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FastLegalize: Legalization for Standard Cell Based Design with
Minimal Disturbance

Student: Tsung-You Wu Advisor: Dr. Yu-Min Lee

Department of Communications Engineering
National Chiao Tung University

ABSTRACT

An efficient legalization approach is necessary for the integrated circuit design
which consists of millions of movable standard cells and fixed macros. To maintain the
global placement result, the disturbance of cells‘'must be minimized. In this work, a fast
legalization placer, FastLegalize, is developed to legalize standard cells with minimal
movement.

First, a chip is divided into several bins with equal size to limit the movable scope
of cells. Then, starting with the‘most crowed unlegalized bin, a merging procedure for
bins is used to integrate bins ‘into -a—cross-shaped bin-merged structure or a
square-shaped bin-merged structure until the cell density in that bin-merged structure is
less than a defined threshold. After that, an efficient legalization method which
simultaneously preserves the ordering in each row and minimizes the sum of absolute
movement distances is developed to legalize cells in that bin-merged structure. To
improve the legalization quality, the proposed legalization method refreshes the
positions of legalized cells during legalization. Finally, the above legalizing procedure
is repeated until all cells are non-overlapped.

Compared with the state-of-the-art method, Abacus, FastLegalize can reduce the
total movement of cells to be 48% in average, and save the largest movement of cells to

be 140% in average. Moreover, FastLegalize can obtain average 1.11X runtime speed

up.
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Chapter 1

Introduction

The thesis is mainly to present novel techniques for the legalization problem, which is the sec-
ond stage of the placement in physical design. As the process technology scales down, the
design becomes more complex dramatically. There are new challenges to handle the legal-
ization problem in placement such as minimization of movement and wirelength. An inferior
legalization will make design failure since the design'does not meet the constraints produced by
global placement stage. In this thesis, we propose an efficient legalization approach to handle

these challenges.

1.1 Design Flow of an Integrated Circuit

In Very Large Scale Integration (VLSI) design flow, an VLSI chip is designed from a system
specification, next following a series of procedures, and packaged eventually. A classical VLSI
design flow is shown in Figure 1.1. We focus on the legalization, which is the placement stage
of physical design procedure. Before the physical design procedure, the logic circuit design
procedure is usually described in a circuit diagram which contains the circuit elements (e.g.,
transistors and blocks) and interconnections also called a netlist between components. More-
over, a netlist is normally created from a logic description by utilizing logic synthesis tools.
Because of the great complexity, the chip is partitioned into sub-chips which are known as
function blocks in the floorplanning step. Then, the best location of each circuit component
and/or pin locations according to appropriate cost functions in a chip are determined in the
placement stage. According to the netlist, the interconnects between components will be com-

pleted and consume minimum cost in routing. Finally, the circuit must be verified such that all
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Figure 1.1: The VLSI design flow.

constraints are met and packaged in a chip. Otherwise, the circuit must be checked and fixed

for the problems in each step.

1.2 Motivation

As process technology scales into the sub-micron and nano-meter region, the placement task
for large chips has become more important than before [3]. The rapid growth of the complex-
ity of VLSI circuits has further pushed the requirement of efficient and fast automatic placer.
In general, the designed placer is divided into three stages for different considerations: global
placement, legalization, and detailed placement stages. Different stage of the placer considers
the different factors. Several approaches exist for global placement [4—6]. The global placement
result is legalized then. To maintain the various characteristics produced by global placement
result, such as wirelength, routing congestion, timing optimization, and heat distribution, move-
ment of total cells in circuits should be minimized so as to disturb the original global placement
result as little as possible in legalization. In most research of the placement, the legalization is
seldom discussed specifically; nevertheless, it plays increasingly important roles today.

In modern circuits, there are millions of cells and blocks in a chip, as shown in Figure 1.2. It
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Figure 1.2:"Placement circuit.

is important to design an efficient legalization placer; hence, our goal is to propose an efficient

and fast legalization approach to.solvethe complex problems.

1.3 Our Features

In this work, we develop an efficient legalization approach, FastLegalize, and it has the follow-

ing distinguished features.

e Bin Merged Structure: We propose two structures of integrated bins that can help us limit

the movable scope for each cell.

e Legalization Framework: The approach places the cells into one row which is the lowest

cost among all rows; moreover, it preserves the relative order of cells in each row.

e [egalization Core (LegCore): It refreshes the positions of legalized cells during legaliza-

tion; i.e., the approach preserves the best position for cells instantly.

e Sum of Absolute Distances Solver (SADS): The solver minimizes the Manhattan dis-



tances of total cells between global placement and legalization; moreover, it uses the
median concept for getting the optimal solution quickly. It is more exact than estimation

approaches proposed before.

Tetris [7] is a well-known patent for legalization. It is used popularly by the integrated placer
(including all stages of placement), such as NTUplace3 [4] and DPlace 2.0 [6]. Recently, Aba-
cus [2] uses dynamic programming to improve the performance such that it has smaller move-
ment than Tetris. Experimental results show that FastLegalize can reduce the total movement
of cells to be 109% in average, and save the largest movement of cells to be 104% in average.
Moreover, FastLegalize can obtain average 3.30x runtime speed up. Besides, our algorithm

preserves the relative order of cells in each row.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows. Chapter 2 introduces the basic concept of place-
ment. At the same time, we. also review some related literatures. In chapter 3, we present
the Bin Merged Procedure, Legalization Framework, Legalization Core (LegCore), and Sum of
Absolute Distances Solver (SADS), which are the kernel algorithms of this thesis. The exper-
imental results of the comparison for the propoesed FastLegalize with Abacus [2] are presented

in chapter 4. Finally, the conclusion is given in chapter 5.



Chapter 2

Preliminary and Literature Overview

2.1 Physical Design

Physical design is one of the most important design procedures because it impacts the power,
area, and performance of electronic circuits. It is a flow that converts a system description into a
geometric circuit; moreover, it mainly contains the following tasks: partitioning, floorplanning,

placement, and routing, as shown‘in Figure 2.1.

Partitioning Physical

l D (_’Si on

The important stage
of physicgl design

Fabrication

Figure 2.1: The main tasks in the physical design flow, partitioning, floorplanning, placement,
and routing.

