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摘要 

 

本篇論文以相圖、龐卡萊映射圖、Lyapunov 指數、分歧圖等數值方法研究

新 Froude-Duffing 系統的渾沌現象。更進一步使用 GYC 部分區域穩定理論來研

究系統的廣義渾沌同步和渾沌控制。另外，將探討 Rössler 系統以 Bessel  

function 為參數所激發出的超渾沌行為。最後，對於陰 Rössler 系統的渾沌現象

做歷史研究，並應用實用漸進穩定性理論和適應性控制法則來達成與陽 Rössler 

系統的混合投影渾沌廣義同步。 
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ABSTRACT 

In this thesis, the chaotic behavior in a new Froude-Duffing System is studied by 

phase portraits, time history, Poincaré maps, Lyapunov exponent and bifurcation 

diagrams. A new method, using GYC partial region stability theory, is studied for 

chaos synchronization and chaos control. Hyperchaos of a Rössler System with Bessel 

Function Parameters is studied. A new kind of chaotic generalized synchronization 

system, hybrid projective Yin-Yang generalized synchronization (HPYYGS), is 

obtained by pragmatical asymptotical stability theorem and adaptive control law. 

Numerical analyses, such as phase portraits and time histories can be provided to 

verify the effectiveness in all above studies. 
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Chapter 1  

Introduction 

A large number of studies have shown that chaotic phenomena are observed in 

many physical nonlinear systems [1,2]. It was also reported that the chaos occurred in 

many nonlinear control systems [3,4]. Since chaos control was firstly achieved by 

Huber in 1989 [5], it has attracted a great deal of attention from various fields. Chaos 

is desirable in some systems, such as chemical reactions, power converters, biological 

systems, information processing, secure communications, etc. [6-13]. Numerous 

linear and nonlinear control methods have been employed in controlling chaos[14-22]. 

In the last few years, synchronization in chaotic dynamic system is a very interesting 

problem and has been widely studied [23-34]. Most of them are based on the exact 

knowledge of the system structure and all parameters. But in practice, some or all of 

the system parameters are uncertain. Additionally, these parameters change with time. 

Among many kinds of synchronizations, the generalized synchronization is 

investigated in this paper. It means that there exists a given functional relationship 

between the state vector x of the master and the state vector y of the slave ( )Gy x . 

In Chinese philosophy[35-37], Yin and Yang are two fundamental opposites. In 

other words, just like there are two sides of a coin. Yin is the negative, historical or 

feminine principle in nature, and yang is the positive, contemporary or masculine 

principle in nature. There are many articles about Yang Rössler system have been 

reported [38-40]. In this thesis, we find there are rich chaotic dynamics in Yin Rössler 

system in the first time[41]. 

This thesis is organized as follows. In Chapter 2 and Chapter 3, a new strategy to 

achieve chaos generalized synchronization and chaos control by GYC partial region 

stability theory(Appendix A,B) is proposed [42-44]. Via using the GYC partial region 
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stability theory the new Lyapunov function is a simple linear homogeneous function 

of error states and the controllers are of lower degree than that of controllers by using 

traditional Lyapunov asymptotical stability theorem. 

In Chapter 4, our study is devoted to a Rössler System with Bessel function 

parameters. Chaotic system features that it has complex dynamical behaviors and 

sensitive behavior of dependence on initial conditions. In recent years, there are many 

hyperchaotic systems have been reported [45-49]. The purpose of this work is to 

present a Rössler system, which is shown to be hyperchaos in a wide range of Bessel 

function parameters. It is found that both hyperchaos and chaos are abundant and give 

various applications, especially for secret communication. Numerical experiments 

such as phase portraits, bifurcation diagrams, Lyapunov exponent diagrams, 

parameter diagrams and Poincaré maps are shown. 

In Chapter 5, the purpose is to introduce the Yin Rössler system and to 

investigate the chaotic behavior with Yin parameters by phase portrait, Lyapunov 

exponents and bifurcation diagrams in simulation results. We use positive, i.e. Yang, 

parameters for the Yang Rössler system, and negative, i.e. Yin, parameters for the Yin 

Rössler system.  

In Chapter 6, pragmatical asymptotically stability theorem is proposed to achieve 

adaptive synchronization from Yin to Yang Rössler chaos. In current scheme of 

adaptive synchronization, traditional Lyapunov stability theorem and Barbalat lemma 

are used to prove that the error vector approaches zero as time approaches infinity, but 

the question is that why those estimated parameters also approach the uncertain values 

remains no answer[50-53]. In this article, pragmatical asymptotically stability 

theorem and an assumption of equal probability for ergodic initial conditions [54-55] 

are used to prove strictly that those estimated parameters approach the uncertain 

values. Moreover, traditional adaptive chaos synchronization in general is limited for 
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the same system. 
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Chapter 2  

Chaos Generalized Synchronization of a New 

Froude-Duffing System by GYC Partial 

Region Stability Theory 

2.1 Preliminaries 

A new strategy via using GYC partial region stability theory is proposed to 

achieve chaos generalized synchronization. In this Chapter, two identical new 

Froude-Duffing systems are used as master system and slave system respectively. The 

Lyapunov function can be treated as a simple linear homogeneous function of error 

states by using the GYC partial region stability theory, and the controllers are in lower 

degree than that of traditional controllers, so less simulation error is introduced. 

Numerical simulations are given to verify the effectiveness of this strategy. 

2.2 Generalized Chaos Synchronization Strategy 

Consider the following unidirectional coupled chaotic systems  

( , )

( , )

t

t



 

x f x

y h y u




 (2-1) 

where  1 2, , ,
T n

nx x x R x  ,  1 2, , ,
T n

ny y y R y   denote the master state 

vector and slave state vector respectively, f  and h  are nonlinear vector functions, 

and  1 2, , ,
T n

nu u u R u   is a control input vector. 

The generalized synchronization can be accomplished when t  , the limit of 

the error vector  1 2, , ,
T

ne e ee   approaches zero: 

lim 0
t

e   (2-2) 
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where 

( ) e G x y  (2-3) 

)(xG  is a given function of x . 

By using the partial region stability theory, the Lyapunov function is linear 

homogeneous function of error states. The controllers can be designed in lower 

degree. 

2.3 Chaos of a New Froude-Duffing System 

A new Froude-Duffing system is introduced. Froude equation [28] and Duffing 

equation are two typical nonlinear non-autonomous systems: 

1
2

22
2 2 1( ) sin cos

dx
x

dt

dx
a bx x c x d t

dt






    


                            (2-4) 

3
4

34
3 3 4 sin

dx
x

dt

dx
x x fx g t

dt






     
          

 (2-5) 

Exchanging cosωt in Eq. (2-4) with 3 4x x  and sinωt in Eq. (2-5) with 1 2x x , we 

obtain a new autonomous Froude-Duffing system: 

1
2

22
2 2 1 3 4

3
4

34
3 3 4 1 2

( ) sin

dx
x

dt

dx
a bx x c x dx x

dt

dx
x

dt

dx
x x fx gx x

dt





    


 


     


         (2-6) 

where a, b, c, d, g, f are parameters. This system exhibits chaos when the parameters 

of system are 0.35, 0.1, 1, 0.48, 0.25, 0.002a b c d g f       and the 

initial states of system are 1 2 3(0) 2, (0) 2.4, (0) 5,x x x    4 (0) 6x  . Its phase 

portrait, time histories , Lyapunov exponents, bifurcation diagram, power spectram 

are shown in Fig2.1, Fig2.2, Fig2.3 and Fig2.4. 
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2.4 Numerical Simulationsll 

Two Froude-Duffing systems with unidirectional coupling are given: 

1
2

22
2 2 1 3 4

3
4

34
3 3 4 1 2

( ) sin

dx
x

dt

dx
a bx x c x dx x

dt

dx
x

dt

dx
x x fx gx x

dt





    


 


     
          (2-7) 

1
2 1

22
2 2 1 3 4 2

3
4 3

34
3 3 4 1 2 4

( ) sin

dy
y u

dt

dy
a by y c y dy y u

dt

dy
y u

dt

dy
y y fy gy y u

dt


 


     


  


      


        (2-8) 

where Eq.( 2-7)is the master, Eq,(2-8) is the slave. 

CASE I. The generalized synchronization error function is 

80, 1,  2,  3,  4i i ie x y i            (2-9) 

The addition of the constant 80 makes the error dynamics always happens in the first 

quadrant. Our goal is 80i iy x  , i.e.  

lim lim( 80) 0, 1,  2,  3,  4i i i
t t

e x y i
 

           (2-10) 

, 1,  2,  3,  4i i ie x y i              (2-11) 

By Eq.(2-7),(2-8),the error dynamics becomes 

 

 

1 1 1 2 2 1

2 2

2 2 2 2 2 1 3 4 2 2 1 3 4 2

3 3 3 4 4 3

3 3

4 4 4 3 3 4 1 2 3 3 4 1 2 4 4

( ) sin ( ) sin

e x y x y u

e x y a bx x c x dx x a by y c y dy y u

e x y x y u

e x y x x fx gx x y y fy gy y u u

    


          


    
              


  

  

  

  

 (2-12) 
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Let initial states be 10 20 30 40( , , , )x x x x = (2, 2.4, 5, 6), 10 20 30 40( , , , )y y y y = (3, 3.2, 6.8, 

5.5) and system parameters 0.35, 0.1, 1, 0.48, 0.25, 0.002a b c d g f      , 

we find that the error dynamic always exists in first quadrant as shown in Fig. 2.5. By 

GYC partial region asymptotical stability theorem, one can choose a Lyapunov 

function in the form of a positive definite function in first quadrant: 

1 2 3 4V e e e e                (2-13) 

By Eq.(2-11),its time derivative is 

 

  
 

  

1 2 3 4

2 2 1

2 2

2 2 1 3 4 2 2 1 3 4 2

4 4 3

3 3

3 3 4 1 2 3 3 4 1 2 4 4

( ) sin ( ) sin

V e e e e

x y u

a bx x c x dx x a by y c y dy y u

x y u

x x fx gx x y y fy gy y u u

   

  

        

  

           

    

(2-14) 

Choose  

 

 

1 2 2 1

2 2

2 2 2 1 3 4 2 2 1 3 4 2

3 4 4 3

3 3

4 3 3 4 1 2 3 3 4 1 2 4

( ) sin ( ) sin

u x y e

u a bx x c x dx x a by y c y dy y e

u x y e

u x x fx gx x y y fy gy y e

  


        


  
           


 (2-15) 

We obtain 

1 2 3 4 0V e e e e                 (2-16) 

which is negative definite function in the first quadrant. Four state errors versus time 

and time histories of states are shown in Fig. 2.6 and Fig. 2.7. 

 

CASE II. The generalized synchronization error function is 

sin 80, 1,  2,  3,  4i i ie x y F t i           (2-17) 

Our goal is sin 80y x F t   , i.e. 
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lim lim( sin 80) 0, 1,  2,  3,  4i i i
t t

e x y F t i
 

         (2-18) 

cos , 1,  2,  3,  4i i ie x y F t i             (2-19) 

The error dynamics becomes 

 

 

1 2 2 1

2 2

2 2 2 1 3 4 2 2 1 3 4 2

3 4 4 3

3 3

4 3 3 4 1 2 3 3 4 1 2 4 4

cos

( ) sin ( ) sin cos

cos

cos

e x F t y u

e a bx x c x dx x a by y c y dy y F t u

e x F t y u

e x x fx gx x y y fy gy y u F t u

 

 

 

 

   


         


   
             










 (2-20) 

Let initial states be 10 20 30 40( , , , )x x x x = (2, 2.4, 5, 6), 10 20 30 40( , , , )y y y y = (3, 3.2, 6.8, 

5.5) and system parameters 0.35,a  0.1,b  1,c  0.48,d  0.25,g   0.002,f 

3F  and 0.3  , we find the error dynamics always exists in first quadrant as shown 

in Fig. 2.8. By GYC partial region asymptotical stability theorem, one can choose a 

Lyapunov function in the form of a positive definite function in first quadrant: 

1 2 3 4V e e e e                (2-21) 

By Eq.(2-18),its time derivative is 

 

 

 

 

2

2 2 1 2 2 1 3 4

2

2 2 1 3 4 2

3

4 4 3 3 3 4 1 2

3

3 3 4 1 2 4 4

cos ( ) sin

  ( ) sin cos

cos

  cos

V x F t y u a bx x c x dx x

a by y c y dy y F t u

x F t y u x x fx gx x

y y fy gy y u F t u

 

 

 

 

       

     

       

       



   (2-22) 

Choose  

 

 

1 2 2 1

2 2

2 2 2 1 3 4 2 2 1 3 4

2

3 4 4 3

3 3

4 3 3 4 1 2 3 3 4 1 2

4

cos

( ) sin ( ) sin

       cos

cos

       cos

u x F t y e

u a bx x c x dx x a by y c y dy y

F t e

u x F t y e

u x x fx gx x y y fy gy y

F t e

 

 

 

 

   


       


 


   
          

  

  (2-23) 
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We obtain 

1 2 3 4 0V e e e e                 (2-24) 

which is negative definite function in first quadrant. Four state errors versus time and 

time histories of states are shown in Fig. 2.9 and Fig. 2.10. 

