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摘      要 

 

本篇論文中提出一個統計型的電熱模擬器，此模擬器考慮了漏電流、晶片與晶片間的製程

變異和一個晶片內具有空間相關的製程變異。利用卡洛展開(Karhunen-Loève expansion)，吾人可

以將一個具空間相關的製程變異參數，轉換成一組不具相關性的隨機變數做表示，接著在此不

具空間相關性的隨機變數，以及代表晶片與晶片間製程變異的隨機變數所共同組成的隨機空間

中，使用史摩亞克稀疏網格方法（Smolyak sparse grid method）在此隨機空間中去取樣以求解統

計型熱傳方程式。接著透過電熱偶合演算法，可以在每一個取樣點得到一個晶片上的熱分佈。

這些計算所得到的熱分佈，會被用來內插在一個晶片上的統計熱分佈，而一個統計上的熱分佈

結果可以透過機率的運算所萃取出來。 

本篇論文提出的統計型電熱模擬器的準確度，吾人利用蒙地卡羅分析（Monte Carlo analysis）
做為比較，而此分析器的效率，是透過蒙地卡羅分析達到同一分析精確度的執行時間做為比較

基準。根據實驗結果，本統計型電熱模擬器可以達到比蒙地卡羅分析快一個數量級的速度，且

其結果在一個晶片上的溫度期望值最大的誤差在0.36%之內，溫度標準差的誤差小於1.88%。除

此之外，本篇論文的電熱模擬器具有對不同功率模型的高度相容性，這個特性對於快速演進的

科技是非常重要的。 
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ABSTRACT 

 
 

In this paper, a statistical electro-thermal simulator considering leakage power, inter-die process 
variations, and intra-die process variations including spatial correlation is developed. With applying 
Karhunen-Loève expansion, the spatially correlated process parameters can be transformed to a set of 
uncorrelated random variables. Then, Smolyak sparse grid method is applied to sample the random 
space expanded by these uncorrelated random variables and inter-die random variables to tackle 
stochastic heat transfer equations. After that, the thermal profile at each sampling point is built by a 
constructed electro-thermal coupling algorithm. These calculated thermal profiles are integrated to 
interpolate the stochastic temperature profile over a chip. Finally, the statistical temperature profile can 
be extracted. 

The accuracy and efficiency of the presented statistical electro-thermal simulator are 
demonstrated by comparing with the Monte Carlo analysis. Experimental results indicate that the 
developed simulator is orders of magnitude faster than that of the Monte Carlo analysis under the same 
accuracy level. The maximum error is less than 0.36% and 1.88% in mean and standard deviation of 
temperature profiles, respectively. The proposed simulator is also highly compatible with different 
power models and spatial correlation functions. This characteristic is important in such fast innovative 
technology. 
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Chapter 1

Introduction

1.1 Motivation

As technology is scaling down continuously and power density is rapidly increasing, power dis-

sipation and thermal management have become important issues of VLSI design. Furthermore,

temperature and thermal gradients have significant influence on IC performance, reliability,

and the cost of cooling and package system. Because the leakage power has become the ma-

jor contributor of total power in the modern technology, it is necessary to estimate and model

the leakage power accurately and efficiently. However, leakage power is exponentially corre-

lated with process parameters and temperature shown in Fig. 1.1 and Fig. 1.2, so that process

variations and thermal impacts need to been taken into concern cautiously. The authors in [1]

indicated that 30% intra-die process variations can lead to 20 times of leakage power causing

the drastic fluctuations of temperature distributions as shown in Fig. 1.3.

Moreover, because of the lithography and chemical mechanical polishing defects, physical

parameters are varied with spatial positions which the closer gates may have more likelihood

to have similar physical characteristics. Without considering spatial correlations of intra-die

process variations, the standard deviation of temperature distribution can be 3 to 4 times lower

than the results with considering spatial correlations [2].

Using the deterministic thermal analysis to obtain one deterministic temperature-dependent

leakage power simulator has been proposed in [3, 4]. However, as considering process varia-

tions, all analysis problems need to be transformed to random process problems, and a statistical

simulator is needed. In power analysis, several works have successfully quantified the process

variations into leakage power [5–7]. Nevertheless, none of them consider the electro-thermal
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Fig. 1.1: Temperature dependency and process variations of subthreshold leakage current in one
NAND gate.

Fig. 1.2: Temperature dependency and process variations of gate tunneling leakage current in
one NAND gate.
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feedback in statistical power analysis.

In thermal analysis, existing statistical thermal simulators [2, 8] considering process varia-

tions and spatial correlations have some limitations in their methodologies. Authors in [2] didn’t

take the electro-thermal coupling into account. An architectural-level simulator proposed in [8]

needs to fit the power model for each grid every time as the design changes, and this limits its

usage after the floorplanning stage. Moreover, both two have limitations in the forms of power

models. The power projection algorithm in [2] has the limitation of power model form. Because

of using the log-normal assumptions in each analysis step of [8], there is a limitation of power

model form. Because the scaling down technology will lead more complicated power model

forms to enhance the accuracy, it is urgent to develop a statistical thermal simulator which has

the high capability of adopting different and complicated power model forms for any technology

generations.

Fig. 1.3: Leakage current and frequency variations [1].

Monte Carlo method is the most popular method to obtain statistical solution of a statistical

problem. Besides, it can be implemented to solve statistical thermal problem using any power

model forms, because each sampling knot can make the statistical thermal problem become

a deterministic thermal problem which is related to the power value rather than power model

forms. Although the concept and implementation of Monte Carlo method are straightforward,

its convergence rate is very slow in a large number of random variables. An alternative way to

efficiently obtain statistical solution of a statistical problem is the statistical collocation method.

3



By applying sparse grids in the high level statistical collocation method can dramatically re-

duce the calculating complexity comparing with that of Monte Carlo method and maintain the

advantage of applying Monte Carlo method in statistical thermal problem.

1.2 Overview of Our Statistical Electro-Thermal Simulator

In this work, we develop a statistical electro-thermal simulator that considers the effects of spa-

tial correlation under intra-die process variations and inter-die variations. Because the sparse

grid collocation technique, a Monte-Carlo-like method, is utilized, the proposed simulator can

handle any power model forms and spatial covariance functions. Hence, an extremely accurate

statistical cell-based leakage power model form is developed, so the proposed simulator can

provide more accurate results than the architectural-level simulator. Moreover, as the devel-

oped electro-thermal simulator is used for thermal-driven floorplan/placement problems, it can

be rapidly adopted without reconstructing the power model since we used a cell-based power

model rather than a grid-based power model [8].