A circuit assigned in the chip is divided into several parts by partitioner such that they are

manageable and the number of connection among the parts is minimized. Floorplanning makes
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enveloped rectangle rooms which are non-overlapping divided by horizontal and vertical line
segments; furthermore, floorplanning optimizes area, wirelength, and etc.. Placement deter-
mines the best position of each circuit component (e.g., standard cells and blocks) in a chip.
Given different constraints, router tries to route all nets completely.

Among all tasks in the physical design flow, placement is the most critical part on the quality
of final design, especially for modern design circuits. Without a high-quality placement which
takes all constraints into consideration, the routing will be failed because the nets are not to
be connected completely. Consequently, it is important to focus on the study of placement

problems.

2.2 Basic Concept of Placement

Placement is a complex problem to analysis and solve; therefore, it is usually divided into three
parts, global placement, legalization, and detailed placement. Different stage of the placement
considers the different factors. They are described as follows.

Global placement: Global placement places the modules roughly into the placement region
that may violate some placement constraints-(e-g--the modules may be overlapped) while main-
taining some characteristics (e.g.;wirelength, routing congestion, timing optimization, and heat

distribution). An example of the global placement result is shown in Figure 2.2(a).

(a) (b)

Figure 2.2: The placement procedure. (a) Global placement result generated by a rough place-
ment solution. (b) Legalization result generated by moving modules to be legal from global
placement solution.

Legalization: Legalization is to move the modules from their global placement locations to

legal placement site with minimum total movement and non-overlaps among them. An example

6



of the legalization result is shown in Figure 2.2(b).

Detailed Placement: Detailed placement further improves some placement objective of
legalization solution such as wirelength or congestion, and produces a better legal placement
solution.

Among all steps in placement, legalization has the significant impact on the final placement
result. The final placement with some constraints produced by global placement stage will be
failed if the constraints are not met after legalization stage. If the cells are not placed well, the

design even can not be fabricated. Hence, we focus on the study of legalization problems.

| Standard Cells

1/O block

Source: XBOX 360 CPU Lavout

Figure 2.3: Cells and blocks in a chip

2.2.1 Standard Cells

There are millions of standard cells which construct the functions in a chip. A standard cell
consists of transistors and interconnects, and provides a boolean logic function (e.g., AND,
OR, inverters, and etc..) or a storage function (flipflop or latch). Though different in width,
the standard cells have the same height. Moreover, the construction of cells is the same if
their number of input/output pins and functions are the same. Consequently, it can reduce the

complexity of design. The physical representation in a chip is shown in Figure 2.3.



2.2.2 Fixed Blocks

In a circuit, some important functions are pre-designed and placed at fixed position before
placement stage for taking some factors into consideration, such as I/O object, memory, cache,
and etc.. Since the fixed blocks slice the rows into pieces of rows, it makes the legalization more

complicated to be solved than before.

2.3 Cost Function to Legalization

In the legalization stage of placement procedure, legalization approach moves the cells overlap-
free to the rows with minimal movement such that all constraints are preserved from global
placement result. In general, there are two well-known methods to estimate the cost during le-
galization approach, Euclidean movement and Manhattan distance, used to measure the move-
ment of all movable cells between global placement and legalization, geometrically shown in

Figure 2.4.

Figure 2.4: Manhattan distance plotted in red or purple line versus Euclidean movement plotted
in yellow line.

Generally, the Euclidean movement between points P = (py, pa, -+, Pm) and Q = (g1, qa, - - -

in Euclidean m-space, is defined as:

Vi — @)+ 02— @)+ (P —qm)? = (2.1)

It can be rewritten since the legalization is a two dimension plane problem, P = (p,,p,) rep-
resenting the global placement position and () = (¢, g,) representing the legalization position,

computed as:

\/(pz — @)* + (py — @) (2.2)

8
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(2.2) represents the movement of one cell; however, the total movement of n cells is to be
calculated with minimal movement during legalization in a chip. Hence, the cost function is

derived as follows.

> \/(pé —qL)? + (p} — q’)? (2.3)
=1

Additionally, the Manhattan distance is the summation of the lengths of the projections
of the line segment between the two points, global placement and legalization position onto
the coordinate axes. For example, in the plane of a chip, the Manhattan distance between the
the global placement position P with coordinates (p., p,) and legalization position (¢, g, ) is
|Dz — @] + |py — ¢y | for one cell. The total movement of n cells is to be calculated with minimal

movement during legalization in a chip. Hence, the cost function is derived as follows.

> (= gih4 e, — ) (2.4)

1=1

In this thesis, we use the Manhattan distance as our representation of cost function.

2.4 Literature Survey of Legalization

There are various approaches existing for legalizing standard cell circuit. A well-known le-
galization approach using heuristic cell movement is Tetris [7], used popularly by the integral
placer, such as NTUPlace3 [4], DPlace 2.0 [6], and others [8—10]. Tetris proposed by D. Hill
sorts the cells into a processing order based on the respective x-coordinate positions of the cells,
and then places the cells one by one from the order in the row of lowest cost. The legalization
of one cell is done by moving the cell over free rows. The movement is done until the nearest
free row is found. Once a cell has been legalized, it will not be moved anymore. The [9, 11, 12]
extends the method by Tetris which can process the objects with uniform height only; it allows
the legalization placer with processing both standard cells and macros. Abacus [2] proposed by
Spindler et. al. uses a Tetris-like method but it moves the legalized cells by dynamic program-
ming. Besides, it uses a quadratic programming based technique to find a row of lowest cost for
minimizing the movement from the original global placement result. The average movement is

about 30 % lower in Abacus than in Tetris.



The diffusion based migration technique [13, 14] formulates the legalization as physical dif-
fusion problem. They propose a mathematical model to model the physical diffusion. First, the
chip is divided into several equal size bins, and the cells are moved to the position calculated by
the mathematical model then. The authors of [15—17] presented a traditional method simulated
annealing to legalize the circuits, and they starts from an initial placement with temperature.
The algorithm [18] proposed by Min Pan have three stage approach: global swap is to help
find the optimal region for cells, and then use vertical swap to find the good candidate space;
finally, use local re-ordering to reduce the wirelength. The network flow technique [19, 20]
minimizes the total movement of cells by minimum cost flow. The single row optimization
technique [21,22] places the cells in each row optimally by dynamic programming. Fractional
Cut [23] divides the legalization into two stage: the cells are placed in rows by minimizing
the assignment cost for assigned row, and then cells are sorted by z-coordinate and packed.
The [24] presents two-phase approach: The row capacities must be met for place in, and then
overlaps among modules in all rows are removed. In legalization, Mongrel [25] presents two-
phase approach: The cells tries to be placed the placement region and produces a new legal
placement, and then adopts the wirelengh minimization solution; hence, the constraint viola-
tion ( e.g., bin overflows) must be fixed by disturbing cells as little as possible. Domino [26]
places the cells by solving min-cost-max-flow, and then swaps cells for reducing wirelength
under non-overlap.

