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針對掃描式蠕蟲做準確偵測之 

適應性接續假設測試 

學生：李松晏 指導教授：李程輝 教授 

國立交通大學 

電信工程學系碩士班 

中文摘要 

早期偵測掃描式蠕蟲的技術，是建立在惡意行為的主機具有較高掃描率的基

礎上。此種方法對於秘密的掃描並不適用，且一旦發出警告的掃描率門檻被攻擊

者所知悉，便能輕易躲過這種偵測。為了克服這樣的問題，「接續假設測試」便

成為一種替代方案。這種方法所需要觀測連線嘗試結果的次數較少，從這個角度

看來，它比起基於掃描率的方法，可以更快偵測出掃描式蠕蟲。然而，接續假設

測試的方法，對於正常主機與惡意行為主機的第一次連線嘗試的成功機率相當敏

感。如果事前不知道此機率，誤判率可能會比理想值高出許多。在這篇論文中，

我們提出一個簡單的適應性演算法，可以準確地估計出這些機率。實驗結果顯

示，我們提出的適應性估計演算法，對於原本的接續假設性測試法有很大的改

善，因為它使原本對於偵測掃描式蠕蟲的方法更加健全完善。
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Adaptive Sequential Hypothesis Testing for Accurate 

Detection of Scanning Worms 

Student: Sung-Yen Lee Advisor: Prof. Tsern-Huei Lee 

Institute of Communication Engineering 

National Chiao Tung University 

Abstract 

Early detction techniques of scaning worms are based on simple observations of 

high port/address scanning rates of malicious hosts.  Such apporaches are not able to 

detect stealthy scanners and can be easily evaded once the threshold of scanning rate for 

generating alerts is known to the attackers.  To overcome this problem, sequential 

hypothesis testing was developed as an alternative detection technique.  It was found 

that the technique based on sequential hypothesis testing can detect scanning worms 

faster than those based on scanning rates in the sense that it needs fewer observations 

for the outcomes of connection attempts.  However, the performance of the detection 

technique based on sequential hypothesis testing is sensitve to the probabilities of 

success for the first-contact connection attempts sent by benign and malicious hosts.  

The false positive and false negative probabilities could be much larger than the desired 

values if these probabilities are not known.  In this paper, we presnt a simple adpative 

algorithm which provides accurate estimates of these probabilities.  Numerical results 

show that the proposed adaptive estimation algorithm is an important enhancement of 

sequential hypothesis testing because it makes the technique robust for detection of 

scanning worms. 
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Chapter 1. 

Introduction 

 

The rapid advances of computer and network technologies allow modern 

computer worms to spread at a speed much faster than human-mediated responses.  

The Code Red [6], Nimda [7], and Slammer [8] that were detected in recent years 

infected hundreds of thousands of computers on the Internet in a very short period 

of time and caused huge economic loss to our society.  Fast and accurate 

detection of worms as they are spreading is, therefore, very important to prevent 

the majority of vulnerable systems from being infected and minimize the damage. 

Current computer worm detection technologies can be classified into three 

categories, namely, protocol analysis, pattern matching, and behavior anomaly.  

Protocol analysis is a technique which examines the header of a packet to ensure 

there is no misuse of protocol fields.  For example, the OID field of an SNMP 

packet should be a certain number of bytes.  There is something wrong (say, an 

overflow attack) if the next expected field does not appear after this number of 

bytes.  Pattern matching is a technique of looking for specific patterns in the 
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payload of a packet or across packets.  A specific unique pattern or string of 

malicious codes can be extracted as the signature of a worm and be used in the 

detection process.  Although pattern matching is accurate, it is limited to known 

worms with identified signatures.  The majority of vulnerable systems could be 

infected if the signature of a new worm is not created quickly.  Finally, behavior 

anomaly can be used to detect and prevent the outbreak of an attack because an 

infected host is likely to behave differently from a normal host.  As an example, a 

host infected by some scanning worm may try to infect other vulnerable hosts on 

the Internet with port/address scanning.  Therefore, one can detect an infected 

host with the observation of high new connection attempt rate or high failure ratio 

of first-contact connection attempts [1].  Worm detection based on behavior 

anomaly is receiving more and more attention because it can detect the so-called 

“zero-day” attacks and polymorphous worms without signatures. 