Firstly, the Karhunen-Lòeve (KL) expansion is utilized to transform the spatially fluctuating

physical process parameters to a set of uncorrelated random variables. Then, the Smolyak sparse

grid method [9] is applied to sample the random space expanded by these uncorrelated random

variables added with random variables of inter-die variations. Given the initial temperature

profile of a full-chip, for each sampling point, the power profile over a chip can be obtained

by the proposed power model forms of cells. After using an existent deterministic thermal

simulator to update the temperature profile, the power profile over a chip is also updated. The

above temperature-power updating procedure is repeatedly until it is convergent. Finally, those

calculated thermal profiles under all sampling points are utilized to interpolate the stochastic

temperature profile over a chip, and the statistical temperature profile can be extracted.

1.3 Our Contributions

Our major contributions are

1. To the authors’ best knowledge, this work is the first gate-level statistical electro-thermal

simulator including the effect of intra-die variations with spatial correlations and inter-die

4



variations. This simulator also shows the high compatibility to handle any complicated

power model forms and spatial correlation functions.

2. The developed statistical electro-thermal simulator can accurately and efficiently provide

the mean temperature distribution profile and the spatial standard deviation profile of

temperature distribution. The circuit designers can utilize the above information to take

effectively strategies for fighting against thermal failures with considering process vari-

ations. Experimental results reveal that ignoring electro-thermal coupling in statistical

thermal simulations can mislead circuit designers to an unreliable design direction.

3. A thermal yield analysis problem is formulated. By using statistical thermal profile from

statistical thermal simulators, the thermal yield of circuit can be obtained. This informa-

tion is useful for designers to avoid the thermal runaway and predict yield of the chip.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. In chapter 2, the importance of electro-thermal

coupling and background are illustrated. Moreover, the problem of statistical thermal simulation

is formulated. Then, the statistical electro-thermal framework is presented in chapter 3. After

that, the experimental results are given in chapter 4, and an application of thermal yield is

investigated in chapter 5. Finally, this work is concluded in chapter 6.
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Chapter 2

Preliminaries and Problem Formulation

In this chapter, the importance of electro-thermal coupling in both deterministic and statistic

thermal simulator is illustrated in section 2.1. Then, in section 2.2, a survey of statistical leakage

current models is introduced and novel leakage current models are presented in subsection 2.2.1.

The background of Smolyak sparse grid formula is investigated in section 2.3 . The end of this

chapter is problem formulation.

2.1 The Importance of Electro-Thermal Coupling in Deter-
ministic and Statistical Thermal Simulations

A simple schematic example shown in Fig. 2.1 is used to highlight the importance of electro-

thermal coupling and the impact of process variations. Given a single NAND gate surrounded

with a thermal isolation system and the only power dissipation path is through the package, its

power consumption with/without considering process variation is shown in Fig. 2.1. Although

the temperature of a cell depends on its neighbor cells in a real chip, this schema still works for

indicating the importance of electro-thermal coupling in statistical and deterministic thermal

simulations.

Given an initial temperature, the power consumption of an NAND gate can be calculated.

Based on the zeroth law of thermodynamics [10], to achieve the equilibrium of generating power

and power dissipated by package, the surplus power that cannot be dissipated by package must

be transformed to heat and stored in this system. Hence, the system temperature is increased.

On the contrary, as the capacity of power dissipated by package is larger than the produced

power, the system temperature decreases. Because the leakage power is highly dependent on

6



Fig. 2.1: Total power consumption of an NAND gate at different operating temperatures. This
cell is assumed to be surrounded with a thermal isolation system, and the power is only dissi-
pated through the package.

temperature, the total power needs to be adjusted with the updated temperature, and this pro-

cedure is called electro-thermal coupling. The above procedure is recursively performed until

the system reaches the equilibrium of power production and dissipation, and the temperature

is converged. After that, the stable operating temperature of this cell is gotten. If the system

cannot reach the thermal equilibrium, the system is thermal runaway and is under high risk of

system melted down. For example, in Fig. 2.1, the dash line indicates the power consumption

of an NAND gate operating at different temperatures with process parameters being nominal

values. The straight line passing through the room temperature indicates the maximum power

that can be dissipated by the package at each operating temperature . Given an initial tempera-

tureT1, the stable operating temperature isTS1after performing the electro-thermal coupling.

On the other hand, if the initial temperature isT2, it will cause the thermal runaway.

However, with considering process variations, the equilibrium temperature can not be rep-

resented as a deterministic form. For example, in Fig. 2.1, the top curve is the maximum ex-

treme power consumption of an NAND gate operating at different temperatures with consider-

ing process variations, and the bottom curve is the minimum extreme power consumption of an

7



NAND gate operating at different temperatures with considering process variations. As shown

in Fig. 2.1, given an initial temperatureT1, the equilibrium temperature distribution falls into

Region 1with considering the electro-thermal coupling. However, the final temperature distrib-

ution falls into Region 2withoutconsidering electro-thermal coupling. Given a different initial

temperature such as the room temperature shown in the sub-plot of Fig. 2.1, the final tempera-

ture distribution falls into Region 3withoutconsidering electro-thermal coupling. However, the

equilibrium temperature distribution still falls into Region 1with considering electro-thermal

coupling.

The uncertainty of final temperature confidential region and the drastic error between Region

2/Region 3 and Region 1 show that it is necessary to consider electro-thermal coupling while

performing statistical thermal simulation. Similarly, statistical power analysis should also take

electro-thermal coupling into account.

2.2 Statistically Cell-based Leakage Current Modeling

When the oxide thickness of a device is reduced, the probability of electrons tunneling through

oxide thickness is getting higher. This results in the gate tunneling leakage current which is

related of oxide thicknessTox and gate area referring to channel lengthLch. Because the num-

ber of electrons tunneling through the barrier which is influencing the tunneling probability is

dependent on temperature [11], we also take temperatureT into our leakage current model. As

the device turns into ”off” state(Vgs < Vth), the minority carriers diffusing through the chan-

nel induce the current flowing from the drain to the source of a transistor. This is known as

subthreshold leakage current.

Many compact leakage current models have been developed in [2–6,8,12]. However, none

of leakage power models proposed in [2–6] took both temperature and process variation ef-

fects into account, their accuracy degrades as the technology scales down. For the authors’ best

knowledge, only [8, 12] proposed the leakage current models considering both effects. Nev-

ertheless, the leakage current model in [12] was based on 90nm technology. Hence, as the

technology advances, its accuracy is deteriorated. The authors in [8] developed a grid-based

leakage power model in the architectural level. Each fitted form was used to coarsely approxi-
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mate the total leakage current in each grid, and this limits its use after the floorplanning stage.

Moreover, the grid-based leakage power model will be transformed into one nonlinear curve

fitting problem as obtaining the coefficients of its model. Authors decomposed the nonlinear

problem into several linear problems to acquire the coefficients, but this method cannot guaran-

tee the solutions located into the global optimal region.