Furthermore, the authors of [21] indicates that initial cell ordering for standard cell circuits
tested by industry tools are too good to improve it. Hence, our tool, FastLegalize, also preserves

the initial cell ordering for preserving a good performance.

10



Chapter 3

The Legalization Approach for Standard
Cell Based Design with Minimal
Disturbance

In this chapter, we present the legalization approach for standard cell based design with minimal
disturbance, also called FastLegalize. First, the overview of this algorithm is introduced. Then,

we will present the kernel components of this algerithm.in detail.

3.1 Legalization

Legalization is to place the standard cells non-overlap imto the rows. Nowadays, there are mil-
lions of cells in a chip and the legalization approach of high quality is necessary. Here, we
propose a hierarchical legalization placer which is fast and efficient to legalize the overlapped
cells. The input of legalization is a global placement result whose cells are spread on the chip
roughly and which takes some factors into consideration, such as wirelength, routing conges-
tion, timing optimization, and heat distribution. Therefore, the legalization placer must disturb
the global placement result as little as possible so as to preserve the original characteristic.

In addition, the layout of basic logic gate of standard cell is pre-designed to construct some
specific functions, such as inverter, NAND, NOR, etc. Though different in width, the standard
cells have the same height. In general, the rows has been divided into new subrows by macros
such that they are not blocked anymore. Hence, in the rest of this thesis, we don’t take the

macros into consideration.

11
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Figure 3.1: The flow chart of FastLegalize.

3.2 Overview of the Approach

FastLegalize essentially consists of four components: Bin Merged Procedure, Legalization
Framework, LegCore, and SADS. It is targeted on reducing the movement of all standard cells
under the constraints produced by global placement.

In order to reduce the movement of cells, first, we construct a bin-merged structure which is
based on the cell density by Bin Merged Procedure from crowed unlegalized bins, used to limit
the movable scope of cells. Moreover, the structure is constructed by integration of different
bins. Then, the Legalization Framework is called by Bin Merged Procedure since the cell
density of bin-merged structure is lower than defined threshold; moreover, it places the cells in
a row of bin-merged structure and position of lowest cost.

To put the matter simply, the position and row for cells are calculated by LegCore in one of
steps of Legalization Framework. Its kernel mainly includes two parts: Collapse and Optimal

Position of Cells. The calculational solver used in Collapse is SADS, using median concept ap-

12



Bin Merged Procedure
Input:

A chip design and global placement result
Output:

CSBMS or SSBMS for Legalization Framework

01 Choose one unlegalized bin in the sorted order;

02 while its cell density exceeds the threshold

03 Integrate the neighbor of the bin to CSBMS;

04 if its cell density in CSBMS exceeds the threshold then

05 Integrate the corner bins of CSBMS to construct SSBMS;
06 if the cell density in SSMBS exceeds the threshold then
07 The bins in SSMBS will be merged into one bin;

08 end

09 end

10 end

Figure 3.2: The pseudo-code of Bin Merged Procedure.

proach rather than linear programming for speed up. With those activities, our optimal position
can be obtained.

Figure 3.1 is the flow chart of our algorithm, FastLegalize. At the beginning, the adaptable
bin-merged structure is chosen by Bin Merged Procedure. Then, it enters the Legalization
Framework. After that, it will enter the Bin Merged Procedure since there are any unlegalized

bins in the chip. The legalization is done as bins are all legalized.

3.3 Pre-Work and Bin Merged Procedure

Some work have to do before entering the Bin Merged Procedure for required information, and
it is summarized in Pre-Work Step. First, the placement is divided into bins with equal size, as
shown in Figure 3.3. Based on the result obtained from the global placement, the cell density
in each bin (D;) is then analyzed. D; is defined as the total area of all standard cells over total
area of all subrows inside bin :. Then, the bins are sorted into a processing order according to
descending cell density itself. Hence, the Pre-Work before Bin Merged Procedure is complete.

The pseudo code of Bin Merged Procedure is described in Figure 3.2. The standard cells

are moved around the placement region based upon the bin where they are and its current cell

13



Figure 3.3: Bins with equal size

density (line 1-10). Some cells in one bin with a higher cell density will be moved away for
reducing its cell density and solving the overlap among themselves; moreover, our approach
preserves the relative order of the cells in each subrow, described as follows.

The unlegalized bins are processed one by one from the sorted order (line 1). For each
processed bin, it is integrated with its neighbor bins to construct the Cross-Shaped Bin-Merged
Structure (CSBMS), defined in the Definition 1, if the cell density exceeds the defined threshold
(about 1) (line 2), and then thecell density of this bin-merged structure is calculated. If the cell
density of CSBMS exceeds the threshold (line 4), the CSBMS is integrated with its corner bins
to construct the Square-Shaped Bin-Merged Structure (SSBMS), defined in the Definition 2
(line 5). Otherwise, the cells in CSBMS, whose cell density is lower than the threshold, will be
legalized in the next step of Legalization Framework which preserves the relative order of the
cells in each subrow. Since the cell density of SSBMS still exceeds the threshold (line 6), the
bins in SSBMS will be merged into one bin (line 7). Otherwise, the procedure will go to the next
step of Legalization Framework. Similarly described as above, the bin merged is integrated with
its neighbor bins to construct the CSBMS. It becomes a loop to integrate or merge bins until
the cell density of bin-merged structure is lower than the threshold. After all bins exceeding the
threshold in the sort order are processed, the remaining bins under overflowed are processed

individually (line 1); hence, the legalization is done.

Definition 1 (Cross-Shaped Bin-Merged Structure, CSBMS) The bins are integrated with
its neighbor bins (the bins of up, down, left, and right bin) for reducing its density. Never-
theless, the shape of this structure is like a cross, and it is called as a Cross-Shaped Bin-Merged

Structure.

