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An Electro-Thermal Simulator Considering Process
Variations with High Compatibility of Power Model

Student: Huai-Chung Chang Advisor: Dr. Yu-Min Lee

Department of Communication Engineering
National Chiao Tung University

ABSTRACT

In this paper, a statistical electro-thermal -simulator considering leakage power, inter-die process
variations, and intra-die process variations including spatial correlation is developed. With applying
Karhunen-Loeve expansion, the spatially correlatedprocess parameters can be transformed to a set of
uncorrelated random variables. Then; Smaolyak-sparse grid method is applied to sample the random
space expanded by these uncorrelated’ random variables and inter-die random variables to tackle
stochastic heat transfer equations. After that; the thermal profile at each sampling point is built by a
constructed electro-thermal coupling algorithm. These calculated thermal profiles are integrated to
interpolate the stochastic temperature profile over a chip. Finally, the statistical temperature profile can
be extracted.

The accuracy and efficiency of the presented statistical electro-thermal simulator are
demonstrated by comparing with the Monte Carlo analysis. Experimental results indicate that the
developed simulator is orders of magnitude faster than that of the Monte Carlo analysis under the same
accuracy level. The maximum error is less than 0.36% and 1.88% in mean and standard deviation of
temperature profiles, respectively. The proposed simulator is also highly compatible with different
power models and spatial correlation functions. This characteristic is important in such fast innovative
technology.
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Chapter 1

Introduction

1.1 Motivation

As technology is scaling down continuously and power density is rapidly increasing, power dis-
sipation and thermal management have become important issues of VLSI design. Furthermore,
temperature and thermal gradients have significant influence on IC performance, reliability,
and the cost of cooling and packagée system:,Because the leakage power has become the ma-
jor contributor of total power in-the, modern technology, it is necessary to estimate and model
the leakage power accurately-and efficiently. However, leakage power is exponentially corre-
lated with process parameters-and-temperature shown in Fig. 1.1 and Fig. 1.2, so that process
variations and thermal impacts need:to been taken into concern cautiously. The authors in [1]
indicated that 30% intra-die process variations can lead to 20 times of leakage power causing
the drastic fluctuations of temperature distributions as shown in Fig. 1.3.

Moreover, because of the lithography and chemical mechanical polishing defects, physical
parameters are varied with spatial positions which the closer gates may have more likelihood
to have similar physical characteristics. Without considering spatial correlations of intra-die
process variations, the standard deviation of temperature distribution can be 3 to 4 times lower
than the results with considering spatial correlations [2].

Using the deterministic thermal analysis to obtain one deterministic temperature-dependent
leakage power simulator has been proposed in [3,4]. However, as considering process varia-
tions, all analysis problems need to be transformed to random process problems, and a statistical
simulator is needed. In power analysis, several works have successfully quantified the process

variations into leakage power [5—7]. Nevertheless, none of them consider the electro-thermal
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feedback in statistical power analysis.

In thermal analysis, existing statistical thermal simulators [2, 8] considering process varia-
tions and spatial correlations have some limitations in their methodologies. Authors in [2] didn’t
take the electro-thermal coupling into account. An architectural-level simulator proposed in [8]
needs to fit the power model for each grid every time as the design changes, and this limits its
usage after the floorplanning stage. Moreover, both two have limitations in the forms of power
models. The power projection algorithm in [2] has the limitation of power model form. Because
of using the log-normal assumptions in each analysis step of [8], there is a limitation of power
model form. Because the scaling down technology will lead more complicated power model
forms to enhance the accuracy, it is urgent to develop a statistical thermal simulator which has

the high capability of adopting different and complicated power model forms for any technology

generations.
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Fig. 1.3: Leakage current and frequency variations [1].

Monte Carlo method is the most popular method to obtain statistical solution of a statistical
problem. Besides, it can be implemented to solve statistical thermal problem using any power
model forms, because each sampling knot can make the statistical thermal problem become
a deterministic thermal problem which is related to the power value rather than power model
forms. Although the concept and implementation of Monte Carlo method are straightforward,
its convergence rate is very slow in a large number of random variables. An alternative way to

efficiently obtain statistical solution of a statistical problem is the statistical collocation method.



By applying sparse grids in the high level statistical collocation method can dramatically re-
duce the calculating complexity comparing with that of Monte Carlo method and maintain the

advantage of applying Monte Carlo method in statistical thermal problem.

1.2 Overview of Our Statistical Electro-Thermal Simulator

In this work, we develop a statistical electro-thermal simulator that considers the effects of spa-
tial correlation under intra-die process variations and inter-die variations. Because the sparse
grid collocation technique, a Monte-Carlo-like method, is utilized, the proposed simulator can
handle any power model forms and spatial covariance functions. Hence, an extremely accurate
statistical cell-based leakage power model form is developed, so the proposed simulator can
provide more accurate results than the architectural-level simulator. Moreover, as the devel-
oped electro-thermal simulator is used for thermal-driven floorplan/placement problems, it can
be rapidly adopted without reconstructing:the power model since we used a cell-based power
model rather than a grid-based.power.model [8].

Firstly, the Karhunen-Leve (KL) expansion is utilized to transform the spatially fluctuating
physical process parameters to-a setofuncorrelated random variables. Then, the Smolyak sparse
grid method [9] is applied to sample the random space expanded by these uncorrelated random
variables added with random variables of inter-die variations. Given the initial temperature
profile of a full-chip, for each sampling point, the power profile over a chip can be obtained
by the proposed power model forms of cells. After using an existent deterministic thermal
simulator to update the temperature profile, the power profile over a chip is also updated. The
above temperature-power updating procedure is repeatedly until it is convergent. Finally, those
calculated thermal profiles under all sampling points are utilized to interpolate the stochastic

temperature profile over a chip, and the statistical temperature profile can be extracted.

1.3 Our Contributions

Our major contributions are

1. To the authors’ best knowledge, this work is the first gate-level statistical electro-thermal

simulator including the effect of intra-die variations with spatial correlations and inter-die
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variations. This simulator also shows the high compatibility to handle any complicated

power model forms and spatial correlation functions.