The leakage current of each cell depends on input patterns and is highly correlated with

process parameters and operating temperatures. Hence, we apply different input patterns via

varying physical process parameters and operating temperatures for each cell by using HSPICE

and the design kit from industry to generate the fitting data. Then, using the least square fit-

ting method, the coefficients of different average leakage current models such as the average

subthreshold leakage (Isub) and the average gate tunneling leakage (Igate) can be obtained.

SinceIsub is the off-state leakage mechanism, andIgate occurs in both on and off states of

transistor [13], the leakage power of a cell can be represented as

PLeak = Vdd × (Igate + (1− Sw) Isub) , (2.1)

where

Igate = a0 · exp (fgate (Tox, Lch, T )) , (2.2)

Isub = b0 · exp (fsub (Tox, Lch, T )) . (2.3)

Here,a0 andb0 are fitting constants,Lch andTox are the channel length and oxide thickness,

respectively.T is the operating temperature which may be updated every thermal loop,Sw is

the switching activity,Vdd is the supply voltage, andfgate andfsub are specific fitting forms.

2.2.1 Presented Leakage Current Models vs. Previous Works

In this subsection, a novel cell-based leakage power model considering the process variations

and temperature dependence is presented. Then, the comparison with latest works is shown by

experimental results presented in Table 2.1.

Owing to the property of Smolyak sparse grid collocation method, any leakage current forms

can be adopted in the proposed electro-thermal simulator. The presented leakage current forms

9



Table 2.1: Error comparison ofIsub andIgate with HSPICE simulation results for an NAND
gate.

fgate Max. Error Avg. Error Error > 3%
Without

temperature Tox, T 2
ox, Lch, L2

ch [5] 6.48% 2.70% 4.37%
With Lch, T, Tox 3.20% 0.97% 0.35%

temperature †Lch, T, Tox, T 2
ox 1.55% 0.29% 0.00%

fsub Max. Error Avg. Error Error > 3%
Without Lch, L2

ch, T−1
ox , T 2

ox [5] 347.32% 70.65% 98.27%
temperature Lch, L2

ch, T−1
ox , Tox, T 2

ox, Tox/Lch, Lch/Tox, Tox × Lch [6] 314.13% 70.52% 100.00%
Lch, T, Tox [12] 32.23% 8.73% 76.62%
(L, Tox, T ) are fully expanded to 2nd order=⇒

With Lch, L2
ch, Tox, T 2

ox, T, T 2, Lch × Tox, Lch × T, Tox × T 10.31% 1.53% 8.47%
temperature † (L, Tox, T ) are fully expanded to 3rd order=⇒

L, L2, Tox, T 2
ox, T, T 2, L× Tox, L× T, Tox × T, L3, T 3

ox, T 3, 1.31% 0.19% 0.00%
L2 × Tox, L2 × T, T 2

ox × L, T 2
ox × T, T 2 × Tox, T 2 × L

† The adoptive forms offgate andfsub in this paper.

are based on equations (2.2) and (2.3) of

fgate(Tox, Lch, T ) = (a1 · Lch + a2 · T + a3 · Tox + a4 · T 2
ox),

fsub(Tox, Lch, T ) = (b1 · Lch + b2 · Tox + b3 · T + b4 · Lch · Tox + b5 · T · Tox + b6 · Lch · T +

b7 · L2
ch + b8 · T 2

ox + b9 · T 2 + b10 · Lch · T 2
ox + b11 · Lch · T 2 +

b12 · T · T 2
ox + b13 · T · L2

ch + b14 · Tox · L2
ch + b15 · Tox · T 2 +

b16 · Tox · T · Lch + b17 · L3
ch + b18 · T 3

ox + b19 · T 3),

whereai’s andbi’s are fitting constants. These forms gain the maximum error within 1.55%,

and the average error within 0.5% for all cells built in leakage power cell library for this work.

Different fitting forms of equations (2.2) and (2.3) with an NAND gate under 65nm tech-

nology are shown in Table 2.1. As shown in Table 2.1, different components in equations (2.2)

and (2.3) can lead to different errors compared with the simulation results from HSPICE. We

do not compare the power form of [8] here, because the models compared in Table 2.1 are

cell-based models and modeling the different combination of leakage current individually for

the higher accuracy rather than a grid based total leakage model in [8]. These drastic errors

in [5,6,12] are because of the ignorance of either temperature or developing technology. Com-

pared with other forms [5,6,12], the adoptive forms gain the high accuracy which the maximum

error is within 1.31% and 1.55% in subthreshold and gate tunneling leakage current, respec-

tively. This table also shows that it is necessary to take temperature into leakage current model,
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and it is importance to having the advantage of handling any power models in power or thermal

simulator.

2.3 Smolyak Sparse Grid Formula

The idea of interpolation method is to construct a polynomial by using several known values

of a desired function to approximate the desired function. The one-dimensional and leveli1
1

approximation applied to the functionT is denoted asQi1(T ). Here, the interpolation method

based on Lagrange polynomials is briefly recalled. Assume that we want to approximate a one-

dimension functionT (ξ) : [−1, 1]d=1 →R by using a set of sampling points
{

ξi1
1 , . . . , ξi1

mi1

}
⊂

[−1, 1] of the variableξ. mi1 is the needed number of sampling points of the variableξ for

interpolating. Then the interpolated function by using the Lagrange interpolation can be written

as

Qi1 (T ) (ξ) =

mi1∑
j=1

T
(
ξi1
j

)
ai1

j (ξ) (2.4)

where i1 ∈ N and it denotes the highest level of the interpolating polynomial in the1st-

direction,ai1
j ∈ C ([−1, 1]) are the Lagrange polynomial of degreei, ai1

j (ξ) =
∏mi1

k=1
k 6=j

(ξ−ξ
i1
k )

(ξ
i1
j −ξ

i1
k )

.

