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Abstract. 

The problem of triangulating a polygon using the minimum number of triangles is treated. We show 
that the minimum number of triangles required to partition a simple n-gon is equal to n + 2w - d - 2, 
where w is the number of holes and d is the maximum number of independent degenerate triangles of the 
n-gon. We also propose an algorithm for constructing the minimum triangulation of a simple hole-free 
n-gon. The algorithm takes O(nlog2n + DK 2) time, where D is the maximum number of vertices lying on 
the same line in the n-gon and K is the number of minimally degenerate triangles of the n-gon. 

CR subjects classifications: G. 1.6, I. 1.2, 1.3.5 

1. Introduction. 

Triangulating a simple polygon is one of the most important research problems in 
computational geometry. We shall first give a few basic definitions. A polygon is 
simple if there is no pair of nonconsecutive edges sharing a point. A chord of 
a polygon is a line segment connecting two vertices and lying in the polygon. (Here, 
a chord can touch the boundary of the polygon at one or several points, or have 
edges as subsets.) A triangle of a polygon is a region bounded by three chords, and 
a triangle is degenerate if its area is zero. A triangulation of a polygon partitions the 
interior of the polygon into triangles. We shall use A*(P) to denote the minimum 
number of nondegenerate triangles required to partition a polygon P. For example, 
in Fig. la, ~3V7 is a chord and (va, vx, vT) is a degenerate triangle. Fig. lb shows 
a minimum triangulation of Fig. la. 

Many researchers [5,6,10] addressed the problem of partitioning a simple 
hole-free n-gon into n -  2 triangles. Recently, Tarjan et al. [10] proposed an 
O(nloglogn) time solution for this problem. Also, Fournier et al. [5] developed an 
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O(nlogn) time algorithm to partition a simple n-gon which contains w polygon holes 
into n + 2w - 2 triangles. 

While considering minimality, there is an interesting question: How can we 
partition a simple polygon into the minimum number of  nondegenerate triangles? 
Lingas [7] has showed that partitioning a simple polygon which contains holes 
(polygon holes or point holes) into the minimum number of triangles is NP-hard. 
Nevertheless, Asano et al. [1] presented an approximation algorithm for this 
problem. Recently, Asano et al. [2] proposed an O(n 3) time algorithm to partition 
a simple hole-free n-gon into the minimum number of triangles. 

In this paper, we shall show that A*(P) = n + 2w - d - 2, where P is a simple 
n-gon with w polygon holes and d is the maximum number of independent degener- 
ate triangles in P. Based on this minimality formula, we shall derive some interest- 
ing, tight bounds: if w = 0, then [n/37 < A*(P) < n - 2; if 1 < w < [ n / 6 7 -  1, 
then [n/3"] <_ A*(P) < n + 2w - 2; and if ~n/6] < w <_ In~3 - l J, then 2w + 1 _< 
A*(P) _< n + 2 w -  2. We shall also propose an algorithm for constructing the 
minimum triangulation of a simple hole-free n-gon. This algorithm takes at most 
O(nlog2n + K 2) time if any four vertices of the n-gon are not collinear; the set of such 
polygons is not trivial, since the class of dependency graphs associated with mini- 
mally degenerate triangles (defined later) of these polygons is equal to the class of 
circle graphs. The algorithm takes O(nlog 2 n + DK 2) time in general. Here D is the 
maximum number of vertices lying on the same line in the n-gon (for example, in Fig. 
la, D is five) and K is the number of minimally degenerate triangles of the n-gon (K is 
less than 2n - 1). When K is o(n), our algorithm improves from the previous best 
algorithm [2], which takes O(n 3) time even when the given polygon contains only 
one degenerate triangle. Even if K is O(n), our algorithm takes O(n 3) time only when 
there are O(n) vertices lying on the same line in the n-gon; usually, this degenerate 
case seldom appears. 
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180 ° v8 

v 7 v 7 
(a) A polygon with its degenerate triangk~s (b) A minimum triangulation of (a) 

shown by dolted lines 

F i g .  1 

The following conventions are used in this paper. Only polygon holes are 
considered. Polygons are assumed to be simple, with all vertices distinct and no 
three consecutive vertices collinear. Ifa triangle is not explicitly specified as degener- 
ate, it is nondegenerate. 

This paper is organized as follo~vs: section 2 describes the minimality formula and 
derives bounds for A*(P); section 3 proposes a minimum triangulation algorithm for 
hole-free polygons; concluding remarks are given in section 4. 
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2. The minimality formula and bounds for A* (P). 

