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Cooperative Spectrum Sensing Using a Weighted Fusion Rule

for Cognitive Radio Networks

Student: Mong-Zhe Lee Advisor: Prof. Tsern-Huei Lee

Institute of Communication Engineering

National Chiao Tung University
Abstract

In cognitive radio (CR) networks, because the distance of every CR user and the
primary user is different, a signal may have interference and attenuation that affect the sensing
ability of CR users. A CR user in mal-function or being hacked also results in wrong decision.
Cooperative spectrum sensing'is a way to decrease the probability of miss detection and the
probability of false alarm. Therefore, the fusion rule is remarkably important. A good fusion
rule is suitable for various circumstances because it can decrease significantly error
probability. The error rate of existing data fusion techniques, such as OR rule, AND rule, and
Majority rule, are still not satisfactory. Consequently, a weighted fusion rule is proposed so
that reliable CR users are given higher.weights. It still makes better decision under unstable
networks. Hence in this thesis, we propose a weighted fusion rule that differs from previous
weighted fusion rule. It can decrease the probability of wrong decision in unknown and
changing networks. Furthermore, CR networks have higher throughput under the promise of

avoiding interference to the primary user.
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Notation

N : the number of CR users

X I sensing round

E : energy of detecting the primary user at a CR user
W, : decision variable

At athreshold of a CR user

l.(x) : adecision of a CR user

w(x) - aweight of a CR user’s decision

B : the proportion of historical decisions

€ : the threshold of the fusion center

B(x) : a decision of the fusion center

T.(x) - decide if I.(x) equals B(x)

R(x) : the throughput of CR users

R,(x) : the throughput of CR users when channel is idle

Q,,(x) : the probability of miss detection at the fusion center
Q; (x) : the probability of false alarm at the fusion center
Q,(x) : the probability of detection at the fusion center

Q, : the lowest bound of the probability of detection
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Chapter 1

| ntroduction

In recent years, the demand of spectrum is increasing that results in cram of some
spectrum bands and poor spectrum efficiency. Therefore, spectrum is a precious resource.
The CR technique [1], [2] that has the ability of spectrum sensing was proposed in order

to utilize as idle spectral resources as possible.

This technique divides users in a CR network into the primary (licensed) users and
secondary (CR) users. CR users sense a certain spectrum segment firstrévesonéting
data. If CR users sense no_primary users using this spectrum segment, they are allowed to
utilize this spectral resource only when they do not cause interference to the primary users.
Otherwise, if CR users find the primary users using this spectrum segment, they must quit
this spectrum segment and search another available spectrum segment. This idle spectrum
segment is called spectrum hole [3], we can detect it to improve spectrum efficiency by

spectrum sensing technique.

However, the sensing ability of a single CR user is limited since signals may be
interfered by noise and attenuated by distance. In addition, shadowing effect in wireless
network and hardware’s condition of CR users may cause poor sensing ability of CR users.
Thus, we need to combine CR users together to sense spectrum that can promote the
whole sensing ability of a CR network. The way is called cooperative spectrum sensing

(CSS) [4].



Merely, a simple CSS using OR rule, AND rule, and Majority rule of which error
rate are still not satisfactory under an unstable network. Consequently, a weighted fusion
rule is proposed so that reliable CR users are given higher weights. It has a better

performance than a simple CSS.

A CR user in mal-function and being hacked may cause incorrect reports. These
incorrect reports are sent to the fusion center that results in wrong global decision.
Therefore, we design a weighted algorithm that is more robust than other weighted

algorithms against hackers.

The rest of this thesis is_organized.as fallows. In Chapter 2, we formulate the
problem of signal detection"of the primary user.in a CR network. Then we investigate
some weighted fusion rules in-.Chapter 3 and propose our weighted algorithm in Chapter 4,
respectively. Next, we give some simulations about the previous weighted fusion rule and

ours in Chapter 5. Finally, conclusions are given.in Chapter 6.