For the multivariate case, we would like to approximate ad-dimensional functionT . Con-

ventionally, the full tensor product interpolation formulaQd (T ) = (Qi1 ⊗ · · · ⊗Qij ⊗ · · · ⊗Qid) (T )

can be used to approximate it by full grid collocation. Here,⊗ is the tensor product op-

erator, andij is the highest level of the interpolating polynomial in thejth-direction. For

example,(aξ1 + bξ2
1)⊗ (cξ2 + dξ2

2)is equal to(acξ1ξ2 + adξ1ξ
2
2 + bcξ2

1ξ2 + bdξ2
1ξ

2
2) wherea, b,,

c, andd are the coefficients. The full tensor product formula needs
∏d

j=1 mij counts of total

sampling points. Here,mij is the number of sampling points in thejth-direction. Using La-

grange polynomial for interpolating as an example here, the full tensor product interpolation

formula is

(Qi1 ⊗ · · · ⊗Qid) (T ) =
mi1∑
j1=1

· · ·
mid∑
jd=1

T
(
ξi1
j1

, . . . , ξid
jd

)
·
(
ai1

j1
⊗ · · · ⊗ aid

jd

)
, (2.5)

However, using the full tensor product to approximate a multivariate function is inefficient

especially as the dimension increases. Smolyak [9] proposed a sparse grid stochastic collocation

1In this work, the number of sampling points,mi, in leveli is defined asm1 = 1 andmi = 2i−1 + 1 for i > 1,
because the chosen sampling points are nested.
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method to reduce the number of sampling points from full grid collocation, and this method was

investigated by [14]. WithQ0 = 0 andi ∈ N+, the authors in [14] denoted|i| = i1 + · · · + id

and defined the difference between two interpolating polynomials of leveli andi− 1 as

∆i = Qi −Qi−1. (2.6)

Then the Smolyak formula can be given as

A (q, d) (T ) =
∑

q−d+1≤|i|≤q

(
∆i1 ⊗ · · · ⊗∆id

)
(T ). (2.7)

Equivalently, formula (2.7) can be written as [14]

A (q, d) (T ) =
∑

q−d+1≤|i|≤q

(−1)q−|i|
(

d− 1
q − |i|

) (
Qi1 ⊗ · · · ⊗Qid

)
(T ). (2.8)

whereA (q, d) (T ) is the approximated polynomial,q denotes the level of desired solution, and

d is the dimension of functional space.

For a functionu ∈ Cr, the error of interpolating on a Smolyak sparse grid is guaranteed to

satisfyO
(
m−r(log (m))(d−1)(r−1)

)
, wherem is the total number of sampling points [15].

According to formulas (2.7) and (2.8), we only need to know the function values on the

sparse grid rather than the full grid [16]. The set of sparse sampling points in (2.7) is derived as

H (q, d) =
⋃

q−d+1≤|i|≤q

(
ϑi1 × · · · × ϑij × · · · × ϑid

)
, (2.9)

whereϑij denotes the vector of sampling points in thejth-direction. The number of points

from Smolyak sparse grid formula increases asO
(

dq−d

(q−d)!

)
which is less than that from full grid

collocation.

A simple example is presented for clearer specifying Smolyak sparse grid interpolation.

With the dimensiond=2 and the Smolyak sparse grid formula ofq=d+1 using the sampling value

in one random variable of{a, b, c} in (2.8) and according to the conditionq − d + 1 ≤ |i| ≤ q,

we can obtain|i| = 2 ⇒ i1 = 1, i2 = 1 and|i| = 3 ⇒ i1 = 1, i2 = 2 or i1 = 2, i2 = 1, where

ϑ1 = {a} , ϑ2 = {a, b, c} . The sampling points of the Smolyak sparse grid can be obtained by

12
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Fig. 2.2: Clenshaw-Curtis sampling points of Smolyak formula and full tensor product of a
two-dimensional parameter space (d=2). (a) Smolyak sparse grids with maximum levelq=3.
(b) Full tensor product ofq=3. (c) Smolyak sparse grids with maximum levelq=5. (d) Full
tensor product ofq=5.
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Table 2.2: The number of sampling points use Smolyak formula and full tensor product formula
in d-dimensional sampling space withq=3.

d=Nξ Smolyak Full Tensor
Formula Product

1 3 3
2 5 9
3 7 27
...

...
...

d 2 · d + 1 3d

the derivation of (2.9) where

H (3, 2) =
(
ϑ1 × ϑ1

)
∪

(
ϑ1 × ϑ2

)
∪

(
ϑ2 × ϑ1

)
= {(a, a)} ∪ {(a, a) , (a, b) , (a, c)} ∪

{(a, a) , (b, a) , (c, a)} (2.10)

= {(a, a) , (a, b) , (a, c) , (b, a) , (c, a)} (2.11)

Based on the pristine formulation of Smolyak sparse grid collection method, we should

perform the polynomial interpolation for each set of cross product in (2.10). Since the knots

in (2.10) are nested, we can execute one polynomial interpolation for the union of collected

knots in (2.11) rather than performing polynomial interpolations in (2.10) to improve the effi-

ciency [16] .

We take one example in Fig. 2.2 using Clenshaw-Curtis abscissas for the construction of

Smolyak formula and compare it with full tensor product interpolation formula to show the

reduction of sampling points when applying Smolyak formula. The sampling points using

Smolyak formula for the 2-dimensional example is in Fig. 2.2(a) and Fig. 2.2(c) withq=3 and

q=4, respectively. The full tensor grids is shown in Fig. 2.2(b) and Fig. 2.2(d). The counts of

sampling points is reduced when using Smolyak formula, and the improvement of counts is

clearer in a high dimension sampling space.

In our case, we need to use high dimensional sampling space which will show the drastic

reduction of sampling points if using Smolyak sparse grid formula. The comparison of the
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number of sampling points using Smolyak formula and full tensor product formula ofq=3 is

shown in Table 2.2. In Table 2.2, the number of points derived from Smolyak sparse grid

formula is linearly dependent on the dimension; nevertheless, it is exponentially dependent on

the dimension by using full tensor product to interpolate.

2.4 Problem Formulation

Fig. 2.3: Compact thermal model of physical design.

The compact thermal model of a chip consisting of three portions for physical design

stage [17, 18] can be represented by Fig. 2.3. The primary heat dissipation path is composed

of thermal interface material, heat spreader, and heat sink. The secondary heat dissipation path

involves interconnect layers, I/O pads, and the print circuit board. The functional blocks on the

die are modeled as many power generating sources attached to the thin layer close to the top sur-

face of the die with the thickness being equal to the junction depth of device [19]. The main heat

sources are coming from the dynamic and leakage power consumed by devices. Because the

dynamic power is insensitive to process variations, it can be treated to be deterministic. How-

ever, the leakage power is strongly dependent on process parameters such as channel length

and oxide thickness. As considering process variations, these parameters need to be viewed

as random processes [5]. Moreover, leakage is also highly sensitive to the temperature; hence,

the thermal coupling needs to be taken into account for modeling the statistical leakage power.
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By combining the compact thermal model and the statistical power consumption considering

thermal coupling, the steady state temperature distributionT̂ (r, θ, $) of die is determined by

the following statistical steady-state heat transfer equation.