First, a few basic notations are necessary. Let P be an n-gon with w holes. If 
(v,, Vb, V~) is a degenerate triangle of P, then vb is the middle vertex of the three; 
(v,, vb, v~) and (v~, vb, v,) denote the same triangle. If T is a triangulation of P, E(T)  
denotes the number of edges of T and A r(P) denotes the number of nondegenerate 
triangles of T. T partitions the plane into connected regions; the closures of these 
nondegenerate regions are called faces of T. Let F(T) denote the set of faces of T: call 
the faces which are in P interior faces and the others exterior faces. Let 4~(T) denote 
the number of faces of T: exactly w + 1 faces are exterior. The degree d ( f )  ofa facef is 
the number of edges with which f is incident. 

LEMMA 1: [1,8] Let P be an n-gon with w holes. I f  P contains no degenerate 
triangles, then A*(P) = n + 2w - 2. 

A degenerate triangle is minimally degenerate if it contains no other degenerate 
triangles. For example, in Fig. 1 a, (v 1 o, v9, v6) is a minimally degenerate triangle, but 
(v12, v9, v6) is not. We shall concern ourselves with minimally degenerate triangles 
only. 

The chords of a minimally degenerate triangle (v,, Vb, V~) divide the polygon into 
one or more subregions and split the interior angle vb into subangles. Only one 
subangle is 180 °, and one subregion contains this subangle. Call this subregion the 
180°-subregion of (v., vb, vc) and the others non-t80°-subregions of (v., vb, v~). See 
Fig. la. 

A minimally degenerate triangle (v., vb, Vc) of a polygon exists in a triangulation 
T of the polygon if (v., vb, vc) lies on the boundary of an interior face (a triangle) of T 
For example, (v3, vl, vT) exists in the triangulation in Fig. lb  and f is such a face, 

Two minimally degenerate triangles of a polygon are dependent if they can not 
exist simultaneously in a triangulation. More precisely, two minimally degenerate 
triangles (v~, vb, vc) and (v', v;, v;) of a polygon are dependent if and only if these two 
triangles: (i) intersect; or (ii) (v'., V'b, V'~) touches (vo, Vb, V~) at vb and (Va, V;, V') lies in the 
180°-subregion of (Va, Vb, Vc), or (v., Vb, Vc) touches (v'., v;, v') at v; and (v., vb, Vc) lies in 
the 180°-subregion of(v'., v;, v'). For example, in Fig. la, (v3, v 1, vT) and (v4, v5, vs) are 
dependent, but (v3, vl, vT) and (v12, Vlo, v9) are not. 

THEOREM 1: Two minimally degenerate triangles (v., vb, re) and (v'., v'b, v'c) of  a poly- 
gon are mutually independent if and only i f  these two triangles: 
(i) do not touch or intersect at all; 
(ii) touch at extreme vertices (share an extreme vertex); 
(iii) overlap (share a side); or 
(iv) (v'.,v'b,v'~) touches (Va, Vb, Vc) at vb and (v'a,v'b,v'c) lies in a non-180°-subregion of  

(v.,v b, vc), or (v., v b, v~) touches (v~, v'b, v'~) at v'b and (v., vb, v~) lies in a non-180 °- 
subregion of  (v'., v~, v'c). 
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PROOF. Immediate. 
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LEMMA 2: Let  P be an n-gon with w holes. I f  i mutually independent minimally 

degenerate triangles exis t  in a triangulation T o f  P, then A T(P) <-- n + 2w -- i -- 2. 

PROOF. Let m be the number  of interior faces whose boundaries these i degenerate 
triangles lie on. Summation on degrees of the m faces is at least 3m + i, and 

that of exterior faces is n. We have n - E(T)  + ~b(T) = 2 and ~ d ( f )  = 2E(T) > 
f~F(T) 

(3m + i) + 3(~b(T) - (w + 1) - m) + n. Thus AT(P) < n + 2w -- i -- 2. • 

A subset S of the vertex set of a graph is called an independent set if there is no edge 
of the graph joining any two vertices ofS. A maximum independent set of a graph is an 
independent set with the maximum cardinality. A dependency graph associated with 
minimally degenerate triangles of a polygon is defined as follows: the vertex set of the 
graph is a set of all minimally degenerate triangles of the polygon, and two vertices 
are joined by an edge if and only if they are dependent. Let G(P) denote the 
dependency graph of a polygon P. 

