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在多輸入多輸出高速下行封包擷取系統中 

採用乏晰 Q-Learning 技術之混合自動重傳機制 

研究生：陳盈伃  指導教授：張仲儒 博士 

國立交通大學電信工程學系碩士班 

摘  要 

為了提供更高速的資料傳輸與更有效的資源利用,第三代合作夥伴計畫（3
rd
 

generation partnership project, 3GPP）提出了多輸出多輸入高速下行封包擷取技術

（Multiple input multiple output high speed downlink packet access, MIMO 

HSDPA）來提供更高速且安全的下鏈路資料封包傳送。在 3GPP 的規格裡面,有

一個重要的服務品質要求：根據通道狀況決定原始傳送的MCS時，必須使封包

的錯誤率小於 0.1。因此，我們提出在多輸出多輸入高速下行封包擷取技術之混

和自動重傳機制下,採用乏晰 Q 學習演算法來解決這個問題（FQLM-HARQ）。

乏晰 Q學習法同時結合了乏晰邏輯運算與 Q學習法的優點。在此,我們將混合自

動重傳機制（hybrid automatic retransmission request, HARQ）程序模擬為離散時

間馬可夫決策過程（Markov decision process, MDP）。根據 BLER的表現,乏晰系

統規則會設計成不同的部分，來實現 BLER的服務品質需求。Q學習演算法可以

在不同的環境下,經由不斷的學習,選出最適當的 MCS 並且修正乏晰系統規則。

在學習之後，我們期望多輸出多輸入高速下行封包擷取系統可以達到最高的資料

輸出而又不違反 QoS需求。 

從模擬結果可知，所提出的 FQLM-HARQ 機制在通道訊息延遲的情況下，

可以達到最大的輸出並且盡力維持 BLER 的要求。相較於其他系統，

FQLM-HARQ可以更適應通道的變化。 
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HARQ by Fuzzy Q-learning for MIMO HSDPA System    

 

Student：Ying-Yu Chen  Advisor：Dr. Chung-Ju Chang 

Department of Communication Engineering 

National Chiao Tung University 

ABSTRACT 

 Multiple input multiple output high speed downlink packet access (MIMO 

HSDPA) system is proposed by 3
rd
 generation partnership project (3GPP) to provide 

higher transmission data rate and more resource utilization. An important QoS 

requirement defined in spec is to choose a suitable MCS based on the channel quality 

indicator while maintaining the initial block error rate (BLER) smaller than 0.1. 

Therefore, we proposed a fuzzy Q-learning based MIMO HARQ (FQLM-HARQ) 

scheme for MIMO HSDPA system to solve this problem. The FQLM-HARQ scheme 

can take the advantage from both fuzzy logic and Q-learning. Here, the HARQ 

scheme is modeled as a Markov decision process (MDP). The fuzzy rule is designed 

to separate different parts according to the BLER performance and the Q-learning 

algorithm can learn the optimal MCS under different environment. After learning, we 

can expect the MIMO HSDPA system with higher throughput while not violating the 

BLER requirement.  

 From simulation results, the proposed FQLM-HARQ scheme can achieve higher 

system throughput and endeavor to maintain the BLER requirement with channel 

quality indicator delay consideration. Comparing to other traditional schemes, the 

FQLM-HARQ scheme can accommodate well in channel variation. 
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Chapter 1  

Introduction 
 

 

High speed packet access evolution (HSPA+) has been proposed in 3rd generation 

partnership project (3GPP) release 7 of universal mobile telecommunications system (UMTS) 

[1]. In release 7, the downlink transmission is improved to supports the peak data rate up to 28.8 

Mbps. In order to enhance the performance of high speed downlink packet access (HSDPA) 

proposed in release 5, release 7 adopted many useful mechanisms, such as multiple input 

multiple output (MIMO), higher order modulation (HOM), improved layer 2 support for high 

data rates, and continuous packet connectivity (CPC). Note that in release 7 MIMO and HOM 

can not be enabled simultaneously. In this thesis, we consider the HSDPA with MIMO enabled, 

since MIMO can not only achieve the highest peak data rate, but also increase link reliability. 

However, due to MIMO enabled in HSDPA system, it becomes more complexity to decide a 

suitable modulation and coding scheme for initial transmission in HARQ mechanism. 

Release 7 is the evolution of release 5. Hence, release 7 inherits many favorable properties 

from release 5. A key characteristic of HSDPA is the use of shared-channel transmission, which 

can rapidly allocate a large fraction of downlink resources to a specific user through high-speed 

downlink shared channel (HS-DSCH). HS-DSCH inherits the capability of the common channel 

which transports data abruptly increased. In order to allow wideband code division multiple 

access (WCDMA) networks to achieve higher data rate and lower latency, there are several 
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mechanisms used in HSDPA, such as fast scheduling, adaptive modulation and coding (AMC), 

and hybrid automatic repeat request (HARQ). The packet scheduler is shifted from radio 

network controller (RNC) to the Node B in HSDPA and the transmission time interval (TTI) is 

shortened from 10ms to 2ms. Hence, the packet scheduling decisions are faster than traditional 

WCDMA networks. Moreover, power control is carried out by AMC, which adjusts the 

transmission rate according to the channel quality. If the system can tolerate some jitter in the 

data rate, AMC can be more efficient. 

Another important functionality of HSDPA is the HARQ mechanism which is used for 

error detections and for the retransmission of the error data. Comparing with the traditional 

automatic repeat request (ARQ), HARQ combines the forward error correction (FEC) bits with 

the existing error detection (ED) bits to increase the probability of the successful decoding. 

There are three different schemes to implement the HARQ technique. The first one is the chase 

combining (CC) scheme, that each retransmission data is identical to the original one. When the 

CC scheme is executed with maximal-ratio combining (MRC), the final received SINR is the 

total of each (re)transmission data [2]. The second one is the incremental redundancy (IR) 

scheme, where each retransmission data consists of new redundancy bits. The performance 

comparison of these two schemes was shown in [3] and [4]. The last one is the H-ARQ-type-Ⅲ 

scheme, which is a variety of the IR scheme. The difference between the H-ARQ-type-Ⅲ 

scheme and the IR scheme is that each retransmission data for the H-ARQ-type-Ⅲ scheme has 

a self-decodable ability. Other varieties of the HARQ mechanism are proposed to tolerate the 

fast-varying channel condition, such as asynchronous and adaptive hybrid ARQ (A
2
IR HARQ) 

and enhancement hybrid ARQ (E-HARQ) [5]. In A
2
IR HARQ, each (re)transmission rate can be 

changed according to the feedback information of the channel quality indicator (CQI) and the 

residual energy for the packet to have the more probability of the successful decoding. The 

(re)transmission rate is changed by the selection of different modulation order and coding rate 

schemes (MCSs).  
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The MCS selection for the initial transmission of each data stream will affect the 

retransmission times, block error rate and the system performance. Therefore, one important 

object of the HARQ mechanism is to find a suitable MCS level for first data transmission. In [1], 

the relationship between the CQI and MCS has decided in a predetermined table to achieve the 

block error rate (BLER) requirement. Nakamura et al. proposed an adaptive method to tune the 

SINR threshold for each MCS level based on the last transmission result [6]. In [7], Muller and 

Chen proposed a modified SINR threshold adaptation method for each MCS level not only 

based on the transmission result but also considered different CQI delay scenarios. Q-learning 

algorithm [8] is one kind of powerful reinforcement learning method. Since HARQ procedure 

can be modeled as a discrete-time Markov decision process (MDP), Chang et al. [9] adopted 

Q-learning algorithm on HARQ scheme, called Q-HARQ, to achieve more system efficiency 

and enhance the throughput. The Q-HARQ scheme uses the Q function and the reinforcement 

signal to learn the optimal solution for MCS selection. By assigning each MCS level a Q-value, 

the base station will choose the MCS level with minimum Q-value to reduce the cost for packet 

transmission. 

In the recent years, MIMO have been widely used in wireless communication systems. It 

enhances the performance of the system, including the capacity and the coverage, as well as 

improved service provisioning. The MIMO scheme can increase the data rate through the spatial 

multiplexing (SM) [10] or provide the reliability of data transmissions through spatial diversity 

(SD) [11]. However, there is a trade-off relationship between these two through schemes [12]. 

At the base station (BS), the use of multiple transmit antennas is primarily of interest for the 

downlink since it provides an opportunity for diversity and beam-forming without the need of 

additional receiver chains at the mobile terminal. There are different approaches to realize the 

diversity by the multiple transmit antennas. For the open loop diversity, in general, there are the 

orthogonal transmit diversity and the transmit diversity via space-time coding (STC). Note that 

STC is a popular solution for diversity gain and coding gain, which can be easily combined with 
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all kinds of multiple antenna systems. For the closed loop diversity, in general, there are the 

switched transmit diversity (STD) and the transmit adaptive array (TxAA) [13]. The closed-loop 

MIMO schemes have better performance than open-loop MIMO schemes in theory since the 

transmitter for the closed-loop MIMO schemes have the knowledge of the channel condition. 

