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利用限制隨機賽局在認知網路下動態管理功率 

學生：王佳偉 

 

指導教授：方凱田教授 

國立交通大學電信工程學系碩士班 

摘 要       

 
近年研究指出,已分配頻帶的頻寬使用效率低，而為了促使頻寬使

用效率的提升，認知網路(Cognitive Radio, CR)則被提出來動態的使

用這些已分配卻效率不高的頻帶。其中在認知網路中使用者之間的訊號

干擾與功率分配則被提出許多的相關研究。因此，在這篇論文中,使用

賽局理論(Game Theory)的限制隨機賽局(Constrianed Stochastic Game)

在動態的通道環境與存在頻寬的使用者下，求出此問題的最佳決策。內

容的研究中，分別求出有限時間和無限時間下，包含了已分配與未分配

頻帶的最佳決策。而在求解的過程中，均對信號的干擾做了限制，因此

CR 的使用者對頻寬的擁有者不會造成嚴重的干擾。根據賽局理論模型的

表示，可以證明存在賽局的奈許平衡解(Nash equilibrium)，而此奈許

平衡解可以使每個 CR 使用者在彼此競爭的情況下得到個人的最佳化。

在模擬的部分，驗證了確實可達到奈許平衡解，也顯示可優於貪婪式的

演算法(Greedy mechanism)，並且對有通道感測的誤差下仍可達到可預

期的結果。 
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ABSTRACT 
 

Recent studies have been conducted to indicate the ineffective usage of 

licensed bands due to the static spectrum allocation. In order to improve the 

spectrum utilization, the cognitive radio is therefore suggested to dynamically 

exploit the opportunistic primary frequency spectrums. The interference from 

the secondary users to the primary user consequently draws the attention to the 

spectrum and power management for the cognitive radio networks. In this 

paper, the constrained stochastic games are utilized to exploit the optimal 

policies for power management by considering the variations from both the 

channel gain and the primary traffic. Both the underlay and overlay waveforms 

are considered within the network scenarios for the proposed power 

management scheme. Constraints for allowable interferences will be applied in 

order to preserve the communication quality among the primary and the 

secondary users. With the assumption of the Markovian property of dynamic 

environment, finite and infinite time horizon scenarios are both considered in 

target function. According to the formulation of the constrained stochastic 

games, the existence of the constrained Nash equilibrium will be validated with 

rigorous proofs. Simulation results further validate the correctness of the 

theoretically-derived policies, compare with the greedy mechanism and 

examine the effect of channel sensing error for dynamic power management. 
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Chapter 1

Introduction

Due to rapid development of wireless systems, the demand for wireless spec-

trums has resulted in spectrum scarcity based on the conventional fixed al-

location schemes. Even with the intensive usage of frequency spectrums, it

has been studied by extensive measurements [1] that 62% of spectrum still

remains unoccupied by the licensed primary user (PU). Cognitive radio (CR)

is an intelligent wireless communication system that is perceptible to its sur-

roundings. It is advanced as an emerging technology to effectively exploit

the under-utilized spectrum in order to overcome the overcrowded spectrum

problem.

There are two types of spectrum sharing that are defined for the CR

networks (CRNs), including the underlay and the overlay waveforms. The

underlay waveform represents that the unlicensed secondary users (SUs) are

allowed to simultaneously share the primary frequency spectrum with the

1



PUs. The transmission power of the SUs are in general limited in order not

to cause excessive interferences to the PUs. On the other hand, an overlay

waveform allows the SUs to perform packet transmission under the existence

of a spectrum hole. The spectrum hole is defined as a frequency band au-

thorized to PUs, however, it is vacant at a particular time and geographic

location. With the overlay waveform, the SUs can sense and identify the

existence of spectrum hole for data communications. Therefore, spectrum

utilization can be enhanced with these frequency-agile features. The research

work in the CRNs has been investigated from various aspects. The work pro-

posed in [2; 3] presents the techniques for spectrum sensing and detection;

while [4; 5] investigate the spectrum allocation problem for the CR. There

are also research [6; 7] focusing on the medium access control design for the

CRNs.

Game theory [8] has been considered a feasible mathematical tool for solv-

ing the resource allocation problems in distributed CRNs. The fundamental

concept of game theory is to resolve the conflict and cooperation between

intelligent rational decision-makers (DMs). Instead of reaching a globally

optimized solution based on identical objective, the DMs within the gaming

formulation are seeking for solutions selfishly without the knowledge of other

DMs’ decisions. The primary reason is due to the inherent conflicts between

the objectives that are assigned among the DMs, which can be adopted to

model the behaviors of both PUs and SUs within the CRNs. After reaching

the optimized solution (i.e. Nash equilibrium (NE) [8]) based on the game

2



theory, each individual DM will not benefit from any action to deviate from

the NE. In other words, by considering the conflicted interests between the

DMs, the solutions obtained at the NE will provide every DM to possess the

optimal resource allocation.

In general, two different types of games are categorized for the game

theory, i.e. the strategic games and the extensive games. With the objective

of reaching the NE, all DMs simultaneously select their strategies only for

one-time by adopting the strategic games [8], which have been exploited

to resolve the power control problem for the CRNs in recent research work

[9; 10]. The work in [9] proposed an algorithm for distributed multi-channel

power allocation based on the strategic gaming model;while the pricing-based

games are utilized in [10] to achieve a higher signal-to-noise ratio with the

guarantee of reliable data transmissions. However, computation of NEs in

strategic game will introduce some computation time at each time.

On the other hand, the extensive games [8; 11; 12] represent a class of

gaming models where the DMs repeatedly conduct decision-making numer-

ous times for resource allocation. Unlike the strategic games that each DM

considers his strategy only at the beginning of the game, the extensive games

is implemented whenever a decision has to be made in order to increases the

spectrum efficiency by the multi-stage gaming model. The scheme proposed

in [12] utilized the repeated game to solve NE point under underlay wave-

form. But it can’t character the variation of CRN environment. In addition,

constrained stochastic games [13; 14] are formulated by extending the exten-

3



sive games for dynamically-changing environments with the consideration of

certain constraints for optimization. It can be considered as an extension of

the Markov decision process from a single DM to multiple DMs. The power

allocation algorithm proposed in [15] imposes both the power and the buffer

length constraints under the environments with varying channel states. It

is noticed that only independent states between the DMs are considered in

[15], i.e. the states of power and buffer length for each DM is independent

to those from other DMs. So, constrained stochastic games can be applied

to the resource management problems for CRNs.

In this paper, the constrained stochastic games are adopted and extended

to study the dynamic power management problem in CRNs. The dynamic

environments occurred from the channel variations and the uncertain spec-

trum holes will be modeled as the ergodic Markov decision process. It is

noticed that the spectrum holes are considered the dependent states for each

SU since the SUs are sharing to utilize the spectrum holes while the original

licensed PU is temporarily releasing the frequency band. Moreover, each SU

can perceive its own current state but is unaware of the states and strate-

gies from the other SUs. As the licensed spectrum is occupied by the PUs,

the underlay waveform is executed by the SUs with the introduction of rea-

sonable interferences to the PUs. On the other hand, the SUs will share

the spectrum hole with the overlay waveform as the primary traffic is ab-

sent. Constraints for allowable interferences will also be imposed to preserve

the communication quality among the SUs under the existence of spectrum

4



holes. With the satisfaction of the defined constraints, the constrained NE

suggests an optimal solution to the dynamic power assignment according to

the SUs’ current state within the CRNs. In finite and infinite time horizon,

i.e.time non-converge and converge to stable point respectively , existence of

constrained NE will be proved.

Therefore, considering all of the issues mentioned above, two stochastic

game are proposed in this paper to describe the finite time and infinite time

horizon respectively in the CRNs. Similar Dynamic programming method

will prove the existence of constrained NE in finite time horizon. Using the

stable property of CRNs the existence of constrained NE will be demon-

strated in infinite time horizon.

