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Adaptive Sequential Hypothesis Testing for Accurate

Detection of Scanning Worms

Student: Sung-Yen Lee Advisor: Prof. Tsern-Huei Lee

Institute of Communication Engineering

National Chiao Tung University

Abstract

Early detction techniques of scaning worms are based on simple observations of
high port/address scanning rates of malicious hosts. Such apporaches are not able to
detect stealthy scanners and can be.easily evaded once the threshold of scanning rate for
generating alerts is known to the attackers. »To .overcome this problem, sequential
hypothesis testing was developed as ‘an alternative detection technique. It was found
that the technique based on sequential-hypothesis testing can detect scanning worms
faster than those based on scanning rates in the sense that it needs fewer observations
for the outcomes of connection attempts. However, the performance of the detection
technique based on sequential hypothesis testing is sensitve to the probabilities of
success for the first-contact connection attempts sent by benign and malicious hosts.
The false positive and false negative probabilities could be much larger than the desired
values if these probabilities are not known. In this paper, we presnt a simple adpative
algorithm which provides accurate estimates of these probabilities. Numerical results
show that the proposed adaptive estimation algorithm is an important enhancement of
sequential hypothesis testing because it makes the technique robust for detection of

scanning worms.
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Chapter 1.

Introduction

The rapid advances of computer and network technologies allow modern
computer worms to spread at a speed much faster than human-mediated responses.
The Code Red [6], Nimda [7], and Slammer [8] that were detected in recent years
infected hundreds of thousands of computers on the Internet in a very short period
of time and caused huge economic less.to our society. Fast and accurate
detection of worms as they are spreading is, therefore, very important to prevent

the majority of vulnerable systems from being infected and minimize the damage.

Current computer worm detection technologies can be classified into three
categories, namely, protocol analysis, pattern matching, and behavior anomaly.
Protocol analysis is a technique which examines the header of a packet to ensure
there 1s no misuse of protocol fields. For example, the OID field of an SNMP
packet should be a certain number of bytes. There is something wrong (say, an
overflow attack) if the next expected field does not appear after this number of

bytes. Pattern matching is a technique of looking for specific patterns in the



payload of a packet or across packets. A specific unique pattern or string of
malicious codes can be extracted as the signature of a worm and be used in the
detection process. Although pattern matching is accurate, it is limited to known
worms with identified signatures. The majority of vulnerable systems could be
infected if the signature of a new worm is not created quickly. Finally, behavior
anomaly can be used to detect and prevent the outbreak of an attack because an
infected host is likely to behave differently from a normal host. As an example, a
host infected by some scanning worm may try to infect other vulnerable hosts on
the Internet with port/address scanning. “Therefore, one can detect an infected
host with the observation of high new connection attempt rate or high failure ratio
of first-contact connection attempts [1].” Warm detection based on behavior
anomaly is receiving more and more attention because it can detect the so-called

“zero-day” attacks and polymorphous worms without signatures.

Early behavior anomaly based scanning worm detection techniques were
designed according to simple observations of high scanning rate by an infected
host. For example, the criterion used in the Network Security Monitor (NSM) [5]
is to detect any source IP address which connects to more than M distinct

destination IP addresses within a given time window T. Snort [4] uses similar



rules. It detects a source IP address which sends connection attempts to more
than U number of ports or V number of IP addresses within S seconds. An
obvious drawback of such approaches is that an attacker can easily evade

detection once the parameter values are known.

The authors of [ 1] observed from real traces that the failure probability of a
connection attempt sent by an infected or malicious host is much higher than that
of a connection attempt sent by a benign host. As a result, the technique of
sequential hypothesis testing was developed for scanning worm detection. Their
algorithm is called Threshold:Random Walk (TRW). A failed (or successful)
connection attempt causes the random walk to-move upward (respectively,
downward). A host is declared as'malicious if the position of its corresponding
random walk is greater than the upper threshold or as benign if it is smaller than
the lower threshold. The step size of moving upward could be different from the
step size of moving downward. Compared with previous detection techniques,
the TRW algorithm is able to detect stealthy scanning and the detection process is
fast in the sense that it need only observe a few connection attempts. A
simplified algorithm which is suitable for both software and hardware

implementations was presented in [3]. In this simplification, the step sizes of



moving upward and downward are identical. The reversed sequential hypothesis
testing presented in [2] can detect malicious scanners faster than the TRW
algorithm. However, it slightly increases the false positive probability. The
TRW algorithm, its simplified version, and the reverse sequential hypothesis

testing will be reviewed in Chapter 3.