2. The developed statistical electro-thermal simulator can accurately and efficiently provide
the mean temperature distribution profile and the spatial standard deviation profile of
temperature distribution. The circuit designers can utilize the above information to take
effectively strategies for fighting against thermal failures with considering process vari-
ations. Experimental results reveal that ignoring electro-thermal coupling in statistical

thermal simulations can mislead circuit designers to an unreliable design direction.

3. Athermal yield analysis problem is formulated. By using statistical thermal profile from
statistical thermal simulators, the thermal yield of circuit can be obtained. This informa-

tion is useful for designers to avoid the thermal runaway and predict yield of the chip.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. In chapter 2, the importance of electro-thermal
coupling and background are illustrated.-Moreover, the problem of statistical thermal simulation
is formulated. Then, the statistical electro-thermal framework is presented in chapter 3. After
that, the experimental results are given in chapter 4, and an application of thermal yield is

investigated in chapter 5. Finally, this work is concluded in chapter 6.



Chapter 2

Preliminaries and Problem Formulation

In this chapter, the importance of electro-thermal coupling in both deterministic and statistic
thermal simulator is illustrated in section 2.1. Then, in section 2.2, a survey of statistical leakage
current models is introduced and novel leakage current models are presented in subsection 2.2.1.
The background of Smolyak sparse grid formula is investigated in section 2.3 . The end of this

chapter is problem formulation.

2.1 The Importance of Electro-Thermal Coupling in Deter-
ministic and Statistical Thermal Simulations

A simple schematic example shownin Fig.-2.1 is used to highlight the importance of electro-
thermal coupling and the impact of process variations. Given a single NAND gate surrounded
with a thermal isolation system and the only power dissipation path is through the package, its
power consumption with/without considering process variation is shown in Fig. 2.1. Although
the temperature of a cell depends on its neighbor cells in a real chip, this schema still works for
indicating the importance of electro-thermal coupling in statistical and deterministic thermal
simulations.

Given an initial temperature, the power consumption of an NAND gate can be calculated.
Based on the zeroth law of thermodynamics [10], to achieve the equilibrium of generating power
and power dissipated by package, the surplus power that cannot be dissipated by package must
be transformed to heat and stored in this system. Hence, the system temperature is increased.
On the contrary, as the capacity of power dissipated by package is larger than the produced

power, the system temperature decreases. Because the leakage power is highly dependent on
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Fig. 2.1: Total power consumption of.aniNAND gate at different operating temperatures. This
cell is assumed to be surrounded with a thermal isolation system, and the power is only dissi-
pated through the package.
temperature, the total power needs to-be adjusted with the updated temperature, and this pro-
cedure is called electro-thermal'coupling. The above procedure is recursively performed until
the system reaches the equilibrium of power production and dissipation, and the temperature
is converged. After that, the stable operating temperature of this cell is gotten. If the system
cannot reach the thermal equilibrium, the system is thermal runaway and is under high risk of
system melted down. For example, in Fig. 2.1, the dash line indicates the power consumption
of an NAND gate operating at different temperatures with process parameters being nominal
values. The straight line passing through the room temperature indicates the maximum power
that can be dissipated by the package at each operating temperature . Given an initial tempera-
ture T1, the stable operating temperaturd 8lafter performing the electro-thermal coupling.
On the other hand, if the initial temperaturelid it will cause the thermal runaway.

However, with considering process variations, the equilibrium temperature can not be rep-
resented as a deterministic form. For example, in Fig. 2.1, the top curve is the maximum ex-
treme power consumption of an NAND gate operating at different temperatures with consider-

ing process variations, and the bottom curve is the minimum extreme power consumption of an
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NAND gate operating at different temperatures with considering process variations. As shown
in Fig. 2.1, given an initial temperatufil, the equilibrium temperature distribution falls into
Region 1with considering the electro-thermal coupling. However, the final temperature distrib-
ution falls into Region 2vithoutconsidering electro-thermal coupling. Given a different initial
temperature such as the room temperature shown in the sub-plot of Fig. 2.1, the final tempera-
ture distribution falls into Region &ithoutconsidering electro-thermal coupling. However, the
equilibrium temperature distribution still falls into Regionwith considering electro-thermal
coupling.

The uncertainty of final temperature confidential region and the drastic error between Region
2/Region 3 and Region 1 show that it is necessary to consider electro-thermal coupling while
performing statistical thermal simulation. Similarly, statistical power analysis should also take

electro-thermal coupling into account.

2.2 Statistically Cell-based Leakage Current Modeling

When the oxide thickness of a-device is reduced, the probability of electrons tunneling through
oxide thickness is getting higher. Thisresults in the gate tunneling leakage current which is
related of oxide thicknesk,, and gate area referring to channel length. Because the num-

ber of electrons tunneling through the barrier which is influencing the tunneling probability is
dependent on temperature [11], we also take temper@tum our leakage current model. As

the device turns into "off” statéV,; < V;;), the minority carriers diffusing through the chan-

nel induce the current flowing from the drain to the source of a transistor. This is known as
subthreshold leakage current.

Many compact leakage current models have been developed in [2-6, 8, 12]. However, none
of leakage power models proposed in [2-6] took both temperature and process variation ef-
fects into account, their accuracy degrades as the technology scales down. For the authors’ best
knowledge, only [8, 12] proposed the leakage current models considering both effects. Nev-
ertheless, the leakage current model in [12] was based on 90nm technology. Hence, as the
technology advances, its accuracy is deteriorated. The authors in [8] developed a grid-based

leakage power model in the architectural level. Each fitted form was used to coarsely approxi-



mate the total leakage current in each grid, and this limits its use after the floorplanning stage.
Moreover, the grid-based leakage power model will be transformed into one nonlinear curve

fitting problem as obtaining the coefficients of its model. Authors decomposed the nonlinear

problem into several linear problems to acquire the coefficients, but this method cannot guaran-
tee the solutions located into the global optimal region.

The leakage current of each cell depends on input patterns and is highly correlated with
process parameters and operating temperatures. Hence, we apply different input patterns via
varying physical process parameters and operating temperatures for each cell by using HSPICE
and the design kit from industry to generate the fitting data. Then, using the least square fit-
ting method, the coefficients of different average leakage current models such as the average
subthreshold leakagé,(;) and the average gate tunneling leakafyg.{) can be obtained.

