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Abstract

Cloud computing provides computing infrastructures and applications as a

service. Since the infrastructure of cloud computing is hosted by a third

party, security has become a major concern. In this thesis we discuss the

security issues of hosting servers for a location based social network service

in the cloud computing infrastructure. The limitation of traditional encryp-

tion is that once data is encrypted, other processing cannot be done without

decrypting the cipher text. This results in a conflict of interest in cloud

computing environments. Users require cloud computing infrastructures to

perform data processing, but they do not trust the cloud computing infras-

tructure with their sensitive information. A location sharing protocol, which

permits server side calculations on encrypted location information, is pro-

posed in this thesis. Based on the XOR homomorphic encryption technique,

the proposed scheme allows the users to send their location as the cipher and

obtain location based services without revealing location information to the

cloud computing service providers.
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Chapter 1

Introduction

Cloud computing is the network-based computing where shared servers pro-

vide resources including software, platform and infrastructure as a service to

computers and other devices on demand. Cloud computing is an evolution

of virtualization. Although the industry has started selling cloud computing

products, a multitude of research challenges are present in various areas. One

of the key concerns is the data security of organisations which outsource their

computing and data storage to cloud computing service providers. Most or-

ganizations are hesitant to outsource their data, because data outsourced to

cloud computing infrastructure could be located anywhere in the world, in

computers which are shared by many other users and organizations. Even

though the cloud computing service may be provided by a reputed company,

there is no guarantee that the local data center administrators will not misuse

the access to users’ sensitive information.

Location-based services (LBS) are booming with the increase in pop-

ularity of smartphones with built-in location sensing hardware like global
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positioning system (GPS) receivers. In general, someone’s location is an ex-

tremely sensitive piece of information, which usually is not shared with an

unknown person. With newly launched social network applications, users are

able to share their locations with their friends and at the same time obtain

services from LBS providers in the Internet. In this thesis, we discuss the

security issue for providing location-based social network services in cloud

computing infrastructure. In this scenario, location sharing among friends

and points of interest (POI) searches etc, are expected to be performed by the

virtual machines which are hosted in the untrusted cloud computing infras-

tructure. The widely accepted data secrecy solution is encryption. However,

once data is encrypted processing cannot be performed without decrypt-

ing the cipher-text. The users require the cloud computing to process the

location data, but the cloud computing infrastructure may not be totally

trustable. This results in a dilemma in proving LBS in cloud computing.

In this research we focus on developing a secure protocol based on the

homomorphic encryption technique, which can assist smartphone users to

securely share their locations with other users in online location-based com-

munity services. Our proposed homomorphic encryption scheme for mobile

clients can relieve the heavy computation issue of fully homomorphic encryp-

tion schemes [1, 2].
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1.1 Restrictions of Current Encryption Tech-

niques

Traditional encryption algorithms are capable of providing data secrecy in

transition and in storage. If cloud computing is not used, all the data analy-

sis and processing can be done in secured local information system facilities.

There was no major security concern in decrypting sensitive information

and processing those locally. Since cloud computing shifts the paradigm of

possessing own local information systems infrastructure, more and more or-

ganizations are looking for the third parties who will provide computation

and storage capacity. The security problem arises when data storage and

processing are outsourced. Corporates would like their data to be stored and

processed by a third-party service provider, but they are not willing to reveal

confidential information to the service provider. Data encryption will hide

the data, but it makes it impossible for the cloud computing service providers

to perform computations on the data. This defeats the advantage of cloud

computing. A number of researches have been done on developing techniques

to query and search encrypted data [3–7], but all these methods introduce

significant network overheard and requires trusted computing infrastructure

in order to filter out and obtain the final result. One of the most promis-

ing solutions for the security problem in cloud computing is homomorphic

encryption technique [1, 2], which will be discussed in the next section.

3



1.2 Homomorphic Encryption

The idea of fully homomorphic encryption has been discussed since 1978

with proposal of the Rivest, Shamir and Adleman (RSA) asymmetric key

encryption scheme [8] which is multiplicatively homomorphic. However, de-

veloping such a scheme has seemed obscure for more than three decades [9]

because it was uncertain whether fully homomorphic encryption is even a

possibility. In 2006 Dan Boneh, Eu-Jin Goh, Kobbi Nissim [10] proposed a

scheme which permitted evaluation of multiple additions but only one mul-

tiplication. In year 2009, Craig Gentry using lattice-based cryptography [1]

revealed the first fully homomorphic encryption scheme. Gentry’s scheme

is impracticable for most applications with current technology because the

cipher text size and the computation time increase drastically if the security

level needs to be increased. Following the first fully homomorphic encryp-

tion scheme, Craig Gentry, Marten Van Dijk, Shai Halevi and Vinod Vaikun-

tanathan [2] presented a second fully homomorphic encryption scheme, which

use many aspects of Gentry’s construction without requiring ideal lattices.

They demonstrated that the homomorphic portion of Gentry’s encryption

algorithm can be interchanged with a simple encryption algorithm based on

integers. The scheme in [2] is simpler in concept than Gentry’s ideal lattice

based encryption algorithm, but has similar homomorphic encryption’s prop-

erty. We will implement the symmetric homomorphic scheme in reference [2]

for the community location-based mobile cloud computing environment.

4



Figure 1.1: Traditional location sharing protocol.

1.3 Problem and Solution

Most traditional location sharing protocols are designed with a trusted ser-

vice provider. Therefore, these protocols did not have a mechanism to hide

user’s location from the service provider. As expressed in Fig. 1.1, the service

provider can decrypt the location information, process and send it back to

the user. In the cloud computing paradigm, the service provider may not be

totally trusted. Location information need to be encrypted before sending

to the server. Then the server cannot process the encrypted data to provide

LBS.

In this thesis, we have developed “XOR Homomorphic Encrypted

Secure Location Sharing Protocol”, which can assist mobile clients to

5



securely share locations with other mobile devices. The protocol is graph-

ically expressed in Fig. 1.2. Our protocol permits the server to perform a

simple XOR mathematical operations on the cipher text and can achieve the

goal of location information exchange. In the proposed protocol, the user

location data is encrypted with a secret key among users before sending to

the service provider. The location data are processed by the server in the

encrypted form while providing location sharing services to a group of users.

The two main concepts used in our scheme are homomorphic encryption and

the concept of network coding based on the XOR operation [11]. For exam-

ple, if there are two users, they can send their locations encrypted to the

social network server. The server adds userA’s location and userB’s location

together ({ALocation}K+{BLocation}K) and sends the result back to both users.

In homomorphic domain, addition results in a bitwise XOR in the plain text

(ALocation⊕BLocation). User A XOR the result of ({ALocation}K+{BLocation}K)

and obtain the user B’s location, and vice versa.

Our proposed protocol is light enough for a mobile client to perform,

which can provide confidentiality, integrity, authentication and non-repudiation

in the cloud computing environment. Further more, it can reduce communi-

cation bandwidth by broadcasting the XOR results of two user locations.

6



Figure 1.2: XOR homomorphic encrypted secure location scheme.

1.4 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 is a literature survey

on existing solutions for the problem of processing encrypted data and secure

location sharing. We also give a survey on the properties of different tools

used in cryptography. Chapter 3 describes the system model and problem

formulation. In Chapter 4 we discuss the proposed “XOR Homomorphic

Encrypted Secure Location Sharing Protocol”. Chapter 5 presents the RSA

digital signature scheme, key distribution and the security analysis of the

proposed protocol using secure transaction protocol analysis tools. In Chap-

ter 6, the implementation issues of the proposed protocol in an Android [12]

application are reported. Finally, Chapter 7 gives the concluding remarks

7



and suggests some future research topics.
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Chapter 2

Background

Many research works have been done on the subject of processing and pre-

forming calculations over the cipher-text. Homomorphism in encryption al-

gorithms like RSA was identified over three decades ago [9]. The limiting

factor of using homomorphic encryption as a solution for all applications

is the level of homomorphism in the existing schemes. For example, RSA

is only multiplicatively homomorphic. Therefore, not all the mathematical

operations can be performed for homomorphic encryption. Since outsourc-

ing databases to third party service providers become popular, the issue of

performing structured query language (SQL) queries over encrypted data

has been reported in [3]. Many researchers have proposed methods to per-

form queries over the encrypted databases. Some of the methods will be

overviewed in this chapter.

Both corporates and individual customers are concerned about privacy.

As a solution to the problem of user privacy, “Private Information Retrial”

method was proposed by Rafail-Victor [13]. Location privacy becomes a

9



major concern with the popularity of social network services and location-

based services (LBS). Users are concerned about revealing their location to

untrusted parties. For this particular issue, most proposed solutions point to

anonymizing the user’s location by diluting accuracy of the location provided

to the service providers. Here we give an overview on the technologies for

secure LBS [14–16].

2.1 Existing Approaches for Preserving Pri-

vacy of Location Data

2.1.1 Query over Encrypted Data

Hosting a database in cloud computing infrastructure presents many chal-

lenges to database security. Corporates hold their most valuable assets in

databases. When enterprises deploy databases in cloud computing virtual

environments, they need to face the risk of exposing highly-sensitive data to

a broad base of internal and external threats. For secrecy, data is encrypted

before being stored in the cloud computing infrastructure. Unfortunately,

due to the nature of encryption, virtual machines are unable to perform

queries and other operation on encrypted data. Hakan-Bala-Chen [3] de-

scribed a method to perform querying over encrypted data. This technique

relies on sharing the computation over client and server. The clients stores

encrypted data and meta data in the database. The database can only use

metadata for query processing due to the fact that the actual data is en-

crypted. The server performs queries over meta data and produces a super

set of the results and communicates those data to the client. The client de-

10



crypts all the received data and locates the required record. Tables 2.1 ∼ 2.4

show the example of encrypted data querying.

Table 2.1 shows the salary of employees before encryption. The Table

2.2 shows the salary range split in to partitions and assigned a randomly

generated index (metadata). In the Table 2.3, all the data are encrypted and

stored in the database with metadata. The human resource manager would

like to search the database for employees whose earnings are USD 150K.

This value is in the range of (140-160]. The manager sends a query as, “SQL

> SELECT name FROM Table WHERE metadata = 11” and receives two

rows as in the Table 2.4(a). The manager decrypts the received cipher-text

as represented in Table 2.4(b). In Table 2.4(c), the manager filters out the

unnecessary rows and obtains the required information.

This method is suitable for preserving privacy in outsourced databases.

Since the exact search result cannot be obtained in one transaction, the

network utilizations is significantly higher than normal.

11



Table 2.1: Employee salary before encryption.

ID Name Salary Position

1 Employee 1 110K Manager

2 Employee 2 130K CTO

3 Employee 3 150K Engineer

4 Employee 4 1600K Accountant

5 Employee 5 180K Engineer

Table 2.2: Salary partitioning.

Range Index

[100-120] 2

(120-140] 5

(140-160] 11

(160-180] 9

(180-200] 7

12



Table 2.3: Employee salary after encryption, where “XXXXXX” indicates

cipher-text.

ID Name Salary Position Metadata

1 xxxxx xxxxx xxxxx 2

2 xxxxx xxxxx xxxxx 5

3 xxxxx xxxxx xxxxx 11

4 xxxxx xxxxx xxxxx 11

5 xxxxx xxxxx xxxxx 9

Table 2.4: Result of the query.

(a) Encrypted query result

ID Name Salary Position Metadata

3 xxxxx xxxxx xxxxx 11

4 xxxxx xxxxx xxxxx 11

(b) Query result after decryption

ID Name Salary Position

3 Employee 3 150K Engineer

4 Employee 4 1600K Accountant

(c) The final result

ID Name Salary Position

3 Employee 3 150K Engineer

13



Figure 2.1: Distributed architecture for secure database services.

2.1.2 Distributed Architecture for Secure Database Ser-

vices

The general architecture of a distributed secure database service is illustrated

in Fig. 2.1 consisting of a trusted server as a mediator and two untrusted

servers that provide database services. The database servers provide reli-

able content storage and data management, but are not trusted to preserve

confidentiality [4].

There are different techniques to partition data across the two servers

with distributed architectures. It should be a lossless decomposition where

it is possible to reconstruct the original data using only the contents in the

two servers. Some methods of data partitioning are given below.

1. One-time pad: a1 = a⊕ r ; a2 = r, where r is a random value.

2. Deterministic encryption: a1 = E(a; k); a2 = k, where E is a deter-

ministic encryption.

3. Random addition: a1 = a + r; a2 = r, where r is a random number

14



drawn from a domain much larger than that of a.

4. Paulo-Lusa-Tiago-Joo-Muriel [5] has proposed coding as a means to

achieve a prescribed level of confidentiality by using the algebraic structure

of Vandermonde matrix. The Vandermonde matrix is used for splitting input

blocks before they are stored in different locations. This scheme ensures that

adversary whom only has access to one of the two networks is not able to

extract any symbol, even if they succeed in guessing some of the blocks.

The user splits the file in to n blocks b1, b2, ..., bn, and encodes each block.

There are two networks E1 and E2. Components 1 ∼ k are stored in network

E1, and components (k + 1) ∼ n are stored in network E2.

[Ai,j] = (a
(i−1)
j ) is a n× n Vandermonde matrix. (2.1)

The coefficients aj are distributed over all nonzero elements of a finite field

Fq, q = 2u > n.

∀i, l ∈ {1, ..., n}, i 6= l→ ai 6= al. (2.2)

Let the original data, or plain-text, be a vector b = (b1, ..., bn)T . Then, the

encoded data vector is represented by

c = (c1, ..., cn)T = Ab;

ci =
n∑
j=1

ai−1j bj; (2.3)

To recover the original information, the legitimate user receives n− k and k

contiguous components of c from the networks E1 and E2 and preforms the

operation in (2.4):

b = A−1a. (2.4)

15



Table 2.5: Order preserving encryption.
(a) Salary data before en-

cryption.

Name Salary

Employee 1 10

Employee 2 34

Employee 3 23

Employee 4 44

Employee 5 67

Employee 6 88

Employee 7 67

Employee 8 43

Employee 9 55

(b) Salary data after encryp-

tion.