THEOREM 2: Let  P bean  n-gon with w-holes. Then A*(P) = n + 2w -- d - 2, where 

d is the cardinality o f  a maximum independent set o f  G(P). 

PROOF. It  follows from Lemma 2 that A*(P) < n + 2w - d - 2. If A*(P) < n + 

2w - d - 2, an independent set I of G(P) can be constructed such that 111 > d; this 
contradicts the assumption that d is maximum. Therefore A*(P) = 
n +  2 w - d - 2 .  II  

The following theorem derives tight bounds for A*(P). 

THEOREM 3: Let  P be an n-gon with w holes, and d be the cardinality o f  a maximum 

independent set o f  G(P). The following bounds are tight: 

I f  w = O, then 0 < d < n - Fn/37 - 2 and ~n/37 <_ d*(P) < n -- 2. 
I f  1 < w < ~n/6"] -- 1, then 0 < d < n + 2w - ~n/3q - 2 and ~n/3"l <_ A*(P) <_ n + 

2w -- 2. 

I f rn /6q  < w < Ln/3 - 13, then 0 <_ d < n - 3 and 2w + 1 < A*(P) < n + 2w - 2. 

PROOF. The proof  is simple and is left to the reader. 

COROLLARY 4: [1] Let  P be an n-gon with w holes, and let A(P) be n + 2w - 2. I f  

P is hole -free, then A(P)/A*(P) < 3. l f P  contains holes, then A(P)/A*(P) < 4. 

This corollary also shows that, in a minimum triangulation, up to n/3 triangles are 
needed for a simple hole-free n-gon with many degenerate triangles. 
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3. A minimum triangulation algorithm for hole-free polygons. 

The basic approach of the algorithm is to partition a polygon P with a set having 
the maximum number of mutually independent minimally degenerate triangles; 
then, partition each derived subpolygon Pi into n~ - 2 triangles (where ni is the 
number of vertices of Pi). 
Algorithm MINI TRI. 
Input: A hole-free n-gon P with its vertices Vo, vl . . . . .  v~_ 1 listed in clockwise order. 
Output: A minimum triangulation of P. 
Step 1: Find all minimally degenerate triangles of P. 
Step 2: Construct a circular representation C(P) of P by mapping the set of mini- 

mally degenerate triangles of P onto a set of chords of a circle. 
Step 3: Apply Algorithm MISMDT (described later) to C(P) to find a set I having 

the maximum number of mutually independent minimally degenerate tri- 
angles. 

Step 4: With 1, partition P into subpolygons Po,/'1 . . . .  , P~- 1. 
Step 5: Partition each Pi into n~ - 2 triangles, where n~ is the number of vertices of 

P~. 
Two procedures of Chazelle and Guibas will be applied in step 1. Chazelle et al. 

[4] proposed a procedure (called RA YSHO0 TING) that preprocesses an m-gon in 
O(mlogm) time. Given a pair (v, u) where v is a vertex and u is a direction, the first 
intersection (if any) of the boundary of the m-gon with the ray emanating from v in 
direction u can be decided in O(logm) extra time. Let e denote an edge of an m-gon 
and e~ denote the maximal segment of e that is visible from the ith vertex of the 
m-gon. (Two points of a polygon are visible from each other if the line segment 
joining them does not intersect with the exterior of the polygon.) Chazelle et al. [4] 
also proposed an O(mlogm) time algorithm (called VSEGMENTS) to derive 
e l ,  e 2 ,  • • • ,  era. 

Actually, there are three types of minimally degenerate triangles. A minimally 
degenerate triangle of P is of type (i) if none of its sides is an edge of P. It is of type (ii) if 
one of its sides is an edge of P and none of its vertices join an edge of P collinear to 
that side. It is of type (iii) if one of its sides is an edge of P and one of its vertices joins 
an edge o f P  collinear to that side. For example, in Fig. la, (v3, vl, VT), (v4, vs, v8) and 
(v12, vl0, v9) are of types (i), (ii)and (iii) respectively. 

Type (ii) and (iii) minimally degenerate triangles are found by Procedure 
RA YSHO0 TING. Initially, preprocess P. Then, for each concave vertex v~ of P, do 
the following tests: 
(a) use (v~, vi- 1 v----~) to  find the intersection point. If the intersection point is a vertex 

(say v~) of P, then (vi- 1, vi, vi) is a degenerate triangle; 
(b) use (vi, vi+ lvi) to find if there is a degenerate triangle, as in (a). 

