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ABSTRACT

In this thesis, the chaotic behavior-in-a-new-Froude-Duffing System is studied by
phase portraits, time history, Poihcaré.maps; Lyapunov exponent and bifurcation
diagrams. A new method, using GYC partial region stability theory, is studied for
chaos synchronization and chaos control. Hyperchaos of a Rdssler System with Bessel
Function Parameters is studied. A new kind of chaotic generalized synchronization
system, hybrid projective Yin-Yang generalized synchronization (HPYYGS), is
obtained by pragmatical asymptotical stability theorem and adaptive control law.
Numerical analyses, such as phase portraits and time histories can be provided to

verify the effectiveness in all above studies.
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Chapter 1

Introduction

A large number of studies have shown that chaotic phenomena are observed in
many physical nonlinear systems [1,2]. It was also reported that the chaos occurred in
many nonlinear control systems [3,4]. Since chaos control was firstly achieved by
Huber in 1989 [5], it has attracted a great deal of attention from various fields. Chaos
is desirable in some systems, such as chemical reactions, power converters, biological
systems, information processing, secure communications, etc. [6-13]. Numerous
linear and nonlinear control methods have been employed in controlling chaos[14-22].
In the last few years, synchronization in chaotic dynamic system is a very interesting
problem and has been widely studied: [23-34]:Most of them are based on the exact
knowledge of the system structure and all parameters. But in practice, some or all of
the system parameters are uncertain. Additionally, these parameters change with time.
Among many kinds of synchronizations, the- generalized synchronization is
investigated in this paper. It means that there exists a given functional relationship
between the state vector x of the master and the state vector y of the slave y =G(X).

In Chinese philosophy[35-37], Yin and Yang are two fundamental opposites. In
other words, just like there are two sides of a coin. Yin is the negative, historical or
feminine principle in nature, and yang is the positive, contemporary or masculine
principle in nature. There are many articles about Yang Rdéssler system have been
reported [38-40]. In this thesis, we find there are rich chaotic dynamics in Yin Rdssler
system in the first time[41].

This thesis is organized as follows. In Chapter 2 and Chapter 3, a new strategy to
achieve chaos generalized synchronization and chaos control by GYC partial region

stability theory(Appendix A,B) is proposed [42-44]. Via using the GYC partial region



stability theory the new Lyapunov function is a simple linear homogeneous function
of error states and the controllers are of lower degree than that of controllers by using
traditional Lyapunov asymptotical stability theorem.

In Chapter 4, our study is devoted to a Rossler System with Bessel function
parameters. Chaotic system features that it has complex dynamical behaviors and
sensitive behavior of dependence on initial conditions. In recent years, there are many
hyperchaotic systems have been reported [45-49]. The purpose of this work is to
present a Rossler system, which is shown to be hyperchaos in a wide range of Bessel
function parameters. It is found that both hyperchaos and chaos are abundant and give
various applications, especially for secret communication. Numerical experiments
such as phase portraits, bifurcation diagrams, Lyapunov exponent diagrams,
parameter diagrams and Poincaré maps are shown:

In Chapter 5, the purpose .is to introduce the Yin Rossler system and to
investigate the chaotic behavior with-Yin-parameters by phase portrait, Lyapunov
exponents and bifurcation diagrams in-simulation results. We use positive, i.e. Yang,
parameters for the Yang Rdssler system, and negative, i.e. Yin, parameters for the Yin
Radssler system.

In Chapter 6, pragmatical asymptotically stability theorem is proposed to achieve
adaptive synchronization from Yin to Yang Rd&ssler chaos. In current scheme of
adaptive synchronization, traditional Lyapunov stability theorem and Barbalat lemma
are used to prove that the error vector approaches zero as time approaches infinity, but
the question is that why those estimated parameters also approach the uncertain values
remains no answer[50-53]. In this article, pragmatical asymptotically stability
theorem and an assumption of equal probability for ergodic initial conditions [54-55]
are used to prove strictly that those estimated parameters approach the uncertain

values. Moreover, traditional adaptive chaos synchronization in general is limited for

2



the same system.




Chapter 2
Chaos Generalized Synchronization of a New
Froude-Duffing System by GYC Partial
Region Stability Theory

2.1 Preliminaries

A new strategy via using GYC partial region stability theory is proposed to
achieve chaos generalized synchronization. In this Chapter, two identical new
Froude-Duffing systems are used as master system and slave system respectively. The
Lyapunov function can be treated as a simple linear homogeneous function of error
states by using the GYC partial region stability theory, and the controllers are in lower
degree than that of traditional- controllers, .so less-simulation error is introduced.

Numerical simulations are givento verify-the-effectiveness of this strategy.

2.2 Generalized Chaos Synchranization Strategy

Consider the following unidirectional coupled chaotic systems
x =f(t, X)

y=ht y)+u e

where x=[><1,x2,---,xn]T eR", y=[y1,y2,---,yn]T €R" denote the master state
vector and slave state vector respectively, f and h are nonlinear vector functions,
and u= [ul,uz,---,un]T eR" isa control input vector.

The generalized synchronization can be accomplished when t —oo, the limit of

.
the error vector e=[e,,e,,---,e,] approaches zero:

lime=0 (2-2)

t—owo



where
e=G(X)-y (2-3)
G(x) isagiven function of x.
By using the partial region stability theory, the Lyapunov function is linear
homogeneous function of error states. The controllers can be designed in lower

degree.

2.3 Chaos of a New Froude-Duffing System

A new Froude-Duffing system is introduced. Froude equation [28] and Duffing

equation are two typical nonlinear non-autonomous systems:

dt
dx,

e (a—bx,”)x, +csin x, +d.cosat

(2-4)

dx,
— =X
d ¢
ax, _
dt

(2-5)
—X, — X; — fX, + g sin ot

Exchanging coswt in EQ. (2-4) with X;X, "and sinwt in EQ. (2-5) with XX,, we

obtain a new autonomous Froude-Duffing system:

dt
= (a—bx,")x, +csinx, +dx;X,
dt (2-6)
dt °
dx
d—t4=—X3—X33—fX4+gX1X2

where a, b, ¢, d, g, f are parameters. This system exhibits chaos when the parameters
of system are a=0.35 b=0.1, c=1 d=048 ¢g=0.25 f=0.002 and the

initial states of system are X,(0)=2,x,(0)=2.4,x,(0)=5 x,(0)=6. Its phase

portrait, time histories , Lyapunov exponents, bifurcation diagram, power spectram
are shown in Fig2.1, Fig2.2, Fig2.3 and Fig2.4.



2.4 Numerical Simulationsl|
Two Froude-Duffing systems with unidirectional coupling are given:

dt

dX2 2 i

s (a—bx,")x, +csinx, +dx;X,
dx,

— =X

dt

% ==X, — X, — X, + XX,

d
l:yz"'ul

f =(a-=by,")y, +csiny, +dy,y, +u,
d
W,

dt ==Y - y33 - 1ty4 +0Y;Y, t4,

where Eq.( 2-7)is the master, Eq;(2-8).is-the-slave.

CASE I. The generalized synchronizatien error function is

e. =X —Y, +80, i=12 3 4

The addition of the constant 80 makes the error dynamics always happens in the first

quadrant. Our goal is y, =X +80, i.e.

lime, :!im(xi—yi +80) =0, =12 3 4

t—o0
éi:Xi_yi’ i:]., 2, 3,4

By Eq.(2-7),(2-8),the error dynamics becomes

E=X—-V1=%"Y, Y

6, =X, — Y, = (@—bx,”)X, +Csin x, +dx,X, —((a—byzz)y2 +csiny, + dygy4)—u2
és :X3_Y3:X4_y4_u3

€ =X, — Y, =X =X — X, + 0% X, _(_ys_Y33_ fy4+QY1Y2+U4)_U4




Let initial states be (X5, Xy, X5, X40) = (2, 2.4, 5, 6), (V101 Y01 Yaor Ya0) = (3, 3.2, 6.8,

5.5) and system parametersa=0.35, b=0.1, c=1, d=048, g=0.25 f =0.002,
we find that the error dynamic always exists in first quadrant as shown in Fig. 2.5. By
GYC partial region asymptotical stability theorem, one can choose a Lyapunov

function in the form of a positive definite function in first quadrant:
V=¢+e,+6,+¢, (2-13)

By Eq.(2-11),its time derivative is

V=¢+6 +6 +¢,
=(% =Y, )
+((a—bx22)x2 +csinx +dx,x, —((@—by,?)y, +csiny, +dy3y4)—u2) (2-14)
+(X, =Y, —Uy)

+(_X3 - X33 = X+ 9% _(_ys - y33 —fy, +ay.y, +u4)_u4)

Choose
u=X,-Y, t€

u, = (a—bx,’)x, +csinx, + dXg=((a=hy,”)y, +csiny, +dy,y, ) +e,

2-15
Uy =X, — Y, +& 19
U, ==X, — X — X, + gx.X, —(—y3 —y, = fy, + 9y1y2)+e4
We obtain
V=-=g-e-6-¢€<0 (2-16)

which is negative definite function in the first quadrant. Four state errors versus time

and time histories of states are shown in Fig. 2.6 and Fig. 2.7.

CASE I1. The generalized synchronization error function is
e. =X — Y. +Fsin ot +80, i=1 2 3 4 (2-17)

Our goalis y=x+Fsinwt+80, i.e.



lime, :!im(xi—yi+Fsina)t+80)=O, =12 3 4 (2-18)

t—o0
& =X —V, + Focosat, i=12 34 (2-19)

The error dynamics becomes

& =X, + Focosat-y, -u,

6, =(a—bx,")x, +csinx +dxx, —((@-by,?)y, +csiny, +dy,y, )+ Focos et -u, .
&, =X, +Focosat-y, —u,

g, =—X —X33 - fX4 + XX, —(_Y3 - Y33 - fY4 +OY,Y, +U4)+ Focosot-u,

Let initial states be (X, Xp0, X0, X40)= (2, 2.4, 5, 6), (Y10s Ya0r Yaor Yao) = (3, 3.2, 6.8,

5.5) and system parametersa=0.35 b=0.1, c=1, d=0.48, g=0.25, f =0.002,
F =3and w =0.3, we find the error dynamics always exists in first quadrant as shown
in Fig. 2.8. By GYC partial region asymptotical stability theorem, one can choose a

Lyapunov function in the form of'a positive definite function in first quadrant:
V=e+e,+e,+¢e, (2-21)

By Eq.(2-18),its time derivative is
V =(x, +Focosat—y, —u, )+ (a—bx,’)x, +csin x, +dx;x,
~((a=hy,")y, +csiny, +dy,y, )+ Focos et —u,
+(X, + Focosat —y, —u, ) —x, — x,° — X, + gx.X, (2-22)

_(_ys_y33_ fy, + gy, +u4)+ Fwcosat —-u,

Choose

U =X, +Fwocosaot-y, +e
U, = (a—bx,")x, +csinx, +dx,x, —((@a—hy,’)y, +csiny, +dy,y, )
+Fwcoswt +¢,
(2-23)
U, =X, +Focoswt-y, +e,

U, ==X, —X;° — X, + gxXx, —(—y3 —y, -y, + 9y1yz)
+Fwcosot +¢,




We obtain
V=-=g-e-6-¢€<0 (2-24)

which is negative definite function in first quadrant. Four state errors versus time and
time histories of states are shown in Fig. 2.9 and Fig. 2.10.

