## 國立交通大學

## 機械工程學系

## 碩士論文

以有限元素法分析旋轉傾斜尤拉梁的穩態變形與 自由振動

Steady state and free vibration analysis of a rotating inclined Euler beam by finite element method

研究生:周裕淳

指導教授:蕭國模 博士

中華民國九十八年九月

以有限元素法分析旋轉傾斜尤拉梁的穩態變形與自由振動 Steady state and free vibration analysis of a rotating inclined Euler beam by finite element method

研究生:周裕淳

Student : Yu-Chun Zhou

指導教授: 蕭國模 博士

Advisor: Dr. Kuo-Mo Hsiao

國立交通大學 機械工程學系 碩士論文 A Thesis

Submitted to Department of Mechanical Engineering College of Engineering National Chiao Tung University in Partial Fulfillment of the Requirements for the Degree of Master of Science in

Mechanical Engineering

September 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年九月

#### 以有限元素法分析旋轉傾斜尤拉梁的穩態變形與自由振動

## Steady state and free vibration analysis of a rotating inclined Euler beam by finite element method

研究生:周裕淳

指導教授:蕭國模博士

#### 國立交通大學機械工程學系碩士班



本研究主要利用共旋轉有限元素法推導旋轉傾斜尤拉梁的運動方程 式,探討設定角為0°具不同傾斜角之等速旋轉傾斜尤拉梁的穩態變形及以 穩態變形為平衡點的自然振動頻率。

本文利用非線性梁理論的一致線性化、d'Alembert 原理和虛功原理在當前的旋轉元素座標上推導梁元素的節點變形力、節點慣性力、元素剛度矩 陣、元素向心力剛度矩陣(centripetal stiffness matrix),元素質量矩陣(mass matrix),元素陀螺矩陣(gyroscopic matrix)。本研究中將變形參數對時間的微 分視為擾動量,故僅取到一次項,元素節點變形內力取到變形參數的二次 項,元素節點慣性內力僅取到變形參數的一次項且忽略變形參數與變形參 數對時間的微分的耦合項。將系統的非線性運動方程式中對時間的微分的 項去掉即為系統的穩態平衡方程式,將系統運動方程式用泰勒級數在穩態 變形的位置展開,取到一次項,即為旋轉梁微小振動的運動方程式。

本文利用基於牛頓法的增量迭代法求出軸向位移及側向位移的穩態 解。旋轉傾斜梁的振動方程式中存在陀螺矩陣,所以其自然振動頻率對應 的振動模態為複變數,其頻率方程式(frequency equations)為一組代數齊次方 程式,該組齊次方程式為一個二次特徵值問題,其係數形成之矩陣的行列 式值為零時的根,即為自然振動頻率。本文以二分法來求行列式值為零時 的根。

本研究以無因次化的數值例題探討傾斜角、無因次轉速、無因次轉軸 半徑及細長比對旋轉傾斜梁無因次側向穩態變形和無因次自然頻率的影響,本研究還探討旋轉傾斜梁的兩個振動頻率接近時,對應之振動模態的 耦合現象、特徵值曲線轉向(eigenvalue curve veering)及振態交換的現象。



# Steady state and free vibration analysis of a rotating inclined Euler beam by finite element method

Student : Yu-Chun Zhou

Advisor : Dr. Kuo-Mo Hsiao

#### Department of Mechanical Engineering

National Chiao Tung University

#### Abstract

In this paper a co-rotational finite element formulation is proposed to derive the equations of motion for a rotating inclined Euler beam with constant angular velocity. The steady state deformation and natural frequency of the infinitesimal free vibration measured from the position of the corresponding steady state deformation are investigated for rotating inclined Euler beams with zero setting angle.

The element deformation nodal forces, inertia nodal forces, stiffness matrix, centripetal stiffness matrix, mass matrix and gyroscopic matrix are systematically derived by consistent linearization of the fully geometrically non-linear beam theory using the d'Alembert principle and the virtual work principle in the current rotating element coordinates. In this paper the terms up to the second order of deformation parameters and their spatial derivatives corresponding to the steady state element deformations are retained. However, only the terms up to the first order of deformation parameters, their spatial derivatives, and time derivatives corresponding to the free vibration of the beam element are retained. The coupling among deformation parameters and their time derivatives are neglected. The steady state equilibrium equations may be obtained by dropping the terms of the time derivatives in the equation of motion. The governing equations for linear vibration may be obtained by the first order power series expansion of the equation of motion at the position of the corresponding steady state deformation.

An incremental-iterative method based on the Newton-Raphson method is employed to solve the steady state deformation. The frequency equations for free vibration of rotating inclined beam are a set of homogeneous equations. The natural frequencies may be determined by solving the homogeneous equations using the bisection method.

Dimensionless numerical examples are studied to investigate the dimensionless steady lateral deformation and the dimensionless natural frequency of rotating inclined beams with different inclined angle, dimensionless angular velocities, dimensionless radius of the hub, and slenderness ratios. The phenomenon of the coupling of mode shapes, the phenomenon of eigenvalue curve veering and mode shape changes are also investigated for rotating inclined beams that has two modes with closely spaced natural frequencies.

IV

誌謝

衷心感謝指導教授 蕭國模博士在這兩年期間的指導與教誨,使本論文得 以順利完成,蕭老師在研究上嚴謹的態度,使我受益良多,在此致上最高的敬 意及謝意。也感謝葉孟考老師、蔣長榮及尹慶中老師撥冗擔任口試委員並對本 論文所提出的指正與建議,使本論文能夠更臻完善。

感謝蔡明旭、林育丞、顏宏儒學長們在研究上的協助與照顧,以及學弟蔡 秉宏、林運融、林寬政在各方面的幫助。

感謝父母親、姊姊及弟弟以及所有關心我的親人、朋友對我的支持與鼓 勵,僅以此成果與榮耀,獻給所有關心我的人。



## 目錄

| 中文摘要                | Ι    |
|---------------------|------|
| 英文摘要                | III  |
| 致謝                  | V    |
| 目錄                  | VI   |
| 表目錄                 | VIII |
| 圖目錄                 | XII  |
| 第一章 導論              | 1    |
| 第二章 理論推導            | 5    |
| 2.1 問題描述            | 5    |
| 2.2 基本假設            | 5    |
| 2.3 座標系統描述          | 5    |
| 2.4 Euler 梁的變形描述    | 7    |
| 2.5 梁的應變及其變分、速度、加速度 | 11   |
| 2.6 元素節點內力之推導       | 18   |
| 2.7 元素剛度矩陣及慣性矩陣之推導  | 23   |
| 2.8 系統的運動方程式        | 26   |
| 第三章 數值方法及程序         | 29   |
| 3.1 穩態解             | 30   |
| 3.2 振動分析            | 32   |
| 第四章 數值例題            | 35   |
| 4.1 收斂分析            | 36   |
| 4.2 準確性分析           | 36   |
| 4.3 個案分析            | 37   |

| 4.4 旋轉梁之特徵值曲線轉向(Eigenvalue curve veering)分析 | 40  |
|---------------------------------------------|-----|
| 第五章 結論與展望                                   | 42  |
| 參考文獻                                        | 44  |
| 附表                                          | 47  |
| 附圖                                          | 92  |
| 附錄 A                                        | 135 |
| 附錄 B                                        | 136 |



### 表目錄

| 表一  | 不同傾斜角與不同轉速的旋轉梁之振動頻率的收斂分析               |    |
|-----|----------------------------------------|----|
|     | $(\eta = 10, r = 1.5)$                 | 47 |
| 表二  | 不同傾斜角與不同轉速的旋轉梁之振動頻率的收斂分析               |    |
|     | $(\eta = 20 , r = 1.5)$                | 48 |
| 表三  | 不同傾斜角與不同轉速的旋轉梁之振動頻率的收斂分析               |    |
|     | $(\eta = 50 , r = 1.5)$                | 49 |
| 表四  | 不同傾斜角與不同轉速的旋轉梁之振動頻率的收斂分析               |    |
|     | $(\eta = 100 , r = 1.5)$               | 50 |
| 表五  | 不同傾斜角與不同轉速的旋轉梁之振動頻率的收斂分析               |    |
|     | $(\eta = 500 , r = 1.5)$               | 51 |
| 表六  | 不同傾斜角與不同轉速的旋轉梁之振動頻率的收斂分析               |    |
|     | $(\eta = 1000 , r = 1.5)$              | 52 |
| 表七  | 不同傾斜角的旋轉梁之振動頻率的準確性分析                   |    |
|     | $(k = \frac{5}{70}, r = 1, \eta = 70)$ | 53 |
| 表八  | 不同傾斜角與不同細長比的旋轉梁之端點位移的準確性分析             |    |
|     | ( <i>r</i> = 1)                        | 54 |
| 表九  | 旋轉傾斜梁在不同細長比下的振動頻率                      |    |
|     | ( <i>k</i> = 0)                        | 55 |
| 表十  | 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率                 |    |
|     | ( <i>r</i> = 0)                        | 56 |
| 表十- | - 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率               |    |
|     | $(r = 0.5 , \alpha = 0^{\circ})$       | 57 |
| 表十二 | 上 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率               |    |

|      | $(r = 0.5, \alpha = 5^{\circ})$    | 58 |
|------|------------------------------------|----|
| 表十三  | 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率             |    |
|      | $(r = 0.5 , \alpha = 10^{\circ})$  | 59 |
| 表十四  | 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率             |    |
|      | $(r = 0.5 , \alpha = 15^{\circ})$  | 60 |
| 表十五  | 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率             |    |
|      | $(r = 0.5 , \alpha = 30^{\circ})$  | 61 |
| 表十六  | 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率             |    |
|      | $(r = 0.5 , \alpha = 45^{\circ})$  | 62 |
| 表十七  | 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率             |    |
|      | $(r = 0.5 , \alpha = 60^{\circ})$  | 63 |
| 表十八  | 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率             |    |
|      | $(r = 0.5, \alpha = 75^{\circ})$ . | 64 |
| 表十九  | 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率             |    |
|      | $(r = 0.5 , \alpha = 90^{\circ})$  | 65 |
| 表二十  | 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率             |    |
|      | $(r=1 , \alpha = 0^{\circ})$       | 66 |
| 表二十一 | 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率             |    |
|      | $(r=1, \alpha = 5^{\circ})$        | 67 |
| 表二十二 | - 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率           |    |
|      | $(r=1, \alpha=10^{\circ})$         | 68 |
| 表二十三 | 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率             |    |
|      | $(r=1, \alpha=15^{\circ})$         | 69 |
| 表二十四 | 1 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率           |    |

|       | $(r=1, \alpha = 30^{\circ})$       | 70 |
|-------|------------------------------------|----|
| 表二十五  | 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率             |    |
|       | $(r=1, \alpha = 45^{\circ})$       | 71 |
| 表二十六  | 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率             |    |
|       | $(r=1, \alpha = 60^{\circ})$       | 72 |
| 表二十七  | 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率             |    |
|       | $(r=1, \alpha=75^{\circ})$         | 73 |
| 表二十八  | 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率             |    |
|       | $(r=1, \alpha=90^{\circ})$         | 74 |
| 表二十九  | 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率             |    |
|       | $(r = 1.5, \alpha = 0^{\circ})$    | 75 |
| 表三十 旋 | e轉傾斜梁在不同細長比與不同轉速下的振動頻率             |    |
| (1    | $r = 1.5$ , $\alpha = 5^{\circ}$ ) | 76 |
| 表三十一  | 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率             |    |
|       | $(r = 1.5 , \alpha = 10^{\circ})$  | 77 |
| 表三十二  | 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率             |    |
|       | $(r=1.5 , \alpha=15^{\circ})$      | 78 |
| 表三十三  | 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率             |    |
|       | $(r = 1.5 , \alpha = 30^{\circ})$  | 79 |
| 表三十四  | 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率             |    |
|       | $(r = 1.5, \alpha = 45^{\circ})$   | 80 |
| 表三十五  | 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率             |    |
|       | $(r = 1.5 , \alpha = 60^{\circ})$  | 81 |
| 表三十六  | 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率             |    |

|       | $(r=1.5, \alpha=75^{\circ})$    | 82 |
|-------|---------------------------------|----|
| 表三十七  | 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率          |    |
|       | $(r=1.5 , \alpha = 90^{\circ})$ | 83 |
| 表三十八  | 旋轉梁在不同傾斜角與不同轉速下的振動頻率            |    |
|       | $(r=1, \eta=38)$                | 84 |
| 表三十九  | 旋轉梁在不同傾斜角與不同轉速下的振動頻率            |    |
|       | $(r=1, \eta=38.5)$              | 85 |
| 表四十 旋 | e轉梁在不同傾斜角與不同轉速下的振動頻率            |    |
| (1    | $r = 1 , \eta = 39$ )           | 86 |
| 表四十一  | 旋轉梁在不同傾斜角與不同轉速下的振動頻率            |    |
|       | $(r=1, \eta=40)$                | 87 |
| 表四十二  | 旋轉梁在不同傾斜角與不同轉速下的振動頻率            |    |
|       | $(r=1, \eta=77)$                | 88 |
| 表四十三  | 旋轉梁在不同傾斜角與不同轉速下的振動頻率            |    |
|       | $(r=1, \eta=78)$                | 89 |
| 表四十四  | 旋轉梁在不同傾斜角與不同轉速下的振動頻率            |    |
|       | $(r=1, \eta=79)$                | 90 |
| 表四十五  | 旋轉梁在不同傾斜角與不同轉速下的振動頻率            |    |
|       | $(r=1, \eta=80)$                | 91 |