Type (i) minimally degenerate triangles are found by the following 
divide-and-conquer technique. Chazelle [3] showed that with O(nlogn) preprocess- 
ing time, a chord c can be found in O(n) time such that c partitions P into two 



ON THE MINIMALITY OF POLYGON TRIANGULATION 575 

separating chord c 

Fig. 2 Finding type (i) minimally degenerate triangles 
by the divide-and-conquer technique 

subpolygons P1 and P2,where IPI[ < 2n/3, IP21 < 2n/3, andlPd + IP21 = n + 2. (See 
Fig. 2.) Suppose type (i) minimally degenerate triangles in P~ and in/ '2 are found. 
/'1 and P2 must be merged along the separating chord c. Let c = vavb. There 
are two cases for type (i) minimally degenerate triangles: 
(a) two vertices of the triangle are Va and vb, and the other is in P~ or P2; 
(b) two vertices of the triangle belong to P~ (or P2), and the other belongs to P2 (or 

P0- 
Type (i) minimally degenerate triangles for case (a) are found by Procedure 

RA YSHOOTING, using (vb, vav--~b) and (v~, vbv--~) as input. Type (i) minimally degener- 
ate triangles for case (b) are found as follows. Initially, apply Procedure VSEG- 
M E N T S  to PI and c (or Pz and c); this yields the maximal segments c,, c2 , . . . ,  clp,i 
(or c, . . . .  , creel ) that are visible from vertices in P, (or P2)- Then, preprocess P by 
Procedure RA YSHOOTING; for each vertex v~ whose maximal visible segment ¢~ is 
not empty, use (r~, v-~) and (s~, v~s-~) to find if there are degenerate triangles (where ri 
and s, are the endpoints of ci). 

In step 2, the boundary of P can be considered a circle and a minimally degenerate 
triangle (v~, vs, vk) can be represented by the chord v,v~. The circular representation of 

5 

4 

Fig. 3 Circular representation C(P) 
of Fig. l(a) 



576 CHIUYUAN CHEN AND RUEI-CHUAN CHANG 

P (denoted by C(P)) can be constructed as shown in Fig. 3. (An endpoint with no 
chord incident upon it will be removed from the circle.) In Fig. 3, endpoints of the 
chords are numbered from zero to nine: corresponding to the vertices v3, v4, v6, vT, 
VS, /)9, /)10, /)10, V12 and/)13 respectively. 

Properties of C(P) are discussed here. Let (va, /)b, /)c) and (v'a, v~,/)'c) be two minimal- 
ly degenerate triangles of P; VaVc and/)'av'c will be their corresponding chords in C(P). 
There are five different relationships between (Va, Vb,/)~) and (V'a, v~,, v'~): 
(i) if they satisfy case (i) in Theorem 1, then ~)ave and v-~ do not touch or intersect; 
(ii) if they satisfy case (ii) in Theorem 1, then/)ov~ and V'aV'~ touch at endpoints. In this 

case, we can move VaV~ or V'a/)'c slightly SO that they will not touch any more; 
(iii) if they satisfy case (iii) in Theorem 1, then two subcases exist. Without loss of 

generality, assume that vb = V'a and v, = v~. If the 180°-subregions of them are: 
(a) on the opposite sides of raY's, then v,/)~ and v'~/)'¢ do not touch or intersect; 
(b) on the same side of raY' ~ (for example, (vls, v12,Vlo) and (VI2,V10,/)9) in 

Fig. la), then vavc and V'aV'~ intersect. This is what we do not desire; 
(iv) if they satisfy case (iv) in Theorem 1, then VaV~ and V'aV'c do not touch or intersect; 
(v) if they are dependent, then v,/)~ and V'aV' ~ intersect. 

C(P) is similar to the circle-graph model for a circle graph: A graph G is a circle 
graph if there exists a set of chords C on a circle and a one-to-one correspondence 
between vertices of G and chords of C such that two vertices are joined by an edge if 
and only if their corresponding chords intersect. Set C is called a circle-graph model 
for G. 

THEOREM 5: The class of dependency graphs of hole-free polygons such that any 
four vertices of each polygon are not collinear is equal to the class of circle graphs. The 
class of dependency graphs of hole-free polygons properly contains the class of circle 
graphs. 

