第一章 緒論

1-1 前言

在各式各樣的材料中,複合材料具有相當高的比模數及比強度, 且有較佳的抗腐蝕能力,因此經常被用來作為結構方面的應用。但對 一個設計者來說,複合材料最主要的優點還是在於它的非等向性:纖 維方向的強度遠比垂直纖維方向的強度要大的許多,如此一來便提供 了設計者更大的設計空間,可以依照其所需的強度條件及幾何條件來 設計並製造出最佳的工件。

目前複合材料的應用已經相當的廣泛,舉凡考量高強度及低重量 的工件或結構,如航空器材結構、軍備武器製造、休閒運動器材等, 常以複合材料為考慮的對象;此外,如汽車、工具機、化學工業甚至 大型工程結構均有逐步運用複合材料的趨勢。

纖維纏繞法是一種複合材料的製造過程,將連續性的強化材,如 碳纖維、玻璃纖維紗束等,經過樹脂槽含浸後通過出眼口,沿著預先 設計過的路徑,讓纖維紗束能精確地纏在一個可旋轉的心軸上,當達 到設計時所需的纏繞厚度,再將樹脂加熱硬化,最後就會得到所要的 工件成品。

纖維纏繞法也是一種電腦數值控制的製程,纖維紗束可以高速且 高重複性的纏繞,精密度也可以達到相當高的程度,最重要的是如此 可以節省許多人力及物力方面的成本,同時增加產量。再者,由於纖 維的排列角度是經過設計來配合工件承受負載的方向,加上對整個工 件而言,為一條沒有切斷的連續性纖維所構成,所以可以獲得相當良 好的機械性質。

桁架結構係由桿件相結合而成的剛體結構,其目的為安全地支接 或傳遞負荷,桁架結構於工程上的應用有:鋼骨結構、吊車架、倉儲 架、橋樑、建築物等,未來的工程設計不單只是被動地功能需求,而 是展現想像空間的設計概念。為了滿足設計者無限的創意理念及抵抗 大自然的考驗,如何研製出:桿件輕巧、施工便利、適用大跨距結構、 滿足建築空間要求...等之桁架,乃是刻不容緩的議題。

1-2 文獻回顧

在許多有關複合材料的書籍資料中,如:Berlamont[1]、 Peters, Humphrey, Foral[2]、Tranpol, Beil[3]、Shibley[4],均有 介紹纖維纏繞法的基本架構,從纖維及樹脂的類別、心軸及纏繞機的 功能運作,到繞線原理、成型過程及纏繞式複材工件材料常數的測 量。而就本文的主題,蔡坤璁[5]、游皓全[6]、王文庭[7]及葉乃綱 [8]等人在有關纏繞式複合材料之製程及材料性質之識別等研究有做 深入的探討。

01ofsson等人[9]針對溼繞法纏繞厚壁圓管,建立了模型,來計 算纏繞過程中的纖維含量,樹脂硬化程度,溫度及應力應變的分佈。 對於硬化脫模後,圓管成品承受負載的應力分佈。Rizzo和Vicario[10] 利用有限元素法分析管件承受負載的應力分佈,發現當厚度/直徑比 小於0.1時,應力的分佈在圓管斷面是線性的,而厚度/直徑比大於0.1 時,則成非線性的分佈,在厚度/直徑比小於0.02可被視為薄殼(thin Shell)複材圓管。Pagano和Whitney[11]利用組合面應變(Plain Strain)及板殼力學理論,分析纏繞複材管件的應力分佈,他們發現 即使在單方向的負荷作用下,複材管件的應力分佈仍然非常不均勻。

在複合材料圓柱形管件的應力設計分析可參照,Fukunaga [12],

Krandekar[13] 和 Adali[14] 的研究群在複材管件理論分析上之文 章,在這些文章中,可以瞭解到基本的圓柱管件應力分析,而基本複 合材料積層理論,在Gibson[15]的著作中有詳盡的推導。

1-3 本文研究方向

桁架結構大致可分為三部份(1)桿件(2)接頭(3)連接機構,本文 的主要內容在於如何使用纖維纏繞法,設計製作出桁架結構用複合材 料圓桿,並經由理論推導、軟體分析以及反覆實驗對其在受力狀況下 的各項數值變化加以分析,來了解並驗證纏繞出來的成品之強度與性 質是否滿足需求。

運用已知的纏繞纖維之材料常數來推導出桿件的強度及相關性 質,接著建立幾何模型後再使用有限單元分析軟體 ANSYS 加以分析。 在實驗方面,則製作出 6 根纏繞式圓桿、4 顆球形接頭,12 支正反牙 連接螺栓(M20),由以上這些組件組立成空間立體桁架,首先使用 MTS 拉伸試驗機求出圓桿受力與應變之實驗值與實驗曲線,同時利用積層 板理論求出對應之理論應變,兩者結果比較,以驗證所使用之材料性 質無誤。

接著進行破壞性試驗求出桁架各組件之強度,再與理論及軟體 分析之結果比較。若彼此結果有所出入與誤差,則需驗證計算過程與 理論或是檢查軟體建立之模型或是實驗時之操作方式與邊界條件,以 使其可相互符合,俾能正確預測出圓桿之行為變化。並針對強度無法 滿足需求部份進行補強、變更設計或改良製程,以增強組件之強度, 使其能達成整體桁架結構所要求的規格。

第二章 纖維纏繞法

2-1 纖維纏繞法之介紹

纖維纏繞法為複合材料的一種製程,即是將強化材(纖維)與基材 (樹脂)利用機器自動控制的方式,纏繞於轉動之心軸。由於繞製時能 控制纖維之張力,使層間存留氣泡擠出,減少空孔,提高纖維含量, 且纖維排列整齊受力均勻,能獲得高機械性能與強度,比傳統的手積 層或預浸材疊層法來的有效率及變化。基本繞線示意圖如圖 2-1 所 示,纖維纏繞法的製作流程圖如圖 2-2 所示。

2-2 纖維纏繞的方式

纖維纏繞方式有以下三種:(1)環狀纏繞如圖 2-3(a)所示,纏繞 角度幾近 90 度,旋轉軸每轉一圈,橫向軸即橫移一個纖維紗束寬度, 使纖維緊鄰前一圈的路徑,此種環狀繞線只能抵抗圓周方向的應力。 (2)螺旋繞線如圖 2-3(b)所示,乃是利用橫向軸及旋轉軸的相關速度 來控制纏繞的角度,一定纏繞週期後,纖維路徑才會與先前的路徑緊 鄰。可抵抗軸向與圓周方向的應力,為本文所使用之纖維纏繞方式。 (3)軸對稱纏繞如圖 2-3(c)所示,纖維路徑在一個平面上且切於心軸 兩端開口,每個纏繞週期後,纖維路徑會緊鄰上次的路徑,主要是用 來纏繞長與直徑比例小於 1.8 的工件。

2-3 纖維纏繞的參數設定

纏繞機附屬有一組套裝軟體,其具有繞線路徑自動產生、路徑編 輯及路徑模擬功能的整合性處理系統;故在操作纏繞機之前,必須先 根據所需求之條件與工作物件之規格,計算出各項必須之參數後,將 數據輸入軟體檔案中,以使其便於編輯控制纏繞機運作的程式,以下 取本文所採用的螺旋型纏繞為例說明:

2-3-1 螺旋形繞線介紹

螺旋形繞線可用來於一固定直徑工件上產生定角度的繞線路徑 ,同時並考慮在工件兩端點繞線方向轉向時的減速及駐留動作,其基 本的機械運作模式如圖 2-4 所示,其中駐留半徑決定了駐留時的減速 特性,而駐留長度則決定了駐留旋轉角的多寡。如圖 2-5 所示極為典 型的螺旋繞線路徑主軸角度與滑台位置的關係圖,其曲線類似一鐘型 曲線而具有兩側對稱的特性。

2-3-2 螺旋形繞線各項設定參數的意義

工作直徑(mm):

用來計算纖維輸送速率及滑台移動位置。(2)滑台行程(mm):

用以設定整個繞線花式中,滑台的行程長度。

(3) 纏繞纖維寬度(mm):

此寬度為實際纏繞在工件軸上時的纖維寬度,而非在線軸上 的纖維寬度。

(4) 繞線角度(deg):

此數值設定纖維纏繞在工件上的角度。

(5) 最大主軸旋轉速度(rpm):

此參數決定了主軸最大轉速,同時也決定了纖維的傳送速度。 (6)最大載台速度:

此參數決定了載台最大速度,此參數與最大主軸旋轉速度兩 者之搭配將直接影響駐留旋轉半徑。

(7) 駐留旋轉角度(deg):

此數值設定最小所需的駐留主軸旋轉角度,若設定為零則系統會自動計算並設定一最小駐留角度,若設定值不為零,則系統會自動找尋一大於設定值的最小可能駐留角度。

(8)纏繞層數:

即為完成完整花式道次的次數,所謂完整的花式道次意為完 全舖滿一工件表面所需的來回次數繞線次數,此參束決定了 繞線花式舖設的厚度。

(9) 起繞位置(mm):

設定一工件繞線的起點位置。

(10)出線眼距離(mm);

為由出線眼位置到工件表面的垂直距離。

依據實際需要與工作物件的外型規格,將適當的上述各項參數值設定 輸入套裝軟體內,轉換編輯成繞線程式檔,再輸入纏繞機台中,以控 制機台運作纏繞出所要求的成品。

2-4 影響纖維纏繞結果的變因

在整個纏繞成型的過程中,有許多因素影響著複合材料成品的優 劣,其中有些不易控制,有些則容易來改變之,以下列舉出幾項影響 成品表現的重要因素:

(1) 不同的纖維/樹脂組合。

(2) 不同的纖維纏繞花式。

(3) 纖維所佔的百分比例。

(4) 樹脂的黏滯係數及纏繞過程中係數之變化情形。

(5) 纖維在纏繞時的張力。

2-5 纖維纏繞結構之疊層假設

假設起始纏繞角度為α,則每一纏繞週期均是由±α的纏繞角度 構成,經過一定的纏繞週期後會繞滿一層,我們將這一層視為[±α] 的疊層,纏繞多層以後,整個疊層順序則能視為[±α/±α/±α.....] 的一個疊層,如此即可應用複材積層板理論,來分析此纏繞式複合材 料的結構。

第三章 纏繞式桁架圓桿基本力學分析

3-1 圓管位移的基本假設

複合材料圓管柱型結構,是由多層不同纖維角度薄片所疊合而成,而圓柱管件結構可由許多的殼元素組合來模擬,採用彈性力學的基本理論與方法對於複合材料薄殼進行分析,為簡化計算,引入以兩點基本假設:

(2)平行於中面的諸載面上的正應力σz與其他應力相比很小,

可以略去不計。

參考圓柱殼體座標系如圖3-1所示,其位移場表示如下:

$$u = u(x, \theta, z) = u_0(x, \theta) - z \frac{\partial W_0(x, \theta)}{\partial x}$$

$$\mathbf{v} = \mathbf{v}(\mathbf{x}, \theta, \mathbf{z}) = \mathbf{v}_{0}(\mathbf{x}, \theta) - \frac{\mathbf{z}}{\mathbf{r}} \left[\frac{\partial \mathbf{w}_{0}(\mathbf{x}, \theta)}{\partial \theta} - \mathbf{v}_{0}(\mathbf{x}, \theta) \right]$$

 $w = w(x, \theta, z) = w_0(x, \theta)$

以上所述的u, v, w分別是 x, θ, z 方向的位移, u_0, v_0, w_0 中性 面的位移, $z \frac{\partial W_0(x, \theta)}{\partial x}$, $\frac{z}{r} [\frac{\partial W_0(x, \theta)}{\partial \theta} - v_0(x, \theta)]$ 代表殼元素對 x, θ 方向之旋轉量。應變一位移關係:

$$\begin{bmatrix} \varepsilon_{x} \\ \varepsilon_{\theta} \\ \gamma_{x\theta} \end{bmatrix} = \begin{bmatrix} \varepsilon_{x}^{0} \\ \varepsilon_{\theta}^{0} \\ \gamma_{x\theta}^{0} \end{bmatrix} + z \begin{bmatrix} k_{x} \\ k_{\theta} \\ k_{x\theta} \end{bmatrix}$$
(3-1)

其中

$$\begin{bmatrix} \varepsilon_x \\ \varepsilon_{\theta} \end{bmatrix} = 與中性面距離為z的正向應變和剪應變 $\gamma_{x\theta} \end{bmatrix}$$$

3-2 複合材料積層板的力學性質

複合材料積層板是由多層薄板(Laminate)疊合而成的,薄板是單向加強(unidirection reinforced)且為正交性(orthotropic)材料,因此 $\overline{\sigma_3}$ 可以忽略,如圖3-2,X₁為纖維方向,而X-Y為我們所定之座標,對於X₁-X₂座標而言,應力-應變為:

$$\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \tau_{12} \end{bmatrix} = \begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \gamma_{12} \end{bmatrix}$$
(3-4)

且

$$Q_{11} = \frac{E_{11}}{(1 - v_{12}v_{21})}$$

$$Q_{22} = \frac{E_{22}}{(1 - v_{12}v_{21})}$$

$$Q_{12} = \frac{v_{21}E_{11}}{(1 - v_{12}v_{21})} = \frac{v_{12}E_{22}}{(1 - v_{12}v_{21})}$$

$$Q_{66} = G_{12}$$

$$Q_{16} = Q_{26} = 0$$
(3-5)

關係為:

$$\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \tau_{12} \end{bmatrix} = \begin{bmatrix} T_{\sigma} \end{bmatrix} \begin{bmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{bmatrix}$$
(3-6)

$$\begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \gamma_{12} \end{bmatrix} = \begin{bmatrix} T_{\varepsilon} \end{bmatrix} \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{bmatrix}$$
(3-7)

其中

$$\begin{bmatrix} T_{\sigma} \end{bmatrix} = \begin{bmatrix} C^2 & S^2 & 2SC \\ S^2 & C^2 & -2SC \\ -CS & SC & C^2 - S^2 \end{bmatrix} \qquad \begin{bmatrix} T_{\varepsilon} \end{bmatrix} = \begin{bmatrix} C^2 & S^2 & SC \\ S^2 & C^2 & -SC \\ -2CS & 2SC & C^2 - S^2 \end{bmatrix}$$

 $C = \cos\theta$ $S = \sin\theta$

$$\begin{bmatrix} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{bmatrix} = \begin{bmatrix} T_{\mathcal{E}} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} Q \end{bmatrix} \begin{bmatrix} T_{\mathcal{E}} \end{bmatrix} \begin{bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{bmatrix}$$
(3-8)

$$\overline{Q_{11}} = Q_{11}\cos^4\theta + 2(Q_{12} + Q_{66})\sin^2\theta\cos^2\theta + Q_{22}\sin^4\theta$$

$$\overline{Q_{22}} = Q_{11}\sin^4\theta + 2(Q_{12} + Q_{66})\sin^2\theta\cos^2\theta + Q_{22}\cos^4\theta$$

$$\overline{Q_{12}} = (Q_{11} + Q_{22} - 4Q_{66})\sin^2\theta\cos^2\theta + Q_{12}(\sin^4\theta + \cos^4\theta)$$

$$(3-10)$$

$$\overline{Q_{66}} = (Q_{11} + Q_{22} - 2Q_{12} - 2Q_{16})\sin^2\theta\cos^2\theta + Q_{66}(\sin^4\theta + \cos^4\theta)$$

$$Q_{16} = (Q_{11} - Q_{12} - 2Q_{66})\sin\theta\cos^3\theta + (Q_{12} - Q_{22} + 2Q_{66})\sin^3\theta\cos\theta$$

$$\overline{Q_{26}} = (Q_{11} - Q_{12} - 2Q_{66})\sin^3\theta\cos\theta + (Q_{12} - Q_{22} + 2Q_{66})\sin\theta\cos^3\theta$$

式(3-1)殼的應變與位移關係式的推導過程與平板理論相同,所 以圓殼理論合應力及合力矩的推導與平板理論亦相同,對單層的複合 材料積層板,必須考慮各單層薄殼之應力沿厚度方向之積分,可得複 合材料積層板的合應力與合力矩,則殼的組織方程式如下:

$$\begin{bmatrix} N_{x} \\ N_{\theta} \\ N_{x\theta} \end{bmatrix} = \int_{-h_{2}}^{h_{2}} \begin{bmatrix} \sigma_{x} \\ \sigma_{\theta} \\ \tau_{x\theta} \end{bmatrix} dz$$

$$= \begin{bmatrix} A_{11} & A_{12} & A_{16} \\ A_{12} & A_{22} & A_{26} \\ A_{16} & A_{26} & A_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{0}^{0} \\ \varepsilon_{\theta}^{0} \\ \gamma_{x\theta}^{0} \end{bmatrix} + \begin{bmatrix} B_{11} & B_{12} & B_{16} \\ B_{12} & B_{22} & B_{26} \\ B_{16} & B_{26} & B_{66} \end{bmatrix} \begin{bmatrix} k_{x} \\ k_{\theta} \\ k_{x\theta} \end{bmatrix}$$
(3-11)

$$\begin{bmatrix} M_{x} \\ M_{\theta} \\ M_{x\theta} \end{bmatrix} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \begin{bmatrix} \sigma_{x} \\ \sigma_{\theta} \\ \tau_{x\theta} \end{bmatrix} z dz$$

$$= \begin{bmatrix} B_{11} & B_{12} & B_{16} \\ B_{12} & B_{22} & B_{26} \\ B_{16} & B_{26} & B_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{x}^{\theta} \\ \varepsilon_{\theta}^{\theta} \\ \gamma_{x\theta}^{\theta} \end{bmatrix} + \begin{bmatrix} D_{11} & D_{12} & D_{16} \\ D_{12} & D_{22} & D_{26} \\ D_{16} & D_{26} & D_{66} \end{bmatrix} \begin{bmatrix} k_{x} \\ k_{\theta} \\ k_{x\theta} \end{bmatrix}$$
(3-12)

或

$$\begin{bmatrix} \underline{N} \\ \underline{M} \end{bmatrix} = \begin{bmatrix} \underline{A} & \underline{B} \\ \underline{B} & \underline{D} \end{bmatrix} \begin{bmatrix} \underline{\epsilon}^{0} \\ \underline{k} \end{bmatrix}$$
(3-13)

其中

$$A_{ij} = \sum_{k=1}^{n} \left(\overline{Q_{ij}} \right)_{k} (h_{k} - h_{k-1})$$

$$B_{ij} = \frac{1}{2} \sum_{k=1}^{n} \left(\overline{Q_{ij}} \right)_{k} (h_{k}^{2} - h_{k-1}^{2})$$

$$D_{ij} = \frac{1}{3} \sum_{k=1}^{n} \left(\overline{Q_{ij}} \right)_{k} (h_{k}^{3} - h_{k-1}^{3})$$
(3-14)

上式之合力,合力矩圖如圖3-3及3-4,由(3-11)式,(3-12)式則可以 得到組織方程式(constitutive equation)

$$\begin{bmatrix} N_{x} \\ N_{y} \\ N_{x\theta} \\ M_{x} \\ M_{y} \\ M_{x\theta} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{16} & B_{11} & B_{12} & B_{16} \\ A_{12} & A_{22} & A_{26} & B_{12} & B_{22} & B_{26} \\ A_{12} & A_{22} & A_{26} & B_{12} & B_{22} & B_{26} \\ A_{16} & A_{26} & A_{66} & B_{16} & B_{26} & B_{66} \\ B_{11} & B_{12} & B_{16} & D_{11} & D_{12} & D_{16} \\ B_{12} & B_{22} & B_{26} & D_{12} & D_{22} & D_{26} \\ B_{16} & B_{26} & B_{66} & D_{16} & D_{26} & D_{66} \end{bmatrix} \begin{bmatrix} k_{x} \\ k_{y} \\ k_{x\theta} \end{bmatrix}$$
(3-15)