14



(a) (b)
— ]

(c) (d)

Figure 3.4: The merging procedure. (a) The most crowed unlegalized bin is chosen. (b) The
neighbor bins are integrated to construct CSBMS. (c¢) The corner bins of CSBMS are integrated
to construct SSBMS. (d) The bins in SSBMS are merged into one bin, and the merged bin is
ready integrated with neighbor bins .

Definition 2 (Square-Shaped Bin-Merged Structure, SSBMS) The bin structure, CSBMS, is
integrated with its corner bins(the.CSBMS of left-top, right-top, left-down, and right-down bin)
for reducing its density. Nevertheless, the shape of this structure is like a square, and it is called

as a Square-Shaped Bin-Merged Structure.

In this section, two bin structures are proposed, CSBMS and SSBMS, having two advan-
tages for legalization. One is that the movable scope of cells is limited in the CSBMS or SSBMS
structure, which reduce the movement of cells efficiently. The other is that the cost time of le-

galization is much lower since the chip is divided into bins so as to reduce the complexity.
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Legalization Framework
Input:

Positions of cells before legalization in the bin structure
Output:

Positions of cells after legalization in the bin structure

01 Sort the cells into a processing order according to ascending x-coordinate positions;
02 for each cell ¢ in the sort order do

03 Chest < OQ;

04 pointer «— the nearest subrow r for cell 7;
05 for the subrows around the pointer r do
06 Insert cell i into subrow r;

07 LegCore r (trial);

08 Determine cost c;

09 if ¢ < Cpest then cpesp = €, Tpest = 775

10 Remove cell i from subrow r;

11 end

12 Insert cell i into subrow Tpes:;
13 LegCore 7y (real);
14 end

Figure 3.5:-The pseudo code of Legalization Framework.

Bin Merged Procedure for CSBMS/SSBMS Graph

As described above, CSBMS/SSBMS is-used for limiting the movable scope of cells. Start-
ing with the most crowed unlegalized bin shown in Figure 3.4(a), a merging procedure is used
to integrate with its neighbor bins to construct the CSBMS, shown in Figure 3.4(b). If it is still
too crowed to have enough space to legalize the bin structure, it is integrated with its corner bins
to construct SSMBS, shown in Figure 3.4(c). However, if the cell density of SSMBS exceeds
the threshold, the integrated bins are merged into one bin. Iteratively similar steps described

above as shown in Figure 3.4(d), it goes to the next step until the cell density is lower than the

threshold.

3.4 Legalization Framework

After the previous algorithm, we will focus on how to find a candidate subrow for each cell in the
bin-merged structure. The pseudo code of Legalization Framework is described in Figure 3.5.

First, the cells are sorted into a processing order according to ascending x-coordinate positions
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(line 1). The cells will be legalized one by one from the processing order (line 2-14). For each
cell 7, it is moved over all subrows in the bin-merged structure to find a lowest cost subrow (line
5-11) in trial mode. The cost of the new position of cell ¢ is determined (line 8) by “LegCore”
(line 7) procedure (see the “LegCore” section for an overview). In detail, the cost is calculated
by Manhattan distance between its global placement position and legalization position of current
subrow. Finally, the cell 7 is removed from the current subrow (line 10) in trial mode.

The “for” loop lets each cell be moved around the nearest subrows for cell ¢ (line 5) in the
bin-merged structure, and the best candidate subrow is determined by lowest cost to cell (line 9).
In the period of being moved around the subrows in bin-merged structure (line 5-11) for cell ¢, it
is called “trial mode.” The cells through LegCore (trial) procedure are not really moved to these
position; nevertheless, it is moved to temporary position for getting the cost. Consequently, the
best subrow needs to be placed again (line 13), and the cells through LegCore (real) procedure

are actually moved to these final legal position.

(1) : lower-left coordinate of i-th cell in global placement
2'(i),y'(7) - lower-left coordinate of i-th cell in legalization
(2) :  width of i-th cell

~ . total numberof ordered standard cells in one subrow
total number of ordered standard cells in i-th cluster
'+ 1-th'cluster in the subrow 7
x.(1) :  optimal position-of lower-left corner of i-th cluster
) : width of i-th cluster
Tmin - left boundary of subrow r
Tmaz : right boundary of subrow r
Bynin © left boundary of the bin structure
By ¢ right boundary of the bin structure

Figure 3.6: Notation used in this thesis.

3.5 Legalization Core (LegCore)

LegCore is the abbreviation of “Legalization Core”. It is used to solve the overlap among cells
and determine the optimal positions of cells in each subrow. The algorithm of this section is
divided into four parts. One is the main algorithm of the LegCore, which contains the initial-
ization of new inserted cell, decides whether the cell is overlapped with its predecessor cluster

or not, and integrates with the other two parts. Another is Collapse, which uses the SADS pro-
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posed in Section 3.6 to calculate the optimal positions for clusters by solving (3.18). Another is
Optimal Position of Cells, which solves the optimal position of all cells in the last cluster of the
subrow by solving (3.15). The other is cost function, which calculates the amount of influence
on other cells as a new cell inserted by cell movement. Hence, the four parts are described as
follows.

The notation used in the rest of this thesis is summarized in Figure 3.6. Let z.(i), w.(7) be
the optimal position of lower-left coordinate and the width of i-th cluster, respectively. If the
optimal position is not in the scope between z,,;, and x,,.,, which are left and right boundary
of the subrow, respectively, it will be limited. Similarly, if the optimal position is not in the
scope between B,,;, and B,,,,, which are left and right boundary of the bin structure, it will

be limited. The algorithm of LegCore is described in Figure 3.7. First, a new inserted cell is

Algorithm: Legalization Core (LegCore)
Input:
Cell 7 in the bin-merged structure
Output:
Cells (includingcell 2) with optimal position‘in the subrow r

01 Create a new cluster cff”t, and-1t 18 the last cluster of subrow 7;

02 Cell i is stored in cluster ¢/ & 7. () « z (i), w.(cl**t) — w(i);
03 ¢ « Predecessor of ¢/45¢;
04 if ¢ exists and x.(c') + wu(c") > z.(cl%?) then

r

05  w.(c) «— w.(c) + we(cst);

06 Store all cells from cluster cﬁ?s’f into cluster ¢/;
07  Remove cluster c/**;

08 Collapse (c);

09 end

10 Optimal Position of Cells();
11 Cost Function();

Figure 3.7: Algorithm of Legalization Core (LegCore).