∇ ·
(
κ(r, T̂ )∇T̂ (r, θ, $)

)
= −p

(
r, Lch(x, y, θ), Tox(x, y, $), T̂

)
, (2.12)

subject to the following boundary condition

κ(rbs , T̂ )
∂T̂ (rbs , θ, $)

∂nbs

+ hbsT̂ (rbs , θ, $) = fbs(rbs). (2.13)

Here,∇ is the diverge operator, andκ(r, T̂ ) is the thermal conductivity (W/m·◦C) of die.

The p(r, Lch(x, y, θ), Tox(x, y, $), T̂ ) is the random process of power density profile which

consists of dynamic power density profilepd(r), subthreshold leakage power density profile

psub(r, Lch(x, y, θ), Tox(x, y, $), T̂ ), and gate tunneling leakage power density profile

pgate(r, Lch(x, y, θ), Tox(x, y, $), T̂ ). Ther = (x, y, z) ∈ D, D = (0, Lx)× (0, Ly)× (−Lz, 0)

is the domain of die,Lx andLy are lateral sizes of die, andLz is the thickness of die. Theθ and

$ are sampling values of manufacturing outcomesΩLch
andΩTox for the channel length and

oxide thickness, respectively. TheLch(x, y, θ) andTox(x, y, $) are the random processes of the

device channel length and the oxide thickness, respectively. Thebs is any specific boundary

surface of the die, andrbs is the position located onbs. Thehbs is the heat-transfer coefficient

onbs, fbs(rbs) is the heat flux function onbs, and∂/∂nbs is the differentiation along the outward

direction normal tobs.

Since the major part of device current passes through the channel, the power density distri-

bution has its value only whenr ∈ (0, Lx) × (0, Ly) × (−jd, 0). Here,jd is the junction depth

of device [19].

With the statistical steady-state heat transfer equations (2.12)–(2.13), our goal is to evaluate

the mean and variance profiles of steady-state full-chip temperature distribution considering

spatially correlated intra-die process variations, inter-die process variations, and electro-thermal

coupling.
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Chapter 3

Statistical Electro-Thermal Framework

3.1 Statistical Electro-Thermal Flow

Fig. 3.1: Sparse grid based statistical electro-thermal simulation flowchart.

The flowchart of the developed sparse grid based statistical electro-thermal simulation is

shown in Fig. 3.1, and it consists of two phases. Each operation inPhase 1is only related with

technology node rather than design pattern, and the operations ofPhase 2are design dependent.

In the beginning ofPhase 1, to take the temperature effect into account for the leakage

power cell library, accurate forms of statistical cell-based subthreshold and gate leakage current

models are developed and detailed in section 2.2. Then, given a spatial covariance function of

physical parameters such as the channel length and the oxide thickness, the KL expansion is

employed to decompose the correlated physical parameters into a set of uncorrelated random

variables which are introduced in section 3.2. After that, the Smolyak sparse grid formula
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in [9] is applied to generate a set of sampling points of the random space expanded by these

uncorrelated random variables and inter-die random variables.

In Phase 2, a proposed Smolyak sparse grid based statistical electro-thermal simulation

method is used to construct an interpolation formula of the stochastic temperature profile over

the chip. For each sampling point on the space of random variables, an electro-thermal coupling

algorithm shown in Fig. 3.2 is used to get the deterministic thermal profile of the chip. Then, all

thermal profiles are integrated to build an interpolation representation of stochastic temperature

profile over the chip. Finally, the statistical temperature profile can be extracted. The detail is

presented in section 3.3.

Since each operation inPhase 1is irrelevant to design pattern, they only need to be pre-

performed once while applying the proposed statistical electro-thermal simulator to the optimal

thermal-aware design procedure. Therefore, the proposed statistical electro-thermal simulator

has the high compatibility for the power model and the function of spatial correlation model.

For example, as the technology is advanced and different leakage current model forms

are required to maintain the accuracy, only the leakage power models inPhase 1need to re-

constructed and the rest procedures are unchanged. However, the related works, [2] and [8], are

limited by specific power model forms and can not maintain the accuracy at different technology

node.

The advantages of the proposed sparse grid based statistical electro-thermal simulator are

summarized as follows.

1. Any spatial covariance functions can be adopted.

2. Any complex leakage current models especially taking thermal effect into account can be

dealt with in the simulator. Therefore, leakage current models can be very complex to

reach very high accuracy without reserving cares of simulating complexity inPhase 2.

3. It can readily apply the parallel programming to improve efficiency because the generat-

ing procedure of thermal profile at each sampling knot is uncorrelated, and the simulation

results at all sampling knots only need to be collected in the end.
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3.2 Parameter Modeling

Generally, process variations of one physical parameterP can be classified into intra-die4Pintra

and inter-die4Pinter variations which both can be modeled as Gaussian random variables [5].

The physical parameterP ∈ {Tox, Lch} with its expected valueP at positionr can be written as

Tox(r, $)=T ox(r)+∆T intra
ox (r, $i)+∆T inter

ox (r, $j) , (3.1)

Lch(r, θ)=Lch(r)+∆Lintra
ch (r, θi)+∆Linter

ch (r, θj) . (3.2)

Here,$i and$j are subsets of$. Theθi andθj are subsets ofθ.

According to [5],Tox (x, y, $) is spatially uncorrelated. Because the spatial correlation of

∆Lintra
ch (r, θi) may have different decreasing rates inx- andy-directions, the spatial covariance

function proposed in [20] is adopted for∆Lintra
ch (r, θi). Givenσ as the standard deviation of

target random process, and correlation lengthsηx andηy in x-direction andy-direction, respec-

tively, the spatial covariance function between two random variables at pointsr1 andr2 is

C(r1, r2) = σ2 exp

(
−|x1 − x2|

ηx

)
exp

(
−|y1 − y2|

ηy

)
. (3.3)

Remark: Although we choose this specific spatial covariance function (3.3) in this work,

any valid spatial covariance functions can be adopted in the proposed electro-thermal simulation

flow.

With applying KL expansions,∆Lintra
ch (r, θi) based on function (3.3) can be approximated

as

∆Lintra
ch (r, θi) ≈

NLch∑
m=1

√
χmqm (r) ζm (θi) . (3.4)

Here,χm’s are eigenvalues ofC(r1, r2), qm’s are related eigenvectors, andNLch
is the expansion

length.{ζm (θi)} is the set of uncorrelated standard normal random variables. According to the

property of KL expansion, the expanded random variables are Gaussian random variables if the

target random process is Gaussian [21]. The closed form of eigen-pairs(χm, qm (x, y)) can be

derived by [21]. In this paper,ζ = {ζm} andς = {ςn} which are sets of random variables to

representLch andTox, respectively. We dropθ and$ for the sake of notation simplicity.
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3.3 Smolyak Sparse Grid Interpolation Based Simulation

Given the placement/floorplan of circuit and technology files, the leakage power models de-

veloped in section 2.2 are built, and the Karhunen-Loève expansion is used to transform the

spatially correlated process parameters to a set of uncorrelated random variables. Then, the

expanded random variable set of inter-die and intra-die variations forLch andTox is represented

as{ξ1, · · · , ξd} which is the union ofζ and ς. For simplicity, we usẽξ = (ξ1, · · · , ξd)
T to

represent thesed-dimensional random variables. Based on the concepts of Smolyak formula in

(2.7) and (2.9), we can setd, the number of random variables, as the dimension of the func-

tional space andq as the level of the desired solution to acquire sampling points. After that,

roots of the Hermite polynomial chaos [22] are chosen as sampling points for achieving the best

approximation in theq level [6] since the temperature profile over the chip,T , is a function of

normal random variables.