Aij:代表拉伸勁度矩陣(extensional stiffness matrix)元素
Bij:代表偶合勁度矩陣(coupling stiffness matrix)元素
Dij:代表彎曲勁度矩陣(bending stiffness matrix)元素

3-3 積層複合材料圓管的分析

假設疊層順序為[α1/α2/α3/α4/…],利用積層板理論可將應力-應變關係表示如 3-9 式,其中我們利用 3-10 式得到任一層的[Q]矩 陣,然後利用 3-14 式可得[A]、[B]、[D] 矩陣,由於疊層角度非對 稱,故[B]≠0,它偶合了拉伸與彎曲之間的關係,也就是說桿件在受 單純拉伸應力時,會伴隨產生彎曲力矩而使得桿件彎曲變形,但因為 圓管柱兩端使用接頭固定的關係,限制了桿件彎曲變形,使得[k]=0。 圓桿受力情形如圖 3-5 所示,合應力-應變之關係即可表示如下:

$$\begin{cases} N_{x} \\ N_{y} \\ N_{xy} \end{cases} = \begin{bmatrix} A_{11} & A_{12} & A_{16} \\ A_{21} & A_{22} & A_{26} \\ A_{61} & A_{62} & A_{66} \end{bmatrix} \begin{cases} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{cases}$$
(3-16)

將上式轉換後得到下式:

$$\begin{cases} \mathcal{E}_{x} \\ \mathcal{E}_{y} \\ \gamma_{xy} \end{cases} = \begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{16} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{26} \\ \mathbf{a}_{61} & \mathbf{a}_{62} & \mathbf{a}_{66} \end{bmatrix} \begin{cases} N_{x} \\ N_{y} \\ N_{xy} \end{cases}$$
(3-17)

其中[a]=[A]⁻¹;因為將圓桿展開成平板計算,由材料力學薄板假設可知,於單純受X方向力時Ny及Nxy很小可忽略不計,因此圓桿所受應力可表示如下:

上式中[a]矩陣的各項均為材料常數的函數,而應變也同樣為材料常數的函數。

3-4 破壞準則

針對複合材料桿件,去計算各層每一點的應變、應力等資料後, 將應力資料帶入各種不同破壞準則(failure criterion)中來預測纏繞 式複合材料圓桿之破壞強度,以下將介紹本文所使用的兩種破壞準 則。

3-4-1 最大應力破壞準則

最大應力準則描述在主要材料方向之應力必須小於相對應之強 度,否則破壞就會發生。以數學模式表示如下:

$$\sigma_1 < X_T \quad ; \ \sigma_2 < Y_T \quad ; \ \sigma_6 < S \tag{3-20}$$

其中 σ_1 、 σ_2 為正向應力, σ_6 為剪應力, X_T 、 Y_T 為沿1、2方向的層間 正向拉伸強度,S為在12平面的剪強度。當 σ_1 、 σ_2 為壓縮正向應力時, 則應該與沿1、2方向的 X_C 、 Y_C 正向壓縮強度相對應。

3-4-2 Tsai-Wu 破壞準則

當 $F_i \sigma_i + F_{ij} \sigma_i \sigma_j \ge 1$ 式子成立時	寺,破壞就發生	
<u></u> 其 म	1896	
$F_1 = \frac{1}{X_T} - \frac{1}{X_C}$	$\mathbf{F}_2 = \frac{1}{\mathbf{Y}_{\mathrm{T}}} - \frac{1}{\mathbf{Y}_{\mathrm{C}}}$	
$F_{11} = \frac{1}{X_T X_C}$	$F_{22} = \frac{1}{Y_T Y_C}$	(3-21)
$F_{12} = -\frac{1}{2} \left(\frac{1}{\sqrt{X_T X_C Y_T Y_C}} \right)$	$F_{66} = \frac{1}{S^2}$	

而其它常數是零。

3-5 材料常數之計算

3-5-1 縱向楊氏模數 E₁

以 0°積層板試片進行拉伸試驗來找出複合材料的縱向楊氏模數 時,在x1的方向施加一個負荷,如圖 3-6 所示,在試片的縱向和橫向 黏貼應變規,得到其應力應變的關係圖,如圖 3-7 所示,再藉由材料 力學中所提到的關係式,如 3-22 式,來求得縱向楊氏模數。

$$E_1 = \frac{\Delta \sigma_1}{\Delta \varepsilon_1} \tag{3-22}$$

其中 E_1 縱向楊氏模數, σ_1 為 x_1 方向的應力, ε_1 為 x_1 方向的應變。

3-5-2 浦松比 (Poisson's ratio) v₁₂
 由上述中,可以得到x1和x2兩個方向的應變,分別以E1和E2表示,
 以材料力學中,提到的浦松比之定義,如 3-23 式,就可以得到試片
 的浦松比。

$$-\nu_{12} = \frac{\Delta\varepsilon_2}{\Delta\varepsilon_1} \tag{3-23}$$

其中 V_{12} 為浦松比,1表示施力方向,2表示應變方向, $\Delta \varepsilon_1 和 \Delta \varepsilon_2 A_1 和 x_2$ 兩個方向的應變。

3-5-3 横向楊氏模數 E₂

在x2方向施加一個負荷,對 90°積層板試片進行拉伸試驗,如圖 3-8 所示,可以得到其應力和應變的關係,經由 3-24 式 以及 3-25 式,就可以得到橫向楊氏模數。

$$-\nu_{21} = \frac{\Delta \varepsilon_1}{\Delta \varepsilon_2} \tag{3-24}$$

$$\varepsilon_1 = -v_{21}\varepsilon_2 = -v_{21}\frac{\sigma_2}{E_2} \tag{3-25}$$

其中 V_{21} 為浦松比,2表示施力方向,1表示應變方向, $\Delta \varepsilon_1 \pi \Delta \varepsilon_2 分別$ 為 $x_1 \pi x_2$ 方向的應變。

3-5-4 剪力模數 G12

以 45°積層板試片進行拉伸試驗,如圖 3-9 所示,得到材料的應 力和應變關係,並利用 3-26 式計算得到剪應力以及剪應變。

其中 θ 為 x 軸與纖維方向的夾角。

接者以材料力學中,所定義的剪力模數,如 3-27 式,就可以得 到剪力模數 (G₁₂)。

$$G_{12} = \frac{\tau_{12}}{\gamma_{12}} \tag{3-27}$$

第四章 纏繞式桁架之製程

4-1 簡介

本章將介紹纏繞式桁架所使用之圓桿、球形接頭製作過程及組立 結果。其中所使用之圓桿主要包含三個部分,先將其中的心軸和兩側 接頭組合,接著使用碳纖維紗束纏繞包覆於兩側接點與心軸上,最後 再加以高溫塵化即完成。以下將詳加敘述此圓桿之製造方法與所經歷 的流程。

4-2 製程設備介紹

在纖維纏繞法製造的過程中,我們最主要會用到的機器為纏繞機 及烤箱,前者主要用來纏繞產生工件之外形,後者則用來使樹脂硬化 定型。下面則對這兩種機器加以敘述:

40000

4-2-1 纏繞機

我們所使用的纏繞機為「纏繞實業有限公司」所出品,型號為 SUPERVEGA 的纏繞機,如圖 4-1 所示。這台纏繞機擁有一產生張力的 機構、樹脂槽、兩個移動軸及兩個轉動軸和四軸的控制器。纖維張力 對於纏繞相當重要,張力不夠,纖維沒有足夠的摩擦力固定在心軸 上;張力太大,則使纖維紗束無法完全伸展,影響帶寬。樹脂槽是使 纖維在繞於心軸之前,能夠讓樹脂與纖維含浸在一起,圖 4-2 及圖 4-3 分別為張力機構及樹脂槽的外型圖。接著,這四軸纏繞機的四個 軸分別定義如下:

(1) X 移動軸:又稱為滑台,如果改變極限開關的位置,則

工作範圍可以有 102cm、82cm 及 62cm 等三種(目前設定 調整在 102cm),可以按工件需求定義其原點的座標位置。

- (2) Y轉動軸:又稱為主軸,也就是心軸的軸方向。
- (3) Z 移動軸:又稱為前進軸,控制出眼口與主軸的距離, 以主軸處為原點,工作範圍從 2.2cm 到 19.2cm,有 17cm 寬。
- (4) ₩轉動軸:又稱為轉紗軸,可以控制纖維出眼時的位置。

纏繞機的四軸關係如圖 4-4 所示。另一方面,出眼口的幾何形狀 及位置影響了纖維出眼的方向及纖維的帶寬,而我們所使用的出眼口 幾何形狀如圖 4-5 所示。纖維纏繞的工作即是藉由控制四軸的路徑來 達成。

4-2-2 烤箱

1. 心軸成形用烤箱(如圖 4-6 及圖 4-7)

本烤箱具備了下列功能:

- (1) 四組烘烤記憶模式,每一組模式可設置15種加溫型式。
- (2) 延遲時間控制、手動控制、OVEN 自動運轉控制。
- (3) SSR 驅動用電壓輸出信號(DC 0~12V)。
- (4) 計時器功能、溫度表示 SC/PV 值兼用。
- (5) 蒸汽、照明、蜂鳴器訊響功能。
- (6) 內部尺寸:146cm×76mm×20mm

2. 纏繞後定形用烤箱

纖維纏繞完後,需要加熱來使樹脂硬化,除了不同的樹脂有不同 的成型溫度,且樹脂會因重力的關係集中到工件下方,所以纏繞用的 烤箱除了溫度控制之外,還須有一個轉動的軸來旋轉工件。本實驗室 用的烤箱具備了下列功能:

(1) 溫度可調整,可從室溫到攝氏200度。

- (2) 可控制的心軸轉速,防止樹脂集中,轉速 0-20rpm。
- (3) 定時裝置,配合溫度兩段式及自動斷電。
- (4) 隔熱板,防止工作人員觸摸烤箱而燙傷。

(5) 烤箱內工作空間為 60cm×60cm×100cm。

烤箱的外觀及內部構造如圖 4-8 及圖 4-9 所示。

+

assiller.					
	材料	規格或尺寸	用途		
主	碳纖維		強化材		
要	預浸材	830mm*302mm	強化材		
材	環氧樹脂	ML3030A+ML3031B	基材		
料	鋁合金	AA6061	接頭		
	peel ply	930mm*350mm	隔離複材與輔助材		
輔	T1040	930mm*350mm	脫模用		
助	小綿布	930mm*600mm	吸多餘樹脂		
材	厚綿布	930mm*450mm	吸多餘樹脂		
	脫模蠟		隔離模具與複材		
	真空袋	1150mm*380mm			

4-4 圓桿心軸之製作

(1) 圆桿之外形尺寸如圖 5-2。

- (2)依圓桿尺寸裁製 10 張 830mm*302mm 之碳纖維預浸布,如圖
 4-10。
- (3)事前車製妥一支長 1100mm,直徑 94mm 之木質圓棒,作為包覆 預浸布之輔助工具,再備妥真空袋、離形布 T1040、脫模臘, 如圖 4-11。
- (4)待一切都準備妥之後,將木質圓棒架於車床或纏繞機之 Y 軸 上,先包覆一層真空袋在圓棒上,再包覆一層離形布(T1040) 在真空袋外,接著在離形布(T1040)上塗抹一層脫模蠟,如 此即完成製作心軸所需之內模,如圖 4-12 所示。
- (5)將步驟(1)中之預浸布依[0°/90°]₅的方式(以軸向為0°)逐次疊層於心模上,如圖4-13所示。
- (6)接著在模具之上下模表面均匀抹上一層脫模蠟,如圖 4-14 所 示。
- (7)將疊層完成之預浸材圓管柱從心模脫下,如圖 4-15 所示。
- (8) 製作氣袋,並將氣袋放入預浸材圓管柱內,如圖 4-16 所示。
- (9)備妥鋁合金接頭,如圖 4-17 所示。預浸材圓管柱放入模具中, 兩端加上鋁合金接頭,如圖 4-18 所示。其中有一點需特別注 意,若於冬天氣溫低於 20℃時進行製作,則模具及鋁合金接頭 兩者需進行預熱,預熱溫度為 45 至 55℃之間,預熱完成後才 可將預浸材放入模具中及進行接下來之程序。
- (10)將預浸材之內模盡量壓縮在模穴內(避免上下模具合模時壓損)。將上下模合模,並將固定鏍栓鎖緊,由內向外。左端氣袋封妥,右端氣袋接壓縮空氣不鏽鋼軟管,而氣壓調整需分階段升壓,避免一次升壓造成成型不良或氣袋破裂,升壓曲線如圖4-19所示,最終壓力需維持在約35-40 psi。

(11)將處理完成之模具放入烤箱,如圖 4-20 所示,分兩段加熱,溫度上升曲線如圖 4-21 所示:

(a)在80℃加熱30分鐘。

- (b)在140℃加熱90分鐘
- (12)加熱完畢待冷卻後拆模,可得到一根含接頭之碳纖塵化後黑 色圓桿,此即為待纏繞的圓桿工作物,以上所述之心軸製作流 程另以流程圖說明如圖 4-22 所示。心軸成品如圖 4-23 所示。

4-5 圓桿之纏繞

- (1) 調好環氧樹酯 ML3030A (2) + ML3031B (1)
- (2)加入樹酯槽,加熱溫度設定於40℃
- (3)編輯纏繞程式:在電腦軟體上編輯所需工作物之規格參 數。
 - 例如欲製作一根纏繞 30 度三層之桿件,其設定參數如下:
 - ※ 工作直徑(mm) : 96.0
 - ※ 滑台行程(mm) : 810.0
 - ※ 纏繞纖維寬度(mm) : 5.0
 - ※ 繞線角度(deg) : 15.0
 - ※ 起始偏移角(deg) : 0.0
 - ※ 最大主軸旋轉速度(rpm) : 150.0
 - ※ 最大載台速度 : 65.0
 - ※ 駐留旋轉角度(deg) : 150.0
 - ※ 纏繞層數 : 3.0
 - ※ 起繞位置(mm) : 5.0
 - ※ 駐留緩衝長度(mm) : 20.0

※ 出線眼距離(mm) : 70.0

※ 出線眼距起點(軸心:0工件:1): 0.0

(4)將製作完成之檔案輸出至磁碟片中。

- (需將 *._bh 檔使用 pconvert 指令轉換成 *._bn 檔)(5)啟動空壓機。
- (6) 啟動 NC 纏繞主機。
- (7)將工件兩端連接桿(M20 鏍桿)接上。
- (8)將圓桿固定置於纏繞機上(定位點為:175mm 從夾頭至工件 左端)。
- (9) 編輯妥之程式以磁片移至纏繞機之電腦內,重新轉譯。
- (10) 根據圓桿規格重新設定纏繞機起始參數,並進行原點回歸。
- (11) 將紗束端固定於工件上,開始上線作業,如圖 4-24 所示。
- (12) 纏繞完成(如圖 4-25 所示)後將輔助材覆於管件上,由 內而外,如圖 4-26、4-27、4-28、4-29 所示。

順序如下: Pear Ply(上抹脫模蠟)→離形布→

小棉布(多層便於吸膠)→厚棉布

- (13)將完成包覆之桿件置於烤箱中,如圖4-30所示,分兩 段加熱:
 - (a) 在 80°C 加熱 35 分鐘
 - (b)在140℃ 加熱 90 分鐘
- (14)加熱完成待冷卻後將包覆材拆下,如圖 4-31 及圖 4-32 所示,即可得到一纏繞式複合材料圓桿成品,如圖 4-33 所示。

4-6 桁架球形接頭之製作

以複合材料為主之球形接頭仍在開發階段,故本文組立桁架所用 之球形接頭暫時以鋁合金材質取代,設計圖如圖 5-20 所示。圓球外 徑 100mm,連接部位角度確定後鑽孔後攻牙,以緊配合方式鎖上不銹 鋼材質之螺牙護套,如此即完桁架球形接頭之製作。

4-7 桁架組立

將製作妥之纖維纏繞圓桿6根、球形接頭4顆、正反牙連接螺栓 (M20)12支,組立成空間立體桁架,如圖4-34所示。

第五章 纏繞式桁架之設計與改良

5-1 前言

桁架結構大致可分為三部份(1)圓桿(2)球形接頭(3) 圓桿與球 形接頭之連接機構。「圓桿」可說是桁架結構之重心所在,本研究初 步構想是要設計出較符合實際使用之桁架用圓桿且強度在 100KN 以 上為目標,限制條件為使用實驗室之纏繞設備。綜合以上條件後設 定:圓桿直徑 100mm,長度 960mm,接頭設計採卡榫式,繪製出第一 張設計圖,如圖 5-1,由於圓桿心軸之成型需開發模具,所以在開發 模具前,設計之圓桿是否適合上線纏繞成型須經過確認。於是我們使 用低成本之 PVC 材質製作了一只模型,進行 30 度 2 層之實際纏繞, 將所遇到的問題點加以修改,然後確認出合適之外形尺寸圖,如圖 5-2,轉繪成模具之設計圖,如圖 5-3,委託廠商進行模具製作。接 著圓桿接頭、圓桿纏繞、圓桿與球形接頭銜接機構、球形接頭等,於 設計開發過程中都經過多次的改良與修正,最後得到符合設計需求之 規格或方法,其中之過程將於以下各節中詳細說明。

5-2 圆桿接頭部份

在心軸與接頭的銜接處,如何縮小接合空隙或是設計令其結合成 更緊密的機構,讓心軸也分擔較多應力,將是我們設計的目標,設計 演變的過程可分為六個階段,說明表列如下:

階	材質	改良原因	設計重點	設計
段				圖
1	複材	模具開發複 雜不適大量	使用複合材料,重量輕	圖 5-4

	(BMC)	生產				
2	鋁合金	外側纖維屬	1.	接合部位內外皆有凹槽。	圖	5-5
		於螺旋繞	2.	接頭內圈凹槽之目的是為了要		
		線,徑向凹		讓放入接頭內部的預浸材,在		
		槽無法發揮		受到真空袋充氣後的外擴力量		
		作用		後,能充分隨著凹槽變形,進		
				而提高心軸與接頭間之接合		
				力。		
3	鋁合金	氟袋伸展不	1.	外部凹槽取消,改以壓花取	圖	5-6
		順暢		代,除了增加接合緊密度外亦		
				可減少左右兩端滑線情形發		
				生。		
			2.	接頭左端設計有一傾斜角度		
				(120°),能讓心軸與接頭連鎖		
				產生的隙縫降至最小,避免於		
				後續纏繞中產生纏繞不平整情		
			3	形。		
			3.	內部凹槽加深。		
4	鋁合金	鑽ψ5 小孔	1.	設計900圓錐面,主要目的是為	圖	5-7
		減重,加工	/:	了收納心軸上可能過長的預浸		
		較費時	3	材部分,避免過長的預浸材堆		
				積壓縮扭曲,而影響到應與溝		
				槽緊密相接部分的密合性。		
			2.	圓錐面形成同時亦減掉鋁合金		
				接頭部份重量。		
5	鋁合金	尺寸縮短部	1.	使用 6 孔蜂巢式掏料減重,加	圖	5-8
		位之蜂巢結		工較快速		
		構受力	2.	尺寸縮短 30mm		
		80KN 即告				
		破壞,強度				
		不足				
6	鋁合金		1.	延續蜂巢式掏料減重	圖	5-9
			2.	尺寸恢復 50mm,但圓柱修改		
				為圓錐外形避免組配干涉		
			3.	纏繞纖維堆積用凹槽單邊修正		
				為與水平夾角410之斜邊,以增		
				加纖維於桿件兩端駐留旋轉時		
				與接頭作緊密之貼合。		