The 3GPP extended the closed loop transmit diversity scheme, called double transmitter antenna 

array (D-TxAA) [14], [15], in release 99 to be the standard of release 7. With D-TxAA, up to 

two data streams (transport blocks) can be transmitted simultaneously over the radio channel to 

increase the throughput by using the same channelization codes. Here, each data stream is 

processed and coded separately. When the channel quality becomes worse, D-TxAA can 

transmit one data stream to increase the accuracy of transmitted data. Hence, to decide the 

number of transmitted data stream in the HSPA+ system becomes an important issue since it is 

highly related to the system performance. The detail of D-TxAA in release 7 can be found in [16] 

and [17]. 

The study of the MIMO technology with the adaptive HARQ mechanism has attracted 

considerable attention [18]-[19] since it can provide more throughput and reliability for packet 

data services. In [18], authors proposed the basis hopping method with the HARQ 

pre-combining scheme to provide dramatic gain for MIMO. In [19], authors proposed the 

TAS/STBC/HARQ scheme to enhance system performances, which adopted STC, transmit 

antenna selection (TAS), and receive diversity combining method. 

Fuzzy Q-learning (FQL) method can be seen as an extension of Q-learning algorithm into 

fuzzy environments. Traditionally, the FQL method is used to model the motion and thinking 

way of human in the robot design [20], [21], [22]. Combining Q-learning scheme and fuzzy 

logic can help the system efficiently to adapt the environment and to choose the suitable actions. 

In this thesis, we propose a fuzzy Q-learning based MIMO HARQ (FQLM-HARQ) scheme 

for HSDPA system in release 7 to increase the system throughput while guarantee the BLER 

requirement. It is very hard to use an explicit mathematics equation to represent the relationship 
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between BLER requirement fulfillment and throughput maximization. Fuzzy logic is a very 

useful technique to solve the imprecise problem. Hence, the FQL scheme takes advantages from 

both fuzzy logic and Q-learning algorithm to get the best action-value function gradually for 

above imprecise problem. In our design, the FQLM-HARQ scheme can not only decide the 

number of data stream for transmission, but also choose the suitable MCS level for each 

transmission. 

The remainder of this thesis is organized as follows. The system model for the release 7 is 

described in Chapter 2. After that, the fuzzy Q-learning design for MIMO HARQ scheme is 

proposed in Chapter 3. It is followed by the performance analysis of the FQLM-HARQ scheme. 

Finally, conclusions are given in Chapter 5. 
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Chapter 2  

System Model 
 

  

 The MIMO HSDPA system, the HARQ entity, the spatial processing, the channel model 

and the fuzzy Q-learning algorithm are given in this chapter. 

2.1 MIMO HSDPA System 

  The protocol architecture of MIMO HSDPA is shown in Fig 2.1. At the serving radio 

network controller (SRNC), radio link control (RLC) handles the data of MAC-d which will be 

transmitted on HS-DSCH. At the Node B (the base station), a new MAC entity, called MAC-ehs, 

is used instead of MAC-hs to support the functionality of MIMO in the HSDPA system. The 

functionalities of MAC-ehs are included flow control, scheduling, priority handling, HARQ 

entity. Moreover, MAC-ehs can determine the number of data stream for MIMO scheme to be 

transmitted at the Node B. 

  

Figure 2.1: Protocol architecture of MIMO HSDPA 
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 There are three special channels used in the physical layer specification of release 7 the 

same as that in release 5. They are HS-DSCH, high-speed shared control channel (HS-SCCH), 

and uplink high-speed dedicated physical control channel (HS-DPCCH). Details are given as 

follows: 

(1) HS-DSCH: It carries the data to the user in the downlink direction. The code resource 

for HS-DSCH contains a set of channelization code, which spread factor (SF) is always 

fixed at 16. Each channelization code is known as for high-speed physical downlink 

shared channel (HS-PDSCH). Since common channels need a code space, the 

maximum number of codes which can be allocated to HS-DSCH is 15. The only coding 

scheme of HS-DSCH is turbo code with a minimum 1/3 coding rate. 

(2) HS-SCCH: It carries the necessary physical layer control information to the user which 

includes transport format HARQ-related information and so on. This information is 

used to decode the data transmitted on HS-DSCH and to perform the soft combining 

when a retransmission is carried out. If there is no data transmitted on HS-DSCH, there 

is no need to send the data on HS-SCCH. 

(3) HS-DPCCH: It carries the control information in the uplink direction, which consists of 

ACK/NACK messages, precoding control indication (PCI), and channel quality 

indication (CQI) value. The Node B needs the result of the HS-DSCH decoding and the 

instantaneous channel conditions for the purpose of scheduling and rate control. Note 

that, one HS-DPCCH is set up for each user with an HS-DSCH configured. 

The MIMO HSDPA system with fuzzy Q-learning based MIMO HARQ (FQLM-HARQ) 

scheme is described in Fig 2.2. Details are given as follows: 

(1) In this study, to maximize system throughput is our main concern. Hence, the 

scheduling in the MAC-ehs will choose the user with the best channel quality to be 

served. Note that, in our MIMO HSDPA system, only one user can be served per TTI. 

(2) Once the served user has been selected in a particular TTI, the scheduler identifies the 



8 

 

necessary HS-DSCH parameters according to the output signal from our FQLM-HARQ 

scheme. These parameters includes the number of transmitted data stream, the kind of 

modulation, the size of transmitted block, and so on. The block of priority handling then 

segments the user data to a suitable size based on those HS-DSCH parameters. 

(3) After the segmented packet(s) arrives the HARQ entity, the HARQ entity assigns each 

packet to a suitable HARQ process then generates new data stream for transmission. 

Note that, this data stream might included the retransmission data for previous packet. 

(4) After the single or dual data stream is generated from the HARQ entity, it will pass 

through the spatial processing and then be transmitted through two physical antennas. 

(5) After the terminal received the transmitted data, it checks which HARQ process the 

data belongs to and whether it needs to be combined with data received previously. The 

terminal then decodes the combined data. After that, the outcome of decoding and the 

channel information are sent on the HS-DPCCH to the Node B. 

(6) After the Node B receives the feedback information from the terminal, the 

FQLM-HARQ scheme uses the channel information, block error rate, and the observed 

system information such as retransmission times, the packet information bits, and so on 

to adjust the fuzzy rule base and Q-learning. 

( )PCI n

( )BLER n

HMCS

1( )CQI n

2( )CQI n

LMCS

 

Figure 2.2: The MIMO HSDPA system 
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2.2 HARQ Entity 

One HARQ entity handles the HARQ functionality for one user. HARQ entity is capable of 

supproting multiple HARQ process of HARQ protocols. HARQ entity determines a suitable 

HARQ process service the MAC-ehs protocol data unit (PDU). Each HARQ process has 

indepent acknowledgements and retransmission. There shall be one HARQ process for single 

stream transmission and two HARQ processes for dual streams transmission per TTI. In order to 

achieve continuous data transmission, a minimum of six HARQ processes needs to be 

configured in single stream transmission. Similarly, in dual stream transmission, a minimum of 

twelve HARQ processes needs to be configured to achieve continuous data transmission. 

However, HARQ processes on both streams run independently from one another will result in 

the signaling overhead, since each possible combination of HARQ processes should be 

addressed. To efficiently solve this problem, HARQ processes in release 7 are only signaled for 

the primary transport block with 4 bits. The HARQ process for the secondary transport block is 

directly derived from that for the primary transport block. Hence, there is a one-to-one mapping 

between the HARQ processes used for the primary transport block and the secondary transport 

block. In this study, the number of the HARQ process is set to 12 to achieve continuous data 

transmission. Fig 2.3 shows the mapping of the HARQ process between the primary stream and 

the second stream in our MIMO HSDPA system. 

 

HARQ process identifier on primary 

stream 

0 1 2 3  4 5 

HARQ process identifier on secondary 

stream sstream 

6 7 8 9 10 11 

Figure 2.3: The HARQ processes for primary and secondary stream 

We adopt IR method to implement the HARQ scheme. In order to enhance the system 

throughput, we modify the traditional IR method to carry partially new data. That is, if the Node 
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B receives a NACK signal, the HARQ process combines the information and redundancy bits 

from new packet and the redundancy bits from the retransmission packet to transmit. Fig 2.4 

shows an example of the bit allocation in the HARQ process. Let Z be the transport block size. 