Chapter 2

Background

2.1 Local Spectrum Sensing

The purpose of local spectrum sensing is to decide if the primary user exists and do
binary hypothesis test of CR users based on received the primary user’s signal. We assume
that the sensing channel is time-invariant during the sensing process. Then we can

represent local spectrum sensing to the following binary hypothesis test [4]

S ot
S5 A iclsh =

where y.(t) is received signal.at CR user - n(t) is the channel noiseh is the
channel gain,s(t) is the primary user's signalH, represents that the primary user is

absent in the sensing channel; otherwibk, represents that the primary user is present

in the sensing channel. We define the probability of detecRgn the probability of miss

detectiorP

m,i ?

the probability of false alarnP,; at CR useri :

m,i

P
P, PrOb{Ho |H1}:1_ Pd,i (2)
P

fli



We assume that CR users perform local spectrum sensing with energy detector [5]

] _{ X22u ’HO
" Xa(@), H,

3)

where E, is received signal energy at CR user x7, is central chi-square distribution,
X2,(2y) is non-central chi-square distribution. For CR usewith energy detector, the
average probability of detectioR, ;, the average probability of miss detectiyn, and

the average probability of false alarf®; over AWGN channels are given, respectively,

by [5] :

Ry, = Prob{E > A [H} =Q(21;,\/A)
P, =1-F,; (4)
/]i
F(u,E)
r(u)

P, =Prob{E >A |H} =
where u=TW is the time-bandwidth product ang is instantaneous signal-to-noise

ratio (SNR) of received signal at CR user. Q, is the Generalized Marcum

o t?+a?

jt”e o g |,() is modified Bessel function, and

X

Q-function by Q,(a,x) = aul_l

I(a,x) is incomplete gamma function bk(a, X) :Ita‘le‘tdt.



2.2 Cooperative Spectrum Sensing

CR networks may happen shadowing effort and signal attenuation. To solve this
issue, multiple CR users perform local spectrum sensing together. The way is called
cooperative spectrum sensing [4]. As is shown in fig. 1, reprtdom different CR
users is combined at the fusion center to decide whether the primary user is present in the
sensing channel. A global binary decisi@ is made by the fusion center. The procedure
is as follows:

e Step 1 :Every CR useri performs local spectrum sensing, then makes a binary

decisionl, 0{0,13 .
e Step 2 :All CR users reportl; ' to the fusion center.
» Step 3: The fusion‘center_combines these reports to make a global binary

decision B{1{0,1} that indicates whether the primary user is present in

the sensing channel.

Fusion

Center

Primary User

Fig. 1. System model of cooperative spectrum sensing in a cognitive network.

5



2.3 Existing Data Fusion Techniques

As the above mentioned, CR udgerperforms local spectrum sensing and reports a

local decision|, to the fusion center. The fusion center makes a global decBion

based on the fusion rule. Most general fusion rul& isut- of-n rule:

S 1.2k ,B=1
i=1 ()
Otherwise, B=0

OR rule and AND rule are special caseskof1l and k =n, respectively. From (5), we

know that every CR user owns equal weight forout-of-n rule. A final global decision

is based on how many CR users report that the-primary user is present in the sensing
channel. Fork -out-of-n rule, if more than-or equak CR users report that the primary

user is present in the sensing channel, a-global deciBios 1. The paper [4] discusses

how to select an optimak value to minimize total error probabilityd{ +Q, ). Usually,
if the probability of false alarmP, and the probability of miss detectiop, for CR
users are the same order, an optirkalvalue is EJH that is Majority rule. When
P, < P, the thresholdAd of a CR user should be very large, it implies thatvalue

approaches 1, thus OR rule is optimal; otherwise, wRer< P, , the threshold/4 of a

CR user should be very small, it implies thiat value approaches, thus AND rule is

optimal. They can be verified by fig. 2.
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Fig. 2. Error probability of various thresholds fé&r-out-of-nrule [4]

2.4 Throughput

The framework of 802.22 is shown in fig. 3, the length of a fram€ .isThe
beginning part of a frame is the sensing timethen the sensing result decides that a CR
user keeps silent or processes data transmitting during the folloWving. As the sensing
time is shorter, the transmitting time is longer. However, the sensing time is too small to
decrease the probability of miss detection and the probability of false alarm. The paper [6]
discusses how to set the sensing timethat makes a CR network have an optimal

throughput when the probability of detecti@p, is more than the lowest bound of the

probability of detectionQ, .



Frame 1 Frame 20 Frame K

B I L

r T-t
Fig. 3. The framework of 802.22 [6]

Next, we want to calculate the throughgat of a CR user during a frame time. If
the primary user is absent in the sensing channel and a CR user does not happen the
condition of false alarm, the throughput B, by contrast, if the primary user is present
in the sensing channel and a CR user does not detect the primary user, the throughput is

R.. We can formulate an optimal throughput

max RT)=Ro[ )+ Ru(@)
subject to (6)
Qu(1)2Qu

where
Ro(7) =roP(H 0)(1-Qx (7))

- _ (7)
Ru(7) = riP(H )(1-Qu(r))

ro - r1 of the above formulation are the throughputs when the primary user is absent and

the primary user is present in the sensing channel respectively. Mord®(\s) - P(H1)
are the probabilities when the primary user is absent and the primary user is present in the
sensing channel respectively, a@ is the lowest bound of the probability of detection.