CASE llI. The generalized synchronization error function is

e =X sinx, —y, +80, i=1 2 3 4 (2-25)
Our goal is y, =x;sinx, +80, i.e.

lime, =!im(xi sinx, —y, +80) =0, 1=1,234 (2-26)

t—
€ =X SIN X, + X% COS X, —,, i=12 3 4 (2-27)
The error dynamics become

€ =X, SINX, +XX,C0SX —Y,—U

g, = ((a—bxzz)x2 +esinx, + dx3x4)sin X, +((a—bx22)x2 +esinx + dx3x4)x2 COS X,
~((a=by,")y, +csiny, +dy,¥,)-u,

. . (2-28)

€, = X, SiN X, + X,X, COS X, — Y, —U,

6= (% =% = B+ gxx, Jsinx, + (=%, = x,° = fx, + 9%, )X, C0s X,

_(_Y3 - y33 - fy4 + QY1yz)_u4
Let initial states be (X, Xp0, X0, Xe0)= (2, 2.4, 5, 6), (Y10s Ya0r Yaor Yao) = (3, 3.2, 6.8,

5.5) and system parametersa=0.35, b=0.1, c=1, d=0.48, g=0.25 f =0.002,
we find the error dynamics always exists in first quadrant as shown in Fig. 2.11. By
GYC partial region asymptotical stability theorem, one can choose a Lyapunov

function in the form of a positive definite function in first quadrant:
V=g +e,+e,+¢e, (2-29)

Its time derivative is



V =(X,8in X, + XX, €05 X, — ¥, —U; ) +((@a—bx,")x, +csin x, + dx;x, )sin x,
+((a=bx,")x, +csinx, +dx;X, ) X, €0s X, —((a—hy,*)y, +csin y, +dy,y, ) -u,
(X, SIN X, + XX, COS X — Y, —Ug )+ (=X, = X,° = X, + XX, )sinx, (2-30)

%~ )(33 a fXA +09XX; ) X, COSX, _(_ya - y33 a fY4 + QY1y2)_u4

Choose
U, = X, SIN X, + XX, COS X, — Y, +€
U, =((a=bx,")X, +Csin X, +dx;X, )sin X, +((a—bx,?)x, +csin X, +dx;X, )X, Cos x,

~((a=by,")y, +csiny, +dy,y, ) +e,

) (2-31)
Uy = X, SiN X, + X,X, COS X, — Y, +&,
Uy = (=% =X = B, + XX, )sin X, + (=%, = X* = fx, + 9xX, ) X, COS X,
_(_Y3 - y33 - fY4 + gy1y2)+e4
We obtain
V=-=g-e-6-¢€<0 (2-32)

which is negative definite function in first quadrant. Four state errors versus time and

time histories of states are shown in Fig. 2.12 and Fig. 2.13.

CASE IV. The generalized synchronization error function is

e =% -y, +2z°+80, i=1 2, 3 4 (2-33)

z=[z, z, z, 2] isthe state vector of generalized Lorenz system.

The goal system for synchronization is generalized Lorenz system and initial

states is (1, 1, 1, 1), system parametersa, =1, b =26, ¢, =0.7, d, =15.

2, = al(ZZ _21)+d124
2, = blzz —4Z;— 1,
2, =27,—-C,

Z4 =—7—a,

(2-34)
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We have

Iimei=!im(xi2—y+zi2+80)=0, i=1 2 3 4 (2-35)

t—owo
& =2xX — VY, +2z1, i=1 2, 3 4 (2-36)
The error dynamics becomes

& =2xX, -y, +22(a,(z,-2)+d,;z,)-u,

&, = 2X, ((a—bx,?)x, +csinx, +dx,x, ) —((a—by,’)y, +csiny, +dy,y, )
| +22,(bz,-22,-7,)-u, (2-37)
&, = 2%X, — Y, +22,(7,2, - ¢,2;) —u,

€, =2X, (_Xa - X33 - fX4 + gX1X2)_(_y3 - y33 - fy4 oYY, + u4)

+22,(-2,—a,2,)-\u,

Let initial states be (X,o, Xy, X301 X40) = (2, 2.4, 5, 6), (Y10, Y201 Yao: Yao) = (3, 3.2, 6.8,

5.5) and system parametersa =0:35, b=0:4-c=1, d =048 ¢g=0.25 f =0.002,
we find the error dynamics always exists in first quadrant as shown in Fig. 2.14. By
GYC partial region asymptotical. stability-theorem, one can choose a Lyapunov

function in the form of a positive definite function in first quadrant:
V=¢+e,+e,+¢, (2-38)
Its time derivative is

Vv :(inx2 -y, +22,(a,(z, —zl)+dlz4)—ul)+ 2%, ((@a—bx,*)x, +csinx, +dx,x, )

~((a=by,")y, +csiny, +dy,y, )+ 22, (bz, - 2,2,-2,) -u,
+(2%%, = Yo 22, (2,2, =€, 2,) Uy ) + 2%, (X, = X* = X, + GXX, ) (2-39)

_(_Y3 - ys3 - 1EY4 + gleZ)"‘ 212, (_Zl _a124)_u4

11



Choose

Uy =2%X, - ¥, +27,(a,(z, - zl)+dlz4)+e1
u, = 2%, ((@—bx,’)x, +csin x, +dx;x, ) - ((@=by,*)y, +csiny, +dy,y, )

+27,(bz,-22,-7,)+e,

(2-40)
Uy = 2XX, — Y, +22,(2,2, —C 75 ) + &,
u, = 2X, (—x3 — x> — fx, + gxixz)—(—y3 —Y = fy, + 9y1Yz)
+22,(-2,—a,2,)+e,
We obtain
V=-e-¢€-6-6<0 (2-41)

which is negative definite function in first quadrant. Four state errors versus time and

time histories of states are shown in Fig. 2.15 and Fig. 2.16.
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2.5 Summary

In this Chapter, a new strategy by using GYC partial region stability theory is
proposed to achieve chaos generalized synchronization. By using the GYC partial
region stability theory, the Lyapunov function is only a linear homogeneous function
of error states and the controllers are of lower degree than that of controllers by using
traditional Lyapunov asymptotical stability theorem. The lower degree controllers are
more simple and introduce less simulation error. The new Froude-Duffing system and
generalized Lorenz system are used in simulation examples which verify the

effectiveness of the proposed scheme.
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Chapter 3
Chaos Control of a New Froude-Duffing
System by GYC Partial Region Stability
Theory

3.1 Preliminaries

A new strategy via using GYC partial region stability theory is proposed to control
the chaos of a new Froude-Duffing System to fixed point, to a given regular motion
and to chaos of any given system. The Lyapunov function can be treated as a simple
linear homogeneous function of error states by using the GYC partial region stability
theory, controllers are in lower degree and simpler.than traditional ones, so cause less
simulation error. Numerical simulations are given to verify the effectiveness of this

strategy.
3.2 Chaos Control Scheme
Consider the following chaotic systems
x =f(t, x) (3-1)
where x:[><1,x2,---,xn]T eR" is a the state vector, f:R xR" —R" is a vector
function.
The goal system which can be either chaotic or regular, is
y=9(ty) (3-2)
where y=[y;, Y, ", yn]T eR" is a state vector, g:R,xR"—>R" is a vector
function.
In order to make the chaotic state X approaching the goal state y, define error

e=X-Y as the state error. The chaos control is accomplished in the sense that :
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lime=Ilim(x-y)=0 (3-3)

tom oo

In this Chapter, we will use examples in which the error dynamics always happens
in the first quadrant of coordinate system and use GYC partial region stability theory
which is enclosed in Appendix. The Lyapunov function is a simple linear
homogeneous function of error states and the controllers are simpler because they are
in lower degree than that of traditional controllers and give less simulation error.
Furthermore, the chaos of a new Froude-Duffing system is controlled to a fixed point,
to a given regular motion and to the chaos of a generalized Lorenz system. This
strategy enlarges the effective scope of traditional chaos control which is limited to

control the chaos of only one given system.

3.3 Numerical Simulations

In this Section a new Froude-Duffing system-in Eq.(2-6)

dt

P _ (a—bx? i

5 = (a—bx,")x, +csinx, +dx;X,

t (3-4)
dt °

dx

d—t4=—X3—X33—fX4+gX1X2

is studied where a, b, c, d, g, f are parameters. This system exhibits chaos when the
parameters of system are a=0.35 b=0.1, c=1 d=048 ¢g=0.25 f =0.002

and the initial states of system are x,(0) =2,x,(0)=2.4,%x,(0)=5, x,(0)=6.
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Another translated chaotic system is given as

% =X, —50

dt

% =[ a—b(x, —50)* |(x, —50) +csin(x, —50) +d (x, ~50)(x, —50)

d t (3-5)
9 _ X, —50

dt

% = —(%, —50) — (%, —50)" - f (x, ~50) + g (%, —50)(x, —50)

This is the same Froude-Duffing system of which the old origin is translated to

(X, X,, %3, X,) = (50,50,50,50) and the chaotic motion happens always in the first
quadrant of coordinate system (x;,X,,%;,X,), as shown in Fig.3.1, with initial

conditions X,(0) =52, x,(0) =52.4, x,(0) =55, x,(0) =56 and parameters

a=0.35 b=01 c=1 d=048; 9g=0.25 f=0.002.

In order to lead (X1, X2, X3;:X4) t0 the“goal; we add control terms uj, Uy, U3, U4tO

each equation of Eq. (3-5), respectively.

d
d_)f[l =X, —90+u,
%:[a—b(xz ~50)” |(x, —50) + csin(x, —50) +d (x, —50)(x, —50) +u,
(3-6)
dx
d_t3 =X, —50+u,
% = (%, —50) — (X, —50)° — f (X, —50) + g (% —50)(X, —50)+u,

CASE I. Control the chaotic motion to zero.

In this case we will control the chaotic motion of Froude-Duffing system (3-7) to

zero. The goal is y = 0. The state erroris e =x-y =x and error dynamics becomes
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& =% =(x,-50)+u,

&, =X, =[a—b(x2—50)2](x2—50)+csin(x1—50)+d(x3—50)(x4—50)+u2
é, = (x, —50) +u,

e, =—(x, —50) — (x, —50)* - f (x, —50) + g(x, —50)(x, —50) +u,

3-7)

In Fig.3.2, the error dynamics always exists in first quadrant.
By GYC partial region stability, choose a Lyapunov function in the form of a
positive definite function in first quadrant as:

V =ge+e,+6,+€, (3-8)

Its time derivative through error dynamics (3-9) is
V=¢+6+6, +6,

= (X, —50) +u, +| a—b(x, ~50)° | (x, ~50) + csin(x, ~50)

(3-9)
+d(x, —50)(x, —50) +u, + x, =50+ u,
—(x, —50) — (%, —50)° - f (X, =50) + g(%=50)(x, —50) +u,
Choose
=—(x,—50)-e
{[a b(x, —50) ](x, =50) +csin(x, —50) +d (x, ~50)(x, —50)}
(%, 50)_¢ (3-10)
=—(~(x,~50)- (x ~50)° - f(x, —50) + g (%, —50)(x, —50)) e,

We obtain
V=-—e-e-6-€<0

which is negative definite function in first quadrant. By GYC partial region

asymptotical stability theorem, e approaches zero. The numerical results are shown in

Fig.3.3 After 100 sec, e, e,, e, and e, approach zero.
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CASE I1. Control the chaotic motions to a four different sine functions of time.
In this case we will control the chaotic motion of the new Froude-Duffing system

(3-7) to four different sine functions of time. The goal motion is

y.=nsinet (i=12,3,4). The error are defined as

e =X -V, =X -nsinat i1=1234 (3-11)
!imei = !im(xi —nsinwt) =0 1=12,34

is demanded.

From(3-13)

& =X —nwcoswt (i=1234)
where n=3, @ =03, ®, =04, ©,=0:55,, =0.6. The error dynamics is

€ =X — N, cos ot

&, =X, —Nw, COS w,t

.2 .2 2 2 (3_12)
€; = X; —Nw, COS 603'[

€, = X, —Nw, Cos w,t
It always exists in first quadrant as shown in Fig.3.4.