Early behavior anomaly based scanning worm detection techniques were 

designed according to simple observations of high scanning rate by an infected 

host.  For example, the criterion used in the Network Security Monitor (NSM) [5] 

is to detect any source IP address which connects to more than M distinct 

destination IP addresses within a given time window T.  Snort [4] uses similar 



 

 3

rules.  It detects a source IP address which sends connection attempts to more 

than U number of ports or V number of IP addresses within S seconds.  An 

obvious drawback of such approaches is that an attacker can easily evade 

detection once the parameter values are known. 

The authors of [1] observed from real traces that the failure probability of a 

connection attempt sent by an infected or malicious host is much higher than that 

of a connection attempt sent by a benign host.  As a result, the technique of 

sequential hypothesis testing was developed for scanning worm detection.  Their 

algorithm is called Threshold Random Walk (TRW).  A failed (or successful) 

connection attempt causes the random walk to move upward (respectively, 

downward).  A host is declared as malicious if the position of its corresponding 

random walk is greater than the upper threshold or as benign if it is smaller than 

the lower threshold.  The step size of moving upward could be different from the 

step size of moving downward.  Compared with previous detection techniques, 

the TRW algorithm is able to detect stealthy scanning and the detection process is 

fast in the sense that it need only observe a few connection attempts.  A 

simplified algorithm which is suitable for both software and hardware 

implementations was presented in [3].  In this simplification, the step sizes of 
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moving upward and downward are identical.  The reversed sequential hypothesis 

testing presented in [2] can detect malicious scanners faster than the TRW 

algorithm.  However, it slightly increases the false positive probability.  The 

TRW algorithm, its simplified version, and the reverse sequential hypothesis 

testing will be reviewed in Chapter 3. 

A fundamental assumption of the TRW algorithm is that the success 

probabilities of connection attempts sent by malicious and benign hosts are 

known.  These probabilities are used to compute the step sizes of moving upward 

and downward.  Unfortunately, this assumption may not be valid in a real system.  

In this paper, we investigate the effect of using estimated probabilities to the false 

positive and the false negative probabilities.  Results show that the performance 

of the TRW algorithm is sensitive to the estimated probabilities.  The false 

positive and false negative probabilities could be significantly larger than the 

desired values if inaccurate estimates are used.  In order to make TRW works 

properly, we develop an adaptive algorithm which estimates the success 

probabilities of connection attempts based on their outcomes.  According to 

simulation results, our proposed adaptive algorithm provides estimates of success 

probabilities close to the real values and, therefore, the false positive and false 
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negative probabilities are also close to the desired values. 

The rest of this paper is organized as follows.  In Chapter 2, we introduce 

some background about scanning worms and type I and type II errors.  In 

Chapter 3, we review the TRW algorithm, its simplified version, and the reversed 

sequential hypothesis testing.  In Chapter 4, we present our proposed adaptive 

algorithm for estimation of success probabilities of connection attempts.  

Experimental results are provided in Chapter 5.  Finally, we draw conclusion in 

Chapter 6. 
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Chapter 2. 

Background 

 

2.1 Scanning worms 

Computer worms are malicious software applications designed to spread via 

computer networks without human intervention.  Scanning worms locate 

vulnerable hosts by generating a list of addresses to probe and then contact them.  

They can self-propagate among the hosts exploiting security or policy flaws in 

widely-used services [11].  An infected host initiates scans and infects the other 

benign hosts.  Subsequently, the benign hosts may be infected and then join the 

army of scanning.  Finally, more and more hosts on the Internet will be infected. 

The list of addresses can be generated sequentially or pseudo-randomly.  

Local addresses are often preferentially selected because the communication 

between neighboring hosts will likely encounter fewer defenses [12].  Scans 

may take the form of TCP connection requests (SYN packets) or UDP packets.  

In the case of the connectionless UDP protocol, it is possible for the scanning 
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packet to also contain the body of the worm, such as the Slammer worms [8]. 

Scanning worms probe attempts to determine if a service is operating at a 

target IP address and then discover new victims.  They have two basic scanning 

types – horizontal scans and vertical scans. The former look for an identical 

service on a large number of hosts, and the latter examine an individual host to 

discover all running services. 