Name Salary

Employee 1 10105

Employee 2 1187015

Employee 3 59977285

Employee 4 2561605

Employee 5 3750037

Employee 6 280375

Employee 7 24014905

Employee 8 1187015

Employee 9 9837637

2.1.3 Order Preserving Encryption

The concept behind this scheme is to map data into another plane based on a

polynomial [6] such as y = x3 +x2 +5. Table 2.5(a) and Fig. 2.2(a) show the

salary data and plot before encryption. Table 2.5(b) and Fig. 2.2(b) show

the salary data and plot after encryption. The following SQL commands is

an example of quarry over the encrypted data.

SQL > SELECT name FROM tablename WHERE Y=1187015 ;

SQL > query response : Employee 2

16



Figure 2.2: Order preserving encryption.

(a) Salary plot before encryption. (b) Salary plot after encryption.
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2.1.4 Private Information Retrieval

Fig. 2.3 shows the basic idea of private information storage. This approach

efficiently and privately stores and retrieves data which is distributed and

maintained in several databases, which do not communicate with one an-

other. This minimizes the communication complexity while maintaining pri-

vacy. Thus each individual database does not get any information about the

data or the nature of the users’ queries [13].

The composite database maintains a bit vector of length n. There exists

a “K” number of non-communicating constituent databases. User may per-

form a read operation, read(i), for a given address 0 < i < n. Write operation

write(i; b), for a given address 0 < i < n and bit b belongs to {0, 1}. Each

constituent database has its own view, consisting of the messages received

from the user. A simple method to generate the bit string of length “n” is

D = D1 ⊕D2 ⊕ .....⊕Dn.

2.1.5 Anonymization in Proactive Location-Based Com-

munity Services

This method uses pseudonyms in conjunction with coordinate transforma-

tion. It is based on the idea that for proactive location based community

services (PLBCS), the real position of a user is irrelevant. What is necessary

for this kind of applications is the knowledge about relative spatial position of

the community member or the player with respect to other members. This

approach is suitable for “Buddy Tracking” and “Mobile Gaming” applica-

tions. It uses distance preserving coordinate transformations to hide user
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Figure 2.3: Private information retrieval.

locations [15].

Let user’s actual location be,

(xi, yi) = (Longi, Latti). (2.5)

Consider a shared value among group members

N = Noise.

Then the user’s location is mapped to a new plane

(x̂i, ŷi) = (Longi +N,Latti +N). (2.6)
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2.1.6 Privacy Protection in Location-Based Services

Through Public-Key Privacy Homomorphism

Agusti and Antoni [14] proposed a method for location privacy based on k−

anonymity approach. The method is to hide the position of the user within

other users. This makes the user indistinguishable among k − 1 other users.

A mathematical discussion of the method is given below and a graphical

representation is given in Fig. 2.4. In the figure skUp is the secret(private)

key of the LBS provider and pkUp is the public key of the LBS provider.

• First Step: All users mask their locations, sign the locations

with LBS provider’s public key pklbs, and send to user A on

request

Ni is Gaussian noise with null average ∼ N(0, σ). User A encrypts her

own masked location with pklbs.

Masked location (x̂i, ŷi) = (xi, yi) + (Nx
i , N

y
i ), (2.7)

Encrypted masked location Epklbs{(x̂i, ŷi)} = Epklbs{(xi, yi) + (Nx
i , N

y
i )}.

(2.8)

• Second Step: User A performs homomorphic addition on all the

encrypted locations

Let “Γ” be the mathematical operation on the cipher-text which corre-

sponds to addition in the plain-text. i.e.,

∪ = (Γki=1Epklbs{x̂i},Γki=1Epklbs{ŷi}). (2.9)
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Due to additively homomorphic property of the cryptography algorithm used,

we can have

(Γki=1Epklbs{x̂i},Γki=1Epklbs{ŷi}) = (Epklbs{Σk
i=1x̂i}, Epklbs{Σk

i=1ŷi}). (2.10)

• Third Step: User A send “∪” to the LBS provider’s server

The server decrypts the message using its private key sklbs and obtains

Σk
i=1x̂i and Σk

i=1ŷi. Then the server calculates the centroid as below.

(x̄, ȳ) = (
Σk
i=1x̂i
k

,
Σk
i=1ŷi
k

). (2.11)

Based on the accuracy diluted location of user A, the server provides

location based services to the user. Due to the fact that the LBS server can

decrypt users’ locations, this protocol is not suitable for cloud computing

environment.

2.1.7 Multiplicative Homomorphism in RSA Algorithm

The multiplicative homomorphic property of RSA was discovered shortly

after the proposal of the RSA algorithm. Given blow is a mathematical

explanation of this property [9].

Consider modulus

m = q × p,

where p and q are prime number, and exponent. Then the encrypted message

x1 and x2 are

Enc(x1) = xe1 mod m,
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and

Enc(x2) = xe2 mod m,

where Enc() is the encryption function.

The multiplicatively homomorphic property of the RSA algorithm can be

shown as follows:

Enc(x1)× Enc(x2) = (xe1 mod m)× (xe2 mod m),

= (x1 × x2)e mod m,

= Enc(x1 × x2). (2.12)
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Figure 2.4: Privacy protection in LBS through public-key privacy homomor-

phism.
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2.1.8 Comparison Table

In Table 2.6, all seven schemes which were discussed are compared with the

proposed “XOR Homomorphic Encrypted Secure Location Sharing Proto-

col”.
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Table 2.6: Comparison of the existing location privacy protection.
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Order Preserving Encryp-

tion [6]

YES NO NO NO NO Degree of the polyno-

mial - O(nk)

Private Information Re-

trieval [13]

YES NO NO NO NO XOR - O(n), Sym-

metric encryption -

O(n), O(n2)

Privacy Protection

in Location-Based Ser-

vices Through a Public

Key Privacy Homomor-

phism [14]

NO YES YES YES NO Public key crypto -

O(n2), O(n3), Homo-

morphic multiplication

- O(n2)

Anonymization

in Proactive Location

Based Community Ser-

vices [15]

YES NO NO NO NO Addition - O(n)

Query over Encrypted

Data [3]

YES NO NO NO NO Symmetric encryption

- O(n), O(n2)

Distributed

Architecture for Secure

Database Services [4]

YES NO NO NO NO Matrix multiplication -

O(n3)

Multiplicative

Homomorphism in RSA

Algorithmm [9]

NO YES YES YES PARTIAL public key operations -

O(n2), private key op-

erations - O(n3)
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2.2 Comparison of Different Cryptographic

Schemes

In cryptography, encryption is the process of transforming data in to un-

readable bits with no significant statistical properties using an algorithm.

The encrypted bits can be converted back to the original data using a secret

value call the “key”, which was used at the point of encryption. Certain

algorithms like one-way HASH functions are not considered encryption, but

posses other important properties like error detection capabilities. Different

cryptographic algorithms are designed for different purposes. In this chapter

we compare different cryptographic schemes and discuss their properties and

applications [9].

2.2.1 Symmetric Key Encryption

Symmetric-key encryption, is a type of encryption which uses a single key for

both encryption and decryption. Some examples of popular symmetric algo-

rithms are twofish, advanced encryption standard (AES) and data encryption

standard (DES). Symmetric encryption is commonly used in situations where

a large amount of data need to be encrypted quickly and efficiently [9]. Fig.

2.5 shows the basic idea of symmetric key encryption, and the following are

the related mathematical property.
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Ek(m) −→ c, (2.13)

DK(c) −→ m, (2.14)

Dk(Ek(m)) = m. (2.15)

Figure 2.5: Symmetric key encryption.

2.2.2 Asymmetric Key Encryption

Asymmetric key encryption uses two different keys for encryption and de-

cryption of messages. The privet key is never sent outside the user’s device

and the public key is distributed using a trusted server. Some common

asymmetric key algorithms are Rivest, Shamir and Adleman (RSA) and El-

Gamal. The computational complexity of asymmetric encryption is signifi-

cantly higher than that of symmetric key encryption algorithms. Therefore

asymmetric encryption is usually used for applications which require small

amount of data to be encrypted, like key exchange and for digital signatures.

Fig. 2.6 and the following equations show the basic idea of asymmetric key

encryption, where sk and pk are the secret private-key and the public-key

respectively [9].
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Esk(m) −→ c, (2.16)

Dpk(c) −→ m, (2.17)

Dpk(Epk(m)) = m. (2.18)

Figure 2.6: Asymmetric key encryption.

2.2.3 One-Way HASH Functions

A cryptographic hash function take any size block of data and returns a

fixed-size bit string. Cyclic redundancy check is one of the most simple hash

functions in use.

The ideal cryptographic hash function is expected to posses four

main properties:

1) Easy to compute the hash of a given message

2) Computationally infeasible to find the message related to a given hash

value

3) It is infeasible to change any part of a message and generate the same

has value as before the changes were done.
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4) It is computationally infeasible to find two meaningful messages with

the same hash vale.

A graphical representation of the hash function is give in Fig. 2.7 and

the mathematical property is given in (2.19). The function F is a HASH

function like secure hash algorithm (SHA) [9].

F (m) −→ c. (2.19)

Figure 2.7: One way hash function.

2.2.4 Digital Signatures

Digital signature scheme is mainly used for achieving authenticity, integrity

and non-repudiation. The two main components in such a scheme are the

public, private key pair and a one-way hash function. The user generates a

hash over the plain text message and encrypts the result using his private-

key, and append this at the end of the plain-text message. The receiver

can decrypt the signature, obtain the original hash value and compare it

with a newly generated hash value over the plain-text message. A graphical

representation of the digital signature is give in Fig. 2.8 and given in (2.20)

29



and (2.21) is the mathematical representation. The function F is a one-way

HASH function like SHA.

Esk(F (m)) = Digital Signature, (2.20)

Dpk(Digital Signature) = Γ(m). (2.21)

Figure 2.8: Digital signature.

2.2.5 Homomorphic Encryption

An encryption scheme is considered homomorphic if it allows mathematical

operations over cipher-text which will result in a meaningful transformation

on the plain text message. Using homomorphic encryption, untrusted servers

are able to process users’ data without decrypting it first. A graphical rep-

resentation of homomorphic encryption is give in Fig. 2.9.

Ek(m1) = c1, (2.22)

Ek(m2) = c2, (2.23)

Ek(m1 +m2) = c1 + c2, (2.24)
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where Ψ is used to symbolize mathematical operations in general

Figure 2.9: Homomorphic encryption.

2.2.6 Comparison of Security Properties of Encryption

Schemes

Table 2.7 gives a comparison of different security properties of cryptographic

primitives used in secure protocols. The schemes are compared based on

the five basic security requirements confidentiality, integrity, authenticity,

non-repudiation and homomorphism.

From the table, one can see that it is necessary to combine homomor-

phic encryption or symmetric encryption with other schemes to achieve fully

secure protection. In our cryptographic proposed scheme, we integrate ho-

momorphic encryption and signature to achieve the goal of full security.
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Table 2.7: Characteristics of the security properties of cryptographic algo-

rithms.
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Symmetric Encryption YES NO NO NO NO

Asymmetric Encryption YES NO YES YES NO

HASH NO YES NO NO NO

Signatures NO YES YES YES NO

Homomorphic Encryption YES NO NO NO YES

Our Goal YES YES YES YES YES
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Chapter 3

System Model and Problem

Formulation

3.1 System Model

3.1.1 Model

The system model under consideration in this research is location-based com-

munity services in cloud computing infrastructures. There are multiple user

groups and each group has several members. Each member is given two types

of keys, one groups shared key (G-key) and a pair of asymmetric keys. This

is illustrated in Fig. 3.1. The G-key is distributed using the asymmetric

key pair as illustrated in Fig. 3.2. The server of the location-based commu-

nity service is not trusted due to the fact that it is in the cloud computing

infrastructure.
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Figure 3.1: Each group is given a shared key in the proposed algorithm.

3.1.2 Assumptions

In this model we have made following assumptions,

• A location-based community service

• The service is hosted in the cloud computing infrastructure

• The cloud computing service provider is not trusted

• There are multiple user groups

• Each group has n number of users

• Users possess two types of keys

– A shared key for location sharing

– An asymmetric key pair for Digital signature and key distribution
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Figure 3.2: Group key distribution.

we have assumed that users in the group need to share their locations

with the other members of the group. The location-based community service

server is not trusted due to the fact that it is in cloud computing infrastruc-

ture. The server is expected to process the location information before being

shared with other users in the group.

3.2 Problem Formulation

3.2.1 Goal

The goal of our research is to propose a location sharing protocol which can

preserve the four basic security properties confidentiality, authenticity, in-

tegrity and non-repudiation. The encryption algorithm used in the protocol

is required to be homomorphic in order for the server to process location in-

formation of the users. A comparison of different cryptographic tools which

can be used for achieving these properties are given in Table 2.7. We have
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divided these goals in to two tasks. Task-1 which is described in Section

3.2.2 is to achieve confidentiality and homomorphism using the encryption

scheme described in [2]. Task-2 which is described in Section 5.1 is to achieve

authenticity, integrity and non-repudiation using RSA digital signature algo-

rithm.

3.2.2 Overview of the Proposed XOR Homomorphic

Encryption Secure Location Sharing Scheme

An overview of how confidentiality and homomorphism is achieved in the

proposed “XOR Homomorphic Encrypted Secure Location Sharing Protocol”

is given in the next few sections. This is the task-1 of our two tasks as

mentioned in Section 3.2.1. First the two user case of the protocol is discussed

and then it is extended for groups of n users.

The Two-user Case

Users encrypt their locations using the symmetric key and send the cipher-

text to the server. The server performs addition on the cipher-text and send

the result back to both users. Then the users decipher the answer, perform

XOR operation with their own locations and recover the location of the other

user.

Given below is the protocol written in Alice Bob notation. User A sends

her location encrypted with the symmetric key. User B sends his location

encrypted with the same symmetric key as well. Then the server calculates

XOR (which is adding ALocation and BLocation together under homomorphic
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Figure 3.3: The proposed XOR homomorphic encrypted secure location shar-

ing protocol for the two-user case.

encryption scheme) and sends the result to user A and user B. The proposed

procedures are illustrated in Fig. 3.3. The XOR Homomorphic Secure Lo-

cation Sharing protocol is expressed in standard notation in (3.1) and (3.2).

First the user A and B encrypt their locations, generate the digital signature,

concatenate the two values together and transmit to the server.