initialized before legalization (line 1-2). In initialization, the cell is included in a new cluster
whose optimal position and width are the same as the cell, respectively (line 2). Moreover,
a cluster can include lots of cells but only one cell is included in it initially. The cluster is
processed according to ascending x-coordinate positions; therefore, early processed cluster is

absolutely left of lately processed cluster. It means, the relative order of the cells in the legal
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last

placement is the same in the global placement. If the last cluster ¢,**" is overlapped with the

predecessor cluster ¢, the two clusters will be merged into one cluster whose cells in cluster
cl*st and ¢’ are included and the Collapse is called to calculate the position of the merged cluster
(line 4-9). Nevertheless, the subCollapse of Collapse is called continually as long as the new
position of cluster is overlapped with its predecessor cluster until the overlap among all clusters
is solved (subCluster of Collapse is called by itself; see the overview in Section 3.5.1). Finally,
Optimal Position of Cells is called to calculate the optimal position of all cells included in the
last cluster in the subrow (line 10).
The LegCore we presented is partly similar to [2,21,22]. The cells are placed by dynamic

refresh or theirs with preserving the order of cells and no overlap. Because of the optimality

proof presented in [21], it can state that our LegCore is also optimal.

Algorithm: Collapse
Input:
The cluster cles!
Output:
The overlap is solved among clusters

j—1
01 Calculate Az; = 2(j) — Z w(k) for the last cellj of cluster cla*t;

02 Sort the sorted sequence {Aa:]} U of ¢ and Az into {Ax;}_, by insertion sort;
03 Q1 2({A7] } ,) is obtained from (3 18);

04 2 (") — Q1/2({A95 } K
\\Limit z.(clast) posmon between X, and T4, — we(C
05 if z.(cl*?) < 2,4, then 2.(c1%Y) = 2,
06 if 2.(cl%") > 2,0, — we(cl%?) then 2,4, — w.(cle%);
\\Limit x.(cl%*") position between B, and Byue, — we(cl®?);
07 if 2.(cl%!) < B, then x.(c'%') = Bin;
08 if z.(cl%") > B,ux — we(cl?) then By, — we(cl*?);
09 ¢ < Predecessor of cl*t;
\\Do ¢ and c!*** overlap with each other?
10 if ¢ exists and z.(c) + w.(c') > z.(cl*") then
11 w.(d) — we() + w.(clast);

last)

)

12 Store all cells from cluster cl‘“t into cluster ¢’;
13 subCollapse(c/, clost)
14 end

Figure 3.8: Algorithm of Collapse.
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Algorithm: subCollapse
Input:

Two clusters ¢’ and ¢

last

Output:

01

02
03

04

05
06

07
08
09

10
11
12
13
14

The overlap is solved among clusters

n

Calculate Az; = Az; — Y w(k) of cluster ¢ for each cell j in L%,

k=1
Sort the sequence {Ax; }i_, of ¢ and {Az;}5_, of c**' into {Ax’}
Q12({Ax) } (i+k) ) is obtained from (3.18);

Te(c') Ql/Q({A*T }H_k );
\\Limit z.(c) posmon between X, and 40 — we();
if () < Tpin then z.() = Tpin;
if 2.(¢) > Tpae — we() then 2,0, — we();
\\Limit z.(c) position between B,,;,, and B, — w.(c');
if () < Bpin then z.(¢') = Boin;
if (') > Bz — we(d) then By — we(c);
Remove cluster cl‘”t and ¢’ < Predecessor of ¢;
\\Do ¢’ and ¢’ overlap with each other?
if ¢ exists and z.(¢") + wa(”) > x.(c') then
we(c") — we(c") + weld);
Store all cells from cluster ¢"into cluster ¢;
subCollapse(c”, ¢)
end

by merging sort;

Figure 3.9:“Algorithm of subCollapse.

3.5.1 Collapse

The algorithm of Collapse is described in Figure 3.8, and subCollapse called by Collapse is

described in Figure 3.9. The optimum position is obtained from the procedure line 1-4 of

Collapse or subCollapse, which will be described in Section 3.6. After the optimal position

of cluster c is obtained, the position must be checked whether it is in the scope of subrow or

not. The left corner z.(c) of cluster c is limited to right of x,,;, and B,,;,, and the right corner

of z.(c) + we(c) is limited to left of x,,,, and Bi,q, (line 5-8) of Collapse or subCollapse.

If the new position of cluster is overlapped with its predecessor cluster (line 10) of Collapse

or subCollapse, the width and the cells of the cluster is added to the predecessor cluster for

merging (line 11-13). Then, the subCollapse is called to legalize between them (line 13). It is

called continually until the overlap among clusters are solved.

20



Algorithm: Optimal Position of Cells
Input:
Cells of the last cluster in the subrow r
Output:
Cells with optimal position of the last cluster in the subrow r
clast « the last cluster ¢ in the subrow 7;
2'(1) of cluster st « z.(clest);

T T 2

for celli = 2, -+, N in the cluster c/**! do
i—1
(i) = /(1) + >0 w(k);
k=1

end

N A W=

Figure 3.10: Algorithm of Optimal Position of Cells.

3.5.2 Optimal Position of Cells

The algorithm of Optimal Position of Cells is deseribed in Figure 3.10. After all overlaps are
solved among the clusters in the subrow described. in ptrevious subsections, the positions of
cells in the last cluster are determined in line 2-5. The position of first cell is determined by
the position of the cluster (line 2), and the position of second cell is z'(1) 4+ w(1) because it is
abutted with the first cell and so on (line 4).

The main difference to Abacus is that our SADS minimizes the amount of total cell move-
ment. Because of the median concept manipulated by SADS described in Section 3.6, lots of
constraints are not solved necessarily. Additionally, our approach relies on simple data struc-

ture; complex data structure is not necessary in our approach.

3.5.3 Cost Function

As a new cell is inserted and placed in subrow 7, the Cost function calculates the influence
on affected cells and determines the cost. The cost includes two parts, the difference of x-
and y-coordinate in distance between global placement and legalization of all affected cells.
Figure 3.11 gives an example to illustrate the legalization procedure.