The rest of this paper is organized as follows. chapter 2 presents the

system models of finite and infinite time horizon of CRNs. The correspond-

ing proofs for the existence of constrained Nash equilibrium are provided in

chapter 3 and chapter 4 respectively. Numerical evaluation is performed in

chapter 5; while chapter 6 draws the conclusions.
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Chapter 2

System Model for Dynamic

Power Management with

Constrained Stochastic Games

The schematic diagram of the CRN is illustrated in Fig. 2.1, where a syn-

chronous slotted time structure is considered. A PU is communicating with

its primary base station; while there exists 𝑁 = 2 SU pairs where SU(Tx) is

intending to transmit its data packets to the respective SU(Rx) within the

same frequency spectrum as the PU. The overlay waveform is shown at the

time slot 2 where a spectrum hole happens for the SUs to share the licensed

band without the existence of the PU. At both time slots 1 and 3, with toler-

able interferences to the PU, the SUs coexist with the PU to conducts their

transmissions under the execution of the underlay waveform.

6
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Figure 2.1: The schematic diagram of the cognitive radio network for dynamic
power management. (Tx : transmitter , Rx : receiver)

At each time slot 𝑡, each SU(Tx) 𝑖 forwards its data packets with a specific

power level 𝑝𝑡𝑖 ∈ 𝒑𝑖 ≜ {𝑝𝑖,0, 𝑝𝑖,1, ⋅ ⋅ ⋅ , 𝑝𝑖,max}, which is referred as the action

set in the game theory. The global set of the power level for the entire CRN

is denoted as P =
∏𝑁

𝑖=1 𝒑𝑖. The dynamic environment in CRN is modeled

as an ergodic Markov chain [16], where feedback information is considered

available for each SU pair, i.e. from SU(Rx) to SU(Tx). In other words,

each SU(Tx) will possess the information about all the current states that

are detected by its corresponding SU(Rx). The compound state 𝑠𝑡𝑖 of each SU

𝑖 at the time slot 𝑡 is constructed by two elements 𝜙𝑡
𝑖 and 𝑔

𝑡
𝑖 , i.e. 𝑠

𝑡
𝑖 = (𝜙𝑡

𝑖, 𝑔
𝑡
𝑖).

The parameter 𝜙𝑡
𝑖 ∈ 𝝓𝑖 ≜ {0, 1} is utilized to denoted the status of the

PU, where 𝜙𝑡
𝑖 = 0 indicates the absence of the primary traffic, and 𝜙𝑡

𝑖 = 1

represents the existence of the PU within the CRN. It is noted that, at each

time slot 𝑡, the indication of the primary traffic 𝜙𝑡
𝑖 is considered equal for

all the SUs 𝑖 that share the licensed spectrum. Therefore, the global space
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can be obtained as Φ =
∏𝑁

𝑖 𝝓𝑖 = {𝛼, ⋅ ⋅ ⋅ , 𝛼}, where Φ has 𝑁 elements with

𝛼 ∈ {0, 1}. Moreover, the state of the channel gain for each SU 𝑖 at time slot

𝑡 is denoted by the index 𝑔𝑡𝑖 ∈ 𝒈𝑖 ≜ {0, ⋅ ⋅ ⋅ , 𝐿𝑖 − 1}. The compound state 𝑠𝑡𝑖

will therefore belong to the set 𝒔𝑖 = 𝝓𝑖 × 𝒈𝑖 with the length of state vector

equal to 2𝐿𝑖. The global state space of 𝑠
𝑡
𝑖 considering all the 𝑁 SUs can also

be represented as S =
∏𝑁

𝑖=1 𝒔𝑖. The immediate utility of SU 𝑖 is defined as

𝑟𝑖 which is a function of (𝒔𝑡,𝒑𝑡). Furthermore, 𝑃 𝑖
𝑥𝑦 = ℳ(𝑠𝑡+1

𝑖 = 𝑦∣𝑠𝑡𝑖 = 𝑥)

is utilized to express the state transition probability, where ℳ(𝜀) is the

probability measure over an event 𝜀.

A history at time epoch 𝑡 of SU 𝑖 is a time sequence of its current

state as well as its previous states and actions, which is denoted as 𝒉𝑡
𝑖 =

(𝑠0𝑖 , 𝑝
0
𝑖 , 𝑠

1
𝑖 , 𝑝

1
𝑖 , ⋅ ⋅ ⋅ , 𝑠𝑡−1

𝑖 , 𝑝𝑡−1
𝑖 , 𝑠𝑡𝑖) with 𝑠𝑘𝑖 ∈ 𝒔𝑖 and 𝑝𝑘𝑖 ∈ 𝒑𝑖. Let H

𝑡
𝑖 be the col-

lection of all possible histories of length 𝑡 for SU 𝑖. A policy employed by SU

𝑖 can be denoted as a sequence 𝒖𝑖 = (𝑢0
𝑖 , 𝑢

1
𝑖 , ⋅ ⋅ ⋅ , 𝑢𝑡

𝑖), where 𝑢
𝑡
𝑖 : H

𝑡
𝑖 → ℳ(𝒑𝑖)

is a function mapping from the histories to the probability measure over

the action sets of SU 𝑖. The elements within the policy 𝑢𝑡
𝑖 indicate the oc-

curring probabilities for their corresponding power level 𝑝𝑖,𝑗 for 𝑗 = 0 to

max. It is noted that the decision of the policy 𝑢𝑡
𝑖 for each SU is indepen-

dent to that for the other SUs. The set of all reasonable policies for SU

𝑖 is in the policy space U𝑖, i.e. 𝒖𝑖 ∈ U𝑖. Therefore, with the considera-

tion of all the 𝑁 SUs, the global policy space U =
∏𝑁

𝑖=1U𝑖 is called the

class of multi-policies. In addition, the multi-policy except SU 𝑖 is defined

as 𝒖−𝑖 = (𝒖1,𝒖2, ⋅ ⋅ ⋅ ,𝒖𝑖−1,𝒖𝑖+1, ⋅ ⋅ ⋅ ,𝒖𝑁) ∈ 𝑼−𝑖. Moreover, the stationary
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policies are characterized as the policy that is independent of the histories,

i.e. 𝑢𝑡
𝑖 : 𝒔𝑖 → ℳ(𝒑𝑖) as a function mapping only from the current state

𝒔𝑖. The union of all possible stationary policies is denoted as U𝑆
𝑖 ∈ U𝑖, and

U𝑆 =
∏𝑁

𝑖=1U
𝑆
𝑖 ∈ U represents the class of stationary multi-policies.

2.1 Finite Time Horizon

The expected utility of SU 𝑖 with the policy 𝒖 = (𝒖1,𝒖2, ⋅ ⋅ ⋅ ,𝒖𝑁) ∈ U and

the initial state 𝒔0 = (𝑠01, 𝑠
0
2, ⋅ ⋅ ⋅ , 𝑠0𝑁) ∈ S can be obtained as

𝑅𝑇
𝑖 (𝒔

0,𝒖) =
1

𝑇

𝑇−1∑
𝑡=0

𝐸𝒖
𝒔0

[
𝑟𝑖(𝒔

𝑡,𝒑𝑡)
]

(2.1)

where 𝐸𝒖
𝒔0 is the operator for the computation of expectation value. Further-

more, the allowable interferences between the SUs and the PU are considered

in order to guarantee the quality of service (QoS) of the CRN. The supreme

expected allowable interference at the SU i(Rx) is obtained as

𝐼𝑇𝑖,𝑚(𝒔
0,𝒖) =

1∑𝑇−1
𝑡=0 𝐸𝑠0

[
𝛿0(𝜙𝑡

𝑖)
] 𝑇−1∑

𝑡=0

𝑁∑
𝑘=1
𝑘 ∕=𝑚

𝐸𝒖
𝒔0

[
𝑝𝑡𝑘 ⋅ 𝜈𝑘𝑚(𝑠𝑡𝑘) ⋅ 𝛿0(𝜙𝑡

𝑘)
]
∀𝑚 ∕= 𝑖

(2.2)
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and

𝐼𝑇𝑝 (𝒔
0,𝒖) =

1∑𝑇−1
𝑡=0 𝐸𝑠0

[
𝛿1(𝜙𝑡

𝑖)
] 𝑇−1∑

𝑡=0

𝑁∑
𝑘=1

𝐸𝒖
𝒔0

[
𝑝𝑡𝑘 ⋅ 𝜈𝑘𝑝(𝑠𝑡𝑘) ⋅ 𝛿1(𝜙𝑡

𝑘)
]
∀𝑝 ∈ {1, ⋅ ⋅ ⋅ ,𝑀}

(2.3)

where 𝛿 is the Kronecker delta function. The function 𝜈𝑘𝑚(𝑠
𝑡
𝑘) and 𝜈𝑘𝑝(𝑠

𝑡
𝑘)

represent the corresponding channel gains from SU j(Tx) to SU i(Rx) and

SU j(Tx) to PU in state 𝑠𝑡𝑘 respectively. In (2.7), 𝐼𝑇𝑖,𝑚(𝒔
0,𝒖) indicates the

case with the absence of primary traffic, i.e. 𝛿0(𝜙
𝑡
𝑖 = 0) = 1; while 𝐼𝑇𝑝 (𝒔

0,𝒖)

denotes the case with primary traffic, i.e. 𝛿1(𝜙
𝑡
𝑖 = 1) = 1. Under the usage of

licensed band from PU, the influence occurred from the SUs is confined by

𝐼𝑇𝑝 (𝒔
0,𝒖) ≤ 𝐶1 to assure the QoS of the PU, where 𝐶1 denotes the the PU’s

tolerable interference. Considering the case without the primary traffic, the

allowable interference between the SUs are constrained by 𝐼𝑇𝑖,𝑚(𝒔
0,𝒖) ≤ 𝐶0,

where 𝐶0 indicates the QoS constraint among the SUs that share the common

spectrum band. Therefore, the set of feasible policies can be defined as 𝒖 ∈ U
in order to satisfy the condition 𝐼𝑇𝑖,𝑚(𝒔