A fundamental assumption of the TRW algorithm is that the success
probabilities of connection attempts sent by malicious and benign hosts are
known. These probabilities are used to compute the step sizes of moving upward
and downward. Unfortunately, this assumption may not be valid in a real system.
In this paper, we investigate the effect of using estimated probabilities to the false
positive and the false negative probabilities. Results show that the performance
of the TRW algorithm is sensitive to the estimated probabilities. The false
positive and false negative probabilities could be significantly larger than the
desired values if inaccurate estimates are used. In order to make TRW works
properly, we develop an adaptive algorithm which estimates the success
probabilities of connection attempts based on their outcomes. According to
simulation results, our proposed adaptive algorithm provides estimates of success

probabilities close to the real values and, therefore, the false positive and false



negative probabilities are also close to the desired values.

The rest of this paper is organized as follows. In Chapter 2, we introduce
some background about scanning worms and type I and type II errors. In
Chapter 3, we review the TRW algorithm, its simplified version, and the reversed
sequential hypothesis testing. In Chapter 4, we present our proposed adaptive
algorithm for estimation of success probabilities of connection attempts.

Experimental results are provided in Chapter 5. Finally, we draw conclusion in

Chapter 6.



Chapter 2.

Background

2.1 Scanning worms

Computer worms are malicious software applications designed to spread via
computer networks without human intervention. Scanning worms locate
vulnerable hosts by generating alist of addresses to probe and then contact them.
They can self-propagate among the hosts exploiting security or policy flaws in
widely-used services [11]. Amn infected host initiates scans and infects the other
benign hosts. Subsequently, the benign hosts may be infected and then join the

army of scanning. Finally, more and more hosts on the Internet will be infected.

The list of addresses can be generated sequentially or pseudo-randomly.
Local addresses are often preferentially selected because the communication
between neighboring hosts will likely encounter fewer defenses [12].  Scans
may take the form of TCP connection requests (SYN packets) or UDP packets.

In the case of the connectionless UDP protocol, it is possible for the scanning



packet to also contain the body of the worm, such as the Slammer worms [§].

Scanning worms probe attempts to determine if a service is operating at a
target IP address and then discover new victims. They have two basic scanning
types — horizontal scans and vertical scans. The former look for an identical
service on a large number of hosts, and the latter examine an individual host to

discover all running services.

There are many kinds of techniques to generate a list of addresses for
scanning worms, such as linear,scanning of an IP address space (Blaster), fully
random (Code Red), a bias toward local address (Code Red II and Nimda), or
even more enhanced techniques (Permutation Scanning). While more and more
scanning worms change their style of scanning to avoid being detected, all of
them still have two common properties as follows. Most of the scanning
attempts may result in failure, and the infected hosts will send many connection
attempts [3]. As long as we look for a class of behavior rather than specific

worm signatures, most of the new worms will be detected.



2.2 Type | and type Il errors

In statistics, the terms Type I error (a error, or false positive) and type II error
(B error, or a false negative) are used to describe possible errors made in a

statistical decision process.

Type I error: the error of rejecting a null hypothesis when it is actually true.
Plainly speaking, it occurs when we are observing a difference when in truth there

1S none.

Type 11 error: the error of failing to rejeéct.a mull hypothesis when it is in fact not
true. In other words, this is'the error of failing to observe a difference when in

truth there is one.

Table 1 illustrates the ambiguity, which is one of the dangers of this wider use:
They assume the speaker is testing for guilt; they could also be used in reverse, as
testing for innocence; or two tests could be involved, one for guilt, the other for

innocence. Table 2 illustrates the conditions we use in this paper.



Table 1: Definition of false positive and false negative

Actual Condition

Present Absent
Positive True Positive False Positive
Test
Result ) ) )
Negative False Negative True Negative

Table 2: Example of false positive and false negative

Actual Condition

Scanner Benign
Scanner Detection False Positive
Test
Result . .
Benign False Negative Normal




When a host is determined to be malicious or benign, it’s possible to make an
error, such as regarding a benign host as malicious one or regarding a malicious
host as benign one. We hope that the scan detection mechanism can distinguish
between malicious and benign hosts as precisely as possible. In other words, we
hope the probability of false positive and false negative is as less as possible.

