應用於藍牙傳輸及液晶顯示器中閘極驅動器之

資料轉換器設計

研究生:李尚勳 指導教授:洪崇智 教授

國立交通大學

電信工程學系碩士班

在許多訊號處理的應用上,資料轉換器是對於整個系統的速度和精準度相當 重要的一塊電路,資料轉換器又分為類比數位資料轉換器和數位類比資料轉換器 兩個部份。在類比數位資料轉換器中三角積分類比數位轉換器傳統地被使用在低 訊號頻帶和高解析度的儀器、聲音和音頻訊號的應用上。而數位類比轉換器則應 用在液晶顯示器的驅動器上。

在這論文裡,連續時間三角積分類比數位轉換器的設計流程將被呈現,並且 一個應用於100MHz取樣頻率和1MHz訊號頻帶的運算放大器連續時間三角積分類 比數位轉換器被實現。此設計被製造於台積電 0.18 微米互補式金氧半導體製 程。量測的訊號失真雜訊比為 53.8dB 而動態輸入範圍為 56dB。功率消耗在 1.8V 電源供給下為 10.2 毫瓦。

在這論文中,液晶顯示器的源極驅動器也將被實現,傳統的源極驅動器是 以電阻串的形式完成,但有著許多問題需要克服,故提出一個全新的架構---轉 換電容式數位類比轉換器來完成。此設計是使用台積電 0.35 微米半導體製程。

Data converters for Bluetooth and LCD column driver

applications

Student : Shang-Shiun Li

Advisor : Prof. Chung-Chih Hung

Department of Communication Engineering

National Chiao Tung University

Hsinchu, Taiwan

Abstract

In many signal processing applications, the data converter is a critical building block limiting the accuracy and speed of the overall system. Data converters have two type, Analog-to-digital converter (ADC) and digital-to-analog converter (DAC). In the analog-to-digital converter, sigma-delta analog-to-digital converter is traditionally used in instrumentation, voice, and audio applications that are low signal bandwidth and high resolution. Digital-to-analog converters are applied to the column driver circuit to drive the LCD pannal

In this thesis, the design flow of the continuous-time (CT) modulator is presented and a 100MHz CT single-bit active-RC sigma-delta modulator with 1MHz signal bandwidth for Bluetooth application is implemented. The design has been fabricated by TSMC 0.18 μ m CMOS process. The measured SNDR is 53.8dB and the dynamic range is about 56dB. The power consumption is about 10.2mW at 1.8V supply.

Furthermore, a DAC circuit for LCD column driver application is also implemented. Historically, column drivers have employed the resistor string DAC to provide the analog voltage, but it has to overcome solve problems. There we have developed a complete new system using a linear DAC in the column driver. The DAC circuit has been design by TSMC 0.35 μ m process.

誌謝

隨著這份碩士論文的完成,兩年來在交大的求學生活也即將告一個段落,往 後迎接著我的,又是另一段嶄新的人生旅程。本論文得以順利完成,首先,要感 謝我的指導教授洪崇智老師在我兩年的研究生活中,對我的指導與照顧,並且在 研究主題上給予我寬廣的發展空間。而類比積體電路實驗室所提供完備的軟硬體 資源,讓我在短短兩年碩士班研究中,學習到如何開始設計類比積體電路,乃至 於量測電路,甚至單獨面對及思考問題的所在。此外要感謝李育民教授和陳富強 教授撥冗擔任我的口試委員並提供寶貴意見,使得本論文更為完整。也感謝國家 晶片系統設計中心提供先進的半導體製程,讓我有機會將所設計的電路加以實現 並完成驗證。

另一方面,要感謝所有類比積體電路實驗室的成員兩年來的互相照顧與扶 持。首先,感謝已畢業博士班學長<u>羅天佑</u>和博士班學長<u>薛文弘、廖德文、陳宗益、</u> 陳家敏以及已畢業的碩士班學長<u>林永州、楊文霖、夏竹緯、郭智龍、黃介仁、邱</u> <u>楓翔和張維欣</u>在研究上所給予我的幫助與鼓勵,尤其是文弘學長和德文學長,由 於他平時不吝惜的賜教與量測晶片時給予的幫助,使得我的論文研究得以順利完 成。另外我要感謝<u>黃聖文、許新傑和簡兆良</u>等諸位同窗,透過平日與你們的切磋 討論,使我不論在課業上,或研究上都得到了不少收穫。尤其是工四718實驗室 的同學們,兩年來陪我一塊兒努力奮鬥,一起渡過同甘苦的日子,也因為你們, 讓我的碩士班生活更加多采多姿,增添許多快樂與充實的回憶。此外也感謝學弟 們<u>陳伽維、許凱修、李人維、蔡湯唯、林均曄和蘇俊仁</u>的熱情支持,因為你們的 加入,讓實驗室注入一股新的活力與朝氣。