Becauseri<ro and Qm is limited under 0.1 according to 802.22 standard, we can

neglect Ry(7) in R(7). Simple the problem formulation of an optimal throughput



max Ro (T)
subject to (8)
Qu(7) = Qu

The paper [6] proves that the throughput of a CR network can arrive optimization

under an ideal sensing time. This result is as the following fig. 4 :

Achievable throughput (bits/Sec/Hz)

09

::]
-6~ Simulated
= = Theory
1 ] ] ] L ]
1 1.5 2 25 3 35 4 4.5 5
Sensing time (ms)

0.88

Fig. 4. The relation of the throughput and the sensing time. [6]

From equation (7), we modify equation (8) as follows

mrin Q& (1)
subject to (9)
Qu(r) = Qu

Therefore, equation (9) is the problem formulation of an optimal throughput in a CR

network.



Chapter 3

Related Wor k

3.1 Weighted Fusion Rule

However, because the distance and channel SNR of every CR user and the primary
user are different, the sensing ability of every CR user is also different. Therefore,
weighted fusion rules emerge to decrease the probability of false alarm under avoiding

interference to the primary user. In this paper [7], a weighted fusion rule is defined :

n

> glize, H;
¥/ (10)

n

YWl <& H

i=1

where « is a weight of CR user, & is the threshold of the fusion center. The paper

[12] represents thaty is the function of distance, and SNR J;, as follows:

@ =af(4)+b

W =aytb (11)

where a ~ b are constant.f (¢,) is a non-increasing function. Usually, closer to the
primary user and higher channel SNR of CR useri result that the sensing accuracy

is also higher. When the accuracy of a CR user is high, we give it a high weight.

10



Region 3

(w_,, =L2)

>

Region 2

(Wz =L)

Energy (V)

Region 1 (Wl :1)

Region 0 (H/b :0)

Fig. 5. Four weights are generated due to three thresholds [8]

Furthermore, the paper [8].also proposed a weighted fusion rule that differs from
the above mentioned. In this paper [8], a CR user using 2 bits has four kinds of weights.
As is shown in fig. 5, we can separate four regions due to three thresholds based on the
value of received energy. Every region has its corresponding weight. Moreover, received
energy of a CR user locates.in a higher region so that the CR user owns a higher weight.

The summation of product of a weight and the number of CR users locate in Reggon

represented toN,, :

3
N, =2 @N, (12)
i=0
where N, is the number of CR users locate in RegianThis paper set the threshold of

a global decisionl”. When N_=>L*, we decide that the primary user is present in the

sensing channel; otherwise, whéw, <L*, we decide that the primary is absent in the

sensing channel. For example, we assume that therg &E& users in Region 2i,— |

CR users in Region 1, and received energies of theMest CR users locate in Region
11



0, it meansN,;=0 ~N,=j ~ N;=i—j *N,=N-=i.If N,=(-j)a+jw<L?, we

can decide that the primary user is absent in the sensing channel.

3.2 SPRT and WSPRT

Although the above mentioned weighted fusion rules help CR networks promote the
throughput, they are still worth improving in many aspects. For example, there may be
hackers in CR networks. In the paper [9], it proposed Weighted Sequential Probability
Ratio Test (WSPRT) algorithm to improve this problem. WSPRT is derived from

Sequential Probability Ratio Test (SPRT).

SPRT collects more local spectrum sensing reports even if CR users have low
spectrum sensing accuracy.. We define the following likelihood ratio as the decision

variable:

5 PR,

IETEN )

Sn:

where the number of collecting samplesis a variable. The fusion rule is based on the

following criterion :

S, =/, =>H,
S zn7,=>H, (14)
N, <S,<n,  =>take another observation

12



n, and ), are upper threshold and lower threshold, respectively. The proposed new

decision variable in WSPRT is
n «
w =] [MJ (15)
=0 \ PL1; [Ho]
where « is defined as a weight of CR userthat is the function of reputation value
0 K. <-0

w=f(K)=y_K+d

il K, >—9 (16)

« U[0,1]

where f(.) is a non-decreasing function, g(>0) is a variable thatjetbe not zero for

the first (g-1) reputation.