There are many kinds of techniques to generate a list of addresses for 

scanning worms, such as linear scanning of an IP address space (Blaster), fully 

random (Code Red), a bias toward local address (Code Red II and Nimda), or 

even more enhanced techniques (Permutation Scanning).  While more and more 

scanning worms change their style of scanning to avoid being detected, all of 

them still have two common properties as follows.  Most of the scanning 

attempts may result in failure, and the infected hosts will send many connection 

attempts [3].  As long as we look for a class of behavior rather than specific 

worm signatures, most of the new worms will be detected. 
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2.2 Type I and type II errors 

In statistics, the terms Type I error (α error, or false positive) and type II error 

(β error, or a false negative) are used to describe possible errors made in a 

statistical decision process. 

Type I error: the error of rejecting a null hypothesis when it is actually true. 

Plainly speaking, it occurs when we are observing a difference when in truth there 

is none. 

Type II error: the error of failing to reject a null hypothesis when it is in fact not 

true.  In other words, this is the error of failing to observe a difference when in 

truth there is one. 

Table 1 illustrates the ambiguity, which is one of the dangers of this wider use: 

They assume the speaker is testing for guilt; they could also be used in reverse, as 

testing for innocence; or two tests could be involved, one for guilt, the other for 

innocence.  Table 2 illustrates the conditions we use in this paper. 
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Table 1: Definition of false positive and false negative 

 

Actual Condition 

Present Absent 

Test 

Result 

Positive True Positive False Positive 

Negative False Negative True Negative 

 

Table 2: Example of false positive and false negative 

 

Actual Condition 

Scanner Benign 

Test 

Result 

Scanner Detection False Positive 

Benign False Negative Normal 
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When a host is determined to be malicious or benign, it’s possible to make an 

error, such as regarding a benign host as malicious one or regarding a malicious 

host as benign one.  We hope that the scan detection mechanism can distinguish 

between malicious and benign hosts as precisely as possible.  In other words, we 

hope the probability of false positive and false negative is as less as possible.  

In this paper, we use the false positive probability and false negative probability 

to judge whether an algorithm is suitable for the scan detection. 
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Chapter 3. 

Related Works 

 

 

In the TRW algorithm, an event is generated and monitored when a remote 

source r makes a first-contact connection (FCC) request to a local destination l.  

An FCC request is a connection request which is addressed to a host the sender 

has not previously communicated.  For simplicity, only TCP connections are 

considered and thus a TCP SYN packet indicates a connection request.  The 

outcome of an FCC request is classified as either a “success” or a “failure”.  It is 

a success if host l replies a SYN-ACK packet or a failure if host l replies a RST 

packet or does not reply at all.  When extended to UDP connections, the first 

UDP packet from r to l can be used to indicate a connection request and any UDP 

packet from l to r before timeout can be considered as successful establishment of 

the connection. 
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For a given remote host r, let iX  be a random variable that represents the 

outcome of the FCC request from r to the thi  distinct local host il , where 

0   if the FCC request is a success=
1   if the FCC request is a failure iX
⎧⎪
⎨
⎪⎩

 

The outcomes of 1X , 2X , …, are observed so that host r can be determined 

to be either malicious or benign.  There are two hypotheses: 0H  and 1H , where 

0H  is the null hypothesis that the remote host r is benign and 1H  is the 

hypothesis that r is malicious.  To simplify the analysis, it is assumed that, 

conditioning on hypothesis jH , the random variables 1 | jX H , 2 | jX H , … are 

independent and identically distributed (i.i.d.) with probability mass function  

0 0

1 1

P 0 |

P 0 |
i

i

X H

X H

θ

θ

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

= =

= =   

0 0

1 1

P 1| 1

P 1| 1
i

i

X H

X H

θ

θ

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

= = −

= = −
 

for some 0θ  and 1θ  which satisfy 0 1θ θ> . 

Given the two hypotheses, there are four possible decisions.  The decision is 

called a detection if the algorithm selects 1H  when 1H  is true.  On the other 

hand, it is called a false negative if the algorithm chooses 0H  when 1H  is true.  