0,𝒖) ≤ 𝐶0 ∀𝑚 ∕= 𝑖 and 𝐼𝑇𝑝 (𝒔
0,𝒖) ≤

𝐶1 ∀𝑝.

Definition 1. A multi-policy 𝒖∗ = (𝒖∗
1,𝒖

∗
2, ⋅ ⋅ ⋅ ,𝒖∗

𝑁) ∈ U is a constrained

Nash equilibrium (CNE) if it is a feasible policy such that for all SUs 𝑖

𝑅𝑇
𝑖 (𝒔

0,𝒖∗) ≥ 𝑅𝑇
𝑖 (𝒔

0, [𝒖∗
−𝑖∣𝒗𝑖]) (2.4)
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for any feasible policies [𝒖∗
−𝑖∣𝒗𝑖], where the policy [𝒖∗

−𝑖∣𝒗𝑖] means that SU 𝑖

uses the policy 𝒗𝑖 while other SUs 𝑘 ∕= 𝑖 takes the policy 𝒖∗
𝑘.

2.2 Infinite Time Horizon

The expected utility of SU 𝑖 is

𝑅𝑖(𝒔
0,𝒖) = lim

𝑇→∞
𝑠𝑢𝑝

1

𝑇

𝑇−1∑
𝑡=0

𝐸𝒖
𝒔0

[
𝑟𝑖(𝒔

𝑡,𝒑𝑡)
]

(2.5)

The expected allowable interference at the SU i(Rx) are

𝐼𝑖,𝑚(𝒔
0,𝒖) = lim

𝑇→∞
𝑠𝑢𝑝

1∑𝑇−1
𝑡=0 𝐸𝑠0

[
𝛿0(𝜙𝑡

𝑖)
] ⋅

𝑇−1∑
𝑡=0

𝑁∑
𝑘=1
𝑘 ∕=𝑚

𝐸𝒖
𝒔0

[
𝑝𝑡𝑘 ⋅ 𝜈𝑘𝑚(𝑠𝑡𝑘) ⋅ 𝛿0(𝜙𝑡

𝑘)
]

∀𝑚 ∕= 𝑖 (2.6)

and

𝐼𝑝(𝒔
0,𝒖) = lim

𝑇→∞
𝑠𝑢𝑝

1∑𝑇−1
𝑡=0 𝐸𝑠0

[
𝛿1(𝜙𝑡

𝑖)
] ⋅

𝑇−1∑
𝑡=0

𝑁∑
𝑘=1

𝐸𝒖
𝒔0

[
𝑝𝑡𝑘 ⋅ 𝜈𝑘𝑝(𝑠𝑡𝑘) ⋅ 𝛿1(𝜙𝑡

𝑘)
]

∀𝑝 ∈ {1, ⋅ ⋅ ⋅ ,𝑀} (2.7)

A multi-policy 𝒖∗ = (𝒖∗
1,𝒖

∗
2, ⋅ ⋅ ⋅ ,𝒖∗

𝑁) ∈ U is a CNE in infinite time
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horizon if it is a feasible policy such that for all SUs 𝑖

𝑅𝑖(𝒔
0,𝒖∗) ≥ 𝑅𝑖(𝒔

0, [𝒖∗
−𝑖∣𝒗𝑖]) (2.8)

It is considered that the SUs are rational [8] such that all SUs are in-

tending to maximize their corresponding utilities in (2.5). Furthermore, the

decision for each SU 𝑖 to transmit packets with the power level 𝑝𝑡𝑖 at the

beginning of time slot 𝑡 is determined without additional knowledge about

the states and actions from the other SUs. As a result, the constrained Nash

equilibrium (CNE) [14] will be utilized to facilitate the power management

problem from the perspective of game theory, which is defined as follows.

The purpose of this paper is to provide the mechanism for dynamic power

management based on the optimal polices that are derived from the CNE.

The existence of CNE for the finite and infinite time horizon problems will

be acquired in chapter III and IV respectively.
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Chapter 3

Existence of CNE for Finite

Time Horizon Stochastic Game

In this chapter, the constrained optimization problem with finite time horizon

considering a single SU will be introduced in Problem 1. The Markov strategy

which will be defined in Definition 2 is also a CNE. The similar dynamic

programming method will prove existence of CNE from time slot 𝑇 − 1 to 0

sequentially.

3.1 Expected Utility and Markov Strategy

The expected utility of SU 𝑖 when deciding in time slot t is

1

𝑇 − 𝑡
𝑟𝑖(𝒔

𝑡,𝒑𝑡) +
∑
𝑠𝑡+1

𝑉𝑖(𝑡+1)(𝑠
𝑡+1)𝑃𝑠𝑡𝑠𝑡+1

)
(3.1)
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where 𝑠𝑡 is the state that occurs in time slot t and 𝑃𝑠𝑡𝑠𝑡+1 is the state transition

probability from 𝑠𝑡 to 𝑠𝑡+1. 𝑉𝑖(𝑡+1)(𝑠
𝑡+1) is the utility that SU 𝑖 expects to

receive in the future starting from time t+1.

Problem 1 (Constrained Optimization Problem (COP) With Finite Time

Horizon). Given a fixed set of policies 𝒖−𝑖 ∈ U−𝑖, find an optimal policy 𝒗∗
𝑖

for SU 𝑖 in order to maximize the expected utility

𝑅𝑇
𝑖 (𝒔

0, [𝒖−𝑖∣𝒗𝑖]) (3.2)

subject to

𝐼𝑇𝑖,𝑚(𝒔
0, [𝒖−𝑖∣𝒗𝑖]) ≤ 𝐶0 ∀𝑚 ∕= 𝑖 (3.3)

and

𝐼𝑇𝑝 (𝒔
0, [𝒖−𝑖∣𝒗𝑖]) ≤ 𝐶1 ∀𝑝 ∈ {1, ⋅ ⋅ ⋅ ,𝑀} (3.4)

For a COP with finite time horizon with terminal time T expected utility

of SU 𝑖 from the strategy combination 𝑢 is given by

where the first term on the right-hand side of the equation is the expected

utility using the strategy 𝑢 in time slot 0, the second term is the expected

utility from using the strategy 𝑢 in time slot 0 and 1 and so on till the last

term which is the expected utility in time slot T-1 when using the strategy
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𝑢 throughout the game. Next, defined a special strategies, namely Markov

strategies.

Definition 2. A Markov strategy for SU 𝑖 denoted by 𝑢𝑖,𝑀𝑎𝑟 is a sequence

{𝑢𝑡
𝑖,𝑀𝑎𝑟}𝑇𝑡=0 such that 𝑢𝑡

𝑖,𝑀𝑎𝑟 : 𝑠𝑡𝑖 → ℳ(𝒑𝑖) is measurable for every t. A

Markov strategy combination 𝑢𝑀𝑎𝑟 is a combination of Markov strategies.

Since Markov strategies restrict SUs to make their decisions conditional

only on the current self state, this can be a fairly severe restriction on the

kind of strategies SUs can use. However, with the assumptions of Markovian

nature of transition probabilities, a SU can do just as well by using a Markov

strategy. This is so because the current and future utility of a SU is given by

(3.1). If every SUs uses a Markov strategy then the optimal 𝑝𝑖 for SU 𝑖 given

the current state 𝑠𝑖 is optimal no matter what the past history. That is, if

every SUs uses a Markov strategy, then an optimal Markov strategy of SU 𝑖

in time slot t is an optimal strategy. This thus means that if an equilibrium

in Markov strategies is found then we have obtained an equilibrium.