In this paper, we use the false positive probability and false negative probability

to judge whether an algorithm is suitable for the scan detection.
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Chapter 3.

Related Works

In the TRW algorithm, an event is generated and monitored when a remote
source I makes a first-contact connection (FCC) request to a local destination I.
An FCC request is a connection request which is addressed to a host the sender
has not previously communieated. - For simplicity, only TCP connections are
considered and thus a TCP SYN packet-indicates a connection request. The
outcome of an FCC request is classified as either a “success” or a “failure”. It is
a success if host | replies a SYN-ACK packet or a failure if host | replies a RST
packet or does not reply at all. When extended to UDP connections, the first
UDP packet from r to | can be used to indicate a connection request and any UDP
packet from | to r before timeout can be considered as successful establishment of

the connection.

11



For a given remote host I, let X; be a random variable that represents the

outcome of the FCC request from r to the i™ distinct local host |., where

_ |0 if the FCC request is a success
' |1 ifthe FCC request is a failure

The outcomes of X,, X,, ..., are observed so that host r can be determined
to be either malicious or benign. There are two hypotheses: H, and H,, where
H, is the null hypothesis that the remote host r is benign and H, is the

hypothesis that r is malicious. To simplify the analysis, it is assumed that,

conditioning on hypothesis H, therandom variables X,[H;, X,[H are

j, cee

independent and identically distributed (i:i.d.) with probability mass function

P[X;=0|H,]=6, P[X;=1H,]=1-6,
P[X;=0[H,|]=6 P[X;=1|H,]=1-6,

for some 6, and @ which satisfy 6, >6,.

Given the two hypotheses, there are four possible decisions. The decision is
called a detection if the algorithm selects H, when H, istrue. On the other
hand, it is called a false negative if the algorithm chooses H, when H, is true.

Likewise, when H, is true, selecting H, constitutes a false positive and

12



selecting H,, is called a normal. These four possible outcomes are represented

as :

Detection: P|choose H, |H, is true |= Py,
False Negative: P|choose H, |H, is true |=Pgy =1- Py,
False Positive: P[choose H,|H, is true] =P,

Normal: P[choose H, |H, is true |= Py, =1-Pxp

The desired performance of the TRW algorithm can be specified with the

detection probability P,; and the false positive probability P,. Let o

represent the upper bound of falge positivé probability and £ denote the lower

bound of detection probabilitys= In other words, we desire
P Sa-and Py =2 S

DT =

where typical values might be o =0.01 and £=0.99.

As the outcome of X; is observed, we calculate the likelihood ratio:

where X, = ( X Xy, Xn) 1s the vector of outcomes observed so far.

13



Note that A(X,) can be updated incrementally. Let ¢(X;) represent the

likelihood ratio of the i observation. It holds that
n
AW =T TO0 A X)) AX,)=1

The updated likelihood ratio A(X,) is compared with an upper threshold 7,
and a lower threshold 7. If A(X,)>7,, then hypothesis H, is accepted. If

A(X,)<n,, then hypothesis H, is accepted. More observations are needed if

770<A(Xn)<771 )

It can be shown that 7, <Py /Peprand 7, > (1- Py )(1-Pep) [9]. Inreal
implementations, one can use the approximations P, =a, Py; =/ and set

n=pB/a and 7, =(1-p)/(1-a):Moreover, the log-likelihood ratio can be

used to simplify computation.

The huge complexity of monitoring FCC requests of all remote hosts makes
the TRW algorithm infeasible. In [3], a simplified version which uses one bit to
indicate whether or not host r has sent any packet to host | and another bit for the
opposite direction for a given connection that is determined by the remote IP
address, local IP address, source port, destination port, and protocol ID. A hash

function is adopted to reduce the space requirement. As a tradeoff, the false

14



negative probability is slightly increased. The step sizes of moving upward and

downward are both set to one in the simplified version.

It is possible that a remote host is infected when its likelihood ratio is close to
but larger than 77,. In this case, it needs more observations for the TRW
algorithm to declare the host to be malicious than doing so for a host who is
infected when its likelihood ratio is equal to 1. The reversed sequential

hypothesis testing proposed in [2] computes the likelihood ratio for the reversed

vector of outcomes X, =(X,,---,X,) observed so far. For this algorithm, the

likelihood ratio can be easily:updated according to

A(Xp)= max(l, K(anl)gb(Xn)) with A(X,)=1. It can detect malicious hosts
slightly faster than the TRW algorithms; "However, it increases the false negative

probability and does not detect benign hosts.