Likewise, when 0H  is true, selecting 1H  constitutes a false positive and 
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selecting 0H  is called a normal.  These four possible outcomes are represented 

as： 

1 1

0 1

1 0

0 0

:    P choose H | H  is true

:    P choose H | H  is true 1

:    P choose H | H  is true

:    P choose H | H  is true 1

DT

FN DT

FP

NM FP

Detection P

False Negative P P

False Positive P

Normal P P

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

=

= = −

=

= = −

 

The desired performance of the TRW algorithm can be specified with the 

detection probability DTP  and the false positive probability FPP . Let α  

represent the upper bound of false positive probability and β  denote the lower 

bound of detection probability.  In other words, we desire 

 and  FP DTP Pα β≤ ≥  

where typical values might be 0.01  and  0.99α β= = . 

 

As the outcome of iX  is observed, we calculate the likelihood ratio: 

( ) n 1 1
n

1n 0 0

P | H P | H
P | H P | H

n
i

i i

X
X=

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

Λ ≡ =∏
X

X
X

 

where ( )n1 2X , X , , X=nX  is the vector of outcomes observed so far.  
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Note that ( )Λ nX  can be updated incrementally.  Let ( )iXφ  represent the 

likelihood ratio of the thi  observation.  It holds that 

( ) ( ) ( ) ( )n-1
1

n

ni
i

X Xφ φ
=

Λ = =Λ∏nX X ,  ( )0 1Λ =X  

The updated likelihood ratio ( )Λ nX  is compared with an upper threshold 1η  

and a lower threshold 0η . If ( ) 1ηΛ ≥nX , then hypothesis 1H  is accepted.  If 

( ) 0ηΛ ≤nX , then hypothesis 0H  is accepted.  More observations are needed if 

( )0 1η η< Λ <nX  . 

It can be shown that 1 /DT FPP Pη ≤  and ( )( )0 1 1DT FPP Pη ≥ − −  [9].  In real 

implementations, one can use the approximations FPP α= , DTP β=  and set 

1η β α=  and ( ) ( )0 1 1η β α= − − .  Moreover, the log-likelihood ratio can be 

used to simplify computation. 

The huge complexity of monitoring FCC requests of all remote hosts makes 

the TRW algorithm infeasible.  In [3], a simplified version which uses one bit to 

indicate whether or not host r has sent any packet to host l and another bit for the 

opposite direction for a given connection that is determined by the remote IP 

address, local IP address, source port, destination port, and protocol ID.  A hash 

function is adopted to reduce the space requirement.  As a tradeoff, the false 
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negative probability is slightly increased.  The step sizes of moving upward and 

downward are both set to one in the simplified version. 

It is possible that a remote host is infected when its likelihood ratio is close to 

but larger than 0η .  In this case, it needs more observations for the TRW 

algorithm to declare the host to be malicious than doing so for a host who is 

infected when its likelihood ratio is equal to 1.  The reversed sequential 

hypothesis testing proposed in [2] computes the likelihood ratio for the reversed 

vector of outcomes ( )n 1X , , X=nX  observed so far.  For this algorithm, the 

likelihood ratio can be easily updated according to 

( ) ( ) ( )( )11, Xnmax φ−Λ = Λn nX X  with ( )0 1Λ ≡X .  It can detect malicious hosts 

slightly faster than the TRW algorithm.  However, it increases the false negative 

probability and does not detect benign hosts. 

As mentioned before, the TRW algorithm assumes that 0θ  and 1θ  are 

known, which may not be true in a real network.  According to the numerical 

results to be presented in Chapter 5, the false positive and false negative 

probabilities of the TRW algorithm could be much larger than the desired values if 

the adopted 0θ  and 1θ  are different from their true values.  To overcome this 

problem, we propose in the next chapter an adaptive algorithm to estimate the 
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values of 0θ  and 1θ  based on observations of the outcomes of FCC requests. 
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Chapter 4. 

Adaptive Sequential Hypothesis Testing 

 

Our proposed adaptive sequential hypothesis testing provides estimates of 

0θ  and 1θ  adaptively based on observations of the outcomes of FCC requests.  

We will consider only the estimation procedure of 0θ .  The estimation procedure 

for 1θ  is similar. 