Figure 3.11(a) is one bin of unlegalized circuit. In Figure 3.11(b), cell 1 is legalized in

optimal position, and cell 2 is moved to the nearest row in y-direction. There is an overlap
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(e) &)

Figure 3.11: An example for illustrating the legalization procedure.



between cell 1 and 2, and the LegCore is called to solve the overlap between them. The overlap
between them is solved, as shown in Figure 3.11(c). At this time, the cost is calculated and
includes the movement of cell 1 and cell 2 between global placement and legalization position.
Similarly shown in Figure 3.11(d), cell 2 have to be moved as cell 4 is overlapped with cell
2. Note that the cell 1 has to be moved since cell 1 and cell 2 are in the same cluster; hence,
Figure 3.11(e) shows the legalized cell 1, 2, and 4, and the cost of three cells are included.
Similarly shown in Figure 3.11(f), the cost of cell 3 and 5 are included as the cell 3 is affected

and cell 5 is inserted.

3.6 The Optimal Position for Clusters by Sum of Absolute
Distances Solver (SADS)

Let N, be the total number of ordered standard cells along x-direction in one subrow, indexed
from 1 to N,, and let (1) and y(/) be the lower-left corner x- and y-coordinate of cell / in the
global placement, respectively,-and w(Z) is the-width of cell / .

To minimize the disturbance, the problem is formulated to minimize the Manhattan distance

movement.

min || x5 =Xyl v, — v, 3.1)
where

X/Nr = (IL'/(]_),---7$/(l),'--7$/(NT))T7

y§V7‘ = (y/<1>7’“7y/<l)7"‘7y/<NT)>T7

XN, = (I’(l),"',I(Z),‘”,LE(NT))T7

YN, = (y(1)7 s vy(l)v e ay(Nr))T'

Here, z/(1) and %/(l) are the z- and y-coordinate positions of the [-th cell after legalization,
respectively.
Our approach here is to minimize the disturbance as cells are aligned overlap-free to a

subrow with keeping the original ordering along x-direction as the y-coordinate position of
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each cell is fixed. Since each /({) is fixed, the problem of (3.1) is equivalent to

: !/
min Her — XN, ||

(3.2)

st. /() —2'(l—-1)>w({l—1); 2<I<N,.
The objective (3.2) describes the total movement of all cells along x-direction in a subrow after
legalization. Its constraint of (3.2) satisfies the rule in legalization of no overlapping among
cells. Moreover, the constraint preserves the order of cells, i.e., the relative order of cells in the

legal placement is the same as the global placement.

Before legalization, two consecutive cells [ and [ — 1 are overlapped; hence,
() —z(l—=1) <w(l-1). (3.3)

Before solving the optimal problem (3.2)—(3.3), let’s introduce a key theorem as follows. Before

proving Theorem 1, let’s introduce a simple lemma.

Lemma 1 Given N, ordered cells being overlapped in'a subrow with the ordering preserved
constraint, after legalization, if the J-th cell is the first cell whose left-side x-coordinate needs
to be shifted to the right direction of its original position, the left-side x-coordinate of each cell

[ with | > J must also be shifted to.the right side of its original position.

Proof: Let z(l) and /() be the left-side x-coordinates of each cell [ in the global placement
and in the legalization result, respectively. Here, we need to prove z'(1) > x(l) foreach [ > J.

For cell J + 1, in the global placement, we have
x(J+1)—x(J) <w(J), (3.4)
After legalization, we have
2(J+1)—2'(J) > w(]). (3.5)
Subtracting (3.4) from (3.5), we have
Z(J+1)—a(J+1) >2(J) —x(J]). (3.6)

Since 2'(J) > x(J), (3.6) indicates z’'(J + 1) > z(J + 1). By the similar way, we can conclude

that /(1) > x(I) foreach [ > J. O
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Theorem 1 Given N, ordered cells being overlapped in a subrow with the ordering preserved

constraint, the optimal solution of the optimal problem (3.2)—(3.3) must satisfy
) —2d(1-1)=w(l—-1) I=2,--- N,

Here, x(l) and /(1) are the lower-left corner x-coordinates of each cell | in the global place-

ment and in the legalization result, respectively.

Proof:  Given the J-th cell being the first cell which satisfies 2/(./) > z(.J) and according to

Lemma 1, (3.2) can be rewritten as
Ny
Do) —2()] = (x(1) — /(1))
=1
+ (' (1) — z(1)). (3.7)

o Y x(l) = 2/(1): /(1) <a(l),I<t<T-1

After legalization, each x/({'+ 1) can be rewritten as /(1 + 1) = 2/(I) + w(l) + d, for
1 <1 < J—1. The d, is.the distance between the right-side x-coordinate of cell [ and the
the left-side x-coordinate of cell [ + 1. Hence,

2] — 1) ETET = 2) + w(J = 2) + dys,
2(J—2) = 2'(J—3)+w(J—3)+dys

z'(I+1) : (1) +w(l) + d,

Summing up the above equations, 2'([) can be represented as

J-2 J—-2
() =2 (T-1) = w() - d; (3.8)
j=l j=l

To minimize 377" (z(I) — 2/ (1)) is equivalent to maximize each (1) since z'(1) < x(l).
Furthermore, according to (3.8), to maximize z'(l) is equivalent to simultaneously maxi-
mize 2'(.JJ — 1) and minimize ij d; for each [.

Taking d; = 0for 1 < j < J—2, each Z;f:—f d; can be minimized to be zero which leads

to

dO)—d(l-1)=wl—-1), 1=2,--,J—1. (3.9)



Therefore, we can conclude that to minimize 37" ((I) — 2/(l)) is equivalent to maxi-

mize z'(J — 1) under (3.9).

N (@' (1) — x(1)): /(1) > 2(1), ] <1 < N,

After legalization, each 2/(l) can be rewritten as 2'({) = 2'(l — 1) + w(l — 1) + d;_; for
J <[ < N,. The d;_ is the distance between the right-side x-coordinate of cell [ — 1 and

the the left-side x-coordinate of cell [. Hence,

Z(J+1) = 2'(J)+w(J)+dy,
Zd(J+2) = 2(J+1)+w(J+1)+dj,

Y1) = d(=1)+wl—1)+d,

Summing up the above equations, /(1) can be represented as
/(1) =2(1) + Y wi)E > d (3.10)

To minimize >, (2/(F) ~ (1)) is equivalent to minimize each 2/(1) since z'(I) > x(l).
Furthermore, according to«(3.10), to minimize #’() is equivalent to simultaneously mini-

mize 2'(J) and minimize Y, d; foreach I.
Taking d; = 0 for J < 5 < N, — 1, each Zé;lj d; can be minimized to be zero which
leads to

Z)-2(1l-1)=wl-1), I=J+1,---,N,. (3.11)

Therefore, we can conclude that to minimize S 1" 5 (2'(l) — x(1)) is equivalent to mini-

mize 2/(J) under (3.11).