There are Z bits for the new transmission at 1st TTI. After 5 TTIs, the Node B receives the 

ACK/NACK of this transmission. If a NACK indicator is received, the Node B sends A 

redundancy bits for the first packet and Z−A bits as new data packet at 7th TTI. If the Node B 

receives a NACK indicator again after 5 TTIs, it sends A1 redundancy bits for the first packet, B 

redundancy bits for the previous packets, and Z−A1−B bits for new data packet at 13th TTI. 

Note that, the transport block size can be changed per TTI depending on the channel condition. 

By increasing the redundancy bits for previous failure packet, it can improve the probability of 

successful decoding of previous failure packet. If the number of the retransmission for the same 

packet is more than two, this packet will be dropped. 

  

Figure 2.4: The bit allocation in the HARQ process 

 In release 7, the CQI table stores the information that which transport block size, 

modulation order, and coding rate are suitable for the given channel condition. The Node B 

scheduler determines exact (re)transmission format based on this CQI information for HARQ 

scheme. However, CQI has report delay or measurement inaccuracy. By changing the 

modulation order according to the transmission results, HARQ scheme can effectively reduce 

the number of retransmission and enhance the system throughput. 

In our study, we call the combination of the transport block size, modulation order, and 

coding rate as the MCS level. There are 8 kinds of MCS level used for HARQ scheme and is 

given in Table 2.1. The lower MCS level stands for the more reliability of the transmission, but 
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has the less throughput of the system. On the contrary, the higher MCS level stands for the less 

reliability of the transmission, but has higher throughput of the system. 

 

 

Table 2.1: The 8 kinds of MCSs 

MCS level Transport Block Size Modulation order Coding rate 

   1      4581     QPSK    1/3  

   2    6673  QPSK    1/2  

  3      8574    QPSK    2/3  

   4     10255     QPSK    3/4  

   5      12488    16QAM   1/3  

 6  14936    16QAM     1/2  

  7      17548    16QAM     2/3  

  8     20617    16QAM     3/4  

 

2.3 Spatial Processing 

 The spatial processing for the MIMO HSDPA system as shown in Fig 2.5. The MIMO 

scheme used for MIMO HSDPA system is called double transmit adaptive arrays (D-TxAA), 

which is a multi-codeword scheme with rank adaptation and pre-coding. There are two transmit 

antennas at the Node B and two receive antennas at the UE. In release 7, the D-TxAA scheme is 

only applicable for the HS-DSCH. Each data stream is processed and coded separately per TTI. 

After spreading and scrambling, precoding weights w1 and w2 are applied to the primary data 

stream, and weights w3 and w4 are applied to the secondary data stream. Note that, if only single 

data stream is transmitted, it can get transmit diversity by exploiting both transmit antennas. For 

dual data streams transmission, pre-coding can aid the receiver to separate the two data streams.  
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∑

∑

  

Figure 2.5: The downlink transmit structure for 2×2 MIMO approach 

The pre-coding weights for primary data stream in release 7 are the same as those in 

closed-loop transmit diversity for release 99, w1＝1 2 , w2
1 j 1 j 1 j 1 j

, , ,
2 2 2 2

+ − − + − − ∈  
 

. 

To reduce the overhead of PCI report, the terminal only report the preferred pre-coding weight 

for primary data stream. Weights w3 and w4 can be derived from weights w1 and w2, that is, w3＝ 

w1 and w4＝－ w2. Since w1 is fixed, only w2 is reported by PCI. Note that weights w3 and w4 are 

chosen to be orthogonal to weights w1 and w2. This can reduce the interference between the two 

data streams and lessen the burden on the receiver processing. According to this feedback PCI 

from UE, the Node B can determine the pre-coding weights for spatial processing. 

3 

2.4 Channel Model 

In this thesis, we consider a terrestrial radio channel for urban areas just as that given in 

[23]. Three types of propagation factor are included in the channel model. They are path loss, 

slow variation resulting from shadowing and scattering, and the rapid variation due to the 

multi-path effects. Denote ( )F t  the channel condition function at time t  for WCDMA 

cellular system. ( )F t  is modeled by long-term fading and short-term fading, and can be given 

by: 
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 /10( ) ( ) 10 ( ).F t d tηξ ζ= × ×    (2-1) 

Here, /10( ) 10d ηξ ×  is the long-term fading including path loss and shadowing, d is the distance 

from the antenna of the base station to the antenna of the terminal, and η  is a 

normal-distributed random variable with zero mean and variance 2

Lσ . ( )tζ  is the short-term 

fading factor caused by the multi-path effect, and can be recalled from the Jakes model [24], 

   
1

2
( ) 2 cos(2 cos(2 / ) ) .m

M
j

D m

m

t f t m L e
L

βζ σ π π θ
=

= +∑    (2-2) 

Here, σ  is the radical of the average power signal, Df is the Doppler frequency, 4 2L M= +  

is the number of the signal path, /( 1)m m Mβ π= + , and 

  2 /( 1)      for  0,1, 2,..., 1.m m ms M s Mθ β π= + + = −     (2-3) 

Since the summation components of ( )tζ  are mutually independent to each other, this model 

can produce up to M independent short-term fading. Therefore, we choose M to be equal to the 

number of the total links in all cells of the system. It is reasonable to suppose that the scattering 

geometry is time invariant within some small local area. We then can assume that parameters of 

the Jakes model are fixed in simulations. 

The shadowing effect of a moving user would be different when the position of the user 

changes. However, compared to the motion of the user, the sampling frequency in HARQ is 

very short. This caused that, for a practical system, the degradation degree between two 

sampling time is small. Hence, the shadowing effects of these sampling points can be expected 

to be highly correlated. The correlation function is then defined by the distance between two 

adjacent sampling points. Let x∆  be the position difference between two adjacent TTI. The 

correlated shading fading can then be obtained from the normalized autocorrelation function 

( )xρ ∆  [25]. Here,  

  

| |
ln 2

( ) ,dcor

x

l
x eρ

∆
−

∆ =   (2-4) 
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with 
dcor
l  being the decorrelation length. 

2.5 Fuzzy Q-learning Algorithm 

Fig 2.6 is a general learning system which is consists of five elements. The learner will 

select the optimal action according to the knowledge of the state by interacting with the 

environment. After applying the action, the environment will give some reward feedback to the 

learner. These rewards can help justifying the action decision policy for the better system 

performance. 

 

Figure 2.6: Block diagram of a learning system 

 

The expectation of accumulated rewards is called Q function and it will be affected by the 

selected action at each time. Eq. (2-5) is the Q-function which depends on the system state 

denoted by x  and the action denoted by ,a respectively: 

  ( )0 0 0 0
0

, ( ) (0) , (0) ,n

n

Q x a E r n x x a aγ
∞

=

 
= = = 

 
∑    (2-5) 

where γ  is the discount factor, ( )r n  is the reinforcement signal (reward), {}E ⋅  is the 

expectation operation and n  is the episode index. The Q-value is the output value of 

Q-function. Because the Q-value is the output value of the accumulation rewards in the future 

from now on, it will be affect by the selected action 0a  under state 0x  at current decision 

episode 0n = . Therefore, the reinforcement learning will choose the optimal action which can 

maximize the accumulation of rewards, denoted by *a as Eq. (2-6):  
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  *

0argmax ( , ).
a

a Q x a=   (2-6) 

Since the system state in the future, ( )x n for  0n > , the expectation value ( )r n  are usually 

unavailable in the real world. Hence, Watkins et al [18] proposed a recursive method, called 

Q-learning algorithm. The Q-learning algorithm can solve above problems and obtain the 

optimal Q function at next stage. It is given by [18] as: 

[

1

 ( , ) ( )

( , )           max[ ( ( 1), )] ( ( ), ( )) ,    for ( , ) ( ( ), ( )) ,

( , ),                                      for ( , ) ( ( ), ( )).

n

n n n
b

n

Q x a r n

Q x a Q x n b Q x n a n x a x n a n

Q x a x a x n a n

η

γ+

 + +
 = + − = 

≠

 (2-7) 

where ( , )nQ x a is the optimal Q function at episode n , and η  is the learning rate, [0,1]η∈ . 

In order to get the new optimal Q function 1( , )nQ x a+  at next stage, it is assume that the system 

state ( 1)x n +  is available at next stage and the feedback reward ( )r n  caused by the last action 

is used to update ( , )nQ x a . Only the state-action pair ( , )x a  occurs in the previous episode can 

have information to correct its Q-value. After updating Q-value at each episode, we can get a 

more accurate Q-function approximation and use Eq. (2-7) to decide the optimal action. 