 The basic idea of our proposed estimation procedure is as follows.  An 

estimate of 0θ , denoted by 0̂θ , is generated when the total number of remote 

hosts that are detected as benign is greater than or equal to K, where K is a design 

parameter.  Let iS  and iF  represent, respectively, the numbers of successful 

and failed FCC requests sent by ir  when it is detected as benign.  Furthermore, 

let i i iN S F= + .  The estimate of 0θ  is given by 0̂

i
i

i
i

S

N
θ =

∑
∑

, for all i such that ir  

is detected as benign. 

In the beginning, we need a data structure as shown in Table 3.  When a 

remote host r makes an FCC request to a local destination, its likelihood ratio is 
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updated according to the outcome, i.e., success or fail, of the FCC.  If the FCC 

request is classified as success, iS  of ( )Hash r  is increased by one, where 

( )Hash r  represents the hash result of IP address r.  On the contrary, if the FCC 

request is classified as fail, iF  of ( )Hash r  is increased by one.  

 

Table 3: Data structure of the adaptive sequential hypothesis testing algorithm. 

( )Hash r  ( )nΛ X  iS  iF  

611 5.545177 0 2 

849 6.415920 3 4 

965 -4.674434 3 0 

1540 -5.361835 7 2 

… … … … 

 

The remote host r is detected as benign if its likelihood ratio is lower than 

threshold 0η .  On the other hand, if its likelihood ratio is higher than threshold 

1η , the remote host r is declared as malicious.  Once remote host r is decided as 

benign or malicious, the corresponding iS  and iF  values are added to the data 

structure shown in Table 4. 
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Table 4: Data structure for updating 0̂θ  and 1̂θ . 

Total # of observed 

success for benign 

IP 

Total # of observed 

fail for benign IP 

Total # of observed 

success for 

malicious IP 

Total # of observed 

fail for malicious IP

2008 55 87 325 

 

The estimates of 0θ  and 1θ  are obtained from Table 2.  Initially, we set 

0̂ 0.55θ =  and 1̂ 0.45θ = .  Note that choosing a small value for 0̂θ  and a large 

value for 1̂θ  (as we did here) require more time to classify a remote host as 

benign or malicious.  However, it achieves better accuracy and thus is 

worthwhile to sacrifice the decision time.  In our design, 0̂θ  and 1̂θ  are updated 

for the first time when a total of K remote hosts are decided as benign or malicious, 

respectively.  Based on ordered statistics [10], for a group of benign remote hosts 

which issue FCC requests randomly to local hosts, the first few hosts that are 

detected as benign tend to have zero or very few failed FCC requests.  Similarly, 

the first few malicious remote hosts that are detected as malicious tend to have 

zero or very few successful FCC requests.  Consequently, the estimates may 

largely deviate from the real values if we set 1K = .  In general, a large value of 
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K provides better accuracy but longer detection time.  We select 10K =  in our 

experiments presented in the next chapter. 
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Chapter 5. 

Experimental Results 

 

In this chapter, we present simulation results for the TRW algorithm (with 

known θ  and unknown θ ) and our proposed adaptive sequential hypothesis 

testing algorithm.  The desired false positive and false negative probabilities are 

both set to 0.01.  In other words, we choose 0.01α =  and 0.99β =  in our 

experiments.  Simulations are performed for 900 benign hosts and 100 malicious 

hosts.  The probabilities of success for an FCC request generated by a benign 

host or a malicious host are equal to 0θ  and 1θ , respectively.  We performed 

simulations for different values of 0θ  and 1θ . 

Figure 1 and Figure 2 compare, respectively, the false positive and false 

negative probabilities of the TRW algorithm with or without knowing 0θ  and 1θ  

and our proposed adaptive algorithm, for various values of 0θ  and 1θ .  We 

assume that  0 0.8θ =  and 1 0.2θ =  are used for the TRW algorithm without 

knowing 0θ  and 1θ .  As one can see, the false positive and false negative 

probabilities are very low for the TRW algorithm with perfect knowledge of 0θ  
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and 1θ .  However, without knowing the real values of 0θ  and 1θ , its false 

positive and false negative probabilities of TRW could be much greater than the 

desired values when 0θ  is small and 1θ  is large (say, 0 0.6θ =  and 1 0.4θ = ).  