Definition 3. AMarkov strategy for SU 𝑖 denoted by 𝑢∗
𝑖,𝑀𝑎𝑟 is an equilibrium

if for any 𝑠𝑖 in any time slot and for any SU 𝑖

𝑉𝑖𝑡(𝑠𝑖∣𝑢∗
𝑖,𝑀𝑎𝑟) ≥ 𝑉𝑖𝑡(𝑠𝑖∣𝑢𝑖) (3.5)
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3.2 Existence of CNE

Based on an backward recursion argument, we show the proof that can be

used to construct equilibria in COP with finite time horizon.

Theorem 1. There exists a Markov strategy 𝒖𝑀𝑎𝑟 ∈ U as the CNE for

dynamic power management problem of the considered CRN in finite time

horizon.

Proof. At time slot T-1, given the state 𝑠𝑇−1
𝑖 , the expected utility of SU 𝑖

from time T-1 to T-1 is denoted as follows

𝐸𝑠𝑇−1
𝑖

[𝑟𝑖(𝑠
𝑇−1, 𝑝𝑇−1)]

=
∑
𝑝𝑇−1
𝑖

∑
𝑠𝑇−1
−𝑖

∑
𝑝𝑇−1
−𝑖

𝑟𝑖(𝑠, 𝑝)𝑢
𝑇−1
𝑖 (𝑝𝑇−1

𝑖 = 𝑝𝑖∣𝑠𝑇−1
𝑖 = 𝑠𝑖) ⋅

∏
𝑗 ∕=𝑖

𝑢𝑇−1
𝑗 (𝑝𝑇−1

𝑗 ∣𝑠𝑇−1
𝑗 )𝜋𝑠𝑗∑

𝑠𝑘
𝜙𝑘=𝜙𝑖

𝑢𝑇−1
𝑗 (𝑝𝑘∣𝑠𝑘)𝜋𝑠𝑘

=
∑
𝑝𝑇−1
𝑖

⎛
⎜⎝∑

𝑠𝑇−1
−𝑖

∑
𝑝𝑇−1
−𝑖

𝑟𝑖(𝑠, 𝑝) ⋅
∏
𝑗 ∕=𝑖

𝑢𝑇−1
𝑗 (𝑝𝑇−1

𝑗 ∣𝑠𝑇−1
𝑗 )𝜋𝑠𝑗∑

𝑠𝑘
𝜙𝑘=𝜙𝑖

𝑢𝑇−1
𝑗 (𝑝𝑘∣𝑠𝑘)𝜋𝑠𝑘

⎞
⎟⎠ ⋅ 𝑢𝑇−1

𝑖 (𝑝𝑇−1
𝑖 = 𝑝𝑖∣𝑠𝑇−1

𝑖 = 𝑠𝑖)

(3.6)

which is a strategic game. Besides, the expected interference without PU

traffic can be described as

𝐸𝑠𝑇−1
𝑖

[
𝑁∑
𝑘=1
𝑘 ∕=𝑚

𝑝𝑇−1
𝑘 𝑣𝑘𝑚(𝑠

𝑇−1
𝑘 )𝛿0(𝜙

𝑇−1
𝑘 )] =

∑
𝑠𝑇−1
−𝑖

∑
𝑝𝑇−1
−𝑖

𝑝𝑇−1
𝑘 𝑣𝑘𝑚(𝑠

𝑇−1
𝑘 )𝛿0(𝜙

𝑇−1
𝑘 ) ⋅

∏
𝑗 ∕=𝑖

𝑢𝑇−1
𝑗 (𝑝𝑇−1

𝑗 ∣𝑠𝑇−1
𝑗 )𝜋𝑠𝑗∑

𝑠𝑘
𝜙𝑘=𝜙𝑖

𝑢𝑇−1
𝑗 (𝑝𝑘∣𝑠𝑘)𝜋𝑠𝑘

+
∑
𝑝𝑇−1
𝑖

𝑝𝑖𝑣𝑖𝑚(𝑠𝑖)𝑢
𝑇−1
𝑖 (𝑝𝑇−1

𝑖 = 𝑝𝑖∣𝑠𝑇−1
𝑖 = 𝑠𝑖) ≤ 𝐶0.(3.7)
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By the same procedure, the expected interference with PU traffic can be

depicted as

𝐸𝑠𝑇−1
𝑖

[
𝑁∑
𝑘=1

𝑝𝑇−1
𝑘 𝑣𝑘𝑝(𝑠

𝑇−1
𝑘 )𝛿1(𝜙

𝑇−1
𝑘 )] =

∑
𝑠𝑇−1
−𝑖

∑
𝑝𝑇−1
−𝑖

𝑝𝑇−1
𝑘 𝑣𝑘𝑝(𝑠

𝑇−1
𝑘 )𝛿1(𝜙

𝑇−1
𝑘 ) ⋅

∏
𝑗 ∕=𝑖

𝑢𝑇−1
𝑗 (𝑝𝑇−1

𝑗 ∣𝑠𝑇−1
𝑗 )𝜋𝑠𝑗∑

𝑠𝑘
𝜙𝑘=𝜙𝑖

𝑢𝑇−1
𝑗 (𝑝𝑘∣𝑠𝑘)𝜋𝑠𝑘

+
∑
𝑝𝑇−1
𝑖

𝑝𝑖𝑣𝑖𝑝(𝑠𝑖)𝑢
𝑇−1
𝑖 (𝑝𝑇−1

𝑖 = 𝑝𝑖∣𝑠𝑇−1
𝑖 = 𝑠𝑖) ≤ 𝐶1.(3.8)

According to equation (3.7) and (3.8), the policy set of SU 𝑖 is nonempty,

compact and convex set at time slot T-1. Because of equation (3.6), the

expected utility function is both continuous and quasi-concave in its policy.

So, there exits a CNE at time slot T-1.

At time slot 𝑇 − 2, given the state 𝑠𝑇−2
𝑖 and 𝑢∗𝑇−1

, the expected utility

of SU 𝑖 from time 𝑇 − 2 to 𝑇 − 1 is denoted as follows

𝐸𝑠𝑇−2
𝑖

[𝑟𝑖(𝑠
𝑇−2, 𝑝𝑇−2) + 𝑟𝑖(𝑠

𝑇−1, 𝑝𝑇−1)]

=
∑
𝑝𝑇−2
𝑖

∑
𝑠𝑇−2
−𝑖

∑
𝑝𝑇−2
−𝑖

𝑟𝑖(𝑠, 𝑝)𝑢
𝑇−2
𝑖 (𝑝𝑇−2

𝑖 = 𝑝𝑖∣𝑠𝑇−2
𝑖 = 𝑠𝑖) ⋅

∏
𝑗 ∕=𝑖

𝑢𝑇−2
𝑗 (𝑝𝑇−2

𝑗 ∣𝑠𝑇−2
𝑗 )𝜋𝑠𝑗∑

𝑠𝑘
𝜙𝑘=𝜙𝑖

𝑢𝑇−2
𝑗 (𝑝𝑘∣𝑠𝑘)𝜋𝑠𝑘

+
∑
𝑠𝑇−1
−𝑖

( ∑
𝑝𝑇−1
𝑖

∑
𝑠𝑇−1
−𝑖

∑
𝑝𝑇−1
−𝑖

𝑟𝑖(𝑠, 𝑝)𝑢
∗𝑇−1

𝑖 (𝑝𝑇−1
𝑖 = 𝑝𝑖∣𝑠𝑇−1

𝑖 = 𝑠𝑖) ⋅

∏
𝑗 ∕=𝑖

𝑢𝑇−1∗
𝑗 (𝑝𝑇−1

𝑗 ∣𝑠𝑇−1
𝑗 )𝜋𝑠𝑗∑

𝑠𝑘
𝜙𝑘=𝜙𝑖

𝑢𝑇−1∗
𝑗 (𝑝𝑘∣𝑠𝑘)𝜋𝑠𝑘

)
𝑃𝑠𝑇−2

𝑖 𝑠𝑇−1
𝑖

(3.9)

where the last term is a constant. It’s also a strategic game. The same

procedure as equation (3.7), (3.8) and (3.9), we can obtain that there exists

17



a CNE at time slot T-2. So, by this recursion procedure we prove that there

exist a CNE in finite time horizon stochastic game.
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Chapter 4

Existence of CNE for Infinite

Time Horizon Stochastic Game

In this chapter, the constrained optimization problem for dynamic power

management considering a single SU will first be introduced in Problem 2.