The fuzzy Q-learning (FQL) algorithm can be regarded as the Q-learning algorithm which 

combined with fuzzy logic. Eq. (2-8) is the general form of fuzzy if-then rules which shows the 

characteristic of this combination scheme as: 

  Rule  : if  ( ) is  , then   with ( , ),  1 .j k n j kj X n S a q S a k K≤ ≤    (2-8) 

where [ ]1( ) ( ),..., ( )HX n x n x n=  is the vector of input linguistic variables, H  is the number of 

input variables, ( , )n j kq S a is the Q-value for the state-action pair ( , )j kS a  at episode n , 

{ }S , 1,...,jS j J= =  is the set of system state, and { }A , 1,...,ka k K= =  is the set of action 

candidate. Since each jS  containing a rule, there are J rules with different Q-values for each 

pair ( , ),  1,...,j kS a k K= . The select-max strategy is adopted for each rule to choose the suitable 



16 

 

action * ( )ja n  

*

A
( ) argmax ( , ) .

k

j n j k
a

a n q S a
∈

=    (2-9) 

Because ( )X n  belongs to each jS  with different intensity which depends on the combination 

of the membership function of each input linguistic variable, it can infer to J consequences 

from these J  rules separately. Then these consequences * ( ), 1,...,ja n j J=  will be gathered to 

infer the optimal action, denoted by *( )a n  

  

*

,

1*

,

1

( )

( ) ,

J

j n j

j

J

j n

j

a n

a n

µ

µ

=

=

×

=
∑

∑
  (2-10) 

where ,j nµ  is the intensity of each rule j  at episode n . 

 After applying the optimal action, the reward caused by the action is feedback to update the 

Q function which infers to Eq. (2-7): 

   * * *

1( , ( )) ( , ( )) ( , ( )),   for  1 ,n j n j n jq S a n q S a n q S a n j Jη+ = + ×∆ ≤ ≤   (2-11) 

and 

( ) ( ){ }

*

, * *

,

1

 ( , ( ))

 ( ) ( 1), ( 1) ( ), ( ) .

n j

j n

n nJ

i n

i

q S a n

r n Q X n a n Q X n a n
µ

γ
µ

=

∆ =

× + × + + −

∑
  (2-12) 

( )*( ), ( )nQ X n a n  is the Q-value for state-action pair *( ( ), ( ))X n a n  and is the weighted 

summation of the J  Q-values *( , ( )), 1,...,n j jq S a n j J=  by using the rule intensity ,j nµ : 

 ( )
( )*

,

1*

,

1

, ( )

( ), ( ) .

J

j n n j j

j

n J

j n

j

q S a n

Q X n a n

µ

µ

=

=

 × 
=
∑

∑
  (2-13) 

*( ( 1), ( 1))nQ X n a n+ +  is the transient optimal Q function, denoted by *Q  at next stage. Since 
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the next stage Q-values 1( , ), 1,..., ,  1,...,n j kq S a j J k K+ = =  are not available, 

*( ( 1), ( 1))nQ X n a n+ +  will be calculated by *( , ), 1,...,n j jq S a j J= which is defined as: 

  ( )
( )*

, 1

1*

, 1

1

, ( )

( 1), ( 1) .

J

j n n j j

j

n J

j n

j

q S a n

Q X n a n

µ

µ

+
=

+
=

 × 
+ + =

∑

∑
  (2-14) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 

 

3333    

 

 

Chapter 3 

Fuzzy Q-learning based MIMO 

HARQ Scheme 
 

 

 In this chapter, the design of the fuzzy Q-learning-based MIMO HARQ (FQLM-HARQ) 

scheme is proposed to choose the MIMO transmission mode and the MCS level for each initial 

transmission. Since the decision in the HARQ scheme is based on current and past system state, 

this process can be modeled as a Discrete-time Markov decision process (MDP). Applying the 

fuzzy Q-learning-based algorithm, the FQLM-HARQ scheme can solve this MDP problem. 

 The overall structure of the FQLM-HARQ scheme is given in Fig 3.1. The measure 

parameters ( )BLER n , 1( )CQI n , and 2( )CQI n  are translated into fuzzy rule base indicator 

( )nβ  and input linguistic variables ( )X n  by the block of operation. ( )nβ  indicates which 

fuzzy rule base ( )X n  is suitable for. There are two fuzzy rule bases in FQLM-HARQ scheme. 

One is fuzzy rule base A (for mode 1), and the other is fuzzy rule base B (for mode 2). Note that, 

there are two transmission modes. They are spatial diversity (SD) and spatial multiplexing (SM). 

Here, mode 1 denotes SD transmission is used and mode 2 denotes SM transmission is used. 

After the calculation of the fuzzy rule base, we can get Q-value nq  for each system state. 

According to these Q-values, the inference engine can infer a optimal action for each mode. The 

action decision then decides the MCS level for each data stream. When the packet transmission 

is finished, the reinforcement signal generator will create a reinforcement signal ( )r n  to the 
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block of Q-function update based on system information. The Q-values in fuzzy rule base will 

be updated by Q-function update. The detailed design is given as follows. 

1 1,( , )n kq S a

1,( , )n J kq S a

1 2,( , )n kq S a

2,( , )n J kq S a

( )( )* *
1 1, ( ),na Q X n a

( )r n
*( , ( ))

n j l
q S a n∆

( )( )* *
2 2, ( ),na Q X n a

LMCS

( )nβ

( )BLER n

1( )CQI n

2( )CQI n

HMCS

 

 

Figure 3.1: The FQLM-HARQ scheme 

1 

3.1 Pre-Processing 

In this block, input data is pre-processing to reduce the amount of calculation in the 

FQLM-HARQ scheme. Let 1( )CQI n  and 2( )CQI n  be the channel quality indicator for the 

primary and secondary data streams, respectively. Note that, the values of 1( )CQI n  and 

2( )CQI n  are measured by user equipment (UE) through common pilot channel (CPICH), and 

are integer values between 0 and 14. In order to reduce the number of fuzzy rule, we define 

( )HCQI n  and ( )LCQI n are the maximum and the minimum values, respectively, among 

1( )CQI n  and 2( )CQI n . That is, 

 { }1 2( ) max ( ), ( )HCQI n CQI n CQI n= ,       (3-1) 

and 
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 1 2( ) min{ ( ), ( )}LCQI n CQI n CQI n= ,    (3-2) 

Assume thCQI  is the threshold of channel quality indicator for the selection of 

transmission mode. If ( )LCQI n  is less than thCQI , the MIMO HSDPA system will use SD 

transmission. On the contrary, if ( )LCQI n  is greater than thCQI , the MIMO HSDPA system 

will use SM transmission. However, since the CQI has report delay or measurement 

inaccuracies, there should be a fuzzy margin for the selection of MIMO transmission mode. Let 

( )nβ  be the fuzzy rule base indicator and thβ  be the threshold for the selection of fuzzy rule 

base. We then have the following three rules: 

(1)  if ( ) ,L th thCQI n CQI β− < −  only fuzzy rule base A enabled, 

(2)  if ( ) ,L th thCQI n CQI β− >  only fuzzy rule base B enabled, 

(3)  if ( ) ,L thth thCQI n CQIβ β− ≤ − ≤  both fuzzy rule A and fuzzy rule B enabled. 

Let ( ) 0nβ =  follow the (1) rule. This indicates the channel quality is really bad. In order 

to enhance the reliability, the single data stream is adopted for SD transmission and only the 

fuzzy rule A is enabled. Let ( ) 1nβ =  follow the (2) rule. It implies channel quality is very 

good. Hence, only the fuzzy rule B is enabled and dual data streams are used for SM 

transmission to increase the system throughput. Let ( ) 2nβ =  follow the (3) rule. It means that 

the channel quality is in the indistinct region such that we can’t exactly decide which 

transmission mode is suitable. Hence, both fuzzy rule bases A and B are enabled. In this case, 

the actual transmission mode will be judged by the action decision.  

2 

3.2 Fuzzifier 

Let { }( ) ( ), ( ), ( )H LX n BLER n CQI n CQI n=  be the input linguistic variables in the 

FQLM-HARQ scheme. ( )BLER n  is the block error rate indicator, which is defined as the 

number of the packets with retransmissions over the total transmission packets at episode n . 
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The fuzzy term set for ( )BLER n  is defined as ( ) { }( ) Low, Middle, HighT BLER n =  

{ }L,M,H .=  Here, “Low ” means ( )BLER n  is in the safe region of maintaining the QoS 

requirement; “Middle ” means ( )BLER n  is in the normal region of achieving the QoS 

requirement; “ High ” means ( )BLER n  is in the dangerous region with the probability of 

violating the QoS requirement. The fuzzy term sets for ( )HCQI n  and ( )LCQI n  are denoted by 

( )( )HT CQI n  and ( )( )LT CQI n , respectively. They are discriminated eight levels which shown 

as ( ) ( ) {( ) ( ) Level 1, Level 2, Level 3, Level 4,  Level 5, Level 6, Level 7,H LT CQI n T CQI n= =  

} { }Level 8 = L1, L2,L3, L4,L5,L6,L7, L8 . Each term in ( )( )HT CQI n  and ( )( )LT CQI n  stands 

for the judgment of channel quality indication which implies the QoS requirement of block error 

rate while using the corresponding MCS level during this term.  

