical domain. Figure 3-3
shows STCRs in rate=1, 2, 4, scale=0.5, 1, 2, 4 combinations. It is noteworthy that (1)
the lower the rate, the more time delay the STCR shows; (2) from the sampling theory,
the upper bound of scale to avoid aliasing is 12 for the 24 samples per octave
sampling in scale axis. In this section, we will discuss several issues related to the
proposed algorithm, including (1) reduction of the computation and (2) a simple

estimation of noise.

rate=-4 scale=0.4 rate=-4, scale=1 rate=-4, scale=2 rate=-4, scale=4
4000 4000 4000 4000
1000 o~ 1000 F" "'i' 1000 [ SRl 1100
RS
S00 1000 4500 s00 1000 4500 S00 1000 1500 S00 1000 1500
rate=-2, scale=0.5 rate=-2, scale=1 rate=-2, scale=2 rate=-2, scale=4
4000 4000 4000 4000
1000 1000 1000 1 ooo
250
S00 1000 4500 s00 1000 4500 S00 1000 1500 S00 1000 1500
rate=-1, scale=0.5 rate=-1, scale=1 rate=-1, scale=2 rate=-1, scale=4
T 4000 4000 4000 4000
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=
(]
o 500 1000 4500 S00 1000 4500 500 1000 1500 500 1000 1500
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FIGURE 3-3 The STCRs of clean speech from fig 3-1 (left). Top to bottom are rate=

-4,-2,-1,+1, +2, +4 and left to right are scale= 0.5, 1, 2, 4 respectively.
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3.2.1 Dimension Redundancy Problem

Due to the high dimension of our spectrogram, our eigen-decomposition
algorithm inherits much heavier computation than other speech enhancement
algorithms, such as spectral-subtraction and Wiener filtering. To tackle such a
problem, we can (1) reduce the dimension of the spectrogram or (2) partition the
whole spectrogram into smaller segments for eigen-decomposition.

According to the sampling theory, bandwidth can be saved by down sampling the
low-passed signals which has no high frequency components. Theoretically, in
log-frequency dimension, we could downsample 3 times in the scale=4 cyc/oct
channel since the upper bound of scale is 12 cyc/oct. However, in practice, we use
less aggressive multiply numbers to avoid any possible aliasing. Table 3-1 shows the

downsample multiply we use for channels at certain scales.

scale (cyc/oct) 0.5 1 2 4 8

downsample multiply | 8 8 4 2 1

Table 3-1 The downsample multiply for scales.

For the same reason, in temporal dimension, we could downsample 25 times in
the rate=2 Hz channel since the upper bound of rate is 50 Hz. Table 3-2 shows the

downsample multiply we use corresponding to various rates.

rate (Hz) 2 4 8 16

downsample multiply | 4 4 2 1

Table 3-2 The downsample multiply for rates.
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Figure 3-4 shows original and downsampled versions of STCRs at various (rate,
scale) combinations with downsample multiply as in Table 3-1 and 3-2. In the
extreme case of rate=2 Hz and scale=0.5 cyc/oct, the size of the downsampled ST is
reduced to 1/32 times of the original size. This downsampling dramatically decreases

the overall computation.

rate=2, scale=0.5 rate=2, scale=0.5

120
100 ¥
=]
B0 F
Al B
20

A

50 100 150 10 20 30 40
rate=4, scale=1 rate=4, scale=1
1 i
gg 10
o %
50 100 150 10 20 30 40

rate=8, scale=2 rate=8, scale=2

50 100 150 20 40 B0 a0
rate=16, scale=4 rate=16, scale=4

50 100 150 a0 100 150
rate=16, scale=8 rate=16, scale=8

a0 100 150 a0 100 1580

FIGURE 3-4 Examples of downsampled STCRs at various (rate, scale) combinations.
Left column are the original STCRs and right column are the downsampled STCRs.