The linear programming methodology as formulated in Problem 3 will be

associated with Problem 2 based on the proofs in Lemmas 1 to 3. Conse-

quently, the dynamic power management problem as defined in Definition 1

will be proved in Theorem 2 for the entire 𝑁 SUs in the CRN. Consider fixed

policies for the other SUs, a constrained optimization problem for a single

SU can be formulated to obtain the best response [8] as follows.

Problem 2 (Constrained Optimization Problem (COP)). Given a fixed set

of policies 𝒖−𝑖 ∈ U−𝑖, find an optimal policy 𝒗∗
𝑖 for SU 𝑖 in order to maximize

19



the expected utility

𝑅𝑖(𝒔
0, [𝒖−𝑖∣𝒗𝑖]) (4.1)

subject to

𝐼𝑖,𝑚(𝒔
0,𝒖) ≤ 𝐶0 ∀𝑚 ∕= 𝑖 (4.2)

𝐼𝑝(𝒔
0,𝒖) ≤ 𝐶1 ∀𝑝 ∈ {1, ⋅ ⋅ ⋅ ,𝑀} (4.3)

Therefore, a CNE multi-policy 𝒖∗ ∈ U in Definition 1 can be verified

while 𝒖∗
𝑖 represents the optimal policy in Problem 1 for all SU 𝑖 providing

other SUs take the policies 𝒖∗
−𝑖. In order to resolve Problem 2, the defined

COP can be correlated with a linear programming problem by extending

from the previous studies [14; 17; 18]. A linear programming problem is

defined as follows.

Problem 3 (Linear Programming (LP) problem). Consider a set of state-

action pairs for SU 𝑖 characterized by K𝑖 = {(𝑠𝑖, 𝑝𝑖) : 𝑠𝑖 ∈ S𝑖, 𝑝𝑖 ∈ P𝑖} as

well as K =
∏𝑁

𝑖 K𝑖 and K−𝑖 =
∏𝑁

𝑗 ∕=𝑖K𝑖. Given a set of stationary policies

20



𝒖−𝑖 ∈ U𝑆
−𝑖, find 𝒛∗

𝑖,𝒖−𝑖
= {𝑧∗𝑖,𝒖−𝑖

(𝑠𝑖, 𝑝𝑖) : (𝑠𝑖, 𝑝𝑖) ∈ K𝑖} which maximizes

R𝑖(𝒛𝑖,𝒖−𝑖
) =

∑
(𝑠𝑖,𝑝𝑖)∈K𝑖

ℛ𝑖,𝒖−𝑖
(𝑠𝑖, 𝑝𝑖) ⋅ 𝑧𝑖,𝒖−𝑖

(𝑠𝑖, 𝑝𝑖) (4.4)

subject to

I𝑖,𝑚(𝒛𝑖,𝒖−𝑖
)=

∑
(𝑠𝑖,𝑝𝑖)∈K𝑖

𝜙𝑖=𝑗

ℐ𝑖,𝒖−𝑖
(𝑠𝑖, 𝑝𝑖)

𝑧𝑖,𝒖−𝑖
(𝑠𝑖, 𝑝𝑖)

𝒁𝑖,𝑗

≤ 𝐶0 ∀𝑚 ∕= 𝑖 (4.5)

I𝑝(𝒛𝑖,𝒖−𝑖
)=

∑
(𝑠𝑖,𝑝𝑖)∈K𝑖

𝜙𝑖=𝑗

ℐ𝑖,𝒖−𝑖
(𝑠𝑖, 𝑝𝑖)

𝑧𝑖,𝒖−𝑖
(𝑠𝑖, 𝑝𝑖)

𝒁𝑖,𝑗

≤ 𝐶1 ∀𝑝 ∈ {1, . . . ,𝑀} (4.6)

∑
(𝑠𝑖,𝑝𝑖)∈K𝑖

𝑧𝑖,𝒖−𝑖
(𝑠𝑖, 𝑝𝑖)

[
𝛿𝑟𝑖(𝑠𝑖)− 𝑃 𝑖

𝑠𝑖𝑟𝑖

]
= 0 ∀𝑟𝑖 ∈ S𝑖 (4.7)

∑
(𝑠𝑖,𝑝𝑖)∈K𝑖

𝑧𝑖,𝒖−𝑖
(𝑠𝑖, 𝑝𝑖) = 1 (4.8)

𝑧𝑖,𝒖−𝑖
(𝑠𝑖, 𝑝𝑖) ≥ 0 ∀(𝑠𝑖, 𝑝𝑖) ∈ K𝑖 (4.9)

where 𝑃 𝑖
𝑠𝑖𝑟𝑖

in (4.7) is the transition probability from state 𝑠𝑖 to 𝑟𝑖 for SU

𝑖. The value of 𝛿𝑟𝑖(𝑠𝑖) in (4.7) is equal to 1 as the state 𝑠𝑖 = 𝑟𝑖, other-

wise 𝛿𝑟𝑖(𝑠𝑖) = 0. The denominator 𝒁𝑖,𝑗 in (4.5) is utilized for normalization
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purpose as

𝒁𝑖,𝑗 =
∑

(𝑠𝑘,𝑝𝑘)∈K𝑖
𝜙𝑘=𝑗

𝑧𝑖,𝒖−𝑖
(𝑠𝑘, 𝑝𝑘) (4.10)

The functions ℛ𝑖,𝒖−𝑖
(𝑠𝑖, 𝑝𝑖) in (4.4) and ℐ𝑖,𝒖−𝑖

(𝑠𝑖, 𝑝𝑖) in (4.5) are the expected

immediate utility and the allowable interference while SU 𝑖 executes the

power level 𝑝𝑖 at the state 𝑠𝑖 under the case that the other SUs are adopting

the policy 𝒖−𝑖. Both functions can be expressed as

ℛ𝑖,𝒖−𝑖
(𝑠𝑖, 𝑝𝑖) =

∑
(𝑠,𝑝)−𝑖∈K−𝑖,

𝜙𝑘=𝜙𝑖,∀𝑘 ∕=𝑖

∏
𝑚 ∕=𝑖

Ω𝑖,𝑚 ⋅ 𝑟𝑖(𝒔,𝒑) (4.11)

ℐ𝑖,𝒖−𝑖
(𝑠𝑖, 𝑝𝑖) =

∑
(𝑠,𝑝)−𝑖∈K−𝑖,

𝜙𝑘=𝜙𝑖,∀𝑘 ∕=𝑖

∏
𝑚 ∕=𝑖

Ω𝑖,𝑚

𝑁∑
𝑘=1

𝑝𝑘 𝜈𝑘𝑖(𝑠𝑘)

)
(4.12)

where Ω𝑖,𝑚 corresponds to the probability of the state-action pair (𝑠𝑚, 𝑝𝑚) for

SU 𝑚. Let the stationary distribution of the state 𝑠𝑚 for SU 𝑚 be 𝜋𝑚(𝑠𝑚),

Ω𝑖,𝑚 can be computed as

Ω𝑖,𝑚 =
𝑢𝑚(𝑝𝑚∣𝑠𝑚)𝜋𝑚(𝑠𝑚)∑

(𝑠𝑘,𝑝𝑘)∈K𝑚,
𝜙𝑘=𝜙𝑖

𝑢𝑚(𝑝𝑘∣𝑠𝑘)𝜋𝑚(𝑠𝑘) (4.13)

where 𝑢𝑚(𝑝𝑚∣𝑠𝑚) denotes the probability measure for SU𝑚 to conduct action

𝑝𝑚 based on the state 𝑠𝑚. The normalized term in the denominator of (4.13)

is utilized to indicate that common spectrum among all the SUs will result

in the correlation among the states of each SU, i.e. 𝜙𝑚 = 𝜙𝑖 for all 𝑚 ∕= 𝑖.
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A set of nonnegative real numbers is defined as 𝝎𝑖 = {𝜔𝑖(𝑠𝑖, 𝑝𝑖) : (𝑠𝑖, 𝑝𝑖)

∈ K𝑖}. The probability 𝜸𝑖(𝝎𝑖) = {𝛾𝑝𝑖
𝑠𝑖
(𝝎𝑖) : (𝑠𝑖, 𝑝𝑖) ∈ K𝑖} can be define as

𝛾𝑝𝑖
𝑠𝑖
(𝝎𝑖) = 𝜔𝑖(𝑠𝑖, 𝑝𝑖)/

∑
𝑝𝑘
𝜔𝑘(𝑠𝑘, 𝑝𝑘) in the case that

∑
𝑝𝑘
𝜔𝑘(𝑠𝑘, 𝑝𝑘) ∕= 0. Oth-

erwise, an arbitrary value is assigned to 𝛾𝑝𝑖
𝑠𝑖
(𝝎𝑖) such that

∑
𝑝𝑘
𝛾𝑝𝑖
𝑠𝑖
(𝝎𝑖) = 1.