The reason is that the step size of moving upward using 0̂ 0.8θ =  and 1̂ 0.2θ =  is 

significantly larger than the step size of moving upward using 0 0.6θ =  and 

1 0.4θ = .  Using our proposed scheme (i.e., Adaptive SHT), the false positive and 

false negative probabilities are almost lower than 5% for all cases (except for 

0 0.55θ =  and 1 0.45θ = ).  The results are close to the desired values because 

the estimates of 0θ  and 1θ  in our proposed scheme are quite accurate (as Table 5 

shows).  Note that in our proposed scheme, the false positive probabilities are 

larger than false negative probabilities when 0θ  is large and 1θ  is small.  This is 

because the number of benign hosts is much larger than the number of malicious 

hosts.  As a result, 0̂θ  is updated much earlier than 1̂θ .  As mentioned before, 

the earlier detected benign hosts tend to have many more successful FCC requests 

than failed ones.  This implies 0̂θ  tends to be larger than the real value which 

makes it easier to detect a remote host as benign. 
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Figure 1: Comparison of false positive probabilities. 

 

Figure 2: Comparison of false negative probabilities. 
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Table 5: Estimates of 0θ  and 1θ  for the proposed adaptive algorithm. 

0θ  0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 

1θ  0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

0̂θ  0.9499  0.9001  0.8500  0.8002 0.7502 0.7004 0.6505  0.6006  0.5502 

1̂θ  0.0529  0.1041  0.1559  0.2064 0.2598 0.3150 0.3718  0.4327  0.4934 

 

Table 6 and Table 7 show, respectively, the average number of FCC requests 

sent by a remote host to be detected as benign or malicious.  The TRW algorithm 

with unknown 0θ  and 1θ  is fast in making a decision because the large step 

sizes.  Unfortunately, as illustrated in Figures 1 and 2, its false positive and false 

negative probabilities are not satisfactory.  The average number of FCC requests 

for our proposed adaptive algorithm are comparable to those for the TRW 

algorithm with known 0θ  and.  Let θ̂  and ˆ 'θ  be two successive estimates of 

θ .  One can stop updating θ̂  if ˆ ˆ'θ θ ε− <  for a given ε  to speed up the 

detection time.  In other words, the time spent to obtain a stable estimate of θ  

can be regarded as the period of training.  Of course, to adapt to a changing 
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environment, the training procedure should be reactivated once in a while. 

 

 

Table 6: The average number of FCC requests to detect a remote host as benign. 

0θ  95% 90% 85% 80% 75% 70% 65% 60% 55% 

1θ  5% 10% 15% 20% 25% 30% 35% 40% 45% 

TRW (known 

0θ  and 1θ ) 
2.21  3.74  4.24 6.61 9.92 14.81 26.32  59.14  225.61 

TRW (unknown 

0θ  and 1θ ) 
4.45  5.00  5.70 6.63 7.80 9.36 11.26  13.40  15.23 

Adaptive_SHT 15.82  17.66  20.01 23.03 27.35 33.97 46.15  77.19  304.51 
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Table 7: The average number of FCC requests to detect a remote host as malicious. 

0θ  95% 90% 85% 80% 75% 70% 65% 60% 55% 

1θ  5% 10% 15% 20% 25% 30% 35% 40% 45% 

TRW (known 

0θ  and 1θ ) 
2.21  3.74  4.23 6.63 9.91 14.78 26.42  59.15  224.71 

TRW (unknown 

0θ  and 1θ ) 
4.45  5.01  5.71 6.63 7.80 9.36 11.24  13.38  15.24 

Adaptive_SHT 15.33  17.13  19.33 22.11 25.98 31.75 41.43  61.81  139.21 
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Chapter 6. 

Conclusion 

 

We have presented in this paper an adaptive sequential hypothesis testing 

algorithm for accurate detection of scanning worms.  Numerical results show 

that our proposed adaptive algorithm provides accurate estimates of 0θ  and 1θ  

and thus achieves false positive and false negative probabilities close to the 

desired values.  The proposed adaptive estimation procedure for 0θ  and 1θ  is 

an important enhancement of the sequential hypothesis testing algorithm because 

it makes the algorithm much more robust to variation of 0θ  and 1θ .  The 

proposed adaptive detection algorithm is only suitable for scanning worms.  

How to effectively detect other types of worms remains to be further studied. 
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