3.2.2 Frequency Band Division

In this work, we define four consecutive frames as a 40 ms “block” to be our 2D
processing unit. In addition to downsampling the size of STCRs as mentioned in
previous section, we further divide the processing unit along the frequency axis into

several smaller units to reduce the computation. Another motivation of doing this is to
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match hearing perceptions about frequency weighting. Dividing frequency bands in
our auditory spectrogram might gives us the flexibility of adjusting parameters in each
band to fit certain noise sources, for instance, car noise in specific bands. However,
more detailed study on frequency weighting is beyond the scope of this work. Here,
we mainly consider computation reductions by this frequency band division.

Dorman et al. explored the influence of frequency bands on speech intelligibility
[21]. From our viewpoints, the goal of speech enhancement is to sustain speech
harmonics as much as possible while reducing the noise simultaneously. As shown in
figure 3-5, we observe that most of the speech harmonics show up within the
frequency range of around cochlear channel 28 (200 Hz) to channel 100 (1584 Hz).
Our choices of channel 28 and 100 are for convenient implementation of
down-sampling along the log-frequency axis./At the end, we divide each processing
unit into three smaller units: below-channel 28, from channel 28 to channel 100 and

above channel 100.

3000

2500 - —
2000 - —

1500 - —

1000 -
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FIGURE 3-5 Example of an auditory spectrum along the cochlear channel

(log-frequency) axis.
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3.2.3 Window Length for Noise Estimation

The performance of each speech enhancement algorithm is largely affected by its
accuracy in noise estimation. Considering different delays shown in STCRs in figure
3-4, estimating noise simply from a window with fixed duration at the beginning of
signals is no longer valid. In this work, the 40 ms window selected has the strongest
energy in that longer window. However, the duration of the longer window in lower
rate STCRs is lengthened due to the severe temporal delays. Table 3-3 summarizes the
longer window durations used here to find the 40 ms window to estimate noise for

different rate STCRs.

rate (Hz) 2 4 8 16

estimated noise region (ms) | 320 320 240 160

Table 3-3 The estimated noise region corresponding to each rate.

3.3 The weighted mask for HTK evaluation

Although the enhanced auditory spectrogram looks clean as shown in figure 3-2
(9), we still need to match testing features to training features as close as possible in

order to achieve good recognition rates by HTK evaluations.
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FIGURE 3-6 Silence/noise frame from clean speech (top), enhanced speech (middle)

and noisy speech (bottom) at the 150 frame in the same speech as in figure 3-2.

As seen in Figure 3-6, the proposed algorithm does not make the noise spectrum
identical to the silence spectrum after enhancement even though the noise energy is
clearly suppressed. Such enhanced but distorted spectra won’t give good performance
while being used in HTK recognition evaluation. Therefore, a two-dimensional
“mask” is generated by our enhancement algorithm and applied to the noisy
(non-enhanced) spectrogram to reduce discrepancies between training and testing

spectra in HTK evaluation.

First, we generate a binary mask by thresholding the enhanced spectrogram from
our subspace decomposition algorithm. We set a small number instead of zero as the
weight for non-speech portions and unity as the weight for speech portions in the
spectrogram. Figure 3-7 shows the average recognition rates between 0 and 20 dB for
various non-speech weights while =3 (used in the subspace decomposition
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algorithm) and threshold = (max. value of the spectrogram)*6% . Different
thresholds show similar performance curves as in Figure 3-7. Evidently, choosing
lower weight for non-speech parts is not helpful to the speech recognition rates since
highly suppressed non-speech bands in a speech frame make the spectrum easily
mismatch to training spectra. Finally, the (1, 0.3) binary mask is smoothed by a 2D
lowpass filter to avoid any sharp edges in the binary mask. Figure 3-8 shows the

binary mask before and after smoothing.
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FIGURE 3-7 The noise weighting curve.
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FIGURE 3-8 Binary mask derived from our enhancement algorithm. The left panel
shows the original mask and the right panel shows the smoothed mask.

3.4 Summary

In this chapter, we present details of the proposed algorithm with following
procedures:

1. Obtain the auditory spectrogram from auditory-model analysis.

2. Generate smoothed spectrograms within speech regions in cortical domain (rate =
2~16 Hz, scale = 0.5~8 cyc/oct).

3. Downsample smoothed spectrograms by different multiply based on their rate and
scale, divide each processing block into three broad subbands in frequency, and
estimate noise in subbands as illustrated in section 3.2.2.