This paper [9] describes WSPRT fusion rule using the following algoftithm

1:00, «, =0.
2 : For each spectrum sensing attempt madgision center
3: i=0,W,=1.
4: Get a spectrum sensing redort  from CR user
5 W < W, (P[IilHl] &
PlI; [H,]

6: If n,<W,<n,,i « (+1)modN. Go to step4.

7. IfW, =n,, accepH, ,i.e., outp@&= 1. Go to step9.
8. IfW, <n, accepH, ,ie., outp@@= O.

9: For each sampldd , set— «, + — (")

13



Chapter 4

Proposed Weighted Fusion Rule

However, the above weighted fusion rules only consider a little real circumstances
of CR networks. For example, both power attenuation and mal-function of CR users, and
notorious hackers in CR networks result in decay of the sensing ability. Consequently,
assignment of a dynamic weight is suitable for reality. In order to arrive assignment of a
dynamic weight, the fusion center needs to refer historical records of CR users to make up
current weight. Moreover, CR users with higher reliability are given a higher weight;
otherwise, poor CR users are given a lower weight. We proposed an improved weighted
fusion rule, it gives various weights based on conditions of CR users. As a result, using
our proposed weighted fusion rule can promote the sensing ability and the throughput of
CR networks. On the basis of the above discussion, we can formulate the design of a

weighted fusion rule as the following optimal problem

max {Ro(x)} =>min{Q,( ¥}

subject to (17)
Qu(x) = Qu
where
Qf(X):P(Z@(X‘lﬂi(x)?f“"o) (18)

Based on the above mentioned concept, we propose an algorithm that designs a
dynamic weight to promote the throughput of the whole CR network. The system model is

shown in fig. 6.

14



Weighted Rule

¥ 3

CR User1 @, (x) = (1= B)ay(x —1)+ BT (x)

A 4

Delay

| Fusion Center
CR User i

L)

o.(x-1)

E, = 2. I(x)=1

Z(')r (x-DI,(x)z & B(x)=1 B(x)

E < .1 (x)=0

I(x)==B,(x)?

Y o (x-DI(x) <& B(x)=0

CR User n

Fig. 6. The system model of the proposed weighted fusion rule.

Using components discussed above, we describe our proposed weighted fusion rule
using the following algorithm

1:0N, x=1, @ (0)=1.
2 : For each spectrum sensing round aptemmade by fusion cente
3. i=1
4: Geta spectrum sensing redork ( ) from CR user
N
5: decision variableV, => g X~ 1) X( )
i=1
6: IfW, >¢, accept, ,i.e., outpi= 1. Go to step7
7. IfW, <g,accepH, ,i.e., outp@= O.
8: Comparé. X ) with x(2 0 T 0#BX)
' pare, 99X i1 0= B
9: gX) - (1-F) k-1 AT )
10:}

15



The update weight is
@(x) = (1= B)u (x-1)+ BT, (x) (19)

in the above formulationx is the sensing round, the initialy(0)=1, moreover, a
weight of x—thround is composed of a weight ¢k —1) th round and T (x) based on
proportion B, 0< B<1, an optimal B is obtained by simulationT, (x) is an indicator
that shows if a local spectrum sensing report of CR usé equal to a global decision of

the fusion center.

0,if I, (x)#B(x)

1, if 1. (x)=BX) (20)

Ti(X)={

where [, (x) ~ B(x){0,1} .

We derive q(x) = (1- B)a(x—1)+ BT, (x) by recursive

w(x) =(1-F)a(x-1)+ BTi(x)
=(-BJjwk- 2B (ELT k- LFfTi k)

=(Bfuk-3 B ELITi k- 2B EBT X~ 1} BT X
= (21)

=Bl (O)Fﬁxz [(2- 8 YT kI BT &)
= (1-B)w(0)+ ﬂi [(1- YT &)+ BT (x)

= (£ 5+ FY. (5T Ok AT &)

16



The above formulation is generated by recursive procedure of a weight shown in

fig. 7.
k=x;
ok)=(1-p)ok-1)+pTk), _
return e(x);

k=x-1;
| ok)=(1-Pok-1)+pTk),

return ex(x-1);

k=x-2;
o(k)=(1-p)ok-1)+pTk),
return e)(x-2), ‘

|
k=1,
o(1)=(1-B)m(0)+BT(1);
return o(1);

Fig. 7. Recursive procedure of weight.