By GYC partial region stability, one can easily choose a Lyapunov function in

the form of a positive definite function in first quadrant as:
V=¢g+e,+e,+€,

Its time derivative is

V =¢+6€,+6+6,
=(x, —50)—nw, cos mt +U, +[a—b(x2 —50)2](x2 —k) +csin(x, —50)
+d(x, —50)(x, —50) — nw, cos w,t +u, + (X, —50) — new, cos w,t + u,
— (%, —50) - (x, —50)° - f (x, —=50) + g (%, —50)(X, —50) — New, cOs @, t + U,

(3-13)

Choose
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U, =—((x,~50) Ny cos ot ) —e,

u,=- (a—b(x2 —50)2)(x2 —k)+csin(x, -50) +d(x, —50)(x, —50) — na, cos a)zt)—e2
(3-14)

Uy =—((x, ~50) —neo, COs ot ) e,
U, =~(~(x, ~50) - (x, ~50)° - f (x,~50) + g (x ~50)(X, ~50) - Ny, Cos ) e,

\V becomes
V=—e-e-6-¢<0

which is a negative definite function in first quadrant. The numerical results are

shown in Fig.3.5 and Fig. 3.6. After 100 sec., the errors approach zero and the chaotic

trajectories approach to four sine functions of time.

CASE llI. Control the chaotic motion to chaotic motion of generalized Lorenz system.
In this case we will control chaotic motion of Froude-Duffing system (3-5) to

that of generalized Lorenz system: The goal system'is generalized Lorenz system:

2, = al(ZZ _Zl)+d124
2, = blZZ — 43— 1,
2,=177,-CZ,

2,=-1,-a1,

(3-15)

The error equation is e =x-z. Our goal is lime=0. The error dynamics become
t—w

6 =%-2=(x-50)-(a(z,-2)+dz,)+y,
6, =X, ~2, =[ a-h(x,~50)" ] (x, ~50) +csin(x, ~50) + d (x, ~50)(x, - 50)
~(bz,-2,2,- Z2)"’“2 (3-16)
&, =% —2,=(x,-50)- (2,2, —¢,z;) +U,
&, =%, —2, =—(x,—50) - (%, —50)° - f (x, —50) + g (x, —50)(X, —50) - (-7, - a,z, ) +u,

The error dynamics always exists in first quadrant as shown in Fig.3.7.
By GYC partial region stability, one can easily choose a Lyapunov function in

the form of a positive definite function in first quadrant as:
V=¢g+e,+e,+¢,
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Its time derivative is
V=6 +6,+6 +6,
=(x,-50)—(a,(z, - 2,)+d,z,)+u, [ a=b(x, —50)2}(x —50)
+csin(x, —50) +d(x, —50)(x, —50) —(b,z, - 2,2, — z,) +u,
+(%, —=50)— (2,2, —€,Z5) + U, — (X, —50) — (X —50) — f(x, —50)
+9(x —50)(x, -50) - (-z,—a,2,)+u

Choose
((x2 ~50)- )+dz)) e
=—[a-b(x, —50) ](x —~50) —csin(x, —50) — d (x, —50)(x, —50)
+(b122 ) &,
=—((%,-5 2,-C17;)) -8
=—(-(x, —50) (x ~50)° - f (%, ~50) +g(x, ~50)(%, ~50) - (-2,-az,)) ¢,

\V becomes

V=—e-e-6-¢€<0

(3-17)

(3-18)

which is negative definite function in first.quadrant.-The numerical results are shown

in Fig.3.8 and Fig. 3.9, where a, =1,/ ly=26, ¢, =0.7, d, =1.5. After 100 sec., the

errors approach zero and the chaotic trajectories of Froude-Duffing system approach

to that of the generalized Lorenz system.
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3.4 Summary

In this Chapter, a new strategy by using partial region stability theory is proposed
to achieve chaos control. By using the GYC partial region stability theory, the
controllers are of lower degree than that of controllers by using traditional Lyapunov
asymptotical stability theorem. The simple linear homogeneous function of error
states and the lower order controllers are much more simple and introduce less
simulation error. Besides, the strategy enlarges the effective scope of traditional chaos
control which is limited to control the chaos of only one given system .To control the
chaos of a new Froude-Duffing system to that of a generalized Lorenz system are
used as one of three simulation examples which verify the effectiveness of the

proposed scheme.
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Fig. 3.4 Phase portraits of error dynamics for Case II.
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Chapter 4
Hyperchaos of a Rossler System with Bessel

Function Parameters

4.1 Preliminaries

In this Chapter, our study is devoted to a Rdéssler System with Bessel function
parameters. The chaotic behaviors is studied numerically by time histories of states,
phase portraits, bifurcation diagram, parameter diagram, Lyapunov exponent diagram
and Poincaré maps. It is found that both hyperchaos and chaos are abundant and give

various applications, especially for secret communication exist.

4.2 Chaos of Rgssler System with Bessel Function Parameters

The Rdssler system with Bessel function parameters is:

dx

—=—(y+z

m (y+2)

dy

—=X+a 4-1
ot y (4-1)
$:b+xz—cz

dt

with parameters a(t) b(t), c(t) as given functions of time. It is a nonautonomous

system, which is equivalent to a four-dimensional autonomous system.a, b, ¢ are

given as :

a(t) =k,
b(t) = k,b, +0.2 (4-2)
c(t) =h, +k,

where k;, k,, k, are constant parameters, and

cos und,(t+0.5)—-J ,(t+0.5)
sin ur

b, =Y, (t+0.5) = lim (4-3)
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S ( l) t 2n+l
nzz(;nll“(n+2) 2 (4-4)

where Y, is Bessel function of the second type , J,is Bessel function of the first kind
andI"is Gamma function. The time histories of b(t) =k,b, +0.2, c(t)=b, +k, with

k,=0.6,k; =10 are show in Figs 4.1 and 4.2. The numerical simulations are carried
out by MATLAB using the fractional operator in the Simulink environment.
4.3 Numerical Simulations

This system exhibits chaos when the parameters of system (4-1) are k, =0.15 ,
k,=0.6 k;=10and the initial condition is (x,y,z)=(0.3, 0.1, 0.5). The time
history of three states, phase portraits, Poincaré.maps, and bifurcation diagrams of the
system are shown in Fig. 4.3~Fig. 4.8, When the parameters are k, =0.06, k,=0.6
ky =10 the motion becomes period 1. The time histories of three states, phase

portraits and Poincaré maps of the system are shown in Fig. 4.9~Fig. 4.12.

Lyapunov exponents and parametric diagram are also given to certify the

existence of hyperchaos. Let us assume Lyapunov exponents 4, (i=12,3,4)

satisfying 4, >4, >4, and 4,=0. Then the dynamics of system (4-1) can be

characterized as follows:

(1) When 4,,,<0 and 4, =0, system (4-1) is periodic.
(2) When 4,>0, 4,;<0,and 4, =0, system (4-1) exhibits chaotic motion.

(3) When 4,,>0, 4,<0,and 4, =0, system (4-1) exhibits hyperchaotic motion.
Three cases are studied as follows.
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Case |

Fix k,, k,, varyk;. The Lyapunov exponents of the system (4-1) for k,=0.6,
and k; =10 are shown in Fig. 4.13 and Fig. 4.14. The parametric diagram of system

(4-1) for varying k, and k, with k, =10 is shown in Fig. 3.15. The white area

corresponds to periodic motion. By simulation, system is periodic when

0.01<k, <0.1. The blue area corresponds to chaotic motion. And the green area
corresponds to hyperchaotic motion which is identified by the existence of two
positive Lyapunov exponents, as clearly shown in Fig. 4.13 and Fig. 4.14. As k,
varies in 0.1<k; <0.35, the system displays complex behavior, with an interweaving

between chaotic and hyperchaotic motions. The hyperchaotic motion is quite

abundant.

Case 11
Fix k, =10, and varyk, k,. Some typical values of k, and k, that generate
hyperchaos with two positive Lyapunov exponents are shown in Tables 1~3,

respectively. Comparing Table 1~ 3, a notable phenomenon appears when Kk,
increases. As k, increases, the value of Lyapunov exponent A, becomes larger. It

means that larger k, can arouse hyperchaotic motion. In other words, hyperchaos is

aroused with enlarged Bessel function of first kind.

42



Table 1 Typical values of parameter k, that generate hyperchaos for k, =0.1 and

k, =10.

K, A 2, pa A,
0.500 0.00634 0.00065 -9.830902 0
0.544 0.00730 0.00069 -0.831895 0
0.580 0.00783 0.00069 -0.832725 0
0.620 0.00969 0.00067 -0.834285 0
0.700 0.00549 0.00062 -9.829993 0
0.760 0.00741 0.00038 -9.831599 0
0.856 0.00692 0.00026 9.831332 0

Table 2 Typical values of parameter K, thatgenerate hyperchaos for k, =0.2 and

k, =10.

K, A 2, pa 2y
1.104 0.10918 0.00095 -9.703637 0
1.152 0.11056 0.00071 -9.699163 0
1.176 0.10769 0.00067 -9.695142 0
1.204 0.11382 0.00077 -9.707276 0
1.232 0.10929 0.00194 -9.698110 0
1.292 0.11663 0.00039 -0.704187 0
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Table 3  Typical values of parameter k, that generate hyperchaos for k, =0.3 and

k, =10.

K, A 2, pa A,
0.504 0.17391 0.00052 -9.227365 0
0.536 0.17959 0.00015 -9.192967 0
0.544 0.17410 0.00060 -9.196768 0
0.652 0.17324 0.00106 -0.219144 0
0.732 0.17996 0.00142 -9.215868 0

Case 111

Fix k =015, k,=0.6 and varyK;=TFig. 4.18 and Fig. 4.19 shows the
Lyapunov exponents as a function of K, to classify the chaotic or hyperchaotic
motions. With increasingk, , the motion of system (2-2) becomes hyperchaotic when

k, <10.3and k,>10.4 ;and chaotic motions occur with 10.3<k, <10.4. In this case,

periodic motion has not be found.
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4.4 Summary

Raossler system with Bessel function parameters is studied firstly. The results are
verified by time histories of states, phase portraits, Poincaré maps, bifurcation
diagram, Lyapunov exponents and parametric diagram. Abundant hyperchaos is
found for this system, which gives potential in various applications, particularly in

secret communication.
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Fig. 4.2 The time history c(t) withk, =10.

46

a0



-10

-15

=20

| 1 1
a 0.04 0.1 0.15 0.2 0.25 0.3 0.35
k1

=25
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Chapter 5

Yin Chaos of a Réssler System

5.1 Preliminaries

In this Chapter, our study is devoted to show the behavior of Yin Rdssler system
firstly. Simulation results are shown that chaos of Yin Rodssler system is appeared
when using “Yin” parameters. The history of Rdssler system is discussed in the first
time. To the best of our knowledge, all studies of Rossler system are devoted to Yang
Radssler system, there are no articles in making an inquiry about the history of Rossler
system up to now. Consequently, the Yin chaos of Rdssler system with “Yin
parameters” is introduced in this Chapter.and the behavior of Yin Rdssler system is
investigated by Lyapunov exponents, Poincaré.maps, phase portraits and bifurcation

diagram.