Message 1 : A −→ S :{ALocation}K , {H(A,ALocation)KAs}, (3.1)

Message 2 : B −→ S :{BLocation}K , {H(B,BLocation)KBs}, (3.2)
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Then the server adds the user A and B’s encrypted locations together, con-

catenates the two digital signature with the result and broadcasts to both

user as expressed in (3.3).

Message 3 : S −→ A,B :{ALocation}K + {BLocation}K ,

{H(A,ALocation)KAs}, {H(B,BLocation)KBs}. (3.3)

To generate the digital signature, let user A’s identity and user B’s iden-

tity be values A and B respectively. User A’s location is ALocation and user

B’s location is BLocation. The group shared secret key is K. To generate the

digital signature for a given location of a given user, first the identity and

the location is concatenated and a HASH value is generated over the result

as H(A,ALocation). The HASH value is then encrypted with users private

key as {H(A,ALocation)KAs}, which is the digital signature of the user A for

the location ALocation. Digital signature of user B at the location BLocation is

{H(B,BLocation)KBs}. The significance of the HASH function here is that,

it acts as an error checking code for the location data. If the location data

is corrupted or altered during the transmission, the HASH generated at the

receiving end will not match the HASH value generated at the origin.

Fig. 3.4 shows the flowchart of using XOR homomorphic encryption for

secure location data exchange.

The n-user Case

Extending the two-user case to n-user case is done by instructing the server

to perform XOR between each pair of user locations in the server. The

computational complexity of this operation at the server is O(n2), which
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Figure 3.4: Flow of the two-user case.

means that the complexity is polynomial time. Therefore the processing

time required for this particular operation is within the capacity of today’s

computers. A detailed analysis of the system time complexity is given in

Section 6.4. Since the service is hosted in the cloud computing infrastructure,

increasing the computing power on-demand is a trivial matter. Fig. 3.5 gives

the flowchart for n-user case.

39



Figure 3.5: Flow chart of using XOR homomorphic encryption for location

data exchange in the n-user case.
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Chapter 4

XOR Homomorphic Encrypted

Location Sharing Scheme

4.1 Traditional Location Sharing Method

Traditional location sharing mechanisms are based on the trusted server

model. The service provider’s server is trusted, therefore decrypting loca-

tion information at the server is not considered as a security issue. Servers

were usually in private secure information systems facilities. Users will en-

crypt their locations and send it to the server. The server will decrypt the

messages, process it and distributes it to the other users. This process is

illustrated in Fig. 4.1.
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Figure 4.1: Traditional location sharing mechanism.

4.2 Introduction to GDHV’s Fully Homomor-

phic Encryption

The homomorphic symmetric key encryption scheme proposed by Gentry-

Dijk-Halevi-Vaikuntanathan [2] is described below. The parameters must be

selected according to the restrictions mentioned in (4.3), (4.4) and (4.5).

Shared secret key : odd number “p”,

Small “r” , large “q” which are chosen randomly,
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Message is a bit, m ∈ {0, 1},

Encryption function : c = m+ 2r + pq, (4.1)

Decryption function : m = (c mod p) mod 2. (4.2)

p ∈ [2(η−1), 2η), (4.3)

r ≈ 2
√
η, (4.4)

q ≈ 2η
3

, (4.5)

where η is the security parameter,

If η = 64 , q = 262144 bits.

This algorithm is homomorphic given that, the magnitude of the noise

generated by random numbers r1 and r2 do not exceed the size of the key

during calculations. The technique can be seen as mapping the cipher-text

between two multiples of “p”. Thus when “cipher mod p” is performed, the

multiples of p gets nullified, and the result contains the message and the noise

added in the beginning and during the calculations. Noise can be removed by

performing “mod 2” on the result due to the fact that the random number

rx was multiplied by two in the encryption function. Now we explain why

this algorithm is additive and multiplicative homomorphic in (4.6) and (4.7).
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To begin with, let c1 = m1 + 2r1 + pq1 and c2 = m2 + 2r2 + pq2

1) Additive Homomorphism

c1 + c2 = (m1 +m2) + 2(r1 + r2) + p(q1 + q2),

If (m1 +m2) + 2(r1 + r2) << p,

then we have,

(c1 + c2) mod p = (m1 +m2) + 2(r1 + r2),

and,

((c1 + c2) mod p) mod 2 = m1 +m2.

(4.6)

2) Multiplicative Homomorphism

c1 × c2 = (m1 + 2r1 + pq1)× (m2 + 2r2 + pq2),

= (m1 + 2r1)× (m2 + 2r2) + (c1q2 + q1c2 − q1q2)p,

If (m1 + 2r1)× (m2 + 2r2) << p,

then we have,

c1 × c2 mod p = (m1 + 2r1)× (m2 + 2r2),

and,

(c1 × c2 mod p) mod 2 = m1 ×m2.

(4.7)
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4.3 Considerations of Selecting Homomorphic

Encryption Algorithm for LBS

4.3.1 XOR Homomorphic Encryption Algorithm

Traditional encryption algorithms define three functions: key generation, en-

cryption and decryption. In homomorphic encryption, there is an additional

function called “Evaluate”. For instance, the XOR homomorphic operation

in the protocol we have proposed is actually addition in the cipher-text result-

ing in XOR in the plain-text message. Therefore, we define one evaluation

function, which is called “XOR homomorphic operation”. Specifically, for

the group key K shared by messages m1 and m2, we define Γ(x, y) the XOR

homomorphic operator.

Γ(c1, c2) = c1 + c2

= {m1}k + {m2}k

= {m1 ⊕m2}k, (4.8)

where c1 and c2 are the cipher-text corresponding to m1 and m2 encrypted

by key K.

In the protocol, where the cipher-text c1 and c2 are added together at

the server, the addition resulting in a XOR operation on the plain-text. As

defined above, the plain-text message m ∈ {0, 1}, therefore c1+c2 = m1⊕m2

Since ALocation and BLocation are XORed at the server, the end users must

perform another XOR in order to recover the other user’s location. For
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example, user A should perform the operation in (4.9) to obtain the location

of user B from the cipher-text.

Message 3 : S −→ A : {ALocation}K + {BLocation}K ,

user A :{{ALocation}K + {BLocation}K} K−1 ,

user B’s location = {{{ALocation}K + {BLocation}K} K−1} ⊕ {ALocation}.

(4.9)

There are several XOR homomorphic encryptions schemes. In general,

most additive homomorphic encryption algorithms can be used for obtaining

the XOR homomorphism by bitwise encryption and applying ( mod 2) at the

decryption. The GoldwasserMicali crypto system [17] is a public key scheme

which has XOR homomorphic property. The security of this scheme is based

on the quadratic residuosity problem and it is considered to be the first

provably secure probabilistic public-key encryption scheme [9]. As other

bitwise encryption schemes, this also suffer from the cipher-text expansion.

The XOR homomorphism of the algorithm is mathematically expressed in

(4.10),

where x is a quadratic residue modN and x = y2 mod N for some y. The

encryption function: ci = y2xmi mod N . Let c1 and c2 be the corresponding

cipher text of the plain text messages m1 and m2 where m ∈ {0, 1},

Enc(m1 ⊕m2) = c1c2 mod N. (4.10)

The proposed protocol requires a symmetric key XOR homomorphic al-

gorithm. Almost all of the homomorphic encryption algorithms are public

key systems. Therefore we stick to the scheme described in [2], which is a
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Table 4.1: Desired characteristics of the secure community LBS encryption

algorithm.

Required Property Reason

Additive homomorphism XOR operation

Symmetric key encryption Shared group key

Minimal computation complexity Resource challenged mobile clients

Minimal cipher text growth Bandwidth efficiency

symmetric key scheme with additive and multiplicative homomorphic prop-

erties.

4.3.2 Other Consideration in Selecting the Homomor-

phic Encryption Algorithm

In Table 2.7 we have compared security properties of the proposed proto-

col with the properties of existing individual cryptographic tools. As men-

tioned, our goal is to propose a protocol which is capable of providing all

five primary security requirements: confidentiality, integrity, authenticity,

non-repudiation and homomorphism.

When selecting the homomorphic encryption algorithm we take the four

criteria as described in Table 4.1 as decision factors.
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Additive Homomorphism

There are several additively homomorphic encryptions algorithms includ-

ing Elliptic curve elgamal encryption scheme [18], Paillier cryptosystem [19],

Okamoto-Uchiyama encryption [20], Ragevs homomrphic scheme [21] and

Gentry-Dijk-Halevi-Vaikuntanathan scheme based on Ragevs [2]. The fol-

lowing homomorphic encryption algorithms require asymmetric key, such as

Elliptic curve elgamal [18], Paillier cryptosystem [19] and Okamoto-Uchiyama

[20].

Majority of the existing homomorphic algorithms are partially homo-

morphic. For example RSA is multiplicatively homomorphic and Okamoto-

Uchiyama encryption is additively homomorphic. For the proposed scheme

we only require additive homomorphism, but considering future expansions

of server-side processing we preferred choosing an algorithm which is both

additively and multiplicatively homomorphic.

Therefore we have picked Gentry-Dijk-Halevi-Vaikuntanathan [2] scheme

based on Ragevs, which is multiplicative and additive homomorphic and

symmetric.

Symmetric vs Asymmetric Key Encryption

In our protocol, we require the user groups to use a group key called G-Key

to encrypt their locations. This must be a symmetric key encryption due

to the fact that, the server needs to perform the addition between different

users’ locations
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Table 4.2: Computational complexity of asymmetric vs symmetric encryp-

tion.

Encryption

Scheme

Mathematical Operation Complexity

Public Key Modular exponentiation by

repeated multiplication and

reduction, n-bit exponent

public key operations

- O(n2), private key

operations - O(n3).

where n is the number

of bits in the modulus.

Symmetric

Key

Addition, Multiplication,

Modulo

O(n), O(n2), O(n2)

Minimal Computation Complexity

In our application, location updates need to be communicated as frequently

as within the scale of a few seconds. This requires considerable amount of

computation. The cryptographic algorithm adds extra complexity in to the

process. Modulo exponentiation in public key algorithms has a high compu-

tational complexity compared to simple addition, multiplication and modulo

based symmetric key schemes. Therefore we have selected a symmetric key

algorithm for location encryption. Table 4.2 shows the complexity compari-

son of public key vs symmetric key encryption.
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Minimal Cipher Text Growth

This property is required for efficient bandwidth utilization. Cipher-text

growth is one of the main concerns of existing homomorphic encryption

schemes. If the Gentry-Dijk-Halevi-Vaikuntanathan [2] scheme is used with

parameter selection for best possible security, the size of cipher-text can grow

n3 times where n is the number of bits in the encryption key. That is, it is

implied that one bit in the plain text will become n3 bits after encryption.

The choice of p, q and r in the encryption algorithm of Gentry-Dijk-Halevi-

Vaikuntanathan [2] are suggested to be,

p ∈ [2(η−1), 2η), (4.11)

r ≈ 2
√
η, (4.12)

q ≈ 2η
3

, (4.13)

where η is the security parameter,

If η = 64 , q = 262144bits.

Security of the algorithm is based on “Approximate-GCD problem” and

“Sparse subset problem”. For these two problems to remain computationally

infeasible, q and r should be selected accordingly based on (4.12)(4.13). To

prevent a brute force attack it is safe to select a key which is longer than 64

bits.
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4.4 Proposed XOR Homomorphic Encrypted

Secure Location Sharing Protocol

4.4.1 Detailed Protocol Steps

The proposed protocol is expressed by a twelve step process in this section.

There are three parties involved in the process of location sharing. User 1,

user 2 and the server. Steps 1 ∼ 3, 9, 10 are performed by user 1. Steps

4 ∼ 6, 11, 12 are performed by user 2. The steps 7 and 8 are performed by

the server.

Step 1 : User-1 converts the location to binary

Step 2 : User-1 encrypts the location using homomorphic encryption

Step 3 : User-1 sends the Encrypted location to the server

Step 4 : User-2 converts the location to binary

Step 5 : User-2 encrypts the location using homomorphic encryption

Step 6 : User-2 sends the Encrypted location to the server

Step 7 : Server adds user 1’s encrypted location and user 2’s encrypted

location

Step 8 : Server broadcasts the result to the users

Step 9 : User-1 decrypts the received result

Step 10 : User-1 XOR the decrypted result with his own location to obtain

user 2’s location

Step 11 : User-2 decrypts the received result

Step 12 : User-2 XOR the decrypted result with his own location to obtain

user 1’s location
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Figure 4.2: Locations known by each user before location sharing .

4.4.2 Illustrative Example Using Pseudo Location Data

In this example we assume that the GPS coordinates are single digit integers,

and exchange these two value between the two users. In the next section,

sharing real GPS coordinates between users is outlined. Fig. 4.2 gives a

snapshot of the locations known by each user before location sharing, and

Fig. 4.3 shows the locations known by each user after the location sharing.

Step 1 : Let user 1’s location be “3”. When it is converted to binary it

is 011b.

Step 2 : User 1 encrypts his location bit by bit as follows. Let the

shared key be 203. Parameters q and r are random values 5,6,4 and 9,10,13

consecutively. Ones the the bits are encrypted using the equation c = m +
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Figure 4.3: Locations known by each user after location sharing .

2r + pq, the result is 1837, 2043, 2648.

Step 3 : User 1 sends the location to the sever

Step 4 : Let user 2’s location be “5”. When it is converted to binary it

is 101b.

Step 5 : User 2 encrypts his location bit by bit as follows. Let the

shared key be 203. Parameters q and r are random values 7,8,9 and 7,15,18

consecutively. Ones the the bits are encrypted using the equation c = m +

2r + pq, the result is 1436, 3061, 3673.

Step 6 : User 2 sends the location to the sever

Step 7 : Server adds the two locations together integer by integer.

1837, 2043, 2648 added to 436, 3061, 3673 is 3273, 5307, 6321.

Step 8 : Server broadcasts the result to both users.

Step 9 : User 1 receives 3675 , 4491 , 5296. He decrypts the message
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using the shared key 203 and the decryption formula m = (c mod 203) mod 2

and obtains the binary bits 110b.

Step 10 : User 1 XOR the result 110b with his own location 011b and

obtains the user 2’s location, which is 101b = 5.