4. Align each subbanded segment of the spectrogram to an 1D representation (matrix
=> vector, equation 3-4) and apply the subspace decomposition algorithm in each

segment as follows:

¢ Apply eigen-decomposition of T = Rn’lRX . (equation 2-20)
¢ Derive the optimal filter by: H,, =V A (A, +u-1)7VT.
€ Obtain enhanced vector X=H_, -y.
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5. Reconstruct the 40 STCRs back to an auditory spectrogram and generate the
weighting mask based on the enhanced spectrogram.
6. Multiply the weighting mask to the original spectrogram, as shown in figure 3-9,

for HTK speech recognition evaluation.

In section 3.2, we depict the proposed enhancement algorithm in full details
including (1) dimension reductions by downsampling, (2) frequency band division
and (3) noise estimations in STCRs. Processes (1) and (2) above are purely for the
sake of reducing computation complexity. As presented in section 3.3, we apply a
weighting mask to reduce the discrepancies of silence between training and testing

phases in the HTK evaluation.

Adjustable parameters in this proposed algorithm are the Lagrange multiplier
w1 and the threshold which determines the noise region in the enhanced auditory
spectrogram. If we set the 12 =1, the equation of the subspace algorithm will become
similar to the frequency-domain Wiener filter. However, unlike the Wiener filter, the
subspace algorithm is in the eigen-space domain. Note, from equation 2-15, higher x
has similar effects as with larger noise. Hence, with higher x , the optimal filter would
not only eliminate more noise but also produce more speech distortions at the same
time. Not surprisingly, the choice of the Lagrange multiplier is a trade-off decision
between speech distortion and residual noise (quantitative evaluation will be given in
next chapter). Similarly, the threshold that determines the noise region also has a

trade-off effect between speech distortion and residual noise.
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FIGURE 3-9 (a) The original noisy auditory spectrogram, (b) the enhanced auditory
spectrogram, (c) the smoothed weighting mask and (d) the spectrogram, obtained by

multiplying (c) to (a), used in HTK evaluation.
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Chapter 4
Evaluation

In this chapter, we first introduce the. (1) AURORA 2.0 database, (2) the compared
algorithm, Advance Front-end feature Extraction (AFE), published by ETSI [22] and
(3) the evaluation measurements used in this thesis. The HTK simulation results will
be shown in section 4.2. Section 4.3 gives the speech distortion and residual noise
error results from our proposed subspace decomposition algorithm. Summaries for

these evaluations will be given at the end.

4.1 Database and Evaluation Measurements Introduction

AURORA 2.0 database is intended for the evaluation of front-end feature
extraction algorithms in background noise and is used widely by speech researchers to
evaluate and compare the performance of noise robust speech recognition algorithms.

The subspace algorithm is developed to minimize the speech distortion subject to

certain levels of residual noise error. Therefore, we define measures of the speech
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distortion and residual noise error to evaluate the proposed subspace algorithm.

4.1.1 AURORA 2.0

AURORA 2.0 is published by ETSI, European Telecommunication Standards
Institute, for Distributed Speech Recognition (DSR) where the speech analysis is done
at the telecommunication terminal and the recognition at central location in the
telecom network.

The speech for this database is from Tldigits, consisting of connected digits
spoken by American English speakers (downsampled to 8k Hz). A selection of 8
different real-world noises has been added to the speech over a range of signal to
noise ratios. The 8 different noises are half grouped into class A (stationary noise),
consisting of suburban train, babble, car and exhibition hall, and class B
(non-stationary noise), consisting of restaurant, street, airport and train station.

The training data includes 8440 clean sentences spoken by 55 males and 55
females and the testing data is recorded by 52 males and 52 females who are different
from those in clean dataset. The 8 different noises are added in 1001 sentences at 7
different SNR levels, including clean, 20dB, 15dB, 10dB, 5dB, 0dB and -5dB.