5.2 Yang Rossler system

Before introducing the Yin Raéssler equation, the Yang Rdssler system can be

recalled as follow:

dx (1) _

T —(X%, (t) + x,(1))
% = X, (1) + ax, (t) (5-1)
% =b+ x, (t)X;(t) —cx,(t)

when initial condition x,(0) =0.3,x,(0)=0.1,x,(0)=0.5 and parameters a=0.15,

b=0.2 and c=10,chaos of the Yang Rd&ssler system is appeared. The chaotic behavior
of Eq. (5-1) is shown in Fig. 5.1~ Fig. 5.3.
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5.3 Yin Rd{ssler system

Yin Rossler equations are:

dx(-t) 3
G~ el D)
dxz(_t)

d(=t) =X (—t) +ax, (-t)

d(-t)

DY _p 4ty (1) - 0 (1)

(5-2)

It is clear that in the left hand sides, the derivative are taken with the back-time. It

means Eq. (5-2) aims to find out the Yin behavior of the Rgssler system and to

comprehend the relation between history. and presence. The simulation results are

arranged in Table 1:

Table 1 Dynamic behaviors of Yin'Rossler system for-different signs of parameters

a

b

c

states

Approach to

infinity

Approach to

infinity

periodic

Approach to

infinity

Approach to

infinity

Chaos and

periodic
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Table 1 shows the dynamic behaviors of Yin Réssler system for different signs of

parameters. An interesting phenomenon is discovered. When initial condition
X,(0) =0.3,x,(0) = 0.1, X,(0) = 0.5and parameters a=-0.15, b=-0.2 and c¢=-10,chaos of

the Yin Réssler system appears. Therefore, we call these parameters Yin parameters.
In Chinese philosophy, Yin is the negative, past or feminine principle in nature, while
yang is the positive, present or masculine principle in nature. Yin and Yang are two
fundamental opposites in Chinese philosophy. Consequently, the positive value of
parameters, a=0.15, b=0.2 and c¢=10, in Yang Rossler system can be called Yang

parameters. The chaotic behavior of Eq. (5-2) is shown in Fig.5.4-Fig. 5.8.
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5.4 Other simulation results

In order to research the difference and similarity between Yang and Yin Rossler
system, the bifurcation and Lyapunov exponents are used. The simulation results are
divided into three parts:

Partl: parameter a is varied and b, c are fixed:

Table 2 Range of parameter a of Yang Rossler system

0.01~0.101 Periodic trajectory
0.101~0.124 Chaos
0.124~0.129 Periodic trajectory
0.129~0.16 Chaos

Table 3 Range of parameter a of Yin Rossler system

-0.01~-0.101 Periodic trajectory
-0.101~-0.125 Chaos
-0.125~-0.129 Periodic trajectory

-0.129~-0.16 Chaos

Table 2 and 3 show different dynamics in the different ranges of parameter a of
Yang and Yin Rossler system. In Table 2, the behaviors of Yang Rdssler system vary
with parameter a, become either chaotic or periodic. When 0.01<a<0.101 or
0.124<a<0.129, Yang Rdssler system is going to become periodic. When
0.101<a<0.124 or 0.129<a<0.16 , chaos appears. Table 3 shows that when
parameter When —-0.101<a <-0.1250r —-0.129 <a<-0.16 ,the chaotic behavior is

shown in Yin Rdssler system. When parameter -0.01<a<-0.101 and
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—0.125<a<-0.129, the behaviors of Yin Rgssler system are periodic trajectories.
Comparing Table 2 and 3, it can be found that there are only chaos and periodic
motion in both Yang Rdssler system and Yin Rossler system. Bifurcation diagram and

Lyapunov exponents are shown in Fig. 5.9and Fig. 5.10.

Part2: parameter b is varied and a, c are fixed:

Table 4 Range of parameter b of Yang Rdssler system

0.01~0.47 Chaos
0.47~0.553 Periodic trajectory
0.553~1.078 Chaos
1.078~3.000 Periadic trajectory

Table 5 Range of parameter b of.Yin Réssler:system

-0.01~-0.462 Chaos
-0.462~-0.555 Periodic trajectory
-0.555~-1.08 Chaos
-1.08~-3.000 Periodic trajectory

Table 4 and 5 show that the behaviors of Yang and Yin Rossler system are similar but
not the same. When parameter of b is -1.36, in Yin Réssler system period 2 obviously
turns into period 4 .But this phenomenon is not very obvious in Yang Rdssler system.

Bifurcation diagram and Lyapunov exponents are shown in Fig. 5.11 and Fig. 5.12.
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Part3: parameter c is varied and a, b are fixed:

Table 6 Range of parameter ¢ of Yang Rossler system

0.01~5.92 Periodic trajectory
5.92~7.55 Chaos
7.55~7.99 Periodic trajectory
7.99~10.25 Chaos
10.25~10.47 Periodic trajectory
10.47~11 Chaos

Table 7 Range of parameter c of Yin Rossler system

-0.01~-5.92 Periodictrajectory
-5.92~-7.55 Chaos
-7.55~-7.99 Periodic trajectory
-7.99~-10.25 Chaos
-10.25~-10.47 Periodic trajectory
-10.47~-11 Chaos

In Table 6 and 7, the behaviors of Yang and Yin Rdssler system are rather similar. but

not identical. Bifurcation diagram and Lyapunov exponents are shown in Fig. 5.13

and Fig. 5.14.
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5.5 Summary

In this Chapter, the Yin Rossler system is firstly introduced. Via numerical simulation,
the Yin Rossler system is compared with the Yang Réssler system. It is found that
there are similarity and difference between history and presence. If the Yang
parameter is one of the chaotic parameters for Yang Rdssler system, then the chaotic
behavior of the Yin Raossler system can be displayed by using the corresponding Yin
parameter. Fig. 5.15 and Fig. 5.16 give the summary of similarity and difference
between the Yang and Yin Rossler system by bifurcation diagram and Lyapunov
exponents. This Chapter explores the importance of Yin chaos of dynamic systems. It

would be an epoch-making significance in future.
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Chapter 6
Projective Yin-Yang Generalized
Synchronization of Chaos with Uncertain
Parameters by Pragmatical Asymptotically

Stability Theorem

6.1 Preliminaries

In this Chapter, our study is devoted to a pragmatical hybrid projective chaotic
synchronization of two chaotic systems, i.e. Yang Rossler system and Yin Rossler
system. This synchronization of two, identical chaotic systems of which one has
uncertain parameters the another has estimated parameters, by pragmatical adaptive
control, is achieved with the state vector of another hyperchaotic chaotic system as a
constituent of the functional relation-hetween-master and slave. An adaptive Yin-Yang
chaos synchronization of Yin and "Yang ROssler systems are achieved by using
pragmatical asymptotically stability theorem. Numerical simulations show the

effectiveness of the scheme.

6.2 Synchronization Scheme

Among many kinds of synchronizations [21-27], the generalized
synchronization is investigated [28-34]. This means that we can give a function
relationship between the states of the master and slave: y=G(x). In this chapter, a
hybrid projective Yin-Yang generalized synchronization(HPYYGS)

y =G(x,2) =g x(t)z(t) - (6-1)
is studied, where x(t)and y(-t) are state variable vectors of the Yang master and

Yin slave, respectively. z(t) is state vector of a third chaotic system, called
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constituent system, because it is a constituent of function G. Since g is a constant
vector with both positive and negative entries, hybrid projective synchronization is
named.

The master system is

dx
pren f(x) (6-2)

where  x(t) =[x, (1), X, (t),.... X, (t)]" eR" is a state vector and all parameters of
Eq.(6-2) are uncertain. The slave system is

dy(=t) _ o0 _
TR AL (6-3)

where  y(=t) =[y,(-t), Y,(-t),...., ¥, (-t)]" e R" is a state vector of Yin chaotic

system and all parameters of Eq.(6-3) .are estimated, u is a controlled vector. The

function system is
dz
— =k(z 6-4
o (2) (6-4)
where z(t) =[z,(t),z,(t),.....z,(t)]"'eR" is a chactic state vector of the constituent

system and all parameters of Eq.(2-4) are known.

Let
h(t) =[h, (t), h, (t),..... h, O =[9.: X (1) 2,(t), 9%, (1) Z, (). ... 9. X, (D) Z, ()] (6-5)
where g¢=[9,,0,,.....,9,] are constant vector with positive and negative entries, i.e.

hybrid entries.

Define the error of HPYYGS as
e(t) = h(t) - y(-t) = gx(t)z(t) - y(-t) (6-6)

where e(t) =[e,e,,.....e,]' €R" denotes an error vector. The controlling goal is that

lime=0 (6-7)

t—o0
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can be accomplished on the base of pragmatical asymptotical stability theorem by
adaptive control.

When our aim is
y(=t) =x(t) + F(z(1))

where F is a given function , the scheme is similar.

6.3 Adaptive Yin-Yang synchronization of Yin chaos and

Yang chaos

In this Section, adaptive synchronization from Yin Rdssler chaos to Yang Rdssler
chaos is proposed. The Yin Rossler system-is ‘considered as slave system and the Yang
Radssler system is regarded as master system:, These two equations are shown below:

Master system- Yang Rossler system:

8 o0 +x,0)
2 0+ ax,0) o)
% — b+, (1) (1) X, 1)

Slave system- Yin Rossler system:

dy,(-t) _ . ~

—d(—t) =—(Y,(-t)+y {-t)+u ,

dY2(_t)_ . Ay _
T =y, (-t)+ay {-t)+u , (6-9)
dy;(-t) vy Ay

T =b+y,(F)y L)~y ) +u

where x; (t) stands for states variables of the master system and y; (-t) for the slave

system, respectively. Parameters, a, b and ¢ are uncertain parameters of master system.
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4,band¢are estimated parameters. The master system exhibits chaos when the

parameters are a=0.15b=0.2and c¢=10. u,,u,andusare nonlinear controller to

synchronize the slave Réssler system to master one, i.e.,

CASE I. The synchronization error component is

ei = Xi (t)_ yi (_t)! [ :1’ 27 3
Our goal is
!imei = !im(xi t) -y, (-t)) =0, 1=12,3

where the errorvectore:[el(t) e, (t) e3(t)] and

er(t) =x, () -y, (1)
e, (1) =X, (t) -y, (-1)
e3(t) =x3(t) —ys(-t)

From Eq. (6-5), we have the following error-dynamics:

de (1) _ dx,(t) dy,(-t) r dx(t) 4 dy, (=t)
dt dt dt dt d(=t)

dep(t) _ dxp(t) _dy,(=t) _ dxo(t)  dy,(-1)
dt dt dt dt d(-t)

deg(t) _ dxs(t) dys(-t) _ dxs(t)  dys(-1)
dt dt dt dt d(-t)

€ = _(Xz + Xs) - (yz (_t) +Y; (_t)) +U,
€, = (% +ax,) +(y, (-t) +ay,(-t)) +u,

&, = (0+ XX, —CX;) + (D + Y, (—t) Y5 (—t) — Gy, (1)) +u,

(6-10)

(6-11)

(6-12)

(6-13)

(6-14)

The two systems will be synchronized for any initial condition by appropriate

controllers and update laws for those estimated parameters. As a result, the following

controllers and update laws are designed by pragmatical asymptotical stability

theorem(Appendix C).

Choose Lyapunov function as:
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V=%(ef+e§+e§+52+52+62) (6-15)

wherea=a—4a, b=b-b and C=c-¢.
Its time derivative is:
V=ree+ ger g aa Bb cc
e — E(z{'xs_)yz(_t("'ﬁ_t("'p) ]
et X ax+ )y<€ té py- (+ ) ] (6-16)
et bE(X %= cx+) B( - (L) "¢ )cy (
a+"+Pp - FP-o )

We choose the update laws for those uncertain parameters as:

d= —a =ae
= -t =he (6-17)
b= —b =c,e

Through Egs. (6-16) and (6-17), the-appropriate controllers can be designed as:

u = (x X )z"‘(y (z_t)"' y (_3t))_e 1
u, =—(x +ax }—(y (zt) + &y, (;0) =& =e. (6-18)
Uy = —(D+ XX, —CX,) — (0 + Y, (=) y5 (1) — Cy, (1)) —b> - €% —e,

We obtain
V=-—e?—e;-e5<0 (6-19)
which is negative semi-definite function ofe,,e,,e;,a,band¢. The Lyapunov

asymptotical stability theorem is not satisfied. We cannot obtain that common origin
of error dynamics (6-14) and parameter dynamics (6-17) is asymptotically stable. By

pragmatical asymptotically stability theorem (see Appendix), D is a 6-manifold,
n =6and the number of error state variablesp=3. When e, =e, =e;=0and &, b,

¢ take arbitrary values, V=0 50 X is of 3 dimensions, m=n—-p=6-3=3,
m-+1<n is satisfied. According to the pragmatical asymptotically stability theorem,

error vector e approaches zero and the estimated parameters also approach the
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uncertain parameters. The equilibrium point is pragmatically asymptotically stable.