PROOF. Let P be a hole-free polygon such that any four vertices of P are not 
coUinear. Obviously, P contains no minimally degenerate triangles which satisfy 
relationship (iii)(b). From previous discussion, C(P) is a circle-graph model for G(P). 
Thus G(P) is a circle graph. Conversely, let G be a circle graph and C be 

(a) 

f 

(hi 

Fig. 4 Constructing a polygon whose dependency graph 
is equal to the given circle graph 
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Fig. 5 A polygon whose dependency graph is not a circle graph 

a circle-graph model for G as shown in Fig. 4a. A polygon P can be constructed from 
C as shown in Fig. 4b; each chord of C is transferred to a type (ii) minimally 
degenerate triangle in P. P is hole-free and any four vertices of P are not collinear. 
Graph G is exactly G(P). Hence the former statement is proved. 

It is not difficult to prove that the dependency graph of the polygon shown in 
Fig. 5 is not a circle graph. Therefore the latter statement is true. • 

Supowit [9] proposed an O(K 2) time algorithm to find a maximum independent 
set of a circle graph with K vertices. His algorithm can be applied to C(P) to find 
a maximum independent set of G(P), if it can be extended to overcome the problem 
in relationship (iii)(b). The following algorithm, MISMDT, is such an extension. 

Input of the algorithm is C(P) and output is set I. Assume that IC(P)I = K. 
Endpoints of the chords in C(P) are numbered from 0 to 2K - 1, clockwise around 
the circle. Denote the chord with endpoints a and b by ab (or ha). 

A graph G = (V, E) associated with C(P) is defined as follows: V = {yah: a < b and 
a---b E C(P)}, and E = {(vab, va,v)~ V2: corresponding degenerate triangles of ~ and 
a'b --'~ are dependent}. 

Let Gij be the subgraph of G which is induced by the set of vertices 
{vab~ V:i < a,b <_j, 0 < i,j <_ 2K - 1}, and MIS(i,j) a maximum independent 
set of Gij. 

The function max is defined such that max {So, $1 , . . . ,  S~} = S,, if ISil < IS,.I for 
i = 0, 1, . . .  ,m - 1 and lS,.I >_ IS~l for i = m + 1, m + 2 , . . .  ,1. 

To solve the problem in relationship (iii)(b), two extra notations are introduced: 
3b-chain and A~j(S). A series of chords (albl, a262 . . . . .  akbk) is called a 3b-chain if 
either k = 1 or aibi and ai+ 1hi÷ 1 satisfy relationship (iii)(b) for 1 < i < k - 1. Aid(S) 
denotes an independent set of G~j formed by a 3b-chain S: assume that endpoints of 
the chords in S are ao, al . . . . .  a21sl-1 (listed in clockwise order from i to j'); then 
Aij(S) = (l.)ab: ab is a chord of S} w MIS(i, ao - 1) w MIS(ao + 1,al - 1) w . . .  w 
MIS(a21sl- 1 + 1,j). For example, in Fig. 3, (2,6, 5,8) is a 3b-chain and A0,s((2,6, 5,8)) 
is {v2.6, v5,8} u MIS(O,1) u MIS(3,4) w MIS(7,7). 

At the very beginning, MIS(i,j) is assigned to an empty set for each i > j. Later, 
MIS(i,j) is computed for each pair i,j using dynamic programming, and it is assumed 
that MIS(il,j) is computed before MIS(i2,j) when i~ < i2. MIS(i,j) is computed as 
follows. Consider kjs  C(P). If k is not in range [ i , j -  1], then the result is 
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MIS(i , j )  = MIS( i , j  - 1). If k is in range [i,j - 1], two possible cases exist: 
(i) if Vki q~ MIS(i , j) ,  then the result is MIS(i , j )  = MIS( i , j  -- 1); 
(ii) ifvkj ~ MIS(i , j) ,  then MIS( i , j )conta ins  no vertices yah such that a e[ i ,  k - 1] and 

b ~ [ k  + 1 , j -  1] unless ab and kj satisfy (iii)(b). Therefore the result is 
MIS(i , j )  = max {A~(S): S is a 3b-chain that contains chord k--~. 

Finally, the set I is derived from MIS(O,2K - 1). The following is a formal 
description of the algorithm above: 
Algorithm M I S M D T .  
F O R j  = 0 T O  2K -- 1 DO 

BEGIN 
Let k be the number such that kj ~ C(P) 
F O R i = 0 T O j - I D O  

I F i _ < k < j - I T H E N  
BEGIN 
Compute A~j(S) for all S, where S is a 3b-chain that contains chord kj 
MIS(i , j )  = max {MIS( i , j  - 1), max {A~j(S): for all S}} 
END 

ELSE MIS(i , j )  = MIS( i , j  - 1) 
END 

Compute I from MIS(O,2K - 1). 