Step 11 : User 2 receives 3675 , 4491 , 5296. He decrypts the message

using the shared key 203 and the decryption formula m = (c mod 203) mod 2

and obtains the binary bits 110b.

Step 12 : User 2 XOR the result 110b with his own location 101b and

obtains the user 1’s location, which is 011b = 3.

4.4.3 Illustrative Example Using GPS Location Data

GPS locations are expressed in degrees of longitude and latitude. These val-

ues need to be converted in to 32 bit two’s complement binary before being

encrypted. Therefore, when dealing with real GPS locations, the encryp-

tions, decryption and XOR operation are performed as follows. let the user’s

location be latitude 24.789657 and longitude 120.999749. Then these values

are multiplied by 106 to convert in to micro degrees. When the resulting

values are converted to binary two’s complement, it becomes,

Latitude : 00000001011110100100001010011001b

Longitude : 00000000000000000000000001111000b

Once the longitude and latitude are encrypted bitwise using the shared key

203 and randomly generated q and r, the result is,
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Encypted latitude =



999754 1109723 459914 339948

779832 339956 819820 709844

279972 319957 439921 249982

1139725 689851 1099725 309963

589887 599873 329951 1159718

259982 549887 219999 369937

929782 649865 499908 389946

379949 829807 279980 979773


Then the users send these encrypted information to the server. The

server adds user 1’s and user 2’s locations together as described in step-7

and broadcasts the result to the users. The users decrypt the result, perform

XOR with their own locations and obtain other users’ locations following the

steps described in Section 4.4.1.
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Chapter 5

Security Enhancements for

XOR Homomorphic Encrypted

Location Sharing Scheme

5.1 RSA Digital Signature Scheme

The RSA digital signature scheme is used in achieving authenticity, Integrity

and non-repudiation. This was described as the task-2 in Section 3.2.1. Users

generate a digital signature based on their current location and transmits it

with the location sharing message as described in (5.1). A is user 1’s identity,

KAs is user 1’s private key, KAp is user 1’s public key and H() is a secure

hash function.

{H(A,ALocation)KAs} (5.1)

At the receiving end, user 2 verifies the signature by generating a hash value

on decrypted user 1’s location and comparing it with the hash value in the
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Figure 5.1: Client digital signature generation and verification.

digital signature sent by user 1, which is described in (5.3). A graphical

representation of this process is given in Fig. 5.1

H(A,ALocation) = Dec({H(A,ALocation)KAs}, KAp), (5.2)

H(A,ALocation) = H(A,DecryptedALocation). (5.3)

This verification process guarantees three properties authenticity, integrity

and non-repudiation. Once the signature is verified, user 2 at the receiving

end can be sure that the message was sent by user 1, because the digital sig-

nature was signed by user 1’s private key. Only user 1 posses this particular

private key. The integrity of the location update is confirmed by the SHA-1

hash. It is similar to a cyclic redundancy check (CRC), which will confirm

whether the transmitted message and the received messages are the same. If

an adversary had modified the massage during transmission, the hash gener-

ated at the receiving end and the hash generated at the origin will not match.

If the hash check fails at the receiving end, the location update need to be

discarded as it has been altered during the transmission. The third property

is non-repudiation. This property is a by product of authentication. If user 1
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Figure 5.2: Group key distribution.

sends a location update signed using his private key, he cannot deny sending

that update at a later time, because only user 1 posses that particular private

key. Implementation details of the RSA digital signature scheme is given in

Section 6.2.1.

5.2 Group Key Distribution

The group shared key (G−Key) is distributed by a trusted key distribution

server. Clients obtain the group key through the trust relationship between

the key distribution server and them. User’s public-key private-key pair is

used in this operation according to the Fig. 5.2.
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5.3 Protocol Security Analysis

5.3.1 Cryptography vs Security Protocols

One interesting analogy to think about encryptions algorithms and security

protocols is to equate the encryption algorithm to a bicycle lock [22]. You can

have the best possible lock, however if you tie your bicycle front wheel to an

iron pole, someone can unscrew the front wheel out of the bicycle frame and

steal rest of the bicycle. This is like using the perfect encryption algorithm

in an insecure protocol. An adversary can get access to secret information

despite the strength of underlying encryption [22].

Security protocols are the key to secure communication. Security proto-

cols can appear extremely simple, but the security properties that they have

to preserve are extremely delicate. Therefore, it is difficult to define proto-

cols correctly by informal reasoning. There have been many incidences where

security flows in popular security protocols has been fund years later [23,24].

Table 5.1 provides a comparison between the two approaches of secure pro-

tocol analysis.

In this chapter we will analyse the proposed security protocol using two

industry standard secure protocol analysis tools.

5.3.2 Dolev-Yao Model

Dolev-Yao model [23, 25], which is also called the formal model is shown in

Fig. 5.3. It is used for modelling the network in secure protocol analysis. This

model defines an omnipotent intruder who has full control over the network.
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Table 5.1: Formal approach vs cryptographic approach of protocol verifica-

tion.

. Formal approach Cryptographic approach

Messages Terms Binary-strings

Encryption Idealized Algorithm

Adversary Idealized Algorithm

Proof Automated Cumbersome and difficult

Figure 5.3: Dolev-Yao model.

The only thing stopping the intruder from obtaining secret information is

the strength of encryption, which is idealised in this model.

5.3.3 Security Verification of the Proposed Protocol

using AVISPA Tool

AVISPA [26] stands for automated validation of Internet security protocols

and applications. It is a project for developing an automated technology for

analysing secure transaction protocols. AVISPA is the first tool that intro-
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duced algebraic operations like XOR on the cipher-text. Over 80 protocols

are analysed by using this tool for IETF and Siemens [27].

To verify a security protocol using AVISPA tool, the examined protocols

need to be expressed in High Level Protocol Specification Language (HLPSL)

[28]. The first step is to write down the protocol in Alice and Bob notation.

Specifically, the following four messages will be sent between server S and

users A and B, which are

Message 1 : A −→ S :{ALocation}K , {H(A,ALocation)KAs},

Message 2 : B −→ S :{BLocation}K , {H(B,BLocation)KBs},

Message 3 : S −→ A :{ALocation}K + {BLocation}K ,

{H(A,ALocation)KAs}, {H(B,BLocation)KBs},

Message 4 : S −→ B :{ALocation}K + {BLocation}K ,

{H(A,ALocation)KAs}, {H(B,BLocation)KBs}.

The next step is to express the protocol in HLPSL. It is designed to

be easy to read and write HLPSL specifications. HLPSL provides a high

level of abstraction and has many features that are found in most protocol

specifications languages [29]. The full protocol specification in HLPSL is

given in appendix A.

Fig. 5.4 is a graphical representation of the protocol flow. This was

generated using the SPAN tool [30], which is a software that takes HLPSL

as input and produces protocol animations.
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Figure 5.4: Protocol written in HLPSL animated using the SPAN tool.

Defining homomorphic encryption in protocol verification tools is chal-

lenging because a formal definition for homomorphic encryption is not avail-

able in HLPSL. However there are definitions for some mathematical opera-

tions such as XOR and exponentiation. Therefore we have used the prede-

fined XOR algebraic operation in expressing our protocol in HLPSL.

XOR (ALocation, BLocation). (5.4)

AVISPA tool first converts the protocol defined in HLPSL into an interme-

diate format, and analyses using four protocol analysers:

1) OFMC (The On-the-Fly Model-Checker),

2) CL (Constraint-Logic-based model-checker),

3) SATMC (SAT-based Model-Checker),

4) TA4SP (Tree Automata based Analysis of Security Protocols).

In the following, we introduce the functions of the above four tools.

• OFMC On-the-Fly Model-Checker - Is based on automata-based
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linear temporal logic(LTL) [31] model checking [32].

• Constraint-Logic-based Model-Checker - Is an OCaml-based deduc-

tion rules implementation developed in the AVISPA project [26].

• SAT-based Model Checker - SATMC (SAT-based Model Checker) [33]

is a bounded model checker for security protocols. [34]

• Tree Automata based Automatic Analysis of Security Protocols

- This tool analyses a given protocol by rewriting it in tree languages for

unbounded number of sessions [26,35].

The XOR homomorphic secure location sharing protocol was analysed using

the AVISPA web tool and the result is given below. The first responses

confirm that the protocol is secure and the last tool does not get started

due to the nature of the protocol. A complete log of the result is given in

appendix B.

AVISPA Tool Summary (Fig. 5.5)

OFMC : SAFE

CL-AtSe : SAFE

SATMC : SAFE

TA4SP : N/A
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Figure 5.5: Result of verifying the proposed protocol using AVISPA tool.

5.3.4 Security Verification of the Proposed Protocol

using ProVerif Tool

ProVerif [36] is an automatic cryptographic protocol verifier in Dolev-Yao

model (formal model). ProVerif tool converts the protocol written in spi-

calculus to horn clauses and then analyse for unbounded number of sessions

[37]. It can handle many cryptographic operations, including symmetric

and asymmetric key encryption and key exchange protocols. It can handle

an unbounded number of sessions of the protocol efficiently using a small

amount of memory. This analyser was picked to confirm the verification

by the AVISPA tool. ProVerif provides methods to express homomorphic

encryption as a custom function.
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To verify a security protocol using ProVerif, the protocol needs to be

written in spi-calculus, which is an extension of π-calculus to express cryp-

tographic protocols.

There is no syntax to express homomorphic operations in spi-calculus. A

work around to express security protocols using homomorphic encryption is,

to define a custom function to specify the required homomorphic properties.

The protocol expressed using spi-calculus is given in Appendix C.

Required Properties of Addition

A+B = N,

N − A = B,

N −B = A. (5.5)

ProVerif function which represent this property

(* Homomorphic addition function *)

fun addH/2,

reduc deduct(addH(p, q), q) = p,

reduc deduct(addH(p, q), p) = q.

We attempted verifying the strong secrecy of Alice’s and Bob’s locations

(ALocation and BLocation). This requirement is expressed in spi-calculus as

below.

(* noninterf = Prove strong secrecy *)

noninterf secretA,secretB.

noninterf secretA.

noninterf secretB.
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(* Test whether “secretA” and “secretB” are secret *)

query attacker:secretA.

query attacker:secretB.

According to the analysis by ProVerif tool, the protocol is secure against

strong secrecy of secretA (ALocation) and secretB (BLocation). The result is

given in Appendix D.
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Chapter 6

Performance Issues of XOR

Homomorphic Encrypted

Secure Location Sharing

Protocol

6.1 Concept Verification of XOR Homomor-

phic Encryption Algorithm by MATLAB

MATLAB implementation issues of the process will be discussed in this chap-

ter. The encryption and decryption functions are implemented in MATLAB

in order to verify the XOR homomorphic property of the encryption algo-

rithm in [2].

Fig. 6.1 shows the flow chart of implementing XOR homomorphic en-
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Figure 6.1: MATLAB simulation flow chart for the XOR homomorphic en-

cryption in community LBS.

cryption in community LBS. Our goal is that user 1 can determine user 2’s

location based on the response from the server. The server adds user 1’s loca-

tion and user 2’s location together. In this scheme addition in the cipher-text

means bitwise XOR in the plain text domain. Therefore, when user 1 receives

{user 1’s location ⊕ user 2’s location}K , the user 1 can XOR the received

value with his own location to obtain user 2’s location.

First, we represent the location data in the form of two’s complement as

follows.
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Calculating Two’s Compliment

twosX = dec2bin(mod((x),2^16),16); % 16bit twos compliment

twosY = dec2bin(mod((y),2^16),16); % 16bit twos compliment

Then, the data bits of location are encrypted based on the equation (4.1).

Bitwise Encryption of Locations in Two’s Compliment

for lx = 1:16

r = round(rand(1)*100);

lengthXenc(lx) = twosX(lx) + 2*r + oddkey*q;

% encryption c = m + 2r +qp

end

for ly = 1:16

r = round(rand(1)*200);

lengthYenc(ly) = twosY(ly) + 2*r + oddkey*q;

% encryption c = m + 2r +qp

end

Then, the server adds the encrypted location data bits as follows.
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Server Performs XOR by Adding the Cipher Text Together

% server does the XOR

x3 = x1 + x2;

y3 = y1 + y2;

Next, the server sends the sum of the encrypted data of the two users’

location to both users. Each user will decrypt the data according to (4.2).

last, each user performs XOR operation with his own location to get the

other user’s location.

User1 Receives the Result from the Server and Decrypts

% key p = 99997

% decryption equation m = (c mod p)mod 2

x4 = mod(mod(x3,99997),2);

y4 = mod(mod(y3,99997),2);

User1 Performs XOR on the Decrypted Value

% User1 does the XOR in order to recover user2’s location

user2TwosX = xor(x4,user1X1);

user2TwosY = xor(y4,user1Y1);

The complete MATLAB code for this algorithms are given in Appendix

E.
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6.2 Implementation of the Proposed Proto-

col in Android Platform

This section describes the implementation issues of the proposed protocol

in an Android application, using JAVA programming language [38]. The

mobile client is targeted to be run in an Android mobile device, and the

server is hosted by the cloud computing infrastructure. In the application

development, Google application programming interface(API) level 7, An-

droid software development kit(SDK) [39], Bouncy castle crypto APIs [40]

and Eclipse integrated development environment(IDE) [41] were used [42] to

implement our algorithm. The application was tested in a HTC hero mobile

handset [43] operating on Android version 2.1 [44].

6.2.1 Implementation at the Client Side

The client codes mainly consists of the following components. The two’s

complement arithmetic class, encryption and decryption classes, JAVA TCP

socket, Google maps API, Bouncy castle crypto APIs RSA implementation

and the Graphical user interface(GUI). The program flowchart at the client

side is shown in Fig. 6.2 [45].

Graphical User Interface

The GUI is XML based and follows Android relative layout, which embeds

a Google mapview [46] as shown in Fig. 6.3
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Figure 6.2: The Android client programme flow.

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout xmlns:android=

"http://schemas.android.com/apk/res/android"

android:id="@+id/mainlayout"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:text="@string/hello">

<com.google.android.maps.MapView

android:id="@+id/mapview"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:clickable="true"

android:apiKey="0hF1EsCi1rOWSg7ZcE_Y19d4XaBImlQKEkKTPng"/>

</RelativeLayout>
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Figure 6.3: Android application GUI

Two’s Complement Arithmetic Class

The underlying mechanism in JAVA handles binary numbers in two’s com-

plement arithmetic, but there are not many classes available for accessing

these native operations. Therefore, we had to defined our own two’s comple-

ment arithmetic class. Given below is the algorithm behind the operation.