Therefore, there are 56056 sentences for testing in total.

4.1.2 Advance Front-end feature Extraction

ETSI in 2003 specified algorithms for advanced front-end feature extraction and
their transmission which form part of a system for distributed speech recognition.
Figure 4-1 shows the AFE terminal block scheme. VAD, in noise reduction, labels the
non-speech frames. If VAD is enabled, non-speech frames could not be transmitted

and therefore, it reduces the loading in the network transmission.
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In this study, the VAD is disabled in order to emphasize and compare the noise

reduction ability.
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FIGURE 4-1 The AFE block scheme: (a) the terminal diagram and (b) the noise

reduction block.

4.1.3 HTK Setting

We follow the training procedures presented in the AURORA 2.0 [23]. We use

clean data training and match condition testing in this study. The match condition

means the clean training data as well as testing data are both processed by the same

enhancement algorithm.

Digits are modeled as whole-word HMMs with following parameters:
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16 states per word (18 states in HTK notation with 2 dummy states at beginning
and end).

Simple left-to-right models without skips over states.

3 Gussian mixtures per state.

A feature vector size of 36 is used per frame for speech recognition. It is
composed of 12 cepstral coefficients plus corresponding delta and acceleration

coefficients.

Two pause models are defined. The first one called “sil” consists of 3 states with

a mixture of 6 Gaussian models per state. The second pause model called “sp” is to

model pauses between words. It consists of a single state which is tied with the middle

state of the first pause model.

In this study, we use Auditory-Cepstral Coefficients (ACCs) as the recognition

feature and compare its performance to that of conventional Mel-Frequency Cepstral

Coefficients (MFCCs). The robustness of ACCs over MFCCs has been demonstrated

in [11].

HTK recognition results are expressed by three errors whose combinations

determine the correct rate and accuracy rate. Related terminologies are defined as

following:

® D : Deletion error, the number of non-recognized syllables.

® S : Substitution error, the number of wrongly recognized syllables.

® | : Insertion error, the number of syllables been recognized but not existed in
answers.

® N : The total number of syllables.

® Correctrate = (N—D—S) /N x 100%

® Accuracyrate = (N—D—S—1) /N x 100%
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In this study, the recognition rate stands for the accuracy rate. Figure 4-2 shows
the ACC baseline and the performance of Yung’s algorithm averaged over all kinds of
noise in AURORA 2.0 database. Detailed results in each noise source are shown in

Appendix II.
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FIGURE 4-2 Recognition rate of ACC Baseline and Yung’s result.

4.1.4 Speech Distortion and Residual Noise

As mentioned in Chapter 3, the Lagrange multiplier 2 of the subspace algorithm
would have opposite influences on speech distortion and residual noise. To calculate
both measures, we first define the speech region and noise region in the spectrogram.
The speech region is composed of those frames whose energies are greater than 2% of
the maximum energy of the auditory spectrogram of clean speech. Other frames are

considered as the noise region as shown in figure 4-3.
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FIGURE 4-3 Speech region and the noise region from the clean auditory spectrogram
(left). The middle and right subplot show the speech frames and noise frames cover

the original noisy auditory spectrogram, respectively.

Measures of speech distortion and residual noise are defined by:

Speech Distortion = - > HX;)Z (4-1)
#of speech frame gefsame | X|

Residual Noise = ! HX ~-X H (4-2)
# of non-speech frame o, speech frame

whereX and X are auditory spectra of a certain frame of the clean speech and the
enhanced speech. Note, |[X| is close to zero in non-speech (silence) frames, hence,

the residual noise measurement is not normalized by ||X||. In addition, X and X

are first normalized by maximum values in auditory spectrograms of the whole clean

sentence and the whole enhanced sentence, respectively.
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4.2 HTK Results
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FIGURE 4-4 The simulation for different x and threshold.

Figure 4-4 shows the recognition rate of different x and threshold. We observe
that the higher & has to be coupled with the lower threshold to achieve the same
recognition rate. Not surprisingly, the higher the 4 is, the more severe the speech is
degraded even the more suppressed the noise is. The highest speech recognition rate is
achieved with x =1 and threshold= 6%. Details of recognition rates under such

conditions are given in Appendix IlI.