Sincel,,; is the off-state leakage mechanism, dpg. occurs in both on and off states of

transistor [13], the leakage power of a cell can be represented as

PLea/c 3y V;ld X (Igate + (]- - Sw) Isub) > (21)

where
[gate = ap-exp (fgate (Toxa LCh7 T)) ) (22)
Isub - bO - €Xp (fsub (Toxa Lch7 T)) . (23)

Here,ao andb, are fitting constantsl,., and7,, are the channel length and oxide thickness,
respectively.T" is the operating temperature which may be updated every thermalJoos

the switching activity};, is the supply voltage, anfl... and f,;, are specific fitting forms.

2.2.1 Presented Leakage Current Models vs. Previous Works

In this subsection, a novel cell-based leakage power model considering the process variations
and temperature dependence is presented. Then, the comparison with latest works is shown by
experimental results presented in Table 2.1.

Owing to the property of Smolyak sparse grid collocation method, any leakage current forms

can be adopted in the proposed electro-thermal simulator. The presented leakage current forms



Table 2.1: Error comparison af,;, and .. with HSPICE simulation results for an NAND
gate.

fgate Max. Error | Avg. Error | Error > 3%
Without
temperature|| T.., T2, Lex, L2, [5] 6.48% 2.70% 4.37%
With Len, T, Tox 3.20% 0.97% 0.35%
temperature|| tL.n, T, Tox, T2, 1.55% 0.29% 0.00%
Ffsub Max. Error | Avg. Error | Error > 3%
Without Len, L%, To', T2, [5] 347.32% 70.65% 98.27%
temperature(| L.y, L2,,To.", Tow, T2, Tox/Lops Len/Tow, Tox X Len [6] 314.13% 70.52% 100.00%
Lo, T, Tow [12] 32.23% 8.73% 76.62%
(L, Tox, T) are fully expanded to 2nd order=
With Len, L2, Tow, T2, T, T2, Lep, X Tog, L X Ty Tog X T 10.31% 1.53% 8.47%
temperature|| 1 (L, Toe, T) are fully expanded to 3rd ordes>
L, L2, Tow, T2, T, T2, L X Toz, L X T, Tow x T, L3,T3,, T3, 1.31% 0.19% 0.00%
L? X Tog, L? X T, T2, x L, T2, Xx T, T? X Toz,T? X L

1 The adoptive forms of 54+ and fs, in this paper.
are based on equations (2.2) and (2.3) of

fpate(Tow, Len, T) = (a1 Len + a3 T+ as - Tog + ag - Thy),

fsut(Tow, Len, T) = (by+ Len + D2+ Tow b3 - T A by - Loy - Tow + b5 - T - Top +bg - Lep - T +
by - L2, 4=bgeT2 4 bg#T% 4 bio - Loy, - T2, + b1y - Loy - T +
512'T'fo+513'T'Lgh+514'Tox'Lgh+bl5'Tox'T2+

big - Tog - T - Lighpet=byrs Li’h + g - Togx + by - Ta),

wherea;’s andb;’s are fitting constants. These forms gain the maximum error within 1.55%,
and the average error within 0.5% for all cells built in leakage power cell library for this work.
Different fitting forms of equations (2.2) and (2.3) with an NAND gate undeméfech-

nology are shown in Table 2.1. As shown in Table 2.1, different components in equations (2.2)
and (2.3) can lead to different errors compared with the simulation results from HSPICE. We
do not compare the power form of [8] here, because the models compared in Table 2.1 are
cell-based models and modeling the different combination of leakage current individually for
the higher accuracy rather than a grid based total leakage model in [8]. These drastic errors
in [5, 6,12] are because of the ignorance of either temperature or developing technology. Com-
pared with other forms [5,6,12], the adoptive forms gain the high accuracy which the maximum
error is within 1.31% and 1.55% in subthreshold and gate tunneling leakage current, respec-

tively. This table also shows that it is necessary to take temperature into leakage current model,
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and it is importance to having the advantage of handling any power models in power or thermal

simulator.

2.3 Smolyak Sparse Grid Formula

The idea of interpolation method is to construct a polynomial by using several known values
of a desired function to approximate the desired function. The one-dimensional and tevel
approximation applied to the functidhis denoted a&)* (T'). Here, the interpolation method
based on Lagrange polynomials is briefly recalled. Assume that we want to approximate a one-
dimension functioi” (¢) : [-1,1]*~" —R by using a set of sampling poin{ﬂl, ey ;;1,1} C

[—1, 1] of the variable. m;, is the needed number of sampling points of the varigbler

interpolating. Then the interpolated function by using the Lagrange interpolation can be written

as
Q" (T) (&)= iT (&) aft () (2.4)
j=1
wherei; € N and it denotes-the'highest.level of the interpolating polynomial inltte
direction,a)' € C ([—1,1]) are the Lagrange polynomial of degrge’’ (¢) = [T, (=79

k] (&-a2)
For the multivariate case, we'would like to approximaté@mensional functiory’. Con-

ventionally, the full tensor product interpolation form@a (7) = (Q" ® - - @ QY @ - - - ® Q™) (T)
can be used to approximate it by full grid collocation. Herejs the tensor product op-
erator, andi; is the highest level of the interpolating polynomial in ti#-direction. For
example(a&; + bE?) @ (c&y + dE2)is equal tdack &y + ad€i€2 + be€2éy + bdE3E2) wherea, b,,
¢, andd are the coefficients. The full tensor product formula ne}éﬁ;l m;, counts of total
sampling points. Herep;; is the number of sampling points in thén-direction. Using La-
grange polynomial for interpolating as an example here, the full tensor product interpolation
formula is
Q1 @ ® Qi) (T) :jlfl-..jdflT(g;;,...,gjg) N @---®d"),  (25)
However, using the full tensor product to approximate a multivariate function is inefficient

especially as the dimension increases. Smolyak [9] proposed a sparse grid stochastic collocation