The membership function for fuzzy terms can indicate the intensity of the input variable 

belong to itself fuzzy label, and is designed with pre-knowledge of the system. Before designing 

the membership function for fuzzy terms in ( )( )T BLER n , ( )( )HT CQI n  and ( )( )LT CQI n , we 

first define a triangle function ( )f ⋅  and a trapezoid shape function ( )g ⋅ . 

A triangle function ( )f ⋅
 
is defined in Fig. 3.2, and can be expressed as:  

 ( )

0
0 1

1 0

0 1 2 2
1 2

2 1

 ,   for ,

; , ,
 ,   for ,

 0,              otherwise,

y y
y y y

y y

f y y y y y y
y y y

y y

− ≤ ≤ −
= − ≤ ≤ −



     (3-3) 

where y0 , y1, and y2 in ( )f ⋅  is the left edge, center, and right edge, respectively, of the 

triangular function. 

 

Figure 3.2: A triangle function ( )f ⋅
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A basic shape of a trapezoid shape function ( )g ⋅  is shown in Fig. 3.3, and can be defined as: 

 ( )

1
1 2

2 1

2 3

1 2 3 4

4
3 4

4 3

 ,   for ,

 1,         for ,
; , , ,

 ,   for ,

 0,         otherwise,

x x
x x x

x x

x x x
g x x x x x

x x
x x x

x x

− ≤ ≤ −


≤ ≤
= 

− ≤ ≤
 −



   (3-4) 

where x1 ,x2, x3, and x4 in ( )g ⋅  are the left edge, center-right, center-left and right edge, 

respectively, of the trapezoid. 

1

1
x

2x 3
x 4x

( )g x

x  

Figure 3.3: A trapezoid shape function ( )g ⋅  

 The membership function of ( )BLER n , denoted by ( )( )BLER nµ , composed of the 

membership functions of the terms, “L”, “M”, and “H” of ( )( )T BLER n , denoted by 

( )L ( )BLER nµ , ( )M ( )BLER nµ , and ( )H ( )BLER nµ , respectively. Here, 

  ( ) ( )1 2L ( ) ( );  - , 0,  A ,  A ,         BLER n g BLER nµ = ∞    (3-5) 

 ( ) ( )1 2 3 4M ( ) ( );  A , A ,  A ,  A ,BLER n g BLER nµ =    (3-6) 

 ( ) ( )3 4 5H ( ) ( );  A , A ,  A ,  ,BLER n g BLER nµ = ∞     (3-7) 

In our design, we set *
1A =0.5 BLER× , *

2A =0.7 BLER× , *
3A =BLER  and *

4A =1.2 BLER× , 

where *BLER  denotes the BLER requirement. We then have the membership function of 

( )BLER n  as shown in Fig. 3.4. 
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( )BLER n

( ( ))BLER nµ

1

1
A

2
A

3
A

4
A

 

Figure 3.4: The membership function of ( )BLER n  

The membership functions of ( )HCQI n  and ( )LCQI n , denoted by ( )( )HCQI nµ  and 

( )( )LCQI nµ , are shown in Fig 3.5. Here,Bi , for 1,...,8i =  is set to the required value of 

channel quality indication to maintain *BLER  while using the -thi MCS level. Since 

( )HCQI n  and ( )LCQI n  have the same fuzzy set. We use ( )CQI n  instead of ( )HCQI n  and 

( )LCQI n  to conveniently describe the membership functions of ( )HCQI n  and ( )LCQI n . 

( )( )CQI nµ  is composed of the membership functions of the term L1,...,L8  of ( )CQI n , 

denoted by ( ) ( )L1 L8( ) ,..., ( )CQI n CQI nµ µ , respectively. 

( ) ( )L1 ( ) ( );  - , 0,  B1,  B2 .CQI n g CQI nµ = ∞     (3-8) 

( ) ( )L2 ( ) ( );  B1,  B2,  B3 .CQI n f CQI nµ =     (3-9) 

( ) ( )L3 ( ) ( );  B2,  B3,  B4 .CQI n f CQI nµ =    (3-10) 

( ) ( )L4 ( ) ( );  B3,  B4,  B5 .CQI n f CQI nµ =    (3-11) 

( ) ( )L5 ( ) ( );  B4,  B5,  B6 .CQI n f CQI nµ =    (3-12) 

( ) ( )L6 ( ) ( );  B5,  B6,  B7 .CQI n f CQI nµ =    (3-13) 

( ) ( )L7 ( ) ( );  B6,  B7,  B8 .CQI n f CQI nµ =    (3-14) 

( ) ( )L8 ( ) ( );  B7,  B8,  14, .CQI n g CQI nµ = ∞    (3-15) 
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( ) / ( )H LCQI n CQI n

( ( )) / ( ( ))H LCQI n CQI nµ µ

    

 Figure 3.5: The membership function of ( )HCQI n and ( )LCQI n  

 

3.3 Fuzzy Rule Base 

The fuzzy rule base is consisted of if-then rules. In the FQLM-HARQ scheme, we have two 

fuzzy rule bases. One is fuzzy rule base A for mode 1, and the other is fuzzy rule base B for 

mode 2. Since the value of ( )HCQI n  is greater than or equal to the value of ( )LCQI n , there are 

108 kinds of combination of ( )( )T BLER n , ( )( )HT CQI n  and ( )( )LT CQI n . Therefore, the state 

in our system is , 1,...,108jS j = . Assume each state has one fuzzy Q-learning rule. We then 

have the following two rule bases.  

 

3.3.1 Fuzzy Rule Base A 

In the fuzzy rule base A, the Q-value for the state action pair 1,( , )n j kq S a  can be got 

through the fuzzy if-then rule as: 

 1, 1,Rule  : if  ( ) is  , then   with ( , ),  for 1,...,8j k n j kj X n S a q S a k =   (3-16) 

where 1,ka  is the action for mode 1 transmission, which means the FQLM-HARQ scheme 

chooses the k-th MCS level for the single data stream. The design concept of MIMO-HARQ 

scheme is to discriminate the prefer actions 1,ka  according to ( )BLER n . If ( )BLER n  
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performance is better, then the choice of the action is more aggressive. On the other hand, if 

( )BLER n  performance is worse, then the choice of the action is more conservative. While 

( )HCQI n  and ( )LCQI n  are help selecting the prefer actions for ( )BLER n , they can accelerate 

the learning procedure. In the following, we will divide the fuzzy rules into three parts based on 

the 3 terms, “Low”, “Middle” and “High” of ( )BLER n . 

Green Part:  

If ( )BLER n  is Low, ( )HCQI n  is Level m, and ( )LCQI n  is Level n, then 1,ka  

with 1,(( ( )  ,  ( )   ,  ( )   ), ),n H L kq BLER n is Low CQI n is Level m CQI n is Level n a    

2

m n
k

+ ≥   
 

 Because of 1 m 8≤ ≤ , 1 n 8≤ ≤ , and m n≥ , there are 36 fuzzy rules in Green Part. Here, 

( )BLER n  is in the safe region and the main purpose is to maximize the throughput of the 

system. Therefore, we only consider 1,ka  with 
m n

2
k

+ ≥   
 while k  up to 8 for more 

aggressive way. 

Yellow Part: 

If ( )BLER n  is Middle, ( )HCQI n  is Level m, and ( )LCQI n  is Level n, then 

1,ka  with 1,(( ( )  ,  ( )   ,  ( )   ), ),n H L kq BLER n is Middle CQI n is Level m CQI n is Level n a  

1,..., 1
2

m n
k m

+ = − +  
 

 There are 36 fuzzy rules in Yellow Part. Here, ( )BLER n  is in the normal region and we 

choose 1,ka  with 
m n

1,...,m 1
2

k
+ = − +  

 under the feedback ( )HCQI n  and ( )LCQI n . If the 

value of 
m n

2

+ 
  

 is equal to 1, we will choose k  from 1. While the value of m  is equal to 8, 

we will choose k  up to 8. By this selection region, we want to balance the QoS requirement 
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for *BLER  and the throughput of the system. 