Figure 4-5 shows the average recognition rates of AFE, Yung’s method and the
proposed algorithm. It shows our largest improvement over Yung’s algorithm is in
babble noise. This significant improvement is due to the decrease of the insertion
errors as shown in table 4-1(a). On the other hand, the insertion errors in the car noise
are low enough originally to not have further significant improvement, as shown in

table 4-1(b).
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FIGURE 4-5 Average recognition rates (between 0~20 dB) of AFE, Yung’s and the

proposed algorithm in different noises.

The insertion error is the key factor to our improvement over Yung’s method. In
car noise environment, it is comparably easy to clean the noisy speech because of its
stationarity. On the other hand, the babble noise is hard to compress by speech
enhancement algorithms because it is relatively non-stationary and with
characteristics (spectro-temporal modulations) comparatively close to speech. From
our low insertion error in babble noise, we can say that our proposed algorithm not
only enhances the speech but also suppresses the noise successfully. ( Appendix Il

shows the details about the hit and insertion rate. )
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(@) AFE Yung The_Proposed

SNR/dB Babble Babble Babble

clean 98.76 1.00 98.58 0.60 98.37 0.60

20 96.95 4.66 97.10 0.63 97.04 0.67

15 94.47 4.84 95.62 0.79 95.41 0.67

10 87.94 4.90 91.93 2.63 91.29 1.12

5 72.04 4.47 80.26 10.40 81.65 4.14

0 44,35 3.23 50.76 19.47 52.84 15.39

-5 19.92 1.15 24.61 20.68 24.24 21.86

Average 79.15 4.47 83.13 6.78 83.65 4.40

(b) AFE Yung The_Proposed
SNR/dB Car Car Car

clean 98.78 0.89 98.84 0.69 98.51 0.75

20 97.58 0.78 97.38 0.42 96.96 0.48

15 95.91 0.78 96.06 0.42 95.47 0.60

10 90.40 0.54 92.48 0.48 92.01 0.63

74.11 0.21 81.69 0.45 81.66 0.36

0 39.01 0.03 49.63 251 54.28 0.69

-5 18.43 0.00 19.15 2.06 20.13 2.77

Average 79.40 0.47 83.45 0.85 84.07 0.55

Table 4-1 Hit / insertion rate of AFE, Yung’s and the proposed algorithm in (a) babble

and (b) car noise.

Figure 4-6 shows average recognition rates of AFE, Yung’s method and our
proposed algorithm. It shows the performance boost of around 4% in 0dB and 3% in
5dB over Yung’s algorithm; and of around 6% in 0dB and 8% in 5dB over the AFE. In
high SNR conditions, our performance is comparable to Yung’s performance because

less noise exists to work with. Overall speaking, our proposed algorithm performs

better than Yung’s and AFE algorithm, hence it’s more robust.
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FIGURE 4-6 Average recognition rate of AFE, Yung’s and the proposed algorithm.

4.3 Performance Evaluation on Speech Distortion and

Residual Noise

Average measures of speech distortion and residual noise between 20 ~ 0dB are
shown in figure 4-7 and 4-8. Numbers are calculated by treating enhanced, masked
clean speech as the clean pattern, and treating enhanced, masked noisy speech as the
test pattern. Such procedures are designed to match the “match condition” scheme in
HTK recognition. Obviously, the results reveal the effectiveness of the proposed
algorithm. Distortions decrease gradually as x increases, especially visible in the
measure of the residual noise.

The speech distortion and residual noise are proportional to the hit and insertion

rate in HTK tasks in some way. From figure 4-7 and 4-8, our proposed algorithm has
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superior performance in these two distortion measures than Yung’s previous study,
which is also consistent to the performance shown in the HTK recognition task.

However, the mathematical correlation between these two measures and the speech

recognition rate is beyond the scope of this thesis.