到這邊,特別要致上最深的感謝給我的父母及家人們,謝謝你們從小到大所 給予我的栽培、照顧與鼓勵,讓我得以無後顧之憂地完成學業,朝自己的理想邁 進,衷心感謝你們對我的付出。還有默默陪伴著我的許多朋友,感謝你們體諒我 平時的忙碌,以及在背後不斷地鼓勵我、支持我,並在這段成長的路上與我相伴。

最後,所有關心我、愛護我和曾經幫助過我的人,願我在未來的人生能有一 絲的榮耀歸予你們,謝謝你們。

> 李尚勳 于 交通大學工程四館 718 實驗室 2009.10.14

TABLE OF CONTENTS

<u>Page</u>

ABSTRACT	
ACKNOWLEGEMENT	
TABLE OF CONTENTS	IV
LIST OF FIGURES	VII
LIST OF TABLES	XI

<u>Page</u>

СНАРТ	TER 1	
Introdu	ction	1
1.1	Motivation	1
1.2	Thesis Organization	3
CHAPT	TER 2	
Basic L	Inderstanding of Sigma-Delta A/D Conversion	6
2.1	Performance Parameters	6
	2.1.1 Signal-to-Noise Ratio (SNR)	6
	2.1.2 Signal-to-Noise and Distortion Ratio (SNDR)	7
	2.1.3 Spurious Free Dynamic Range (SFDR)	7
	2.1.4 Dynamic Range (DR)	7
	2.1.5 Effective Number of Bits (ENOB)	8
	2.1.6 Overload Level (OL)	8
2.2	Sampling and Quantization	9
2.3	Oversampling	15
2.4	Noise shaping	16
2.5	First-order Sigma-Delta Modulator	17
2.6	Second-order Sigma-Delta Modulator	20
2.7	High-order Sigma-Delta Modulator	22
2.8	Summary	23
СНАРТ	TER 3	
Continu	uous-Time Sigma-Delta Modulators	24
3.1	Discrete-Time Modulators V.S Continuous-Time Mod	<i>dulators</i> 24
3.2	Transformation of a Discrete-Time to a Continuous	5-<i>Time</i> 26
3.2.1	Implus-Invariant transformation	26

3.3	Non-idealities of Continuous-Time Modulators	31
	3.3.1 Opamp's non-idealities in CT Integrators	31
	3.3.2 Excess Loop Delay	32
	3.3.3 Clock Jitter	34
CHAP	TER 4	
A Con	ntinuous-Time Single-Bit Active-RC Sigma-Delta Modulator	with 1MHz
	bandwidth	37
4.1	Introduction	37
4.2	Loop Filter Architecture	
	4.2.1 Architecture	
	4.2.2 Coefficients	40
4.3	System Level Analysis	41
	4.3.1 RC Variation	43
	4.3.2 Clock Jitter	44
	4.3.3 Simulation Result	45
4.4	Circuit Level Implementation	46
4.5	Circuit Level Simulation Result	55
4.6	Summary	57
CHAP	TER 5	
BA CK	GROUND OF LIQUID CRYSTAL DISPLAY	58
5.1	Liquid Crystal Display Structure	58
5.1.	1. Liquid Crystal	58
5.1.	2. Liquid Crystal	60
5.2	Driving Method in LCD	62
5.2.	1 Gamma Correction	62
5.2.	2 Driving Method	63
5.2	Periphery Circuit Block	66
5.2.	1 Scan Driver Circuit	68
5.2.	2 Data Driver Circuit	69
CHAP	TER 6	
Basic	Understanding of Digital-to-Analog Converter	71
<i>6.1</i>	Ideal D/A Converter	72
6.2	Performance Metrics	73
6.2.	1 Static Performance	73
6.2.	1.1 Offset Error	73
6.2.	1.2 Gain Error	74
6.2.	1.3 Differential Non-Linearity (DNL)	74
6.2.	1.4 Integral Non-Linearity (INL)	75