## 圖目錄

| 圖 | —   | 無傾斜角的旋轉梁結構                                   | 92  |
|---|-----|----------------------------------------------|-----|
| 圖 | Ξ   | 具傾斜角的旋轉梁結構                                   | 92  |
| 圖 | Ξ   | 旋轉傾斜梁的上視圖                                    | 93  |
| 圖 | 四   | 旋轉傾斜梁的側視圖                                    | 93  |
| 圖 | 五   | 元素座標及總體座標關係圖                                 | 94  |
| 圖 | 六   | 具傾斜角的旋轉梁結構( $eta$ = $0^\circ$ )              | 95  |
| 圖 | セ   | 梁的變形圖                                        | 96  |
| 圖 | 八   | 傾斜旋轉梁的(a)穩態變形(b)軸向位移(c)側向位移                  |     |
|   |     | $(\eta = 80 , r = 1 , \alpha = 5^{\circ})$   | 97  |
| 圖 | 九   | 傾斜旋轉梁的(a)穩態變形(b)軸向位移(c)側向位移                  |     |
|   |     | $(\eta = 80, r = 1, \alpha = 30^{\circ})$    | 98  |
| 圖 | +   | 傾斜旋轉梁的(a)穩態變形(b)軸向位移(c)側向位移                  |     |
|   |     | $(n = 80, r = 1, \alpha = 90^{\circ})$       | 99  |
| 圖 | +-  | (q) 倾斜旋轉梁的(a) 穩態變形(b) 軸向位移(c) 側向位移           |     |
|   | ·   | $(n-100, r-1, \alpha-5^{\circ})$             | 100 |
| 呂 | + - | $(\eta = 100, \eta = 1, \alpha = 5)$         | 100 |
| 圓 | 1   |                                              |     |
| _ | •   | $(\eta = 100, r = 1, \alpha = 30^{\circ})$   | 101 |
| 圖 | 十三  | . 傾斜旋轉梁的(a)穩態變形(b)軸向位移(c)側向位移                |     |
|   |     | $(\eta = 100 , r = 1 , \alpha = 90^{\circ})$ | 102 |
| 圖 | 十四  | 傾斜旋轉梁的(a)穩態變形(b)軸向位移(c)側向位移                  |     |
|   |     | $(\eta = 1000 , r = 1 , \alpha = 5^{\circ})$ | 103 |
| 圖 | 十五  | . 傾斜旋轉梁的(a)穩態變形(b)軸向位移(c)側向位移                |     |

|                    | $(\eta = 1000 , r = 1 , \alpha = 30^{\circ})$    | 104 |
|--------------------|--------------------------------------------------|-----|
| 圖十六                | 傾斜旋轉梁的(a)穩態變形(b)軸向位移(c)側向位移                      |     |
|                    | $(\eta = 1000 , r = 1 , \alpha = 90^{\circ})$    | 105 |
| 圖十七                | 不同轉速下的第一至第六振動模態                                  |     |
|                    | $(\alpha = 0^{\circ}, r = 1, \eta = 50)$         | 106 |
| 圖十八                | 不同轉速下的第一至第六振動模態                                  |     |
|                    | $(\alpha = 5^{\circ}, r = 1, \eta = 50)$         | 107 |
| 圖十九                | 不同轉速下的第一至第六振動模態                                  |     |
|                    | $(\alpha = 30^{\circ}, r = 1, \eta = 50)$        | 108 |
| 圖二十                | 不同轉速下的第一至第六振動模態                                  |     |
|                    | $(\alpha = 90^{\circ}, r = 1, \eta = 50)$        | 109 |
| 圖二十一               | 不同轉速下的第一至第六振動模態                                  |     |
|                    | $(\alpha = 0^{\circ}, r = 1, \eta = 100)$        | 110 |
| 圖二十二               | 不同轉速下的第一至第六振動模態                                  |     |
|                    | $(\alpha = 5^{\circ}, r = 1, \eta = 100)$        | 111 |
| 圖二十三               | 不同轉速下的第一至第六振動模態                                  |     |
| 回 - 一 一            | $(\alpha = 30^\circ, r = 1, \eta = 100)$         | 112 |
| <b>卣二十</b> 四       | 个问聘迟卜的弟一至弟六振動榠悲                                  |     |
| 回 - 1 -            | $(\alpha = 90^{\circ}, r = 1, \eta = 100)$       | 113 |
| 崮二十五               | 个同轉速下的第一 <b>全</b> 第六振動模態                         |     |
|                    | $(\alpha = 0^{\circ}, r = 1, \eta = 1000) \dots$ | 114 |
| <b><b>卣</b>二十六</b> | 个同轉速卜的第一全第六振動模態                                  |     |
|                    | $(\alpha = 5^{\circ}, r = 1, \eta = 1000)$       | 115 |
| 圖二十七               | 不同轉速下的第一至第六振動模態                                  |     |

|       | $(\alpha = 30^{\circ}, r = 1, \eta = 1000)$ | 116 |
|-------|---------------------------------------------|-----|
| 圖二十八  | 不同轉速下的第一至第六振動模態                             |     |
|       | $(\alpha = 90^{\circ}, r = 1, \eta = 1000)$ | 117 |
| 圖二十九  | 無因次振動頻率-無因次轉速曲線                             |     |
|       | $(r=1 , \alpha = 0^{\circ})$                | 118 |
| 圖三十 不 | 同轉速下的第一至第六振動模態                              |     |
| (0    | $\alpha = 0^{\circ}, r = 1, \eta = 38$ )    | 119 |
| 圖三十一  | 不同轉速下的第一至第六振動模態                             |     |
|       | $(\alpha = 5^{\circ}, r = 1, \eta = 38)$    | 120 |
| 圖三十二  | 不同轉速下的第一至第六振動模態                             |     |
|       | $(\alpha = 30^{\circ}, r = 1, \eta = 38)$   | 121 |
| 圖三十三  | 不同轉速下的第一至第六振動模態                             |     |
|       | $(\alpha = 90^{\circ}, r = 1, \eta = 38)$   | 122 |
| 圖三十四  | 不同轉速下的第一至第六振動模態                             |     |
|       | $(\alpha = 0^{\circ}, r = 1, \eta = 39)$    | 123 |
| 圖三十五  | 不同轉速下的第一至第六振動模態                             |     |
|       | $(\alpha = 5^{\circ}, r = 1, \eta = 39)$    | 124 |
| 圖三十六  | 不同轉速下的第一至第六振動模態                             |     |
|       | $(\alpha = 30^{\circ}, r = 1, \eta = 39)$   | 125 |
| 圖三十七  | 不同轉速下的第一至第六振動模態                             |     |
|       | $(\alpha = 90^{\circ}, r = 1, \eta = 39)$   | 126 |
| 圖三十八  | 不同轉速下的第一至第六振動模態                             |     |
|       | $(\alpha = 0^{\circ}, r = 1, \eta = 40)$    | 127 |
| 圖三十九  | 不同轉速下的第一至第六振動模態                             |     |

 $(\alpha = 5^{\circ}, r = 1, \eta = 40)....$  128

#### 圖四十 不同轉速下的第一至第六振動模態

圖四十一 不同轉速下的第一至第六振動模態

圖四十二 不同轉速下的第一至第六振動模態

#### 第一章 導論

旋轉梁結構在實際上的應用是很重要的,像吊扇、渦輪的葉片、直升 機的旋轉翼、風力發電機的葉片、衛星的支臂、飛機的螺旋槳和機械手臂。 振動分析在旋轉梁結構的設計和分析上扮演很重要的角色,文獻上在這方 面已有很多的研究。[1-16]

關於旋轉梁結構的振動分析可從文獻[1,2]有詳細的探討與回顧, Schilhansl [3]在考慮離心力,但忽略科氏力的情況下,導出了如圖一所示之 等速旋轉梁振動的微分方程式。Lee 與 Kuo[4]探討了如圖一所示之旋轉 Euler 梁,對其旋轉軸的中心半徑、設定角及轉速對旋轉梁彎矩振動自然頻 率的影響。Yokoyama[5]將旋轉慣量及剪變形、旋轉軸的中心半徑和設定角 合併到有限元素的模式中,探討其對自然頻率的影響。Lee and Lin[6]用線 性梁理論去推導旋轉 Timoshenko 梁之運動方程式,並探討了旋轉速度和質 量慣性矩(mass moment of inertia)的耦合效應、設定角和旋轉速度對彎矩自 然頻率的影響。Eick and Mignolet [7]探討旋轉梁在不同旋轉軸中心半徑與旋 轉梁長度之比值下,其受軸向壓應力挫屈時之臨界轉速。

文獻[3-7]均用線性梁理論推導旋轉梁的運動方程式,且在作其振動分 析時都不考慮科氏力,但均無討論其適當性或影響,在文獻[8]Simo and Vu-Quoc 提到在分析旋轉結構需要用幾何非線性梁理論(至少取到二次項) 才能適當的計算離心力對彎矩剛度的影響,若用線性梁理論(只取到一次項) 將會產生虛假的彎矩剛度流失,所以文獻[3-7]中推導的旋轉梁之運動方程 式及所求得之振動的自然頻率應是不正確的。

文獻[9,10]利用非線性梁理論的一致線性化、虛功原理和 d'Alembert 原理在旋轉座標上推導旋轉 Timoshenko 梁正確的線性運動方程式,文獻[9,10]

在分析時考慮了軸向變形及科氏力。旋轉梁的自然振動是指以其穩態解為 平衡點的微小振動,故須先求出其穩態解,除了設定角為0°或90°外,旋轉 梁之穩態變形是三維的變形,且其自然振動是軸向、側向與扭轉耦合的三 維振動,文獻[9,10]僅分析設定角為0°或90°之旋轉梁,並僅考慮軸向變形及 一個側方向的位移與旋轉的二維振動,文獻[9]提出一套旋轉梁之自然頻率 的級數解法及計算其自然頻率的數值計算程序,並探討科氏力對旋轉梁之 自然頻率的影響。文獻[10]以文獻[9]提出的方法及細長比很大的 Timoshenko 梁模擬旋轉 Euler 梁,文獻[10]發現在低轉速時,科氏力對細長 比很大的旋轉梁的自然頻率影響不大,但文獻[9,10]中並無高轉速的結果, 因在高轉速時,文獻[9,10]的數值方法對細長比很大的旋轉梁無法收斂。

文獻[11]分析如圖一所示,設定角為0°或90°的旋轉 Euler 梁,利用虛 功原理與 d'Alembert 原理,配合非線性梁理論的一致線性化,在旋轉座標 上推導旋轉 Euler 梁正確的線性運動方程式,並僅考慮軸向變形及一個側方 向的位移與旋轉的二維振動,文獻[11]將旋轉梁分成數段,每段稱為一個元 素,每個元素用一個級數解來表示其自由振動,文獻[11]發現當細長比很大 時,在高轉速下僅用一個元素無法求得正確的自然頻率,需將旋轉梁分成 兩個以上的元素,才能求得精確的自然頻率,但文獻[11]並未探討其原因。 文獻[12]考慮一具雙軸對稱之三維旋轉 Timoshenko 梁,利用共旋轉有限元 素法(Co-rotational finite element formulation)和虛功原理配合非線性梁理論 的一致線性化,推導梁元素節點慣性力與節點變形力。具雙軸對稱之三維 旋轉梁的穩態解包含軸向和扭轉變形,文獻[12]保留軸向和扭轉變形的穩態 解到二次項及扭轉率的三次項,文獻[12]將旋轉梁的運動方程式中的時間函 數去掉求得系統穩態平衡式,再用牛頓法求得穩態解,文獻[12]用泰勒級數 在穩態平衡點將運動方程式一致線性化,求得旋轉梁的振動方程式,文獻[12]

探討旋轉速度和設定角對三維旋轉梁之穩態變形及自然頻率的影響。

文獻[13-16]探討,如圖二所示,具有設定角與傾斜角的旋轉梁之自由 振動。當傾斜角不為零時,若設定角不為90°,旋轉梁之軸向位移及側向位 移的穩態解都不為零,但文獻[13]僅考慮軸向的穩態變形對自然頻率的影 響,並未考慮側向穩態位移的影響,因文獻[13-15]忽略了側向位移的穩態 解,故其旋轉梁之自然頻率可能不準確。當傾斜角不為零時,僅有設定角 為0°或90°時,旋轉傾斜尤拉梁的穩態解及自然振動是二維運動,文獻[16] 用虛功原理與 d'Alembert 原理及幾何非線性梁理論的一致線性化,推導設 定角為0°或90°之旋轉 Euler 梁的二維運動方程式。當設定角為90°時,旋轉 傾斜尤拉梁的側向穩態解為零,且因為科氏加速度的值為零,旋轉梁的軸 向與側向振動不耦合,所以文獻[16]用與文獻[11]相同的方法,求得軸向穩 態變形與自然振動頻率及振態,並探討傾斜角、轉速、轉軸半徑及細長比 對等速旋轉傾斜尤拉梁之自然振動頻率的影響;當設定角為0°時,旋轉傾 斜尤拉梁之側向穩態變形不為零,且因為科氏加速度的值不為零,其軸向 與側向振動耦合。文獻[16]假設側向穩態變形為小變形,文獻[16]先求出其 軸向穩態解析解,再用級數解法求得旋轉梁之穩態解。文獻[16]將穩態解代 入運動方程式,用一致線性化求得振動的統御方程式,但文獻[16]並未求其 自然振動頻率及振態。

文獻[16]僅保留到變形的二次項,所以側向穩態變形太大時可能不準 確,且文獻[16]以旋轉梁變形前所受的離心力求其軸向及側向穩態變形,但 旋轉梁所受的離心力為與結構變形位置相關的外力(configuration dependent load),當旋轉梁的側向穩態變形不是很小時,必須考慮幾何非線性,才能 得到可靠的側向穩態變形。當旋轉傾斜梁的細長比很大,在高轉速時,其 側向位移的穩態解可能很大,其軸向和側向穩態變形會互相耦合,為高度

的幾何非線性問題,若將旋轉梁分成數段(元素),用共旋轉法描述旋轉梁的 變形,則可除去梁元素的剛體旋轉,故可以僅保留到變形的二次項,但仍 維持解的精度,不過須以迭代的方式求得正確的穩態變形。如果採用文獻[16] 的級數解,求穩態變形的過程將會很複雜,文獻[12]利用共旋轉有限元素法 成功的求出旋轉梁之軸向及扭轉耦合的穩態變形,故本研究擬採用共旋轉 有限元素法求軸向和側向耦合的穩態變形。本研究的主要目的為以共旋轉 有限元素法探討設定角為0°之旋轉傾斜梁的穩態變形及自然振動頻率。本 文在第二章中先以梁變形前的形心軸之長度為獨立變數推導梁元素的變 形,本研究利用文獻[16]中旋轉梁的變形機制,由梁元素在當前元素座標之 位置向量及轉速求得梁元素的加速度,再以虛功原理、有限元素法及非線 性梁理論的一致線性化,在梁元素當前之元素座標上推導節點慣性力和節 點變形力,將元素的節點力轉到總體座標後組合成系統的非線性運動方程 式。本研究將旋轉梁的運動方程式的時間函數項去掉求得系統穩態平衡方 程式,再用基於牛頓法的增量迭代法求出軸向位移及側向位移的穩態解, 將運動方程式在穩態平衡位置用泰勒級數展開,取到一次項,求得旋轉傾 斜梁的振動方程式。假設自然振動頻率存在,可獲得一組代數齊次方程式, 該組齊次方程式係數形成之矩陣的行列式為零時,即可求得旋轉梁以穩態 解為平衡點的自然振動的頻率及其對應的振態。本研究擬探討傾斜角、旋 轉速度、轉軸半徑及細長比等對旋轉 Euler 梁之穩態變形、自然頻率及振態 的影響。