Fig. 3.2 shows the algorithm of the electro-thermal procedure afterward. The algorithm is

applied to each sampling point until all sampling points are accomplished. With each sampling

point over the expanded random space,∆Lch and∆Tox of each specified position on the chip

can be obtained. Then, the leakage power profile of the design can be acquired by Leakage-

power-updating algorithm shown in Fig. 3.3. Since the temperature profile is built by parti-

tioning the die region intoProw × Qcol = PQ blocks, each block may be across the process

variation grids. The process-variation grids section the die region overUrow × V col = UV

grids, and within each grid, the process parameters are viewed as having the same character-

istic of variation. Here,P ,Q,U , andV are the user setting integers for deciding the numbers

of blocks or grids meshed over the chip. In Fig. 3.3, the leakage power of one temperature

block is continually added by using equation (2.1) until all types of functional gates and all

process-variation grids inside the block have been done. Then, the leakage power profile is

added with dynamic power profile to obtain the total power profile. After using any existing

deterministic thermal simulators1, the total power profile can be transformed into temperature

profile. Because of considering electro-thermal coupling, the temperature profile needs to be

performed iteratively by updating the leakage power until the temperature profile transformed

1The GIT [18] is used in this work.
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Algorithm Electro-thermal-coupling
Input: A sampling point̃ξi, initial temperatureT ini∗,

dynamic power*, and switching activitySw∗.
Output: Stable temperatureT ∗(ξ̃i)

1 Begin
2 T ∗

ox andL∗
ch can be obtained according tõξi

3 T ∗ ← T ini∗, T ∗′ ← 0
4 While ( T ∗ − T ∗′ ≤ converging criterion)
5 do T ∗′ ← T ∗

6 Leakage power∗← Leakage-power-updating
7 Total power∗← Leakage power∗ + dynamic power*
8 Using GIT† to transfer total power∗ into T ∗

9 if (T ∗ = Infinite) then Thermal runaway
10 return T ∗

11End
∗ denotes the distributed values over a chip.
† one deterministic thermal simulator [18]. Any deterministic thermal
simulators can be used here.

Fig. 3.2: Electro-thermal-coupling algorithm

from updating power profile is slight changed.

Finally, Newton’s interpolating method [23] is applied for generating an interpolated poly-

nomial to approximateT with the set of sampling points,{ξ̃k}mk=1. The temperature of multi-

variate interpolated polynomial form expanded byξ̃ can be written as

T (ξ̃) =
_
a1φ1(ξ̃) + · · ·+ _

anφn(ξ̃) + · · ·+ _
amφm(ξ̃), (3.5)

where eachφn(ξ̃) is a function ofξ̃ in this expanded space, and{_
a1, · · · ,

_
am} is the set of the

unknown coefficients of Newton’s interpolating polynomial [23].

Based on the basic idea of interpolation that the approximated function must match each

known data, the interpolated polynomial in (3.5) must satisfy the following equation for each

ξ̃k.

_
a1φ1(ξ̃

k) + · · ·+ _
anφn(ξ̃k) + · · ·+ _

amφm(ξ̃k) = T (ξ̃k), (3.6)

Furthermore, according the property ofφn(ξ̃) which is constructed in a particularly way [23],

21



Algorithm Leakage-power-updating
Input: T ∗

ox, T ∗, L∗
ch, Sw∗, and Leakage Power Cell Library

Output: Leakage Power∗

1 Begin
2 For each temperature blockT (p, q) ∈ T ∗

3 do T ← T (p, q)
4 For each process-variation gridTox(u, v) ∈ T ∗

ox, Lch(u, v) ∈ L∗
ch

5 do Tox ← Tox(u, v)
5 Lch ← Lch(u, v)
6 For each gate type occurring in this process-variation grid (u,v)
7 do PLeak density← (equation (2.1) with(Tox, Lch, T ), Sw∗)

× gate-area portion of the block’s area
8 P (p, q) added withPLeak

10 return Leakage Power∗ is constructed byP (p, q) for p = 1→ P andq = 1→ Q
11End
∗ denotes the distributed values over a chip.

Fig. 3.3: Leakage-power-updating algorithm

(3.6) can be written as the following matrix-vector expression for finding each_
an.

φ1(ξ̃
1) 0 · · · 0

φ1(ξ̃
2) φ2(ξ̃

2) · · · 0
...

...
...

...
φ1(ξ̃

m) φ2(ξ̃
m) · · · φm(ξ̃m)




_
a1
_
a2
...

_
am

=


T (ξ̃1)

T (ξ̃2)
...

T (ξ̃m)

 , (3.7)

Each_
an can be calculated in linear time since the system matrix of (3.7) is a lower triangular

matrix. After each_
an has been calculated, the statistical temperature profile can be extracted as

E{T (ξ̃)} = E{_
a1φ1(ξ̃) + · · ·+ _

amφm(ξ̃)}, (3.8)

V ar{T (ξ̃)} = V ar{_
a1φ1(ξ̃) + · · ·+ _

amφm(ξ̃)}. (3.9)

Fig. 3.4 is the simulating algorithm,SETS, of the proposed simulator. As discussion in sec-

tion 3.1,Phase 2is the part needed to re-perform when design is changed.Phase 1is related to

the technology node and unchanged as used the simulator under the same process.

3.4 Complexity Analysis

In this section, the complexity ofPhase 2in Fig. 3.4 is analyzed. The temperature profile over

the chip is analyzed intoPQ blocks, whereP andQ have the same definitions in section 3.3.

Equally, the power profile is also approximated by these blocks. According to [18], the com-

plexity of the deterministic thermal solver used in this work isO(PQ log2 NxNy), whereNx
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Algorithm Statistical-Electro-Thermal-Simulation (SETS)
Input: Leakage power cell library, Chip Design, and spatial correlation model
Output: statistical temperature profileE{T ∗{ξ̃}} andV ar{T ∗{ξ̃}}
Phase 1

1 Parse input files
2 Applying Karhunen-Lòeve expansion to transform the spatially

correlated process parameters
3 Construct the sampling points by Smolyak sparse formula.