Red Part: 

If ( )BLER n  is High, ( )HCQI n  is Level m, and ( )LCQI n  is Level n, then 

1,ka  with 1,(( ( )  ,  ( )   ,  ( )   ), ),  n H L kq BLER n is High CQI n is Level m CQI n is Level n a  

1,..., 1
2

m n
k n

+ = − +  
 

 There are also 36 fuzzy rules in Red Part. Here, ( )BLER n  is in the dangerous region, the 

action decision in this part should be more conservative. Therefore, we take 1,ka  with 

m n
n 1,..., 1

2

+ − +  
 into account. If the value of 

m n

2

+ 
  

 is equal to 8, we will choose k  up 

to 8. While the value of n  is equal to 1, we will choose k  from 1. 

 

3.3.2 Fuzzy Rule Base B 

In the fuzzy rule base B, the Q-value 2,( , )n j kq S a  for the state-action pair 2,( , )j kS a can be 

got through the fuzzy if-then rule as: 

 2, 2,Rule  : if  ( ) is  , then   with ( , ),  for 1,...,36j k n j kj X n S a q S a k =   (3-17) 

where 2,ka  is the action for mode 2 transmission, which means that the FQLM-HARQ scheme 

chooses the p-th MCS level, denoted by *
pMCS , for the data stream with best channel quality 

and the q-th MCS level, denoted by *
pMCS , for the data stream with worst channel quality, 

where 
2 17

8
2 2

q q
k p= − + − . Fig 3.6 shows the relationship between the action 2,ka  and MCS 

levels. Here, HMCS  is the MCS level for the data stream with best channel quality and LMCS  

is the MCS level for the data stream with worst channel quality. 
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Figure 3.6: The relationship between MCS levels and action 2,ka  

The design concept is also to discriminate the prefer actions 2,ka  according to 

( )BLER n for each state which is the same form as fuzzy rule base A. In the following, we will 

divide the fuzzy rules into three parts based on the 3 terms, “Low”, “Middle” and “High” of 

( )BLER n . 

Green Part : 

If ( )BLER n  is Low, ( )HCQI n  is Level m, and ( )LCQI n  is Level n, then 2,ka  

with 2,(( ( )  ,  ( )   ,  ( )   ), ),n H L kq BLER n is Low CQI n is Level m CQI n is Level n a  

2 17
8,  ,  ,   

2 2

q q
k p p m q n p q= − + − > > ≥  

Because of 1 8m≤ ≤ , 1 8n≤ ≤ , and m n≥ , there are 36 fuzzy rules in Green Part. Here, 

( )BLER n  is in the safe region and we also take the action with more aggressive for mode 2 to 

increase the system throughput. Therefore, we only consider 2,ka  with 
2 17

8,  m,  n,  
2 2

q q
k p p q p q= − + − > > ≥ and the limit of p and q are up to 8.  

Yellow Part: 

If ( )BLER n  is Middle, ( )HCQI n  is Level m, and ( )LCQI n  is Level n, then 

2,ka  with 2,(( ( )  ,  ( )   ,  ( )   ),  ),n H L kq BLER n is Middle CQI n is Level m CQI n is Level n a  
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2 17
8,  -1 1,  -1 1,    

2 2

q q
k p m p m n q n p q= − + − ≤ ≤ + ≤ ≤ + ≥   

We take 2,ka  with 
2 17

8,  m-1 m+1,  n-1 n+1,  
2 2

q q
k p p q p q= − + − ≤ ≤ ≤ ≤ ≥ into account, 

because of ( )BLER n  is in the normal region. Therefore, 2,ka  is chosen as contained the most 

information while the block error rate is near *BLER  under the feedback ( )HCQI n  and 

( )LCQI n . There are also 36 rules in this part. Note that, while the value of m  is equal to 1, the 

selection of p is from 1. While the value of m is equal to 8, the selection of p is up to 8. There 

are the same way for the selection of q  according to the value of n . 

Red Part: 

If ( )BLER n  is High, ( )HCQI n  is Level m, and ( )LCQI n  is Level n, then 

2,ka  with 2,(( ( )  ,  ( )   ,  ( )   ), ),n H L kq BLER n is High CQI n is Level m CQI n is Level n a  

2 17
8,  ,  ,   

2 2

q q
k p p m q n p q= − + − < < ≥  

Because of ( )BLER n  is in the dangerous region, 2,ka  will select the conservative policy 

with 
2 17

8,  m,  n,   
2 2

q q
k p p q p q= − + − < < ≥  and the value of p and q  count from 1. While 

The goal in this region is to achieve the QoS requirement *.BLER  As the same, there are 36 

rules in this part. 

 

3.4 Inference Engine 

There are two inference engines for each fuzzy rule base. One is inference engine A for 

model 1, and the other is inference engine B for mode 2. Details are given as follows.  

 

3.4.1 Inference Engine A 

By using the select-max strategy, a suitable action for each rule in fuzzy rule base A can be 
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obtained by: 

 
1, 1

*

1, 1,
A

( ) arg max ( , ) ,
k

j n j k
a

a n q S a
∈

=   (3-18) 

where { }1 1,A ,  for 1,...,8ka k= =  is the candidate action for mode 1 transmission at episode n . 

The optimal action for mode 1 transmission, denoted by *
1 ( )a n , can be derived from Eq. (3-19) 

as: 

 

*

, 1,

1*

1

,

1

( )

( ) ,

J

j n j

j

J

j n

j

a n

a n

µ

µ

=

=

×

=
∑

∑
  (3-19) 

The Q-value for *
1 ( )a n  can be obtained by: 

 ( )
( )*

, 1,

1*

1

,

1

, ( )

( ), ( ) .

J

j n n j j

j

n J

j n

j

q S a n

Q X n a n

µ

µ

=

=

 × 
=
∑

∑
   (3-20) 

 

3.4.2 Inference Engine B 

 By using the fuzzy select-max strategy, a suitable action for each rule in fuzzy rule base B 

can be got by: 

 
2, 2

*

2, 2,
A

( ) arg max ( , ),
k

j n j k
a

a n q S a
∈

=   (3-21) 

where { }2 2,A ,  for 1,...,36ka k= = is the set of candidate action for mode 2 transmission. The 

optimal action for mode 2 transmission, denoted by *

2 ( )a n , can then be obtained by: 
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      (3-22) 

The Q-value for *

2 ( )a n  can be calculated by:  

 ( )
( )

2

2

*

, 2,

1*

2

,

1

, ( )

( ), ( ) .

J

j n n j j

j

n J

j n

j

q S a n

Q X n a n

µ

µ

=

=

 × 
=
∑

∑
  (3-23) 

 

3.5 Action Decision 

In the block, the final action at episode n , is denoted by: 

 ( )* *

{1,2}
argmax ( ), ( )n l

l
l Q X n a n

∈
=   (3-24) 

If * 1l = , the mode 1 transmission is selected. Hence, only one data stream is transmitted. The 

output of this block is set to *
1 ( )HMCS a n=  and 0LMCS = . Based on this output signal, the 

MIMO HARQ system uses *
1 ( )a n  to transmit the data stream with largest delay time in one of 

two HARQ processes. Note that, for each episode, there are two HARQ processes can be used. 

If * 2l = , the mode 2 transmission is selected. Hence, dual data stream is transmitted. The 

output of this block is set according to the action * * *
2 ( ) ( , )p qa n MCS MCS= . That is, 

*
H pMCS MCS=  and *

L qMCS MCS= . Based on this output signal, the MIMO HARQ system 

sets *
pMCS  for the data stream with best channel condition and *

qMCS  for the data stream 

with worst channel condition. 
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3.6 Reinforcement Signal Generator 

We design the reinforcement signal for each rule to update the Q-value of each action and 

accomplish the Q-learning operation. There are two reinforcement signal for two kinds of 

transmission mode. One is the reinforcement signal for mode 1 and the other is the 

reinforcement signal for mode 2. The details are as following: 

 

3.6.1 Reinforcement Signal for Mode 1 

The reinforcement signal are designed according to the three part in fuzzy rule base A. 

Rules in the same parts will have the same reinforcement signal. 

Green Part: For ( )BLER n  is Low 

 

1

 ,               if the packet is correctly received,   
( )

- (5 ( )),       if the packet is dropped,

infor.

infor. redun.

B

r n B +B

BLER nα




= 
 + ×

  (3-25) 

infor.B  represents the number of information bits in the packet of the single data stream and 

redun.B  represents the required redundancy bits of successful transmission which included the 

initial transmission and the retransmission in this packet. It can expect the higher successful 

transmitted data rate of the packet will get the larger reward feedback. On the contrary, if the 

packet is dropped after three failed decoding, we give it a punishment as 1- (5+ ( ))BLER nα × . It 

will get the more punishment when the larger block error rate at this episode n . This is because 

the larger average block rate, the dropped packet will increase the more load for the system. We 

will update the Q-value after each packet transmission is completed. 