6.2.1.5 Monotonicity	76
6.2.2 Dynamic Performance	76
6.2.2.1 Settling Time	77
6.2.2.2 Glitch	78
6.3 DAC for LCD column driver	79
6.3.1 Resistor-String DAC	79
6.3.2 Charge-Redistribution DAC	80
6.4 Summary	81
CHAPTER 7	
A LCD Column Driver Using a Switch Capacitor DAC	82
7.1 Introduction	82
7.2 Column Driver Architecture	83
7.3 Cyclic Switched Capacitor DAC	
7.4 Simulation Result	98
7.5 Summary	99
CHAPTER 8	
Test Setup and Measurement Results	100
8.2 Measuring Environment	100
8.2.1 Power Supply Regulator	102
8.2.2 Single-to-Differential Transformer	103
8.2.3 Reference Voltage Generator	104
8.5 Summary	109
CHAPTER 9	
Conclusions and Future Works	110
9.1 Conclusions	110
9.2 Future Works	
Bibliography	

LIST OF FIGURES

<u>Figure</u> <u>Page</u>
Fig. 2.1 Performance of the SFDR7
Fig. 2.2 Performance characteristic of a sigma-delta modulator
Fig. 2.3 The sampling spectral9
Fig. 2.4 Aliasing phenomenon10
Fig. 2.5 Analog-to-digital conversion10
Fig. 2.6 M-step mid-rise quantizer (M is odd) (a) transfer curve (b) error
function12
Fig. 2.7 M-step mid-tread quantizer (M is even) (a) transfer curve (b)
error function12
Fig. 2.8 (a) Probability density function of quantization noise (b) power
spectral density of quantization noise14
Fig. 2.9 Power spectral density (a) without oversampling (b) with
oversampling
Fig. 2.10 (a) A general noise-shaping delta-sigma modulator (b) Linear
model of the modulator showing injected quantization noise16
Fig. 2.11 A first-order lowpass sigma-delta modulator18
Fig. 2.12 A second-order lowpass sigma-delta modulator21
Fig. 2.13 Comparison with different noise shaping transfer functions
Fig. 2.14 The block diagram of the L-order sigma-delta modulator22
Fig. 2.15 Empirical SQNR limit for 1-bit modulators of order N23
Fig. 2.1 (a) A first order (TSDM (b) A first order DT SDM 25
Fig. 3.2 The loop filter representation for (a) DT modulator and (b) (T
modulator
Fig. 3.3 DAC feedback pulse shapes (a) NP7 (b) P7 (c) HP7 29
Fig. 3.4 A fully differential integrator with finite gain and handwidth
32
Fig. 3.5 DAC feedback impulse response including Excess Loop Delay (a)
NRZ (b) RZ (c) HRZ
Fig. 3.6 Continuous-Time $\Delta \Sigma$ modulator with zero-order loop compensation
Fig. 3.7 Model of the jitter-induced noise for NRZ feedback DAC35

Fig. 3.8 Error sequence energy in different DAC shapes	36
Fig. 4.1 The architecture of CT $\Delta \Sigma$ modulator using feedback :	resistors
Fig. 4.2 Pole-zero plot and PSD of CRFB	
Fig. 4.3 (a) Maximum out-of-band gain of the NTF versus the pea	ak SNR (b)
Input level versus the SNR in system level	
Fig. 4.4 The system simulation of CT $\Delta \Sigma$ modulator using fee	edback
resistors	42
Fig. 4.5 Simulated SNDR for -7dBFS input under the variation of	the time
constant	43
Fig. 4.6 Simulated SNDR for -7dBFS input under the effect of	the clock
jitter	44
Fig. 4.7 Behavior model simulation result	45
Fig. 4.8 Simplified block diagram of the CT third-order modul	lator46
Fig. 4.9 Folded cascode opamp with p-type input	47
Fig. 4.10 Frequency response of the Amplifier	48
Fig. 4.11 Schematic of CMFB circuit	50
Fig. 4.12 (a) A cross-coupled preamplifier and (b) Low-offset	t
regenerative latch	51
Fig. 4.13 Simulation result of the comparator	52
Fig. 4.14 Active-RC integrator with current steering DAC	53
Fig. 4.15 Low-jitter clock generator	54
Fig. 4.16 Tuning circuit	55
Fig. 4.17 Simulated power spectral density of this work (a) TT ((b) FF (c)
SS corner	56
Fig. 4.18 Chip photo of this work using feedback resistors	57
Fig. 5.1 Phase variation of liquid crystal in different tempe	erature58
Fig. 5.2 Transparency of TN and STN in different voltage	60
Fig. 5.3 Cross section of LCD model	61
Fig. 5.4 The liquid crystal operates in normally white case:	(a) light
can pass and (b) light is blocked	62
Fig. 5.5 (a) The relationship between digital input codes and	l input
voltage across liquid crystals and (b) the smooth curve betwee	n digital
input codes and light transmission rate	63
Fig. 5.6 Inversion of LCD panel	64
Fig. 5.7 The operational waveform of direct driving method	66