#### 第二章 理論推導

2.1 問題描述

如圖二所示,本文考慮一長度為L<sub>T</sub>具均勻斷面且雙軸對稱之尤拉梁, 其支承端以設定角(setting angle)β與傾斜角(inclination angle)α剛接在一半 徑為R剛性圓柱上,該圓柱以等角速率Ω繞其軸心旋轉。本文中所有梁的 位移、變形和振動指的是在一個以等角速率Ω繞圓柱中心軸旋轉的旋轉座 標上描述的位移、變形和振動。本文中僅考慮梁的軸向位移,單一個側向 位移及旋轉。以等角速率旋轉的傾斜梁存在著一個含軸向及側向的穩態變 形。本文中所有的振動都是指以該穩態變形為平衡點的振動。本文中考慮 的振動是線性振動,所以由振動造成的位移、速度和加速度都視為是一微 小量(infinitesimal quantity)。



2.2 基本假設

本文對梁元素的推導,做如下的假設:

(1)Euler-Bernoulli 假說成立。

(2) 梁元素的形心軸之單位長度伸長量(unit extension) 為均匀的伸長。

(3)梁元素的變形與應變皆為小變形與小應變。

2.3 座標系統描述

本研究是使用共旋轉有限元素法(co-rotational finite element formulation),將梁分割成若干個兩個節點的梁元素,節點1及節點2為元素的兩個端點。 為了描述旋轉梁系統的運動,本文中使用以下二個座標系統:

(1) 總體座標系統(Global coordinates) $X_1 \cdot X_2 \cdot X_3$ 

總體座標系統是以等角速率 Ω 繞圓柱中心軸旋轉,如圖三與圖四所 示,總體座標系統的原點是取在旋轉梁斷面的形心軸與旋轉圓柱的交點(即 O點)上,其X<sub>1</sub>軸和梁變形前的斷面形心軸一致,其X<sub>2</sub>和X<sub>3</sub>軸是取旋轉梁 變形前的斷面主軸方向,將圓柱的轉軸方向繞X<sub>1</sub>軸逆時鐘方向轉β角即為 和X<sub>3</sub>軸的方向。本文中假設梁只有在X<sub>1</sub>、X<sub>2</sub>方向的變形,本文中旋轉梁 的節點座標、節點位移、節點速度、節點加速度及整個系統的運動方程式 均在此座標系統中定義。

(2)元素座標系統(Element coordinates) $x_1 \cdot x_2 \cdot x_3$ 

元素座標系統是建立在每個元素當前的位置上,且以一個等角速率Ω 繞圓柱中心軸旋轉,如圖五所示,元素座標系統的原點是定義在節點1(即o 點)上,令o點當前的總體座標為(X<sub>o</sub>,Y<sub>o</sub>,0), x<sub>1</sub>軸的方向為梁元素兩節點連 線的方向,令x<sub>1</sub>軸與總體座標的X<sub>1</sub>軸間的夾角為θ<sub>e</sub>,因本文中假設只有 x<sub>1</sub>x<sub>2</sub>平面的變形,所以x<sub>3</sub>軸與總體座標X<sub>3</sub>軸的方向一致,x<sub>2</sub>軸的方向由右 手定則決定,本文中梁元素的位移、變形、速度、加速度及運動方程式, 均在此座標系統定義。

元素座標系統與總體座標系統關係可表示成

 $\mathbf{X} = \mathbf{A}_{GE} \mathbf{x} \tag{2.3.1}$ 

|                     | $\cos\theta_e$  | $-\sin\theta_e$ | 0 |         |
|---------------------|-----------------|-----------------|---|---------|
| $\mathbf{A}_{GE} =$ | $\sin \theta_e$ | $\cos\theta_e$  | 0 | (2.3.2) |
|                     | 0               | 0               | 1 |         |

其中 $\mathbf{x} = \{x_1, x_2, x_3\}$ ,  $\mathbf{X} = \{X_1, X_2, X_3\}$ 。本文中以 $\{\}$ 代表行矩陣。 令 $\Omega_X$ 為旋轉梁的角速度向量在總體座標上的表示式,其分量可表示如下:

$$\mathbf{\Omega}_{\mathbf{X}} = \Omega\{0, \sin\beta, \cos\beta\}$$
(2.3.3)

由(2.3.1)、(2.3.3)式可得,令Ω為旋轉梁的角速度向量在元素座標上的表示

式如下:

$$\mathbf{\Omega} = \{\Omega_1, \ \Omega_2, \ \Omega_3\} = \mathbf{A}_{GE}^t \mathbf{\Omega}_{\mathbf{X}} = \mathbf{\Omega} \mathbf{n}$$
(2.3.4)

$$\mathbf{n} = \{n_1, n_2, n_3\} = \{\sin\beta\sin\theta_e, \sin\beta\cos\theta_e, \cos\beta\}$$
(2.3.5)

其中**n**為旋轉軸的單位向量, $n_i$  (*i*=1,2,3)為其在元素座標軸 $x_i$ 的分量, $\beta$ 為梁的設定角, $\theta_a$ 為梁元素變形後元素座標之 $x_1$ 軸與總體座標之 $X_1$ 軸的夾角。

因除了 $\beta = 0^{\circ} \mathcal{R} 90^{\circ}$ 外,傾斜旋轉梁的穩態解是三維的,故本文假設僅 適用於 $\beta = 0^{\circ} \mathcal{R} 90^{\circ}$ ,為了推導上的方便,本文在推導過程中仍視為 $\beta$ 變數。 當 $\beta = 90^{\circ}$ 時,穩態解僅有軸向位移,[16]用級數解詳盡的探討了其自然振動 頻率。當 $\beta = 0^{\circ}$ 時,穩態解有側向和軸向位移,故其所受離心力為變形位置 的函數,文獻上仍沒有其側向位移的非線性穩態解及其自然振動頻率,故 本研究主要探討如圖六所示設定角 $\beta = 0^{\circ}$ 之旋轉傾斜梁的軸向、側向位移的 穩態解及自然振動頻率,當 $\beta = 0^{\circ}$ 時(2.3.4)式的角速度向量 $\Omega$ 退化成

$$\mathbf{\Omega} = \{\Omega_1, \ \Omega_2, \ \Omega_3\} = \mathbf{\Omega} \mathbf{n} \tag{2.3.6}$$

$$\mathbf{n} = \{n_1, \ n_2, \ n_3\} = \{0, \ 0, \ 1\}$$
(2.3.7)

#### 2.4 Euler 梁的變形描述

本文是在旋轉元素座標上描述梁元素的變形。由2.2節中的基本假設可 知,梁元素的變形可由其形心軸在元素座標上的位移及其斷面的旋轉決 定。本文採用梁變形前形心軸的長度為獨立變數。

2.4.1梁元素之位移

圖七中的P點為梁中的任意點,Q點為P點在形心軸上的對應點,即P點 與Q點位於梁的同一斷面上。在元素座標上,Q點在梁變形前後的位置向量 可分別表示為 $\{x, 0, 0\}$ 與 $\{x_p(x,t), v(x,t), 0\}$ 。其中t為時間, $x_p(x,t)$ 及v(x,t)分別是Q點在 $x_1$ 與 $x_2$ 軸方向的座標。

P點在梁變形前後的位置向量可分別表示如下

$$\mathbf{r}_0 = \{x, y, z\} \tag{2.4.1}$$

$$\mathbf{r} = \{r_1, r_2, r_3\} = \{x_p - y\sin\theta, y\cos\theta + v, z\}$$
(2.4.2)

其中x、 $y與z分別為梁變形前P點在 x_i (i = 1,2,3) 軸的座標, <math>\theta \land x_1$  軸和形心軸 的切線向量的夾角。

(2.4.2)式之sin θ 及 cos θ 可表示成如下

$$\sin\theta = \frac{\partial v}{\partial s} = \frac{\partial x}{\partial s}\frac{\partial v}{\partial x} = \frac{1}{1+\varepsilon_0}\frac{\partial v}{\partial x} = \frac{v_{,x}}{1+\varepsilon_0}$$
(2.4.3)

$$\cos\theta = \frac{\partial x_p}{\partial s} = \frac{\partial x_p}{\partial x} \frac{\partial x}{\partial s} = (1 - \sin\theta^2)^{1/2}$$

$$\varepsilon_0 = \frac{\partial s - \partial x}{\partial x} = \frac{\partial s}{\partial x} - 1$$
(2.4.4)
(2.4.5)

其中s為圖七中o點到Q點間形心軸在變形後的弧長, E<sub>0</sub>為形心軸的單位伸長量。

由(2.4.3)-(2.4.5)式可得

$$x_p(x,t) = u_1 + \int_0^x \left[ (1+\varepsilon_0)^2 - v_{,x}^2 \right]^{1/2} dx$$
 (2.4.6)

其中u<sub>1</sub>為節點1在x<sub>1</sub>方向上的位移,由元素座標系統的定義,其值為零,但 其變分及對時間的微分並不為零。

由小變形的假設,利用近似式 $[(1+\varepsilon_0)^2 - v_{,x}^2]^{1/2} \approx (1+\varepsilon_0 - \frac{1}{2}v_{,x}^2), (2.4.6)$ 式可表示成

$$x_p(x,t) = u_1 + \int_0^x (1 + \varepsilon_0 - \frac{1}{2}v_{,x}^2) dx$$
(2.4.7)

由(2.4.7)式及梁元素的形心軸之單位伸長量為均匀的假設,可以得到形心軸的單位伸長量 $\varepsilon_0$ 

$$\varepsilon_0 = \frac{l-L}{L} + \frac{1}{2L} \int_0^L v_{,x}^2 dx$$
(2.4.8)

$$l = L + u_2 - u_1 \tag{2.4.9}$$

其中L為梁元素變形前的長度, l 為梁元素之形心軸變形後的弦長, u<sub>2</sub>為節點2在 x<sub>1</sub>方向的位移。

本文中假設梁元素變形後的形心軸的側向位移v(x,t)為x的三次 Hermitian 多項式。因此v(x,t)可表示成

$$v(x,t) = \{N_1, N_2, N_3, N_4\}^t \{v_1, v_1', v_2, v_2'\} = \mathbf{N}_b^t \mathbf{u}_b$$
(2.4.10)

$$N_1 = \frac{1}{4}(1-\xi)^2(2+\xi) , \quad N_2 = \frac{L}{8}(1-\xi^2)(1-\xi) , \quad (2.4.11)$$

$$N_{3} = \frac{1}{4}(1+\xi)^{2}(2-\xi) \quad N_{4} = \frac{L}{8}(-1+\xi^{2})(1+\xi)$$
$$\xi = -1 + \frac{2x}{L}$$
(2.4.12)

$$\mathbf{u}_b = \mathbf{u}_b(t) = \{v_1, v_1', v_2, v_2'\}$$
(2.4.13)

其中 $v_j(j=1,2)$ 是v在節點j的節點值, $v'_j$ 則是 $v' = \frac{\partial v}{\partial x}$ 在節點j(j=1,2)之節點值, $N_i(i=1-4)$ 代表形狀函數(shape function)。

在小變形的假設下,由(2.4.2)式及近似式 $\sin\theta \approx \theta$ , $\cos\theta \approx 1 - \frac{1}{2}\theta^2$ ,可以將位置向量**r**重新寫成如下

$$\mathbf{r} = \{r_1, r_2, r_3\} = \{x_p - y\theta, y(1 - \frac{1}{2}\theta^2) + v, z\}$$
(2.4.14)

將(2.4.10)式代入(2.4.8)式整理可得

$$\varepsilon_{0} = \frac{1}{L} (\mathbf{G}_{a}^{t} \mathbf{u}_{a} + \frac{1}{2} \int_{0}^{L} v_{,x}^{2} dx) = \frac{1}{L} (\mathbf{G}_{a}^{t} \mathbf{u}_{a} + \frac{1}{2} \mathbf{G}_{b}^{t} \mathbf{u}_{b})$$
(2.4.15)

其中

$$\mathbf{u}_a = \{u_1, \ u_2\} \tag{2.4.16}$$

$$\mathbf{G}_a = \{-1, 1\} \tag{2.4.17}$$

$$\mathbf{G}_{b} = \{G_{b1}, G_{b2}, G_{b3}, G_{b4}\} = \int \mathbf{N}_{b}' v_{,x} dx$$
(2.4.18)

#### 將(2.4.15)式代入(2.4.7)式整理可得

$$x_{p}(x,t) = \mathbf{N}_{a}^{t} \mathbf{u}_{a} + x + \frac{x}{2L} \mathbf{G}_{b}^{t} \mathbf{u}_{b} - \frac{1}{2} \int_{0}^{x} v_{,x}^{2} dx$$
(2.4.19)

$$\mathbf{N}_{a} = \left\{ \frac{1-\xi}{2}, \frac{1+\xi}{2} \right\}$$
(2.4.20)

#### 2.4.2 梁之位置向量的變分

將(2.4.14)式的位置向量r變分可表示成

$$\delta \mathbf{r} = \{\delta r_1, \ \delta r_2, \ 0\} = \{-y\delta\theta + \delta x_p, \ -y\theta\delta\theta + \delta v, \ 0\}$$
(2.4.21)

在小變形的假設下,利用近似式 sin  $\theta \approx \theta$ 、  $\frac{1}{(1+\varepsilon_0)} \approx (1-\varepsilon_0)$ ,將(2.4.3)式及

#### 變分可得

$$\delta\theta = -\delta\varepsilon_0 v_{,x} + (1 - \varepsilon_0)\delta v_{,x} \tag{2.4.22}$$

由(2.4.15)式的變分可得

$$\delta \varepsilon_0 = \frac{1}{L} (\delta \mathbf{u}_a^t \mathbf{G}_a + \delta \mathbf{u}_b^t \mathbf{G}_b)$$
(2.4.23)

將(2.4.10)式對x的一次微分可表示成

$$v_{,x} = \mathbf{N}_b^{\prime t} \mathbf{u}_b \tag{2.4.24}$$

由(2.4.24)式的變分可得

$$\delta v_{,x} = \delta \mathbf{u}_b^t \mathbf{N}_b^\prime \tag{2.4.25}$$

由(2.4.19)式的變分可得

$$\delta x_{p} = \delta \mathbf{u}_{a}^{t} \mathbf{N}_{a} + \frac{x}{L} \delta \mathbf{u}_{b}^{t} \mathbf{G}_{b} - \int_{0}^{x} v_{,x} \delta v_{,x} dx \qquad (2.4.26)$$
  
將(2.4.23)式代入(2.4.22)式整理可得

$$\delta v_{,x} \approx (1 + \varepsilon_0) \delta \theta + v_{,x} \delta \varepsilon_0 \approx (1 + \varepsilon_0) \delta \theta + \frac{v_{,x}}{L} (\delta \mathbf{u}_a^t \mathbf{G}_a + \delta \mathbf{u}_b^t \mathbf{G}_b)$$
(2.4.27)