5-3 纏繞部份

依桿件強度 100KN以上之設計目標,配合複合材料積層板理論計算,規劃出預浸材 10 層[0⁰/90⁰]₅加纏繞 6 層[30⁰/-30⁰]₃之疊層,該疊層 之理論破壞強度為 130KN。纏繞部份選擇 30⁰之理由說明如下:

影響纏繞圓管強度的因素很多,而大致以纏繞的角度和層數兩大 變數最為顯著,三者關係為:相同角度下層數越多強度越高,相同層 數下角度越小強度越高。前章已介紹本研究所使用之纏繞機X軸工作 範圍為102CM,且桿件本身長度已達95CM,再加上繞線時左右兩端的 駐留緩衝長度幾乎快碰觸極限開闢(如圖 5-10 所示),雖然經由調整 出眼線距離及滑台行程可控制滑台不致碰觸左右極限,但繞製15⁰桿 件時會產生嚴重滑線及駐留旋轉之纖維無法準確停留在所設計之溝 槽內,致使無法完成桿件之纏繞。滑線問題將直接影響纖維之覆蓋 率,最後造成纏繞部份之厚度不均勻。經由不同角度之嚐試,30⁰之 纏繞角度是圓桿可接受品質之最小角度。故本研究即以30⁰之纏繞進 行桁架用圓桿之設計製造。

經由多次繞製,變換各種參數並觀察所得之結果,整理出以下幾 點增加繞線品質之原則:

- (1) 不超出極限之條件下盡可能縮短出眼線距離。
- (2) 「最大主軸旋轉速度」與「最大戴台速度」之比值應小於2.5。
- (3) 接頭兩端表面盡可能增加磨擦力(例如:壓花)以減少滑線 機會。
- (4) 纖維於兩端駐留旋轉時,盡可能讓纖維保有一定之張力(例如:修改纖維堆積用凹槽之幾何外形)

5-4 圓桿與球形接頭銜接部份

圓桿與球形接頭銜接部份之設計原則為:

- (1) 機構強度穩定
- (2) 組裝方便快速
- (3) 具有調整性
- (4) 最小之累積公差

此部份之設計製造改良過程共分為四個階段:第一階段設計如圖 5-11 所示,藉由一根 80mm 長之螺栓配合兩顆螺帽(a、b,其中 a 固 定於螺栓),於未組配前將該連接組件栓入桿件,如(A),組配時將連 接組件另一端栓入球形接頭至螺帽 a 頂住球體,然後將螺帽 b 退回桿 件接頭端固定,如(B)。此方式最大缺點為無法調整,將造成嚴重之 累積公差,且球接頭與桿件之間距過長(55mm),受壓力時恐有發生挫 曲之可能。

第二階段設計如圖 5-12 所示,為改善第一階段組裝無法調整之 缺點,設計連接螺栓為正反牙型式,如圖 5-13 所示,桿件端正牙, 球接頭端反牙。組裝時將桿件放於兩連接球接頭之間,轉動連接之螺 栓將可把桿件與球接頭拉近到固定位置,定位後球接頭與桿件之間距 已降為 30mm,大符減少挫曲發生之可能。但是此種設計於桁架組立 到一個階段以後將發生組裝上之困難,兩球形接頭間之間距已不容許 連接螺栓擺入起始位置,此問題必需解決。

第三階段設計如圖 5-14 所示,設計一個蓋帽形的連結機構,其 中蓋帽與中間之螺桿為一體,蓋帽內側有內螺紋,其螺距與螺桿之螺 距相同(P=2.5mm),桁架組裝前將蓋帽機構栓入桿件如(A),於兩個球 形接頭之間轉動蓋帽至頂到球接頭為止,即完成定位工作。此設計方 式之優點為桿件受壓力時力量傳導穩定,缺點仍是無法作靈活之調整 組配。

第四階段設計如圖 5-15 所示,綜合前面三階段之優缺點開發出 兼具實用性與功能性之最新接頭。其中螺栓前段有螺紋並且有一個插 銷孔,螺帽铣一個溝槽,螺帽透過溝槽帶動插銷來轉動螺栓,並藉由 另一端彈簧推力使得螺栓順利鎖進球形接頭而完成定位,桿件與球形 接頭之間的距離即是螺帽之寬度 25mm,此設計之最大優點是安裝方 便、快速、準確,並且累積公差小、具可調整性、力量傳遞穩定,缺 點為加工較複雜,成本約提高 25%,詳細設計圖如圖 5-16 所示。

經由以上四個階段的設計過程,最後選擇第四階段之設計作為桿 與球形接頭銜接之標準。製作成品如圖 5-17、5-18、5-19 所示。

5-5 球形接頭部份

桁架球形接頭設計,若採用複合材料開發將耗費較多時間,故暫 時採用直徑 100mm 之鋁合金球形接頭替代,如圖 5-20。但開發之工 作仍積極進行,截至目前為止已成功發展出可承受 96KN 以上之球形 接頭,開發過程分五階段,詳細說明如下:

開發過程中共同使用之材料有:0.8MM 厚之不銹鋼圓球、5MM 寬 之碳纖維紗束、環氧樹脂(3030A+ML3031B)、SS400 圓棒。

第一階段設計如圖 5-21 之 Typel 所示,以不銹鋼圓球為模具, 內部填充碳纖之複材,經加熱固化成形後,直接鑽孔並攻 M20 螺紋, 然後準備進行拉伸試驗以測試其強度,試驗前之準備工作為夾具之製 作,夾具之設計如圖 5-22 所示,經拉伸試驗結果,10.4KN 即告破壞, 觀察破壞位置為複材之螺紋崩裂,故此方法不可行。

第二階段設計如圖 5-21 之Type2 所示,仍以不銹鋼圓球為模具, 以SS400 圓棒車製兩只 5⁰具外螺紋之圓錐,配合M8 之螺栓固定於不銹 鋼圓球,然後再填充碳纖之複材,經加熱固化成形後,鑽孔於預埋之 圓錐,並攻M20 螺紋,過程紀錄如圖 5-23 所示,接著進行拉伸試驗 測試其強度,經拉伸試驗結果,破壞強度 55KN,已較第一階段明顯 提高,但仍不符合設計要求,觀察破壞位置為圓錐體被拉出。

第三階段設計如圖 5-21 之 Type3 所示,為了改善第二階段破壞 之因素,於圓錐底部增加厚 3mm 之段差,設計圖如圖 5-24 之 Type3 所示,接下來之製程如階段二,經拉伸試驗結果,破壞強度 88KN, 拉伸試驗曲線如圖 5-25 所示,又較第二階段明顯提高,但仍未達設 計要求。

第四階段設計如圖 5-21 之 Type4 所示, Type3 整體之重量為 1001g,為了達輕量化之目的擬將圓錐縮短 15mm 如圖 5-24 之 Type4 所示,並且在球心中加入一只 φ 50 之空心圓球,擬觀察其強度變化 情形,如此製程可將整體重量降至 794g,但不幸的強度也降至 60KN, 拉伸試驗曲線如圖 5-26 所示。

第五階段設計亦如圖 5-21 之 Type4 所示,但複材不以填塞方式, 而改採簡易纏繞方式取代,詳細之設計圖如圖 5-27 所示,設計簡單 之纏繞輔助架,透過實驗室纏繞機輸出沾有樹脂之纖維,作徑向及螺 旋形式之混合纏繞,過程紀錄如圖 5-28 所示,最後於外形接近球形 時停止纏繞,由輔助架取下後放於事前準備妥之上下模,並填充不足 之複材於模具內,合模後經加熱、鑽孔、攻牙後再將中間連接之小圓 桿敲出即告完成,經拉伸試驗結果,破壞強度 96KN 以上,由於使用 之拉伸試驗機最大施力為 100KN,為安全考量於 96KN 時即停止施力, 拉伸試驗曲線如圖 5-29 所示,此階段之製程已可生產出符合設計強 度需求之球形接頭,且整體重量為 901g。

將各階段之球形接頭重量紀錄與抗拉強度整理如表 5-1。

第六章 强度試驗與有限單元模型分析

在本章中,將以心軸 10 層[0⁰/90⁰]₅加纏繞部份 6 層[30⁰/-30⁰]₃所 完成之圓桿為標準,使用有限元素分析軟體ANSYS,建構合適之模 型來對桿件作有關受拉和受壓時,可能發生之破壞強度及破壞型式進 行模擬,實驗部份則經由拉伸試驗機MTS對桿件進行破壞試驗,將兩 者所得之數據相互加以分析比較。

6-1 實驗設計與準備工作

由於圓桿設計強度為 100KN 以上且長度達 96CM,機械系之拉 伸試驗機 MTS 將無法勝任,於是商借土木系大型結構實驗室之拉伸 試驗機 MTS 使用,該設備最大荷重可達 1000KN,總行程約 200CM, 由於試體的不同,於正式進行試驗前需依實驗之設計作相關準備工作 (如:夾具之製作,精度之確認...等)。

實驗設計:非破壞性試驗部份以整體桁架進行施力,同時量測各 圓桿應力與應變之關係;破壞性試驗部份則以單一圓桿方式進行,量 測其破壞強度,如圖 6-1 所示。由於該 MTS 施力點在上方,且無適 用之夾具,另一端則為 1M 厚之強力地板,故上下夾具均需重新設計 製作。

夾具製作:依實驗設計需求共設計製作三組夾具,如圖 6-2 所
示,其中上端夾具為桁架與圓桿共用,下端夾具則各自分開應用。

MTS 精度確認:由於土木系 MTS 最大荷重可達 1000KN,而本 實驗使用之範圍只在 0 至 150KN 之間,顯然差距太大,故精度方面 有須要進行驗證。機械系 MTS 最大荷為 100KN,擬以兩台 MTS 對