THEOREM 6: Algorithm M I S M D T  finds a set having the maximum number o f  
mutually independent minimally degenerate triangles of  a polygon. 

PROOF. It is sufficient to prove that MIS(i , j )  is a maximum independent set of Gij 
for 0 _< i < j < 2K - 1. MIS(i , j )  is an independent set. All that needs to be proved is 
that if M is a maximum independent set of Gij, then [MIS(i,j)[ = [M[. Since 
[MIS(i,j)[ < [M[ holds, only [MIS(i,j)[ >_ [M[ must be proved. The proof is carried by 
induction on j. 

W h e n j  = 0 then MIS(O,O) = ~b is a maximum independent set of Go,o. 
Assume j _> 1 and also that MIS(i ,  l) is a maximum independent set of G~ for 

0 _< i < 1 < j. When i = j, MIS( j , j )  = d? is a maximum independent set of G~j. When 
i < j, let M be a maximum independent set of Gij and consider ~ ~ C(P). 

If k is not in the range [i,j - 1], then G~j = Gij -1  and [M[ = [MIS(i, j  - 1)[. 
Since M I S ( i , j ) = M I S ( i , j - 1 )  when k is not in the range [ i , j - 1 ] ,  
[MIS(i,j)[ > [MIS(i, j  - 1)[ = IM[ holds. 

If k is in the range [ i , j  - 1], there are two possible cases for M: 
(i) if v k i e M  exists, then I M I = I M I S ( i , j - - 1 ) [ .  Recall that M I S ( i , j ) =  

max { M I S ( i , j -  1), max {Aii(S): S is a 3b-chain that contains chord ~}}. Thus 
[MIS(i,j)[ > [MIS(i, j  - 1)l = [M[ holds; 

(ii) if Vk~ ~ M exists, it will be shown that there exists a 3b-chain S' such that S' 
contains the chord kj and IA,j(S')[ equals [MI; consequently IMIS(i,j)[ = 
[max { M I S ( i , j -  1), max {A~(S): S is a 3b-chain that contains the chord k]}}[ > 
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IAij(S')I = [M[ holds. S' is constructed from M as follows: initially, let S' = (kj); then 
S' will be extended as long as there exists a vertex V,,b e M such that ab satisfies 
relationship (iii)(b) with a chord already existent in S'; add ab to S'. For example, in 
Fig. 3, M = {v2,6, vs,a } is a maximum independent set of Go,s; initially S' = (5,8), and 
finally S ' =  (2,6,5,8). Assume that endpoints of the chords in S' are 
ao, at . . . .  a2 ISl- 2,J (listed in clockwise order from i to j). Then M = {V~b:-~ is a chord 
of S'} u a maximum independent set of Gi,,o- t u a maximum independent set of 
Gao+l,al-1 u...__ u a maximum independent set of Ga21sl_2+tj_ 1. By definition, 
Aij(S') = {V~b: ab is a chord of S'} u MIS(i ,  ao -- 1) w MIS(ao + 1, at - 1) w . . .  u 
MIS(a21sl-2 + 1,j - 1). Since MIS(i , l )  is a maximum independent set of Git for 
0 < i < 1 < j, IA,j(S')I equals IMI. Thus IMIS(i,j)l > [MI. • 

The validity of Algorithm M I N I T R I  is implied from Algorithm M I S M D T .  

THEOREM 7: Algorithm M I S M D T  takes O(DK 2) time and Algorithm M I N I T R I  
takes O(nlog 2 n + DK 2) time, where D is the maximum number of  vertices lying on the 
same line in P and K is the number of  minimally degenerate triangles of  P. 

PROOF. First, Algorithm M I S M D T  is analyzed. As in [9], the elements of 
MIS(i , j )  and of Ai~(S) are not explicitly stored when they are computed in the body of 
the interior loop of this algorithm. Instead, the elements of MIS(i , j )  and of Aij(S) are 
represented by pointers marked with " + "  (or " - " )  to sets contained (or not 
contained) in them. (For example, if MIS(i , j )  = MIS( i , j  - 1), then MIS(i , j )  is 
represented by a pointer marked with " + "  to MIS( i , j  - 1).) Note that the sizes of 
MIS(i , j )  and of Aij(S) must be explicitly stored in the body of the interior loop. 
Elements of MIS(O,2K - 1) are explicitly enumerated in the last step. 