Under the assumption of equal probability, it is actually asymptotically stable. The

simulation results are shown in Figs. 6.1~6.4.

CASE II. The generalized synchronization error component is

ei = [Xi (t) + Zi (t)] - yi (_t)! I = 1’ 27 3

z=[z, 2z, z] isthe chaotic state vector of a Chen-Lee system[30].

(6-20)

The constituent system for generalized synchronization is a Chen-Lee system

dz,(t) _ _

an 2 (0)z3(1) +6,2,(1)
dz,(t) _

i 7, (1)25(t) + 5,2, (t)
dz,(t)
Ol (1/3)2,(t)z, (1) + 324 (1)

where ¢, =5,8, =-10,6,=-3.8

Our goal is

lime = !Lrg(xi t) -y (-t)+z (@) =0, i=123

t—o0

where the error vectore =[e, (t) e,(t) e,(t)] and

& t= X:I.(t) —-Y (-t)+ Zl(t)
€, (t) =X, (t) -Y; (_t) +2Z, (t)
€ (t) =X (t) -Y; (_t) +Z; (t)

From Eqg. (6-23), we have the following error dynamics:

dt dt dt dt  dt | d()

dey(t) _d(®) dy(-0)  dn®) _dx(®) , dy(0) | dz ()

de,(t) _ dx, (1) _dy,(1)  dz,(t) _dx,(t)  dy,(-t)  dz, ()
dt dt dt dt dt  d(=t)  dt

dey(t) _ dx,(t) _dys(=t)  dzg(t) _ dx,(t) | dys(=t)  dzy(t)
dt dt dt dt dt  d(t)  dt
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él = _(Xz + Xs) - (yz (_t) + ys (_t)) + ul + Z‘1
&, = (% +ax,) +(y,(-t) +ay,(-t)) +u, + 2, (6-25)

&, = (b+ XX, — X)) + (B + Y, (1) Y5 (1) — 6y, (~1)) + U, + Z,

The three systems will be synchronized for any initial condition by appropriate
controllers and update laws for those estimated parameters. As a result, the following
controllers and update laws are designed by pragmatical asymptotical stability
theorem as follows:

Choosing Lyapunov function as:

V:%(ef+e§+e§+52+52+'62) (6-26)

~ A

wherea=a—4a, b=b—-b and c=c-¢.
Its time derivative is:
V =eg +6,6,+e6, +ad+bb+cc
= e[~ (X, +%3) = (Y, (=t) + Y5 (-1)) + U= Z(t) 2, (£) -+ 5,2, (1)]
+e,[(X, +ax,) + (¥, (-t) +ay, (=) +U, + 2 (t)Z,(t) + 5,2, (1)] (6-27)
+e[(0 + XX, —CX) + (D + Y, (~t)¥a(—) —CYaE)H Uy + (1/3)2,(t)2, (1) + 5,2, (1)]
+8(—A) +B (=) + E(—)

We choose the update laws for those uncertain parameters as:

a= —a =af
¢= -t =he (6-28)
5: —i:) =Ge

Through Egs. (6-27) and (6-28), the appropriate controllers can be designed as:

U= (X x 3+ (y G +y () -e -z )z A)45z () ,
U, =~(x-ax )= (y () +ay () -a"~e ~{z (07 )45z (1) ,
U3 = _(b + X1X3 _CX3) - (6 + Y1(_t)Y3 (_t) _CY3 (_t)) - 62 _62 —63 - ((1/3)21(t)22 (t) + 5323“))

(6-29)

We obtain

V=-—e?—e;-e5<0 (6-30)
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The simulation results are shown in Figs. 6.5~6. 8.

CASE I11. The generalized synchronization error function is

ei :[Xi (t)+ Ziz(t)]_ yi (_t)v I :11 2’ 3

z=[z, 2z, z,]' isthe state vector of a Chen-Lee system.

The goal system for generalized synchronization is a Chen-Lee system

dz (t)
W =-14 (t) Zg (t) + 5121 (t)

dz, t)
a()
dz,(t)
a()

where 6, =5,6, =-10,6,=-3.8

=7,(t)z,(t) + 5,2,(t)

=(1/3) Zl(t) Z, (t)+ YA t)

Our goal is

lime, =lim(x, (t) - y, (<) +2Z () =0 =1.2.3

t—o0

where the errorvectore:[el(t) e, (t) e3(t)] and

e (t) =x ) -y, (-t) + 2°(t)
&, (t) = X, (t) — Y, (—t) + 2,°(t)
€; (t) = X3 (t) -Y; (_t) + 232 (t)

From Eq. (6-27), we have the following error dynamics:

del (t) — Xm('[) _ dyl(_t) + d212 (t) — Xm (t) + dyl(_t) + 221 (t) dzl(t)

dt dt d() dt dt  d(-t) Tt
dez (t) _ dX2 (t) _ dyz (_t) + dzz2 (t) _ dxz (t) + dyz (_t) +27 (t) dzz(t)
dt dt d(t) dt dt d(-t) 2V dt
des (t) _ dX3 (t) _ dys (_t) + d232 (t) _ dX3 (t) + dy3 (_t) +27 ('[) d23 (t)
dt dt d(t) dt dt  d(-t) T dt

84

(6-31)

(6-32)

(6-33)

(6-34)

(6-35)



€ =—(X, +X5) = (Y, (-t) + Y5 (-t)) +u, + 22,2
€, = (X +ax,) +(y,(-t) +ay, (-t)) +u, + 22,2, (6-36)

&, = (b+ XX, — ) + (B + Y, (1) Y, (1) — &y, (1)) + U, + 22,2,

The three systems will be synchronized for any initial condition by appropriate
controllers and update laws for those estimated parameters. As a result, the following
controllers and update laws are designed by pragmatical asymptotical stability
theorem as follows:

Choosing Lyapunov function as:

V:%(ef+e§+e§+52+52+'62) (6-37)

~ A

wherea=a—4a, b=b—-b and c=c-¢.

Its time derivative is:

V =6, +6,8, +e,,+a+bb + 66
= e[ (X, + %) = (Y, (=) + Y5 (1)) + Uy + 27 (=2, (t) 2, (). + 0,2, (1))]
+6,[(x, +ax,) + (Y, (-t) +ay, (=) +U, + 22, (z(t) ;(t) +9,2,(1))] (6-38)
+e,[(b+ %X, —Cx;) + (0 + Y, (~1) Yol t) = EYa(ED)FU, + 22, (11 3)2,(1) 2, () + 5,2, (1))]
+8(—4) +B(=b) +(~6)

We choose the update laws for those uncertain parameters as:

a= —a =af
E= -t =he (6-39)
b= —i:) =ce

Through Egs. (6-38) and (6-39), the appropriate controllers can be designed as:

Uy = (%, +X) + (Y, (=1) + Y5 (1) — € =22, (=7, () Z(t) + 6,2, (1))
u, = _(Xi + aX2) - (yl(_t) + éyz (_t)) - az —€,- 222 (Zl(t)z3 (t) + 5222 (t)) (6'40)
U, = _(b XX~ st) - (6 Y (_t) Y (_t) - éYs (_t)) - 62 -¢*- €3~ 223((1/3)21(t)22 (t) + 5323 (t))

We obtain
V=—e2-e5-e5<0 (6-41)
The simulation results are shown in Figs. 6.9~6.12.
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CASE IV. The generalized synchronization error function is
e =0,% )z () -y (1), i=123

z=[z, 2z, z] isthe state vector of a Lorenz system.

The goal system for generalized synchronization is a Lorenz system

dZd(t) 5,(z,(t) — z,(t))
dZdt(t) 5,2, (t) — z,(t) z,(t) — z, (1)
dzd(t) = 7,(t)2,(t) - 5,25 (t)

where 6, =10,5, =28,5,=8/3
Our goal is

lime, =lim(y, (-) - gx Oz 0) =0, _ 1<2,2,3
where the error vectore = [el(t) e, (t) e3(t)] and

€= 91X1(t)21(t) - yl(_t)
€, =0,%, (t)zz (t) -Y (_t)
€3 = 03X (t)zs(t) —Y; (_t)

From Eqg. (6-38), we have the following error dynamics:

®t_ &0, dz() UGN O

de, (t) d () , dzz ) dy(-t) d () , dz, (t
e 7,(t) ——= T (1) m =0,5,t)—— i o X, (t)— t
dey(t) dxy(t) dz,(t) _dy,(-t) _ dx,(t) (1) , d
dt _QSZS(I) dt +g3X3(t) t d(t gSZS(t) dt +gSX3(t) t

&, =0, (0% + %))z, + 9%, (0,(z, - 2,)) = (Y, (-1) + V5 (1)) +u,

&, = 0,(% +ax,)z, + 9,X, (6,2, — 2,2, - 2,) + (Y, (-t) +ay, (1)) +u,
6= 03 (D XX —CX)Z; + X5 (2,2, = 5,2,) + (0 + Y, (1) Y (1) = Gy, (1)) +u,

o 4t ( AR

(6-42)

(6-43)

(6-44)

(6-45)

(6-46)

(6-47)

The three systems will be synchronized for any initial condition by appropriate

controllers and update laws for those estimated parameters. As a result, the following
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controllers and update laws are designed by pragmatical asymptotical stability
theorem as follows:

Choosing Lyapunov function as:

V:%(ef+e§+e§+52+52+'62) (6-48)

~ A

wherea=a—4, b=b—-b and c=c-¢€.
Its time derivative is:
V =6, +6,8, + e, +a+bb + 66
=e[0,(=(X, +%3))2, + 9, %, (6, (2, = ,)) = (Y, (-t) + Y, (=) +u,]
+6,[9,(X, +aX,)z, + 9,%,(5,2, — 2,2, — 2,) + (Y, (-t) +ay, (-1)) + U,] (6-49)
+8,[ 05 (D + X X; —CX;) 23 + U3X4 (2,2, — 0yZ5) + (6 + Y, (1) y;(-t) = Cy, (1)) +u,]
+4(—4) +b(-b) + &(-6)

We choose the update laws for those.uncertain parameters as:

a= —a =af
E= -t =he (6-50)
b= —i:) =Ge

Through Egs. (6-49) and (6-50), the-appropriate controllers can be designed as:

U = (yz (_t) Y, (_t)) - gl(_(XZ + Xa)) - glxl(é‘l(ZZ - 21)) —6

u, = _(Y1(_t) + é-Yz (_t)) -0, (Xi + aXz)Zz -0,% (5221 —4Z;- Zz) -6 _éz (6'51)
U = _(6 + Y1 (=0)Y3 (=) = €y5 (1)) — G5 (b + XX, —Cx;)2, - 9%, (2,2, - 6,2;) &, -b*-¢?
We obtain
V=—e2-e5-e5<0 (6-52)

The simulation results are shown in Figs. 6.13~6.16.
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6.4 Summary

In this Chapter, PYYGS of Yang Rossler and Yin Réssler system is obtained by
adaptive control based on pragmetical asymptotical stability theory. This Chapter
explores the another half battle field for chaos study, would be proved to have

epoch-making significance in the future.
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Fig. 6.1 Time histories of state errors for Yin.and Yang Rossler chaotic systems for

Case I.
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Fig. 6.2 Time histories of parameter errors for Yin and Yang Rgssler chaotic systems

for Case I.
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Fig. 6.3 Time histories of x (t)and vy, (-t) for Case I.
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Fig. 6.4 Phase portraits of x;(t) and y,(-t) for Case I.