LIn this work, the number of sampling poinis,, in leveli is defined asn, = 1 andm,; = 2"~ +1fori > 1,
because the chosen sampling points are nested.
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method to reduce the number of sampling points from full grid collocation, and this method was
investigated by [14]. WitlQ° = 0 andi € N, the authors in [14] denotdd| = i, + -+ + ig4

and defined the difference between two interpolating polynomials of levadl: — 1 as
Al =Q' — Qi (2.6)
Then the Smolyak formula can be given as
Algd)(T)= > (A"®---@A")(T). (2.7)

g—d+1<]i|<q

Equivalently, formula (2.7) can be written as [14]

d—1
q— il

Al(g,d)(T) = Ej(qwﬂ( y@m~®@mﬂ. (2.8)

q—d+1<[i|<q
whereA (q, d) (T) is the approximated polynomial,denotes the level of desired solution, and
d is the dimension of functional space.
For a functionu € C", the error of interpolating:on a Smolyak sparse grid is guaranteed to
satisfyO (m " (log (m))@-1~Y) ‘wherem is the total number of sampling points [15].
According to formulas (2.7) and (2.8),we only need to know the function values on the
sparse grid rather than the full grid [16}..The set of sparse sampling points in (2.7) is derived as
H(gd)= [ (9" x-x 0% 5 x9"), (2.9)
q—d+1<[il<q
where ¥’ denotes the vector of sampling points in tjtb-direction. The number of points
from Smolyak sparse grid formula increases%é%) which is less than that from full grid
collocation.
A simple example is presented for clearer specifying Smolyak sparse grid interpolation.
With the dimensior/=2 and the Smolyak sparse grid formulaet/+1 using the sampling value
in one random variable dfa, b, ¢} in (2.8) and according to the conditign- d + 1 < [i| < g,
we can obtaini| = 2 = i; = 1,i = 1l and|i| =3 = i; = 1,1, = 2 0ri; = 2,iy = 1, where

9 = {a},9? = {a,b, c}. The sampling points of the Smolyak sparse grid can be obtained by
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Fig. 2.2: Clenshaw-Curtis sampling points of Smolyak formula and full tensor product of a
two-dimensional parameter spac&2). (a) Smolyak sparse grids with maximum leyel3.

(b) Full tensor product ofi=3. (c) Smolyak sparse grids with maximum leyels. (d) Full
tensor product of=5.
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Table 2.2: The number of sampling points use Smolyak formula and full tensor product formula
in d-dimensional sampling space wijh3.

d=N¢ || Smolyak| Full Tensor
Formula| Product
1 3 3
2 5 9
3 7 27
d 2-d+1 3¢

the derivation of (2.9) where

H(3,2) = (0" x9")U (@ x9?) U (9 x ")
= {(a,0)} U{(a,a),(a,b),(a,0)} U

{(a, a), (b.a) (e, 0)} (2.10)

= H(@,a),(@;0).(0,¢) , (b,a) , (c,a)} (2.11)

Based on the pristine formulation of Smolyak sparse grid collection method, we should
perform the polynomial interpolation‘for-each set of cross product in (2.10). Since the knots
in (2.10) are nested, we can execute one polynomial interpolation for the union of collected
knots in (2.11) rather than performing polynomial interpolations in (2.10) to improve the effi-
ciency [16] .

We take one example in Fig. 2.2 using Clenshaw-Curtis abscissas for the construction of
Smolyak formula and compare it with full tensor product interpolation formula to show the
reduction of sampling points when applying Smolyak formula. The sampling points using
Smolyak formula for the 2-dimensional example is in Fig. 2.2(a) and Fig. 2.2(c)¢gwhand
g=4, respectively. The full tensor grids is shown in Fig. 2.2(b) and Fig. 2.2(d). The counts of
sampling points is reduced when using Smolyak formula, and the improvement of counts is
clearer in a high dimension sampling space.

In our case, we need to use high dimensional sampling space which will show the drastic

reduction of sampling points if using Smolyak sparse grid formula. The comparison of the
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number of sampling points using Smolyak formula and full tensor product formuja®fs
shown in Table 2.2. In Table 2.2, the number of points derived from Smolyak sparse grid
formula is linearly dependent on the dimension; nevertheless, it is exponentially dependent on

the dimension by using full tensor product to interpolate.

2.4 Problem Formulation

Ambient Air

Interconnect Layers

Ambient Air

Fig. 2.3: Corhpétcg thermal model of physical design.

The compact thermal model of a chip consisting of three portions for physical design
stage [17, 18] can be represented by Fig. 2.3. The primary heat dissipation path is composed
of thermal interface material, heat spreader, and heat sink. The secondary heat dissipation path
involves interconnect layers, 1/0 pads, and the print circuit board. The functional blocks on the
die are modeled as many power generating sources attached to the thin layer close to the top sur-
face of the die with the thickness being equal to the junction depth of device [19]. The main heat
sources are coming from the dynamic and leakage power consumed by devices. Because the
dynamic power is insensitive to process variations, it can be treated to be deterministic. How-
ever, the leakage power is strongly dependent on process parameters such as channel length
and oxide thickness. As considering process variations, these parameters need to be viewed
as random processes [5]. Moreover, leakage is also highly sensitive to the temperature; hence,

the thermal coupling needs to be taken into account for modeling the statistical leakage power.

15



By combining the compact thermal model and the statistical power consumption considering
thermal coupling, the steady state temperature distribmft‘i@n@, w) of die is determined by

the following statistical steady-state heat transfer equation.
V- (/ﬁ(r,f)Vf(r,Q,w)) =—p (r,LCh(x,y, 9),T0m(x,y,w),f> , (2.12)

subject to the following boundary condition

~ 0T (r 0, ~
K(xo,, T)% + hy, T(ry,, 0, ) = fy.(rs.). (2.13)

Here, V is the diverge operator, anc(r,f) is the thermal conductivityW /m-°C) of die.
The p(r, Lch(x,y,H),Tox(x,y,w),f) is the random process of power density profile which
consists of dynamic power density profilg(r), subthreshold leakage power density profile
Psub (s Len (2,9, 0), Tox(x,y, @), f), and gate tunneling leakage power density profile
DPgate(T; Len (1, 0), Tou(z,y, @), T). Ther = (z,y,2) € D, D = (0, L,) x (0, L) X (—L.,0)
is the domain of diel., and L, arelateralsizes ofdie, and is the thickness of die. Thitand
w are sampling values of manufacturing outcortigs, and(), for the channel length and
oxide thickness, respectively. The, (z;,.0).and7,.(z, y, =) are the random processes of the
device channel length and the oxide thickness; respectively.bIlseany specific boundary
surface of the die, angd,, is the position located oby. Ther,, is the heat-transfer coefficient
onbs, fy.(rp,) is the heat flux function oby, andd/on,, is the differentiation along the outward
direction normal tad,.