Speech Distortion for HTK Recognition
4
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FIGURE 4-7 Average speech distortion shown in spectrograms.
Residual Noise for HTK Recognition
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FIGURE 4-8 Average residual noise shown in spectrograms.
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Figure 4-9 and 4-10 illustrate the trade-off phenomenon between speech
distortion and residual noise. These two quantities are measured between the original
clean speech and the enhanced noisy speech (which is not a “match condition”
comparison as in the preceding comparison). When the parameter p increases, the
speech distortion gradually increases but the residual noise gradually decreases. These
results clear confirm that y controls degrees of speech distortion and residual noise in

opposite directions.

Speech Distortion

0.9
0.8

0.6 — ] — — O qul
0.5 — _ _ SR

03 [ O =10
02 — — — B

Normalized Energy
o
o~
O
S
I
wn

20 15 10 5 0 -5
SNR (dB)

FIGURE 4-9 Speech distortion measures for different x and SNR.
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FIGURE 4-10 Residual noise measures for different 4 and SNR.
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4.4 Summary

In this chapter, we introduced the AURORA 2.0 database, AFE algorithm and
two evaluation measurements: (1) HTK speech recognition and (2) speech distortion
and residual noise. Our goal of improving the recognition rate for DSR systems over
AFE algorithm is reached by enhancing the speech and suppressing the noise
simultaneously, especially in babble noise. In addition, the trade-off between speech
distortion and residual noise was investigated and demonstrated. However, lack of
methods of transferring auditory spectrogram back into waveform makes listening
tests for enhanced speech quality infeasible. Although the auditory spectrogram looks
clean, it does not guarantee the quality of the enhanced speech which is usually not

considered in DSR systems.
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Chapter 5
Conclusion and Future Works

The proposed subspace decomposition algorithm is performed on
multi-dimensional cortical representations of the speech region ( rate=2-16 Hz,
scale=0.5-8 cycle/octave ) . In each (rate, scale) combinational cortical representation,
our algorithm suppresses the noise in the eigen-space domain through the
eigen-decomposition analysis. We exhibit every aspect of the proposed algorithm in
details and its performance in chapter 3 and 4. For HTK evaluations, the proposed
algorithm gives the improvement of around 6% in 0dB and 8% in 5dB over the AFE.
As for speech distortion and residual noise measurements, they clear confirm that p

controls the trade-off phenomenon between both.

Here, we address major disadvantages of our proposed system:

1) The 2D eigen-decomposition analysis is with high computational
complexity. It is not practical for real-time on-line systems.

2 Lack of phase information. The proposed algorithm works on various

degrees of filtered modulations of the auditory spectrogram. It then
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reconstructs the enhanced spectrogram, which is short of the phase
information of the time-domain waveform. Therefore, it is not possible
to invert our enhanced spectrograms back to acoustical sounds without
further distortions for subjective sound quality listening tests.

3) The rough noise estimation. Noise estimation techniques play the
important role in most of the speech enhancement algorithms. This work
focuses on adopting the subspace decomposition to the perceptual

representations; noise estimation should be fully studied in the future.

Finally, we point out several directions for future evolution of our speech
enhancement algorithm. First, the noise estimation process needs further investigation
since many speech enhancement techniques work well due to their accurate noise
estimates. Second, build an inverse process to.invert the auditory spectrogram back to
time-domain waveform with acceptable distortions. A successful real-time one-shot
inverse would be a huge contribution to our auditory model. Once it is done, any
manipulations on the spectrogram can then be heard as acoustical sounds to make
interactive listening tests feasible. Third, apply other feature normalization processes,
such as Cepstral Mean Subtraction (CMS) and Cepstral Mean and Variance
Normalization (CMVN), to our Auditory Cepstral Coefficients to further improve the

performance of this perceptual feature.
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Appendix |
Pre-whitening Verification

Here, we prove the pre-whitening approach that is used in the proposed

algorithm. Recall equation (2-16),
Ry=R"R=L-L (2-16)

where R, =E[d-d"] is the auto-correlation matrix of noise vector d, L isthe

transpose of R which is the factor of Cholesky factorizingto R, .