90




Fig. 6.5 Time histories of state errors for Yin.and Yang Rossler chaotic systems for

Case:ll.
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Fig. 6.6 Time histories of parameter errors for Yin and Yang Rgssler chaotic systems

for Case II.
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Fig. 6.8 Phase portraits of x;(t)+z;(t) and vy, (-t) for Case Il.



Fig. 6.9 Time histories of state errorsforYin and Yang Rossler chaotic systems for

Case lII.
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Fig. 6.10 Time histories of parameter errors for Yin and Yang Rossler chaotic systems

for Case I11.
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Fig. 6.12 Phase portraits of x,(t)+z(t)and vy,(~t) for Case III.
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Fig. 6.13 Time histories of state errors for Yin and Yang Rossler chaotic systems for
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Fig. 6.14 Time histories of errors for Yin and Yang Rossler chaotic systems for Case

Case V.
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Fig. 6.15 Time histories of "g.X (t)z (t).and y,(-t) for Case IV.

gxt)z(t)

00 .-
GO0 .-
00

200

100

-40 100

Fig. 6.16 Phase portraits of g.x.(t)z (t)and vy.(-t) for Case IV.
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Chapter 7

Conclusions

In this thesis, the chaotic behavior in a New Froude-Duffing system is studied by
phase portraits, time history, Poincaré maps, Lyapunov exponent, and bifurcation
diagrams.

A new chaos generalized synchronization method, using GYC partial region
stability theory is proposed, and generalized Lorenz system are used as one of four
simulation examples which verify the effectiveness of the proposed scheme in
Chapter 2. Moreover, we also study the chaos control by using the GYC partial region
stability theory in Chapter 3. By using this theory, the controllers are of lower degree
than that of controllers by using traditional Lyapunov asymptotical stability theorem.
The simple linear homogeneous Lyapunov function of error states makes that the
controllers are simpler and intraduce less-simulation error.

In Chapter 4, the chaotic behaviors of Rossler system with Bessel function
parameters is studied firstly. The results are verified by time histories of states, phase
portraits, Poincaré maps, bifurcation diagram, Lyapunov exponents and parametric
diagram. Abundant hyperchaos is found for this system, which gives potential in
various applications, particularly in secret communication.

In Chapter 5, the Yin Rossler system is firstly introduced. Via numerical
simulation, the Yin Rossler system is compared with the Yang Rossler system and we
find out there are similarity and difference between history and presence. In Chapter 6,
(PYYGS) of Yang Rossler and Yin Rdssler system is obtained by adaptive control
based on pragmetical asymptotical stability theory. This thesis explores the another
half battle field for chaos study, would be proved to have epoch-making significance

in the future.
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Appendix A
GYC Partial Region Stability Theory

Consider the differential equations of disturbed motion of a nonautonomous

system in the normal form

dx,
dt

= X (62,00, %), (s=1---,n) (A-1)

where the function X, is defined on the intersection of the partial region Q

(shown in Fig. A-1) and

> xX<H (A-2)

S

and t>t;, where t, and H are certain positive constants. X which vanishes when
the variables X, are all zero, is a real valued.function of t, X,,---,X,. It is assumed
that X, is smooth enough to ensure the existence, uniqueness of the solution of the

initial value problem. When X, does not.contain t explicitly, the system is
autonomous.

Obviously, X, =0 (s=1,---n) is a solution of Eq.( A-1). We are interested to

the asymptotical stability of this zero solution on partial region Q (including the
boundary) of the neighborhood of the origin which in general may consist of several
subregions (Fig. A.1).
Definition 1:

For any given number & >0, if there exists a ¢ >0, such that on the closed
given partial region Q when

Y x4 <s, (s=1--,n) (A-3)

forall t=>t;, the inequality
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Y xi<e, (s=1--,n) (A-4)
is satisfied for the solutions of Eqg.(A-27) on Q, then the disturbed motion
X,=0 (s=1---n) isstable on the partial region Q.

Definition 2:
If the undisturbed motion is stable on the partial region €, and there exists a

& >0, so that on the given partial region Q when

Y X<, (s=1--,n) (A-5)

The equality

t—oowo

Iim(Zx§]=0 (A-6)
is satisfied for the solutions of:Eq.(A-1) onQ, then the undisturbed motion
X,=0 (s=1---n) isasymptotically stable on the partial region Q.

The intersection of Q and region defined by Eq.(A-2) is called the region of

attraction.

Definition of Functions V(t, %, X,):

Let us consider the functions V(t,X;,--+,X,) given on the intersection Q, of

the partial region Q and the region

dxi<h, (s=1-,n) (A-7)

for t>t, >0, where t, and h are positive constants. We suppose that the functions

are single-valued and have continuous partial derivatives and become zero when

Definition 3:
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If there exists t, >0 and a sufficiently small h>0, so that on partial region
Q, and t=t,, V>0 (or <0), then V is a positive (or negative) semidefinite, in

general semidefinite, function onthe Q, and t=>t;.
Definition 4:

If there exists a positive (negative) definitive function W(x,...x,) on Q,, so
that on the partial region Q, and txt,

V-W>0(or-V-W >0), (A-8)

then V(t,x,...,X,) is a positive definite function on the partial region Q, and
t>t,.
Definition 5:

If V(t,x,...,X,) is neither definite nor semidefinite on Q, and t>t,, then
V(t,X,...,X,) is an indefinite function on partial-region Q, and t>t;. That is, for

any small h>0 and any large t,>0, V(t,x,...,X,) can take either positive or

negative value on the partial region Q, and t=>t;.

Definition 6: Bounded function V

If there exist t, >0, h>0, so that on the partial region €, , we have

V(t,%,....x,)| <L (B.9)
where L is a positive constant, then V is said to be bounded on €, .

Definition 7:  Function with infinitesimal upper bound

If V is bounded, and for any A>0, there exists x>0, so that on €, when
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> xX<u,and t>t;, we have
S

V(X X)) <A (A-10)
then V admits an infinitesimal upper bound on €, .

Theorem 1 [22, 23]

If there can be found for the differential equations of the disturbed motion

(Eq.(A-27)) a definite function V(t,x;,...,X,) on the partial region, and for which the

derivative with respect to time based on these equations as given by the following :

dv. oV oV
AL Y A-11
dt ot SZ:; X, ( )

is a semidefinite function on the paritial region whose sense is opposite to that of V, or
if it becomes zero identically, thenthe undisturbed motion is stable on the partial
region.
Proof:

Let us assume for the sake of definiteness. that V is a positive definite function.

Consequently, there exists a sufficiently large number t, and a sufficiently small

number h < H, such that on the intersection €, of partial region Q and

Y xt<h, (s=1...,n) (A-12)

S

and t=>t,, the following inequality is satisfied

V(t,X,..., X)) ZW(X,...,X,) (A-13)

where W is a certain positive definite function which does not depend on t. Besides
that, Eq. (A-7) may assume only negative or zero value in this region.
Let ¢ be an arbitrarily small positive number. We shall suppose that in any case

g<h. Let us consider the aggregation of all possible values of the quantities
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X.,..., X,, which are on the intersection @, of €, and
Y xt=e¢, (A-14)

and let us designate by | >0 the precise lower limit of the function W under this

condition. by virtue of Eq. (B.5), we shall have

V(t,x,....x.) =l for (x,...,x,) on @,. (A-15)
We shall now consider the quantities X, as functions of time which satisfy the
differential equations of disturbed motion. We shall assume that the initial values X,
of these functions for t=t, lie on the intersection Q,of €, and the region
Y xt<o, (A-16)
where ¢ is so small that
V(ty, Xigs-er X)) <1 (A-17)

By virtue of the fact that V (t;,0;...,0) =0, such a selection of the number & is

obviously possible. We shall suppose that in any case the number & is smaller than
£ .Then the inequality

Y xi<e, (A-18)
being satisfied at the initial instant will be satisfied, in the very least, for a sufficiently

small t—t,, since the functions X(t) very continuously with time. We shall show

that these inequalities will be satisfied for all values t>t,. Indeed, if these

inequalities were not satisfied at some time, there would have to exist such an instant
t=T for which this inequality would become an equality. In other words, we would

have
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D Xi(T) =¢, (A-19)

and consequently, on the basis of Eq. (A-9)
V(T,x(T),....x,(T)) =1 (A-20)
On the other hand, since ¢ < h, the inequality (Eq.(A-4)) is satisfied in the entire
interval of time [to, T], and consequently, in this entire time interval ‘2—\:30. This

yields

V(T (T),.. o, X, (T)) SV (), Xgs -y X)) (A-21)
which contradicts Eq. (A-12) on the basis of Eq. (A-11). Thus, the inequality
(Eq.(A-1)) must be satisfied for all values of t>t,, hence follows that the motion is

stable.

Finally, we must point out that from:the view-point of mathenatics, the stability
on partial region in general daes not be related logically to the stability on whole
region. If an undisturbed solutionis:stable on a partial region, it may be either stable

or unstable on the whole region and vice versa. From the viewpoint of dynamics, we
wre not interesting to the solution starting from €, and going out of Q.
Theorem 2 [22, 23]
. s . . .odv o -
If in satisfying the conditions of theorem 1, the derivative o is a definite

function on the partial region with opposite sign to that of V and the function V itself
permits an infinitesimal upper limit, then the undisturbed motion is asymptotically
stable on the partial region.

Proof:

Let us suppose that V is a positive definite function on the partial region and that

consequently, O(lj_\t/ is negative definite. Thus on the intersection Q;, of Q and the
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region defined by Eq. (A-4) and t=>t, there will be satisfied not only the inequality
(Eq.(A-5)), but the following inequality as will:
dv

ES_Wl(Xi""Xn)’ (A-22)

where W, is a positive definite function on the partial region independent of t.
Let us consider the quantities X, as functions of time which satisfy the

differential equations of disturbed motion assuming that the initial values X, = X, (t;)

of these quantities satisfy the inequalities (Eqg. (A-10)). Since the undisturbed motion

is stable in any case, the magnitude & may be selected so small that for all values of

t>t, the quantities X, remain within Q. Then, on the basis of Eq. (A-13) the

derivative of function V(t,x (t)...,x.(t)). will. be negative at all times and,

consequently, this function will-approach a certain limit, as t increases without limit,

remaining larger than this limit‘at all times:<We shall show that this limit is equal to
some positive quantity different from zero. Then for all values of t=>t; the following
inequality will be satisfied:

V(% (t),..., X, (1) >« (A-23)

where a>0.
Since V permits an infinitesimal upper limit, it follows from this inequality that

Y X2 4, (s=1...n), (B.24)
where A is a certain sufficiently small positive number. Indeed, if such a number A
did not exist, that is , if the quantity sz (t) were smaller than any preassigned
number no matter how small, then the magnitude V(t,x,(t),...,X,(t)), as follows

from the definition of an infinitesimal upper limit, would also be arbitrarily small,
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which contradicts (A-14).