CASE III. The generalized synchronization error function is  

sin 80, 1,  2,  3,  4i i i ie x x y i           (2-25) 

Our goal is sin 80i i iy x x  , i.e.  

lim lim( sin 80) 0, 1,2,3,4i i i i
t t

e x x y i
 

          (2-26) 

sin cos , 1,  2,  3,  4i i i i i i ie x x x x x y i           (2-27) 

The error dynamics become 

   

 

   

1 2 1 1 2 1 2 1

2 2

2 2 2 1 3 4 2 2 2 1 3 4 2 2

2

2 2 1 3 4 2

3 4 3 3 4 3 4 3

3 3

4 3 3 4 1 2 4 3 3 4 1 2 4

sin cos

( ) sin sin ( ) sin cos

      ( ) sin

sin cos

sin cos

e x x x x x y u

e a bx x c x dx x x a bx x c x dx x x x

a by y c y dy y u

e x x x x x y u

e x x fx gx x x x x fx gx x x x

   

       

    

   

         









 

4

3

3 3 4 1 2 4      y y fy gy y u










      


 (2-28) 

Let initial states be 10 20 30 40( , , , )x x x x = (2, 2.4, 5, 6), 10 20 30 40( , , , )y y y y = (3, 3.2, 6.8, 

5.5) and system parameters 0.35, 0.1, 1, 0.48, 0.25, 0.002a b c d g f      , 

we find the error dynamics always exists in first quadrant as shown in Fig. 2.11. By 

GYC partial region asymptotical stability theorem, one can choose a Lyapunov 

function in the form of a positive definite function in first quadrant: 

1 2 3 4V e e e e                (2-29) 

Its time derivative is 



10 

   

   

   

 

2

2 1 1 2 1 2 1 2 2 1 3 4 2

2 2

2 2 1 3 4 2 2 2 2 1 3 4 2

3

4 3 3 4 3 4 3 3 3 4 1 2 4

3

3 3 4 1 2 4 4 3

sin cos ( ) sin sin

   ( ) sin cos ( ) sin

   sin cos sin

   cos

V x x x x x y u a bx x c x dx x x

a bx x c x dx x x x a by y c y dy y u

x x x x x y u x x fx gx x x

x x fx gx x x x y y

       

        

        

       



 3

3 4 1 2 4fy gy y u  

 (2-30) 

 

Choose  

   

 

   

1 2 1 1 2 1 2 1

2 2

2 2 2 1 3 4 2 2 2 1 3 4 2 2

2

2 2 1 3 4 2

3 4 3 3 4 3 4 3

3 3

4 3 3 4 1 2 4 3 3 4 1 2 4 4

sin cos

( ) sin sin ( ) sin cos

      ( ) sin

sin cos

sin cos

   

u x x x x x y e

u a bx x c x dx x x a bx x c x dx x x x

a by y c y dy y e

u x x x x x y e

u x x fx gx x x x x fx gx x x x

   

       

    

   

         

 3

3 3 4 1 2 4   y y fy gy y e










      


 (2-31) 

We obtain 

1 2 3 4 0V e e e e                 (2-32) 

which is negative definite function in first quadrant. Four state errors versus time and 

time histories of states are shown in Fig. 2.12 and Fig. 2.13.  

 

CASE IV. The generalized synchronization error function is  

2 2 80, 1, 2, 3, 4i i i ie x y z i            (2-33) 

 1 2 3 4

T
z z z z z  is the state vector of generalized Lorenz system. 

The goal system for synchronization is generalized Lorenz system and initial 

states is (1, 1, 1, 1), system parameters 1 1 1 11, 26, 0.7, 1.5a b c d    . 

 1 1 2 1 1 4

2 1 2 1 3 2

3 1 2 1 3

4 1 1 4

z a z z d z

z b z z z z

z z z c z

z z a z

   


  


 
   









           (2-34) 
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We have  

2 2lim lim( 80) 0, 1, 2, 3, 4i i i
t t

e x y z i
 

          (2-35) 

2 2 ,                                1, 2, 3, 4i i i i i ie x x y z z i           (2-36) 

The error dynamics becomes 

  

   
 

 

   

1 1 2 2 1 1 2 1 1 4 1

2 2

2 2 2 2 1 3 4 2 2 1 3 4

2 1 2 1 3 2 2

3 3 4 4 3 1 2 1 3 3

3 3

4 4 3 3 4 1 2 3 3 4 1 2 4

4 1 1

2 2

2 ( ) sin ( ) sin

      2

2 2

2

      2

e x x y z a z z d z u

e x a bx x c x dx x a by y c y dy y

z b z z z z u

e x x y z z z c z u

e x x x fx gx x y y fy gy y u

z z a z

     

       

   

    

          

  









 4 4u














  (2-37) 

Let initial states be 10 20 30 40( , , , )x x x x = (2, 2.4, 5, 6), 10 20 30 40( , , , )y y y y = (3, 3.2, 6.8, 

5.5) and system parameters 0.35, 0.1, 1, 0.48, 0.25, 0.002a b c d g f      , 

we find the error dynamics always exists in first quadrant as shown in Fig. 2.14. By 

GYC partial region asymptotical stability theorem, one can choose a Lyapunov 

function in the form of a positive definite function in first quadrant: 

1 2 3 4V e e e e                (2-38) 

Its time derivative is 

     

   

    

   

2

1 2 2 1 1 2 1 1 4 1 2 2 2 1 3 4

2

2 2 1 3 4 2 1 2 1 3 2 2

3

3 4 4 3 1 2 1 3 3 4 3 3 4 1 2

3

3 3 4 1 2 4 1 1 4 4

2 2 2 ( ) sin

  ( ) sin 2

  2 2 2

  2

V x x y z a z z d z u x a bx x c x dx x

a by y c y dy y z b z z z z u

x x y z z z c z u x x x fx gx x

y y fy gy y z z a z u

         

       

         

        



 (2-39) 
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Choose  

  

   
 

 

   
 

1 1 2 2 1 1 2 1 1 4 1

2 2

2 2 2 2 1 3 4 2 2 1 3 4

2 1 2 1 3 2 2

3 3 4 4 3 1 2 1 3 3

3 3

4 4 3 3 4 1 2 3 3 4 1 2

4 1 1 4 4

2 2

2 ( ) sin ( ) sin

      2

2 2

2

      2

u x x y z a z z d z e

u x a bx x c x dx x a by y c y dy y

z b z z z z e

u x x y z z z c z e

u x x x fx gx x y y fy gy y

z z a z e

      


       

   


    

         

   











  (2-40) 

We obtain 

1 2 3 4 0V e e e e                 (2-41) 

which is negative definite function in first quadrant. Four state errors versus time and 

time histories of states are shown in Fig. 2.15 and Fig. 2.16. 
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2.5 Summary 

In this Chapter, a new strategy by using GYC partial region stability theory is 

proposed to achieve chaos generalized synchronization. By using the GYC partial 

region stability theory, the Lyapunov function is only a linear homogeneous function 

of error states and the controllers are of lower degree than that of controllers by using 

traditional Lyapunov asymptotical stability theorem. The lower degree controllers are 

more simple and introduce less simulation error. The new Froude-Duffing system and 

generalized Lorenz system are used in simulation examples which verify the 

effectiveness of the proposed scheme. 
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(a) 

 

  (b) 

Fig. 2.1 Chaos of a new Froude-Duffing system: (a) Phase portrait (b) Time histories. 
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Fig. 2.2 The Lyapunov exponents for a new Froude-Duffing system. 

 

Fig. 2.3 The bifurcation diagram for a new Froude-Duffing system. 
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Fig. 2.4 The Power spectra for a new Froude-Duffing system. 
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Fig. 2.5 Phase portraits of error dynamics for Case I. 
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Fig. 2.6 Time histories of errors for Case I. 

 

 

Fig. 2.7 Time histories of 80ix   and iy for Case I. 
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Fig. 2.8 Phase portraits of error dynamics for Case II. 
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Fig. 2.9 Time histories of errors for Case II. 

 

Fig. 2.10 Time histories of 80i ix y   and sinF t  for Case II. 
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Fig. 2.11 Phase portraits of error dynamics for Case III. 
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Fig. 2.12 Time histories of errors for Case III.  

 

 

Fig. 2.13 Time histories of sin 80i ix x   and iy for Case III. 
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Fig. 2.14Phase portrait of error dynamics for Case IV. 
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Fig. 2.15 Time histories of errors for Case IV.  

 

 

Fig. 2.16 Time histories of
2 2 80i ix y  and 

2

iz  for Case IV. 
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Chapter 3  

Chaos Control of a New Froude-Duffing 

System by GYC Partial Region Stability 

Theory 

3.1 Preliminaries 

A new strategy via using GYC partial region stability theory is proposed to control 

the chaos of a new Froude-Duffing System to fixed point, to a given regular motion 

and to chaos of any given system. The Lyapunov function can be treated as a simple 

linear homogeneous function of error states by using the GYC partial region stability 

theory, controllers are in lower degree and simpler than traditional ones, so cause less 

simulation error. Numerical simulations are given to verify the effectiveness of this 

strategy. 

3.2 Chaos Control Scheme 

Consider the following chaotic systems 

( , )tx f x  (3-1) 

where  1 2, , ,
T n

nx x x R x   is a the state vector, : n nR R R  f  is a vector 

function.  

The goal system which can be either chaotic or regular, is  

( , )ty g y  (3-2) 

where  1 2, , ,
T n

ny y y R y   is a state vector, : n nR R R  g  is a vector 

function. 

In order to make the chaotic state x  approaching the goal state y , define error 

 e x y  as the state error. The chaos control is accomplished in the sense that : 
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lim lim( ) 0
t t 

  e x y   (3-3) 

In this Chapter, we will use examples in which the error dynamics always happens 

in the first quadrant of coordinate system and use GYC partial region stability theory 

which is enclosed in Appendix. The Lyapunov function is a simple linear 

homogeneous function of error states and the controllers are simpler because they are 

in lower degree than that of traditional controllers and give less simulation error. 

Furthermore, the chaos of a new Froude-Duffing system is controlled to a fixed point, 

to a given regular motion and to the chaos of a generalized Lorenz system. This 

strategy enlarges the effective scope of traditional chaos control which is limited to 

control the chaos of only one given system. 