Thus, the pre-whitening equation is given by (2-17):

-1, _ -1 -1

L'y=L"x+L"d (2-17)
yI: Xl+dl

Our goal is to demonstrate that ' R;. is'a identical matrix. The proof is as

following:

R, = E[d"d™]
— gt (L) ]
—E[L'd d7 L]
= |_‘1.Rd LT
= |_*1.(|_. )L
1 #
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Appendix Il

The AFE HTK result.

The AFE and Yung’s Result

SNR/dB Subway Babble Car Exhibition A-Average
clean 98.00 917.76 97.88 97.90 97.89
20 95.49 92.29 96.81 95.53 95.03
15 92.88 89.63 95.14 92.97 92.66
10 85.29 83.04 89.86 86.52 86.18
5 69.67 67.56 72.41 68.59 69.56
0 40.13 41.44 38.98 38.11 39.67
-5 21.83 18.77 18.43 18.51 19.39
Average 76.69 74.79 78.64 76.34 76.62
SNR/dB | Restaurant | Street Airport | Train-station || B-Average || Total Average
clean 98.00 97.76 97.88 97.90 97.89 97.885
20 91.80 95.95 94.21 95.00 94.24 94.635
15 89.07 93.23 92.63 93.52 92.11 92.38375
10 82.78 86.46 87.24 88.58 86.27 86.22125
5 68.59 71.52 73.64 73.93 71.92 70.73875
0 44,55 42.50 48.58 44.46 45.02 42.34375
-5 19.47 20.86 22.40 20.95 20.92 20.1525
Average 75.36 77.93 79.26 79.10 7791 77.2645
The hit and insertion rate of AFE. (hit / insertion)
SNR/dB Subway Babble Car Exhibition
clean 98.99 0.98 98.76 1.00 98.78 0.89 96.42 1.30
20 96.25 0.77 96.95 4.66 97.58 0.78 96.82 1.30
15 93.52 0.64 9447 4.84 95.91 0.78 94.17 1.20
10 85.97 0.68 87.94 490 90.40 0.54 56.96 1.30
5 70.10 0.43 72.04 447 74.11 0.21 69.36 0.77
0 40.22 0.09 4435 3.23 39.01 0.03 38.35 0.25
-5 21.83 0.00 19.92 1.15 18.43 0.00 18.73 0.22
SNR/dB Restaurant Street Airport Train-station
clean 98.99 0.98 98.76 1.00 98.78 0.89 99.20 1.30
20 97.39 5.59 96.717 0.82 97.44 3.22 97.47 2.47
15 94.93 5.89 93.98 0.76 95.65 3.01 95.56 2.04
10 88.70 5.93 87.03 0.57 90.40 3.16 90.74 2.16
5 74.24 5.65 71.89 0.36 76.71 3.07 75.81 1.88
0 49.65 5.10 42.62 0.12 50.28 1.70 4545 0.99
-5 21.86 2.39 20.86 0.00 23.74 1.34 5.92 0.40
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Yung’s Result