As mentioned before, the TRW algorithm assumes that 6, and 6, are
known, which may not be true in a real network. According to the numerical
results to be presented in Chapter 5, the false positive and false negative
probabilities of the TRW algorithm could be much larger than the desired values if

the adopted 6, and @, are different from their true values. To overcome this

problem, we propose in the next chapter an adaptive algorithm to estimate the

15



values of 6, and 6, based on observations of the outcomes of FCC requests.

16



Chapter 4.

Adaptive Sequential Hypothesis Testing

Our proposed adaptive sequential hypothesis testing provides estimates of

0, and 6, adaptively based on observations of the outcomes of FCC requests.
We will consider only the estimation procedure of &,. The estimation procedure

for 6, is similar.

The basic idea of our proposed ¢stimation procedure is as follows. An
estimate of 6, denoted by éo , 18'generated when the total number of remote
hosts that are detected as benign is greater than or equal to K, where K is a design
parameter. Let S; and F, represent, respectively, the numbers of successful
and failed FCC requests sent by I, when it is detected as benign. Furthermore,

ZS
let N;=S;+F. Theestimate of 6, isgiven by =<, forall i such that

PN

is detected as benign.

In the beginning, we need a data structure as shown in Table 3. When a

remote host I makes an FCC request to a local destination, its likelihood ratio is

17



updated according to the outcome, i.e., success or fail, of the FCC. If the FCC
request is classified as success, S; of Hash(r) is increased by one, where
Hash(r) represents the hash result of IP address r. On the contrary, if the FCC

request is classified as fail, F; of Hash(r) is increased by one.

Table 3: Data structure of the adaptive sequential hypothesis testing algorithm.

Hash(r) A(Xn) S, F
611 5.545177 0 2
849 6.415920 3 4
965 -4.674434 3 0
1540 -5.361835 7 2

The remote host r is detected as benign if its likelihood ratio is lower than

threshold 7,. On the other hand, if its likelihood ratio is higher than threshold
1, , the remote host r 1s declared as malicious. Once remote host r is decided as
benign or malicious, the corresponding S; and F; values are added to the data

structure shown in Table 4.

18



Table 4: Data structure for updating 6, and 6, .

Total # of observed
success for benign

IP

Total # of observed

fail for benign IP

Total # of observed

success for

malicious IP

Total # of observed

fail for malicious IP

2008

55

87

325

The estimates of 6, and @, are obtained from Table 2. Initially, we set
0,=0.55 and 6,=0.45. Note thatichoosing a small value for ¢, and a large
value for él (as we did here) require more time to classify a remote host as
benign or malicious. However, it achiéves better accuracy and thus is
worthwhile to sacrifice the decision time. In our design, éo and él are updated
for the first time when a total of K remote hosts are decided as benign or malicious,
respectively. Based on ordered statistics [10], for a group of benign remote hosts
which issue FCC requests randomly to local hosts, the first few hosts that are
detected as benign tend to have zero or very few failed FCC requests. Similarly,
the first few malicious remote hosts that are detected as malicious tend to have
zero or very few successful FCC requests. Consequently, the estimates may

largely deviate from the real values if we set K =1. In general, a large value of

19



K provides better accuracy but longer detection time. We select K =10 in our

experiments presented in the next chapter.

20



Chapter 5.

Experimental Results

In this chapter, we present simulation results for the TRW algorithm (with
known € and unknown &) and our proposed adaptive sequential hypothesis
testing algorithm. The desired false positive and false negative probabilities are
both set to 0.01. In other words, we choose a=0.01 and £=0.99 in our
experiments. Simulations are'performed for.900 benign hosts and 100 malicious

hosts. The probabilities of'success for an FCC request generated by a benign

host or a malicious host are equal to 8, and’ 6, respectively. We performed

simulations for different values of 6, and 6,.