Therefore, we substitute equation (21) to equation (18)

Qi (x) = P(Zcq(x—l)li (x)z¢€[H,)
. (22)

PO (@B +BY. [0-F VT (R AT 6= 1), ke Hy

N
The thresholds of the fusion centedepends on average de@% of CR

i=1

N
users due to the decision variablé = Zcq(x—l)li (x). Therefore, we suppose that the
i=1

17



threshold £ of the fusion center is abo

N%Z

o @ (%)
2N

Majority rule. However, real threshold of the fusion center remains to be simulated in

. The factor%is the threshold of

next chapter.

18



Chapter 5

Simulation Results

In our proposed algorithm, we must find an optimél to decreaseQ, by

simulation. The circumstance of the CR network is the number of CR i&e&00, the

sensing roundsx=1000, and CR users are separated into two groups, one group is CR
users with 90% sensing accuracy, another group is CR users with 40% sensing accuracy.
Here, both CR users with good sensing accuracy and CR users with bad sensing accuracy
account for half of CR users in the CR network. In the simulation shown in fig. 8, we get

an optimal 8= 0.4 so that the CR.network:-has maximal throughput. .

005 T T T T T T T T T

0.045 —#— Q false alarm —
—=— () miss detection

0.04

0.035

0.03 .

0.025 k .

Probability

0.02 - .

0.015

0.01

0.005

0(: A & & & & | | |
0 0.1 02 03 04 05 06 07 08 09 1
betta 0.1~1

Fig. 8. Error probability under different proportiof .
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1 T I I I I I I I I

—#— Q false alarm

09+ —&— Qmiss detection | |

Probability
o o o o = o
[#%] E-Y o (7] =~ oo
T T T T T T

=
3%
T

0 10 20 30 40 50 60 70 80 90 100
round 1~100

N
Fig. 9. Error probability when the threshold:%chlgx) of the fusion rule.
i=1

. . N < @ (x)
The threshold € of the< fusion..center can be decided azsz and

N
%Z% by simulation shown fig. 9. and fig. 10, respectively. After 28 rounds in fig.
i=1

9, we discover that the probability of miss detection just decreases to an acceptable value.

Otherwise, fig. 10 shows that the probability of miss detection is almost 0 and the

probability of false alarm also has remarkable decrease. In order to guarantee that CR
- N x~ @ (X)
users do not affect the primary user, we seleeE— as the thresholds of the
i=1

fusion center.

20



0.5 I I I I I T I I I

—#— (Q false alarm
—&— (Q miss detection

045

04r

0351

=
w
T

0251

Probability
(==
- o
o M
T T

=
_;
T

005

R =
0 10 20 30 40 50 60 70 80 a0 100
round 1~100

N
Fig. 10. Error probability when-the threshokdzgchlgx) of the fusion rule.
i=1

We assume several conditions that simulate various circumstances of a CR network.
In a CR network, we set that one group has good sensing accuracy and another group has
bad sensing accuracy. Here, CR users with good sensing accuracy account for 0~100% of
CR users in a CR network, and CR users with bad sensing accuracy account for the rest of
CR users in a CR network. Parameters ge 0.4, N =500, x=100. First, CR users are
separated into group 1 with 90% sensing accuracy and group 2 with 40% sensing accuracy.
Second, CR users are separated into group 1 with 90% sensing accuracy and group 2 with
10% sensing accuracy. Third, CR users are separated into group 1 with 80% sensing
accuracy and group 2 with 10% sensing accuracy. We display the above mentioned three

cases of network circumstances in fig. 11, fig. 12, and fig. 13, respectively.
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Fig. 11. Error probability of CR users with 90% and 40% sensing accuracy.
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Fig. 12. Error probability of CR users with 90% and 10% sensing accuracy.

22



different accuracy CR users

1 T T ¥ T o 3
—#— ( false alarm
Q miss detection

. Ml -

e R e
o ! ! ! ! ! ! ! : !

o

T R S S

. S S N — A A [ — _— ]

0 0.1 0.2 0.7 0.8 09 1

proportion of 10%-accuracy-user & another group(80%-accuracy-user)

Fig 13. Error probability of CR users with 80% and 10% sensing accuracy.