Since the major part of device current passes through the channel, the power density distri-
bution has its value only wheane (0, L,) x (0, L,) x (—jq,0). Here,j, is the junction depth
of device [19].

With the statistical steady-state heat transfer equations (2.12)—(2.13), our goal is to evaluate
the mean and variance profiles of steady-state full-chip temperature distribution considering
spatially correlated intra-die process variations, inter-die process variations, and electro-thermal

coupling.
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Chapter 3

Statistical Electro-Thermal Framework

3.1 Statistical Electro-Thermal Flow

Tnput Generate Solve Electro- | Approximate
Sample Points Thermal Temperature Results
of Random Problem at by Polynomial
Leakage Variables Each Sample Interpolation
Power Cell o
. oints
Library
Solve Electro- Apply Newton Mean and
Chip Design Thermal Form of Variance of
(lef, def, lib) | Problem as a Polynomial 4y, Temperature
7 P Deterministic |||~ Interpolation Distribution
Problem
Process : N E
e Karhunen- Smolyak — ‘ :
. Loeve(KL) Sparse Grid 3
Spatial E " T ) " S
Contln Xpansion ormula 3 \I
& :
Model FZI> L o 7 /74
¢ Phase 1 q Phase 2————

Fig. 3.1: Sparse grid based statistical electro-thermal simulation flowchart.

The flowchart of the developed sparse grid based statistical electro-thermal simulation is
shown in Fig. 3.1, and it consists of two phases. Each operatiBhase lis only related with
technology node rather than design pattern, and the operati®smse 2are design dependent.

In the beginning oPhase 1 to take the temperature effect into account for the leakage
power cell library, accurate forms of statistical cell-based subthreshold and gate leakage current
models are developed and detailed in section 2.2. Then, given a spatial covariance function of
physical parameters such as the channel length and the oxide thickness, the KL expansion is
employed to decompose the correlated physical parameters into a set of uncorrelated random

variables which are introduced in section 3.2. After that, the Smolyak sparse grid formula
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in [9] is applied to generate a set of sampling points of the random space expanded by these
uncorrelated random variables and inter-die random variables.

In Phase 2 a proposed Smolyak sparse grid based statistical electro-thermal simulation
method is used to construct an interpolation formula of the stochastic temperature profile over
the chip. For each sampling point on the space of random variables, an electro-thermal coupling
algorithm shown in Fig. 3.2 is used to get the deterministic thermal profile of the chip. Then, all
thermal profiles are integrated to build an interpolation representation of stochastic temperature
profile over the chip. Finally, the statistical temperature profile can be extracted. The detail is
presented in section 3.3.

Since each operation iRhase 1is irrelevant to design pattern, they only need to be pre-
performed once while applying the proposed statistical electro-thermal simulator to the optimal
thermal-aware design procedure. Therefore, the proposed statistical electro-thermal simulator
has the high compatibility for the power. model and the function of spatial correlation model.

For example, as the technology is-advanced and different leakage current model forms
are required to maintain the accuracy, only the leakage power modelsaise 1need to re-
constructed and the rest procedures are unchanged. However, the related works, [2] and [8], are
limited by specific power model forms and cannot maintain the accuracy at different technology
node.

The advantages of the proposed sparse grid based statistical electro-thermal simulator are

summarized as follows.

1. Any spatial covariance functions can be adopted.

2. Any complex leakage current models especially taking thermal effect into account can be
dealt with in the simulator. Therefore, leakage current models can be very complex to

reach very high accuracy without reserving cares of simulating complexithase 2

3. It can readily apply the parallel programming to improve efficiency because the generat-
ing procedure of thermal profile at each sampling knot is uncorrelated, and the simulation

results at all sampling knots only need to be collected in the end.
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3.2 Parameter Modeling

Generally, process variations of one physical paramgten be classified into intra-digPtre
and inter-dieAP™" variations which both can be modeled as Gaussian random variables [5].

The physical parametér € {T,,, L., } with its expected valu® at positionr can be written as

T (v, @) =T (t) + AT (v, ;) + AT (v, 25 (3.1)

Lon(r,0) = Lo (r) + AL (v, 0,)+ AL (v, ;) | (3.2)

Here,w; andw, are subsets af. Thed,; andd; are subsets df.

According to [5],7,. (z,y, w) is spatially uncorrelated. Because the spatial correlation of
AL (v 6;) may have different decreasing ratesinandy-directions, the spatial covariance
function proposed in [20] is adopted f&x L™ (r, ;). Giveno as the standard deviation of
target random process, and correlation lengthandn, in z-direction andy-direction, respec-
tively, the spatial covariance function betweentwo random variables at pgiatgir; is

C(ry,1y) = 62 6Xp <—M> exp <—M) ) (3.3)
7 Ty

Remark: Although we choose this specific spatial covariance function (3.3) in this work,
any valid spatial covariance functions'can’be adopted in the proposed electro-thermal simulation
flow.

With applying KL expansions)A L% (r, §;) based on function (3.3) can be approximated
as

Len
ALDTa (¢ 6,) Z VXt (1) G (67) (3.4)
Here,x,,’s are eigenvalues @f(r;, rs2), ¢,,'s are related eigenvectors, ang , is the expansion
length.{¢,, (6;)} is the set of uncorrelated standard normal random variables. According to the
property of KL expansion, the expanded random variables are Gaussian random variables if the
target random process is Gaussian [21]. The closed form of eigen{Rairs,, (x,y)) can be
derived by [21]. In this papet, = {(.} ands = {,} which are sets of random variables to

represent.., andT,,, respectively. We drop andw for the sake of notation simplicity.