Hence, to minimize 31", |2’(I) — x(1)| is equivalent to simultaneously maximize z'(J —
1) and minimize 2'(J) under (3.9) and (3.11). Since, after legalization, z'(.J)—a'(J—1) >
w(.J — 1), it can be easily to conclude that to minimize S, |2/(I) — «(I)|, 2'(.J) and

2'(J — 1) must satisfy

Z(J)—2'(J—1)=w(J-1). (3.12)
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Finally, from (3.9), (3.11), and (3.12), we have
Zd)—2(1l-1)=wl-1), 1 =2,---,N,. 0 (3.13)
According to Theorem 1, the constraint in (3.2) can be simplified to
) —2(1-1)=w(l—-1); 1=2,---,N,. (3.14)
After several manipulations, (3.14) can be rewritten as
2() =2/ (1) + ) w(i); 1=2,-, N, (3.15)

Substituting (3.15) into the objective of (3.2), the Sum of Absolute Distances Solver (SADS) is

constructed as follows.

min ||xy, — X, ||, = min (Jri] 4+ 4 |1 + -+ 7w, ])- (3.16)

Here, || = [2/(1) + l_zl w(j) — x()| which is'the movement of cell [. After solving the
minimization problem ojf: (13.16), the optimal position of cell 1 can be obtained, and the optimal
position of each cell [ in the cluster can be obtained by (3.15), described in Subsection 3.5.2.
Note that the cells are abutting in the cluster and there is no free space among them in the legal
placement.

In general, the SADS can be cast as an-linear programming problem after transformation;
nevertheless, it takes much time to solve a large number of constraints of linear programming.
Here, a fast approach for the problem is using the median concept to solve it. Firstly, |r;| can be

rewritten as follows.
| = |2'(1) — Az, (3.17)

-1
where Ax; = x(l) — > w(k) for each cell .
k=1
After that, the sequence {Ax;}1", is sorted to {Az/}", by insertion sort or merging sort
that depends upon the situation of one cell inserted in a cluster or two sorted clusters merged,

respectively. The median of this sequence is derived as follows.

Ax if N, is odd,
ACA (Nr+1)/27 r )
Qy ({Axl}l:1> N { %(Ax’Nr/Q + ATy 901); if N, is even. (3.18)

Choose 1 ({Az;} f\ﬁ 1) as the z-coordinate position of the cell 1; therefore, the optimal position

is obtained rapidly.
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3.7 Runtime Complexity Analysis of FastLegalize Approach

Given a chip with global placement result constructed by NTUPlace3, firstly, the chip is divided
into g; bins in O(g; ) time, and Bin Merged Procedure algorithm presented in Figure 3.2 choose
an adaptable bin-merged structure at most O(g;) time then. After that, it enters the Legalization
Framework procedure presented in Figure 3.5. Note that g; is variable and £; is constant for
1 =1,2,3,---,7in the section.

Assume there are N cells in a chip and &, gﬂl cells in the bin structure. First, the Legalization
Framework sorts the cells in bin structure in O((k; %) log(klgﬂl)) time. Moreover, Legalization
Framework takes the number of klgﬂl times to do LegCore Function, presented in Figure 3.7.

Assume LegCore takes O(M), the complexity for each bin structure is.

N N N
O((k1—)log(k1—) + k1 —M) (3.19)
g1 g1 g1

In the first step of LegCore function, the average number of Collapse called is %Nr times.
In the Collapse step, firstly, the %Nr cells are sorted in ()(4V,.) time by insertion sort or merging
sort and the median of this cluster is picked up. After a series of steps in k5 times, Collapse is
called again since the cluster is‘overlapped with predecessor cluster; hence, the runtime needs
O((N,)?) in Collapse step. In the Optimal Position of Cells and Cost Function step, the worst
case is O(NN?) which is the same as the Collapse step; therefore, the analysis of complexity in

the two steps is neglected. Above description summarized, the complexity in LegCore is.
O((N;)?) (3.20)

Substituting the complexity of LegCore (3.20) into the complexity of Bin Merged Proce-

dure (3.19), the complexity of overall algorithm is.

N N N
O((k1—)log(kr—) + k1—(N,)?) (3.21)
g1 91 g1

In our experimental observation, the time of first term of (3.21) is much smaller than the time of
second term; therefore, the second term dominates the whole complexity. The complexity can
be simplified to.
O(—(N:)?) (3.22)
g1
28



We take the bad situation into consideration; the complexity can be simplified to O(N?/g,).
Obviously, the FastLegalize is much faster than Abacus whose complexity is O(N?). In addi-
tion, the experimental results of Table 4.2 shows that the worst-case complexity of O(N?/g;)

is not reached.
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Chapter 4

Experimental Results

The FastLegalize approach has been implemented in C++ programming language on a Intel
Xeon 5160 3GHz workstation with 32GB memory. We compared our legalization approach
with Abacus, which achieved the best published results compared with well-known legalization
approach Tetris. Abacus, Tetris, and our FastLegalize all have the same purposes. One is to align
all standard cells to subrows. Another isto legalize the standard cells with no overlapping. The
other is that the relative order of the cells in each subrow. is the same in the global placement.
In the setting of specific threshold, it is set to 0.97 rather than 1 because some cells are much
larger such that it can not be placed into'the subrows. To avoid the situation, the value we set is
lower than 1. Moreover, the section presents experimental results of Abacus and FastLegalize in
legalizing NTUPlace3 [4] global placements of the 2005 International Symposium on Physical
Design (ISPD’05) placement contest benchmark suites [1], and the NTUPlace3 is based on the
log-sum-exp model.