將(2.4.22)及(2.4.26)式代入(2.4.21)式,位置向量的變分 ôr 可以寫成

$$\delta r_{1} = \underline{yv_{,x}} \delta \varepsilon_{0} - y(1 - \varepsilon_{0}) \delta v_{,x} + \delta \mathbf{u}_{a}^{t} \mathbf{N}_{a} + \frac{x}{\underline{L}} \delta \mathbf{u}_{b}^{t} \mathbf{G}_{b} - \underbrace{\int_{0}^{x} v_{,x}} \delta v_{,x} dx}{\delta r_{2} = y(1 - \varepsilon_{0})v^{2}_{,x} \delta \varepsilon_{0} - y(1 - \varepsilon_{0})^{2} v_{,x} \delta v_{,x} + \delta v}$$
(2.4.28)

2.5 梁的應變及其變分、速度、加速度

#### 2.5.1梁的應變及其變分

本文中的應變採用工程應變。為了推導上的方便,本文中先推導出 Green strain $\varepsilon_{ij}$ ,再由Green strain求得與其對應之工程應變。Euler梁的Green strain非為零的應變只有 $\varepsilon_{11}$ ,可表示成

$$\varepsilon_{11} = \frac{1}{2} (\mathbf{g}_1^t \mathbf{g}_1 - 1) \tag{2.5.1}$$

其中

$$\mathbf{g}_1 = \frac{\partial \mathbf{r}}{\partial x} \tag{2.5.2}$$

將(2.4.7)、(2.4.14)式代入(2.5.2)式,可得 $g_1$ 的分量 $g_{11}$ 和 $g_{12}$ 如下

$$g_{11} = 1 + \varepsilon_0 - \frac{1}{2}v_{,x}^2 - y \frac{v_{,xx}}{1 + \varepsilon_0}$$

$$g_{12} = v_{,x} - y \frac{v_{,x}v_{,xx}}{(1 + \varepsilon_0)^2}$$
(2.5.3)

由小變形的假設,將(2.5.3)式及近似式 $\frac{1}{(1+\varepsilon_0)}$ ≈(1- $\varepsilon_0$ ),代入(2.5.1)式,且

保留變形參數及其微分到二次項,可得:

$$\varepsilon_{11} = \varepsilon_0 + \frac{1}{2}\varepsilon_0^2 - yv_{,xx} + \frac{1}{2}y^2v_{,xx}^2$$
(2.5.4)

Green strain  $\varepsilon_{11}$  與對應之工程應變  $e_{11}$  的關係可表示成[17]:

$$e_{11} = (1 + 2\varepsilon_{11})^{1/2} - 1 \tag{2.5.5}$$

將(2.5.4)式代入(2.5.5)式,且保留變形參數及其微分到二次項可得:

$$e_{11} = \varepsilon_0 - (1 - \varepsilon_0) y v_{,xx} \tag{2.5.6}$$

由(2.5.6)式的變分可表示成

$$\delta e_{11} = \delta \varepsilon_0 + y v_{,xx} \delta \varepsilon_0 - (1 - \varepsilon_0) y \delta v_{,xx}$$
(2.5.7)

將(2.4.10)式對 x 的二次微分可表示成

$$v_{xx} = \mathbf{N}_b^{\prime\prime} \mathbf{u}_b$$

由上式的變分可得

$$\delta v_{,xx} = \delta \mathbf{u}_b^t \mathbf{N}_b'' \tag{2.5.8}$$

將(2.4.23)、(2.5.8)式,代入(2.5.7)式,可得



#### 2.5.2 梁的速度及加速度

因梁的位置向量是在旋轉元素座標上描述,所以P點的絕對速度在當前 元素座標的分量可表示成

$$\mathbf{v} = \{v_1, v_2, v_3\} = \mathbf{v}_o + \mathbf{\Omega} \times \mathbf{r} + \dot{\mathbf{r}}$$
(2.5.10)

$$\mathbf{v}_o = \Omega\{v_{o1}, v_{o2}, v_{o3}\} = \mathbf{\Omega} \times \mathbf{r}_o \tag{2.5.11}$$

$$\mathbf{r}_{o} = \{r_{o1}, r_{o2}, r_{o3}\} = \mathbf{A}_{GE}^{t} \mathbf{r}_{oG}$$
(2.5.12)

$$\mathbf{r}_{oG} = \{R\cos\alpha + X_o, -R\sin\alpha\cos\beta + Y_o, R\sin\alpha\sin\beta\}$$
(2.5.13)

其中 $v_o$ 為o點的絕對速度,  $\dot{\mathbf{r}}$ 為P點對元素座標原點o的速度,  $\mathbf{r}_{oG}$ 為元素 座標原點o在總體座標的位置向量的表示式,  $\mathbf{r}_o$ 為原點o在當前元素座標

的表示式。  
將(2.3.2)、(2.3.4)式代入(2.5.11)、(2.5.12)式可得:  

$$v_{o1} = n_2r_{o3} - n_3r_{o2}$$
 (2.5.14)  
 $v_{o2} = n_3r_{o1} - n_1r_{o3}$   
 $v_{o3} = n_1r_{o2} - n_2r_{o1}$  (2.5.15)  
 $r_{o2} = -\sin\theta_e(R\cos\alpha + X_o) - \sin\theta_e(R\sin\alpha\cos\beta - Y_o)$  (2.5.15)  
 $r_{o2} = -\sin\theta_e(R\cos\alpha + X_o) - \cos\theta_e(R\sin\alpha - Y_o)$  (2.5.15)  
式會退化成  
 $v_{o1} = -r_{o2}$ ,  $v_{o2} = r_{o1}$ ,  $v_{o3} = 0$  (2.5.16)  
 $r_{o1} = \cos\theta_e(R\cos\alpha + X_o) - \sin\theta_e(R\sin\alpha - Y_o)$  (2.5.17)  
 $r_{o2} = -\sin\theta_e(R\cos\alpha + X_o) - \sin\theta_e(R\sin\alpha - Y_o)$  (2.5.17)  
 $r_{o2} = -\sin\theta_e(R\cos\alpha + X_o) - \cos\theta_e(R\sin\alpha - Y_o)$  (2.5.17)  
 $r_{o3} = 0$   
將(2.4.14)式對時間t 微分, P點對元素座標原點o的速度可表示成  
 $\dot{\mathbf{r}} = \{\dot{r}_1, \dot{r}_2, \dot{r}_3\} = \{\dot{x}_p - y\dot{\theta}, \dot{v} - y\dot{\theta}\theta, 0\}$  (2.5.18)  
 $\mathbf{a}$ 小變形的假設下, 利用近似式 $\sin\theta \approx \theta$ 、 $\frac{1}{(1+\varepsilon_0)} \approx (1-\varepsilon_0)$ , 將(2.4.3)、  
(2.4.15)、(2.4.19)式對時間t 微分可得  
 $\dot{x}_p = \mathbf{N}_a^t \dot{\mathbf{u}}_a + \frac{x}{L} \mathbf{G}_b^t \dot{\mathbf{u}}_b - \int_0^x v_x \dot{v}_x dx$  (2.5.19)

$$\dot{\theta} = (1 - \varepsilon_0)\dot{v}_{,x} - \underline{\dot{\varepsilon}_0 v_{,x}}$$
(2.5.20)

$$\dot{\varepsilon}_0 = \frac{1}{L} (\mathbf{G}_a^t \dot{\mathbf{u}}_a + \int_0^L v_{,x} \dot{v}_{,x} dx) = \frac{1}{L} (\mathbf{G}_a^t \dot{\mathbf{u}}_a + \underline{\mathbf{G}_b^t \dot{\mathbf{u}}_b})$$
(2.5.21)

因為梁元素為小變形,所以v,x在元素較多時都將趨近於零,故在計算慣性 力時,畫底線的項可以忽略。

由(2.3.4)、(2.4.2)式,及近似式 $\sin\theta \approx \theta$ 、 $\cos\theta \approx 1$ ,(2.5.10)式之 $\Omega \times \mathbf{r}$ 可表示成

$$\begin{aligned} \Omega \times \mathbf{r} &= \Omega\{v_{p1}, v_{p2}, v_{p3}\} \end{aligned} \tag{2.5.22} \\ v_{p1} &= n_2 z - n_3 (y + v) \\ v_{p2} &= n_3 (x_p - y\theta) - n_1 z \\ v_{p3} &= n_1 (y + v) - n_2 (x_p - y\theta) \\ \Re(2.5.14) \times (2.5.15) \times (2.4.18) \\ \mathcal{Q}(2.5.22) \\ \mathcal{Q}(2.5.22) \\ \mathcal{Q}(2.5.22) \\ \mathcal{Q}(2.5.10) \\ \mathcal{$$

$$\begin{split} v_{1} &= \Omega v_{o1} + \Omega [n_{1}z - n_{3}(y\theta + v)] + \dot{x}_{p} - y\dot{\theta} \\ (2.5.23) \\ v_{2} &= \Omega_{o2} + \Omega [n_{3}(x_{p} - y\theta) - n_{1}z] + \dot{v} - y\dot{\theta}\theta \\ v_{3} &= \Omega v_{o3} + [n_{1}(y + v) - n_{2}(x_{p} - y\theta)] \\ & \pm (2.3.6)$$
式可知,當  $\beta = 0^{\circ}$ 時, $n_{1} = n_{2} = 0$ , $n_{3} = 1$ ,故(2.5.23)式會退化成  $v_{1} = \Omega v_{o1} - \Omega(y\theta + v) + \dot{x}_{p} - y\dot{\theta} \\ v_{2} &= \Omega_{o2} + \Omega(x_{p} - y\theta) + \dot{v} - y\dot{\theta}\theta \\ v_{3} &= \Omega v_{o3} \end{split}$ 

因梁的位置向量是在旋轉元素座標上描述,所以P點的絕對加速度在當前元

素座標的分量可表示成

$$\mathbf{a} = \{a_1, a_2, a_3\} = \mathbf{a}_o + \dot{\mathbf{\Omega}} \times \mathbf{r} + \mathbf{\Omega} \times (\mathbf{\Omega} \times \mathbf{r}) + 2\mathbf{\Omega} \times \dot{\mathbf{r}} + \ddot{\mathbf{r}}$$
(2.5.25)

$$\mathbf{a}_o = \Omega^2 \{ a_{o1}, a_{o2}, a_{o3} \} = \mathbf{\Omega} \times (\mathbf{\Omega} \times \mathbf{r}_o)$$
(2.5.26)

其中 $\mathbf{a}_o$ 為o點的絕對加速度,  $\ddot{\mathbf{r}}$ 為P點對元素座標原點o的加速度,因為本研究僅考慮等角速度的旋轉,所以 $\dot{\Omega}$ 為零。 由(2.3.4)、(2.5.12)式代入(2.5.26)式之 $\Omega$ ×( $\Omega$ × $\mathbf{r}_o$ )可表示成

$$a_{o1} = n_1 n_2 r_{o2} - (n_2^2 + n_3^2) r_{o1} + n_1 n_3 r_{o3}$$

$$a_{o2} = n_2 n_3 r_{o3} - (n_1^2 + n_3^2) r_{o2} + n_1 n_2 r_{o1}$$

$$a_{o3} = n_1 n_3 r_{o1} - (n_1^2 + n_2^2) r_{o3} + n_2 n_3 r_{o2}$$

$$\pm (2.3.6)$$

$$\exists \varphi = 0^{\circ}$$

$$\Rightarrow n_1 = n_2 = 0$$

$$n_3 = 1$$

$$\pm (2.5.27)$$

$$\Rightarrow \beta = 0^{\circ}$$

$$\Rightarrow n_1 = n_2 = 0$$

$$n_3 = 1$$

$$\Rightarrow (2.5.27)$$

$$\Rightarrow \beta = 0^{\circ}$$

$$\Rightarrow n_1 = n_2 = 0$$

$$n_3 = 1$$

$$\Rightarrow (2.5.27)$$

$$\Rightarrow \beta = 0^{\circ}$$

$$\Rightarrow n_1 = n_2 = 0$$

$$\Rightarrow n_3 = 1$$

$$\Rightarrow (2.5.27)$$

$$\Rightarrow \beta = 0^{\circ}$$

$$\Rightarrow n_1 = n_2 = 0$$

$$\Rightarrow n_3 = 1$$

$$\Rightarrow (2.5.27)$$

$$\Rightarrow \beta = 0^{\circ}$$

$$\Rightarrow n_1 = n_2 = 0$$

$$\Rightarrow n_3 = 1$$

$$\Rightarrow (2.5.27)$$

$$\Rightarrow \beta = 0^{\circ}$$

$$\Rightarrow n_1 = n_2 = 0$$

$$\Rightarrow n_3 = 1$$

$$\Rightarrow (2.5.28)$$

$$\Rightarrow (2.5.28)$$

$$\Rightarrow (2.5.28)$$

$$\Rightarrow (2.5.29)$$

$$\Rightarrow (\Omega \times \mathbf{r}) = \Omega^2 \{a_{p1}, a_{p2}, a_{p3}\}$$

$$\Rightarrow (2.5.29)$$

$$= \Omega\{-n_3(\dot{v} - y\dot{\theta}\theta), n_3(\dot{x}_p - y\dot{\theta}), n_1(\dot{v} - y\dot{\theta}\theta) - n_2(\dot{x}_p - y\dot{\theta})\}$$
(2.5.31)

由(2.3.6)式可知,當 $\beta=0^\circ$ 時, $n_1=n_2=0$ , $n_3=1$ ,故(2.5.31)式會退化成

$$\mathbf{\Omega} \times \dot{\mathbf{r}} = \mathbf{\Omega}\{-(\dot{v} - y\dot{\theta}\theta), \dot{x}_p - y\dot{\theta}, 0\}$$
(2.5.32)

將(2.5.18)式對時間*t* 微分, P點對元素座標原點o的加速度可表示成  $\ddot{\mathbf{r}} = \{\ddot{r}_1, \ddot{r}_2, \ddot{r}_3\} = \{\ddot{x}_p - y\ddot{\theta}, \dot{v} - y\dot{\theta}^2 - y\ddot{\theta}\theta, 0\}$  (2.5.33)