The parameter 𝝀𝑖(𝝎𝑖) represents a set of stationary policies for SU 𝑖 that

selects its power level 𝑝𝑖 at the state 𝑠𝑖 with the probability 𝛾𝑝𝑖
𝑠𝑖
(𝝎𝑖). Further-

more, 𝑓𝑖(𝑠
0
𝑖 ,𝒖𝑖; 𝑠𝑖, 𝑝𝑖) is denoted as the limiting point of the time sequence

{𝑓 𝑡
𝑖 (𝑠

0
𝑖 ,𝒖𝑖; 𝑠𝑖, 𝑝𝑖)}𝑡. The expected state-action frequency 𝑓 𝑡

𝑖 (𝑠
0
𝑖 ,𝒖𝑖; 𝑠𝑖, 𝑝𝑖) [18]

for SU 𝑖 at time 𝑡 can be obtained as

𝑓 𝑡
𝑖 (𝑠

0
𝑖 ,𝒖𝑖; 𝑠𝑖, 𝑝𝑖) =

1

𝑡

𝑡−1∑
𝑘=0

𝑃𝒖𝑖

𝑠0𝑖
(𝑠𝑘𝑖 = 𝑠𝑖, 𝑝

𝑘
𝑖 = 𝑝𝑖) (4.14)

where 𝑃𝒖𝑖

𝑠0𝑖
(𝜀) is the the probability measure over the event 𝜀 with the pol-

icy 𝒖𝑖 and the initial state 𝑠0𝑖 . Based on the definition of the state-action

frequency, the relationship between the COP and the LP problem can be

constructed as follows.

Lemma 1. Given a set of stationary policies 𝒖−𝑖 ∈ U𝑆
−𝑖, for any 𝒛𝑖,𝒖−𝑖

that

satisfies (4.7) to (4.9) will result in R𝑖,𝑗(𝒛𝑖,𝒖−𝑖
) = 𝑅𝑖(𝒔

0, [𝒖−𝑖∣𝝀𝑖(𝒛𝑖,𝒖−𝑖
)]) for

SU 𝑖.

Proof. Based on the definition of 𝑅𝑖(𝒔
0,𝒖) in (2.5), the following equation
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can be obtained:

𝑅𝑖(𝒔
0,𝒖) = lim

𝑇→∞
𝑠𝑢𝑝

1

𝑇

𝑇−1∑
𝑡=0

𝐸𝒖
𝒔0

[
𝑟𝑖(𝒔

𝑡,𝒑𝑡)
]

(4.15)

= lim
𝑇→∞

𝑠𝑢𝑝
1

𝑇

𝑇−1∑
𝑡=0

∑
(𝑠𝑖,𝑝𝑖)∈K𝑖

∑
(𝑠,𝑝)−𝑖∈K−𝑖
𝜙𝑙=𝜙𝑖,∀𝑙∕=𝑖

𝑟𝑖(𝒔,𝒑)⋅

𝑃𝒖𝑖

𝑠0𝑖
(𝑠𝑡𝑖 = 𝑠𝑖, 𝑝

𝑡
𝑖 = 𝑝𝑖)

∏
𝑗 ∕=𝑖

𝑃
𝒖𝑗

𝑠0𝑗
(𝑠𝑡𝑗 = 𝑠𝑗, 𝑝

𝑡
𝑗 = 𝑝𝑗)∑

(𝑠𝑘,𝑝𝑘)∈K𝑗
𝜙𝑘=𝜙𝑖

𝑃
𝒖𝑗

𝑠0𝑗
(𝑠𝑡𝑗 = 𝑠𝑘, 𝑝𝑡𝑗 = 𝑝𝑘)

(4.16)

=
∑

(𝑠𝑖,𝑝𝑖)∈K𝑖

𝑓𝑖(𝑠
0
𝑖 ,𝒖𝑖; 𝑠𝑖, 𝑝𝑖)⋅

⎡
⎢⎣ ∑

(𝑠,𝑝)−𝑖∈K−𝑖
𝜙𝑙=𝜙𝑖,∀𝑙∕=𝑖

𝑟𝑖(𝒔,𝒑)
∏
𝑗 ∕=𝑖

𝑓𝑗(𝑠
0
𝑗 ,𝒖𝑗; 𝑠𝑗, 𝑝𝑗)∑

(𝑠𝑘,𝑝𝑘)∈K𝑗
𝜙𝑘=𝜙𝑖

𝑓𝑗(𝑠0𝑗 ,𝒖𝑗; 𝑠𝑘, 𝑝𝑘)

⎤
⎥⎦ (4.17)

=
∑

(𝑠𝑖,𝑝𝑖)∈K𝑖

𝑓𝑖(𝑠
0
𝑖 ,𝒖𝑖; 𝑠𝑖, 𝑝𝑖) ⋅ ℛ𝑖,𝒖−𝑖

(𝑠𝑖, 𝑝𝑖) (4.18)

It is noted that the equality from (4.16) to (4.17) is mainly due to the assump-

tion of stationary multi-policy. By substituting 𝒖𝑖 in (4.18) with 𝝀𝑖(𝒛𝑖,𝒖−𝑖
),

it can be obtained that 𝑓𝑖(𝑠
0
𝑖 ,𝝀𝑖(𝒛𝑖,𝒖−𝑖

); 𝑠𝑖, 𝑝𝑖) = 𝑧𝑖,𝒖−𝑖
(𝑠𝑖, 𝑝𝑖). The relation-

ship between (4.1) and (4.4) can therefore be established, which completes

the proof.

Lemma 2. Given a set of stationary policies 𝒖−𝑖 ∈ U𝑆
−𝑖. By choosing

𝒛𝑖,𝒖−𝑖
based on (4.7) to (4.9), the following relationship can be obtained:

I𝑖,𝑚(𝒛𝑖,𝒖−𝑖
) = 𝐼𝑖,𝑚(𝒔

0, [𝒖−𝑖∣𝝀𝑖(𝒛𝑖,𝒖−𝑖
)]) and I𝑝(𝒛𝑖,𝒖−𝑖

) = 𝐼𝑝(𝒔
0, [𝒖−𝑖∣𝝀𝑖(𝒛𝑖,𝒖−𝑖

)]).

Moreover, 𝝀𝑖(𝒛𝑖,𝒖−𝑖
) is considered a feasible policy for the COP if 𝒛𝑖,𝒖−𝑖

ad-
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ditionally satisfies (4.5).

Proof. The allowable interference in (2.7) can be expressed via the state-

action frequency as

𝐼𝑖,𝑚(𝒔
0,𝒖) =

∑
(𝒔,𝒑)∈K
𝜙𝑚=𝑗,∀𝑚

𝑁∑
𝑘=1

𝑝𝑘 𝜈𝑘𝑖(𝑠𝑘)

)
⋅

𝑁∏
𝑙=1

𝑓𝑙(𝑠
0
𝑙 ,𝒖𝑙; 𝑠𝑙, 𝑝𝑙)∑

(𝑠𝑘,𝑝𝑘)∈K𝑙
𝜙𝑘=𝑗

𝑓𝑙(𝑠0𝑙 ,𝒖𝑙; 𝑠𝑘, 𝑝𝑘)
(4.19)

By adopting similar procedures as that from the proof of Lemma 1, the

relationship that I𝑖,𝑚(𝒛𝑖,𝒖−𝑖
) = 𝐼𝑖,𝑚(𝒔

0, [𝒖−𝑖∣𝝀𝑖(𝒛𝑖,𝒖−𝑖
)]) and I𝑝(𝒛𝑖,𝒖−𝑖

) =

𝐼𝑝(𝒔
0, [𝒖−𝑖∣𝝀𝑖(𝒛𝑖,𝒖−𝑖

)])can be easily acquired. Furthermore, since 𝐼𝑖,𝑚(𝒔
0, [𝒖−𝑖∣𝝀𝑖(𝒛𝑖,𝒖−𝑖

)])

I𝑖,𝑚(𝒛𝑖,𝒖−𝑖
) ≤ 𝐶0 and 𝐼𝑝(𝒔

0, [𝒖−𝑖∣𝝀𝑖(𝒛𝑖,𝒖−𝑖
)]) = I𝑝(𝒛𝑖,𝒖−𝑖

) ≤ 𝐶1, it can be

found that 𝝀𝑖(𝒛𝑖,𝒖−𝑖
) will be a feasible policy for the COP. This completes

the proof.