相同試片進行拉伸試驗,試片材料、尺寸及試驗相關設定如圖 6-3 所 示,量取應變及受力變化,繪製成實驗之應變曲線,配合試片之材料 性質及受力變化,可得出理論之應變曲線,兩者比較可求出該 MTS 之誤差比例,如圖 6-4 所示。兩台 MTS 之誤差比例分別為 3%(機)及 8%(土),故整體誤差應在 4.8%以內,即土木系 MTS 施力之顯示略為 偏低,但應在可接受範圍。

6-2 圆桿之材料性質

在研究複合材料力學分析時,首先必須知道複合材料的各項材料 常數。而本圓桿主要分為預浸材疊層的心軸和纖維紗束纏繞兩部份, 其中纏繞疊層部份之材料性質可引用如表 6-1[6]中所示,材料強度 可引用如表 6-2[6]中所示。預浸材疊層部份則無參考資料,必需經 材料試驗(Material Testing)程序加以求出。複合材料的拉伸試驗主 要是遵從ASTM D3039-76的規範,將事先製作妥之積層板,依據規 範中提到試片尺寸,如圖 6-5 所示,來切割成材料試驗所需要的大 小,如圖 6-6 所示。將製作完成之試片經 MTS(機)拉伸試驗,如圖 6-7 所示,記錄試片的負荷及應變,再藉由應力和應變的關係,計算得到 複合材料的縱向楊氏模數、橫向楊氏模數、浦松比、剪力模數以及破 壞強度,實驗結果紀錄如表 6-3 所示。

圓桿所使用之碳纖維材料性質都得到後,須再經一個驗證之實驗 程序以確保該碳纖維材料製作成圓桿後材料性質仍可用。

材料性質驗證之實驗程序:

(1) 更換 MTS 拉伸試驗機之上端夾頭後,將桁架試體放置於定位。

(2) 選擇桁架圓桿中段較平坦部位用砂紙磨光後,把2軸應變規

依循所欲量測方向黏貼在桿件上,將應變規兩條導線,接於 應變計上,(如圖 6-8 所示)。

(3) 對桁架頂點開始施與一個向下之力量,MTS之基本設定如表 6-4 所示,紀錄受力與應變量的關係值。

在相同受力情況下,依表 6-1 及表 6-3 列出之材料性質,經積層 板理論可求得「理論應變值」,與「實驗應變值」相比較後可得到一 個「誤差比例」,將以上三種數據整理於同一張圖表,三根圓桿分別 為:圖 6-9、圖 6-10 及圖 6-11,驗證比較後發現誤差比例均在 15% 以內,因此在以下的有限單元分析中對於表 6-1 及表 6-3 中之數值可 加以代入使用。

6-3 圓桿之強度試驗

在本節將使用實驗方式得到桿件的破壞值,以求出桿件強度。 實驗步驟: 1896

- (1) 將預先製作妥之 II 型鋼夾具安裝於強力地板上,上端夾具安裝於 MTS 之萬向接頭,作上下中心點之對正及上端萬向接頭 水平之校正。
- (2) 將圓桿以 M20 之螺栓銜接於上下夾具之間。
- (3) 記錄起始絕對位置值。
- (4) 設定 MTS 實驗所需之各項參數,速率為 0.01(mm/sec),限制 最大位移不超過 50mm。
- (5) 待一切就緒後,按下 START 鈕開始實驗,同時每隔 0.1 秒鐘 摘取一次受力值與絕對位置值。
- (6) 等聽到桿件碎裂聲後密切注意數值變化,若桿件受力值開始 下降不再回升,即表示已達到破壞,此時就可按下 FINISH

鈕終止實驗。

在實驗中所記錄到的最大受力為桿件的破壞值。桿件的拉力試驗 曲線如圖 6-12 所示,壓力試驗曲線如圖 6-13 所示。在施力達到最高 點後桿件就產生破壞,曲線也逐漸下降不再回昇,該點之力值即可記 錄視為此實驗桿件之強度,實驗結果抗拉強度為 104KN,抗壓強度為 44KN。

而產生破壞的位置,於拉力試驗部份無法由外觀目視看出,於是 將圓桿進行解剖,切割桿件分成五個區段,切割示意圖如圖 6-14 所 示,觀察發現預浸材疊層部份已發生軸向開裂,位置及長度如圖 6-14 虛線標示部位,且預浸材疊層與纏繞疊層已脫離如圖 6-15 所示,開 裂之右側如圖 6-16 所示,開裂之中段如圖 6-17 所示。利用此次解剖 機會同時進行疊層厚度之量測,將斷面圓周分為8 個節點進行量測, 量測紀錄如表 6-5 及表 6-6,經平均計算結果:預浸材疊層單層厚度 0.071mm,纏繞疊層單層厚度 0.238mm。

於壓力試驗部份,破壞的位置發生在圓桿上端三分之一的位置如 圖 6-18 所示,由於此部 MTS 之施力端為萬向接頭,雖然於桿件安裝 前有進行中心點的校正,但畢竟無法很精確,所以圓桿在進行壓力試 驗時不單純受軸向力,應當同時受有一彎曲力距之作用,此力距隨著 試驗壓力的提高而增加,同時產生一個變形的趨勢間接造成萬向接頭 轉向而加速圓桿破壞。為了驗證此一說法,另試驗一根玻璃纖維圓 桿,破壞情況亦同,如圖 6-19 所示,由該圖可看出 MTS 萬向接頭已 偏離一個角度θ。所以利用此部 MTS 作出之壓力試驗強度將無法充分 代表該圓桿之抗壓強度,此試驗設備存在之先天問題短時間內應無法 解決,故本文將不作抗壓強度試驗部份之討論。

6-4 圓桿之有限單元模型分析

以下將使用有限元素分析軟體 ANSYS 建立桁架用圓桿之模型,經網目分割後,配合適當的邊界條件作力學分析,並利用 Max. Stress 破壞準則及 TSAI-WU 破壞準則求出圓桿之破壞強度,該值可 和桿件破壞的實驗值及理論值來作比對驗證。

6-4-1 圆桿心軸和纏繞疊層規格

(1)心軸尺寸:直徑(外徑)----96mm

長度----800mm 疊層----[0°/90°/0°/90°/0°/90°/0°/90°/0°/90°] 疊層厚度----0.071mm(每層),10層共厚0.71mm (2)纏繞尺寸:直徑(內徑)----96mm 長度----96mm 疊層----[30°/-30°/30°/-30°/30°/-30°] 疊層厚度----0.24mm(平均每層),6層共厚1.44mm

6-4-2 圓桿有限單元分析與邊界束制條件

圓桿使用殼結構,以 SHELL99 八節點元素進行網目分割, Real Constants 設定部份:16 層疊層,輸入每一疊層之角度、厚度及對應 之材料性質,其中疊層角度是依據「元素座標系」計算, ANSYS 座 標轉換之相對關係說明如圖 6-20 所示。

邊界外力條件,一端受軸向力另一端未受力;邊界束制條件,未 受力端取所有自由度均等於0,受力端僅取軸向自由伸縮未受限,其 餘部份自由度則全部等於0。該模型如圖 6-21 所示。

ANSYS模擬分析 1(標準厚度):探討元素分割數量的收斂情形如

圖 6-22 所示,從圖中可以發現在 2706 個Element時,其應力破壞值 已趨於收斂,因此可以選定此分割方式為有限單元分析的模型;分析 後所得之抗強度值為 192KN,破壞之位置為圓桿兩端之接頭附近,破 壞層為第 16 層(-30°),屬於Matrix Failure。各元素發生最大破壞情況 下之X方向應力分佈情形如圖 6-23(A)所示,Y方向應力分佈情形如圖 6-23(B)所示,Failure Index 分佈情形如圖 6-24 所示。但此模擬分析 結果與實驗值相差甚大,經仔細檢討所建立之模型與實體圓桿之差異 後發現,問題出在ANSYS模型沒有反應出纏繞疊層厚度不均勻的現 象,所以針對此問題重新建立一個新的ANSYS模型。

ANSYS 模擬分析 2(實際厚度):由表 6-5 及表 6-6 觀察發現, 預浸材疊層厚度尚屬均勻,而纏繞疊層厚度出現區段不均勻,且斷面 各方向厚度亦有變化,造成厚度不均勻之原因研判是:圓桿進行螺旋 纏繞時,於左右兩端發生滑線,滑線問題直接影響纖維之覆蓋率,最 後造成纏繞部份之厚度不均勻。1896

利用表 6-6 之厚度紀錄,將圓斷面分為4個區域(A、B、C、D), 整理出各區平均厚度如表 6-7(A),為了方便作 ANSYS 疊層厚度輸 入,將各區平均厚度進行些許的近似法修飾如表 6-7(B),然後轉換 為 Real Constants 設定代號如表 6-7(C),而各 Real Constants 之設定 明細如表 6-7(D),其中值得注意的是厚度最大的部份已超出 6 層疊 層應有的厚度,故吾人將於 ANSYS 模型建立 7 層之纏繞疊層,厚度變 化部份將以某層厚度等於 0 方式進行模擬,如圖 6-25 所示。重新建 立之模型區段切割情形如圖 6-26 所示。

元素分割數量的收斂情形如圖 6-27 所示,從圖中可以發現在 2560 個Element時,其應力破壞值已趨於收斂,因此可以選定此分割 方式為有限單元分析的模型;新模型分析後所得之抗強度值為
97.7KN,破壞之位置為距右端之接頭160mm附近,破壞層為第17層 (30°),屬於Matrix Failure。各元素發生最大破壞情況下之X方向應力 分佈情形如圖 6-28 所示,Y方向應力分佈情形如圖 6-29 所示,Failure Index 分佈情形如圖 6-30 所示,該圖之外形即是受力後之變形圖, 吾人在圓桿下方加上一條直線,就可以清楚發現圓桿於破壞點附近發 生頸縮,頸縮之原因應該是纏繞疊層於該部位發生Matrix Failure所 致,頸縮的力量壓縮到預浸材疊層部份,導致該部份發生沿軸向開裂 之破壞。