將(2.5.19)、(2.5.20)、(2.5.21)式對時間 t 微分可得

 $\ddot{x}_{p} = \mathbf{N}_{a}^{t} \ddot{\mathbf{u}}_{a} + \frac{x}{L} \int_{0}^{L} (\underbrace{v_{,x}} \ddot{v_{,x}} + \dot{v_{,x}}^{2}) dx - \int_{0}^{x} (\underbrace{v_{,x}} \ddot{v_{,x}} + \dot{v_{,x}}^{2}) dx$ 

$$= \mathbf{N}_{a}^{t} \ddot{\mathbf{u}}_{a} + \frac{x}{L} (\underline{\mathbf{G}_{b}^{t} \ddot{\mathbf{u}}_{b}} + \dot{\mathbf{G}}_{b}^{t} \dot{\mathbf{u}}_{b}) - \int_{0}^{x} (v_{,x} \ddot{v}_{,x} + \dot{v}_{,x}^{2}) dx$$
(2.5.34)

$$\ddot{\theta} = (1 - \varepsilon_0)\ddot{v}_{,x} - 2\dot{\varepsilon}_0\dot{v}_{,x} - \ddot{\varepsilon}_0v_{,x}$$
(2.5.35)

因本文僅保留擾動量到一次項,且不考慮變形與速度、加速度的耦合項, 所以畫底線的項可以忽略。

將(2.5.27)、(2.5.29)、(2.5.31)、(2.5.33)、(2.5.34)及(2.5.35)式代入(2.5.25)式, 忽略畫底線的項,且保留擾動量到一次項,P點的絕對加速度分量可表示成  $a_1 = \Omega^2 a_{o1} + \Omega^2 [n_1 n_2 (y+v) - (n_2^2 + n_3^2) (\mathbf{N}_a^t \mathbf{u}_a + x) + n_1 n_3 z] - 2\Omega n_3 \dot{v} + \mathbf{N}_a^t \ddot{\mathbf{u}}_a$  $- y \ddot{v}_{,x}$  (2.5.36)  $a_2 = \Omega^2 a_{a_1} + \Omega^2 [n_2 n_2 z - (n_2^2 + n_3^2) (y+v) + n_2 n_2 (\mathbf{N}^t \mathbf{u}_a + x)]$ 

$$+ 2\Omega n_3 (\mathbf{N}_a^t \dot{\mathbf{u}}_a - y\dot{v}_{,x}) + \ddot{v}$$
  
$$+ 3\Omega n_3 (\mathbf{N}_a^t \dot{\mathbf{u}}_a - y\dot{v}_{,x}) + \ddot{v}$$
  
$$a_3 = \Omega^2 a_{o3} + \Omega^2 [n_1 n_3 (\mathbf{N}_a^t \mathbf{u}_a + x) - (n_1^2 + n_2^2)z + n_2 n_3 (y + v)]$$

+ 2
$$\Omega n_3 [n_1 \dot{v} - n_2 (\mathbf{N}_a^t \dot{\mathbf{u}}_a - y \dot{v}_{,x})]$$
  
由(2.3.6)式可知,當  $\beta = 0^\circ$ 時, $n_1 = n_2 = 0$ , $n_3 = 1$ ,故(2.5.36)式會退化成  
 $a_1 = -\Omega^2 r_{o1} - \Omega^2 (\mathbf{N}_a^t \mathbf{u}_a + x) - 2\Omega \dot{v} + \mathbf{N}_a^t \ddot{\mathbf{u}}_a - y \ddot{v}_{,x}$  (2.5.37)  
 $a_2 = -\Omega^2 r_{o2} - \Omega^2 (y + v) + 2\Omega (\mathbf{N}_a^t \dot{\mathbf{u}}_a - y \dot{v}_{,x}) + \ddot{v}$   
 $a_3 = 0$ 

2.6 元素節點內力之推導

本文利用虛功原理及 d'Alembert 原理在當前的元素座標上推導元素節 點內力。若給元素節點j(j=1,2)虛位移 $\delta u_j \cdot \delta v_j$ 及虛旋轉 $\delta \theta_j$ ,則由虛功 原理可得  $\delta W_{ext} = \delta W_{int}$ (2.6.1) $\delta W_{ext} = \delta \mathbf{q}_{\theta}^{t} \mathbf{f}_{\theta}$ (2.6.2) $\delta W_{int} = \int_{V} E e_{11} \delta e_{11} dV + \int_{V} \rho \ddot{\mathbf{a}}^{t} \delta \mathbf{r} dV = \delta \mathbf{q}^{t} \mathbf{f}$ (2.6.3) $\delta \mathbf{q}_{\theta} = \{ \delta u_1, \ \delta v_1, \ \delta \theta_1, \ \delta u_2, \ \delta v_2, \ \delta \theta_2 \}$ (2.6.4) $\delta \mathbf{q} = \{ \delta u_1, \ \delta v_1, \ \delta v_1', \ \delta u_2, \ \delta v_2, \ \delta v_2' \}$ (2.6.5) $\mathbf{f}_{\theta} = \mathbf{f}_{\theta}^{D} + \mathbf{f}_{\theta}^{I}$ (2.6.6) $\mathbf{f}_{\theta}^{D} = \{ f_{11}^{\theta}, f_{21}^{\theta}, m_{1}^{\theta}, f_{12}^{\theta}, f_{22}^{\theta}, m_{2}^{\theta} \}$ (2.6.7) $\mathbf{f}_{\theta}^{I} = \{ f_{11}^{I\theta}, f_{21}^{I\theta}, m_{1}^{I\theta}, f_{12}^{I\theta}, f_{22}^{I\theta}, m_{2}^{I\theta} \}$ (2.6.8) $\mathbf{f} = \mathbf{f}^D + \mathbf{f}^I$ (2.6.9)n

$$\mathbf{f}^{D} = \{f_{11}, f_{21}, m_{1}, f_{12}, f_{22}, m_{2}\}$$
(2.6.10)

$$\mathbf{f}^{I} = \{ f_{11}^{I}, \ f_{21}^{I}, \ m_{1}^{I}, \ f_{12}^{I}, \ f_{22}^{I}, \ m_{2}^{I} \}$$
(2.6.11)

其中內力所作的虛功包含虛應變 $\delta e_{11}$ 所作的虛功及慣性力所作的虛功,因虛 應變 $\delta e_{11}$ 為虛位移向量 $\delta q$ 的函數,所以內力所作的虛功可以表示成 $\delta q^{t} f$ 。 本文採用的元素節點內力為對應於虛位移向量 $\delta q_{\theta}$ 的 $f_{\theta}$ ,(2.6.6)及(2.6.9)式 中 $f^{D}$ 、 $f_{\theta}^{D}$ 為元素變形節點內力, $f^{I}$ 、 $f_{\theta}^{I}$ 為元素慣性節點內力,由(2.4.27) 式可知 $\delta \theta_{j}$ 和 $\delta v'_{j}$ 不同,對應於 $\delta \theta_{j}$ 的廣義力 $m_{j}^{\theta}$ 為傳統的力矩,對應於 $\delta v'_{j}$ 的 廣義力 $m_{j}$ 為一廣義的力矩。所以由內力所作的虛功得到的f和 $f_{\theta}$ 不同,兩 者的關係將在以下推導。

由 (2.4.17)、(2.4.18)及(2.4.27)式可得

$$\delta \mathbf{q} = \mathbf{T}_{\theta} \delta \mathbf{q}_{\theta} \tag{2.6.12}$$

$$\mathbf{T}_{\theta} = \mathbf{T}_{\theta}^{1} + \mathbf{T}_{\theta}^{2}$$

$$\mathbf{T}_{\theta}^{1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \frac{-\nu_{1}'}{L} & 0 & 1 + \varepsilon_{0} & \frac{\nu_{1}'}{L} & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ \frac{-\nu_{2}'}{L} & 0 & 0 & \frac{\nu_{2}'}{L} & 0 & 1 + \varepsilon_{0} \end{bmatrix}$$

$$(2.6.13)$$
其中 $\mathbf{T}^{1}_{\theta}$ 為變形的零次和一次項, $\mathbf{T}^{2}_{\theta}$ 為變形的二次項將(2.6.2)、(2.6.3)及(2.6.12)式代入(2.6.1)式可得

$$\mathbf{f}_{\theta} = \mathbf{T}_{\theta}^{t} \mathbf{f} \tag{2.6.16}$$

因本文中的穩態變形含大位移及旋轉,為考慮軸向與側向變形的耦合,故 (2.6.16)式中保留變形到二次項及部分三次項,但本文僅考慮微小的振動, 所以(2.6.16)式中僅保留到速度及加速度的一次項。本文中假設慣性力中速 度及加速度與變形耦合項可以忽略,所以由(2.6.8)、(2.6.11)式可得以下之近 似式

$$\mathbf{f}_{\theta}^{I} \approx \mathbf{f}^{I} \tag{2.6.17}$$

為了推導上的方便,本文中將 $\delta q$ 分成 $\delta u_a \mathcal{Q} \delta u_b$ ,  $u_a \mathcal{Q} u_b \dot{a} (2.4.13)$ 式及 (2.4.16)式已定義,與 $\delta q$ 對應的f分成f<sub>a</sub>  $\mathcal{Q} f_b$ ,並定義如下

$$\mathbf{f}_a = \mathbf{f}_a^D + \mathbf{f}_a^I \tag{2.6.18}$$

$$\mathbf{f}_b = \mathbf{f}_b^D + \mathbf{f}_b^I \tag{2.6.19}$$

$$\mathbf{f}_{a}^{D} = \{f_{11}, f_{12}\}$$
$$\mathbf{f}_{a}^{I} = \{f_{11}^{I}, f_{12}^{I}\}$$
$$\mathbf{f}_{b}^{D} = \{f_{21}, m_{1}, f_{22}, m_{2}\}$$
$$\mathbf{f}_{b}^{I} = \{f_{21}^{I}, m_{1}^{I}, f_{22}^{I}, m_{2}^{I}\}$$

將 $\delta \mathbf{q}_{\theta}$ 分成 $\delta \mathbf{u}_{a}^{\theta} = \{\delta u_{1} \ \delta u_{2}\}$ 及 $\delta \mathbf{u}_{b}^{\theta} = \{\delta v_{1} \ \delta \theta_{1} \ \delta v_{2} \ \delta \theta_{2}\}, 與 \delta \mathbf{q}_{\theta}$ 對應的 $\mathbf{f}^{\theta}$ 分成 $\mathbf{f}_{a}^{\theta}$ 及 $\mathbf{f}_{b}^{\theta}$ , 並定義如下

$$\mathbf{f}_{a}^{\theta} = \mathbf{f}_{a}^{D\theta} + \mathbf{f}_{a}^{I\theta}$$
(2.6.20)

$$\begin{aligned} \mathbf{f}_{a}^{D\theta} &= \{f_{11}^{\theta}, f_{12}^{\theta}\} \\ \mathbf{f}_{a}^{I\theta} &= \{f_{11}^{I\theta}, f_{12}^{I\theta}\} \\ \mathbf{f}_{b}^{\theta} &= \mathbf{f}_{b}^{D\theta} + \mathbf{f}_{b}^{I\theta} \end{aligned} (2.6.21) \\ \mathbf{f}_{b}^{D\theta} &= \{f_{21}^{\theta}, m_{1}^{\theta}, f_{22}^{\theta}, m_{2}^{\theta}\} \\ \mathbf{f}_{b}^{I\theta} &= \{f_{21}^{I\theta}, m_{1}^{I\theta}, f_{22}^{I\theta}, m_{2}^{I\theta}\} \end{aligned}$$

由(2.6.14)、(2.6.16)、(2.6.18)-(2.6.21)式可得

$$\mathbf{f}_{a}^{\theta} = \mathbf{f}_{a} + \mathbf{T}_{ba}^{t} \mathbf{f}_{b} \tag{2.6.22}$$

$$\mathbf{T}_{ba} = \begin{bmatrix} 0 & 0 \\ \frac{-v_1'}{L} & \frac{v_1'}{L} \\ 0 & 0 \\ \frac{-v_2'}{L} & \frac{v_2'}{L} \end{bmatrix}$$
(2.6.23)

$$\mathbf{f}_b^{\theta} = \mathbf{T}_b^t \mathbf{f}_b \tag{2.6.24}$$

$$\mathbf{T}_b = \mathbf{T}_b^1 + \mathbf{T}_b^2 \tag{2.6.25}$$

$$\mathbf{T}_{b}^{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 + \varepsilon_{0} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 + \varepsilon_{0} \end{bmatrix}$$
(2.6.26)

$$\mathbf{T}_{b}^{2} = \begin{bmatrix} \mathbf{0}, v_{1}'\mathbf{G}_{b}, \mathbf{0}, v_{2}'\mathbf{G}_{b} \end{bmatrix}^{t}$$
(2.6.27)

將(2.4.28)、(2.5.9)、(2.5.36)式代入(2.6.3)式可得

$$\mathbf{f}_{a}^{D} = EA\varepsilon_{0}\mathbf{G}_{a} - \frac{EI(1-\varepsilon_{0})}{L} \int v_{,xx}^{2} dx\mathbf{G}_{a}$$
(2.6.28)

$$\mathbf{f}_b^D = EA\varepsilon_0 \int \mathbf{N}_b' v_{,x} dx + EI(1-\varepsilon_0)^2 \int \mathbf{N}_b'' v_{,xx} dx - EI(1-\varepsilon_0) / L \int v_{,xx}^2 dx \mathbf{G}_b \qquad (2.6.29)$$

$$\mathbf{f}_{a}^{I} = \rho A \int \mathbf{N}_{a} \mathbf{N}_{a}^{t} \ddot{\mathbf{u}}_{a} dx + \Omega^{2} a_{o1} \rho A \int \mathbf{N}_{a} dx + \Omega^{2} n_{1} n_{2} \rho A \int \mathbf{N}_{a} v dx$$
  

$$-\Omega^{2} \rho A (n_{2}^{2} + n_{3}^{2}) \int \mathbf{N}_{a} (\mathbf{N}_{a}^{t} \mathbf{u}_{a} + x) dx - 2\Omega n_{3} \rho A \int \mathbf{N}_{a} \dot{v} dx \qquad (2.6.30)$$
  

$$\mathbf{f}_{b}^{I} = \Omega^{2} \rho A \int \mathbf{N}_{b} a_{o2} dx - \Omega^{2} (n_{1}^{2} + n_{3}^{2}) \rho A \int \mathbf{N}_{b} v dx + \Omega^{2} n_{1} n_{2} \rho A \int \mathbf{N}_{b} (\mathbf{N}_{a}^{t} \mathbf{u}_{a} + x) dx$$
  

$$+ \rho A \int \mathbf{N}_{b} \ddot{v} dx + 2\Omega n_{3} \rho A \int \mathbf{N}_{b} \mathbf{N}_{a}^{t} dx \dot{\mathbf{u}}_{a} + \rho I \int \mathbf{N}_{b}^{t} \ddot{v}_{,x} dx - \Omega^{2} n_{1} n_{2} \rho I \int \mathbf{N}_{b}^{t} dx$$