 

3.3 Numerical Simulations 

 In this Section a new Froude-Duffing system in Eq.(2-6) 

1
2

22
2 2 1 3 4

3
4

34
3 3 4 1 2

( ) sin

dx
x

dt

dx
a bx x c x dx x

dt

dx
x

dt

dx
x x fx gx x

dt





    


 


     


        (3-4) 

is studied where a, b, c, d, g, f are parameters. This system exhibits chaos when the 

parameters of system are 0.35, 0.1, 1, 0.48, 0.25, 0.002a b c d g f       

and the initial states of system are 1 2 3(0) 2, (0) 2.4, (0) 5,x x x    4 (0) 6x  . 
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Another translated chaotic system is given as  

1
2

22
2 2 1 3 4

3
4

34
3 3 4 1 2

50

( 50) ( 50) sin( 50) ( 50)( 50)

50

( 50) ( 50) ( 50) ( 50)( 50)

dx
x

dt

dx
a b x x c x d x x

dt

dx
x

dt

dx
x x f x g x x

dt


 


           

  


          


  (3-5) 

This is the same Froude-Duffing system of which the old origin is translated to 

1 2 3 4( , , , ) (50,50,50,50)x x x x   and the chaotic motion happens always in the first 

quadrant of coordinate system 1 2 3 4( , , , )x x x x , as shown in Fig.3.1, with initial 

conditions 1 2 3 4(0) 52, (0) 52.4, (0) 55, (0) 56x x x x   
 
and parameters 

0.35, 0.1, 1, 0.48, 0.25, 0.002a b c d g f      .  

 

In order to lead (x1, x2, x3, x4) to the goal, we add control terms u1, u2, u3, u4 to 

each equation of Eq. (3-5), respectively. 

1
2 1

22
2 2 1 3 4 2

3
4 3

34
3 3 4 1 2 4

50

( 50) ( 50) sin( 50) ( 50)( 50)

50

( 50) ( 50) ( 50) ( 50)( 50)

dx
x u

dt

dx
a b x x c x d x x u

dt

dx
x u

dt

dx
x x f x g x x u

dt


  


            

   


           


 (3-6) 

 

CASE I. Control the chaotic motion to zero. 

In this case we will control the chaotic motion of Froude-Duffing system (3-7) to 

zero. The goal is 0y = . The state error is e = x- y = x  and error dynamics becomes 
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1 1 2 1

2

2 2 2 2 1 3 4 2

3 3 4 3

3

4 4 3 3 4 1 2 4

( 50)

( 50) ( 50) sin( 50) ( 50)( 50)

( 50)

( 50) ( 50) ( 50) ( 50)( 50)

e x x u

e x a b x x c x d x x u

e x x u

e x x x f x g x x u

   


             


   


           

 

 

 

 

 (3-7) 

In Fig.3.2, the error dynamics always exists in first quadrant.  

By GYC partial region stability, choose a Lyapunov function in the form of a 

positive definite function in first quadrant as: 

1 2 3 4V e e e e                (3-8) 

Its time derivative through error dynamics (3-9) is 

1 2 3 4

2

2 1 2 2 1

3 4 2 4 3

3

3 3 4 1 2 4

( 50) ( 50) ( 50) sin( 50)

      ( 50)( 50) 50

      ( 50) ( 50) ( 50) ( 50)( 50)

V e e e e

x u a b x x c x

d x x u x u

x x f x g x x u

   

          

      

         

    

   (3-9) 

 

 

Choose  

 

 
 

 

1 2 1

2

2 2 2 1 3 4 2

3 4 3

3

4 3 3 4 1 2 4

50

( 50) ( 50) sin( 50) ( 50)( 50)

50

( 50) ( 50) ( 50) ( 50)( 50)

u x e

u a b x x c x d x x e

u x e

u x x f x g x x e

   


             


   


           

 (3-10) 

We obtain 

1 2 3 4 0V e e e e        

which is negative definite function in first quadrant. By GYC partial region 

asymptotical stability theorem, e approaches zero. The numerical results are shown in 

Fig.3.3 After 100 sec, 1 2 3, ,e e e and 4e approach zero. 
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CASE II. Control the chaotic motions to a four different sine functions of time. 

In this case we will control the chaotic motion of the new Froude-Duffing system 

(3-7) to four different sine functions of time. The goal motion is

sin    ( 1,2,3,4)i iy n t i  . The error are defined as 

sin         1,2,3,4i i i i ie x y x n t i = - = -         (3-11) 

lim lim( sin ) 0 1,2,3,4i i i
t t

e x n t i
 

      

is demanded. 

From(3-13)  

cos ( 1,2,3,4)i i i ie x n t i       

where 3n  , 1 0.3  , 2 0.4  , 3 0.5  , 4 0.6  . The error dynamics is 

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

cos

cos

cos

cos

e x n t

e x n t

e x n t

e x n t

 

 

 

 

 


 


 
  

 

 

 

 

           (3-12) 

It always exists in first quadrant as shown in Fig.3.4. 

By GYC partial region stability, one can easily choose a Lyapunov function in 

the form of a positive definite function in first quadrant as: 

1 2 3 4V e e e e      

Its time derivative is 

 

1 2 3 4

2

2 1 1 1 2 2 1

3 4 2 2 2 4 3 3 3

3

3 3 4 1 2 4 4 4

50 cos ( 50) ( ) sin( 50)

      ( 50)( 50) cos ( 50) cos

      ( 50) ( 50) ( 50) ( 50)( 50) cos

V e e e e

x n t u a b x x k c x

d x x n t u x n t u

x x f x g x x n t u

 

   

 

   

           

        

          

    

 (3-13) 

Choose  
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1 2 1 1 1

2

2 2 2 1 3 4 2 2 2

3 4 3 3 3

3

4 3 3 4 1 2 4 4 4

50 cos

( 50) ( ) sin( 50) ( 50)( 50) cos

( 50) cos

( 50) ( 50) ( 50) ( 50)( 50) cos

u x n t e

u a b x x k c x d x x n t e

u x n t e

u x x f x g x x n t e

 

 

 

 

     

            


    


            

 (3-14) 

V becomes 

1 2 3 4 0V e e e e        

which is a negative definite function in first quadrant. The numerical results are 

shown in Fig.3.5 and Fig. 3.6. After 100 sec., the errors approach zero and the chaotic 

trajectories approach to four sine functions of time. 

CASE III. Control the chaotic motion to chaotic motion of generalized Lorenz system. 

In this case we will control chaotic motion of Froude-Duffing system (3-5) to 

that of generalized Lorenz system. The goal system is generalized Lorenz system: 

 1 1 2 1 1 4

2 1 2 1 3 2

3 1 2 1 3

4 1 1 4

z a z z d z

z b z z z z

z z z c z

z z a z

   


  


 
   









           (3-15) 

The error equation is e = x - z . Our goal is lim 0
t

e . The error dynamics become 

    

 

 

1 1 1 2 1 2 1 1 4 1

2

2 2 2 2 2 1 3 4

1 2 1 3 2 2

3 3 3 4 1 2 1 3 3

3

4 4 4 3 3 4

50

( 50) ( 50) sin( 50) ( 50)( 50)

                     

50 ( )

( 50) ( 50) ( 5

e x z x a z z d z u

e x z a b x x c x d x x

b z z z z u

e x z x z z c z u

e x z x x f x

       

            

   

      

        

  

  

  

    1 2 1 1 4 40) ( 50)( 50)g x x z a z u








       


 (3-16) 

The error dynamics always exists in first quadrant as shown in Fig.3.7. 

By GYC partial region stability, one can easily choose a Lyapunov function in 

the form of a positive definite function in first quadrant as: 

1 2 3 4V e e e e      
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Its time derivative is 

    

 

 

 

1 2 3 4

2

2 1 2 1 1 4 1 2 2

1 3 4 1 2 1 3 2 2

3

4 1 2 1 3 3 3 3 4

1 2 1 1 4 4

50 ( 50) ( 50)

       + sin( 50) ( 50)( 50)

      50 ( ) ( 50) ( 50) ( 50)

      ( 50)( 50)

V e e e e

x a z z d z u a b x x

c x d x x b z z z z u

x z z c z u x x f x

g x x z a z u

   

          

       

          

      

    

  (3-17) 

Choose  

     

 

  

  

1 2 1 2 1 1 4 1

2

2 2 2 1 3 4

1 2 1 3 2 2

3 4 1 2 1 3 3

3

4 3 3 4 1 2 1 1 4 4

50

( 50) ( 50) sin( 50) ( 50)( 50)

       +

50 ( )

( 50) ( 50) ( 50) ( 50)( 50)

u x a z z d z e

u a b x x c x d x x

b z z z z e

u x z z c z e

u x x f x g x x z a z e

       

            


  


     


              

 (3-18) 

V becomes 

1 2 3 4 0V e e e e        

which is negative definite function in first quadrant. The numerical results are shown 

in Fig.3.8 and Fig. 3.9, where 1 1 1 11, 26, 0.7, 1.5a b c d    . After 100 sec., the 

errors approach zero and the chaotic trajectories of Froude-Duffing system approach 

to that of the generalized Lorenz system. 
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3.4 Summary 

In this Chapter, a new strategy by using partial region stability theory is proposed 

to achieve chaos control. By using the GYC partial region stability theory, the 

controllers are of lower degree than that of controllers by using traditional Lyapunov 

asymptotical stability theorem. The simple linear homogeneous function of error 

states and the lower order controllers are much more simple and introduce less 

simulation error. Besides, the strategy enlarges the effective scope of traditional chaos 

control which is limited to control the chaos of only one given system .To control the 

chaos of a new Froude-Duffing system to that of a generalized Lorenz system are 

used as one of three simulation examples which verify the effectiveness of the 

proposed scheme. 
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Fig. 3.1 Chaotic phase portraits for a new Froude-Duffing system in the first quadrant.  
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Fig. 3.2 Phase portraits of error dynamics for Case I. 
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Fig. 3.3 Time histories of errors for Case I. 
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Fig. 3.4 Phase portraits of error dynamics for Case II. 
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Fig. 3.5 Time histories of errors for Case II.  

 

 

Fig. 3.6 Time histories of x1, x2, x3,x4 and y1, y2, y3, y4  for Case II. 
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Fig. 3.7 Phase portraits of error dynamics for Case III. 
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Fig. 3.8 Time histories of errors for Case III.  

 

          

Fig. 3.9 Time histories of x1, x2, x3, x4 and z1, z2, z3, z4 for Case III. 
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Chapter 4  

Hyperchaos of a Rössler System with Bessel 

Function Parameters 

4.1 Preliminaries 

In this Chapter, our study is devoted to a Rössler System with Bessel function 

parameters. The chaotic behaviors is studied numerically by time histories of states, 

phase portraits, bifurcation diagram, parameter diagram, Lyapunov exponent diagram 

and Poincaré maps. It is found that both hyperchaos and chaos are abundant and give 

various applications, especially for secret communication exist.  

4.2 Chaos of Rössler System with Bessel Function Parameters 

The Rössler system with Bessel function parameters is: 

( )
dx

y z
dt

dy
x ay

dt

dz
b xz cz

dt


  




 



  


            (4-1) 

with parameters ( )a t  ( )b t , ( )c t  as given functions of time. It is a nonautonomous 

system, which is equivalent to a four-dimensional autonomous system. a , b , c  are 

given as： 

1

2 1

2 3

( )

( ) 0.2

( )

a t k

b t k b

c t b k




 
  

            (4-2) 

where 1k , 2k , 3k  are constant parameters, and 

1 0
0

cos ( 0.5) ( 0.5)
( 0.5) lim

sin

J t J t
b Y t

 







  
        (4-3) 



41 

2 1

2 1

0

( 1)
( )

! ( 2) 2

n
n

n

t
b J

n n







 

 
           (4-4) 

 

where 0Y is Bessel function of the second type , J  is Bessel function of the first kind 

and is Gamma function. The time histories of 2 1( ) 0.2b t k b  , 2 3( )c t b k   with 

2 0.6k  , 3 10k   are show in Figs 4.1 and 4.2. The numerical simulations are carried 

out by MATLAB using the fractional operator in the Simulink environment. 

4.3 Numerical Simulations 

This system exhibits chaos when the parameters of system (4-1) are 1 0.15k   , 

2 0.6k  , 3 10k  and the initial condition is ( , , ) (0.3, 0.1, 0.5)x y z  . The time 

history of three states, phase portraits, Poincaré maps, and bifurcation diagrams of the 

system are shown in Fig. 4.3~Fig. 4.8. When the parameters are
 1 0.06k  , 2 0.6k  ,

3 10k   , the motion becomes period 1. The time histories of three states, phase 

portraits and Poincaré maps of the system are shown in Fig. 4.9~Fig. 4.12. 