Figure 1 and Figure 2 compare, respectively, the false positive and false

negative probabilities of the TRW algorithm with or without knowing 6, and 6,
and our proposed adaptive algorithm, for various values of 6, and 6,. We
assume that 6,=0.8 and 6,=0.2 are used for the TRW algorithm without
knowing 6, and 6,. As one can see, the false positive and false negative

probabilities are very low for the TRW algorithm with perfect knowledge of 6,

21



and 6. However, without knowing the real values of 6, and &, its false

positive and false negative probabilities of TRW could be much greater than the
desired values when 6, is small and 6, is large (say, 6, =0.6 and 6 =0.4).
The reason is that the step size of moving upward using éo =0.8 and é1 =0.2 is
significantly larger than the step size of moving upward using 6, =0.6 and

6,=0.4. Using our proposed scheme (i.e., Adaptive SHT), the false positive and

false negative probabilities are almost lower than 5% for all cases (except for

6, =0.55 and 6,=0.45). The results are close to the desired values because

the estimates of 6, and 6, in ourproposed scheme are quite accurate (as Table 5

shows). Note that in our proposed scheme, the false positive probabilities are

larger than false negative probabilities when 6, islarge and 6, issmall. Thisis
because the number of benign hosts is much larger than the number of malicious
hosts. As a result, 90 1s updated much earlier than 91. As mentioned before,

the earlier detected benign hosts tend to have many more successful FCC requests

than failed ones. This implies éo tends to be larger than the real value which

makes it easier to detect a remote host as benign.
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Table 5: Estimates of 6, and 6, for the proposed adaptive algorithm.

6, | 095 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55

6, | 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

0, | 0.9499 | 0.9001 | 0.8500 | 0.8002 | 0.7502 | 0.7004 | 0.6505 | 0.6006 | 0.5502

0.0529 | 0.1041 | 0.1559 | 0.2064 | 0.2598 | 0.3150 | 0.3718 | 0.4327 | 0.4934

D>

Table 6 and Table 7 show, respectively, the average number of FCC requests
sent by a remote host to be detected as benign or malicious. The TRW algorithm
with unknown 6, and 6, is fast in making a decision because the large step
sizes. Unfortunately, as illustrated in Figures 1 and 2, its false positive and false
negative probabilities are not satisfactory. The average number of FCC requests
for our proposed adaptive algorithm are comparable to those for the TRW
algorithm with known @, and. Let 0 and @' be two successive estimates of
@. One can stop updating 6 if Hé '— é” <¢ foragiven ¢ to speed up the
detection time. In other words, the time spent to obtain a stable estimate of &
can be regarded as the period of training. Of course, to adapt to a changing

24



environment, the training procedure should be reactivated once in a while.

Table 6: The average number of FCC requests to detect a remote host as benign.

6, 95% | 90% | 85% | 80% | 75% | 70% | 65% | 60% | 55%
6, 5% 10% | 15% | 20% | 25% | 30% | 35% | 40% | 45%
TRW (known
221 | 3.74 |=4.24 | 6.61 9.92 «| 14.81 | 26.32 | 59.14 | 225.61
g, and 6))
TRW (unknown
445 | 500 | 570 | 6.63 | 7.80 | 936 | 11.26 | 13.40 | 15.23
0, and 0))
Adaptive SHT | 15.82 | 17.66 | 20.01 | 23.03 | 27.35 | 33.97 | 46.15 | 77.19 | 304.51
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Table 7: The average number of FCC requests to detect a remote host as malicious.

6, 95% | 90% | 85% | 80% | 75% | 70% | 65% | 60% | 55%
6, 5% 10% | 15% | 20% | 25% | 30% | 35% | 40% | 45%
TRW (known
221 | 3.74 | 423 6.63 | 991 | 1478 | 26.42 | 59.15 | 224.71
g, and 6))
TRW (unknown
445 | 5.01 5.71 6.63 | 7.80 | 936 | 11.24 | 13.38 | 15.24
0, and 0))
Adaptive SHT | 15.33 | 17.13 | 49.33 22|11 1:25.98. | 31.75 | 41.43 | 61.81 | 139.21
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Chapter 6.

Conclusion

We have presented in this paper an adaptive sequential hypothesis testing

algorithm for accurate detection of scanning worms. Numerical results show

that our proposed adaptive algorithm provides accurate estimates of &, and 6,

and thus achieves false positive and false negative probabilities close to the

desired values. The proposediadaptive estimation procedure for 6, and 6, is

an important enhancement of the sequential hypothesis testing algorithm because

it makes the algorithm much more robust tovariation of 6, and 6. The

proposed adaptive detection algorithm is only suitable for scanning worms.

How to effectively detect other types of worms remains to be further studied.
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