19



3.3 Smolyak Sparse Grid Interpolation Based Simulation

Given the placement/floorplan of circuit and technology files, the leakage power models de-
veloped in section 2.2 are built, and the Karhunema expansion is used to transform the
spatially correlated process parameters to a set of uncorrelated random variables. Then, the
expanded random variable set of inter-die and intra-die variations.faand7,, is represented
as{&,--- &} which is the union of and¢. For simplicity, we us€ = (&,--- ,&)7 to
represent thesédimensional random variables. Based on the concepts of Smolyak formula in
(2.7) and (2.9), we can séf the number of random variables, as the dimension of the func-
tional space ang as the level of the desired solution to acquire sampling points. After that,
roots of the Hermite polynomial chaos [22] are chosen as sampling points for achieving the best
approximation in the level [6] since the temperature profile over the chipjs a function of
normal random variables.

Fig. 3.2 shows the algorithm of the electro-thermal procedure afterward. The algorithm is
applied to each sampling point-until all sampling points are accomplished. With each sampling
point over the expanded random spafd;.; and AT, of each specified position on the chip
can be obtained. Then, the leakage:power-profile of the design can be acquired by Leakage-
power-updating algorithm shown in“Fig. 3.3. Since the temperature profile is built by parti-
tioning the die region intd’row x Qcol = PQ blocks, each block may be across the process
variation grids. The process-variation grids section the die regionlovew x Vcol = UV
grids, and within each grid, the process parameters are viewed as having the same character-
istic of variation. HereP,QQ,U, andV are the user setting integers for deciding the numbers
of blocks or grids meshed over the chip. In Fig. 3.3, the leakage power of one temperature
block is continually added by using equation (2.1) until all types of functional gates and all
process-variation grids inside the block have been done. Then, the leakage power profile is
added with dynamic power profile to obtain the total power profile. After using any existing
deterministic thermal simulatofs the total power profile can be transformed into temperature
profile. Because of considering electro-thermal coupling, the temperature profile needs to be

performed iteratively by updating the leakage power until the temperature profile transformed

1The GIT [18] is used in this work.
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Algorithm Electro-thermal-coupling
Input: A sampling point’, initial temperaturg i+,
dynamic power*, and switching activit§w*.
Output: Stable temperatu@*({’i)
1Begin
2 T andL?, can be obtained according §6
3 T* Ti”i*, T*/ — 0
4 While (T* — T < converging criterion)
5 doT" «T*
6 Leakage powér— Leakage-power-updating
7 Total powet «+ Leakage poweér+ dynamic power*
8 Using GIT to transfer total powérinto 7*
9 if (T = Infinite) then Thermal runaway
10 return 7™
11End
* denotes the distributed values over a chip.
T one deterministic thermal simulator [18]. Any deterministic thermal
simulators can be used here.

Fig. 3.2: Electro-thermal-coupling algorithm

from updating power profile is slight changed,
Finally, Newton’s interpolating method [23] is applied for generating an interpolated poly-
nomial to approximatd” with the.set of sampling pointétg’“}}j:l. The temperature of multi-

variate interpolated polynomial form expandeddgyan be written as

where eachbn(f) is a function of¢ in this expanded space, afd,,--- ,a,} is the set of the
unknown coefficients of Newton'’s interpolating polynomial [23].

Based on the basic idea of interpolation that the approximated function must match each
known data, the interpolated polynomial in (3.5) must satisfy the following equation for each
3

a11(85) + - 4 andn(E) + -+ amom(EF) = T(EH), (3.6)

Furthermore, according the property @f(£) which is constructed in a particularly way [23],
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Algorithm Leakage-power-updating

Input: 73,7, L, Sw*, and Leakage Power Cell Library
Output: Leakage Powér

1Begin

2 For each temperature blo&(p, q) € T*

3 doT «T(p,q)

4 For each process-variation grid, (u, v) € T, Lep(u,v) € LY,

5 doT,, « T,u(u,v)

5 Lch — Lch(u, U)

6 For each gate type occurring in this process-variation grid (u,v)
7 do Pp.qr density«— (equation (2.1) Wit Ty, Len, T), Sw*)

x gate-area portion of the block’s area
8 P(p, q) added withPp.
10 return Leakage Poweéris constructed byP(p,q) forp=1— Pandg=1— Q
11End

* denotes the distributed values over a chip.

Fig. 3.3: Leakage-power-updating algorithm

(3.6) can be written as the following matrix-vector expression for finding @ach

aE) 0 P A Gy ﬂi)
<Z51(:5 ) ¢2(:§ ) 0 (1:2 _ T(§ ) : (3.7)
$1(E™) G2 - NGl G | T(E™)

Eacha, can be calculated in linear time since the system matrix of (3.7) is a lower triangular

matrix. After eachu,, has been calculated, the statistical temperature profile can be extracted as

BE{T(€)} = E{a1¢:1(€)+ -+ amodm(E)}, (3.8)

Var{T(€)} = Var{ai¢i(€) + -+ amdm(E)}. (3.9)

Fig. 3.4 is the simulating algorithl®ETS of the proposed simulator. As discussion in sec-
tion 3.1,Phase 4s the part needed to re-perform when design is chargedse 1is related to

the technology node and unchanged as used the simulator under the same process.

3.4 Complexity Analysis

In this section, the complexity d¥hase 2n Fig. 3.4 is analyzed. The temperature profile over
the chip is analyzed int®(Q blocks, whereP and(@ have the same definitions in section 3.3.
Equally, the power profile is also approximated by these blocks. According to [18], the com-

plexity of the deterministic thermal solver used in this worlO&PQ log, N, N, ), whereN,
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Algorithm Statistical-Electro-Thermal-Simulation (SETS)
Input: Leakage power cell library, Chip Design, and spatial correlation model
Output: statistical temperature profilé{T*{¢}} andVar{T*{}}
Phase 1
1 Parse input files
2 Applying Karhunen-Léve expansion to transform the spatially
correlated process parameters
3 Construct the sampling points by Smolyak sparse formula.
Phase 2
4 For each sampling poirgt € &
5 do Electro-Thermal-Coupling
6 Solve unknown coefficients of Newton form
of polynomial interpolation by equation (3.7)
7 B{T"{£}} andVar{T*{£}}
* denotes the distributed values over a chip.