Lyapunov exponents and parametric diagram are also given to certify the 

existence of hyperchaos. Let us assume Lyapunov exponents i  ( 1,2,3,4)i   

satisfying 1 2 3    , and 4 0  . Then the dynamics of system (4-1) can be 

characterized as follows: 

(1) When 1,2,3 0   and 4 0  , system (4-1) is periodic. 

(2) When 1 2,30, 0   , and 4 0  , system (4-1) exhibits chaotic motion. 

(3) When 1,2 30, 0   , and 4 0  , system (4-1) exhibits hyperchaotic motion. 

Three cases are studied as follows. 
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Case I 

Fix 2k , 3k , vary 1k . The Lyapunov exponents of the system (4-1) for 2 0.6k  , 

and 3 10k   are shown in Fig. 4.13 and Fig. 4.14. The parametric diagram of system 

(4-1) for varying 1k  and 2k  with 3 10k   is shown in Fig. 3.15. The white area 

corresponds to periodic motion. By simulation, system is periodic when 

10.01 0.1k  . The blue area corresponds to chaotic motion. And the green area 

corresponds to hyperchaotic motion which is identified by the existence of two 

positive Lyapunov exponents, as clearly shown in Fig. 4.13 and Fig. 4.14. As 1k  

varies in 10.1 0.35k  , the system displays complex behavior, with an interweaving 

between chaotic and hyperchaotic motions. The hyperchaotic motion is quite 

abundant. 

 

Case II 

Fix 3 10k  , and vary 1,k 2k . Some typical values of 1k  and 2k
 
that generate 

hyperchaos with two positive Lyapunov exponents are shown in Tables 1～3, 

respectively. Comparing Table 1～3, a notable phenomenon appears when 1k  

increases. As 1k  increases, the value of Lyapunov exponent 2  becomes larger. It 

means that larger 1k  can arouse hyperchaotic motion. In other words, hyperchaos is 

aroused with enlarged Bessel function of first kind.  
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Table 1  Typical values of parameter 2k
 
that generate hyperchaos for 1 0.1k 

 
and

3 10k  . 

2k  1  2  3  4  

0.500 

0.544 

0.580 

0.620 

0.700 

0.760 

0.856 

0.00634 

0.00730 

0.00783 

0.00969 

0.00549 

0.00741 

0.00692 

0.00065 

0.00069 

0.00069 

0.00067 

0.00062 

0.00038 

0.00026 

-9.830902 

-9.831895 

-9.832725 

-9.834285 

-9.829993 

-9.831599 

9.831332 

0 

0 

0 

0 

0 

0 

0 

 

Table 2  Typical values of parameter 2k
 
that generate hyperchaos for 1 0.2k   and

3 10k  .
 

2k  1  2  3  4  

1.104 

1.152 

1.176 

1.204 

1.232 

1.292 

0.10918 

0.11056 

0.10769 

0.11382 

0.10929 

0.11663 

0.00095 

0.00071 

0.00067 

0.00077 

0.00194 

0.00039 

-9.703637 

-9.699163 

-9.695142 

-9.707276 

-9.698110 

-9.704187 

0 

0 

0 

0 

0 

0 
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Table 3  Typical values of parameter 2k
 
that

 
generate hyperchaos for 1 0.3k 

 
and 

3 10k  .  

2k  1  2  3  4  

0.504 

0.536 

0.544 

0.652 

0.732 

0.17391 

0.17959 

0.17410 

0.17324 

0.17996 

0.00052 

0.00015 

0.00060 

0.00106 

0.00142 

-9.227365 

-9.192967 

-9.196768 

-9.219144 

-9.215868 

0 

0 

0 

0 

0 

 

 

 

Case III 

Fix 1 0.15k  , 2 0.6k   and vary 3k . Fig. 4.18 and Fig. 4.19 shows the 

Lyapunov exponents as a function of 3k  to classify the chaotic or hyperchaotic 

motions. With increasing 3k , the motion of system (2-2) becomes hyperchaotic when 

3 10.3k  and 3 10.4k   ;and chaotic motions occur with 310.3 10.4k  . In this case, 

periodic motion has not be found. 
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4.4 Summary 

Rössler system with Bessel function parameters is studied firstly. The results are 

verified by time histories of states, phase portraits, Poincaré maps, bifurcation 

diagram, Lyapunov exponents and parametric diagram. Abundant hyperchaos is 

found for this system, which gives potential in various applications, particularly in 

secret communication. 
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Fig. 4.1 The time history ( )b t with 2 0.6k  . 

 

Fig. 4.2 The time history ( )c t with 3 10k  . 
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Fig. 4.3 The bifurcation diagram with 2 0.6k  , 3 10k  . 

 

 

Fig. 4.4 The phase portrait of , ,x y z  states. 
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Fig. 4.5 The phase portrait and Poincaré maps of 1 2,x x  states. 

 

Fig. 4.6 The time histories of the state x. 
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Fig. 4.7 The time histories of the state y. 

 

 

Fig. 4.8 The time histories of the state z. 
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Fig. 4.9 The phase portrait and Poincaré map of ,x y  states. 

 

Fig. 4.10 The time history of the state x. 
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Fig. 4.11 The time history of the state y. 

 

Fig. 4.12 The time history of the state z. 
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Fig. 4.13 Lyapunov exponents of system (2-2) for varying 1k .
 

 

Fig. 4.14 Enlarged figure for 2 versus 1k . 
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Fig. 4.15The parametric diagram of system (4-2) for varying 1k  and 2k  

with 3 10k  . 

 

Fig. 4.16 Lyapunov exponents of system (2-2) for varying 2k . 
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Fig. 4.17 Enlarged figure for 2 versus 2.k
 

 

Fig. 4.18 Lyapunov exponents of system (2-2) for varying 3k , with 1 0.15k  and

2 0.6k   
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Fig. 4.19 Enlarged figure for 2 versus 3.k
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Chapter 5  

Yin Chaos of a Rössler System 

5.1 Preliminaries 

In this Chapter, our study is devoted to show the behavior of Yin Rössler system 

firstly. Simulation results are shown that chaos of Yin Rössler system is appeared 

when using “Yin” parameters. The history of Rössler system is discussed in the first 

time. To the best of our knowledge, all studies of Rössler system are devoted to Yang   

Rössler system, there are no articles in making an inquiry about the history of Rössler 

system up to now. Consequently, the Yin chaos of Rössler system with “Yin 

parameters” is introduced in this Chapter and the behavior of Yin Rössler system is 

investigated by Lyapunov exponents, Poincaré maps, phase portraits and bifurcation 

diagram. 

 

 

5.2 Yang Rössler system 

 Before introducing the Yin Rössler equation, the Yang Rössler system can be 

recalled as follow: 

1
2 3

2
1 2

3
1 3 3

( )
( ( ) ( ))

( )
( ) ( )

( )
( ) ( ) ( )

dx t
x t x t

dt

dx t
x t ax t

dt

dx t
b x t x t cx t

dt


  




 



  


          (5-1) 

when initial condition 1 2 3(0) 0.3, (0) 0.1, (0) 0.5x x x   and parameters a=0.15, 

b=0.2 and c=10,chaos of the Yang Rössler system is appeared. The chaotic behavior 

of Eq. (5-1) is shown in Fig. 5.1~ Fig. 5.3.  
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5.3 Yin Rössler system 

Yin Rössler equations are:  

1
2 3

2
1 2

3
1 3 3

( )
( ( ) ( ))

( )

( )
( ) ( )

( )

( )
( ) ( ) ( )

( )

dx t
x t x t

d t

dx t
x t ax t

d t

dx t
b x t x t cx t

d t

 
    



 

   


 
     



         (5-2) 

 

 

It is clear that in the left hand sides, the derivative are taken with the back-time. It 

means Eq. (5-2) aims to find out the Yin behavior of the Rössler system and to 

comprehend the relation between history and presence. The simulation results are 

arranged in Table 1: 

Table 1 Dynamic behaviors of Yin Rössler system for different signs of parameters 

a b c states 

- + + 
Approach to 

infinity 

+ - + 
Approach to 

infinity 

+ + - periodic 

- - + 
Approach to 

infinity 

- + - 
Approach to 

infinity 

- - - 
Chaos and 

periodic 
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    Table 1 shows the dynamic behaviors of Yin Rössler system for different signs of 

parameters. An interesting phenomenon is discovered. When initial condition

1 2 3(0) 0.3, (0) 0.1, (0) 0.5x x x   and parameters a=-0.15, b=-0.2 and c=-10,chaos of 

the Yin Rössler system appears. Therefore, we call these parameters Yin parameters. 

In Chinese philosophy, Yin is the negative, past or feminine principle in nature, while 

yang is the positive, present or masculine principle in nature. Yin and Yang are two 

fundamental opposites in Chinese philosophy. Consequently, the positive value of 

parameters, a=0.15, b=0.2 and c=10, in Yang Rössler system can be called Yang 

parameters. The chaotic behavior of Eq. (5-2) is shown in Fig.5.4-Fig. 5.8. 
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5.4 Other simulation results 

    In order to research the difference and similarity between Yang and Yin Rössler 

system, the bifurcation and Lyapunov exponents are used. The simulation results are 

divided into three parts: 

Part1: parameter a is varied and b, c are fixed:  

 

Table 2 Range of parameter a of Yang Rössler system 

0.01~0.101 Periodic trajectory 

0.101~0.124 Chaos 

0.124~0.129 Periodic trajectory 

0.129~0.16 Chaos 

 

Table 3 Range of parameter a of Yin Rössler system 

-0.01~-0.101 Periodic trajectory 

-0.101~-0.125 Chaos 

-0.125~-0.129 Periodic trajectory 

-0.129~-0.16 Chaos 

     

Table 2 and 3 show different dynamics in the different ranges of parameter a of 

Yang and Yin Rössler system. In Table 2, the behaviors of Yang Rössler system vary 

with parameter a, become either chaotic or periodic. When 0.01 0.101a  or

0.124 0.129a  , Yang Rössler system is going to become periodic. When

0.101 0.124a  or 0.129 0.16a  , chaos appears. Table 3 shows that when 

parameter When 0.101 0.125a    or 0.129 0.16a    ,the chaotic behavior is 

shown in Yin Rössler system. When parameter  0.01 0.101a    and
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0.125 0.129a    , the behaviors of Yin Rössler system are periodic trajectories. 

Comparing Table 2 and 3, it can be found that there are only chaos and periodic 

motion in both Yang Rössler system and Yin Rössler system. Bifurcation diagram and 

Lyapunov exponents are shown in Fig. 5.9and Fig. 5.10. 

 

Part2: parameter b is varied and a, c are fixed: 

 

Table 4 Range of parameter b of Yang Rössler system 

0.01~0.47 Chaos 

0.47~0.553 Periodic trajectory 

0.553~1.078 Chaos 

1.078~3.000 Periodic trajectory 

 

Table 5 Range of parameter b of Yin Rössler system 

-0.01~-0.462 Chaos 

-0.462~-0.555 Periodic trajectory 

-0.555~-1.08 Chaos 

-1.08~-3.000 Periodic trajectory 

Table 4 and 5 show that the behaviors of Yang and Yin Rössler system are similar but 

not the same. When parameter of b is -1.36, in Yin Rössler system period 2 obviously 

turns into period 4 .But this phenomenon is not very obvious in Yang Rössler system. 