Lemma 3. Given the set of policies 𝒖−𝑖 ∈ U𝑆
−𝑖 and 𝒛∗

𝑖,𝒖−𝑖
as an optimal

solution for the LP problem. It is discovered that 𝝀𝑖(𝒛
∗
𝑖,𝒖−𝑖

) will be the best

response for the COP.

Proof. Based on Lemmas 1 and 2 associated with Theorem 3.6 in [17], the

proof of this lemma can be achieved.

In order to extend the results to 𝑁 SUs, the following parameters are

defined. Given the set 𝒛 = (𝒛1, 𝒛2, ⋅ ⋅ ⋅ , 𝒛𝑁) such that 𝒛𝑖 = {𝑧𝑖(𝑠, 𝑝) : (𝑠, 𝑝) ∈
K𝑖} will satisfy (4.5) to (4.9), where 𝒖 = (𝒖1,𝒖2, ⋅ ⋅ ⋅ ,𝒖𝑁) with 𝒖𝑖 = 𝝀𝑖(𝒛𝑖).
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The set Z𝑖 is composed by the elements 𝒛𝑖 as stated above, and the global

space Z =
∏𝑁

𝑖=1 Z𝑖. By considering the mapping function Ψ𝑖(𝒛) : Z → Z𝑖,

the set of optimal solutions for the LP problem in Problem 3 for each SU 𝑖

can be denoted as Ψ𝑖(𝒛) = {𝑧∗𝑖,𝒖−𝑖
(𝑠, 𝑝) : (𝑠, 𝑝) ∈ K𝑖}. Moreover, its product

space can also be defined as Ψ(𝒛) : Z→ Z where

Ψ(𝒛) =
𝑁∏
𝑖=1

Ψ𝑖(𝒛) (4.20)

Theorem 2. There exists a stationary multi-policy 𝒖 ∈ U𝑆 as the CNE for

dynamic power management problem of the considered CRN.

Proof. According to the association of both the COP and the LP problem

as described in Lemma 3, it remains to show if there exists a fixed point (i.e.

𝒛 ∈ Ψ(𝒛)) to the vector-valued function as in (4.20). The domain of Ψ𝑖(𝒛)

(i.e. Z𝑖) is considered a compact and convex set by investigating (4.5) to

(4.9), and so is its product space Z. It is noted that Ψ𝑖(𝒛) is defined as

Ψ𝑖(𝒛) = argmax
𝒛𝑖,𝒖−𝑖

∈Z𝑖

R𝑖(𝒛𝑖,𝒖−𝑖
) (4.21)

where R𝑖(𝒛𝑖,𝒖−𝑖
) is observed to be a continuous function in terms of 𝒛𝑖,𝒖−𝑖

.

Therefore, both Ψ𝑖(𝒛) and its product space Ψ(𝒛) are considered non-empty

based on the extreme value theorem [19]. Furthermore, Ψ(𝒛) is a convex set

for all 𝒛 ∈ Z due to the linearity of R𝑖(𝒛𝑖,𝒖−𝑖
). The continuity of R𝑖(𝒛𝑖,𝒖−𝑖

)

results in the closed graph of Ψ(𝒛). The proof can consequently be completed
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by adopting the Kahutain’s fixed point theorem [8].

Remark 1. Given 𝒛∗ ∈ Ψ(𝒛∗), the set of stationary multi-policies

{𝝀1(𝒛
∗
1),𝝀2(𝒛

∗
2) ⋅ ⋅ ⋅ ,𝝀𝑁(𝒛

∗
𝑁)} is a CNE to the dynamic power management

problem for the considered CRN.
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Chapter 5

Numerical Evaluation

In this chapter, there are three issues conducted to verify the results attained

from the derivation of the optimal policy. Additionally, the computation of

CNE can be obtained by [8; 20]. First, we want to validate the correctness of

theoretic result and examine whether to satisfy the interference constraint.

According to different 𝐶0 and 𝐶1, we look into the simulation results. Sec-

ondly, we compare the proposed scheme with greedy approach which each

SUs maximize power level to get more utility. We observe the outcomes in

different interference constraints 𝐶0 and 𝐶1. Finally, we detect the effect of

channel sensing error in proposed scheme. Substitute different amount of

error to see the difference between non-error policy and error one. The error

percent is defined as follow.

𝑒𝑟𝑟𝑜𝑟𝑎𝑚𝑜𝑢𝑛𝑡 = 𝑒𝑟𝑟𝑜𝑟𝑝𝑒𝑟𝑐𝑒𝑛𝑡×maxℳ(𝜀) ∀𝜀 ∈ 𝑆𝑖, 𝜀 ∈ Φ𝑖 (5.1)
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Moreover, it is noted that the immediate utility function 𝑟𝑖 are defined in

two types :

𝑟𝑖,𝑑𝑎𝑡𝑎(𝒔
𝑡,𝒑𝑡) = 𝐵 ⋅ log2 1 +

𝑝𝑡𝑖 𝜈𝑖𝑖(𝑠
𝑡
𝑖)∑

𝑗 ∕=𝑖 𝑝
𝑡
𝑗 𝜈𝑗𝑖(𝑠

𝑡
𝑗) + 𝜎2

𝑖 + 𝜀𝑖𝜙𝑡
𝑖

)
(5.2)

and

𝑟𝑖,𝑝𝑟𝑖𝑐𝑖𝑛𝑔(𝒔
𝑡,𝒑𝑡) = 𝐵 ⋅ log2 1 +

𝑝𝑡𝑖 𝜈𝑖𝑖(𝑠
𝑡
𝑖)∑

𝑗 ∕=𝑖 𝑝
𝑡
𝑗 𝜈𝑗𝑖(𝑠

𝑡
𝑗) + 𝜎2

𝑖 + 𝜀𝑖𝜙𝑡
𝑖

)
− 𝑐× 𝑝𝑡𝑖 (5.3)

where 𝒔𝑡 = (𝑠𝑡1, 𝑠
𝑡
2, ⋅ ⋅ ⋅ , 𝑠𝑡𝑁) ∈ S and 𝒑𝑡 = (𝑝𝑡1, 𝑝

𝑡
2, ⋅ ⋅ ⋅ , 𝑝𝑡𝑁) ∈ P. Equation

(5.3) represents the utility function which want to achieve the fairness, i.e.

the more power spread the more cost. In addition, Table I illustrates the

relevant parameters that are utilized in the analysis and simulations.

Table I : System Parameters

Number of PU (𝑀) 1

Number of SU (𝑁) 2

Bandwidth (𝐵) 1M (Hz)

Power level (𝑃𝑖) {0,10mW}

Channel gain (𝑣𝑖𝑖; 𝑣𝑗𝑖) {0.05,0.1} ; {0.025,0.05}

PU interference (𝜀𝑖) 5mW

AWGN (𝜎2
0) 0.5mW

Pricing factor (𝑐) 5M

Interference constraints (𝐶0;𝐶1)
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Figure 5.1: Finite Time Horizon : Time length versus expected utility under
𝐶0 = 0.5𝑚𝑊 , 𝐶1 = 0.5𝑚𝑊 and 𝑟𝑖,𝑑𝑎𝑡𝑎

5.1 Finite Time Horizon

5.1.1 Validate

Fig.(5.1 - 5.4) and Fig () show the validations of theoretic and simulation re-

sults by different utility function, 5.2 and 5.2 respectively. Because the status

of expected utility doesn’t reach stable, results may have a little variation. In

addition, 𝐶0 which represents the constraint with the absence of PU mainly

affects the amount of expected utility, i.e. maximal value of expected utility

happened when 𝐶0 = 0.5𝑚𝑊 .