When both CR users with good sensing accuracy and CR users with bad sensing
accuracy are higher such as fig. 11(90% and 40%), error probability is lower. It means that
the CR network has higher throughput. In addition, CR users with bad sensing accuracy
also help CR users with good sensing accuracy promote the whole throughput of a CR

network together. It can be observed from fig~1ig. 13.

On the basis of the above discussion, we list three tables for different proportions of
CR users with good sensing accuracy and CR users with bad sensing accuracy. First in
table 1, CR users with good sensing accuracy account for 50% of CR users in a CR
network, and CR users with bad sensing accuracy account for 50% of CR users in a CR
network. Second in table 2, CR users with good sensing accuracy account for 60% of CR

users in a CR network, and CR users with bad sensing accuracy account for 40% of CR
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users in a CR network. Third in table 3, CR users with good sensing accuracy account for
70% of CR users in a CR network, and CR users with bad sensing accuracy account for
30% of CR users in a CR network. From three tables, when CR users with good sensing
accuracy account for higher proportion of CR users in a CR network, the throughput of a

CR network is higher. It can be observed that error probability of table 3 is lowest

between table 1 table 3.

Table 1. Error probability of different group accuracies under good-sensing-accuracy CR
users accounting for 50% of CR users and bad-sensing-accuracy CR users accounting for

50% of CR users.

Group Accuracy 0% 10% 40%

100% Q; =0.3470 Q; =0.1040 Q; =0.000¢
Q,=0.3574 Q,, =0.0869 Q.=

90% Q; =0.536¢ Q; =0.3622 Q; =0.007¢
Q, =0.524C Q, =0.3454 Q,=

80% Q; =0.6995 Q; =0.5595 Q; =0.726¢
Q,=0.6754 Q,, =0.5009 Q,=

Generally, if the proportion of CR users with bad sensing accuracy is less than 40%

(table 2) in a CR network and accuracies of two groups are only not terrible, our proposed

weighted fusion rule will have an excellent performance about the probability of miss

detection and the probability of false alarm.
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Table 2. Error probability of different group accuracies under good-sensing-accuracy CR

users accounting for 60% of CR users and bad-sensing-accuracy CR users accounting for

40% of CR users.

Group Accuracy

100%

90%

80%

0%

Q, =0.1094
Q. =0.118¢

Q, =0.1402
Q. =0.128¢

Q, =0.4326
Q, =0.4282

10%

Q, =0.0683
Q. =0.0527

Q, =0.0756
Q. =0.0562

Q, =0.1732
Q, =0.1434

Q, =0.099z
Qn =

Table 3. Error probability of different group accuracies under good-sensing-accuracy CR

users accounting for 70% of CR users.-and-bad-sensing-accuracy CR users accounting for

30% of CR users.

Group Accuracy

100%

90%

80%

0%

Q; =0
Q,=0

Q, =0.0492
Q. =0.040¢

Q, =0.082¢
Q. =0.068¢

Q, =0.006C
Q,=0

Q, =0.0163
Q. =0.0012

Next, we compare our weighted fusion rule with WSPRT. The circumstance of the

simulation exists 0~100% of hackers in a CR network. Parameterg§ ar8.4, N =500,
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x=100. We assume that hackers have 0% sensing accuracy and the rest CR users have
100% sensing accuracy. In fig. 14, when the proportion of hackers is less than 40%, the
performance of our proposed weighted fusion rule is superior to WSPRT. Otherwise, when
the proportion of hackers is more than 50%, the performance of our proposed weighted
fusion rule is inferior to WSPRT. However, regardless of any great fusion rules, data are

not worthy to be referred under more than 50% CR users with bad sensing accuracy

because bothQ, and Q, must be too high to be acceptable.

1 I I I I

—#— WPRST Q false alarm

—e— WPRST Q miss detection
Proposed Q false alarm

08 Proposed Q miss detection

Probability
=
(]

02

0.03

. } ' | | | | | | =
0 01 02 03 04 05 06 07 08 09 1
Proportion of hackers

Fig. 14. The performance of WSPRT and our proposed weighted fusion rule

under different proportion of hackers.
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Chapter 6

Conclusion

In this thesis, we propose a simple model and an algorithm for spectrum sensing in
CR networks. Our main concern here is to design an algorithm for weights of CR users
based on historical records. We have shown that not only miss detection is in our control,
but also false alarm has a significant improvement. Specifically, our proposed model still

keep robust for CR networks with hackers.
However, our proposed model only takes the fusion center terminal into consider.

How to combine cluster skills of CR users to promote more throughput remains to be

further studied.
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