Fig. 3.4: Simulating algorithm of the proposed statistical electro-thermal simulator.

and N, are the truncated number of bases in x- and y-direction, respectively, and these are far
less than the number of blockX). Because leakage power is highly correlated by temperature,

it is updated by Leakage-power-updating:algorithm in Fig. 3.2. In line 4 of Fig. 3.2, because
process-variation grids are determined by process rather than the circuit, the grids are usually
orders of number less than that of temperature-blocks; the temperature blocks are finer than
process-variation grids. It also shows that most of temperature blocks have only one process-
variation grid inside. Therefore, since there afg,. types, in worst case, of functional gates

in each process-variation grid over all temperature blocks, the complexity of updating leakage
power for PQ blocks isO(PQNy,,.). In general,Ny,,. is determined by the number and the
spatial proportion of functional types in the circuit, and it is far less than the number of blocks
PQ, too. To find the worst extreme bound of complexity,,. in one temperature block of

such process-variation grid can be simulated as a cumulative counts of functional types sorted
area in an increasing series. It is referred to the maxim\p. is occurred when functional

types having smallest area are gathered into one temperature block. For the previous discus-
sion, the computational complexity of one electro-thermal loop fromditeeline 6 in Fig. 3.2

is O(PQlog, N, N,) + O(PQNy,,.). The iteration of electro-thermal coupling is based on the
converging criterion and initial temperature setting. According to our experiment with sam-

pling knots constructed by Monte Carlo method, the average count of iteration loop in Fig. 3.2
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is less tharb. The converging criterion of the experiment is set as the temperature value for
all blocks are less than 0.5% differing from the value in previous loop, and all the initial tem-
perature values are set as room temperature. We conclude that the computational complexity
of electro-thermal coupling algorithm &(r PQ(logy N, N, + Nyype)), Wherer is the count of
average electro-thermal coupling loop.

The simulating algorithm of the proposed statistical electro-thermal simulator is shown in
Fig. 3.4. Phase 2is the part needed to be recomputed as circuit design changing. If,line
because the calculation of equation (3.7) is without the computation of matrix inverse and the
matrix size is dependent on the number of sampling pointthe coefficients of it can be ob-
tained in linear time. Since each sampling point needs to enter the electro-thermal coupling
algorithm and the statistical temperature profile can be extract in linear time af, lihe com-

plexity of the proposed simulator (mrPQ)(logy No Ny + Niype))-
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Chapter 4

Experimental Results

The developed statistical electro-thermal simulator is implemented in C++ language and tested
on a Linux system with Intel Xeon 3.0-GHz CPU and 32 GB memory.

The die size is 2.;vm x 2.5mm x 0.5mm. The junction depth is 20n which is the
nominal value for the &om technology [19]. The floorplan of test chip which having 1.2
million functional gates is shown as Fig.,4.1(a), and the geometries of chip and package are
shown in Fig. 4.1(b). By applying the /medeling-skill of thermal parameter and iterative 1-D
thermal computation scheme [17]; the equivalent heat transfer coefficients of the primary and
secondary heat flow paths, and thermal.conductivity are 1200eh W/, 2017 W/fn-°C), and
148.13 W/{n-°C), respectively. The boundary condition of each vertical surface is set to be
isothermal [18].

The nominal values of channel length and oxide thickness ate.68nd 1.%vm, respec-
tively. The3o, , and3or,, are setto 12% and 5% of nominal values, respectively. Bgpti,,
andn, /L, are set to 0.98 which means the correlation between two devices located half of the
chip dimension away in the-direction or they-direction is 0.6. The temperature profiles is
analyzed inl28 x 128 blocks and the process-variation grids is set(@s 10 grids. The setting
of deterministic thermal simulator with truncated number of basis in x- and y-direction are both

32 which can reach higher accuracy than author's recommend in [18].

4.1 Accuracy and Efficiency

To verify the simulator, the Monte Carlo (MC) method is also implementedBysamples

as reference golden solutions which consider the same issues such as electro-thermal coupling,
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Fig. 4.1: (a) The floorplan of test chip. (b) The geometry setting of test chip.
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Table 4.1: Accuracy and efficiency compared with the Monte Carlo method.

Inter-die | Intra-die Our Proposed Methgd Monte Carld Speedup
/ Total / Total | max. mean| max. std. runtime (s) sampling| runtime (s} )
Variations | Variations error error Phase 1| Phase 2| knots
40% 60% 0.33% 1.70% 3.23 1.04 6736 326.49 313.93
50% 50% 0.35% 1.88% 3.27 1.04 6465 313.82 301.75
60% 40% 0.36% 1.84% 3.40 1.04 6422 311.47 299.49
T Our proposed method is compared with the golden solution constructed by Monte Carlo

method using 0° samples.

1 To show the efficiency, Monte Carlo method here is simulated till achieving the same accuracy
of standard deviation as our proposed method. The runtime here does not include the time of
input parser which is only performed once in Monte Carlo simulation.

spatially intra-die variations, and inter-die variations. The proposed electro-thermal simulator

takes 10 random variables to expand process variations and uses Smolyak sparse grid formula

with ¢=11. Hence, the stochastic thermal profile over the test chip is interpolated by 21 individ-
ual sampling points. The results with three different ratios of inter-die variations and intra-die

variations to the total variations in a reasonable region are shown in Table 4.1.

Compared with the golden solution, the proposed simulator is extremely accurate and can
be finished in seconds for the test|chip. For example, in the case of inter-die variations being
50% of total variations, the proposed simulator can achieve the maximum errors of 0.35% and
1.88% in spatial mean and spatial standard-deviation of temperature distribution, respectively.
The execution time is only 3.27 seconds:and1.04 secorfélsase landPhase 2respectively.

The similar results can be found in the rest two cases.