For convenience, introduce the notation Si~ and let kj ~ C(P). If k is not in the 
range [i,j - 1], then Sij is set to the empty chain 0; otherwise S o is set to the longest 
3b-chain which contains the chord kj and endpoints of the chords in S~j are in range 
[i,j~. For example, in Fig. 3, So.8 = (2,6, 5,8). 

Let kj ~ C(P). While computing MIS(i , j) ,  these cases are considered (see Fig. 6): 
(i) if S~j = 0, then MIS(i , j )  = MIS( i , j  - 1). Thus computing MIS(i , j )  takes O(1) 

time; 
(ii) if S~j = (kj), then M I S ( i , j ) = m a x { M I S ( i , j - 1 ) ,  max{A~j((k]))}}. Further 

A~j((kj)) = {Vkj} W MIS(i ,  k - 1) w M I S ( k  + 1,j - 1). Computing A~j((k])) takes 
O(1) time; thus computing MIS(i , j )  takes O(1) time; 

(iii) if Sit = (at bt, kj) or (kj, atbt),  then MIS(i , j )  = m a x { M I S ( i , j  - 1), max{Aij((k])), 
Aij(Sij)}}. Aij(Sij) = {valbl, Vkj} U MIS(i ,  at -- 1) u MIS(a l  + 1, k - 1) u 
M I S ( k  + 1, bt - 1) w MIS(b t  + 1,j - 1). Computing each A~j(S) takes O(1) 
time. Thus computing MIS(i , j )  takes O(1) time; 

(iv) if Sij = (a,b . . . . . .  a tb l ,k j )  and s > 2, then MIS(i , j )  = m a x { M I S ( i , j  - 1), 
max {Ai~((kj)), A~j((atbt, kj)) . . . . .  A~j((a,b . . . . . .  a tbt ,  kj))}}. Compute A~j((a, bu, 
• . . ,  a tb t ,  kj)) for u = 2, 3 . . . . .  s as follows: 
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j ~ ~ J  

i i i 

Case (i) Case (ii) Case (iii) 

5 b~ 

bl  k 

a2 LI A 

b bl ~ ~ . . ~ . ~ d !  

Case (iv)la) Case (iv)(b) Case (vlla) 

% a u 

k bl 

Case (v)(b) Case (vi)(a) Case (vi)(b) 

Fig. 6 Cases in computing MIS(ij) 

(a) if k > a=, then A~j((aub . . . . . .  albl,kj))  = Aibl((a=b,,.., ,a lbl))  - MIS(b2 + 1, 
bl - 1) u (vkj} u MIS(b2 + 1, k - 1) u M I S ( k  + 1, bl - 1) u M I S ( b l  + 1, 
j - 1); 

(b) if k < a., then Aij((a,b . . . . . .  albl ,kj))  = Ai~2((a,b . . . . . .  a lb l ) )  - MIS(al  + 1, 
a . -  1 ) u  {vkj} u M I S ( a l  + 1 , k -  1 ) u  M I S ( k  + 1,a. - 1 ) u  M I S ( b 2  + 1, 
j - -  1). 

C o m p u t i n g  each Ai~((S)) takes O(1) time. Thus  comput ing  MIS(i , j )  takes O(s + 1) 
time; 

(v) if Sij = (kj, cldl  . . . .  ,ctdt) and t _> 2, then MIS(i , j )  = m a x { M I S ( i , j -  1), 
max{Aij((kj--)), Aij((kj, cldl)) . . . . .  Aq((kj, cldl  . . . . .  c--~))} }. C o m p u t e  Aq((kj, cldl ,  
. . . .  cr, dm)) for m = 2, 3 . . . . .  t as follows: 
(a) if k > Cm, derive Aq((kj, c l d l , . , . ,  cmd,,)) f rom Aidl((cldl . . . .  , cmdm)); 
(b) if k < Cm, derive Aq((kj, cldl  . . . . .  cmdm)) from Aid,,((cldl . . . . .  cmdm)). 