If for all values of t=>t; the inequality (Eq. (A-15)) is satisfied, then Eq. (A-13)

shows that the following inequality will be satisfied at all times:

‘2—\: <-1, (A-25)

where |, is positive number different from zero which constitutes the precise lower
limit of the function W, (t, x,(t),..., X, (t)) under condition (Eg. (A-15)). Consequently,
for all values of t=t; we shall have:
tdV
V(L (t),..., X (1)) =V(t0,x10,...,xn0)+.[t0adtsV(to,xlo,...,xno)—ll(t—to),
which is, obviously, in contradiction with Eq.(A-14). The contradiction thus obtained

shows that the function V (t, x, (t);---, X, (t)). approached zero as t increase without

limit. Consequently, the same will be true for the function W (x,(t),..., X, (t)) as well,

from which it follows directly that

!LT X(t)=0, (s=L...,n), (A-26)

which proves the theorem.
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Appendix B

Systems of Positive States

B.1 Three species prey-predator system

The three species prey-predator system which consists of two competing preys
and one predator can be described by the following set of nonlinear differential
equations:

dx - -
5 = -kl - @y (x,y)z

d _ _
T =l lex—ky) -0, (0 )z (B.1)

dz
a =e®d, (X, y)z+e,D,(X,y)z-az

wherea, r;,K;,e,andc; , i=1,2are the model parameters assuming only positive values,

and the functions @, (X, y), i=1;2 represent-the densities of the two prey species and z

represents the density of the predator species. The predator z consumes the preys X, y

according to the response functions [71]:

a, X a, X
L D,(X,y) = 2

D (X, y)=— 2 _ DX
1Y) 1+bx+b,y 1+bx+b,y

(B.2)
where a; , i=1,2are the search rates of a predator for the preys X, y respectively, while

b; = hya;, i=1,2where h;, i=1,2are the expected handing times spent with the preys X,
y respectively. The parameters e, and e, represent, the conversion rates of the preys x, y
to predator z. Obviously, whenb, andb,are very small the functional of response @;,

(i=1,2) become linear response see Volttera functional response [72]. In the other

hand as one of bothb,andb,tends to zero the system approaches to hyperbolic
Holling type Il [73]. The prescribed model characterized by nonlinear response since

amount of food consumed by predator per unit time depends upon the available food
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sources from the two preys x and y.

B.2 Double Mackey-Glass systems
We consider two double Mackey-Glass systems which consist of two coupled

Mackey-Glass equations [74]:

bx
X, = ———rX,
1+ X, (B3)
. bx,, '
X; = X=X
1+X,,

The system is a model of blood production of patients with leukemia. The

variables x,, x, are the concentration of the mature blood cells in the blood, and

X,,, X,, are presented the request of the cells which is made after r seconds, i.e.

T

X, = X% (t—7),(i=12). The time:delay z _indicates the difference between the time

of cellular production in the bone ‘marrow.and of the release of mature cells into the
blood. According to the observations, the-time «« is large in the patients with
leukemia and the concentration of the“blood cells becomes oscillatory. In this study,
the delay time fixed in 20 second (7 =20) and the parameters are shown as follow:
b=0.2, r=0.1,and n=10.
B.3 Energy communication system in biological research

The so-call static state in life sciences means that the system of life is approach
to a stable condition. Moreover, the relation of energy communication among the
elements in a system of life is called arrangement of static state. The energy
communication of elements in a system of life in static state can be divided into two
forms:
(1) Independent form:

All the elements in a system of life can communicate energy individually with
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other energy systems out of theirs. The mathematics form is as fallow:

du
—L=—Au; + By, +(Cy, — Dyl U, — @y
dt
du (B.5)
d_t2 = — AU +ByU, +(Cyy — Dyyliy )y — 9y
where A;, B;,C;; and Dy; (i,j=1, 2, ..., m)are parameters, u;andu,are two different

elements in a system of life and ¢, , , are modified terms. The term (~Au? +B,u;)

represents the energy communicated with other energy systems, and the term

(Ci; — Dyju; )u; represents the energy communicated with the elements in the system of

themselves. As a result, independent form can be (~Au’? +B,u,) =0, (i=1, 2, ..., n)
and (Cj; —Dyu;)u;,(ij=1, 2, ..., n) are very small in general. If the natural medium is

change, such as the lack of food or the limit of living space, (C;; — Dju;)u; may be
rising.
(2) Dependent form:

There are two different parts of elements in these systems of life. The first part of
elements can communicate energy individually with other energy systems out of
theirs. The mathematics form is the same to (Eg. (B.5)). The second part of elements
can not communicate energy individually with other energy systems out of theirs, they

have to be provided the energy by the first part of elements. The mathematics form is

as fallow:
duy; ? n
E:_Aiui +Bjuj+ 2 (Cjj —Djju;)u;j — o
j=k+1 (B 6)
dUJ m; .
F:hzz:l(cjh_Djhuj)uh —9;
(iek,jen=k)

where k represents the number of the first part elements and m; represents the number
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of the second part elements.
In further studies, the system of food chain with three states can be described by

the mathematical model as follow:

du

d_tl = Alu12 +Byuy +(Cpp — Dppuy)u, — oy

du,

at = (Cy1— Dyyuy)uy +(Cyz — Dysy )us — @, (B.7)
du

d_t3 =(C3, — Dgyu3)u, — 03

B.4 Virus-immune system
A mathematical model of the virus-immune system consisting of the following

three nonlinear differential equations is considered in this study:

d—Tzs—u1T+rT[1—u}—kVT

dt

T, (B.5)
dt 2P .

where T, | and V represent the populatien coneentrations of uninfected, infected target
cells and virus respectively. We denote by the s constant supply of target cells from its
precursor. These cells have a finite life time and p, represents the average death rates
of these cells. These target cells are assumed to grow logistically with specific growth
rater and carrying capacityI". In the presence of virus, the target cells become
infected. Since virus must meet the cells in order to infect them, a mass action term is

used to model infection with k as the infection rate. p,denote the natural death rate

of infected cells. All infected cells are assumed to be capable of producing virus. It is
assumed that N virion are released by each infected cell during its lifetime. p,

represents the death rate of infected cells due to lysis. u,is the death rate of free

Virus.
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Appendix C
Pragmatical Asymptotical Stability Theory

The stability for many problems in real dynamical systems is actual
asymptotical stability, although may not be mathematical asymptotical stability. The
mathematical asymptotical stability demands that trajectories from all initial states in
the neighborhood of zero solution must approach the origin as t —oo. If there are
only a small part or even a few of the initial states from which the trajectories do not
approach the origin as t—>oo, the zero solution is not mathematically
asymptotically stable. However, when the probability of occurrence of an event is
zero, it means the event does not occur actually. If the probability of occurrence of
the event that the trajectries from the initial states are that they do not approach zero
when t—o0, is zero, the stability of zero solution:is actual asymptotical stability
though it is not mathematical “asymptotical stability. In order to analyze the
asymptotical stability of the equilibrium point of such systems, the pragmatical
asymptotical stability theorem is used.

Let X and Y be two manifolds of dimensions m and n (m<n), respectively, and
@ be a differentiable map from X to Y, then ¢(X) is subset of Lebesque measure

0 of Y [75]. For an autonomous system
dx

E_ f(xi’...’xn) (A-l)

where x =[x, -, X ]T is a state vector, the function f =[f, -, f ]T is defined on

n n

DcR" and |x|<H>0. Let x=0 be an equilibrium point for the system (A-1).

Then

f(0)=0 (A-2)
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For a nonautonomous systems,
X= (X X) (A-3)
where  x=[x,...,x ,]" , the function f=[f,.,f] is define on

DcR"xR, here t=x,,, =R, . Theequilibrium point is

n+1

F0x., 3 . (A-4)

Definition The equilibrium point for the system (A-1) is pragmatically
asymptotically stable provided that with initial points on C which is a subset of
Lebesque measure 0 of D, the behaviors of the corresponding trajectories cannot be
determined, while with initial points on D —C, the corresponding trajectories behave

as that agree with traditional asymptotical stability [76, 77].

Theorem Let V =[x, -+, x;]" : D=>R+ be,positive definite and analytic on D,
where X, X,,...,X, are all space coordinates such that the derivative of V through Eq.

(A-1)or(A-3), V , is negative semi-definite-of [x,, X,,---, x.T".
For autonomous system, Let X be the m-manifold consisted of point set for
which ¥x=0, V(x)=0 and D is a n-manifold. If m+1<n, then the equilibrium

point of the system is pragmatically asymptotically stable.

For nonautonomous system, let X be them+1-manifold consisting of point
set of which Vx# 0,V (X, X,,...X,)=0and Dis n+1-manifold. If m+1+1<n+1,

i.e.m+1< nthen the equilibrium point of the system is pragmatically asymptotically
stable. Therefore, for both autonomous and nonautonomous system the formula
m+1<nis universal. So the following proof is only for autonomous system. The
proof for nonautonomous system is similar.

Proof Since every point of X can be passed by a trajectory of Eg. (A-1), which
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is one- dimensional, the collection of these trajectories, A, is a (m+1)-manifold [76,
77].

If m+1 <n, then the collection C is a subset of Lebesque measure 0 of D. By the
above definition, the equilibrium point of the system is pragmatically asymptotically
stable.

If an initial point is ergodicly chosen in D, the probability of that the initial
point falls on the collection C is zero. Here, equal probability is assumed for every
point chosen as an initial point in the neighborhood of the equilibrium point. Hence,
the event that the initial point is chosen from collection C does not occur actually.
Therefore, under the equal probability assumption, pragmatical asymptotical stability

becomes actual asymptotical stability. When the initial point falls on D-C,
V(x) <0, the corresponding trajectories.behave. as that agree with traditional

asymptotical stability because by ‘the existence and-uniqueness of the solution of
initial-value problem, these trajectories never-meet C.

In Eq. V is a positive definite function'of n variables, i.e. p error state variables
and n-p=m differences between unknown and estimated parameters, while
V =e'Ce is a negative semi-definite function of n variables. Since the number of
error state variables is always more than one, p>1, m+1<n is always satisfied, by
pragmatical asymptotical stability theorem we have

lime=0 (A-5)

too
and the estimated parameters approach the uncertain parameters. The pragmatical
adaptive control theorem is obtained. Therefore, the equilibrium point of the system is
pragmatically asymptotically stable. Under the equal probability assumption, it is

actually asymptotically stable for both error state variables and parameter variables.

113



10.

11.

12.

References
Moon F. C., Chaotic Vibrations - An Introduction for Applied for Scientists and
Engineer, Wiley, New York, 2004.
Thompson J. M. T. and Stewart H. B., Nonlinear Dynamics and Chaos ,2nd
edition, New York Wiley, 2002.
Brockett T. W. ,“On Conditions Leading to Chaos in Feedback System”, Proc.
IEEE 21* conf. Decision and Control, (1982)932.
Holems P. ,“Bifurcation and Chaos is a Simple Feedback Control System”, proc.
IEEE 22*conf. Decision and Control, (1983) 365.
Huber A.W., “Adaptive control of chaotic system”, Helv Acta, 62 (1989) 343.
Fuh C.C. and Tung P.C., “Controlling chaos using differential geometric
method”, Phys Rev Lett 75 (1995).2952.
Ge Z.-M. and Cheng, J-W. “Chaos synchronization and parameter
identification of three time“scales brushless D€ motor system”, Chaos, Solitons
and Fractals 24 (2005) 597-616.
Ge Z.-M. and Chen C.-C., “Phase Synchronization of Coupled Chaotic Multiple
Time Scales Systems’’, Chaos, Solitons and Fractals 20 (2004) 639-647.
Ge Z.-M. and, Cheng, J.-W. “Chaos synchronization and parameter
identification of three time scales brushless DC motor system”, Chaos, Solitons
and Fractals 24 (2005) 597-616.
Huang L.-L., Feng R.-P. and Wang M., “Synchronization of chaotic systems via
nonlinear control”, Phys Lett A 320(4) (2004) 271.
Shahverdiev E.M., Sivaprakasam S. and Shore K.A., “Lag synchronization in
time-delayed systems”, Phys Lett A 292 (2002) 320.