6-5 理論計算及實驗討論

在本節吾人將運用材料力學計算求出桿件強度。複合材料力學理 論的計算方式是用施力除以圓管纏繞截面積,所得到之應力值再參考 該處纏繞纖維角度經由複材理論轉換,算出各疊層之應力值,依 TSAI-WU破壞準則計算各疊層所能容許之強度大小,其中最小者即 是首層破壞,判斷破壞型式是屬於Matrix Failure或Fiber Breaking,若 屬於Matrix Failure則令該疊層之E₂=G₁₂=0,然後重新計算出第二階段 之破壞強度。此方法得到概略之理論強度為 428KN,屬於第二階段破 壞,疊層角度為 30⁰。

觀察拉伸試驗曲線及實際破壞情形後發現,首層破壞對整體的強 度影響有限,真正影響強度的是第二階段的破壞,此推論由ANSYS模 擬分析中得到證實,所以就以第二階段的破壞強度作為圓桿之抗拉強 度。接著將理論計算結果配合MTS拉伸試驗所獲得數據和ANSYS模擬分 析數值一起作比較,可得到表 6-8。由表中可以見到理論值與試驗所 得之實驗值相差很大,這應該是和理論計算過程中無法充分反應邊界 條件、幾何外形及厚度變化等問題有關。ANSYS模擬分析 1(標準厚度)

37

所得之數值與試驗所得之實驗值亦有一段差距,這是模擬過程中無法 反應厚度變化問題所致,ANSYS模擬分析2(實際厚度)所得之結果於 破壞點位置(3B區段之D 區域,element 2440)與實驗結果相符,破壞 強度大小(97.7KN)與實驗結果相近。於是使用此模型作強度試驗之 模擬,所得受力與應變之數據如表 6-9,將其繪製於實際強度試驗之 圖表中作比較,如圖 6-31 所示,比較結果兩曲線均相當接近,唯模 擬應變曲線於首層破壞後略大於實際應變 10%,原因應該是在模擬分 析過程中發生首層破壞後、即令所有 90⁰疊層之E₂=0、G₁₂=0,但實際 情況或許僅有局部之 90⁰疊層失效而已,中間之差異即是誤差之來 源,但對整體而言ANSYS模擬分析2所建構的模型已十分接近真實情 況。同時也使用ANSYS模擬分析1之模型作強度試驗模擬,所得受力 與應變結果,將其繪製於圖 6-31 中作比較。

ANSYS 模擬分析 1 與 2 之間的差別只在於厚度變化,當疊層厚度 均勻,抗拉強度可達 192KN,但受限於目前纏繞設備之能力,製作完 成之圓桿纏繞疊層厚度並不均勻,導致抗拉強度下降至 97.7KN。

第七章 結論與未來展望

本文之目的在於使用纖維纏繞製程,研製一新型桁架結構所使 用之圓桿、接頭及連接機構。其中圓桿製作程序,是先由預浸材疊層 配合兩端接頭製作一體成型之心軸,再經纖維纏繞後完成圓桿。使用 MTS 作拉力試驗結果,可承受之拉力值約在 104KN 左右,破壞位置在 距離右端接頭 160mm 附近;軟體模擬部份使用 ANSYS 建立兩個模型作 比較,模擬所得之抗拉強度分別為 192KN 及 97.7KN;以材料力學計 算求出圓桿概略之理論強度為 428KN;對於圓桿研製過程及所得結 果,整理出以下幾點結論:

- (1)、圓桿破壞位置未發生在心軸與兩端接頭的銜接處,顯示該 部份之機構設計已發揮其緊密結合之效果。
- (2)、圓桿之破壞並未發生在「首層破壞」,而是發生在第二階段之破壞,主要原因是首層破壞之90⁰疊層對軸向應力的分擔相當小,破壞後並不影響整體抗拉強度。
- (3)、圓桿所使用之纖維重量為884g,即可發揮104KN之抗拉強度,若使用相同重量之碳鋼材料(JIS SS400 σ_y=205MPa) 製成圓桿,僅能承受24.4KN之抗拉強度,強度比為4.26 倍;相反的若考慮使用碳鋼材料製作相同強度之圓桿,所 需使用之碳鋼重量約4768g,重量比為5.4倍。由此即可 驗證纖維纏繞式圓桿重量輕、強度高之特性。
- (4)、理論計算強度與實驗值相差很大原因,應該和計算過程無法充分反應邊界條件、幾何外形及厚度變化等問題有關。
- (5)、由 ANSYS 模擬得知,抗拉強度下降的原因應該是纏繞疊層 厚度不均勻所造成。

球形接頭的開發是利用碳纖維絲,配合金屬圓錐及不銹鋼薄殼 圓球,經多次製作試驗改良而成,目前製作之球形接頭抗拉強度已可 達 96KN 以上。由研製改良過程可得到以下幾點心得:

- (1)、已成形之碳纖複材不適合直接進行機械加工(鑽孔、攻牙) 來獲得力傳導用之機構。必須在複材成形前配合適當之金 屬材質作正確定位後一體成型,其中金屬被複材緊緊包 覆,當金屬作機械加工時就不會破壞複材及整體球接頭之 強度。
- (2)、使用纏繞方式成型之球形接頭較為結實,重量是BMC方式 填塞複材的1.13倍,但所提高的強度可達1.6倍以上,

可見纖維纏繞方式可獲致較佳之機械強度。

圓桿與球形接頭之連接部份,已研製出具可調整、組裝快速、 結構穩定等優點之機構,使得整體桁架組裝時間大為縮短,精度大為 提高。

此桁架在整個製作過程中,仍有許多值得改進與克服的地方:

- (1)、圓桿纏繞厚度不均勻,造成強度僅有模擬分析(厚度均勻) 強度的 54%,提高纏繞厚度之均勻度將是增加圓桿及整體 桁架強度最快的方法。我們可以藉由修改滑台工作距離及 增設精確之張力控制機構等方法,逐步降低纏繞過程中滑 線的現象,如此即可獲得較為均勻之纏繞厚度。
- (2)、開發球形接頭各孔洞定位之製具及外型模具,使得製作過 程標準化,製作品質更加穩定。
- (3)、目前連接機構完全使用鋁合金,如何將複材應用在其中使 得整體重量降低,也是值得努力的方向。

參考文獻

- J. Berlamont, "Production Oriented Design of Filament Wound Composites," pp. 33-59, Apr. 1990.
- 2. S. T. Peters , W. D. Humphrey , R. F. Foral , "Filament Winding," *Composite Structure Fabrication* , 1991.
- Y. M. Tranpol, A. I. Beil, "Problems of the Mechanics of Composite Winding-Fabrication of Composite," *Handbook of Composites*, Vol.4, pp. 45-108, 1983.
- 4. A. M. Shibley, "Filament Winding," Handbook of Composites, 1982.
- 蔡坤璁, "纏繞式複合材料壓力容器之製程研究",國立交通大學 機械工程研究所碩士論文,新竹市,1998.
- 游皓全,"纏繞式複合材料壓力容器之強度研究",國立交通大學 機械工程研究所碩士論文,新竹市,1998.
- 王文庭,"複合材料結構的彈性常數識別",國立交通大學機械工 程研究所博士論文,新竹市,2000.
- 7. 葉乃綱,"纏繞式複合材桿件之研製",國立交通大學機械工程研究所碩士論文,新竹市,2001.
- S. Kurt Olofsson, P. Gudmundson, L. Anders Strombeck, "Process Simulation of Wet Filament Winging and Curing of Thick Walled Cylinders," 37th, *International SAMPLE Symposium*, pp. 1132-1145, 1992.
- R.R. Rizzo and A.A. Vicario, "A Finite Element Analysis of Laminated Anisotropic Tubes," *J. Composite Materials*, Vol.4, pp. 344-359, 1970.
- 11. N.J. Pagano and J.M. Whiteny, "Geometric Design of Composite Cylindrical Characterization Specimens," J. Composite Materials,

Vol.4, pp. 360-379, 1970.

- H. Fukunaga, & T. W. Chou, "Simplified design techniques for laminated cylindrical presure vessels under stiffness and strength constraints," *Journal. Comp. Master.*, Vol.9, pp. 1157-1169, 1988.
- H. Kranderkar, R. Srivinvasan, F. Mistree, & W. J .Fuchs, Compromise:"An effective approach for the design of pressure vessels using composite materials," *Computer & Structure*, Vol. 33, No. 6, pp. 1465-1477, 1989.
- S. Aladi., Summers E. B. & V. E. Verijenko.,"Optimization of laminated cylinderical pressure vessels under strength criterion," *Composite Structures*, Vol. 25, pp. 305-312, 1993.
- 15. R. F. Gibson , "Principles of Composite Material Mechanics," *McGraw Hill Inc.*, pp. 190-215, 1994.