One test case “bigblue3” in the benchmark has some movable cells which are not standard
cells; therefore, the test case is not tested. The results of our legalization approach FastLegalize
and the state-of-the-art method, Abacus, are shown in Table 4.2, and the benchmarks informa-
tion is shown in the Table 4.1. In our experimental experience, the setting of the height and

width of one bin is shown as follows.

hb - hr V Nraw (41)

wp = 0.1w, 4.2)

where h, (hy) is the height of one row (bin), N, is the total number of rows of different

height position in chip, and w,. (w;) is the width of the chip (bin). In the table 4.1, “Chip
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Width” and “Chip Height” are the width and height of the chip, respectively, “#Total Objects”
is the total number of objects which consists of movable standard cells and fixed macros in
the chip, “#Mov. Objects” is the total number of movable standard cells, “Total Mov.” reports
the summation movement of total movable cells between global placement and legalization
result, “Average Mov.” reports the movement of the cells between global placement and le-
galization, normalized to the average cell dimension of each circuit, “Max. Mov.” reports the
maximum movement of total movable standard cells between global placement and legaliza-
tion, and “Time(s)” reports the runtime of algorithm of Abacus and FastLegalize individually.
For more comparison, the experimental results of double times and four times the height of one
bin are shown in Table 4.3. Although some cases of experimental results are better than before,
it still proves the average experimental result of Table 4.2 are better.

Figure 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7 show the global placement and legalization by
FastLegalize of circuit adaptecl, adaptec2, adaptec3, adaptec4, bigbluel, bigblue2, and big-
blue4, respectively. Table 4.2 demonstrates that our approach using Bin Merged Procedure, Le-
galization Framework, LegCore, and SADS can legalize the circuits fast and effectively. Com-
pared with the state-of-the-art method, Abacus, FastLegalize can reduce the total and average
movement of cells to be 48% , and save the largest movement of cells to be 140% in average. It
demonstrates the structure of CSBMS/SSBMS can effectively limit the movable scope of cells.
Moreover, FastLegalize can obtain average 1.11x runtime speed up. It also demonstrates the
structure of CSBMS/SSBMS can reduce the complexity effectively, and SADS does not take
much time but is as exact as expected. Hence, our FastLegalize can minimize the disturbance

and legalize the circuits fast and effectively.
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Chip Chip #Total #Mov.

Circuit || Width | Height | Objects | Objects

adaptecl || 10692 | 10680 | 211447 | 210904

adaptec2 || 14054 | 14040 | 255023 | 254457

adaptec3 || 23190 | 23328 | 451650 | 450927

Benchmarks [1] | adaptec4 | 23190 | 23328 | 496045 | 494716
bigbluel || 10692 | 10680 | 278164 | 277604

bigblue2 | 18690 | 18792 | 557866 | 534782

bigblue4 || 32190 | 32328 | 2177353 | 2169183

Table 4.1: 2005 ISPD Placement Contest and Benchmark Information [1]

Benchmarks [1] FastLegalize Abacus
Total Average Max. Time Total Average Max. Time
Circuit Mov. Mov. Mov. (s) Mov. Mov. Mov. (s)
adaptecl 11074785.9 029 | 2810.3 10.4 16802629.8 045 | 8645.3 28.6
adaptec2 28863882.1 0.85-—7338.2 11.1 28060678.4 0.83 | 13446.6 334
adaptec3 181479037.4 2.60 | 11008.2 92.411'355133608.3 5.08 | 21253.3 429
adaptec4 55234207.3 0.73° | 69183 455 || “120071050.5 1.59 | 21806.6 79.8
bigbluel 18703773.3 0.44 7| 5239.1 20.8 16964490.2 0.40 | 7160.3 70.1
bigblue2 34552315.9 0.42 | 37124 43.6 56279868.5 0.68 | 12741.1 93.7
bigblue4 866742682.6 3.01 4 14500.7 | 789.36 || 998137528.9 3.47 | 28891.3 | 1019.5
Comparison 1 1 1 1 1.48 1.48 2.40 2.11
Table 4.2: Comparison for the Proposed FastLegalize Procedure with Abacus [2]
Benchmarks [1] FastLegalize (2 X hp) FastLegalize (4 X hp)
Total Average | Max. Time Total Average | Max. Time
Circuit Mov. Mov. Mov. (s) Mov. Mov. Mov. (s)
adaptecl 23992803.7 0.64 | 47152 9.9 22721983.0 0.60 | 5027.7 12.0
adaptec2 26039069.4 0.77 | 7880.3 15.3 41338824.1 1.22 | 9139.6 22.1
adaptec3 175614423 .4 2.51 | 10368.9 114.6 || 164744365.5 2.36 | 9579.1 116.7
adaptec4 78826003.5 1.04 | 6845.5 46.1 71919265.3 0.95 | 7821.9 75.6
bigbluel 18905391.3 0.44 | 4320.2 34.8 23326904.5 0.55 | 6250.8 374
bigblue2 47594610.9 0.58 | 7725.1 39.8 39996324.4 0.48 | 6881.6 35.6
bigblue4 803083074.5 2.79 | 10999.1 | 2462.65 || 870988654.2 3.02 | 9738.9 | 1509.1
Comparison 1.25 1.25 1.19 1.45 1.30 1.30 1.25 1.49

Table 4.3: Experimental Results of FastLegalize (2 X hy) and FastLegalize (4 X hy)
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Figure 4.1: (a) Global placement result of circuit adaptec] (b) Legalization result of circuit
adaptecl
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Figure 4.2: (a) Global placement result of circuit adaptec2 (b) Legalization result of circuit
adaptec2
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Figure 4.3: (a) Global placement result of circuit adaptec3 (b) Legalization result of circuit
adaptec3
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Figure 4.4: (a) Global placement result of circuit adaptec4 (b) Legalization result of circuit
adaptec4
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Figure 4.5: (a) Global placement result of circuit bigbluel (b) Legalization result of circuit
bigbluel
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Figure 4.6: (a) Global placement result of circuit bigblue2 (b) Legalization result of circuit
bigblue2
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Figure 4.7: (a) Global placement result of circuit bigblue4 (b) Legalization result of circuit
bigblue4
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Chapter 5

Conclusion

In the thesis, we have presented FastLegalize, which minimizes the total movement of cells
for minimal disturbance in placement legalization stage, applicable for standard cell circuits.
The quadratic programming model presented before is not as exact as expected. Therefore,
the SADS is proposed to improve it. Moreover, CSBMS/SSBMS in Bin Merged Procedure
is proposed to limit the movable scope of cells..‘All cells in each row are placed optimally
by minimizing the total movement. It reduces the total movement of total cells about 48% in
average compared with state-of-the-art method, Abacus. In the future work, the FastLegalize

would legalize the standard cells with timing-driven consideration.
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