The complete code is given in Appendix F [47].
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if (the value is < 0){

bitwise invert;

add 1;

}else{return the original value;}

Encryption and Decryption Classes

The code segment below illustrates how the homomorphic encryption and de-

cryption are performed. The complete JAVA class is given in the appendix F.

The random numbers “r” and “q” are generated using the “java.util.Random”

class. The biginteger data type was used for handling large cryptographic

parameters.

Encryption Class Code Snippet

qLarge = new BigInteger(4096,rand);

rLarge = new BigInteger(8,rand);

BigInteger c1 = BigInteger.valueOf(encDigitInt[k]);

BigInteger c2 = pLarge.multiply(qLarge);

BigInteger c3 = rLarge.multiply(BigInteger.valueOf(2));

BigInteger c4 = c1.add(c2).add(c3);

outputStringBig[k] = c4.toString();
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Decryption Class Code Snippet

for (int i = 0;i<32;i++)

{

locationLarge = new BigInteger(location[i]);

BigInteger mm = locationLarge.mod(keyLarge).mod(BigInteger.valueOf(2));

locationDec[i] = mm.intValue();

}

Client TCP Socket

A JAVA Transmission Control Protocol(TCP) socket is utilised in commu-

nication between the client and the server. The clients initiates TCP con-

nections to the server which provides public access. A code snippet from the

client TCP socket is given here.
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try {

Socket clientSocket = new Socket("yourdoamin.com", 2004);

ObjectOutputStream outToServer = new

ObjectOutputStream(clientSocket.getOutputStream());

ObjectInputStream inFromServer = new

ObjectInputStream(clientSocket.getInputStream());

outToServer.writeObject(msgToServer[k]);’

// close the socket after transmission

try{

clientSocket.close();

}

catch(IOException ioException){

ioException.printStackTrace();

}

}catch (Exception e) {

printScr("TCP Error: " + e.toString());

}

Google Maps Application Programming Interface

Google maps API provides the com.google.android.maps class with function-

alities for map-rendering, caching map tiles and many other map manipula-

tion methods. This package is used in rendering the maps in this application.

The code snippet of calling for Google API [46] is given next.
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mapView = (MapView) findViewById(R.id.mapview);

mapView.setBuiltInZoomControls(true);

mapView.setStreetView(true);

mapController = mapView.getController();

mapController.setZoom(16);

locationManager = (LocationManager)

getSystemService(Context.LOCATION_SERVICE);

RSA Digital Signature Class

The Bouncy castle crypto API [40] was used in generating the digital signa-

ture. Users generate digital signatures by encrypting the SHA1 hash of their

locations using the RSA private key. The other users verify the signature

by generating SHA1 hash of the received location and comparing it with the

hash value in the digital signature. A graphical illustration of this process is

given in Fig. 6.4. The first code snippet next shows the signature generation

process and the second code snippet shows the verification process.
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Figure 6.4: Client RSA digital signature generation and verification.

public static byte[] signLocation(String location)

throws Exception {

Security.addProvider(new

org.bouncycastle.jce.provider.BouncyCastleProvider());

KeyFactory keyFactory =

KeyFactory.getInstance("RSA", "BC");

RSAPrivateKey privKey =

RSAPrivateKey) keyFactory.generatePrivate(privKeySpec);

Signature signature=Signature.getInstance("SHA1withRSA","BC");

signature.initSign(privKey, new SecureRandom());

signature.update(location.getBytes());

byte[] sigBytes = signature.sign();

return sigBytes;

}
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public static boolean signVerify

(byte[] sigBytes, String location)

throws Exception {

Security.addProvider(new

org.bouncycastle.jce.provider.BouncyCastleProvider());

KeyFactory keyFactory = KeyFactory.getInstance

("RSA", "BC");

RSAPublicKeySpec pubKeySpec = new

RSAPublicKeySpec(modulus,exponentPub);

RSAPublicKey pubKey = (RSAPublicKey)

keyFactory.generatePublic(pubKeySpec);

Signature signature = Signature.getInstance

("SHA1withRSA","BC");

signature.initVerify(pubKey);

signature.update(location.getBytes());

boolean verificationResult = signature.verify(sigBytes);

return verificationResult;

}

The RSA key was generated using the JAVA code given in the next code

snippet. Two pairs of keys were generated and placed in the user 1’s and

user 2’s JAVA codes.
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public static void main(String[] args) throws Exception {

Security.addProvider

(new org.bouncycastle.jce.provider.BouncyCastleProvider());

KeyPairGenerator keyGen = KeyPairGenerator

.getInstance("RSA", "BC");

keyGen.initialize(1024, new SecureRandom());

KeyPair keyPair = keyGen.generateKeyPair();

KeyFactory fact = KeyFactory.getInstance("RSA");

RSAPublicKeySpec pub = fact.getKeySpec(keyPair.getPublic(),

RSAPublicKeySpec.class);

RSAPrivateKeySpec priv = fact.getKeySpec(keyPair.getPrivate(),

RSAPrivateKeySpec.class);

The Bouncy castle crypto API [40] produces a signature which is a byte

array of 1024 bits. When this is converted in to a string in order to be

transmitted using the TCP socket, the bits are encoded according to some

character format like UTF-8, UCS-2 etc. These encoded strings results in

modifications to the original bits of the digital signature. Therefore we have

implemented a method in order to transmit the bits of the digital signature

without any modification over the network. The first step is to convert all

bytes(128Bytes) in to signed decimal integers.

01111000 00001010 00101101 = 120 10 45

Then the numbers are concatenated with the “,” as a separator.

120,10,45
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Then it is converted in to a character string and transmitted over the

network. At the client end, the string is split at each “,” and the individual

integers are obtained. Then these are converted in to binary and concate-

nated to reconstruct the original byte array.

120 10 45 = 01111000 0000s1010 00101101

By using this method we are able to transmit the original digital signature

bits without being altered during the transmission.

6.2.2 Implementation at the Server Side

The server codes consist of the main class which contains the TCP socket

and the homomorphic XOR class, which performs the XOR homomorphic

addition on the data received from the clients. The complete JAVA code

of the server implementation is given in Appendix G. Fig. 6.5 shows the

flowchart of the program implemented at the server side.
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Figure 6.5: The server programme flow.

Server TCP Socket

TCP socket code snippet [48] at the server side is given below. The server

socket binds to the TCP port 3105 of the server Internet protocol(IP) inter-

face.
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Provider(){}

void run(){

try{

providerSocket = new ServerSocket(3105, 10);

System.out.println("Waiting for connection");

connection = providerSocket.accept();

System.out.println("Connection received from " +

connection.getInetAddress().getHostName());

out = new ObjectOutputStream(connection.getOutputStream());

in = new ObjectInputStream(connection.getInputStream());

do{

try{

message = (String)in.readObject(); }

}while(!message.equals("bye"));}

catch(IOException ioException){

ioException.printStackTrace();}

Homomorphic XOR Operation

The homomorphic XOR operation is performed in the server by adding the

received user1’s and user2’s location data together. A for loop is used for

adding the integer valued cipher-text. The code snippet is given next.
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for(int i=0;i<66;i++)

{

userLoc1Big = new BigInteger(a1.elementAt(i));

userLoc2Big = new BigInteger(b1.elementAt(i));

outputBigArray.add((userLoc2Big.add(userLoc1Big)).toString());

}

6.3 Cipher-Text Growth Issue

Selecting Parameters

The encryption scheme in [2] can produce very large cipher-text based on

the selection of p, q and r. The parameter selection is a trade-off between

security and system performance. For the best security, parameters should

be selected according to (6.1)(6.2)(6.3).

p ∈ [2(η−1), 2η), (6.1)

r ≈ 2
√
η, (6.2)

q ≈ 2η
3

, (6.3)

where η is the security parameter.

For protection against brute force attack we have selected the key length

of 64 bits. That is η = 64. Therefore, according to (6.2)(6.3), r = 8 bits and

86



Figure 6.6: Encryption key size vs cipher-text growth.

q = 262144 bits. Since q is the largest integer in the encryption formula, the

resulting cipher-text will be around the size of 262144 bits per one bit of plain

text. The two’s complement representation of GPS coordinates will take 64

bits, therefore 64 bits of plain text will become 16777216 bits (16Mbits) of

cipher-text. These parameters were tested during the implementation. Fig.

6.6 gives a graph which shows the cipher-text size increase with the length

of the encryption key. The code snippet below shows the implementation of

encryption and decryption formulas implemented using JAVA bigintger type.
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p = new BigInteger("18446744073709551617");

// p is 64 bit

q = new BigInteger(262144,rand);

r = new BigInteger(8,rand);

BigInteger c1 = ((p.multiply(q)));

BigInteger c2 = c1.add(m);

BigInteger c3 = r.multiply(BigInteger.valueOf(2));

c = c2.add(c3);

// "c" is cipher-text

BigInteger mm = c.mod(p).mod(BigInteger.valueOf(2));

// "mm" is plain-text obtained by

decrypting the cipher-text

Two problems arise due to the large cipher-text size. First, there is a

16MB memory allocation limit per application in Android operating sys-

tem [49]. The total memory usage comes close to this limit when other

components of the application like google maps, TCP socket etc are added

in to the equation. The second problem is the bandwidth available over

HSDPA, 3G and GPRS links. HSDPA in smartphones usually supports 7.2

Mbps downlink and 384 Kbps uplink with best radio reception. Therefore

the mobile client will take at least 42 seconds (16777216/(384 × 1024)) for

a location update. Due to these practical considerations, we have loosened

up the selection of q to be q = 2η
2
. With this selection of q, the location

update size reduces significantly. One bit of plain-text will become 4096 bits

of cipher-text, therefore 64 bits will become 262144 bits (32 KB), which is a
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reasonable value for the mobile device memory and HSDPA, 3G and GPRS

data links.

JAVA regular data types like double and float can handle 64 bit num-

bers [50], but this is not sufficient for the requirement of implementing the

encryption and decryption functions. Therefore we have used the data type

“biginteger”. This data type can handle very large integers. The upper limit

is only limited by the amount of memory available for the process. we have

used the “BigInteger(int numBits, Random rnd)” method to generate ran-

dom values of a specific bit length for q and r as shown in the next code

snippet.

q = new BigInteger(262144,rand);

r = new BigInteger(8,rand);

6.4 Time Complexity Issue

In this subsection, we discuss the time complexity issue of the proposed XOR

homomorphic encrypted secure location sharing protocol at the client side

and the server side.

Time Complexity at the Client

The time complexity of the proposed protocol’s mathematical operations at

the client is analysed below. The number of users is considered to be the

input of this analysis.
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If there are m-bit location data, each user will perform m(n− 1) XOR oper-

ations in a group of n users. Specifically that is ,

2 users −→ m XOR operations,

3 users −→ 2m XOR operations,

.

n users −→ (n− 1)m XOR operations,

Denote the time complexity of the proposed algorithm as Tclient(n). Then,

Tclient(n) = O(n)

Time Complexity at the Server

Let each user’s GPS location data be expressed by m digits. If each bit is

encrypted and become c-bits. For

2 users −→ c additions,

3 users −→ 3c additions,

4 users −→ 6c additions,

n users

−→ n!

2!(n− 2)!
× c,

−→ (n− 2)!× (n− 1)× n
2!× (n− 2)!

× c,

−→ (n− 1)× n
2!

× c,

−→ O(n2). (6.4)
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Table 6.1: Server computation reduction in the proposed protocol.

. Encryption Decryption XOR/Addition

Traditional method 2 2 0

Proposed protocol 0 0 1

Thus, the time complexity of the proposed algorithm at the server be-

comes TServer(n) = O(n2).

Cryptographic Operations Complexity Consideration

In the traditional method, the number of cryptographic operations increase

with the number of users. The server need to perform “n” number of de-

cryptions and “n” number of encryptions in order to share locations among

the users. In the proposed scheme, the server does not need to perform any

cryptographic operation. The server simply adds the received values together

and broadcast to all the users. A comparison of the cryptographic complex-

ity of traditional approach and the proposed protocol is given in Fig. 6.7,

and the Table 6.1 shows a number of cryptographic operations at the server

for traditional method and the proposed protocol in the two-user case. As

observed in Fig. 6.7, for 10 users, the overall system require 120 crypto-

graphic operations in traditional method compared to the 100 cryptographic

operations required by the proposed method. Therefore the proposed scheme

reduce the cryptographic computation burden on the system by 16.67% at

10 users.

In the calculation below, the number of cryptographic operations per-
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Figure 6.7: Number of users vs cryptographic operations at the server.

formed in the overall system is considered as the metric. We have made

the assumptions that each cryptographic operation is considered as one unit

of CPU time and the XOR homomorphic operation is not a cryptographic

operation due to the fact that it is merely a numerical addition at the server.

In the traditional approach for n users, the client require one encryption

and n − 1 decryptions. At the server, one encryption and one decryption is

required for each user. Therefore the total cryptographic operations for n

users is (1 + (n− 1))× n+ (1 + 1)× n = n2 + 2n.

In the proposed solution, for n users, each client requires one encryption

and n − 1 decryptions. The server does not require to perform any crypto-

graphic operations. Therefore the total number of cryptographic operations

for n users is (1 + (n− 1))× n = n2.
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6.5 Bandwidth Issue

In the proposed algorithm, the bandwidth is required at the server for sending

and receiving messages. In traditional location sharing method, in the case of

n users, each user will send his or her location to the server and the server need

to send (n−1) other users’ locations to each user. This results in a significant

amount of traffic. In the proposed solution, the users’ locations are combined

using the XOR homomorphic encryption technique and broadcasted to the

whole group.

The metric used for this analysis is the number of messages need to be

communicated [51] per user. We have made these assumptions in the pro-

cess, each message has a fixed length (This is true due to the fact that the

GPS coordinates need to be converted to fixed length two’s complement in

both schemes), underlying cryptographic algorithm generates the same num-

ber of bits per one bit of plain text and a protocol like Internet relay chat

(IRC) is used with the proposed scheme in order to broadcast messages to

user groups. Table 6.2 shows a comparison of the number of messages in

traditional method vs the proposed protocol in two-user case.