由(2.3.6)式可知,當 $\beta = 0^{\circ}$ 時, $n_1 = n_2 = 0$ , $n_3 = 1$ ,故(2.6.30)、(2.6.31)式會 退化成

$$\mathbf{f}_{a}^{I} = \rho A \int \mathbf{N}_{a} \mathbf{N}_{a}^{t} \ddot{\mathbf{u}}_{a} dx + \Omega^{2} \rho A(a_{o1} \int \mathbf{N}_{a} dx - \int \mathbf{N}_{a} (\mathbf{N}_{a}^{t} \mathbf{u}_{a} + x) dx) -2\Omega \rho A \int \mathbf{N}_{a} \dot{v} dx$$
(2.6.32)

$$\mathbf{f}_{b}^{I} = \Omega^{2} \rho A \int \mathbf{N}_{b} a_{o2} dx - \Omega^{2} \rho A \int \mathbf{N}_{b} v dx + \rho A \int \mathbf{N}_{b} \ddot{v} dx + 2\Omega \rho A \int \mathbf{N}_{b} \mathbf{N}_{a}^{t} dx \dot{\mathbf{u}}_{a} + \rho I \int \mathbf{N}_{b}^{\prime} \ddot{v}_{,x} dx$$
(2.6.33)

得 $\mathbf{f}_{a}^{D\theta}$ 

$$f_{12}^{\theta} = EA\varepsilon_0 - \frac{EI}{L}\varepsilon_0 \int v_{,xx}^2 dx$$
(2.6.34)

$$\mathbf{f}_{a}^{D\theta} = EA\varepsilon_{0}\mathbf{G}_{a} - \frac{EI\varepsilon_{0}}{L}\int v_{,xx}^{2}dx\mathbf{G}_{a}$$
(2.6.35)

(2.6.34)式在附錄 A 中有詳細推導。

由(2.6.24) - (2.6.27)及(2.6.29)式,保留部份的三次項,可得 $\mathbf{f}_{b}^{D\theta}$   $\mathbf{f}_{b}^{D\theta} = \mathbf{T}_{b}^{1t} EI(1-\varepsilon_{0})^{2} \int \mathbf{N}_{b}^{\prime} v_{,xx} dx + \mathbf{f}_{12}^{\theta} \int \mathbf{N}_{b}^{\prime} v_{,x} dx$  (2.6.36) (2.6.36)式在附錄 A 中有詳細推導。

由(2.6.17)式可得

$$\mathbf{f}_{a}^{I\theta} \approx \mathbf{f}_{a}^{I}$$

$$\mathbf{f}_{b}^{I\theta} \approx \mathbf{f}_{b}^{I}$$
(2.6.37)

2.7 元素剛度矩陣及慣性矩陣之推導

因為在數值計算時,對於系統運動方程式的平衡迭代過程中需要先求 得梁元素切線剛度矩陣和質量矩陣。依元素切線剛度矩陣的定義可知,對 應於 $\delta q^{ heta}$ 元素剛度矩陣 $k^{ heta}$ 可以表示成

$$\mathbf{k}^{\theta} = \frac{\partial \mathbf{f}^{D\theta}}{\partial \mathbf{q}_{\theta}} = \mathbf{T}_{\theta}^{t} \frac{\partial \mathbf{f}^{D}}{\partial \mathbf{q}} \mathbf{T}_{\theta}$$
(2.7.1)

$$\frac{\partial \mathbf{f}^{D}}{\partial \mathbf{q}} = \mathbf{k} \tag{2.7.2}$$

其中k為對應於 $\delta$ q元素剛度矩陣可以由下列之子矩陣 $k_{ij}$ (i = a, b, j = a, b)組合而成

$$\mathbf{k}_{aa} = \frac{\partial \mathbf{f}_{a}^{D}}{\partial \mathbf{u}_{a}} = \frac{EA}{L} \mathbf{G}_{a} \mathbf{G}_{a}^{t} + \frac{EI}{L^{2}} \int v_{,xx}^{2} dx \mathbf{G}_{a} \mathbf{G}_{a}^{t}$$
(2.7.3)

$$\mathbf{k}_{ab} = \mathbf{k}_{ba}^{t} = \frac{\partial \mathbf{f}_{a}^{D}}{\partial \mathbf{u}_{b}} = \frac{EA}{L} \mathbf{G}_{a} \mathbf{G}_{b}^{t} + \frac{EI}{\underline{L}^{2}} \int v_{,xx}^{2} dx \mathbf{G}_{a} \mathbf{G}_{b}^{t} - 2\frac{EI}{L} (1 - \varepsilon_{0}) \mathbf{G}_{a} \int v_{,xx} \mathbf{N}_{b}^{\prime\prime} dx$$

$$\mathbf{k}_{bb} = \frac{\partial \mathbf{f}_{b}^{D}}{\partial \mathbf{u}_{b}} = \frac{EA}{L} \mathbf{G}_{b} \mathbf{G}_{b}^{t} + EA\varepsilon_{0} \int \mathbf{N}_{b}^{\prime} \mathbf{N}_{b}^{\prime t} dx - \frac{2EI(1-\varepsilon_{0})}{L} \int \mathbf{N}_{b}^{\prime \prime} v_{,xx} dx \mathbf{G}_{b}^{t} + EI(1-\varepsilon_{0})^{2} \int \mathbf{N}_{b}^{\prime \prime} \mathbf{N}_{b}^{\prime \prime t} dx - \frac{2EI(1-\varepsilon_{0})}{L} \int \mathbf{N}_{b}^{\prime \prime \prime} v_{,xx} dx \mathbf{G}_{b}^{t}$$

$$(2.7.5)$$

因為 $v_{,x}$ 在元素較多時都將趨近於零,所以畫底線項可以忽略。 由(2.6.35)、(2.6.36)及(2.7.1)式,可得對應於 $\delta q^{\theta}$ 元素剛度矩陣 $k^{\theta}$ 的顯式, $k^{\theta}$ 

可以由下列之子矩陣
$$\mathbf{k}_{ij}^{\theta}(i=a,b,j=a,b)$$
組合而成  
 $\mathbf{k}_{aa}^{\theta} = \frac{\partial \mathbf{f}_{a}^{D\theta}}{\partial \mathbf{u}_{a}^{\theta}} = (\frac{EA}{L} - \frac{EI}{L^{2}}\int v_{,xx}^{2}dx)\mathbf{G}_{a}\mathbf{G}_{a}^{t}$ 
(2.7.6)

$$\mathbf{k}_{ab}^{\theta} = \mathbf{k}_{ba}^{\theta t} = \frac{\partial \mathbf{f}_{a}^{D\theta}}{\partial \mathbf{u}_{b}^{\theta}} = \frac{\partial \mathbf{f}_{a}^{D\theta}}{\partial \mathbf{u}_{b}} \frac{\partial \mathbf{u}_{b}}{\partial \mathbf{u}_{b}^{\theta}} = -\frac{2EI\varepsilon_{0}}{L} \mathbf{G}_{a} \int v_{,xx} \mathbf{N}_{b}^{\prime\prime} dx \mathbf{T}_{\theta b}^{1}$$
(2.7.7)

$$\mathbf{k}_{bb}^{\theta} = \frac{\partial \mathbf{f}_{b}^{D\theta}}{\partial \mathbf{u}_{b}^{\theta}} = \mathbf{T}_{\theta b}^{1t} (EI(1-\varepsilon_{0})^{2} \int \mathbf{N}_{b}^{"} \mathbf{N}_{b}^{"t} dx) \mathbf{T}_{\theta b}^{1} + f_{12}^{\theta} \int \mathbf{N}_{b}^{'} \mathbf{N}_{b}^{'t} dx$$
(2.7.8)

由(2.6.32)、(2.6.33)式可以知道元素慣性力 $\mathbf{f}_{\theta}^{I}$ 與元素節點位移、速度及加速 度有關,對應於 $\delta \mathbf{q}^{\theta}$ 、 $\delta \dot{\mathbf{q}}^{\theta}$ 及 $\delta \ddot{\mathbf{q}}^{\theta}$ 之慣性力改變量 $\delta \mathbf{f}_{\theta}^{I}$ 可以表示成

$$\delta \mathbf{f}_{\theta}^{I} = \Omega^{2} \mathbf{k}_{\Omega} \delta \mathbf{q}_{\theta} + \Omega \mathbf{c} \delta \dot{\mathbf{q}}_{\theta} + \mathbf{m} \delta \ddot{\mathbf{q}}_{\theta}$$
(2.7.9)

$$\mathbf{k}_{\Omega} = \frac{\partial \mathbf{f}^{\theta I}}{\Omega^2 \partial \mathbf{q}_{\theta}}$$
(2.7.10)  
$$\mathbf{c} = \frac{\partial \mathbf{f}^{\theta I}}{\Omega \partial \dot{\mathbf{q}}_{\theta}}$$
(2.7.11)  
$$\mathbf{m} = \frac{\partial \mathbf{f}^{\theta I}}{\partial \ddot{\mathbf{q}}_{\theta}}$$
(2.7.12)

其中 $\mathbf{k}_{\Omega}$ 為元素向心力剛度矩陣(centripetal stiffness matrix), m為元素質量矩陣(mass matrix), c為元素陀螺矩陣(gyroscopic matrix)。 本文中假設慣性力中速度及加速度與變形耦合項可以忽略,所以由(2.7.10)

至(2.7.12)式可得以下之近似式

$$\mathbf{k}_{\Omega} = \frac{\partial \mathbf{f}^{I}}{\Omega^{2} \partial \mathbf{q}} \tag{2.7.13}$$

$$\mathbf{c} = \frac{\partial \mathbf{f}^{I}}{\Omega \partial \dot{\mathbf{q}}} \tag{2.7.14}$$

$$\mathbf{m} = \frac{\partial \mathbf{f}^{I}}{\partial \ddot{\mathbf{q}}} \tag{2.7.15}$$

**k**<sub>Ω</sub>、**c**、**m**的顯式可以由下列之子矩陣**k**<sub>Ωij</sub>、**c**<sub>ij</sub>、**m**<sub>ij</sub> (*i* = *a*, *b*, *j* = *a*, *b*)組 合而成

$$\mathbf{k}_{\Omega aa} = \frac{\partial \mathbf{f}_a^I}{\Omega^2 \partial \mathbf{u}_a} = -\rho A (n_2^2 + n_3^2) \int \mathbf{N}_a \mathbf{N}_a^t dx$$
(2.7.16)

$$\mathbf{k}_{\Omega ab} = \mathbf{k}_{\Omega ba}^{t} = \frac{\partial \mathbf{f}_{a}^{I}}{\Omega^{2} \partial \mathbf{u}_{b}} = n_{1} n_{2} \rho A \int \mathbf{N}_{a} \mathbf{N}_{b}^{t} dx$$

$$\mathbf{k}_{\Omega bb} = \frac{\partial \mathbf{f}_b^I}{\Omega^2 \partial \mathbf{u}_b} = -(n_1^2 + n_3^2)\rho A \int \mathbf{N}_b \mathbf{N}_b^t dx$$

$$\mathbf{c}_{aa} = \frac{\partial \mathbf{f}_{a}^{I}}{\partial \dot{\mathbf{u}}_{a}} = \mathbf{0}$$

$$\mathbf{c}_{ab} = -\mathbf{c}_{ba}^{t} = \frac{\partial \mathbf{f}_{a}^{I}}{\Omega \partial \dot{\mathbf{u}}_{b}} = -2n_{3}\rho A \int \mathbf{N}_{a} \mathbf{N}_{b}^{t} dx$$

$$\mathbf{c}_{bb} = \frac{\partial \mathbf{f}_{b}^{I}}{\partial \dot{\mathbf{u}}_{b}} = \mathbf{0}$$

$$(2.7.17)$$

$$\mathbf{m}_{aa} = \frac{\partial \mathbf{f}_a^I}{\partial \ddot{\mathbf{u}}_a} = \rho A \int \mathbf{N}_a \mathbf{N}_a^t dx$$
(2.7.18)

$$\mathbf{m}_{ab} = \mathbf{m}_{ba}^{t} = \frac{\partial \mathbf{f}_{a}^{I}}{\partial \ddot{\mathbf{u}}_{b}} = \mathbf{0}$$

$$\mathbf{m}_{bb} = \frac{\partial \mathbf{f}_b^I}{\partial \ddot{\mathbf{u}}_b} = \rho A \int \mathbf{N}_b \mathbf{N}_b^t dx + \rho I \int \mathbf{N}_b^\prime \mathbf{N}_b^{\prime t} dx$$

其中 $\mathbf{f}_a^I \mathcal{A} \mathbf{f}_b^I$ 已在(2.6.30)及(2.6.31)式中定義。 由(2.3.6)式可知,當 $\beta = 0^\circ$ 時, $n_1 = n_2 = 0$ , $n_3 = 1$ ,故(2.7.16)-(2.7.18)式會 退化成

$$\mathbf{m}_{\Omega aa} = \frac{\partial \mathbf{f}_{a}^{I}}{\Omega^{2} \partial \mathbf{u}_{a}} = -\rho A \int \mathbf{N}_{a} \mathbf{N}_{a}^{t} dx \qquad (2.7.19)$$

$$\mathbf{m}_{\Omega ab} = \mathbf{m}_{\Omega ba}^{t} = \frac{\partial \mathbf{f}_{a}^{I}}{\partial \mathbf{u}_{b}} = \mathbf{0}$$

$$\mathbf{m}_{\Omega bb} = \frac{\partial \mathbf{f}_{b}^{I}}{\Omega^{2} \partial \mathbf{u}_{b}} = -\rho A \int \mathbf{N}_{b} \mathbf{N}_{b}^{t} dx$$

$$\mathbf{c}_{aa} = \frac{\partial \mathbf{f}_{a}^{I}}{\partial \dot{\mathbf{u}}_{a}} = \mathbf{0} \qquad (2.7.20)$$

$$\mathbf{c}_{ab} = -\mathbf{c}_{ba}^{t} = \frac{\partial \mathbf{f}_{a}^{I}}{\partial \dot{\mathbf{u}}_{b}} = -2\Omega\rho A \int \mathbf{N}_{a} \mathbf{N}_{b}^{t} dx$$

$$\mathbf{c}_{bb} = \frac{\partial \mathbf{f}_{b}^{I}}{\partial \dot{\mathbf{u}}_{b}} = \mathbf{0}$$

$$\mathbf{m}_{aa} = \frac{\partial \mathbf{f}_{a}^{I}}{\partial \ddot{\mathbf{u}}_{a}} = \rho A \int \mathbf{N}_{a} \mathbf{N}_{a}^{t} dx \qquad (2.7.21)$$

$$\mathbf{m}_{ab} = \mathbf{m}_{ba}^{t} = \frac{\partial \mathbf{f}_{a}^{I}}{\partial \ddot{\mathbf{u}}_{b}} = \mathbf{0}$$