Bifurcation diagram and Lyapunov exponents are shown in Fig. 5.11 and Fig. 5.12. 
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Part3: parameter c is varied and a, b are fixed: 

 

Table 6 Range of parameter c of Yang Rössler system 

0.01~5.92 Periodic trajectory 

5.92~7.55 Chaos 

7.55~7.99 Periodic trajectory 

7.99~10.25 Chaos 

10.25~10.47 Periodic trajectory 

10.47~11 Chaos 

 

 

Table 7 Range of parameter c of Yin Rössler system 

-0.01~-5.92 Periodic trajectory 

-5.92~-7.55 Chaos 

-7.55~-7.99 Periodic trajectory 

-7.99~-10.25 Chaos 

-10.25~-10.47 Periodic trajectory 

-10.47~-11 Chaos 

In Table 6 and 7, the behaviors of Yang and Yin Rössler system are rather similar. but 

not identical. Bifurcation diagram and Lyapunov exponents are shown in Fig. 5.13 

and Fig. 5.14. 
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5.5 Summary 

In this Chapter, the Yin Rössler system is firstly introduced. Via numerical simulation, 

the Yin Rössler system is compared with the Yang Rössler system. It is found that 

there are similarity and difference between history and presence. If the Yang 

parameter is one of the chaotic parameters for Yang Rössler system, then the chaotic 

behavior of the Yin Rössler system can be displayed by using the corresponding Yin 

parameter. Fig. 5.15 and Fig. 5.16 give the summary of similarity and difference 

between the Yang and Yin Rössler system by bifurcation diagram and Lyapunov 

exponents. This Chapter explores the importance of Yin chaos of dynamic systems. It 

would be an epoch-making significance in future. 
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Fig. 5.1 Projections of phase portrait of chaotic Yang Rössler system with a=0.15, 

b=0.2 and c=10. 

 

 Fig. 

5.2 Time histories of three states for Yang Rössler system with a=0.15, b=0.2 and 

c=10. 
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Fig. 5.3 Periodic motions of phase portraits for Yang Rössler system with parameters 

b=0.2, c=10. 

 

 

a=0.04 a=0.08 

a=0.0935 a=0.125 
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Fig. 5.4 Projections of phase portrait of chaotic Yin Rössler system with Yin 

parameters a=-0.15, b=-0.2 and c=-10. 

 

 

Fig. 5.5 Time histories of three states for Yin Rössler system with a=-0.15, b=-0.2 

and c=-10. 
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Fig. 5.6 Periodic motion of phase portraits for Yin Rössler system with parameters 

b=-0.2, c=-10. 

 

a=-0.04 a=-0.08 

a=-0.0935 a=-0.125 
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Fig. 5.7 Periodic motion of phase portraits for Yin Rössler system with parameters 

a=-0.15, b=-0.2. 

 

 

 

b=-1.5 

b=-0.52 b=-1.21 

b=-2.6 b=-1.5 
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Fig. 5.8 Periodic motion of phase portraits for Yin Rössler system with parameters a=-0.15, b=-0.2. 

 

c=-3 c=-5 

c=-5.6 c=-7.7 
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Fig. 5.9 Bifurcation diagram and Lyapunov exponents of chaotic Yang Rössler system 

with b=0.2, c=10. 
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Fig. 5.10 Bifurcation diagram and Lyapunov exponents of chaotic Yang Rössler 

system with b=-0.2, c=-10. 
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Fig. 5.11 Bifurcation diagram and Lyapunov exponents of chaotic Yang Rössler 

system with a=0.15, c=10. 
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Fig. 5.12 Bifurcation diagram and Lyapunov exponents of chaotic Yang Rössler 

system with a=-0.15, c=-10. 



73 

 

 

Fig. 5.13 Bifurcation diagram and Lyapunov exponents of chaotic Yang Rössler 

system with a=0.15, b=0.2. 
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Fig. 5.14 Bifurcation diagram and Lyapunov exponents of chaotic Yang Rössler 

system with a=-0.15, b=-0.2. 
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Present Past 

  

  

  

Fig. 5.15 Comparison between the Yang and Yin Rössler system bifurcation diagrams. 
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Present Past 

  

  

  

Fig. 5.16 Comparison between the Yang and Yin Rössler system Lyapunov exponents. 
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Chapter 6  

Projective Yin-Yang Generalized 

Synchronization of Chaos with Uncertain 

Parameters by Pragmatical Asymptotically 

Stability Theorem 

6.1 Preliminaries 

In this Chapter, our study is devoted to a pragmatical hybrid projective chaotic 

synchronization of two chaotic systems, i.e. Yang Rössler system and Yin Rössler 

system. This synchronization of two identical chaotic systems of which one has 

uncertain parameters the another has estimated parameters, by pragmatical adaptive 

control, is achieved with the state vector of another hyperchaotic chaotic system as a 

constituent of the functional relation between master and slave. An adaptive Yin-Yang 

chaos synchronization of Yin and Yang Rössler systems are achieved by using 

pragmatical asymptotically stability theorem. Numerical simulations show the 

effectiveness of the scheme. 

6.2 Synchronization Scheme 

 Among many kinds of synchronizations [21-27], the generalized 

synchronization is investigated [28-34]. This means that we can give a function 

relationship between the states of the master and slave: ( )y G x . In this chapter, a 

hybrid projective Yin-Yang generalized synchronization(HPYYGS)  

( , ) ( ) ( )y G x z g x t z t            ` (6-1) 

is studied, where ( )x t and ( )y t  are state variable vectors of the Yang master and 

Yin slave, respectively. ( )z t is state vector of a third chaotic system, called 
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constituent system, because it is a constituent of function G. Since g is a constant 

vector with both positive and negative entries, hybrid projective synchronization is 

named.  

The master system is  

( )
dx

f x
dt

              (6-2) 

where 1 2( ) [ ( ), ( ),...., ( )]T n

nx t x t x t x t   is a state vector and all parameters of 

Eq.(6-2) are uncertain. The slave system is 

( )
( ( )) ( )

( )

dy t
f y t u t

d t


  


          (6-3) 

where 1 2( ) [ ( ), ( ),...., ( )]T n

ny t y t y t y t       is a state vector of Yin chaotic 

system and all parameters of Eq.(6-3) are estimated, u is a controlled vector. The 

function system is 

( )
dz

k z
dt

              (6-4) 

where 1 2( ) [ ( ), ( ),...., ( )]T n

nz t z t z t z t   is a chaotic state vector of the constituent 

system and all parameters of Eq.(2-4) are known.  

Let 

1 2 1 1 1 2 2 2( ) [ ( ), ( ),...., ( )] [ ( ) ( ), ( ) ( ),...., ( ) ( )]n n n nh t h t h t h t g x t z t g x t z t g x t z t   (6-5) 

where 1 2[ , ,...., ]ng g g g  are constant vector with positive and negative entries, i.e. 

hybrid entries. 

Define the error of HPYYGS as  

( ) ( ) ( ) ( ) ( ) ( )e t h t y t gx t z t y t              (6-6) 

where 1 2( ) [ , ,...., ]T n

ne t e e e   denotes an error vector. The controlling goal is that  

0lim 


e
t

             (6-7) 
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can be accomplished on the base of pragmatical asymptotical stability theorem by 

adaptive control. 

    When our aim is  

( ) ( ) ( ( ))y t x t F z t    

where F is a given function , the scheme is similar. 

 

 

6.3 Adaptive Yin-Yang synchronization of Yin chaos and 

Yang chaos 

In this Section, adaptive synchronization from Yin Rössler chaos to Yang Rössler 

chaos is proposed. The Yin Rössler system is considered as slave system and the Yang 

Rössler system is regarded as master system. These two equations are shown below: 

Master system- Yang Rössler system: 

1
2 3

2
1 2

3
1 3 3

( )
( ( ) ( ))

( )
( ) ( )

( )
( ) ( ) ( )

dx t
x t x t

dt

dx t
x t ax t

dt

dx t
b x t x t cx t

dt


  




 



  
          

( 6 - 8 ) 

    Slave system- Yin Rössler system: 

    

1
2 3 1

2
1 2 2

3
1 3 3 3

( )
( ( ) ( ))

( )

( )
ˆ( ) ( )

( )

( ) ˆ ˆ( ) ( ) ( )
( )

dy t
y t y t u

d t

dy t
y t ay t u

d t

dy t
b y t y t cy t u

d t

 
     



 

    


 
      

        

( 6 - 9 ) 

where ix (t) stands for states variables of the master system and iy (-t) for the slave 

system, respectively. Parameters, a, b and c are uncertain parameters of master system. 
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â , b̂ and ĉ are estimated parameters. The master system exhibits chaos when the 

parameters are 0.15, 0.2a b  and 10c  . 1u , 2u and 3u are nonlinear controller to 

synchronize the slave Rössler system to master one, i.e., 

CASE I. The synchronization error component is 

( ) ( ), 1,  2,  3i i ie x t y t i            (6-10) 

Our goal is 

lim lim( ( ) ( )) 0,         1,2,3i i i
t t

e x t y t i
 

            (6-11) 

where the error vector e  )t(e)t(e)t(e 321  and 















)t(y)t(x)t(e

)t(y)t(x)t(e

)t(y)t(x)t(e

333

222

111

           (6-12) 

From Eq. (6-5), we have the following error dynamics: 







































)t(d

)t(dy

dt

)t(dx

dt

)t(dy

dt

)t(dx

dt

)t(de

)t(d

)t(dy

dt

)t(dx

dt

)t(dy

dt

)t(dx

dt

)t(de

)t(d

)t(dy

dt

)t(dx

dt

)t(dy

dt

)t(dx

dt

)t(de

33333

22222

11111

      (6-13) 

1 2 3 2 3 1

2 1 2 1 2 2

3 1 3 3 1 3 3 3

( ) ( ( ) ( ))

ˆ( ) ( ( ) ( ))

ˆ ˆ( ) ( ( ) ( ) ( ))

e x x y t y t u

e x ax y t ay t u

e b x x cx b y t y t cy t u

       

      

         







     (6-14) 

    The two systems will be synchronized for any initial condition by appropriate 

controllers and update laws for those estimated parameters. As a result, the following 

controllers and update laws are designed by pragmatical asymptotical stability 

theorem(Appendix C). 

Choose Lyapunov function as: 
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    )c~b
~

a~eee(
2

1
V 2222

3
2
2

2
1          (6-15) 

where âaa~  , b̂bb
~

  and ĉcc~  . 

    Its time derivative is: 

  

1 1 2 2 3 3

1 2 3 2 3 1

2 1 2 1 2 2

3 1 3 3 1 3 3 3

    =  [ ( ) ( ( ) ( ) ) ]

ˆ     + [ ( ) ( ( ) ( ) ) ]

ˆ ˆ     + [ ( ) ( ( ) ( ) ( ) ) ]

ˆˆ ˆ     + ( ) ( ) ( )

V e e e e e e a a b b c c

e x x y t y t u

e x a x y t a y t u

e b x x c x b y t y t c y t u

a a b b c c

     

      

     

        

    

         

  

     (6-16) 

We choose the update laws for those uncertain parameters as: 

    

2

3

3

ˆ

ˆ

ˆ

a a a e

c c b e

b b c e

   


  


  

 

 

 

             (6-17) 

Through Eqs. (6-16) and (6-17), the appropriate controllers can be designed as: 

  

1 2 3 2 3 1

2

2 1 2 1 2 2

2 2

3 1 3 3 1 3 3 3

( ) ( ( ) ( ))

ˆ( ) ( ( ) ( ))

ˆ ˆ( ) ( ( ) ( ) ( ))

u x x y t y t e

u x ax y t ay t a e

u b x x cx b y t y t cy t b c e

       


        


            



 

   (6-18) 

We obtain 

0eeeV 2
3

2
2

2
1             (6-19) 

which is negative semi-definite function of 321 e,e,e , â , b̂ and ĉ . The Lyapunov 

asymptotical stability theorem is not satisfied. We cannot obtain that common origin 

of error dynamics (6-14) and parameter dynamics (6-17) is asymptotically stable. By 

pragmatical asymptotically stability theorem (see Appendix), D is a 6-manifold, 

6n  and the number of error state variables 3p  . When 0eee 321  and â , b̂ ,

ĉ take arbitrary values, 0V  ,so X is of 3 dimensions, 336pnm  , 

n1m   is satisfied. According to the pragmatical asymptotically stability theorem, 

error vector e approaches zero and the estimated parameters also approach the 
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uncertain parameters. The equilibrium point is pragmatically asymptotically stable. 