Fig.(5.5 - 5.8) and Fig () present the validations of theoretic and simula-

tion interference by different utility function, 5.2 and 5.2 respectively. The

results show that all satisfy the interference constraint under the proposed

scheme.
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Figure 5.2: Finite Time Horizon : Time length versus expected utility under
𝐶0 = 0.5𝑚𝑊 , 𝐶1 = 1𝑚𝑊 and 𝑟𝑖,𝑑𝑎𝑡𝑎
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Figure 5.3: Finite Time Horizon : Time length versus expected utility under
𝐶0 = 0.25𝑚𝑊 , 𝐶1 = 0.5𝑚𝑊 and 𝑟𝑖,𝑑𝑎𝑡𝑎
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Figure 5.5: Finite Time Horizon : Time length versus expected interference
under 𝐶0 = 0.5𝑚𝑊 , 𝐶1 = 0.5𝑚𝑊 and 𝑟𝑖,𝑑𝑎𝑡𝑎
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Figure 5.6: Finite Time Horizon : Time length versus expected interference
under 𝐶0 = 0.5𝑚𝑊 , 𝐶1 = 1𝑚𝑊 and 𝑟𝑖,𝑑𝑎𝑡𝑎
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Figure 5.7: Finite Time Horizon : Time length versus expected interference
under 𝐶0 = 0.25𝑚𝑊 , 𝐶1 = 0.5𝑚𝑊 and 𝑟𝑖,𝑑𝑎𝑡𝑎
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Figure 5.8: Finite Time Horizon : Time length versus expected interference
under 𝐶0 = 0.25𝑚𝑊 , 𝐶1 = 1𝑚𝑊 and 𝑟𝑖,𝑑𝑎𝑡𝑎

5.1.2 Compare with greedy mechanism

Fig.(5.9 - 5.10) display the comparison of proposed and greedy mechanisms

in equation (5.2). These outcomes don’t show the advantage of proposed

scheme due to the design of utility function. However, Fig.(5.11 - 5.12) show

that proposed scheme have better performance than greedy one. Because of

the curve of the equation (5.3), game theory has the ability to adjust the

action to the maximal value. On the other hand, the greedy scheme always

choose the maximum power which not the optimal decision. In addition,

we can observe the existence of optimal action when 𝐶0 ≥ 0.25𝑚𝑊 and

𝐶1 ≥ 0.6𝑚𝑊 in Fig.(5.11) and Fig.(5.12) respectively.
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Figure 5.9: Finite Time Horizon : 𝐶0 versus expected interference under
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Figure 5.10: Finite Time Horizon : 𝐶1 versus expected interference under
𝑟𝑖,𝑑𝑎𝑡𝑎
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Figure 5.11: Finite Time Horizon : 𝐶0 versus expected interference under
𝑟𝑖,𝑝𝑟𝑖𝑐𝑖𝑛𝑔
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Figure 5.12: Finite Time Horizon : 𝐶1 versus expected interference under
𝑟𝑖,𝑝𝑟𝑖𝑐𝑖𝑛𝑔
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Figure 5.13: Infinite Time Horizon : Time length versus expected utility
under 𝐶0 = 0.5𝑚𝑊 , 𝐶1 = 0.5𝑚𝑊 and 𝑟𝑖,𝑑𝑎𝑡𝑎

5.2 Infinite Time Horizon

5.2.1 Validate

Fig.(5.13 - 5.16) and Fig () show the validations of theoretic and simulation

results by different utility function, equation (5.2) and (5.3) respectively.

These results show that the proposed scheme can predict the expected utility

when time length large enough. It noted that in Fig.(5.15) and Fig.(5.16) the

expected utility have a few variation in former time slot. Due to the strict

interference constraint of 𝐶0, SUs have lower probability to transmit data

when absence of PU. So, it may need more time to converge the theoretic

value of expected utility.
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Figure 5.14: Infinite Time Horizon : Time length versus expected utility
under 𝐶0 = 0.5𝑚𝑊 , 𝐶1 = 1𝑚𝑊 and 𝑟𝑖,𝑑𝑎𝑡𝑎
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Figure 5.15: Infinite Time Horizon : Time length versus expected utility
under 𝐶0 = 0.25𝑚𝑊 , 𝐶1 = 0.5𝑚𝑊 and 𝑟𝑖,𝑑𝑎𝑡𝑎
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Figure 5.16: Infinite Time Horizon : Time length versus expected utility
under 𝐶0 = 0.25𝑚𝑊 , 𝐶1 = 1𝑚𝑊 and 𝑟𝑖,𝑑𝑎𝑡𝑎

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8
x 10

−4

Time Length

In
te

rf
e
re

n
c
e

I
01

−simulation

I
02

−simulation

I
1
−Simulation

C
0

C
1

Figure 5.17: Infinite Time Horizon : Time length versus expected interference
under 𝐶0 = 0.5𝑚𝑊 , 𝐶1 = 0.5𝑚𝑊 and 𝑟𝑖,𝑝𝑟𝑖𝑐𝑖𝑛𝑔
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Figure 5.18: Infinite Time Horizon : Time length versus expected interference
under 𝐶0 = 0.5𝑚𝑊 , 𝐶1 = 1𝑚𝑊 and 𝑟𝑖,𝑝𝑟𝑖𝑐𝑖𝑛𝑔
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Figure 5.19: Infinite Time Horizon : Time length versus expected interference
under 𝐶0 = 0.25𝑚𝑊 , 𝐶1 = 0.5𝑚𝑊 and 𝑟𝑖,𝑝𝑟𝑖𝑐𝑖𝑛𝑔
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Figure 5.20: Infinite Time Horizon : Time length versus expected interference
under 𝐶0 = 0.25𝑚𝑊 , 𝐶1 = 1𝑚𝑊 and 𝑟𝑖,𝑝𝑟𝑖𝑐𝑖𝑛𝑔

5.2.2 Compare with greedy mechanism

Fig.(5.21 - 5.24) show the comparing of proposed and greedy mechanisms in

equation (5.2) and (5.3) respectively. These outcomes show that proposed

scheme always better than the greedy scheme.

5.2.3 Effect of channel sensing error

Fig.(5.25 - 5.26) illustrate the effect of channel sensing error in equation (5.2)

and (5.3) respectively. When error percent in equation (5.1) lower than 0.2,

the expected interference doesn’t exceed the constraint. However, it will

cause higher interference when error percent overstep 0.2. According to this

situation, we can set the strictly (e.g. 𝐶0 = 0.45𝑚𝑊 ) to make up the effect

of sensing error.
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Figure 5.21: Infinite Time Horizon : 𝐶0 versus expected interference under
𝑟𝑖,𝑑𝑎𝑡𝑎
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Figure 5.22: Infinite Time Horizon : 𝐶1 versus expected interference under
𝑟𝑖,𝑑𝑎𝑡𝑎
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Figure 5.23: Infinite Time Horizon : 𝐶0 versus expected interference under
𝑟𝑖,𝑝𝑟𝑖𝑐𝑖𝑛𝑔
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Figure 5.24: Infinite Time Horizon : 𝐶1 versus expected interference under
𝑟𝑖,𝑝𝑟𝑖𝑐𝑖𝑛𝑔
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Figure 5.25: Infinite Time Horizon : error percent versus expected interfer-
ence under 𝑟𝑖,𝑑𝑎𝑡𝑎
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Figure 5.26: Infinite Time Horizon : error percent versus expected interfer-
ence under 𝑟𝑖,𝑝𝑟𝑖𝑐𝑖𝑛𝑔
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Chapter 6

Conclusion

This paper proposes a dynamic power management scheme for maximizing

the expected utility function in the cognitive radio networks (CRN). The

variations from both the spectrum holes and the channel gains are considered

in the network scenarios for the CRN. Based on the Markovian property of

dynamic environment, finite and infinite time horizon situations are both

investigated. Associated with the constraints of allowable interferences, the

constrained stochastic games are utilized to acquired the optimal policies

based on the objective of maximized the exptected utility function. The

existence of the constrained Nash equilibrium can be proved and is served

as the optimal policies for the power management problem. Simulations are

performed to validate the correctness of the optimal policies that are proposed

for the dynamic power management in CRN. Moreover, the proposed schemes

have better performance than greedy mechanism and channel sensing error
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does not induce severe aberration.
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