Fig.	5.8 The operational waveform of AC modulation driving method6	5
Fig.	5.9 Block diagram of the LCD panel driver circuits	7
Fig.	5.10 The pixel layout structure of active matrix cell on LCD pane	1
		8
Fig.	5.11 The block diagram of scanning driver63	8
Fig.	5.12 RC (resister and capacitor) ladder of scanning line	9
Fig.	5.13 The block diagram of data driver	С
Fig.	6.1 Digital-to-analog conversion	1
Fig.	6.2 Block diagram if a n-bit DAC72	2
Fig.	6.3 Non-ideal transfer curve with offset error73	3
Fig.	6.4 Non-ideal transfer curve with gain error74	4
Fig.	6.5 Non-ideal transfer function with INL and DNL error of DAC75	5
Fig.	6.6 A non-monotonic DAC70	5
Fig.	6.7 Actual output signal and ideal output signal (dash) of a DAG	2
		7
Fig.	6.8 Glitch output	8
Fig.	6.9 DAC using tree-like decoder)
Fig.	6.10 DAC using digital decoder	0
Fig.	7.1 New column driver block diagram [5]8	3
Fig.	7.2 Stacked amplifier configuration	4
Fig.	7.3 Simplified schematic of lower DAC8	5
Fig.	7.4 DAC output versus linear and LCD respone [5]80	5
Fig.	7.5 DAC conversion sequence (a) $\phi 10$ and rest; (b) $\phi 20$; (c) $\phi 11$;	
•••••		7
Fig.	7.6 Control signal timing	7
Fig.	7.7 DAC amplifier schematic9	1
Fig.	7.8 Small signal representation of output stage with cascade Miller	r
comp	ersation [5]94	4
Fig.	7.9 Lower DAC simulation result	8
Fig.	7.10 Higher DAC simulation result	9
Fig.	8.1 Test setup10	1
Fig.	8.2 Function generator hp 8656B for input signal10	1
Fig.	8.3 Function generator ROHDE & SCHWARZ SML03 for clock10	1
Fig.	8.4 Logic analyzer Agilent 16902A102	2
Fig.	8.5 Power supply regulator102	3

Fig.	8.6 Single-to-differential transformer	103
Fig.	8.7 Reference voltage generator	104
Fig.	8.8 PCB of the CT modulator	105
Fig.	8.9 (a) Pin configurations (b) Pin assignments of the CT modula	tor
		105
Fig.	8.10 The die photo of the CT SDM	106
Fig.	8.11 Measured power spectral density of the CT modulator	107
Fig.	8.12 Post-simulation power spectral density of the CT modulate	or
		107
Fig.	8.13 Dynamic range plot of the CT modual tor	108

LIST OF TABLES

Table		Page 1
Table 2.	1 Properties of quantizers in Figs 2.6 and 2.7	13
Table 3.	1 Comparison with the main advantages of CT and DT SDM	26
Table 3.2	2 S-domain equivalent for z-domain partial expansion	30
Table 4.	1 Zero placement for minimum in-band noise	39
Table 4.2	2 Performance of the Amplifier	48
Table 4.3	3 Truth table of SR latch	52
Table 4.	4 Performance summary of this work	56
Table 7.1	1 Performance of the Amplifier	98
Table 8.	1 Measurement results of the CT modulator	108
Table 8.2	2 Comparison between DT SDM and the CT modulator	109