Under the assumption of equal probability, it is actually asymptotically stable. The 

simulation results are shown in Figs. 6.1~6.4. 

CASE II. The generalized synchronization error component is 

[ ( ) ( )] ( ), 1,  2,  3i i i ie x t z t y t i            (6-20) 

 1 2 3

T
z z z z  is the chaotic state vector of a Chen-Lee system[30]. 

The constituent system for generalized synchronization is a Chen-Lee system 

1
2 3 1 1

2
1 3 2 2

3
1 2 3 3

( )
( ) ( ) ( )

( )

( )
( ) ( ) ( )

( )

( )
(1/ 3) ( ) ( ) ( )

( )

dz t
z t z t z t

d t

dz t
z t z t z t

d t

dz t
z t z t z t

d t








  




 



 


          (6-21)

 

where 1 2 35, 10, 3.8        

Our goal is 

lim lim( ( ) ( ) ( )) 0,         1,2,3i i i i
t t

e x t y t z t i
 

           (6-22) 

where the error vector e  )t(e)t(e)t(e 321  and 

1 1 1 1

2 2 2 2

3 3 3 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

e t x t y t z t

e t x t y t z t

e t x t y t z t

   


   
    

          (6-23) 

From Eq. (6-23), we have the following error dynamics: 

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

de t dx t dy t dz t dx t dy t dz t

dt dt dt dt dt d t dt

de t dx t dy t dz t dx t dy t dz t

dt dt dt dt dt d t dt

de t dx t dy t dz t dx t dy t dz t

dt dt dt dt dt d t d

 
     



 
     



 
     

 t











   (6-24) 



83 

1 2 3 2 3 1 1

2 1 2 1 2 2 2

3 1 3 3 1 3 3 3 3

( ) ( ( ) ( ))

ˆ( ) ( ( ) ( ))

ˆ ˆ( ) ( ( ) ( ) ( ))

e x x y t y t u z

e x ax y t ay t u z

e b x x cx b y t y t cy t u z

        

       

          

 

 

 

    (6-25) 

    The three systems will be synchronized for any initial condition by appropriate 

controllers and update laws for those estimated parameters. As a result, the following 

controllers and update laws are designed by pragmatical asymptotical stability 

theorem as follows: 

    Choosing Lyapunov function as: 

    )c~b
~

a~eee(
2

1
V 2222

3
2
2

2
1          (6-26) 

where âaa~  , b̂bb
~

  and ĉcc~  . 

Its time derivative is: 

1 1 2 2 3 3

1 2 3 2 3 1 2 3 1 1

2 1 2 1 2 2 1 3 2 2

3 1 3 3 1 3 3

    = [ ( ) ( ( ) ( )) ( ) ( ) ( )]

ˆ    + [( ) ( ( ) ( )) ( ) ( ) ( )]

ˆ ˆ    + [( ) ( ( ) ( ) ( ))

V e e e e e e aa bb cc

e x x y t y t u z t z t z t

e x ax y t ay t u z t z t z t

e b x x cx b y t y t cy t u





     

        

       

        

         

3 1 2 3 3(1/ 3) ( ) ( ) ( )]

ˆˆ ˆ    + ( ) ( ) ( )

z t z t z t

a a b b c c

 

    
  

 (6-27) 

We choose the update laws for those uncertain parameters as: 

    

2

3

3

ˆ

ˆ

ˆ

a a a e

c c b e

b b c e

   


  


  

 

 

 

             (6-28) 

Through Eqs. (6-27) and (6-28), the appropriate controllers can be designed as: 

  

1 2 3 2 3 1 2 3 1 1

2

2 1 2 1 2 2 1 3 2 2

2 2

3 1 3 3 1 3 3 3 1 2 3 3

( ) ( ( ) ( )) ( ( ) ( ) ( ))

ˆ( ) ( ( ) ( )) ( ( ) ( ) ( ))

ˆ ˆ( ) ( ( ) ( ) ( )) ((1/ 3) ( ) ( ) ( ))

u x x y t y t e z t z t z t

u x ax y t ay t a e z t z t z t

u b x x cx b y t y t cy t b c e z t z t z t







          


          


              



 
 

                

(6-29) 

We obtain 

0eeeV 2
3

2
2

2
1             (6-30) 
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The simulation results are shown in Figs. 6.5~6. 8. 

 

CASE III. The generalized synchronization error function is 

2[ ( ) ( )] ( ), 1,  2,  3i i i ie x t z t y t i           (6-31) 

 1 2 3

T
z z z z  is the state vector of a Chen-Lee system. 

The goal system for generalized synchronization is a Chen-Lee system 

1
2 3 1 1

2
1 3 2 2

3
1 2 3 3

( )
( ) ( ) ( )

( )

( )
( ) ( ) ( )

( )

( )
(1/ 3) ( ) ( ) ( )

( )

dz t
z t z t z t

d t

dz t
z t z t z t

d t

dz t
z t z t z t

d t








  




 



 


          (6-32)

 

where 1 2 35, 10, 3.8        

Our goal is 

2lim lim( ( ) ( ) ( )) 0,         1,2,3i i i i
t t

e x t y t z t i
 

           (6-33) 

where the error vector e  )t(e)t(e)t(e 321  and 

2

1 1 1 1

2

2 2 2 2

2

3 3 3 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

e t x t y t z t

e t x t y t z t

e t x t y t z t

    


   


   

         (6-34) 

From Eq. (6-27), we have the following error dynamics: 

2

1 1 1 1 1 1 1
1

2

2 2 2 2 2 2 2
2

2

3 3 3 3 3

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( )

de t dx t dy t dz t dx t dy t dz t
z t

dt dt d t dt dt d t dt

de t dx t dy t dz t dx t dy t dz t
z t

dt dt d t dt dt d t dt

de t dx t dy t dz t dx t

dt dt d t dt dt

 
     



 
     




    3 3

3

( ) ( )
2 ( )

( )

dy t dz t
z t

d t dt







 

 


  (6-35) 
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1 2 3 2 3 1 1 1

2 1 2 1 2 2 2 2

3 1 3 3 1 3 3 3 3 3

( ) ( ( ) ( )) 2

ˆ( ) ( ( ) ( )) 2

ˆ ˆ( ) ( ( ) ( ) ( )) 2

e x x y t y t u z z

e x ax y t ay t u z z

e b x x cx b y t y t cy t u z z

        

       

          

 

 

 

   (6-36) 

    The three systems will be synchronized for any initial condition by appropriate 

controllers and update laws for those estimated parameters. As a result, the following 

controllers and update laws are designed by pragmatical asymptotical stability 

theorem as follows: 

    Choosing Lyapunov function as: 

    )c~b
~

a~eee(
2

1
V 2222

3
2
2

2
1          (6-37) 

where âaa~  , b̂bb
~

  and ĉcc~  . 

Its time derivative is: 

1 1 2 2 3 3

1 2 3 2 3 1 1 2 3 1 1

2 1 2 1 2 2 2 1 3 2 2

3 1 3 3 1 3

    [ ( ) ( ( ) ( )) 2 ( ( ) ( ) ( ))]

ˆ    + [( ) ( ( ) ( )) 2 ( ( ) ( ) ( ))]

ˆ ˆ    + [( ) ( ( ) ( )

V e e e e e e aa bb cc

e x x y t y t u z z t z t z t

e x ax y t ay t u z z t z t z t

e b x x cx b y t y t





     

          

       

      

         

3 3 3 1 2 3 3( )) 2 ((1/ 3) ( ) ( ) ( ))]

ˆˆ ˆ    + ( ) ( ) ( )

cy t u z z t z t z t

a a b b c c

   

    
  

 (6-38) 

We choose the update laws for those uncertain parameters as: 

    

2

3

3

ˆ

ˆ

ˆ

a a a e

c c b e

b b c e

   


  


  

 

 

 

             (6-39) 

Through Eqs. (6-38) and (6-39), the appropriate controllers can be designed as: 

1 2 3 2 3 1 1 2 3 1 1

2

2 1 2 1 2 2 2 1 3 2 2

2 2

3 1 3 3 1 3 3 3 3 1 2 3 3

( ) ( ( ) ( )) 2 ( ( ) ( ) ( ))

ˆ( ) ( ( ) ( )) 2 ( ( ) ( ) ( ))

ˆ ˆ( ) ( ( ) ( ) ( )) 2 ((1/ 3) ( ) ( ) ( ))

u x x y t y t e z z t z t z t

u x ax y t ay t a e z z t z t z t

u b x x cx b y t y t cy t b c e z z t z t z t







          

          

              



 






(6-40) 

We obtain 

0eeeV 2
3

2
2

2
1             (6-41) 

The simulation results are shown in Figs. 6.9~6.12. 
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CASE IV. The generalized synchronization error function is  

( ) ( ) ( ), 1,  2,  3i i i i ie g x t z t y t i           (6-42) 

 1 2 3

T
z z z z  is the state vector of a Lorenz system. 

The goal system for generalized synchronization is a Lorenz system 

1
1 2 1

2
2 1 1 3 2

3
1 2 3 3

( )
( ( ) ( ))

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( )

dz t
z t z t

dt

dz t
z t z t z t z t

dt

dz t
z t z t z t

dt








 




  



 


         (6-43)

 

where 1 2 310, 28, 8 / 3      

Our goal is 

lim lim( ( ) ( ) ( )) 0,         1,2,3i i i i i
t t

e y t g x t z t i
 

          (6-44) 

where the error vector e  )t(e)t(e)t(e 321  and 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

e g x t z t y t

e g x t z t y t

e g x t z t y t

  


  
   

          (6-45) 

From Eq. (6-38), we have the following error dynamics: 

1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

2 2 2 2 2 2 2
2 2 2 2 2 2 2 2

3

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

(

de t dx t dz t dy t dx t dz t dy t
g z t g x t g z t g x t

dt dt dt d t dt dt d t

de t dx t dz t dy t dx t dz t dy t
g z t g x t g z t g x t

dt dt dt d t dt dt d t

de t

 
      



 
     



3 3 3 3 3 3
3 3 3 3 3 3 3 3

) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

dx t dz t dy t dx t dz t dy t
g z t g x t g z t g x t

dt dt dt d t dt dt d t







  

     


 (6-46) 

1 1 2 3 1 1 1 1 2 1 2 3 1

2 2 1 2 2 2 2 2 1 1 3 2 1 2 2

3 3 1 3 3 3 3 3 1 2 3 3 1 3 3 3

( ( )) ( ( )) ( ( ) ( ))

ˆ( ) ( ) ( ( ) ( ))

ˆ ˆ( ) ( ) ( ( ) ( ) ( ))

e g x x z g x z z y t y t u

e g x ax z g x z z z z y t ay t u

e g b x x cx z g x z z z b y t y t cy t u







         

         

           







 (6-47) 

    The three systems will be synchronized for any initial condition by appropriate 

controllers and update laws for those estimated parameters. As a result, the following 
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controllers and update laws are designed by pragmatical asymptotical stability 

theorem as follows: 

    Choosing Lyapunov function as: 

    )c~b
~

a~eee(
2

1
V 2222

3
2
2

2
1          (6-48) 

where âaa~  , b̂bb
~

  and ĉcc~  . 