Phase 2
4 For each sampling point̃ξi ∈ ξ̃
5 do Electro-Thermal-Coupling
6 Solve unknown coefficients of Newton form

of polynomial interpolation by equation (3.7)
7 E{T ∗{ξ̃}} andV ar{T ∗{ξ̃}}
∗ denotes the distributed values over a chip.

Fig. 3.4: Simulating algorithm of the proposed statistical electro-thermal simulator.

andNy are the truncated number of bases in x- and y-direction, respectively, and these are far

less than the number of blocksPQ. Because leakage power is highly correlated by temperature,

it is updated by Leakage-power-updating algorithm in Fig. 3.2. In line 4 of Fig. 3.2, because

process-variation grids are determined by process rather than the circuit, the grids are usually

orders of number less than that of temperature blocks; the temperature blocks are finer than

process-variation grids. It also shows that most of temperature blocks have only one process-

variation grid inside. Therefore, since there areNtype types, in worst case, of functional gates

in each process-variation grid over all temperature blocks, the complexity of updating leakage

power forPQ blocks isO(PQNtype). In general,Ntype is determined by the number and the

spatial proportion of functional types in the circuit, and it is far less than the number of blocks

PQ, too. To find the worst extreme bound of complexity,Ntype in one temperature block of

such process-variation grid can be simulated as a cumulative counts of functional types sorted

area in an increasing series. It is referred to the maximumNtype is occurred when functional

types having smallest area are gathered into one temperature block. For the previous discus-

sion, the computational complexity of one electro-thermal loop from line5 to line6 in Fig. 3.2

is O(PQ log2 NxNy) + O(PQNtype). The iteration of electro-thermal coupling is based on the

converging criterion and initial temperature setting. According to our experiment with sam-

pling knots constructed by Monte Carlo method, the average count of iteration loop in Fig. 3.2
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is less than5. The converging criterion of the experiment is set as the temperature value for

all blocks are less than 0.5% differing from the value in previous loop, and all the initial tem-

perature values are set as room temperature. We conclude that the computational complexity

of electro-thermal coupling algorithm isO(rPQ(log2 NxNy + Ntype)), wherer is the count of

average electro-thermal coupling loop.

The simulating algorithm of the proposed statistical electro-thermal simulator is shown in

Fig. 3.4. Phase 2is the part needed to be recomputed as circuit design changing. In line6,

because the calculation of equation (3.7) is without the computation of matrix inverse and the

matrix size is dependent on the number of sampling pointsm, the coefficients of it can be ob-

tained in linear time. Since each sampling point needs to enter the electro-thermal coupling

algorithm and the statistical temperature profile can be extract in linear time of line7, the com-

plexity of the proposed simulator isO(mrPQ(log2 NxNy + Ntype)).
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Chapter 4

Experimental Results

The developed statistical electro-thermal simulator is implemented in C++ language and tested

on a Linux system with Intel Xeon 3.0-GHz CPU and 32 GB memory.

The die size is 2.5mm×2.5mm×0.5mm. The junction depth is 20nm which is the

nominal value for the 65nm technology [19]. The floorplan of test chip which having 1.2

million functional gates is shown as Fig. 4.1(a), and the geometries of chip and package are

shown in Fig. 4.1(b). By applying the modeling skill of thermal parameter and iterative 1-D

thermal computation scheme [17], the equivalent heat transfer coefficients of the primary and

secondary heat flow paths, and thermal conductivity are 12000 W/(m·◦C), 2017 W/(m·◦C), and

148.13 W/(m·◦C), respectively. The boundary condition of each vertical surface is set to be

isothermal [18].

The nominal values of channel length and oxide thickness are 65nm and 1.5nm, respec-

tively. The3σLch
and3σTox are set to 12% and 5% of nominal values, respectively. Bothηy/Ly

andηx/Lx are set to 0.98 which means the correlation between two devices located half of the

chip dimension away in thex-direction or they-direction is 0.6. The temperature profiles is

analyzed in128× 128 blocks and the process-variation grids is set as10× 10 grids. The setting

of deterministic thermal simulator with truncated number of basis in x- and y-direction are both

32 which can reach higher accuracy than author’s recommend in [18].

4.1 Accuracy and Efficiency

To verify the simulator, the Monte Carlo (MC) method is also implemented by105 samples

as reference golden solutions which consider the same issues such as electro-thermal coupling,
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(a)

Power Source Layer of Die
Interconnect Layer 

C4/CBGA Package and PCB Board

Die

20nm

0.5mm

0.06mm

(b)

Fig. 4.1: (a) The floorplan of test chip. (b) The geometry setting of test chip.
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Table 4.1: Accuracy and efficiency compared with the Monte Carlo method.
Inter-die Intra-die Our Proposed Method† Monte Carlo‡ Speedup
/ Total / Total max. mean max. std. runtime (s) sampling runtime (s)‡ (X)

Variations Variations error error Phase 1 Phase 2 knots
40% 60% 0.33% 1.70% 3.23 1.04 6736 326.49 313.93
50% 50% 0.35% 1.88% 3.27 1.04 6465 313.82 301.75
60% 40% 0.36% 1.84% 3.40 1.04 6422 311.47 299.49

† Our proposed method is compared with the golden solution constructed by Monte Carlo
method using105 samples.
‡ To show the efficiency, Monte Carlo method here is simulated till achieving the same accuracy

of standard deviation as our proposed method. The runtime here does not include the time of
input parser which is only performed once in Monte Carlo simulation.

spatially intra-die variations, and inter-die variations. The proposed electro-thermal simulator

takes 10 random variables to expand process variations and uses Smolyak sparse grid formula

with q=11. Hence, the stochastic thermal profile over the test chip is interpolated by 21 individ-

ual sampling points. The results with three different ratios of inter-die variations and intra-die

variations to the total variations in a reasonable region are shown in Table 4.1.

Compared with the golden solution, the proposed simulator is extremely accurate and can

be finished in seconds for the test chip. For example, in the case of inter-die variations being

50% of total variations, the proposed simulator can achieve the maximum errors of 0.35% and

1.88% in spatial mean and spatial standard deviation of temperature distribution, respectively.

The execution time is only 3.27 seconds and 1.04 seconds inPhase 1andPhase 2, respectively.

The similar results can be found in the rest two cases.