Formula :

n = number of users

Traditional method bandwidth usage = n× n,

Proposed protocol bandwidth usage = n× (n− 1)/2.

The number of messages is plotted against the the number of users in

Fig. 6.8. According the result, it is observed that for 10 users, the proposed
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Table 6.2: Bandwidth overhead reduction of two-user case using the proposed

protocol.

. Number of message

Traditional method 4

Proposed protocol 3

Figure 6.8: Number of users vs server bandwidth utilization.

scheme only require 45 messages compared to the 100 messages required by

the traditional method, which is a 55% bandwidth saving.
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Chapter 7

Conclusions

7.1 XOR Homomorphic Encrypted Secure Lo-

cation Sharing Protocol

When outsourcing data to cloud computing infrastructure, one of the main

concerns for any organization is security. For this end, all data are encrypted

and stored in cloud computing infrastructure. The problem arises when the

organization requires the virtual servers in the cloud computing infrastruc-

ture to perform computations on encrypted data. In this thesis we have

discussed the methods of performing calculations on the cipher-text, and its

applications for location sharing services in cloud computing. As described

in the literature survey in Chapter 2, we have analysed several leading so-

lutions to this problem and has picked homomorphic encryption as the best

fit for sharing location information securely, in untrusted cloud computing

infrastructure.
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We have proposed the “XOR homomorphic encrypted secure location

sharing protocol” in Chapter 4. This security protocol can be used for sup-

porting location based cloud computing applications to provide data pri-

vacy using homomorphic encryption scheme [2]. Thus, location sharing

among users can preserve confidentiality, authenticity, integrity and non-

repudiation. The proposed protocol requires only a limited number of addi-

tions and multiplications on the cipher text by the cloud computing servers.

In addition to homomorphic encryption, a one-way hash function and an

asymmetric key encryption scheme are used to provide authenticity, integrity

and non-repudiation. In Chapter 5 we have verified the security of pro-

posed protocol using two industry standard secure protocol analysers namely

AVISPA and ProVerif. A simulation of the protocol using MATLAB and the

implementation of the proposed scheme in an Android application are dis-

cussed in Chapter 6.

7.2 Suggestions for Future Research

The fully homomorphic scheme proposed by Gentry [1] prove the existence

of cryptographic algorithms that can allow any mathematical operation on

the cipher-text. At this moment the fully homomorphic encryption scheme

impractical to be implemented in all application because of its high compu-

tation overhead and the growth of the cipher text size with each operation.

We provide the following suggestions to further continue our work.

• Extend our scheme and perform further mathematical operations on the

cipher-text:
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One of the interesting things we analysed in our research is to calcu-

late distance between two users at the server. The challenge is the Haver-

sine formula for calculating the distance between two GPS coordinates [52].

This formula includes functions such as sin, cos, atan2 and the squareroot,

which need to be defined in the homomorphic domain. One possible solution

would be to replace the GPS cordinates with a cartician system like UTM

coordinates [53], which will simplify the distance calculation to Pythagoras

theorem.

Haversine formula

R = earths radius (mean radius = 6,371km)

∆lat = lat1 − lat2

∆long = long1 − Long2

a = sin2(∆lat/2) + cos(lat1).cos(lat2).sin
2(∆long/2)

c = 2× atan2(
√
a,
√

(1− a))

d = R× c (7.1)

• Application of homomorphic encryption in databases hosted in cloud com-

puting infrastructure:

Another popular topic we looked into during our research was database

security in cloud computing. Most methods descried in the literature survey

are inspired by the requirement of performing SQL querries over the cipher-

text [3, 6].
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Figure 7.1: Using network coding for security.

• Applying homomorphic encryption in network coding:

The reference [54] gives several applications of network coding in order

to achieve security. What makes this interesting is the fact that encryption

is not used in these applications. Several variations of the original message

are transmitted through several paths in the network, trusted nodes on the

way perform predefined mathematical operations on the messages so that the

receiver is provided with a set of messages which will help him to extract the

original message. This process is illustrated in Fig. 7.1. The main concern in

this architecture is that the nodes need to be trusted. Using homomorphic

encryption to overcome the need for trust could be an interesting research

area.
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Appendix A

Proposed Protocol in HLPSL

role alice(A,B,S : agent,

K : symmetric_key,

Hash : hash_func,

Ka,Kb : public_key,

Snd,Rcv : channel (dy)) played_by A def=

local

State :nat,

Na,Nb : message

init State := 0

transition
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1. State = 0 /\ Rcv(start) =|>

State’:= 2 /\ Na’ := new()

/\ Snd(A,{Na’}_K,{Hash(A,Na’)}_inv(Ka))

2. State = 2 /\ Rcv(A,{Na’}_K.{Nb’}_K,{Hash(A,Na’)}_inv(Ka),

{Hash(B,Nb’)}_inv(Kb)) =|>

State’:= 4 /\ secret (Na,na,{A,B})

end role

role bob(A,B,S : agent,

K : symmetric_key,

Hash : hash_func,

Ka,Kb : public_key,

Snd,Rcv : channel (dy)) played_by B def=

local

State :nat,

Na,Nb : message

init State := 1

transition

1. State = 1 /\ Rcv(start) =|>

State’:= 3 /\ Nb’:=new()
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/\ Snd(B,{Nb’}_K,{Hash(B,Nb’)}_inv(Kb))

2. State = 3 /\ Rcv(B,{Na’}_K.{Nb’}_K,{Hash(A,Na’)}_inv(Ka),

{Hash(B,Nb’)}_inv(Kb)) =|>

State’:= 5 /\ secret (Nb,nb,{A,B})

end role

role server(A,B,S : agent,

Snd,Rcv : channel (dy)) played_by S def=

local

State :nat,

X1 : message,

X2 : message,

SIG1 : message,

SIG2 : message

init State := 7

transition
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1. State = 7 /\ Rcv(A,X1’,SIG1) /\ Rcv(B,X2’,SIG2)=|>

State’:= 9

2. State = 9 /\ Rcv(A,X1’,SIG1)

/\ Rcv(B,X2’,SIG2)=|>

State’:= 11 /\ Snd(A,X1’.X2’,SIG1,SIG2)

/\ Snd(B,X1’.X2’,SIG1,SIG2)

end role

role session(A, B, S : agent,K : symmetric_key,

Hash : hash_func, Ka : public_key,

Kb : public_key)

def=

local

SAS, RSA,

SBS, RSB,

SSA, RAS,

SSB, RBS : channel (dy)

composition

alice (A, B, S, K,Hash, Ka,Kb, SAS, RSA)

/\ server(A, B, S, SSA, RAS)

/\ bob (A, B, S, K, Hash, Ka,Kb, SBS, RSB)

end role
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role environment()

def=

const

a, b, s : agent,

k1 , kis : symmetric_key,

ka , kb , ki : public_key,

h : hash_func,

na,nb : protocol_id

intruder_knowledge = {a, b, s,kis,ki,ka,kb}

composition

session(a,b,s,k1,h,ka,kb)

/\session(i,b,s,kis,h,ki,kb)

/\session(a,i,s,kis,h,ka,ki)

/\session(a,b,i,kis,h,ka,kb)

end role

goal

secrecy_of na,nb

end goal

environment()
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Appendix B

Details of the Verification

Result using AVISPA

B.1 OFMC

OFMC

Version of 2006/02/13

SUMMARY

SAFE

DETAILS

BOUNDED_NUMBER_OF_SESSIONS

PROTOCOL

/home/avispa/web-interface-computation/./tempdir/workfile41o3Wk.if

GOAL

as_specified

BACKEND
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OFMC

COMMENTS

STATISTICS

parseTime: 0.00s

searchTime: 23.66s

visitedNodes: 19683 nodes

depth: 18 plies

B.2 CL-AtSe

SUMMARY

SAFE

DETAILS

BOUNDED_NUMBER_OF_SESSIONS

TYPED_MODEL

PROTOCOL

/home/avispa/web-interface-computation/./tempdir/workfile41o3Wk.if

GOAL

As Specified

BACKEND

CL-AtSe
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STATISTICS

Analysed : 0 states

Reachable : 0 states

Translation: 0.02 seconds

Computation: 0.00 seconds

B.3 CL-AtSe

SUMMARY

SAFE

DETAILS

STRONGLY_TYPED_MODEL

BOUNDED_NUMBER_OF_SESSIONS

BOUNDED_SEARCH_DEPTH

BOUNDED_MESSAGE_DEPTH

PROTOCOL

workfile41o3Wk.if

GOAL

%% see the HLPSL specification..

BACKEND
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SATMC

COMMENTS

STATISTICS

attackFound false boolean

upperBoundReached true boolean

graphLeveledOff 2 steps

satSolver zchaff solver

maxStepsNumber 11 steps

stepsNumber 2 steps

atomsNumber 0 atoms

clausesNumber 0 clauses

encodingTime 0.01 seconds

solvingTime 0 seconds

if2sateCompilationTime 0.04 seconds

ATTACK TRACE

%% no attacks have been found..

B.4 TA4SP

SUMMARY

INCONCLUSIVE
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DETAILS

NOT_SUPPORTED

PROTOCOL

/home/avispa/web-interface-computation/./tempdir/workfile41o3Wk.if

GOAL

SECRECY

BACKEND

TA4SP

COMMENTS

Some rules may be not fired so TA4SP does not do the verification.

STATISTICS

Translation: 0.00 seconds

121



122



Appendix C

Proposed Protocol in

Spi-Calculus

(* probablistic Shared key cryptography *)

fun encrypt/3.

reduc decrypt(encrypt(x,y,r),y) = x.

(* public key cryptography *)

fun pk/1.

fun Pencrypt/2.

reduc Pdecrypt(Pencrypt(x,y),y) = x.

(* Hash function *)

fun hash/1.

(* Homomorphic addition function *)
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fun addH/2.

reduc deduct(addH(p,q),q) = p;

deduct(addH(p,q),p) = q.

(* Signature Aggregation function *)

fun sigAG/2.

(* Secrecy assumptions *)

not k. (* shared symetric key *)

not ska. (* A’s private key for signatures *)

not skb. (* B’s private key for signatures *)

(* Dolev-Yao model network with omnipotent attacker *)

free net.

private free secretA,secretB.

(* noninterf = prove strong secracy *)

noninterf secretA,secretB.

noninterf secretA.

noninterf secretB.

(* Test whether "secretA" and "secretB" are secret *)

query attacker:secretA.

query attacker:secretB.

let processA =

new na;

out(net, (encrypt((secretA), k,na) ,
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Pencrypt(hash(secretA),ska)));

in(net,a).

let processB =

new nb;

out(net, (encrypt((secretB), k,nb) ,

Pencrypt(hash(secretB),skb)));

in(net,b).

let processS =

in(net,(s1,sig1));

in(net,(s2,sig2));

out(net,(addH(s1,s2),sig1,sig2)).

(* run the three processes in parallel *)

process new k;new ska;new skb;

((!processA) |(!processB)| (!processS)) (* !P = p | p | p...*)
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Appendix D

Verification Result using

PROVERIF

Process:

new k_13;

new ska_14;

new skb_15;

(

{8}!

new na_22;

{9}out(net, (encrypt((secretA),k_13,na_22),

Pencrypt(hash(secretA),ska_14)));

{10}in(net, a_23);

0

) | (

{5}!
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new nb_20;

{6}out(net, (encrypt((secretB),k_13,nb_20),

Pencrypt(hash(secretB),skb_15)));

{7}in(net, b_21);

0

) | (

{1}!

{2}in(net, (s1_16,sig1_17));

{3}in(net, (s2_18,sig2_19));

{4}out(net, (addH(s1_16,s2_18),sig1_17,sig2_19));

0

)

-- Query not attacker:secretB[]

Completing...

ok, secrecy assumption verified: fact unreachable attacker:k_13[]

ok, secrecy assumption verified: fact unreachable attacker:ska_14[]

ok, secrecy assumption verified: fact unreachable attacker:skb_15[]

Starting query not attacker:secretB[]

RESULT not attacker:secretB[] is true.

-- Query not attacker:secretA[]

Completing...

ok, secrecy assumption verified: fact unreachable attacker:k_13[]

ok, secrecy assumption verified: fact unreachable attacker:ska_14[]

ok, secrecy assumption verified: fact unreachable attacker:skb_15[]

Starting query not attacker:secretA[]

RESULT not attacker:secretA[] is true.

-- Non-interference secretB
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Completing...

ok, secrecy assumption verified: fact unreachable attacker:k_13[]

ok, secrecy assumption verified: fact unreachable attacker:ska_14[]

ok, secrecy assumption verified: fact unreachable attacker:skb_15[]

RESULT Non-interference secretB is true (bad not derivable).

-- Non-interference secretA

Completing...

ok, secrecy assumption verified: fact unreachable attacker:k_13[]

ok, secrecy assumption verified: fact unreachable attacker:ska_14[]

ok, secrecy assumption verified: fact unreachable attacker:skb_15[]

RESULT Non-interference secretA is true (bad not derivable).