Li Guo-Hui and Zhou Shi-Ping, “An observer-based anti-synchronization”,

114



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

Chaos, Solitons and Fractals 29 (2006) 495.

Chen H.-K. and Sheu L.-J., “The transient ladder synchronization of chaotic
systems”, Phys Lett A 355 (2006) 207.

Chen G., Dong X., From chaos to order: methodologies, perspectives and
applications, Singapore: World Scientific; 1998.

Chen G., Dong X. , “On feedback control of chaotic continuous time systems”’,
IEEE Trans Circ Syst I, (1993) 591.

Yassen M.T., “Chaos synchronization between two different chaotic system
using active control”, Chaos, Solitons & Fractals 23 (2005) 131.

Keiji K., Michio H., Hideki K., “Sliding mode control for a class of chaotic
systems”’, Phys Lett A, 245 (1998) 511.

Fuh C., Tung, P., “Robust contrel for a class of nonlinear oscillators with chaotic
attractors”’, Phys Lett A, 218 (1996) 240.

YuY., Zhang, S., “Controlling unceitain-Lu system using backstepping design”,
Chaos, Solitons and Fractals, 15(2003).897.

Moez F., ““An adaptive feedback control of linearizable chaotic systems”, Chaos,
Solitons & Fractals, 15 (2003) 883.

Ge Z.-M.,, Leu W.-Y. ,“Anti-control of chaos of two-degrees-of- freedom
louderspeaker system and chaos synchronization of different order systems”,
Chaos, Solitons and Fractals 20 (2004) 503.

Tang Fang, Wang Ling, “An adaptive active control for the modified Chua’s

circuit”, Physics Letters A, 346 (2005) 342.
Kapitaniak T. , “Continuous control and synchronization in chaotic systems”,

Chaos Solitons Fractals 6 (3) (1995) 237.
Femat R. and Perales G. S., “On the chaos synchronization phenomenon”, Phys

Lett A 262(1999)50.

115



25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Lu J., Wu X, Lu J. , “Synchronization of a unified chaotic system and the

application in secure communication”, Phys Lett A 305 (2002)365.

Han S.K., Kurrer C., Kuramoto Y., “Dephasing and bursting in coupled neural
oscillators”, Phys. Rev. Lett. 75 (1995) 3190.

Blasius B., Huppert A., Stone L., “Complex dynamics and phase synchronization
in spatially extended ecological systems”, Nature 399 (1999) 354.

Wang C. and Ge S. S., “Adaptive synchronization of uncertain chaotic systems
via backstepping design”, Chaos, Solitons and Fractals, 12, pp. 1199-1206, 2001.
Femat R., Ramirez J. A. and Anaya G. F., “Adaptive synchronization of
high-order chaotic systems: A feedback with low-order parameterization”,
Physica D, 139, pp. 231-246, 2000.

Mei Sun, Lixin Tian and Shumin Jiang, Jun Xu , “Feedback control and adaptive
control of the energy resource chaotic system”’, Chaos, Solitons and Fractals, pp.
1725-1734, 2007.

Femat R. and Perales G. S;, “On:the-chaos-synchronization phenomenon”, Phys.,
letters A,262, pp. 50-60, 1999.

Abarbaned H. D. I., Rulkov, N. F. and Sushchik, M. M., “Generalized
synchronization of chaos: The auxiliary systems”, Phy. Rev E,53, pp. 4528-4535,
1996.

Yang S. S. and Duan, C. K., “Generalized synchronization in chaotic systems”,

Chaos, Solitons and Fractals, 9, pp. 1703-1707, 1998.
Yang X. S., “Concepts of synchronization in dynamic systems”, Phys., letters A,
260, pp. 340-344, 1999.

Smith Richard J., Fathoming the Cosmos and Ordering the World: The Yijing (I
Ching or Classic of Changes) and Its Evolution in China. University of Virginia

Press. ISBN 978-0813927053 , 2008.

Karcher Stephen, I Ching: The Classic Chinese Oracle of Change: The First

116


http://en.wikipedia.org/wiki/Special:BookSources/9780813927053

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49,

Complete Translation with Concordance. London: Vega Books. ISBN

1-84333-003-2, 2002.

Marshall S. J., The Mandate of Heaven: Hidden History in the | Ching.

Columbia University Press, ISBN 0-231-12299-3, 2001.

Rossler O.E., “An equation for hyperchaos ”, Physics Letters A, 71 (1979) 155.
Letellier C., Dutertre P. & Maheu B., “Unstable periodic orbits and templates
of the Rossler system: toward a systematic topological characterization”,
Chaos, (1995), 5 (1), 271.

Gilmore R., Lefranc M., The topology of chaos, Wiley, (2002).

Ge Z.-M. and Li Shih-Yu “Yin Chaos” submitted to Journal of Computational

and Applied Mathematics. (SCI, Impact Factor: 0.943)

Ge Z.-M., Yao C.-W., Chen H,-K., “Stability on partial region in dynamics”,
Journal of Chinese Society of Mechanical Engineer 15 (1994) 140.

Ge Z.-M., Chen H.-K., “Three asymptotical stability theorems on partial region
with applications”, Japanse Journal-of Applied Physics 37 (1998) 2762.

Ge Z.-M., “Necessary and sufficient-eonditions for the stability of a sleeping top
described by three forms of dynamic equations” Phys. Rev. E77 (2008) 046606 .
Rossler O.E., “An equation for hyperchaos ”, Physics Letters A, 71 (1979) 155.
Matsumoto T., Chua L.O., Kobaiashi K., “Hyperchaos: Laboratory experiments
and numerical confirmation”, IEEE Trans. Circuits Syst. CAS-33, (1986) 1143.
Thamilmaran K., Lakshmanan M., Venkatesan A. “ Hyperchaos in a modified
canonical Chua’s circuit”, Int. J. Bifurcation and Chaos,14 (2004) 221.

Li Y., Tang WK.S., Chen G., “Generating hyperchaos via state feedback control”,
Int. J. Bifurcation and Chaos,15 (2005) 3367.

Barboza R., “Dynamics of a hyperchaotic Lorenz system”, Int. J. Bifurcation and

Chaos,Vol.17 No.12 (2007) 4285.

117


http://en.wikipedia.org/wiki/Special:BookSources/1843330032
http://en.wikipedia.org/wiki/Special:BookSources/1843330032
http://en.wikipedia.org/wiki/Special:BookSources/1843330032
http://en.wikipedia.org/wiki/Special:BookSources/0231122993

50.

51,

52.

53.

54,

55.

56.

S7.

58.

59.

60.

Elabbasy E.M., Agiza, H.N., EI-Dessoky, M.M., “Adaptive synchronization of a
hyperchaotic system with uncertain parameter Chaos”, Chaos, Solitons &
Fractals, 30, PP 1133-1142, 2006.

Wang Y.W., Wen C., Soh Y. C., Xiao, JW., “Adaptive control and
synchronization for a class of nonlinear chaotic systems using partial system
states”, Physics Letters A, 351, 79, 2006.

Fotsin H., Bowong Samuel., “Adaptive control and synchronization of chaotic
systems consisting of Van der Pol oscillators coupled to linear oscillators”, Chaos,
Solitons & Fractals, 27, PP 822-835, 2006.

Lu J.,, Wu X., Han X,, Lu J., “Adaptive feedback synchronization of a unified
chaotic system”, Physics Letters A, 329, PP 327-333, 2004.

Ge Z.-M and Yang C.-H., “Pragmatical generalized synchronization of chaotic
systems with uncertain parameters by adaptive- control”, Physica D: Nonlinear
Phenomena 231(2) , 87-94,2007.

Ge Z.-M, Li S.-C., Li S.-Y."and.Chang C.-M., “Pragmatical adaptive chaos
control from a new double van der Pol system to a new double Duffing system”,
Applied Mathematics and Computation, In Press, Available online, 2008.
Minorsky N., Nonlinear oscillations VVan Nostrand Princeton NJ (1962).

Ge Z.-M. and Chang C.-M.,”Chaos synchronization and parameters
identification of single time scale brushless DC motors”, Chaos, Solitons and
Fractals 20, pp. 883-903, 2004.

Ge Z.-M. and Chen C.-C. "Phase synchronization of coupled chaotic multiple
time scales systems”, Chaos, Solitons and Fractals 20, pp. 639-647, 2004.

Ge Z.-M. and Leu W.-Y., “Chaos synchronization and parameter identification
for identical system”, Chaos, Solitons and Fractals, 21, pp.1231-1247, 2004.

Ge Z.-M. Ge and Le W.-Y., “Anti-control of chaos of two-degrees-of- freedom

118



61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

louderspeaker system and chaos synchronization of different order systems”,
Chaos, Solitons and Fractals 20, pp. 503-521, 2004.

Ge Z.-M. and Yang C.-H., “Pragmatical generalized synchronization of chaotic
systems with uncertain parameters by adaptive control”, Physica D 231 , pp.
87-94, 2007.

Liu F., Ren Y., Shan X., Qiu Z., “A linear feedback synchronization theorem for
a class of chaotic systems”, Chaos, Solitons and Fractals, 13(4), pp. 723-730,
2002.

Krawiecki A and Sukiennicki A., “Generalizations of the concept of marginal
synchronization of chaos”, Chaos, Solitons and Fractals, 11(9), pp. 1445-1458,
2000.

Yang X.-S. and Chen, G. ; “Some observer-based criteria for discrete-time
generalized chaos synchronization”, Chaos, Solitons and Fractals, 13, pp.
1303-1308, 2002.

Terry J. R., VanWiggeren G. D “Chaotic communication using generalized
synchronization”, Chaos, Solitons and Fractals, 12, pp. 145-152, 2001.

Ge Z.-M. and Yang, C.-H., “Synchronization of complex chaotic systems in
series expansion form,” accepted by Chaos, Solitons, and Fractals, 2006.

Ge Z.-M., Yang C.-H., Chen H.-H., and Lee S.-C., “Non-linear dynamics and
chaos control of a physical pendulum with vibrating and rotation support” ,
Journal of Sound and Vibration, 242 (2), pp.247-264, 2001.

Li J., Zhou T., Zhang S., “Chaos synchronization between linearly coupled
chaotic systems”, Chaos, Solitons and Fractals, 14(4), pp. 529-541, 2002.

Lu J. and Xi Y., “Linear generalized synchronization of continuous-time chaotic
systems”, Chaos, Solitons and Fractals, 17, pp. 825-831, 2003.

Tam LM, SiTou WM., “Parametric study of the fractional order Chen-Lee

119



71.

72.

73.

74.

75.

76.

77.

System”, Chaos, Solitons & Fractals, 37,817-26, 2008.

Kuang Y., “Basic properties of mathematical population models”,
Biomathematics ,17 ,pp129-142, 2002.

El-Gohary A. and Yassen M., “Optimal control and synchronization of
Lotka-Volterra model”, Chaos, Solitions & Fractals, 12, pp2087-2093, 2001.
Sugie J. and Katayama M., “Global asymptotic stability of a predator-prey
system of Holling type”, Nonlinear Analysis 160 ,pp105-121, 1999.

Mackey M. C. and Glass L., “Oscillation and chaos in physiological control
systems”, Science 197(4300), pp287-289,1977.

Atsushima Y.M., Differentiable Manifolds, Marcel Dekker, City, 1972,

Ge Z.-M., Yu J.K. and Chen Y.T., “Pragmatical asymptotical stability theorem
with application to satellite system”, Jpn. J-'Appl. Phys.,38 (1999) 6178.

Ge Z.-M. and Yu J. K., “Pragmatical asymptotical stability theorem partial region
and for partial variable with applications-to,gyroscopic systems”, The Chinese

Journal of Mechanics, 16 (2000) L79.

120