SNR/dB | Subway | Babble Car Exhibition A-Average
clean 98.31 97.97 98.15 98.33 98.19
20 97.02 96.46 96.96 95.80 96.56
15 95.76 94.83 95.65 9497 95.30
10 91.62 €9.30 92.01 90.77 90.93
5 79.61 69.86 81.24 81.61 78.08
0 51.27 31.29 47.12 55.23 46.23
-5 20.69 3.93 17.09 22.83 16.14
Average 83.06 76.35 82.60 83.68 81.42
SNR/dB |Restaurant| Street Airport | Train-station || B-Average || Total Average
clean 98.31 97.97 98.15 98.33 98.19 98.19
20 96.96 96.92 96.90 97.25 97.01 96.78375
15 94.60 95.68 95.26 95.80 95.34 95.31875
10 87.53 91.44 89.98 90.65 €9.90 90.4125
5 67.79 79.84 72.89 75.55 74.02 76.049125
0 34,94 52.15 39.19 43.32 42.40 4431375
-5 6.36 21.01 12.65 15.33 13.84 14.98625
Average 76.36 83.21 78.84 80.51 79.73 80.575575
The hit rate and insertion rate of Yung’s result. (hit /7 insertion)
SNR/dB Subway Babble Car Exhibition
clean 98.96 0.64 | 98.58 0.60 98.84 0.69 98.98 0.65
20 97.61 0.58 | 97.10 0.63 97.38 0.42 97.44 1.64
15 96.56 0.80 | 95.62 0.79 96.06 0.42 96.36 1.39
10 92.94 1.32 | 91.93 2.63 92.48 0.48 92.81 2.04
5 83.88 4.27 80.26 1040 | 81.69 0.45 83.71 2.10
0 58.95 7.68 | 50.76 1947 | 49.63 2.51 57.33 2.10
-5 25.82 5.13 24.61 20.68 19.15 2.06 24.38 1.54
SNR/dB Restaurant Street Airport Train-station
clean 98.96 0.64 | 98.58 0.60 98.84 0.69 98.98 0.65
20 97.88 092 | 97.34 0.42 97.32 0.42 97.78 0.52
15 96.59 2.00 | 96.13 0.45 95.85 0.60 96.58 0.77
10 92.69 516 | 92.23 0.79 91.89 2.06 92.59 1.94
5 80.84 | 13.05 | 81.35 1.51 79.78 6.89 7991 4.38
0 55.51 | 20.57 | 54.38 2.15 5222 | 13.03 | 50.85 7.53
-5 25.67 | 1931 | 23.46 2.45 25.56 | 1291 22.34 7.00

50




Appendix 1

HTK Recognition Result

The Proposed algorithm

SNR/dB | Subway | Babble Car Exhibition A-Average
clean 98.10 97.76 91.76 98.58 98.05
20 96.75 96.37 96.48 96.39 96.50
15 95.12 94,74 94.87 94.11 94,71
10 91.74 90.18 91.38 89.97 90.82
5 81.52 71.51 81.30 81.46 80.45
0 53.82 37.45 53.59 55.82 50.17
-5 19.04 2.39 17.36 21.47 15.07
Average 83.79 79.25 83.52 83.55 82.53
SNR/dB |Restaurant| Street Airport | Train-station || B-Average || Total Average
clean 98.10 97.76 917.76 98.58 98.05 98.05
20 96.81 96.55 96.48 97.04 96.72 96.60875
15 95.09 94.71 95.05 95.06 94.98 9484375
10 89.38 9141 90.55 90.31 90.41 90.615
5 72.55 80.08 77.30 7117 76.78 78.61125
0 36.66 54.05 45.21 48.16 46.02 48.095
-5 7.28 21.37 11.60 15.77 14.01 14.535
Average 78.10 83.36 80.92 81.55 80.98 81.754'75
The proposed algorithm HTK result. (hit / insertion)
SNR/dB Subway Babble Car Exhibition
clean 98.65 0.55 98.37 0.60 98.51 0.75 99.11 0.52
20 97.51 0.77 97.04 0.67 96.96 0.48 97.53 1.14
15 95.95 0.83 95.41 0.67 95.47 0.60 95.83 1.73
10 92.60 0.86 91.29 1.12 92.01 0.63 92.10 2.13
5 83.88 2.36 81.65 4.14 81.66 0.36 83.83 2.38
0 60.42 6.60 52.84 | 1539 | 54.28 0.69 57.88 2.07
-5 26.90 7.86 2424 | 21.86 | 20.13 2.77 23.26 1.79
SNR/dB Restaurant Street Airport Train-station
clean 98.65 0.55 98.37 0.60 98.51 0.75 99.11 0.52
20 97.82 1.01 97.04 0.48 97.14 0.66 97.56 0.52
15 96.44 1.35 95.28 0.57 95.65 0.60 95.68 0.62
10 92.82 3.44 92.08 0.67 91.86 1.31 91.92 1.60
5 81.09 8.54 81.23 1.15 80.58 3.28 80.50 3.33
0 55.66 | 19.01 | 55.65 1.60 5491 9.69 54.12 5.95
-5 24.04 | 1676 | 23.85 2.48 2526 | 13.66 | 22.28 6.51
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