Since each operation inPhase 1of the proposed simulator is irrelevant to design pattern,

they only need to be pre-performed once while applying the proposed simulator to the optimal

thermal-aware design procedure. Therefore, to show the efficiency of the proposed simulator,

the runtime ofPhase 2is compared with the execution time through the Monte Carlo simulation

fulfilling the same accuracy of standard deviation as ours. Table 4.1 shows that the proposed

simulator is orders of magnitude faster than the Monte Carlo analysis under the same accuracy

level. the same Since each sampling point is independent, the parallel programming technique

can be easily applied to further enhance the speedup.
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(a) (b)

Fig. 4.2: The temperature profile at the top surface of the die. (a) The mean temperature dis-
tribution without considering electro-thermal coupling. (b) The mean temperature distribution
with considering electro-thermal coupling.

(a) (b)

Fig. 4.3: The temperature profile at the top surface of the die. (a) The spatial standard devi-
ations without considering electro-thermal coupling. (b) The spatial standard deviations with
considering electro-thermal coupling.
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(a)

(b)

Fig. 4.4: Distribution of the temperature using Monte Carlo (MC) simulation, with and without
electro-thermal coupling, and the proposed method at the location of the hottest mean tempera-
ture. (a) Probability density function (PDF). (b) Cumulative distribution function (CDF).
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4.2 Without vs. With Including the Effect of Electro-Thermal
Coupling

Fig. 4.2 and Fig. 4.3 show the spatial mean and spatial standard deviations of the temperature

distribution at the top surface of the test chip, respectively. Fig. 4.2(a) and Fig. 4.3(a) are the

results without considering electro-thermal coupling. Fig. 4.2(a) and Fig. 4.3(b) are the results

with considering electro-thermal coupling. These two figures reveal the dramatic differences of

the spatial mean and spatial standard deviation profiles between the results without considering

electro-thermal coupling and the results considering electro-thermal coupling. As we can see,

the difference of spatial mean profile can reach 6.54%, and the difference of spatial standard

deviation profile is over 25.01%.

According to [8], the temperature profile of each location on the chip can be approximated

as a log-normal distribution. The probability density function (PDF) and cumulative distribution

function (CDF) of the temperature distribution at an arbitrary location on the chip are plotted

in Fig. 4.4(a) and Fig. 4.4(b), respectively. The blue solid line marked in triangles is the result

obtained from the Monte Carlo simulation with considering electro-thermal coupling. The red

dash line marked in circles is the result acquired from the Monte Carlo simulation without

considering electro-thermal coupling. The black solid line is an approximation using log-normal

distribution and its mean and variance are obtained by the proposed simulator. Fig. 4.4 shows

that the proposed method can provide accurate estimations of PDF and CDF for the thermal

profile, and the simulation results without considering electro-thermal coupling are unreliable.

The similar result also happens in the statistical analysis of total leakage power. The PDFs

and CDFs of the total leakage power of the test chip by the Monte Carlo simulation are shown

in Fig. 4.5. Obviously, the statistical leakage power analysis without electro-thermal coupling

is not reliable.

From the above discussion, it shows that the statistical thermal or leakage power analysis

method without considering electro-thermal coupling can lead the simulation results into an

unreliable region and provide a dubitable confidence interval. To give the correct and reliable

analysis results for designers, it is necessary to take electro-thermal coupling into consideration

for not only leakage power analysis but also thermal analysis, and the proposed electro-thermal
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Fig. 4.5: PDFs and CDFs of the total leakage power using MC simulation with and without
considering electro-thermal coupling.

simulator can accurately and efficiently achieve these.
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Chapter 5

Application–Thermal Yield

5.1 Thermal Yield of Circuit

Considering process variations, the temperature is approximated as a log-normal random vari-

able at each position over a chip [8], and it is also been verified in Fig. 4.4. Consequently, for

a thermal-aware design, our statistical electro-thermal simulator can be applied to provide the

thermal yield. The statistical thermal yield can be defined as

Y ield(T (ξ))
def
= Pr(T (ξ) < Tref ) = Φlog(Tref ), (5.1)

whereΦlog denotes the cumulative distribution function of a log-normal random variable, and

Tref is the reference temperature. The probability of exceeding the reference temperature is

defined asΦlog (Tref ) = 1− Φlog (Tref ).

In traditionally deterministic thermal analysis, the hottest place is the one that has the highest

temperature; that is, the one needs to be reallocated and carefully concerned. Given two PDFs

of temperature distribution at two arbitrary locations on a chip as shown in Fig. 5.1, “R” will be

the more critical position if the conventional worst-case analysis is used for specifying hotspot.

However, by comparison, in thermal yield analysis, the place which needs to be well-handled

should be the one having the most likelihood of exceeding tolerable temperature. The reason is

that the thermal-aware design must first tackle the place with the highest probability of breaking

down because it may dominate the full chip reliability. Hence, “B” is the more critical position

since it has largerΦB
log

(
Tref

)
which also means that it has a worse thermal yield.
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Fig. 5.1: PDFs of the temperature at two locations of the chip for indicating which one is more
critical on the chip.

5.2 Statistical Thermal Yield Analysis Problem

The statistical thermal yield analysis problem for a given circuit is formulated as following:

For a circuit, given a reference temperatureTref , analyze the temperature distributed over

the chip as considering process variations and get the statistical temperature profiles by dealing

with stochastic heat transfer function. Based on the statistical temperature profiles, find the

thermal yield,Φlog(Tref ).

To analyze the reliability within the reference temperature as considering process variations,

designers can use the simulation results from the proposed simulator and the thermal yield

analysis provided in this work.Φlog (Tref ) over our test chip by using the statistical results

from the proposed simulator is shown in Fig. 5.2(a) forTref being 90◦C. The region with the

highest probability of exceedingTref is the place which needs to be seriously concerned for the

chip reliability, because the region has the worst thermal yield. However, by contrast, a thermal

yield from one statistical thermal simulator without considering electro-thermal coupling is

shown in Fig. 5.2(b) . Without considering electro-thermal coupling may lead nearly one order

of magnitude lower of thermal yield. To provide designers an correct guideline from thermal

yield estimation, it is necessary to take electro-thermal coupling into thermal simulator.
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(a)

(b)

Fig. 5.2: Probability of exceeding the reference temperatureΦlog (Tref ) = 90oC from statisti-
cal thermal simulator (a) with considering electro-thermal coupling. (b) without considering
electro-thermal coupling.
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Chapter 6

Conclusions

An efficiently statistical electro-thermal simulator considering inter-die variations and intra-die

variations including the spatial correlation has been presented. The proposed simulator can

efficiently provide the accurate simulation results and has the advantages of high capability for

any complex leakage power models and the spatial correlation function. The statistical electro-

thermal framework can be adopted in different technology nodes and assistant designers to

correctly predict yield of chip. According to simulation results, we have also indicated that

it is not allowable to ignore electro-thermal coupling when considering process variations in

statistical thermal simulation.
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