Type 1 Type2 Type5 鋁合金 Type 3 Type4 強度(KN) 55 88 60 96 以上 10.4 --重量(g) 1430 650 853 1001 794 901

表 5-1 各階段之球形接頭重量與抗拉強度紀錄

表 6-1 纏繞纖維之材料常數

Material Constant	Value
E1	117.444Gpa
E ₂	5.956Gpa
E ₃	5.956Gpa
$G_{12}=G_{13}$	2.709Gpa
G ₂₃	0.686Gpa
υ 12	0.34Gpa
THINKING	ATT THE

表 6-2 纏繞纖維之材料強度

Material Constant	Value
X _T	1200.52Mpa
X _C	1332.53Mpa
Y _T =Z _T	16.16Mpa
Y _C =Z _C	83.73Mpa
S=T	57.30Mpa
R	42.90Mpa

	寬度	厚度	E ₁ (Gpa)	破壞強度	Poisson ratio
	(mm)	(mm)		(Mpa)	
試片1	15.06	0.45	150.8	1679	0.29
試片 2	15.46	0.46	144.6	1950	0.33
試片 3	15.31	0.46	144.2	2024	0.26
試片 4	15.44	0.45	151.1	1874	0.33
平均			147.7	1882	0.30

(A) 0⁰預浸材拉伸試驗

(B) 90⁰預浸材拉伸試驗

	寬度	厚度	E ₂ (Gpa)	破壞強度
	(mm)	(mm)		(Mpa)
試片1	24.90	0.49	10.8	28.6
試片 2	24.91	0.48	12.0	37.3
試片 3	24.85	0.47	10.8	32.2
平均			411.2	32.7

(C) 45⁰預浸材拉伸試驗

	寬度	厚度	G ₁₂ (Gpa)
	(mm)	(mm)	
試片1	24.91	0.46	6.6
試片 2	24.65	0.46	6.3
試片 3	24.77	0.45	6.8
平均			6.57

表 6-4 材料性質驗證之 MTS 基本設定

1.位移量	1.5mm
2.加載速率	0.01mm/s
3.資料截取間距	0.1sec
4.桿件編號	FB#01, FB#02,FB#03

表 6-5 預浸材疊層厚度之量測紀錄

編號	1	2A	2B	3A	3B
1	0.75	0.76	0.74	0.60	0.73
2	0.76	0.76	0.73	0.69	0.74
3	0.64	0.67	0.69	0.67	0.68
4	0.75	0.74	0.73	0.74	0.73
5	0.77	0.76	0.75	0.69	0.75
6	0.71	0.73	0.74	0.65	0.74
7	0.71	0.68	0.60	0.57	0.73
8	0.68	0.76 🧯	0.74 ^E	0.60	0.77
平均	0.72	0.73	0.72	0.65	0.73
總平均	0.71 mm896				
單層厚度		0.071 mm			

表 6-6 纏繞疊層厚度之量測紀錄

編號	1	2A	2B	3A	3B
1	1.73	1.02	1.55	0.89	1.38
2	1.43	1.50	1.55	1.37	1.26
3	1.33	1.27	2.14	1.26	1.45
4	1.20	1.50	1.23	1.60	0.95
5	1.95	1.45	1.34	0.70	1.60
6	1.84	1.52	1.12	1.55	1.60
7	1.60	1.44	1.65	1.42	0.73
8	2.03	1.74	1.11	1.64	1.50
平均	1.64	1.43	1.46	1.30	1.31
總平均	1.43 mm				
單層厚度			0.238 mm		

表 6-7 纏繞纖維厚度不均勻修正於 ANSYS 之 Real Constants

(A)各區平均厚度

分段區域	3A	2A	1a	2B	3B
А	1.17	1.26	1.50	1.75	1.36
В	1.19	1.41	1.49	1.57	1.30
С	1.22	1.47	1.80	1.37	1.31
D	1.45	1.54	1.76	1.41	1.18

(B)修飾後之厚度

分段 區域	3A	2A	1a	2B	3B
A	1.20	1.20	1.44	1.68	1.44
В	1.20	1.44	1.44	1.44	1.20
С	1.20	1.44	1.68	1.44	1.20
D	1.44	1.44	1.68	1.44	1.20
	減於正 30	減於正30	減於正 30	減於負 30	減於負30

(C)轉換為 Real Constants 設定

				and the second s	
分段 區域	3A	2A	18la	2B	3B
А	RC1	RC1	RC2	RC3	RC4
В	RC1	RC2	RC2	RC4	RC5
С	RC1	RC2	RC3	RC4	RC5
D	RC2	RC2	RC3	RC4	RC5

(D)各 Real Constants 設定明細

Layer	1	2	3	4	5	6	7
角度	30	-30	30	-30	30	-30	30
厚度							
RC1	0.24	0.24	0.24	0.24	0	0.24	0
RC2	0.24	0.24	0.24	0.24	0.24	0.24	0
RC3	0.24	0.24	0.24	0.24	0.24	0.24	0.24
RC4	0.24	0.24	0.24	0.24	0.24	0	0.24
RC5	0.24	0.24	0.24	0	0.24	0	0.24

單位:mm

丰	6-8	久插方让求得力证擅改府比較
X	0 0	谷狸刀瓜亦何人吸啜浊反儿牧

	田头山谷	ANSYS 模擬分析		安氏な
		1.標準厚度	2.實際厚度	貫驗值
首層破壞強度	130	64	50	44
第二段破壞強度	428	192	97.7	104.1

單位:KN

表 6-9 ANSYS 模擬強度試驗之受力與應變數據

displacement (0.1mm)	force (KN)	element 2440 strain	failure index	Remark
0	0.0	0	0.000	
0.5	5.2	151	0.103	
4.8	15.5	453	0.308	
8	25.9	755	0.513	
11.5	36.2	1056	0.719	
15.8	49.7	1448	1.000	首層破壞
15.8	48.5	1500	0.509	
19.7	60.6	1896	0.636	
24.7	75.3	2360	0.795	
33.3	97.7	3084	1.000	破壞
33.3	94.8	2973	0.626	

圖 2-2 纖維纏繞法之流程圖

圖 2-3 環狀、螺旋、軸對稱纏繞示意圖

圖 2-4 螺旋形繞線基本模型

圖 2-5 基本螺旋形繞線花式

圖 3-1 圆柱殼元素的座標系統

圖 3-2 材料纖維方向的旋轉圖

圖 3-3 圓殼受應力之合力圖

圖 3-4 圓殼受應力之合力矩圖

圖 3-5 圆桿受力示意圖

圖 3-6 0°試片負荷施加示意圖

圖 3-7 應力應變關係示意圖

圖 3-9 45°試片負荷施加示意圖

圖 4-1 纏繞機

圖 4-2 張力機構

圖 4-3 纏繞機之樹脂槽

圖 4-4 纏繞機之四軸關係圖

圖 4-5 出眼口幾何圖 (a) 俯視圖 (b) 正視圖 (c) 側視圖

圖 4-6 心軸成形用烤箱之外觀

圖 4-7 心軸成形用烤箱之內部構造

圖 4-8 纏繞用烤箱之外觀

圖 4-9 纏繞用烤箱之內部構造

圖 4-10 剪好之預浸材 0°及 90°

圖 4-11 木質圓棒、真空袋、離形布、脫模臘

圖 4-13 依序貼預浸布

圖 4-14 模具內側塗抹一層脫模蠟

圖 4-15 貼完 10 層預浸材從心模上取下

圖 4-16 將氣袋放入預浸材圓管柱內

圖 4-17 心軸接頭

圖 4-18 預浸材圓管置於模具中

圖 4-19 心軸成形氣袋壓力變化曲線

圖 4-20 合模後送入烤箱加熱

圖 4-21 設定加熱溫度及時間

圖 4-22 圆桿心軸製作流程圖

圖 4-23 圆桿心軸成品及調好之環氧樹酯

圖 4-24 準備妥開始上線纏繞

圖 4-25 纏繞程序完成

圖 4-26 第一層離形布抹脫模蠟

圖 4-27 第二層 peel ply

圖 4-28 第三層小棉布

圖 4-29 第四層厚棉布

圖 4-30 送入旋轉烤箱

圖 4-31 將包覆材拆下

圖 4-32 包覆材拆卸完成

圖 4-33 纏繞圓 程成品

圖 4-34 桁架組立圖

<u>圖 5-1</u> 圆桿之外形尺寸圖(草稿)

<u>圖 5-2</u> 圆桿之外形尺寸圖

<u>圖 5-4</u> 複材(BMC)接頭設計圖

<u>圖 5-6</u> 鋁合金接頭設計圖(階段 3)

<u>圖 5-7</u> 鋁合金接頭設計圖(階段 4)

<u>圖 5-8</u> 鋁合金接頭設計圖(階段 5)

<u>圖 5-10</u> 纏繞機相關變數示意圖

<u>圖 5-13</u> 連接用正反牙螺栓設計圖

<u>圖 5-16</u> 第四階段詳細設計圖

<u>圖 5-17</u> 第四階段接頭實體分解零件圖

<u>圖 5-18</u> 第四階段接頭實體分解圖

<u>圖 5-19</u> 第四階段接頭實體圖

<u>圖 5-21</u> 各階段複材球形接頭設計圖

<u>圖 5-22</u> MTS 夾具設計圖

<u>圖 5-24</u> Ball Type3、4 使用之錐體設計圖

<u>圖 5-28</u> Ball Type5 製作過程紀錄

<u>圖 5-29</u> Ball Type5 拉伸試驗曲線

<u>圖 6-2</u> MTS 上、下夾具設計圖

<u>圖 6-4</u> 兩台 MTS 精度校正試驗曲線

<u>圖 6-6</u> 材料試驗試片(90⁰、45⁰、0⁰)

<u>圖 6-7</u> 材料試驗試開始及結束

<u>圖 6-8</u> 應變規黏貼方式及應變計

<u>圖 6-10</u> 材料性質驗證(2)

<u>圖 6-12</u> 強度試驗曲線(拉力)

時間(SEC)

圖 6-15 預浸材與纏繞部份已脫離

<u>圖 6-16</u> 右端預浸材開裂紀錄

<u>圖 6-17</u> 中段預浸材開裂紀錄

<u>圖 6-18</u> 圓桿受壓力破壞紀錄(1) <u>圖 6-19</u> 圓桿受壓力破壞紀錄(2)

<u>圖 6-20</u> ANSYS 座標轉換之相對關係說明

圖 6-21 邊界外力條件及邊界束制條件

圖 6-22 元素分割數量的收斂情形(標準厚度)

<u>圖 6-23</u> 各元素發生最大破壞情況下之 X 及 Y 方向應力分佈情形

<u>圖 6-25</u> Layered Model Showing Dropped Layer

<u>圖 6-26</u> ANSYS 模擬分析 2 之各區段切割情形

<u>圖 6-28</u> 各元素發生最大破壞情況下之 X 方向應力分佈情形

<u>圖 6-31</u> ANSYS 模擬強度試驗 VS 實際強度試驗之比較圖