Yellow Part: For ( )BLER n  is Middle 
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 1

2

1
 ,        if the packet is correctly received,  
(1 ( ))( )

- (5 ( )),                    if the packet is dropped,

infor.

infor. redun.

B

RT n B +Br n

BLER nα


 += 
 + ×

  (3-26) 

When the packet is correctly received, we can see that the degree of reward feedback is 

inverse proportional to 1(1 ( ))RT n+ . Here, 1( )RT n  is the retransmission time of the packet for 

mode 1 when the packet transmission in single data stream is completed at episode n. It means 

the more retransmission times, the less reward feedback by expecting the more conservative 

policy than Green Part. If the packet is dropped, it will get 2- (5+ ( ))BLER nα ×  for punishment. 

We give it the more punishment than Green Part because of the worse ( )BLER n  performance. 

Red Part: For ( )BLER n  is High 

*
3

1

 ,                                       if the packet is correctly received without retransmission,

( ) - (5 min{ ( ),1.5 }),  if the packet is dropped,

(1 ( ))
- 

3

infor.

infor. redun.

i

B
 

B +B

r n BLER n BLER

RT n B

α= + × ×

+
,                   if the packet is correctly received with retransmission,

nfor.

infor. redun.B +B









  (3-27) 

If the packet is correctly received at initial transmission, the reward feedback is design as 

. . .( )infor infor redunB B B+ which is the same as previous part. However, if the packet is correctly 

received with retransmission, we give it a punishment according to the successful transmitted 

data rate of the packet while proportional to normalized 1(1 ( ))RT n+ by dividing 3. This is 

because the purpose for this part is to maintain the QoS requirement for *BLER . If the packet is 

dropped, we will give it the severest punishment 3- (5+ ( ))BLER nα × with the limit of 

( )BLER n  no more than *1.5 BLER× . 

 

3.6.2 Reinforcement Signal for Mode 2 

The designed reinforcement signal are also according to the three part in fuzzy rule base B. 
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Rules in the same parts will have the same reinforcement signal. 

Green Part: For ( )BLER n  is Low 

 

.

. .

1

 ,                     if both packets is correctly received, 

( )

- (5 ( ))( ),       if  the dropped packet happened,
2

infor total

infor total redun total

dropped

B

B B
r n

N
BLER nα


 +=
 + ×


  (3-28) 

.infor totalB  represents the total number of information bits of the packets in dual data streams 

and .redun totalB  represents the total required redundancy bits which included the initial 

transmission and the retransmission of these packets. The higher data rate for the successful 

transmission of the packets, the larger reward feedback will get. droppedN  represents the number 

of the dropped packets in dual data streams. As long as the dropped packet occurs, it will get the 

punishment as 1- (5 ( ))( 2)droppedBLER n Nα+ ×  which is proportional to the number of the 

dropped packets. We also update the Q-value after the transmission streams is completed. 

Yellow Part: For ( )BLER n  is Middle 

 

.

. .2

2

1
 ,         if both packets correctly received, 
(1 ( ))

( )

- (5+ ( ))( ) ,             if the dropped packet happed,
2

infor total

infor total redun total

dropped

B

B BRT n
r n

N
BLER nα


 ++

= 
 ×

 (3-29) 

2( )RT n  is the average retransmission time of the packets for mode 2 when the packets 

transmission in dual data streams are completed at episode n. We can see that the more average 

retransmission time, the less reward feedback. Here, the punishment is the same form as Green 

Part if the dropped packet happened. However, we will give it the more punishment than Green 

Part, while it has the worse ( )BLER n  performance. 

Red Part: For ( )BLER n  is High 

*
3

 ,                                if both packets correctly received without retransmission,

( ) - (5+ min{ ( ),1.5 }),  if the dropped packet happened,

-

infor.total

infor.total redun.total

B

B +B

r n BLER n BLERα= × ×

2(1 ( ))
,            if both packets correctly received with retransmission,

3

infor.total

infor.total redun.total

RT n B

B +B





 +


 (3-30) 
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If both packets are successful received at initial transmission, the reward feedback is 

according the achievable data rate ( )infor.total infor.total redun.totalB B +B . If both packets correctly 

received with retransmissions, we will give it a punishment which is proportional to normalized 

2(1 ( ))RT n+  by dividing 3. However, in this part, just one packet is dropped through three 

failed decoding and we will give it the severe punishment according to ( )35+ ( )BLER nα− ×  

with the limit of ( )BLER n no more than *1.5 BLER× . 

 

3.7 Q-function Update 

 According to the feedback reinforcement signal, the purpose of Q-function updating 

operation is to get new *

1( , ( )), 1,...,n j lq S a n j J+ =  for fuzzy rule base A (for mode 1) if * 1l =  

in Eq. (3-24) or for fuzzy rule base B (for mode 2) if * 2l =  in Eq. (3-24). In the following, we 

describe how Q-function updates for these two transmission mode, respectively. 

When the FQLM-HARQ scheme decides using the mode 1 transmission, we use the 

function of Eq. (3-31) to update the Q-function and get *

1 1( , ( )), 1,...,n jq S a n j J+ = . 

 * * *

1 1 1 1( , ( )) ( , ( )) ( , ( )),   for  1 ,n j n j n jq S a n q S a n q S a n j Jη+ = + ×∆ ≤ ≤   (3-31) 

and  

 ( ) ( ){ }
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, * *
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,
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 ( , ( ))

 ( ) ( 1), ( 1) ( ), ( ) .

n j

j n

n nJ

i n

i

q S a n

r n Q X n a n Q X n a n
µ

γ
µ

=

∆ =

× + × + + −

∑
  (3-32) 

The Q-value for state-action pair *

1( ( ), ( ))X n a n , denoted by ( )*

1( ), ( )nQ X n a n , is the weighted 

summation of the J  Q-values *

1,( , ( )), 1,...,n j jq S a n j J= by using the rule intensity ,j nµ of 

( )X n , that is: 
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  (3-33) 

*( ( 1), ( 1))nQ X n a n+ +  is the transient optimal Q function at next episode. Since the next episode 

Q-values *

1 1, ,( , ), 1,..., ,n j jq S a j J+ =  is not available, it will be calculated by 

*

1,( , ), 1,..., ,n j jq S a j J= defined as Eq. (3-34): 
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  (3-34) 

When the FQLM-HARQ scheme decides using the mode 2 transmission, we use the 

function of Eq. (3-35) to update the Q-function and get *

1 2( , ( )), 1,...,n jq S a n j J+ = . 

 * * *

1 2 2 2( , ( )) ( , ( )) ( , ( )),   for  1 ,n j n j n jq S a n q S a n q S a n j Jη+ = + ×∆ ≤ ≤   (3-35) 

and 
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× + × + + −

∑
  (3-36) 

The Q-value for state-action pair *

2( ( ), ( ))X n a n , denoted by ( )*

2( ), ( )nQ X n a n , is the weighted 

summation of the J  Q-values *

2,( , ( )), 1,...,n j jq S a n j J= by using the rule intensity ,j nµ of 

( )X n , that is: 
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 × 
=
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∑
  (3-37) 

*( ( 1), ( 1))nQ X n a n+ +  is the transient optimal Q-value at next stage. Since the next stage 

Q-values *

1 2, ,( , ), 1,..., ,n j jq S a j J+ =  is not available, it will be calculated by 
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*

2,( , ), 1,..., ,n j jq S a j J= defined as Eq. (3-38). 
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  (3-38) 

After the Q-function update, we can get more accurate Q-value for fuzzy rule base to 

reflect the performance in time and achieve the expected goal. 
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Chapter 4   

Simulation Results and Discussions 
 

 

4.1 System Environment and Parameters 

We consider a hexagonal grid cell structure in our simulation. There are 19 base stations 

(BS) in the multi-cell system. We assume that the HS-DSCH is allocated at maximum up to 80% 

of the total power of a BS. Hence, we define the HSDPA service power ratio (HSPR) to 

represent the ratio of transmission power on HS-DSCH to the total transmission power each 

antenna at BS for the user. The residual power will be used other service and control channels 

within the same cell. Here, HSPR controls the amount of the transmission power and the 

interference from self cell. The channel condition is assumed to be constant within a TTI and is 

described in section 2.4. We assume the user always has data to be transmitted for simplifying 

the simulation complexity and reach the higher data rate. 