Its time derivative is: 

1 1 2 2 3 3

1 1 2 3 1 1 1 1 2 1 2 3 1

2 2 1 2 2 2 2 2 1 1 3 2 1 2 2

3 3 1 3 3 3 3 3 1 2 3 3

    [ ( ( )) ( ( )) ( ( ) ( )) ]

ˆ    + [ ( ) ( ) ( ( ) ( )) ]

ˆ    + [ ( ) ( ) (

V e e e e e e aa bb cc

e g x x z g x z z y t y t u

e g x ax z g x z z z z y t ay t u

e g b x x cx z g x z z z







     

         

        

    

         

1 3 3 3
ˆ( ) ( ) ( )) ]

ˆˆ ˆ    + ( ) ( ) ( )

b y t y t cy t u

a a b b c c

     

    
  

  (6-49) 

We choose the update laws for those uncertain parameters as: 

    

2

3

3

ˆ

ˆ

ˆ

a a a e

c c b e

b b c e

   


  


  

 

 

 

             (6-50) 

Through Eqs. (6-49) and (6-50), the appropriate controllers can be designed as: 

1 2 3 1 2 3 1 1 1 1 2 1 1

2

2 1 2 2 1 2 2 2 2 2 1 1 3 2 2

2 2

3 1 3 3 3 1 3 3 3 3 3 1 2 3 3 3

( ( ) ( )) ( ( )) ( ( ))

ˆ( ( ) ( )) ( ) ( )

ˆ ˆ( ( ) ( ) ( )) ( ) ( )

u y t y t g x x z g x z z e

u y t ay t g x ax z g x z z z z e a

u b y t y t cy t g b x x cx z g x z z z e b c







          


           


              



 

  (6-51) 

We obtain 

0eeeV 2
3

2
2

2
1             (6-52) 

The simulation results are shown in Figs. 6.13~6.16. 
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6.4 Summary 

In this Chapter, PYYGS of Yang Rössler and Yin Rössler system is obtained by 

adaptive control based on pragmetical asymptotical stability theory. This Chapter 

explores the another half battle field for chaos study, would be proved to have 

epoch-making significance in the future. 
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Fig. 6.1 Time histories of state errors for Yin and Yang Rössler chaotic systems for 

Case I.  

 

Fig. 6.2 Time histories of parameter errors for Yin and Yang Rössler chaotic systems 

for Case I. 
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Fig. 6.3 Time histories of ( )ix t  and ( )iy t for Case I. 

 

Fig. 6.4 Phase portraits of ( )ix t  and ( )iy t for Case I. 
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Fig. 6.5 Time histories of state errors for Yin and Yang Rössler chaotic systems for 

Case II. 

 

Fig. 6.6 Time histories of parameter errors for Yin and Yang Rössler chaotic systems 

for Case II. 
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Fig. 6.7 Time histories of ( ) ( )i ix t z t and ( )iy t  for Case II. 

 

Fig. 6.8 Phase portraits of ( ) ( )i ix t z t and ( )iy t  for Case II. 
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Fig. 6.9 Time histories of state errors for Yin and Yang Rössler chaotic systems for 

Case III. 

 

Fig. 6.10 Time histories of parameter errors for Yin and Yang Rössler chaotic systems 

for Case III. 
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Fig. 6.11 Time histories of 
2( ) ( )i ix t z t and ( )iy t  for Case III. 

 

Fig. 6.12 Phase portraits of 
2( ) ( )i ix t z t and ( )iy t  for Case III. 
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Fig. 6.13 Time histories of state errors for Yin and Yang Rössler chaotic systems for 

Case IV. 

 

 

Fig. 6.14 Time histories of errors for Yin and Yang Rössler chaotic systems for Case 

IV. 
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Fig. 6.15 Time histories of ( ) ( )i i ig x t z t and ( )iy t  for Case IV. 

 

Fig. 6.16 Phase portraits of ( ) ( )i i ig x t z t and ( )iy t  for Case IV. 
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Chapter 7  

Conclusions 

In this thesis, the chaotic behavior in a New Froude-Duffing system is studied by 

phase portraits, time history, Poincaré maps, Lyapunov exponent, and bifurcation 

diagrams. 

A new chaos generalized synchronization method, using GYC partial region 

stability theory is proposed, and generalized Lorenz system are used as one of four 

simulation examples which verify the effectiveness of the proposed scheme in 

Chapter 2. Moreover, we also study the chaos control by using the GYC partial region 

stability theory in Chapter 3. By using this theory, the controllers are of lower degree 

than that of controllers by using traditional Lyapunov asymptotical stability theorem. 

The simple linear homogeneous Lyapunov function of error states makes that the 

controllers are simpler and introduce less simulation error. 

In Chapter 4, the chaotic behaviors of Rössler system with Bessel function 

parameters is studied firstly. The results are verified by time histories of states, phase 

portraits, Poincaré maps, bifurcation diagram, Lyapunov exponents and parametric 

diagram. Abundant hyperchaos is found for this system, which gives potential in 

various applications, particularly in secret communication. 

In Chapter 5, the Yin Rössler system is firstly introduced. Via numerical 

simulation, the Yin Rössler system is compared with the Yang Rössler system and we 

find out there are similarity and difference between history and presence. In Chapter 6, 

(PYYGS) of Yang Rössler and Yin Rössler system is obtained by adaptive control 

based on pragmetical asymptotical stability theory. This thesis explores the another 

half battle field for chaos study, would be proved to have epoch-making significance 

in the future. 
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Appendix A  

GYC Partial Region Stability Theory  

Consider the differential equations of disturbed motion of a nonautonomous 

system in the normal form 

1( , , , ), ( 1, , )s
s n

dx
X t x x s n

dt
                             (A-1) 

where the function sX  is defined on the intersection of the partial region   

(shown in Fig. A-1) and 

2

s

s

x H                                                    (A-2) 

and 0t t , where 0t  and H are certain positive constants. sX which vanishes when 

the variables sx  are all zero, is a real valued function of t, 1, , nx x . It is assumed 

that sX  is smooth enough to ensure the existence, uniqueness of the solution of the 

initial value problem. When sX  does not contain t explicitly, the system is 

autonomous. 

Obviously, 0 ( 1, )sx s n    is a solution of Eq.( A-1). We are interested to 

the asymptotical stability of this zero solution on partial region   (including the 

boundary) of the neighborhood of the origin which in general may consist of several 

subregions (Fig. A.1). 

Definition 1: 

For any given number 0  , if there exists a 0  , such that on the closed 

given partial region   when 

2

0 , ( 1, , )s

s

x s n                                          (A-3) 

for all 0t t , the inequality 
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2 , ( 1, , )s

s

x s n                                           (A-4) 

is satisfied for the solutions of Eq.(A-27) on  , then the disturbed motion 

0 ( 1, )sx s n    is stable on the partial region  . 

Definition 2: 

If the undisturbed motion is stable on the partial region  , and there exists a 

' 0  , so that on the given partial region   when 

2 '

0 , ( 1, , )s

s

x s n                                          (A-5) 

The equality 

2lim 0s
t

s

x


 
 

 
                                                (A-6) 

is satisfied for the solutions of Eq.(A-1) on  , then the undisturbed motion 

0 ( 1, )sx s n    is asymptotically stable on the partial region  . 

The intersection of   and region defined by Eq.(A-2) is called the region of 

attraction. 

Definition of Functions 1( , , , )nV t x x : 

Let us consider the functions 1( , , , )nV t x x  given on the intersection 1  of 

the partial region   and the region 

2 , ( 1, , )s

s

x h s n                                           (A-7) 

for 0 0t t  , where 0t  and h are positive constants. We suppose that the functions 

are single-valued and have continuous partial derivatives and become zero when 

1 0nx x   . 

Definition 3: 
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If there exists 0 0t   and a sufficiently small 0h  , so that on partial region 

1  and 0t t , 0V   (or 0 ), then V is a positive (or negative) semidefinite, in 

general semidefinite, function on the 1  and 0t t . 

Definition 4: 

If there exists a positive (negative) definitive function 1( )nW x x  on 1 , so 

that on the partial region 1  and 0t t  

0 ( 0),V W or V W                                          (A-8) 

then 1( , , , )nV t x x  is a positive definite function on the partial region 1  and 

0t t . 

Definition 5: 

If 1( , , , )nV t x x  is neither definite nor semidefinite on 1  and 0t t , then 

1( , , , )nV t x x  is an indefinite function on partial region 1  and 0t t . That is, for 

any small 0h   and any large 0 0t  , 1( , , , )nV t x x  can take either positive or 

negative value on the partial region 1  and 0t t . 

Definition 6: Bounded function V 

If there exist 0 0t  , 0h  , so that on the partial region 1 , we have 

1( , , , )nV t x x L                                             (B.9) 

where L is a positive constant, then V is said to be bounded on 1 . 

Definition 7:  Function with infinitesimal upper bound 

If V is bounded, and for any 0  , there exists 0  , so that on 1  when 
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2

s

s

x  , and 0t t , we have 

1( , , , )nV t x x                                             (A-10) 

then V admits an infinitesimal upper bound on 1 . 

Theorem 1 [22, 23] 

If there can be found for the differential equations of the disturbed motion 

(Eq.(A-27)) a definite function 1( , , , )nV t x x  on the partial region, and for which the 

derivative with respect to time based on these equations as given by the following : 

1

n

s

s s

dV V V
X

dt t x

 
 
 

                                          (A-11) 

is a semidefinite function on the paritial region whose sense is opposite to that of V, or 

if it becomes zero identically, then the undisturbed motion is stable on the partial 

region. 

Proof: 

Let us assume for the sake of definiteness that V is a positive definite function. 

Consequently, there exists a sufficiently large number 0t  and a sufficiently small 

number h < H, such that on the intersection 1  of partial region   and 

2 , ( 1, , )s

s

x h s n                                          (A-12) 

and 0t t , the following inequality is satisfied 

1 1( , , , ) ( , , )n nV t x x W x x                                     (A-13) 

where W is a certain positive definite function which does not depend on t. Besides 

that, Eq. (A-7) may assume only negative or zero value in this region. 

Let   be an arbitrarily small positive number. We shall suppose that in any case 

h  . Let us consider the aggregation of all possible values of the quantities 
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1, , nx x , which are on the intersection 2  of 1  and 

2 ,s

s

x                                                    (A-14) 

and let us designate by 0l   the precise lower limit of the function W under this 

condition. by virtue of Eq. (B.5), we shall have 

1( , , , )nV t x x l  for 1( , , )nx x  on 2 .                        (A-15) 

We shall now consider the quantities sx  as functions of time which satisfy the 

differential equations of disturbed motion. We shall assume that the initial values 0sx  

of these functions for 0t t  lie on the intersection 2 of 1 and the region 

2 ,s

s

x                                                    (A-16) 

where   is so small that  

0 10 0( , , , )nV t x x l                                           (A-17) 

By virtue of the fact that 0( ,0, ,0) 0V t  , such a selection of the number   is 

obviously possible. We shall suppose that in any case the number   is smaller than 

 .Then the inequality 

2 ,s

s

x                                                    (A-18) 

being satisfied at the initial instant will be satisfied, in the very least, for a sufficiently 

small 0t t , since the functions ( )sx t  very continuously with time. We shall show 

that these inequalities will be satisfied for all values 0t t . Indeed, if these 

inequalities were not satisfied at some time, there would have to exist such an instant 

t=T for which this inequality would become an equality. In other words, we would 

have 
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2 ( ) ,s

s

x T                                                 (A-19) 

and consequently, on the basis of Eq. (A-9) 

1( , ( ), , ( ))nV T x T x T l                                       (A-20) 

On the other hand, since h  , the inequality (Eq.(A-4)) is satisfied in the entire 

interval of time [t0, T], and consequently, in this entire time interval 0
dV

dt
 . This 

yields 

1 0 10 0( , ( ), , ( )) ( , , , ),n nV T x T x T V t x x                            (A-21) 

which contradicts Eq. (A-12) on the basis of Eq. (A-11). Thus, the inequality 

(Eq.(A-1)) must be satisfied for all values of 0t t , hence follows that the motion is 

stable. 

Finally, we must point out that from the view-point of mathenatics, the stability 

on partial region in general does not be related logically to the stability on whole 

region. If an undisturbed solution is stable on a partial region, it may be either stable 

or unstable on the whole region and vice versa. From the viewpoint of dynamics, we 

wre not interesting to the solution starting from 2  and going out of  . 

Theorem 2 [22, 23] 

If in satisfying the conditions of theorem 1, the derivative 
dV

dt
 is a definite 

function on the partial region with opposite sign to that of V and the function V itself 

permits an infinitesimal upper limit, then the undisturbed motion is asymptotically 

stable on the partial region. 