由(2.7.17)式可知(2.7.14)式之陀螺矩陣c有以下的性質

$$\mathbf{c}^t = -\mathbf{c} \tag{2.7.22}$$

## 2.8 系統的運動方程式

旋轉梁系統的運動方程式可表示成

$$\boldsymbol{\varphi} = \mathbf{F}^{D}(\overline{\mathbf{Q}}) + \mathbf{F}^{I}(\Omega^{2}, \overline{\mathbf{Q}}, \dot{\overline{\mathbf{Q}}}, \ddot{\overline{\mathbf{Q}}}) = \mathbf{0}$$
(2.8.1)

其中 $\varphi$ 為系統的不平衡力、 $\mathbf{F}^D$ 和 $\mathbf{F}^I$ 為系統的節點變形力及慣性力,  $\Omega$ 為旋轉梁的轉速,  $\overline{\mathbf{Q}}$ 、 $\dot{\overline{\mathbf{Q}}} = \frac{\partial \overline{\mathbf{Q}}}{\partial t}$ 和 $\ddot{\overline{\mathbf{Q}}} = \frac{d^2 \overline{\mathbf{Q}}}{dt^2}$ 為在時間為t時系統的節點位移、速 度和加速度。 $\mathbf{F}^D$ 和 $\mathbf{F}^I$ 可以由(2.6.28)至(2.6.31)式之元素節點變形力及慣性 力從當前的元素座標轉換到總體座標後組合而成。

令 $\mathbf{Q}_s$ 表示旋轉梁在轉速為 $\Omega$ 時的穩態節點位移,因 $\dot{\mathbf{Q}}_s$ = $\ddot{\mathbf{Q}}_s$ = $\mathbf{0}$ ,所以由(2.8.1)式,旋轉梁系統的穩態平衡方程式可表示成

$$\boldsymbol{\varphi} = \mathbf{F}_s^D(\mathbf{Q}_s) + \Omega^2 \mathbf{F}_{sref}^I(\mathbf{Q}_s) = \mathbf{0}$$
(2.8.2)

其中 $\mathbf{F}_{s}^{D}(\mathbf{Q}_{s})$ 為對應於穩態變形 $\mathbf{Q}_{s}$ 的系統節點變形力,可以由(2.6.28)及 (2.6.29)式之元素節點變形力從元素座標轉換到總體座標後組合而成,  $\Omega^{2}\mathbf{F}_{sref}^{I}(\mathbf{Q}_{s})$ 為對應於穩態變形 $\mathbf{Q}_{s}$ 的系統節點慣性力,可以由(2.6.30)及 (2.6.31)式之元素節點慣性力中將速度及加速度項去掉,再從元素座標轉換 到總體座標後組合而成。(2.8.2)式為一非線性方程式,本文以基於牛頓法的 增量迭代法求出在不同轉速 $\Omega$ 下的穩態解,詳細的數值方法及程序將在第 三章中說明。

令 $\mathbf{Q}_d = \mathbf{Q}_d(t)$ 表示以 $\mathbf{Q}_s$ 為平衡點的微小振動,將 $\overline{\mathbf{Q}} = \mathbf{Q}_d + \mathbf{Q}_s$ 代入 (2.8.2)式,用泰勒級數在 $\overline{\mathbf{Q}} = \mathbf{Q}_s$ 展開,取到一次項,則旋轉梁微小振動的運動方程式可表示成

$$\mathbf{M}\mathbf{Q}_d + \mathbf{\Omega}\mathbf{C}\mathbf{Q}_d + (\mathbf{K} + \mathbf{\Omega}^2\mathbf{K}_{\Omega})\mathbf{Q}_d = \mathbf{0}$$
(2.8.3)

其中M為系統的質量矩陣,C為系統的陀螺矩陣(gyroscopic matrix),K和 $K_{\Omega}$ 為系統的剛度矩陣及向心力剛度矩陣(centripetal stiffness matrix)。M、C、K及 $K_{\Omega}$ 可以由(2.7.1)式及(2.7.13)至(2.7.15)式中元素之m、c、k及 $k_{\Omega}$ 從元素座標轉換到總體座標後組合而成。

若振動方程式(2.8.3)式存在自然振動頻率,則其解的形式可以表示如下

$$\mathbf{Q}_d = (\mathbf{Q}_R + i\mathbf{Q}_I)e^{i\lambda t}$$
(2.8.4)

其中i為虛數 $\sqrt{-1}$ , λ為自然頻率,  $Q_R$ 和 $Q_I$ 為對應於λ之振態的實部和虛部。

將(2.8.4)式代入(2.8.3)式,並由實部和虛部分別為零,可得一個 *l* 的二次特徵值問題

$$\mathbf{H}\mathbf{\Theta} = \mathbf{0} \tag{2.8.5}$$

$$\mathbf{H} = \mathbf{H}(\lambda, \Omega) = \begin{bmatrix} \mathbf{K} + \Omega^2 \mathbf{K}_{\Omega} - \lambda^2 \mathbf{M} & \lambda \Omega \mathbf{C}^t \\ \lambda \Omega \mathbf{C} & \mathbf{K} + \Omega^2 \mathbf{K}_{\Omega} - \lambda^2 \mathbf{M} \end{bmatrix}$$
(2.8.6)

$$\boldsymbol{\Theta} = \begin{cases} \mathbf{Q}_R \\ \mathbf{Q}_I \end{cases}$$

其中H為一對稱矩陣。

ES A

(2.8.7)

因(2.8.5)式為一齊次方程式(homogeneous equation),所以僅有當**H**的行列式 值 det  $|\mathbf{H}| = 0$ ,才有非零解,在固定轉速 $\Omega \neq 0$ 時,本文採用二分法解出满足 det  $|\mathbf{H}| = 0$ 的 $\lambda$ ,當轉速 $\Omega = 0$ 時,(2.8.5)式將退化成一廣義特徵值問題,本 文採用子空間法(subspace method)求其特徵值 $\lambda$ 及特徵向量 $\Theta$ ,詳細的數值 方法及程序將在第三章中說明。 本章將數值計算的方法及程序分作穩態解及振動頻率分析兩個部份,本章 中僅考慮設定角 $\beta = 0^{\circ}$ 之矩形斷面旋轉梁,令 $L_T$ 為旋轉梁的長度,b、t分 別為矩形斷面寬與高,則斷面的二次矩可表示成 $I = \frac{bt^3}{12}$ 。因旋轉梁一般在 彈性範圍內使用,大部分的工程材料的降伏應變 $\varepsilon_y <<1$ ,所以本文將限制 旋轉梁的最大轉速,使其最大應變儘量不超過0.01。若不考慮側向變形對 慣性力的影響,旋轉傾斜梁之穩態解造成的最大膜應變(membrane strain)及 撓曲應變(flexural strain)都發生在旋轉梁的根部,並可表示成(詳細推導在附 錄 B)

$$\varepsilon_{0\text{max}} = k^2 (r \cos \alpha + \frac{1}{2}) \text{ (3.1)}$$

$$\sqrt{3}k^2 \eta r \sin \alpha \text{ (3.2)}$$

$$\varepsilon_{bmax} = \frac{2}{2} \tag{3.2}$$

$$k = \Omega L_T \sqrt{\rho / E} \tag{3.3}$$

$$\eta = L_T \sqrt{A / I} \tag{3.4}$$

$$r = R / L_T \tag{3.5}$$

其中k為無因次轉速, $\rho$ 為密度,E為楊氏係數,r為無因次轉軸半徑, $\eta$ 為細長比,A為斷面面積。

旋轉傾斜梁之穩態解造成的最大應變為(3.1)和(3.2)式的和,所以其最大 應變與k<sup>2</sup>成正比,由(3.1)、(3.2)式可以估算旋轉梁運轉時的最大允許轉速, 但因(3.1)、(3.2)式為線性解,故分析時仍需要檢查非線性解的最大應變。為 了方便分析與討論,本章及下一章中將採用無因次變數k、r、η及無因次 自然頻率K

$$K = \lambda L_T \sqrt{\rho / E} \tag{3.6}$$

3.1 穩態解

為了簡潔,在不造成混淆的情況下,本節中將(2.8.2)式之下標s及上標D省 略,再令 $P(\mathbf{Q}) = \frac{\Omega^2}{k^2} \mathbf{F}_{sref}^{I}(\mathbf{Q})$ ,則旋轉梁系統的穩態平衡方程式可改寫成

$$\boldsymbol{\varphi} = \mathbf{F}(\mathbf{Q}) + k^2 \mathbf{P}(\mathbf{Q}) = \mathbf{0} \tag{3.7}$$

其中P稱為參考負荷,k稱為負荷參數。

本文以基於牛頓法的增量迭代法解非線性代數方程式(3.1)式,求得在 不同無因次轉速k下,旋轉梁的節點位移向量Q。

3.1.1 增量迭代數值計算方法

本文中將選定之最大負荷參數,即最大無因次轉速 $k_{max}$ 等分成數個增量 負荷參數 $\Delta k$ ,若第I個增量的平衡位置為已知,即其位移向量為 $Q_I$ 、負荷參數 為 $k_I$ 為已知,則對應於第I+1個增量之負荷參數 $k = k_I + \Delta k$ 的初始增量位移向 量 $\Delta Q$ ,可利用尤拉預測值(Euler predictor)[19]求得

$$\Delta \mathbf{Q} = -(2k_I + \Delta k)\Delta k \mathbf{K}_T^{-1} \mathbf{P}$$
(3.8)

$$\mathbf{K}_{T} = \frac{\partial \mathbf{\phi}}{\partial \mathbf{Q}}\Big|_{\mathbf{Q} = \mathbf{Q}_{I}} \quad , \quad \mathbf{P} = \mathbf{P}(\mathbf{Q}_{I})$$
(3.9)

其中 $\mathbf{K}_T = \mathbf{K} + \Omega^2 \mathbf{K}_\Omega$ 為第I個增量的平衡位置之系統切線剛度矩陣,  $\mathbf{K} \rightarrow \mathbf{K}_\Omega$ 為系統的剛度矩陣及向心力剛度矩陣。

由Q=Q<sub>1</sub>+ΔQ可求得每個元素當前的元素座標及節點變形位移,將其代入 (2.6.30)、(2.6.31)、(2.6.35)及(2.6.36)式,可算出元素的節點變形力及慣性力,將 元素的節點力轉換到總體座標,可組合得到(3.7)式之不平衡力φ,再依牛頓法, 可得位移修正量如下:

$$\delta \mathbf{Q} = -\mathbf{K}_T^{-1} \mathbf{\varphi} \tag{3.10}$$

其中 $\phi$ 為不平衡力, $K_T$ 為當前的系統切線剛度矩陣。

將求得的位移修正量 $\delta Q$ ,加入上次迭代之Q中,可得新的節點位移向量,再進行下一次迭代,此過程一直重複至(3.7)式中的不平衡力滿足斂準則為止。本文以不平衡力 $\varphi$ 的 weighted Euclidean norm 做為平衡迭代時的誤差度量,所使用的收斂準則為

$$e = \frac{\|\mathbf{\varphi}\|}{k^2 \sqrt{N} \|\mathbf{P}\|} = e_{tol}$$
(3.11)

其中 $\|\bullet\|$ 為•的歐幾里德範數(Euclidean norm), N 為方程式的數目,  $e_{tol}$ 為一設定的容許誤差,本文中取 $e_{tol} = 10^{-5}$ 。

3.1.2 數值程序

本文所使用的增量迭代法之數值之數值程序可以分成三個部分:

- 1. 輸入與計算開始分析所需要的資料
  - (a) 輸入結構資料及給定外力負荷參數的最大值。
  - (b) 給定增量數、最大迭代數及收斂時的容許誤差。
  - (c) 計算增量負荷參數、負荷參數、
  - (d) 用(3.9)式計算系統切線剛度 $\mathbf{K}_T = \mathbf{K} + \Omega^2 \mathbf{K}_{\Omega}$ 、參考負荷 $\mathbf{P}$ 。
- 2.使用迭代法求在已知負荷參數的收斂解
  - (a) 利用(3.8)式求初始增量位移向量 $\Delta Q$ 。
  - (b) 將前一個平衡位置的節點位移向量 $\mathbf{Q}_1$ 加上 $\Delta \mathbf{Q}$ 得到 $\mathbf{Q}_2$ 。
  - (c) 由Q中萃取元素之節點位移,計算出當前的元素座標及元素的節點力,再 計算(3.7)式之不平衡力φ。
  - (d) 檢查(3.11)式的收斂準則,若滿足則進行(e);若不滿足,檢查迭代次數, 若迭代次數小於給定之最大迭代次數,則利用(3.10)式求得位移修正向量 δQ,將當前的節點位移向量Q加上δQ得到一個新的Q,再回2(c)進行 迭代;若迭代次數大於最大迭代次數則停止迭代並印出迭代相關資料。
  - (e) 檢查增量次數是否大於最大增量次數, 若滿足, 則完成增量迭代步驟; 若

不满足,則進行步驟3。

- 3.計算下一次增量所需要的資料
  - (a) 計算(3.9)式中的切線剛度及參考負荷。
  - (b) 計算下一次增量的負荷參數。
  - (c) 回到2 執行迭代工作。

3.2 振動分析

本節將說明求旋轉梁自然頻率及振動模態的計算程序。本文先用本文採用子 空間法(subspace method)[20],求出當無因次轉速*k*=0時的無因次自然頻率 *K*及特徵向量**Q**,將由 3.1 節之增量迭代法求得對應於無因次轉速*k* 的穩態 解代入(2.8.6)式中,再以二分法(bisection method)[21]解(2.8.5)式。

(2.8.5)式之H(K)可分解成H(K)=LDL<sup>t</sup>,其中L為下三角矩陣,D為對角線矩陣,其對角線元素的值皆為1。

$$D(K) = \det |\mathbf{H}(K)| = 0 \tag{3.12}$$

其中D(K)為H(K)的行列式值,其值為D矩陣之對角線元素的乘積。

若K<sub>B</sub>滿足D(K<sub>B</sub>)=0,則K<sub>B</sub>為旋轉梁之一無因次自然頻率。由於H的 維數隨著元素數目的增加而變大,為了避免其行列式的數值過大,所以本文中將 D(K)做以下的標準化(normalization)處理:

$$\overline{D}(K) = \frac{D(K)}{D(K_0)}$$
(3.13)

其中K<sub>0</sub>為一參考值。

本文解(3.12)式所採用的計算程序如下:

設定需要的自然頻率的數目,先用子空間法(subspace method)求出當無

因次轉速k = 0時的無因次自然頻率K及特徵向量Q。若第I個增量的穩態平衡位置已求出,即其位移向量為 $Q_I$ 、負荷參數 $k_I$ 為已知,先以前一個無因次轉速 $k_{I-1}$ 得到之無因次自然頻率為參考值,設定無因次自然頻率的起始值 $K_0$ 及增量 $\Delta K$ ,計算 $D(K_0)$ 中負的對角線元素的數目 $N_0$ ,設定容許誤差 $e_{tol}$ 及 $e_{tol2}$ ,本文中取 $e_{tol} = 10^{-7}$ , $e_{tol2} = 10^{-5}$ 。 (A)