In the simulation, we assume the CQI delay is set to be 10ms. The system performance 

considers the different HSPR with fixed user mobility at mean user mobility 60 km/hr and the 

different user mobility with fixed power allocation at 60%. The detailed simulation environment 

parameters are shown in Table 4.1. In order to evaluate the performance, we will discuss about 

the system throughput, BLER and dropping rate that comparing to other schemes.  
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Table 4.1: Simulation parameters 

Parameter Assumption 

Cellular layout Hexagonal grid, 19 sites, 1000m cell radius 

Path loss model ( )( )rξ  
128.1 + 37.6log10(r) 

r is the base station separation in kilometers 

Decorrelation length (lcor )  30m 

Lσ  8.0 

Mobility assignment 0 km/hr to 120 km/hr 

Carrier frequency 2.0 GHz 

Channel bandwidth 5.0 MHz 

Chip-rate 3.84 Mcps 

Spreading factor 16 

Thermal noise density -174 dBm/Hz 

Forgetting factor (γ)  0.1 

Learning rate (η)  0.9 

TTI length 2ms 

thCQI  4 

thβ  2 

1α  100 

2α  125 

3α  150 

*BLER  0.1 

Power for HSDPA 

data transmission 

Maximum of 80% of total maximum 

available transmission power 

ACK/NACK delay 10ms 

HARQ IR 
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4.2 Conventional Schemes 

 In the simulation, we will compare the proposed FQLM-HARQ scheme with two 

conventional schemes, which are described in the following: 

(1) Fixed threshold selection (FTS): 

FTS sets the SINR threshold for each MCS based on the pre-known BLER performance [1], 

[26]. The SINR threshold is the required SINR that the MCS has BLER equal to the 

requirement 0.1. This scheme will choose the MCS whose corresponding threshold is just 

under and closest to the measured SINR at each TTI.  

(2) Q-learning based HARQ (QL-HARQ) [9]: 

QL-HARQ uses the Q-learning algorithm to learn an optimal policy for each initial 

transmission. The reinforcement signal is designed to be the normalized difference square of 

the last received SINR and the required SINR of the last MCS decision. After learning, 

QL-HARQ will choose an optimal MCS to meet the BLER requirement. 

In the following section, we will show the simulation results and discuss about them. 

 

4.3 Performance Evaluation and Discussions 

 Fig 4.1 is the BLER versus HSPR with fixed user mobility at 60 km/hr. The motion incurs 

the Doppler Effect and the channel variance with CQI delay. Hence, the actual channel condition 

will be different from the channel information used for determination. It can be seen in Fig 4.1 

that the proposed FQLM-HARQ satisfies the BLER requirement with HSPR more than 60%, 

the next is QL-HARQ with HSPR more than 70%. However, the FTS violates the BLER 

requirement even with HSPR up to 80%. The FQLM-HARQ has better learning way by 

considering the situation in different part of ( )BLER n  and then adjusts the selection of MCS 
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level to do its possible maintaining the BLER requirement. As the more BS transmission power 

is allocated for HS-DSCH service, the more MCS level can adaptively select in Red Part to 

reduce the effect of the channel variance. The MCS level selection of FTS just depends on the 

current channel condition while it is regardless of the channel variation. This results the BLER 

performance violating the BLER requirement. Although QL-HARQ also adjusts the MCS level 

based on the last transmission decision, it does not take the information of transmission results 

into account. Therefore, it is not flexible enough to accommodate to the channel variation like 

FQLM-HARQ.  

Fig 4.2 is the dropping rate versus HSPR with fixed user mobility at 60 km/hr. In the 

simulation, when the total transmission times including retransmissions of the same 

transmission block is more than three, this block will be dropped. It can see that FQLM-HARQ 

has the lowest dropping rate and FTS has the highest dropping rate despite the HSPR. This has 

the relation between initial BLER shown in Fig 4.1 and the MCS level selection with the 

conservative or aggressive way. The smaller BLER performance can result in the lower 

dropping rate. In FQLM-HARQ, once the dropping block occurs, the design of the 

reinforcement signal will give the most punishment at each part according the value of 

( )BLER n . After updating the Q-function, we can expect conservative MCS level selection. This 

design can limit the dropping rate. The QL-HARQ just considers the difference between the 

received SINR and the required SINR at the last transmission. Therefore, the MCS level will be 

more aggressive than the FQLM-HARQ and results the more dropping rate. 

Fig 4.3 is the system throughput versus HSPR with fixed user mobility at 60 km/hr. It can 

see that when HSPR increases, the throughputs of the three schemes increase, absolutely. With 

Fig 4.1, Fig 4.2 and Fig 4.3, FQLM-HARQ can select the optimal MCS level for the largest 

throughput than the other two schemes while endeavoring to maintain the BLER requirement 

and result the least dropping rate simultaneously.  
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 Figure 4.1: The BLER versus HSPR with fixed user mobility at 60 km/hr. 

 

 

 

 Figure 4.2: The dropping rate versus HSPR with fixed user mobility at 60 km/hr. 
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 Figure 4.3: The system throughput versus HSPR with fixed user mobility at 60 km/hr. 

 

In the following, we will discuss about the different user mobility with fixed HSPR. Fig 4.4 

shows the BLER versus HSPR for FTS with different user mobility. There are two characters in 

this figure. As the user mobility increasing, the BLER will increase with the same HSPR. As the 

HSPR increasing, the difference of BLER between the different mobility will increase. When 

HSPR is more than 70%, the BLER of the same user mobility will not increase. This is due to 

the power achieve the saturation despite the distance between the user and the BS. On the other 

hand, the total number of MCS levels used in our system is 8 and the maximum MCS level will 

not reflect the channel quality. This limits the BLER performance. Therefore, we consider the 

effect of different user mobility with fixed HSPR at 60%. 
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Figure 4.4: The BLER versus HSPR for FTS with different user mobility. 

Fig 4.5 is the BLER versus different user mobility with fixed HSPR at 60%. When the user 

is motionless, FQLM-HARQ has the largest BLER than the other two schemes while not 

violating the BLER requirement. Because the channel quality is very similar between two 

adjacent TTI, the design of FQLM-HARQ will try to transmit the more aggressive MCS level 

that the channel condition can tolerate without dropping. When the user mobility is from 0 

km/hr to 30 km/hr, the BLER of three schemes rush up owing to the path loss effect. The 

increasing range of FQLM-HARQ is the least and this means it can learning much well than the 

other two schemes. After 30 km/hr, the BLER of three schemes will increase due to the 

increasing channel variation. 

Fig 4.6 is the dropping rate versus different user mobility with fixed HSPR at 60%. The 

increasing mobility will induce the larger dropping rate for three schemes. As the same reason, 

the higher channel variation will results unexpected channel condition at next TTI. Therefore, 

even the MCS level determination from learning will have higher probability to be dropped. 

Fig 4.7 is the system throughput versus different user mobility with fixed HSPR at 60%. As 

the mobility during 0 km/hr to 30 km/hr, the purpose of MCS level selection in this region is to 

balance the BLER and throughput. When the mobility is more than 30 km/hr, the FQLM-HARQ 
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is trying to reach the QoS requirement and will select the more conservative MCS level. After 

90 km/hr, the throughput of three schemes almost not increase due to the learning speed can’t 

catch up the channel variation. 

 

 

 

Figure 4.5: The BLER versus different user mobility with fixed HSPR at 60%. 

 

 

Figure 4.6: The dropping rate versus different user mobility with fixed HSPR at 60%. 
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Figure 4.7: The system throughput versus different user mobility with fixed HSPR at 60%. 
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Chapter 5  

Conclusion 
 

 

 Fuzzy Q-learning based MIMO HARQ scheme (FQLM-HARQ) is proposed to achieve 

efficient resource utilization in MIMO HSDPA system. The hybrid ARQ can be modeled as a 

Discrete-time Markov decision process (MDP). We apply fuzzy Q-learning algorithm to adjust 

the MIMO transmission mode and MCS level selection of initial transmission each TTI. The 

fuzzy rule is designed based on the channel quality indicator and BLER performance. The 

reinforcement signal is designed not only according to BLER performance but also considering 

the past transmission results. These can much help to accommodate the channel variation and 

the channel quality delay. By self-learning step by step, FQLM-HARQ can expect to maximize 

the system throughput while not violating the BLER requirement by choosing the optimal MCS 

level for each transmission. 

 From simulation results, with fixed user mobility, FQLM can have better performance than 

the other two schemes in different HSPR. Because of the BLER performance will affect the 

fuzzy rule base and then considering the different MCS level selection. When BLER is higher, 

the MCS level selection policy will become more conservative to satisfy the BLER requirement. 

On the other hand, when BLER is lower, the MCS level selection policy will become more 

aggressive to increase the system throughput. As the same reason, while in different user 

mobility with fixed HSPR, FQLM-HARQ also has more ability to resist the imprecise channel 
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quality. Finally, the analysis shows that FQLM-HARQ scheme can achieve our designed target. 
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