-- Non-interference secretA, secretB

Completing...

ok, secrecy assumption verified: fact unreachable attacker:k_13[]

ok, secrecy assumption verified: fact unreachable attacker:ska_14[]

ok, secrecy assumption verified: fact unreachable attacker:skb_15[]

RESULT Non-interference secretA, secretB is true (bad not derivable).
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Appendix E

MATLAB Simulation Code

E.1 Encryption Function

function [lengthXenc,lengthYenc] = homomorphicEncXY1 (x,y,oddkey)

twosX = dec2bin(mod((x),2^16),16); % 16bit twos compliment

twosY = dec2bin(mod((y),2^16),16); % 16bit twos compliment

lengthXenc = zeros(1,16);

lengthYenc = zeros(1,16);

q = 29;

for lx = 1:16

r = round(rand(1)*100);

lengthXenc(lx) = twosX(lx) + 2*r + oddkey*q;

end
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for ly = 1:16

r = round(rand(1)*200);

lengthYenc(ly) = twosY(ly) + 2*r + oddkey*q;

end

E.2 Main Function

user1X = double((zeros(1,16)));

user1Y = double((zeros(1,16)));

user1X1 = double((zeros(1,16)));

user1Y1 = double((zeros(1,16)));

% user2’s location

[x1 y1] = homomorphicEncXY1(120,24,99997);

% user2 encrypts his location and send to the server

% user1’s location

[x2 y2] = homomorphicEncXY1(123,33,99997);

% user1 encrypts his location and send to the server

% server does the XOR

x3 = x1 + x2;

y3 = y1 + y2;

% server sends x3 and y3 to both user1 and user2 ,

% they decrypt the message
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x4 = mod(mod(x3,99997),2);

y4 = mod(mod(y3,99997),2);

% user1 calculate user2’s location

user1X = dec2bin(mod((123),2^16),16);

user1Y = dec2bin(mod((33),2^16),16);

for i = 1:16

user1X1(i) = bin2dec(user1X(i));

end

for i = 1:16

user1Y1(i) = bin2dec(user1Y(i));

end

% user1 does the XOR in order to recover user2’s location

user2TwosX = xor(x4,user1X1);

user2TwosY = xor(y4,user1Y1);

% convert the longitude Latitude from twos compliment to Decimal

user2LocationLongitude = twostoDeci(user2TwosX)

user2LocationLatitude = twostoDeci(user2TwosY)
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Appendix F

Android Mobile Client JAVA

Code

F.1 Main Class

package xor.homomorphic.encrypted.secure.location.sharing;

import java.math.BigInteger;

import java.util.List;

import android.content.Context;

import android.graphics.drawable.Drawable;

import android.location.Location;

import android.location.LocationListener;

import android.location.LocationManager;

import android.os.Bundle;
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import android.view.Menu;

import android.view.MenuItem;

import android.widget.RelativeLayout;

import android.widget.Toast;

import com.google.android.maps.GeoPoint;

import com.google.android.maps.MapActivity;

import com.google.android.maps.MapController;

import com.google.android.maps.MapView;

import com.google.android.maps.Overlay;

import com.google.android.maps.OverlayItem;

public class ShowMap extends MapActivity {

private MapController mapController;

private MapView mapView;

private LocationManager locationManager;

private int lat;

private int lng;

private OverlayItem overlayitem;

private OverlayItem overlayitem2;

private GeoPoint point;

private GeoPoint point1;

private GeoPoint point2;

private HelloItemizedOverlay itemizedoverlay;

private HelloItemizedOverlay itemizedoverlay2;

private String[] latCipher;

private String[] latCipherU;
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private String[] lngCipher;

private String[] latCipherS = new String[32];

private String[] lngCipherS = new String[32];

private Location locationLast;

private static final int MENU_REFRESH = 0; // Menu button

private static final int MENU_QUIT = 1; // Menu button

private BigInteger good;

private boolean result1;

private byte[] signature;

private String locationForSign;

private BigInteger keyBig =

new BigInteger("18446744073709551617");

public void onCreate(Bundle bundle){

super.onCreate(bundle);

setContentView(R.layout.main);

// bind the layout to the activity

// create a map view

RelativeLayout linearLayout =

(RelativeLayout) findViewById(R.id.mainlayout);

mapView = (MapView) findViewById(R.id.mapview);

mapView.setBuiltInZoomControls(true);

mapView.setStreetView(true);

mapController = mapView.getController();

mapController.setZoom(16); // Zoon 1 is world view

locationManager = (LocationManager)

getSystemService(Context.LOCATION_SERVICE);
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boolean isGPS =

locationManager.isProviderEnabled

(LocationManager.GPS_PROVIDER);

locationManager.requestLocationUpdates

(LocationManager.GPS_PROVIDER, 5000,

50, new GeoUpdateHandler());

if (isGPS==false){

locationManager.requestLocationUpdates

(LocationManager.NETWORK_PROVIDER, 5000,

50, new GeoUpdateHandler());

}

//System.out.println(result1);

//--- overlay ---

List<Overlay> mapOverlays = mapView.getOverlays();

Drawable drawable = this.getResources().getDrawable

(R.drawable.androidmarkerred);

itemizedoverlay = new HelloItemizedOverlay(drawable);

Drawable drawable1 =

this.getResources().getDrawable(R.drawable.androidmarker);

itemizedoverlay2 = new HelloItemizedOverlay(drawable1);

point = new GeoPoint(24792345,120999813);

point2 = new GeoPoint(24792345,120999813);

overlayitem = new OverlayItem(point, "Ruwan!", "I’m in");
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overlayitem2 = new OverlayItem(point2, "Ruwan!", "I’m in");

mapController.animateTo(point);

itemizedoverlay.addOverlay(overlayitem);

itemizedoverlay2.addOverlay(overlayitem2);

mapOverlays.add(itemizedoverlay);

mapOverlays.add(itemizedoverlay2);

}

public void onLocationChangedRefresh(Location location) {

lat = (int) (location.getLatitude() * 1E6);

lng = (int) (location.getLongitude() * 1E6);

//----- signature -----

locationForSign =

Integer.toString((int)Math.round(lat/(1E6)))+","+

Integer.toString((int)Math.round(lng/(1E6)));

try {

signature = digiSign.signLocation(locationForSign);

} catch (Exception e) {

e.printStackTrace();

139



}

try {

result1 = digiSign.signVerify(signature, locationForSign );

} catch (Exception e) {

e.printStackTrace();

}

StringBuffer result = new StringBuffer();

for (int i=0; i < 128; i++) {

result.append(Integer.toString(signature[i])+",");

}

String signatureUser1 = result.toString();

//--- encrypt -----------

latCipher = homomorphicEnc.encryptH(lat,keyBig);

lngCipher = homomorphicEnc.encryptH(lng,keyBig);

//---send it to the server ----

String[] latCipherUserX = new String[66];

latCipherUserX[0] = "1";

// add "1" to indicate user1

for(int i = 1;i<33;i++){

latCipherUserX[i] = latCipher[i-1];

//latCipherUserX[33+i] = lngCipher[i-1];

}

latCipherUserX[33] = signatureUser1;

// add "1" to indicate user1
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for(int j = 1;j<33;j++){

//latCipherUserX[i] = latCipher[i-1];

latCipherUserX[33+j] = lngCipher[j-1];

}

latCipherU = mySecretaryClasses.

socketConnect(latCipherUserX);

//---split to lng and lat--------

for (int k = 0;k<32;k++){

latCipherS[k] = latCipherU[k+2];

}

for (int k = 0;k<32;k++){

lngCipherS[k] = latCipherU[k+35];

}

// --- decrypt -------------

String latDeCipher = homomorphicDec.

decryptH(lat,latCipherS,keyBig);

String lngDeCipher = homomorphicDec.

decryptH(lng,lngCipherS,keyBig);

//----toast--------

Context context1 = getApplicationContext();

int duration1 = Toast.LENGTH_SHORT;
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Toast toast1 = Toast.makeText

(context1,"Latitude : "+

(Float.valueOf(latDeCipher)/1000000)+"\nLongitude :

"+(Float.valueOf(lngDeCipher)/1000000)+

"Sign : "+locationForSign,duration1);

//arrayToString2(latCipher)

//latDeCipher+","+lngDeCipher

toast1.show();

//----- move the man ------

point = new GeoPoint(Integer.parseInt(latDeCipher),

Integer.parseInt(lngDeCipher));

point2 = new GeoPoint(lat,lng);

mapController.animateTo(point);

// mapController.setCenter(point);

overlayitem = new OverlayItem

(point, "Ruwan!", "I’m in ???!");

overlayitem2 = new OverlayItem

(point2, "Ruwan!", "I’m in ???!");

itemizedoverlay.addOverlay(overlayitem);

itemizedoverlay2.addOverlay(overlayitem2);

}

//-------------
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@Override

protected boolean isRouteDisplayed() {

return false;

}

public class GeoUpdateHandler implements LocationListener {

@Override

public void onLocationChanged(Location location) {

locationLast=location;

lat = (int) (location.getLatitude() * 1E6);

lng = (int) (location.getLongitude() * 1E6);

//----- signature -----

locationForSign = Integer.toString

((int)Math.round(lat/(1E6)))+ Integer.

toString((int)Math.round(lng/(1E6)));

try {

signature = digiSign.signLocation

(locationForSign);

} catch (Exception e) {

e.printStackTrace();

}

try {
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result1 = digiSign.signVerify(signature, locationForSign );

} catch (Exception e) {

e.printStackTrace();

}

StringBuffer result = new StringBuffer();

for (int i=0; i < 128; i++) {

result.append(Integer.toString(signature[i])+",");

}

String signatureUser1 = result.toString();

//--- encrypt -----------

latCipher = homomorphicEnc.encryptH(lat,keyBig);

lngCipher = homomorphicEnc.encryptH(lng,keyBig);

//---send it to the server ----

String[] latCipherUserX = new String[66];

latCipherUserX[0] = "1"; // add "1" to indicate user1

for(int i = 1;i<33;i++){

latCipherUserX[i] = latCipher[i-1];

}

latCipherUserX[33] = signatureUser1;

// add "1" to indicate user1

for(int j = 1;j<33;j++){

//latCipherUserX[i] = latCipher[i-1];

latCipherUserX[33+j] = lngCipher[j-1];

}

latCipherU =
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mySecretaryClasses.socketConnect(latCipherUserX);

//---split to lng and lat

for (int k = 0;k<32;k++){

latCipherS[k] = latCipherU[k+2];

}

for (int k = 0;k<32;k++){

lngCipherS[k] = latCipherU[k+35];

}

// start tracing to "/sdcard/calc.trace"

//Debug.startMethodTracing("decrypotion1");

// --- decrypt -------------

String latDeCipher = homomorphicDec.

decryptH(lat,latCipherS,keyBig);

String lngDeCipher = homomorphicDec.

decryptH(lng,lngCipherS,keyBig);

// stop tracing

// Debug.stopMethodTracing();

//----toast--------

Context context1 = getApplicationContext();

int duration1 = Toast.LENGTH_SHORT;

Toast toast1 = Toast.makeText(context1,

"Latitude : "+(Float.valueOf(latDeCipher)/1000000)

+"\nLongitude : "+(Float.valueOf
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(lngDeCipher)/1000000),duration1);

//arrayToString2(latCipher)

//latDeCipher+","+lngDeCipher

toast1.show();

//----- move the man ------

point = new GeoPoint(Integer.

parseInt(latDeCipher),

Integer.parseInt(lngDeCipher));

point2 = new GeoPoint(lat,lng);

mapController.animateTo(point);

// mapController.setCenter(point);

overlayitem = new OverlayItem

(point, "Ruwan!", "I’m in ???!");

overlayitem2 = new OverlayItem

(point2, "Ruwan!", "I’m in ???!");

itemizedoverlay.addOverlay(overlayitem);

itemizedoverlay2.addOverlay(overlayitem2);

//------------------------

}

@Override

public void onProviderDisabled(String provider) {

}
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@Override

public void onProviderEnabled(String provider) {

}

@Override

public void onStatusChanged

(String provider, int status, Bundle extras) {

}

}

public static String arrayToString2(String[] a) {

StringBuffer result = new StringBuffer();

if (a.length > 0) {

for (int i=1; i<a.length; i++) {

result.append(a[i]);

}

}

return result.toString();

}

/* Creates the menu items */

public boolean onCreateOptionsMenu(Menu menu) {

menu.add(0, MENU_REFRESH, 0, "Refresh");

menu.add(0, MENU_QUIT, 0, "QUIT");

return true;

}

/* Handles item selections */
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public boolean onOptionsItemSelected(MenuItem item) {

switch (item.getItemId()) {

case MENU_REFRESH:

onLocationChangedRefresh(locationLast);

return true;

case MENU_QUIT:

System.exit(0);

return true;

}

return false;

}

}

F.2 Itemized Overlay Class

package xor.homomorphic.encrypted.secure.location.sharing;

import java.util.ArrayList;

import android.app.AlertDialog;

import android.content.Context;

import android.graphics.drawable.Drawable;
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import com.google.android.maps.ItemizedOverlay;

import com.google.android.maps.OverlayItem;

public class HelloItemizedOverlay extends ItemizedOverlay {

private ArrayList<OverlayItem> mOverlays

= new ArrayList<OverlayItem>();

private Context mContext;

public HelloItemizedOverlay(Drawable defaultMarker) {

super(boundCenterBottom(defaultMarker));

}

public void addOverlay(OverlayItem overlay) {

for (int i = 0; i < mOverlays.size(); i++) {

mOverlays.remove(i);

}

mOverlays.add(overlay);

populate();

}

public void cleanAllMarker(){

for (int i = 0; i < mOverlays.size(); i++) {

mOverlays.remove(i);
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}

}

@Override

protected OverlayItem createItem(int i) {

return mOverlays.get(i);

}

@Override

public int size() {

return mOverlays.size();

}

public HelloItemizedOverlay

(Drawable defaultMarker, Context context) {

super(defaultMarker);

mContext = context;

}

}

F.3 Homomorphic Encryption Class

package xor.homomorphic.encrypted.secure.location.sharing;

import java.math.BigInteger;

import java.util.Random;
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import android.os.Debug;

public class homomorphicEnc {

private static String toBin;

private static BigInteger qLarge;

private static BigInteger rLarge;

private static BigInteger pLarge;

public static String[] encryptH(int location,BigInteger key) {

toBin = Integer.toBinaryString(location);

pLarge = key;

String[] cipherLarge = new String[32];

Random generator = new Random(19580421);

for (int i=0; i<toBin.length(); i++) {

encDigitInt[32-toBin.length()+i] =

Character.getNumericValue(toBin.charAt(i));

}

String[] outBig = null;

for (int k=0;k<32;k++){

Random rand = new Random();

qLarge = new BigInteger(4096,rand);
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rLarge = new BigInteger(8,rand);

BigInteger c1 = BigInteger.valueOf

(encDigitInt[k]);

BigInteger c2 = pLarge.multiply(qLarge);

BigInteger c3 = rLarge.multiply

(BigInteger.valueOf(2));

BigInteger c4 = c1.add(c2).add(c3);

outputStringBig[k] = c4.toString();

}

return outputStringBig;

}

}

F.4 JAVA Socket Class

-

import java.io.IOException;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.net.Socket;

public class mySecretaryClasses {

static String[] msgFromServer ;
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public static String[] socketConnect(String[] msgToServer) {

int arraySizeRx = 0;

try {

Socket clientSocket = new Socket("yourdomain.com", 3105);