Since each operation iRhase lof the proposed simulator is irrelevant to design pattern,
they only need to be pre-performed once while applying the proposed simulator to the optimal
thermal-aware design procedure. Therefore, to show the efficiency of the proposed simulator,
the runtime ofPhase 4s compared with the execution time through the Monte Carlo simulation
fulfilling the same accuracy of standard deviation as ours. Table 4.1 shows that the proposed
simulator is orders of magnitude faster than the Monte Carlo analysis under the same accuracy
level. the same Since each sampling point is independent, the parallel programming technique

can be easily applied to further enhance the speedup.
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Fig. 4.2: The temperature profile at the top surface of the die. (a) The mean temperature dis-
tribution without considering electro-thermal coupling. (b) The mean temperature distribution
with considering electro-thermal coupling.
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Fig. 4.4: Distribution of the temperature using Monte Carlo (MC) simulation, with and without
electro-thermal coupling, and the proposed method at the location of the hottest mean tempera-
ture. (a) Probability density function (PDF). (b) Cumulative distribution function (CDF).
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4.2 Withoutvs. With Including the Effect of Electro-Thermal
Coupling

Fig. 4.2 and Fig. 4.3 show the spatial mean and spatial standard deviations of the temperature
distribution at the top surface of the test chip, respectively. Fig. 4.2(a) and Fig. 4.3(a) are the

results without considering electro-thermal coupling. Fig. 4.2(a) and Fig. 4.3(b) are the results

with considering electro-thermal coupling. These two figures reveal the dramatic differences of

the spatial mean and spatial standard deviation profiles between the results without considering
electro-thermal coupling and the results considering electro-thermal coupling. As we can see,

the difference of spatial mean profile can reach 6.54%, and the difference of spatial standard
deviation profile is over 25.01%.

According to [8], the temperature profile of each location on the chip can be approximated
as alog-normal distribution. The probability density function (PDF) and cumulative distribution
function (CDF) of the temperature distribution, at an arbitrary location on the chip are plotted
in Fig. 4.4(a) and Fig. 4.4(b), respectively. The blue solid line marked in triangles is the result
obtained from the Monte Carlg simulation with;considering electro-thermal coupling. The red
dash line marked in circles is‘the result-acquired from the Monte Carlo simulation without
considering electro-thermal coupling..The black solid line is an approximation using log-normal
distribution and its mean and variance are obtained by the proposed simulator. Fig. 4.4 shows
that the proposed method can provide accurate estimations of PDF and CDF for the thermal
profile, and the simulation results without considering electro-thermal coupling are unreliable.

The similar result also happens in the statistical analysis of total leakage power. The PDFs
and CDFs of the total leakage power of the test chip by the Monte Carlo simulation are shown
in Fig. 4.5. Obviously, the statistical leakage power analysis without electro-thermal coupling
is not reliable.

From the above discussion, it shows that the statistical thermal or leakage power analysis
method without considering electro-thermal coupling can lead the simulation results into an
unreliable region and provide a dubitable confidence interval. To give the correct and reliable
analysis results for designers, it is necessary to take electro-thermal coupling into consideration

for not only leakage power analysis but also thermal analysis, and the proposed electro-thermal
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Fig. 4.5: PDFs and CDFs of the total leakage power using MC simulation with and without
considering electro-thermal coupling.

simulator can accurately and efficiently achieve these.
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Chapter 5

Application—Thermal Yield

5.1 Thermal Yield of Circuit

Considering process variations, the temperature is approximated as a log-normal random vari-
able at each position over a chip [8], and it is also been verified in Fig. 4.4. Consequently, for
a thermal-aware design, our statistical electro-thermal simulator can be applied to provide the

thermal yield. The statistical thermal yield can.be defined as

def

Yield(T(€)) S Pr(@(E) 4 Ty 1= Piog(Trey), (5.1)

where®,,, denotes the cumulative distribution function of a log-normal random variable, and
T,.s is the reference temperature.” The probability of exceeding the reference temperature is
defined asy, (Tref) = 1 — Piog (Tres)-

In traditionally deterministic thermal analysis, the hottest place is the one that has the highest
temperature; that is, the one needs to be reallocated and carefully concerned. Given two PDFs
of temperature distribution at two arbitrary locations on a chip as shown in Fig.5 yifl be
the more critical position if the conventional worst-case analysis is used for specifying hotspot.
However, by comparison, in thermal yield analysis, the place which needs to be well-handled
should be the one having the most likelihood of exceeding tolerable temperature. The reason is
that the thermal-aware design must first tackle the place with the highest probability of breaking
down because it may dominate the full chip reliability. Hende', I's the more critical position

since it has large®’, (Tref) which also means that it has a worse thermal yield.
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Fig. 5.1: PDFs of the temperature at two locations of the chip for indicating which one is more
critical on the chip.

5.2 Statistical Thermal Yield:Analysis Problem

The statistical thermal yield analysis'proeblem for @ given circuit is formulated as following:

For a circuit, given a reference temperatufe , analyze the temperature distributed over
the chip as considering process variations and get the statistical temperature profiles by dealing
with stochastic heat transfer function. Based on the statistical temperature profiles, find the
thermal yield @105 (7).

To analyze the reliability within the reference temperature as considering process variations,
designers can use the simulation results from the proposed simulator and the thermal yield
analysis provided in this work®,., (T,..;) over our test chip by using the statistical results
from the proposed simulator is shown in Fig. 5.2(a)Tar; being 90C. The region with the
highest probability of exceediri§..; is the place which needs to be seriously concerned for the
chip reliability, because the region has the worst thermal yield. However, by contrast, a thermal
yield from one statistical thermal simulator without considering electro-thermal coupling is
shown in Fig. 5.2(b) . Without considering electro-thermal coupling may lead nearly one order
of magnitude lower of thermal yield. To provide designers an correct guideline from thermal

yield estimation, it is necessary to take electro-thermal coupling into thermal simulator.
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cal thermal simulator (a) with considering electro-thermal coupling. (b) without considering
electro-thermal coupling.
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Chapter 6

Conclusions

An efficiently statistical electro-thermal simulator considering inter-die variations and intra-die
variations including the spatial correlation has been presented. The proposed simulator can
efficiently provide the accurate simulation results and has the advantages of high capability for
any complex leakage power models and the spatial correlation function. The statistical electro-
thermal framework can be adopted in, different technology nodes and assistant designers to
correctly predict yield of chip. According.te. simulation results, we have also indicated that
it is not allowable to ignore electro-thermal coupling when considering process variations in

statistical thermal simulation.
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