Proof: 

Let us suppose that V is a positive definite function on the partial region and that 

consequently, 
dV

dt
 is negative definite. Thus on the intersection 1  of   and the 
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region defined by Eq. (A-4) and 0t t  there will be satisfied not only the inequality 

(Eq.(A-5)), but the following inequality as will: 

1 1( , ),n

dV
W x x

dt
                                             (A-22) 

where 1W  is a positive definite function on the partial region independent of t. 

Let us consider the quantities sx  as functions of time which satisfy the 

differential equations of disturbed motion assuming that the initial values 0 0( )s sx x t  

of these quantities satisfy the inequalities (Eq. (A-10)). Since the undisturbed motion 

is stable in any case, the magnitude   may be selected so small that for all values of 

0t t  the quantities sx  remain within 1 . Then, on the basis of Eq. (A-13) the 

derivative of function 1( , ( ), , ( ))nV t x t x t  will be negative at all times and, 

consequently, this function will approach a certain limit, as t increases without limit, 

remaining larger than this limit at all times. We shall show that this limit is equal to 

some positive quantity different from zero. Then for all values of 0t t  the following 

inequality will be satisfied: 

1( , ( ), , ( ))nV t x t x t                                         (A-23) 

where 0  . 

Since V permits an infinitesimal upper limit, it follows from this inequality that 

2 ( ) , ( 1, , ),s

s

x t s n                                       (B.24) 

where   is a certain sufficiently small positive number. Indeed, if such a number   

did not exist, that is , if the quantity ( )s

s

x t  were smaller than any preassigned 

number no matter how small, then the magnitude 1( , ( ), , ( ))nV t x t x t , as follows 

from the definition of an infinitesimal upper limit, would also be arbitrarily small, 
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which contradicts (A-14). 

If for all values of 0t t  the inequality (Eq. (A-15)) is satisfied, then Eq. (A-13) 

shows that the following inequality will be satisfied at all times: 

1,
dV

l
dt

                                                    (A-25) 

where 1l  is positive number different from zero which constitutes the precise lower 

limit of the function 1 1( , ( ), , ( ))nW t x t x t  under condition (Eq. (A-15)). Consequently, 

for all values of 0t t  we shall have: 

0
1 0 10 0 0 10 0 1 0( , ( ), , ( )) ( , , , ) ( , , , ) ( ),

t

n n n
t

dV
V t x t x t V t x x dt V t x x l t t

dt
      

 

which is, obviously, in contradiction with Eq.(A-14). The contradiction thus obtained 

shows that the function 1( , ( ), , ( ))nV t x t x t  approached zero as t increase without 

limit. Consequently, the same will be true for the function 1( ( ), , ( ))nW x t x t  as well, 

from which it follows directly that 

lim ( ) 0, ( 1, , ),s
t

x t s n


                                       (A-26) 

which proves the theorem. 
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subregion 2

subregion 3

subregion 1

Ω Ω

Ω
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X2

Ω1

Ω1

Ω1

 

Fig. A.1 Partial regions   and 1 . 
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Appendix B  

Systems of Positive States 

B.1 Three species prey-predator system 

    The three species prey-predator system which consists of two competing preys 

and one predator can be described by the following set of nonlinear differential 

equations: 

    

1 1

1 1 1 2 1

1 1

2 2 1 2 2

1 1 2 2

(1 ) ( , )

(1 ) ( , )

( , ) ( , )

dx
r k x k c y x y z

dt

dy
r k c x k y x y z
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where , ir , ik , ie and ic , i=1,2are the model parameters assuming only positive values, 

and the functions ),( yxi , i=1,2 represent the densities of the two prey species and z 

represents the density of the predator species. The predator z consumes the preys x, y 

according to the response functions [71]: 
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where ia , i=1,2are the search rates of a predator for the preys x, y respectively, while

iii ahb  , i=1,2where ih , i=1,2are the expected handing times spent with the preys x, 

y respectively. The parameters 1e and 2e represent, the conversion rates of the preys x, y 

to predator z. Obviously, when 1b and 2b are very small the functional of response i , 

(i=1,2) become linear response see Volttera functional response [72]. In the other 

hand as one of both 1b and 2b tends to zero the system approaches to hyperbolic 

Holling type II [73]. The prescribed model characterized by nonlinear response since 

amount of food consumed by predator per unit time depends upon the available food 
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sources from the two preys x and y. 

 

B.2 Double Mackey-Glass systems 

    We consider two double Mackey-Glass systems which consist of two coupled 

Mackey-Glass equations [74]: 
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The system is a model of blood production of patients with leukemia. The 

variables 1x , 2x  are the concentration of the mature blood cells in the blood, and 

1x , 2x  are presented the request of the cells which is made after   seconds, i.e. 

)(   txx ii , )2,1( i . The time delay   indicates the difference between the time 

of cellular production in the bone marrow and of the release of mature cells into the 

blood. According to the observations, the time   is large in the patients with 

leukemia and the concentration of the blood cells becomes oscillatory. In this study, 

the delay time fixed in 20 second ( 20 ) and the parameters are shown as follow:

2.0b , 1.0r , and 10n . 

B.3 Energy communication system in biological research 

    The so-call static state in life sciences means that the system of life is approach 

to a stable condition. Moreover, the relation of energy communication among the 

elements in a system of life is called arrangement of static state. The energy 

communication of elements in a system of life in static state can be divided into two 

forms:  

(1) Independent form: 

    All the elements in a system of life can communicate energy individually with 
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other energy systems out of theirs. The mathematics form is as fallow: 
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where iA , iB , ijC and ijD (i,j=1, 2, …, n)are parameters, 1u and 2u are two different 

elements in a system of life and 1 , 2 are modified terms. The term )( 2
iiii uBuA 

represents the energy communicated with other energy systems, and the term

jiijij uuDC )(  represents the energy communicated with the elements in the system of 

themselves. As a result, independent form can be 0)( 2  iiii uBuA , (i=1, 2, …, n) 

and jiijij uuDC )(  ,(i,j=1, 2, …, n) are very small in general. If the natural medium is 

change, such as the lack of food or the limit of living space, jiijij uuDC )(  may be 

rising.  

(2) Dependent form: 

    There are two different parts of elements in these systems of life. The first part of 

elements can communicate energy individually with other energy systems out of 

theirs. The mathematics form is the same to (Eq. (B.5)). The second part of elements 

can not communicate energy individually with other energy systems out of theirs, they 

have to be provided the energy by the first part of elements. The mathematics form is 

as fallow: 
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    ),( knjki   

where k represents the number of the first part elements and jm represents the number 



110 

of the second part elements. 

    In further studies, the system of food chain with three states can be described by 

the mathematical model as follow: 
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B.4 Virus-immune system 

    A mathematical model of the virus-immune system consisting of the following 

three nonlinear differential equations is considered in this study: 
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where T, I and V represent the population concentrations of uninfected, infected target 

cells and virus respectively. We denote by the s constant supply of target cells from its 

precursor. These cells have a finite life time and 1 represents the average death rates 

of these cells. These target cells are assumed to grow logistically with specific growth 

rate r and carrying capacity . In the presence of virus, the target cells become 

infected. Since virus must meet the cells in order to infect them, a mass action term is 

used to model infection with k as the infection rate. 2 denote the natural death rate 

of infected cells. All infected cells are assumed to be capable of producing virus. It is 

assumed that N virion are released by each infected cell during its lifetime. 3

represents the death rate of infected cells due to lysis. 4 is the death rate of free 

virus. 
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Appendix C  

Pragmatical Asymptotical Stability Theory 

The stability for many problems in real dynamical systems is actual 

asymptotical stability, although may not be mathematical asymptotical stability. The 

mathematical asymptotical stability demands that trajectories from all initial states in 

the neighborhood of zero solution must approach the origin as t  . If there are 

only a small part or even a few of the initial states from which the trajectories do not 

approach the origin as t  , the zero solution is not mathematically 

asymptotically stable. However, when the probability of occurrence of an event is 

zero, it means the event does not occur actually. If the probability of occurrence of 

the event that the trajectries from the initial states are that they do not approach zero 

when t  , is zero, the stability of zero solution is actual asymptotical stability 

though it is not mathematical asymptotical stability. In order to analyze the 

asymptotical stability of the equilibrium point of such systems, the pragmatical 

asymptotical stability theorem is used. 

Let X and Y be two manifolds of dimensions m and n (m<n), respectively, and 

  be a differentiable map from X to Y, then ( )X  is subset of Lebesque measure 

0 of Y [75]. For an autonomous system 

1( , , )n

dx
f x x

dt
                                              (A-1) 

where  1, ,
T

nx x x   is a state vector, the function  1, ,
T

nf f f  is defined on 

nD R  and 0x H  . Let x=0 be an equilibrium point for the system (A-1). 

Then 

(0) 0f                                                     (A-2) 
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For a nonautonomous systems, 

          1 1( ,..., )nx f x x            (A-3) 

where 1 1[ ,..., ]T

nx x x  , the function  1[ ,..., ]T

nf f f  is define on 

nD R R  ,here 1nt x R   . The equilibrium point is  

   1( 0 , ) 0nf x   .            (A-4) 

Definition The equilibrium point for the system (A-1) is pragmatically 

asymptotically stable provided that with initial points on C which is a subset of 

Lebesque measure 0 of D, the behaviors of the corresponding trajectories cannot be 

determined, while with initial points on D－C, the corresponding trajectories behave 

as that agree with traditional asymptotical stability [76, 77]. 

Theorem Let 1[ , , ]T

nV x x  : D→R+ be positive definite and analytic on D, 

where 1 2, ,..., nx x x  are all space coordinates such that the derivative of V through Eq. 

(A-1)or(A-3), V , is negative semi-definite of 1 2[ , , , ]T

nx x x . 

    For autonomous system, Let X be the m-manifold consisted of point set for 

which 0x  , ( ) 0V x   and D is a n-manifold. If m+1<n, then the equilibrium 

point of the system is pragmatically asymptotically stable. 

    For nonautonomous system, let X  be the 1m -manifold consisting of point 

set of which 1 20, ( , ,..., ) 0nx V x x x   and D is 1n -manifold. If 1 1 1m n    , 

i.e. 1m n  then the equilibrium point of the system is pragmatically asymptotically 

stable. Therefore, for both autonomous and nonautonomous system the formula 

1m n  is universal. So the following proof is only for autonomous system. The 

proof for nonautonomous system is similar. 

Proof Since every point of X can be passed by a trajectory of Eq. (A-1), which 
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is one- dimensional, the collection of these trajectories, A, is a (m+1)-manifold [76, 

77]. 

If m+1＜n, then the collection C is a subset of Lebesque measure 0 of D. By the 

above definition, the equilibrium point of the system is pragmatically asymptotically 

stable.  

If an initial point is ergodicly chosen in D, the probability of that the initial 

point falls on the collection C is zero. Here, equal probability is assumed for every 

point chosen as an initial point in the neighborhood of the equilibrium point. Hence, 

the event that the initial point is chosen from collection C does not occur actually. 

Therefore, under the equal probability assumption, pragmatical asymptotical stability 

becomes actual asymptotical stability. When the initial point falls on D C , 

( ) 0V x  , the corresponding trajectories behave as that agree with traditional 

asymptotical stability because by the existence and uniqueness of the solution of 

initial-value problem, these trajectories never meet C.  

In Eq. V is a positive definite function of n variables, i.e. p error state variables 

and n-p=m differences between unknown and estimated parameters, while 

TV e Ce  is a negative semi-definite function of n variables. Since the number of 

error state variables is always more than one, p>1, m+1<n is always satisfied, by 

pragmatical asymptotical stability theorem we have 

lim 0
t

e


                                                    (A-5) 

and the estimated parameters approach the uncertain parameters. The pragmatical 

adaptive control theorem is obtained. Therefore, the equilibrium point of the system is 

pragmatically asymptotically stable. Under the equal probability assumption, it is 

actually asymptotically stable for both error state variables and parameter variables. 
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