ObjectOutputStream outToServer = new

ObjectOutputStream(clientSocket.getOutputStream());

ObjectInputStream inFromServer = new

ObjectInputStream(clientSocket.getInputStream());

int arraySizeTx = msgToServer.length;

String arraySizeTxStr = Integer.toString(arraySizeTx);

outToServer.writeObject(arraySizeTxStr);

outToServer.flush();

int k=0;

do{

outToServer.writeObject(msgToServer[k]);

outToServer.flush();

k++;

}while(k < msgToServer.length);

outToServer.writeObject("bye");

outToServer.flush();

// the first value the server send is the size of the transmission,

// need to get that value to run the loop

arraySizeRx = Integer.parseInt((String)

inFromServer.readObject());

msgFromServer = new String[arraySizeRx+1];

msgFromServer[0] = Integer.toString(arraySizeRx);

// receive info from server
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for(int i=1; i<arraySizeRx+1; i++){

msgFromServer[i] = (String)inFromServer.readObject();

}

// close the socket after transmission

try{

inFromServer.close();

outToServer.close();

clientSocket.close();

}

catch(IOException ioException){

ioException.printStackTrace();

}

}catch (Exception e) {

}

return msgFromServer;

}

}

F.5 Homomorphic Decryption Class

package xor.homomorphic.encrypted.secure.location.sharing;

import java.math.BigInteger;

public class homomorphicDec {
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private static int locationDec[] = new int[32];

private static int locationDecXOR[] = new int[32];

private static String[] latStringArray = new String[32];

private static String latString;

private static String toBinLatLng;

private static BigInteger locationLarge;

private static BigInteger keyLarge;

public static String decryptH

(int latlng,String[] location,BigInteger key) {

keyLarge = key;

for (int i = 0;i<32;i++) {

locationLarge = new BigInteger(location[i]);

BigInteger mm = locationLarge.mod(keyLarge)

.mod(BigInteger.valueOf(2));

locationDec[i] = mm.intValue();

}

for (int j=0;j<32;j++){latStringArray[j]

= Integer.toString(locationDec[j]);}

latString = arrayToString2(latStringArray);

//--- XOR with current users location

toBinLatLng = Integer.toBinaryString(latlng);

locationDecXOR = xorclass.twostoint
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(locationDec ,toBinLatLng);

// --- chenge negetive values from twos

compliment to normal form ---

//---convert to decimal

String latStringDec = TwosToInt.

twostoint(locationDecXOR);

return latStringDec;

}

public static String arrayToString2(String[] a) {

StringBuffer result = new StringBuffer();

if (a.length > 0) {

for (int i=0; i<a.length; i++) {

result.append(a[i]);

}

}

return result.toString();

}

}
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F.6 Two’s Complement to Integer Class

public class TwosToInt {

private static int[] latIntArrayNew = new int[32];

private static String[] latStringArray = new String[32];

private static int latDec;

private static String latStringString;

/**

* @param args

*/

public static String twostoint(int[] latIntArray) {

int kk = latIntArray[0];

if(kk==1){

//---convert-----------

for(int i=0;i<32;i++){

//--- binary NO operation

if(latIntArray[i]==0){latIntArrayNew[i]=1;}

else{latIntArrayNew[i]=0;}

}

}else{

latIntArrayNew = latIntArray;

}

for(int j=0;j<32;j++){latStringArray[j] =

Integer.toString(latIntArrayNew[j]);}

latStringString = arrayToString2(latStringArray);
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//--add 1 after the NO operation

latDec = 0;

if(kk==1){

latDec = (( Integer.parseInt(latStringString,2))+1)*(-1);

}else{

latDec = ( Integer.parseInt(latStringString,2)+1);

}

return Integer.toString(latDec);

//Integer.toString(latDec);

//latStringString;

}

public static String arrayToString2(String[] a) {

StringBuffer result = new StringBuffer();

if (a.length > 0) {

for (int i=0; i<a.length; i++) {

result.append(a[i]);

}

}

return result.toString();

}

}

F.7 XOR Operation Class

public class xorclass {

private static int[] output = new int[32];

public static int[] twostoint
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(int[] latIntArray,String latlong) {

for (int i=0; i<latlong.length(); i++) {

encDigitInt[32-latlong.length()+i] =

Character.getNumericValue(latlong.charAt(i));

}

for (int j=0;j<32;j++){

output[j] = encDigitInt[j] ^ latIntArray[j];

}

return output;

}

}

F.8 RSA Digital Signature Class

package xor.homomorphic.encrypted.secure.location.sharing;

import java.math.BigInteger;

import java.security.KeyFactory;

import java.security.SecureRandom;

import java.security.Security;

import java.security.Signature;

import java.security.interfaces.RSAPrivateKey;

import java.security.interfaces.RSAPublicKey;

import java.security.spec.RSAPrivateKeySpec;

import java.security.spec.RSAPublicKeySpec;
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public class digiSign {

public static byte[] signLocation

(String location) throws Exception {

Security.addProvider

(new org.bouncycastle.jce.provider

.BouncyCastleProvider());

KeyFactory keyFactory = KeyFactory.

getInstance("RSA", "BC");

BigInteger modulusPri =

new BigInteger

("8a6cbe671a7b2ac818a8a0af86ce

edc08278c1b2c610512bd5342928aea5235b909b66a

cdcbf20cd303be020dd2f51f4d501fa18a266c65598e

9d969714e589d3a38d5466d752d41315d379e46028c4a

78a83a26d4db1f164e2f957cbe19ecc2f6c120f69687b3

d431647aa2eaae86ea03f081d166ab8e3846815cfc1efe2ea5",16);

BigInteger exponentPri =

new BigInteger("8f4a01ceb89ac6ae5ad8337d7f0eb50d92016e80a08643

801c32e2683a60b7391177cbd124b0b443b2aa4857bc9e3f383146da9

ca57fbdcedd7b3492f1b728020bbbbf4d8e032c7a503e24a38915ccc8

d57156aae83bb25cec4b3185aa29623d99063e4721801993a27bcedaeb

023974b5d4cc985a89e4faca74c249054dad",16);

RSAPrivateKeySpec privKeySpec = new RSAPrivateKeySpec

(modulusPri, exponentPri);
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RSAPrivateKey privKey = (RSAPrivateKey) keyFactory.

generatePrivate(privKeySpec);

Signature signature = Signature.getInstance("SHA1withRSA", "BC");

signature.initSign(privKey, new SecureRandom());

signature.update(location.getBytes());

byte[] sigBytes = signature.sign();

return sigBytes;}

public static boolean signVerify(byte[] sigBytes,

String location)throws Exception {

Security.addProvider

(new org.bouncycastle.jce.provider.

BouncyCastleProvider());

KeyFactory keyFactory = KeyFactory.

getInstance("RSA", "BC");

BigInteger modulus =

new BigInteger("8a6cbe671a7b2ac818a8a0af86ce

edc08278c1b2c610512b

d5342928aea5235b909b66acdcbf20cd303be020dd2f

51f4d501fa18a266
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c65598e9d969714e589d3a38d5466d752d41315d379

e46028c4a78a83a26d4db

1f164e2f957cbe19ecc2f6c120f69687b3d431647aa2

eaae86ea03f081d166ab8e38

46815cfc1efe2ea5",16);

BigInteger exponentPub = new

BigInteger("10001",16);

RSAPublicKeySpec pubKeySpec = new

RSAPublicKeySpec(modulus,exponentPub);

RSAPublicKey pubKey = (RSAPublicKey)

keyFactory.generatePublic(pubKeySpec);

Signature signature = Signature.

getInstance("SHA1withRSA", "BC");

signature.initVerify(pubKey);

signature.update(location.getBytes());

boolean verificationResult = signature.verify(sigBytes);

return verificationResult;}

}
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Appendix G

Server JAVA Code

G.1 Main Class

import java.io.IOException;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.net.ServerSocket;

import java.net.Socket;

import java.text.DateFormat;

import java.text.SimpleDateFormat;

import java.util.Arrays;

import java.util.Date;

import java.util.Vector;

public class Provider{

ServerSocket providerSocket;
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Socket connection = null;

ObjectOutputStream out;

ObjectInputStream in;

String message;

Vector<String> tableInfo = new Vector<String>() ;

String[] test1 = new String[5];

String[] test2 = new String[5];

Vector<String> vector = new Vector<String>();

Vector<String> lastLocUser1 =

new Vector<String>();

Vector<String> lastLocUser2 =

new Vector<String>();

Vector<String> lastLocUser11 =

new Vector<String>();

Vector<String> lastLocUser22 =

new Vector<String>();

private static

Vector<String> vLat = new Vector<String>

(Arrays.asList(mocLocUser2latEnc));

private static Vector<String> vLng = new

Vector<String>(Arrays.asList(mocLocUser2lngEnc));

private static Vector<String> vLatLng1 =

new Vector<String>();

private static Vector<String> vLatLng2 =

new Vector<String>();

private String signatureUser1="";
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private String signatureUser2="";

private String signature="";

Provider(){}

@SuppressWarnings("unchecked")

void run()

{

try{

providerSocket = new ServerSocket(2004, 10);

System.out.println("Waiting for connection");

connection = providerSocket.accept();

System.out.println

("Connection received from " + connection

.getInetAddress().getHostName());

out = new ObjectOutputStream

(connection.getOutputStream());

out.flush();

in = new ObjectInputStream

(connection.getInputStream());

int k = 0;

vector.clear();

do{

try{

message = (String)in.readObject();

if(k==34){

if (Integer.parseInt
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(vector.elementAt(1).toString())==1)

{

signatureUser1 = message;

}

if (Integer.parseInt

(vector.elementAt(1).toString())==2)

{

signatureUser2 = message;

}

vector.add("5");

}else {

vector.add(message);

}

k++;

}

catch(ClassNotFoundException classnot){

System.err.println

("Data received in unknown format");

}

}while(!message.equals("bye"));

}

catch(IOException ioException){

ioException.printStackTrace();

}

if (Integer.parseInt(vector.elementAt(1).toString())==1){
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lastLocUser1 = (Vector<String>) vector.clone();

System.out.println("client>" + lastLocUser1.elementAt(1));

}else{}

if (Integer.parseInt(vector.elementAt(1).toString())==2){

lastLocUser2 = (Vector<String>) vector.clone();

System.out.println("client>" + lastLocUser2.elementAt(1));

}else{}

//---------- mock locations ----------------

vLatLng1.clear();

vLatLng2.clear();

vLatLng2.add("2");

vLatLng2.add("2");

vLatLng2.addAll(vLat);

vLatLng2.add("2");

vLatLng2.addAll(vLng);

vLatLng2.add("2");

vLatLng1.add("1");

vLatLng1.add("1");

vLatLng1.addAll(vLat);

vLatLng1.add("1");
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vLatLng1.addAll(vLng);

vLatLng1.add("1");

//----null check-------------------------------

if(lastLocUser1.isEmpty()){lastLocUser1=vLatLng1;}

if(lastLocUser2.isEmpty()){lastLocUser2=vLatLng2;}

tableInfo = homomorphicAddition.add

(vector,lastLocUser1,lastLocUser2);

tableInfo.remove(33);

tableInfo.add(33, signatureUser1+"--"+signatureUser2);

sendMessage(Integer.toString(tableInfo.size()+2));

int i=0;

do{

sendMessage(tableInfo.elementAt(i)

.toString());

System.out.println("server>"+i+">"+

tableInfo.elementAt(i).toString());

i++;
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}while(i < tableInfo.size());

sendMessage("bye");

try{

in.close();

out.close();

providerSocket.close();

}

catch(IOException ioException){

ioException.printStackTrace();

}

}

void sendMessage(String msg)

{

try{

out.writeObject(msg);

out.flush();

}

catch(IOException ioException){

ioException.printStackTrace();

}

}

public static void main(String args[])

{

Provider server = new Provider();

169



while(true){

server.run();

}

}

}

G.2 Homomorphic Addition Class

import java.math.BigInteger;

import java.util.Arrays;

import java.util.Vector;

public class homomorphicAddition {

private static int[] user1Lat = new int[32];

private static int[] user1Lng = new int[32];

private int[] user2Lat = new int[32];

private int[] user2Lng = new int[32];

private static BigInteger userLoc1Big;

private static BigInteger userLoc2Big;

private static Vector<String>

vLat = new Vector<String>(Arrays.asList

(mocLocUser2latEnc));

private static Vector<String>

vLng = new Vector<String>

(Arrays.asList(mocLocUser2lngEnc));
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private static Vector<String> vLatLng1 =

new Vector<String>();

private static Vector<String> vLatLng2 =

new Vector<String>();

@SuppressWarnings("unchecked")

public static Vector<String> add(Vector<String>

locationInfoIn,Vector<String> u1,Vector<String> u2)

{

Vector<String> locationInfoOut = new Vector<String>();

Vector<String> a = new Vector<String>() ;

Vector<String> a1 = new Vector<String>();

Vector<String> b = new Vector<String>();

Vector<String> b1 = new Vector<String>();

Vector<String> calcResult = new Vector<String>();

Vector<String> outputBigArray = new Vector<String>();

vLatLng2.add("2");

vLatLng2.addAll(vLat);

vLatLng2.add("2");

vLatLng2.addAll(vLng);

vLatLng1.add("1");

vLatLng1.addAll(vLat);

vLatLng1.add("1");

vLatLng1.addAll(vLng);
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a1 = (Vector<String>) u1.clone();

b1 = (Vector<String>) u2.clone();

a1.remove(0);

a1.remove(66);

b1.remove(0);

b1.remove(66);

switch (Integer.parseInt(locationInfoIn.

elementAt(1).toString()))

// cast to an integer

{

case 1:

a = (Vector<String>)locationInfoIn.clone();

a.remove(0);

a.remove(66);

a1 = a;

break ;

case 2:

b = (Vector<String>)locationInfoIn.clone();

b.remove(0);

b1 = b;
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break ;

}

for(int i=0;i<66;i++){

userLoc1Big = new BigInteger(a1.elementAt(i));

userLoc2Big = new BigInteger(b1.elementAt(i));

outputBigArray.add((userLoc2Big.add(userLoc1Big))

].toString());

}

locationInfoOut = outputBigArray;

return locationInfoOut;

}

}
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