C o m p u t i n g  each AIj((S)) takes O(1) time. Thus  comput ing  MIS(i , j )  takes O(t + 1) 
time; 

(vi) if Sij = (a~b~ . . . .  ,a lbl ,  kj, cldl  . . . . .  ctdt) and s,t_> 1, then M I S ( i , j ) =  
max{MIS ( i , j  - 1), max{Aij((k'j), A~i((albl, kj)) . . . .  , Aij((a,b . . . . . .  albl ,  kj)), 
Aq((kj, cldl)) . . . . .  Aij((kj, c ldl  . . . .  , Gdt)), Aij((albl, kj, cldl))  . . . . .  Aij(a~b,, . . . ,  
albl ,  kj, c ldl ,  . . . ,  Gdt))}}. There  are two cases: (a) k > a.  and (b) k < a,.  In 
bo th  cases, derive Aij((aub . . . . . .  albl ,  kj, cldl)) f rom Aij((a,b . . . . . .  albl,  kj)) for 
u = 1, 2 . . . .  , s; derive Aij((a,b . . . . . .  a lbl ,  kj, c l d l , . . . ,  cmdm)) f rom Aij((a.b, . . . . .  
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albl, kj, cldl . . . . .  cm- 1din- 1)) for u = 1, 2 . . . . .  s and m = 2, 3 . . . . .  t. Computing 
each Aij(S) takes O(1) time. Thus computing MIS(i,j) takes O((s + t + 1) 2) time. 

A 3b-chain is maximal if it is not properly contained in any other 3b-chain. For 
example, in Fig. 3, (2,6, 5,8, 7,9) is a maximal 3b-chain, but (5,8, 7,9) is not. 

It is not difficult to show that total time complexity contributed by chords in 
a maximal 3b-chain SM is O(KtSMI2). Each chord ~ belongs to exactly one maximal 
3b-chain. The sum of the lengths ofalI maximal 3b-chains is K. Thus the body of the 
interior loop (with summation over SM being a maximal 3b-chain) takes 
~O(KISMI 2) <~O(KDISMI)= O(DK 2) time. In the last step, the elements of 
MIS(O,2K - 1) are explicitly enumerated by traversing back from MIS(O,2K - 1) 
along the pointers; this takes O(K) time. Therefore Algorithm MISMDT takes 
O(DK 2) time. 

Algorithm MINITRI  is now analyzed. Step 1 takes a total O(nlog 2 n) time. 
Finding type (ii) and type (iii) minimally degenerate triangles takes O(nlogn) time. 
Let T(n) denote time complexity of finding type (i) minimally degenerate triangles in 
an n-gon. Then T(n) < T(IPII) + T(IP21) + O((IPd + Ie21)log(1Pll + IP21)) and T(5) = 1 
follow. Thus we find T(n) = O(nlog 2 n). 

Steps 2, 3 and 4 of Algorithm MINITR1 takes O(n + K), O(DK 2) and O(K) time 
respectively. Step 5 takes O(nlogn) time if the algorithm in 1-6] is used to triangulate 
each subpolygon P~. Thus Algorithm M I N I T R I  takes O(nlog2n + DK 2) time. II 

It is obvious that if any four vertices of the given polygon are not collinear, 
Algorithm MISMDT takes O(K 2) time and Algorithm M I N I T R I  takes 
O(nlog2n + K 2) time. 

Space needed by Algorithm M I N I T R I  is O(n + DK2): steps 1, 2, 4, and 5 need 
O(n) space, and step 3 (Algorithm MISMDT) needs O(DK 2) space. Space needed by 
[2] is O(n2). 

The following lemma states a bound for K. 
LEMMA 3: An n-gon contains less than 2n - 1 minimally degenerate triangles. 
PROOF. Let tl, t2, t3 be the number of type (i), (ii), (iii) minimally degenerate 

triangles of the n-gon respectively. This lemma then follows from t2 + t3 < n and 
t~ <n .  • 

4. Concluding remarks. 

The purpose of this paper is twofold: Theoretically, we have described the 
minimum triangulation problem in a definite way, and derived some interesting, 
tight bounds for the minimum number of triangles required to partition a polygon. 
Practically, we have proposed a minimum triangulation algorithm which runs faster 
than the previously best algorithm [2] when K is o(n). Even if K is O(n), our 
algorithm takes the same time as [2] only when there are O(n) vertices lying on the 
same line in the polygon; usually, this degenerate case seldom appears. Also, when 
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the number of degenerate triangles is small, our algorithm takes only O(nlog 2 n) time; 
so it performs well even in comparison with the standard triangulation (triangulat- 
ing a polygon into n - 2 triangles), which takes O(nloglogn) time [10]. Here n is the 
input size, and K is the number of minimally degenerate triangles of the polygon. 

Intuitively, we can extend our result by proposing a strategy for the following 
problem: partitioning a rectilinear polygon into the minimum number of convex 
quadrilaterals, which is an important guard problem. Finally, what the minimality 
formula in this paper will be if point holes are allowed is still an open problem. 
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