- (1)令 $K_n = K_0 + (n-1)\Delta K$  (n = 1, 2, 3, ...), 由 $K_n \cdot k_I \cdot K \mathcal{B} \mathbf{Q}_I$ 計算 $\mathbf{D}(K_n)$ , 一直到相鄰兩個 $\mathbf{D}(K_n)$ 中,負的對角線元素的數目不一樣。
- (2)令 $K_L = K_{n-1}$ ,  $K_R = K_n$ , 其中下標 $L \mathcal{D} R \mathcal{O}$ 別代表根的左邊極限及右邊極 限。
- (3)以二分法取 $K_B = \frac{K_L + K_R}{2}$ ,並重新計算 $D(K_B)$ ,及其負的對角線元素的 數目 $N_B$ 。 (4)若 $N_B = N_0$ ,取 $K_L = K_B$ ;若 $N_B > N_0$ ,取 $K_R = K_B$ 。 (5)若 $\frac{K_R - K_L}{K_B} < e_{tol}$ ,且 $\overline{D}(K_B) < e_{tol2}$ ,則取 $K_B$ 為(3.12)式之解,繼續進行 步驟(B)表振態,否則回到步驟(3)。

#### **(B)**

(1)將  $\mathbf{H}(K_R)$  分解成  $\mathbf{H}(K_R) = \mathbf{LDL}^t$ 。

(2)找出對角線矩陣D中元素之絕對值有最小值的行,令該行為第k行。
(3)令振態之第k個分量的值為1,再將(2.8.5)式改寫成

$$\begin{bmatrix} H_{1,1} & \cdots & H_{1,k-1} & 0 & H_{1,k+1} & \cdots & H_{1,2N} \\ \vdots & & \vdots & & & \\ H_{k-1,1} & 0 & & H_{k-1,2N} \\ 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ H_{k+1,1} & 0 & & H_{k+1,2N} \\ \vdots & & \vdots & & \vdots \\ H_{2N,1} & 0 & & H_{2N,2N} \end{bmatrix}_{2N\times 2N} \begin{bmatrix} \Theta_1 \\ \vdots \\ \Theta_{k-1} \\ \Theta_k \\ \Theta_{k+1} \\ \vdots \\ \Theta_{2N} \end{bmatrix}_{2N\times 1} = \begin{cases} -H_{1,k} \\ \vdots \\ -H_{k-1,k} \\ 1 \\ -H_{k+1,k} \\ \vdots \\ -H_{N,k} \\ 2N\times 1 \end{cases}$$

$$(3.14)$$

(4)利用高斯消去法求解(3.14)式得到振態 Θ。

(5)將 $\Theta$ 除以其分量中絕對值最大的分量 $\Theta_{max}$ ,即

$$\overline{\Theta} = \frac{\Theta}{\Theta_{\text{max}}}$$
(3.15)

(6)以步驟(A)求得之K<sub>B</sub>及前一個無因次轉速k<sub>I-1</sub>得到之無因次自然頻率為 參值,設定無因次自然頻率的起始值K<sub>0</sub>及增量ΔK,回到步驟(A)繼續求 下一個自然頻率及振動模態。



#### 第四章 數值例題

如同第三章,本章中僅考慮設定角 $\beta = 0^{\circ}$ 之矩形斷面旋轉傾斜 Euler 梁,本章將分析不同細長比 $\eta((3.4)$ 式)、無因次轉軸半徑r((3.5)式)、傾斜角  $\alpha$ 的旋轉傾斜梁在不同的無因次轉速k((3.3)式)下之穩態解、無因次自然頻 率K((3.6)式)及振態。當無因次轉速k = 0時,無因次振動頻率 K僅與梁的 細長比 $\eta$ 有關且其軸向和側向振態不互相耦合;當 $r \neq 0$ 、 $k \neq 0$ 、 $\alpha = 0$ 時, 由(2.5.17)、(2.5.28)、(2.6.32)、(2.6.33)式可知梁未變形時慣性力僅有軸向分 量,故旋轉梁的穩態解僅有軸向變形,但由文獻[16]或(2.7.17)式可知因科氏 力不為零,故其軸向和側向振態互相耦合;當 $r \neq 0$ 、 $k \neq 0$ 、 $\alpha \neq 0$ 時,由 (2.5.17)、(2.5.28)、(2.6.32)、(2.6.33)式可知梁未變形時慣性力有軸向和側向 分量,故旋轉梁的穩態解有軸向和側向變形,因穩態解有軸向和側向變形, 所以其振態含軸向和側向分量。本章中第i 個振態指的是對應於無因次轉速 k = 0時的第i 個無因次自然頻率 $K_i$ 之振態,軸向振態指的是該振態在無因 次轉速k = 0時的振動是軸向振動,側向振態指的是該振態在無因次轉速k =0時的振動是側向振動。

本章中將考慮不同的無因次轉軸半徑  $r((3.5)式)、細長比<math>\eta((3.4)式)$ 、傾斜角 $\alpha$ 。為了方便計算,但不失一般性,本章中採用旋轉梁的長度  $L_T = 1m$ 、梁的斷面寬度b = 0.1m、密度 $\rho = 7.8 \times 10^3 kg / m^3$ 、彈性模數 $E = 2.1 \times 10^{11}$  $N/m^2$ ,若給定r、 $\eta$ 、k,則可決定梁的斷面的厚度t、面積A、斷面的二次矩I、轉軸半徑R、旋轉梁的轉速 $\Omega$ 。

因本文在推導時假設穩態解的應變 $\varepsilon \ll 1$ ,所以本文中將穩態解的允許 最大應變定為 $10^{-2}$ 。本文將限制旋轉梁的最大無因次轉速轉速k,使其最大 膜應變(membrane strain) $\varepsilon_{0max}$ 和最大撓曲應變(flexural strain) $\varepsilon_{bmax}$ 的和儘量 不超過 $10^{-2}$ 。由附錄 B 可知旋轉梁的最大膜應變和最大撓曲應變為 $k \sim r \sim \eta$ 、

α的函數,所以具不同η、α、r的旋轉梁有不同的最大無因次轉速。4.1 收斂分析

本節在探討使用不同的元素數目 N 時,旋轉傾斜 Euler 梁之自然頻率的 收斂情形。在無因次轉軸半徑 r = 1.5 時,本節中考慮了傾斜角 $\alpha = 5^{\circ} \times 30^{\circ} \times 75^{\circ} \times 90^{\circ}$ 四種情況。表一至表六為旋轉傾斜 Euler 梁在細長比 $\eta = 10 \times 20 \times 50 \times 100 \times 500 \times 1000$ 時之最大膜應變 $\varepsilon_0$ 、最大撓曲應變 $\varepsilon_b$ 、無因次端點側 向位移 $V_{tip}/L_T$ 及前七個無因次自然頻率 $K_i(i=1\sim7)$ 。由表一至六可發現,隨 著元素數目的增加,相同細長比及傾斜角所對應的無因次振動頻率 $K_i$ 變化 幅度愈小,當元素數目為 50 時,振動頻率變化幅度大約小於 $10^{-4}$ ,已足夠 精確,因此在本章的其他例題皆使用 50 個元素。

4.2 準確性分析

為探討本文方法的準確性,本節中分析了文獻[14]的例題並與其結果比較。本節中首先考慮了無因次轉軸半徑r=1、細長比 $\eta=70$ 、無因次轉速k=5/70的旋轉梁,表七為本文的結果及文獻[14]的結果。由表七可以發現除了傾斜角 $\alpha = 0^{\circ}$ 外,最大膜應變 $\varepsilon_0$ 、最大撓曲應變 $\varepsilon_b$ 都遠大於本文的允許最大應變 $10^{-2}$ ,所以表七的結果僅供比較用。由表七可以發現當傾斜角 $\alpha = 0^{\circ}$ 時,側向位移的穩態解為零,本文的結果及文獻[14]的結果相當接近,但因文獻[14]沒有考慮梁的轉動慣量項,故仍有些微的不同;當傾斜角 $\alpha$ 逐漸增加時,穩態側向位移逐漸增加,本文及文獻[14]的無因次振動頻率 $K_1$ 之差異逐漸增加,這可能是因文獻[14]沒有考慮梁的側向位移的穩態解造成的。

本節中還分析了無因次轉軸半徑r=1、不同細長比η、不同無因次轉速 k之旋轉梁的穩態變形,並與附錄 B 的線性解及文獻[16]的結果比較,由表 八可以發現當η=100時,線性解與本文的非線性解的差異不太大,但當 η=500、1000時,線性解比本文的非線性解大很多,這應是離心力引起的

軸向拉力會增加梁的側向剛度,且其影響隨細長比 $\eta$ 增加而增加。當  $V_{tip}/L_T < 0.2$ 時,文獻[16]的級數解與本文的非線性解的相當接近,但隨著 側向位移的穩態解增大兩者的差異逐漸增大,這應是因文獻[16]沒有考慮離 心力引起的側向力是側向位移的函數,且文獻[16]在推導其統御方程式時, 僅取到變形二次項,所以側向位移太大時,其結果應不準確。由表八可以 發現對相同的傾斜角 $\alpha$ ,當 $\eta k$ 有相同的值時,本文的 $V_{tip}/L_T$ 之值非常接近, 文獻[16]的 $V_{tip}/L_T$ 有相同的值,由文獻[16]可以發現當 $\eta^2 k^2 r \sin \alpha$  有相同的值 時,旋轉傾斜梁在不同的無因次轉速下之無因次穩態側向位移 $V/L_T$  有相同 的無因次統馭方程式,故其 $V_{tip}/L_T$  有相同的值。

4.3 個案分析

本節中將探討具不同無因次轉軸半徑 r、細長比η及傾斜角α之旋轉傾 斜 Euler 梁在不同無因次轉速 k 的穩態解、無因次振動頻率 K 及振態。

當無因次轉速 k=0時,無因次振動頻率 K僅與細長比η有關且其軸向 1896 和側向振態不互相耦合,表九為 k=0時不同細長比η之旋轉梁的的前七個 無因次振動頻率 K<sub>i</sub>(i=1~7),表九中(a)表示該振動頻率對應的振態為軸向 振態,由表九可以發現當η=38-40時,第一個軸向振態對應的振動頻率和 第三個側向振態對應的振動頻率相當接近,且第二個軸向振態對應的振動 頻率和第五個側向振態對應的振動頻率相當接近,η=75-80時,第一個軸 向振態對應的振動頻率和第四個側向振態對應的振動頻率相當接近。

當r=0、 $k \neq 0$ 時,如前所述,因科氏力不為零,故其軸向和側向振態 互相耦合,表十為r=0、 $k \neq 0$ 時,不同細長比 $\eta$ 之旋轉梁在不同無因次轉 速k的前七個無因次振動頻率 $K_i(i=1\sim7)$ ,表十中(a)表示該振動頻率對應 的振態在k=0時為軸向振態,當 $r \neq 0$ 、 $k \neq 0$ 、 $\alpha = 0$ 時,由文獻[16]或 (2.5.17)、(2.5.28)、(2.6.33)式可知旋轉梁的穩態解僅有軸向變形,但由文獻 [16]或(2.7.17)式可知因科氏力不為零,故其軸向和側向振態互相耦合。

表十一到表三十七為無因次轉軸半徑r=0.5、1、1.5,傾斜角 $\alpha=0^{\circ}$ 、5°、  $10^{\circ}$ 、 $15^{\circ}$ 、 $30^{\circ}$ 、 $45^{\circ}$ 、 $60^{\circ}$ 、 $75^{\circ}$ 、 $90^{\circ}$ , 細長比 $\eta = 10$ 、20、50、100、500、 1000之旋轉梁在不同無因次轉速k的最大膜應變 $\varepsilon_0$ 、撓曲應變 $\varepsilon_b$ 、無因次 端點側向位移 $V_{tin}/L_T$ 及前七個無因次振動頻率 $K_i$ ( $i=1\sim7$ )。由表中可以發現 當傾斜角 $\alpha = 0^{\circ}$ 、5°,細長比 $\eta = 10$ 、20時,旋轉傾斜梁最大的無因次轉速 *k* 主要由最大膜應變  $ε_0$  決定,當傾斜角  $α ≠ 0^\circ$ 、細長比η>20 時,旋轉傾斜 梁最大的無因次轉速 k 主要由最大撓曲應變 Eh 決定;本文中考慮的最大無 因次轉速隨著傾斜角 $\alpha$ 和細長比 $\eta$ 的增加而減少,當傾斜角 $\alpha = 0^{\circ}$ 、5°、 10°、15°時,本文中最大無因次轉速取 k=0.06、0.03、0.02、0.01,當傾斜 角α≥30°、細長比η≤100時,本文中最大無因次轉速取k=0.01,當傾斜角  $\alpha \ge 30^{\circ}$ 、細長比 $\eta \ge 100$ 時,本文中最大無因次轉速 k 隨著傾斜角  $\alpha$  和細長 比7的增加而减少。由表十一到表三十七中可以發現無因次轉速 k 對無因次 振動頻率 $K_i$ ( $i = 1 \sim 7$ )的影響隨著i的增加而減少,但隨著細長比 $\eta$ 及無因次 轉軸半徑 r 的增加而增加; 側向振動頻率  $K_i$  隨著無因次轉速 k 增加而增加, 且i愈小、細長比 $\eta$ 愈大、無因次轉軸半徑r愈大時,其增加率愈明顯。在 細長比 $\eta \leq 100$ ,相同無因次轉速k下,傾斜角 $\alpha$ 對側向振動頻率 $K_i$ 似乎影 響不是很大。

圖八至圖十六為細長比η=80、100、1000、傾斜角α=5°、30°、90°時, 旋轉傾斜梁在不同無因次轉速k的穩態變形、穩態軸向及側向位移,圖中的 穩態變形在X、Y方向是依相同的尺度繪製,故為旋轉梁真正的變形圖。由 圖八及圖十一可以發現當傾斜角α=5°、η=80、100時,側向位移很小, 因離心力的效應,軸向位移是正的;其餘的情況,因側向位移較大,其效 應大於離心力的效應,故軸向位移是負的。

本章中將旋轉梁的振態分成 $X_1$ 和 $X_2$ 的分量, $U_R + iU_I = |U|e^{i\phi_u}$ 及

圖十七至圖二十八為無因次轉軸半徑 r=1、細長比 $\eta=50$ 、100、1000、 傾斜角 $\alpha=0^{\circ}$ 、5°、30°、90°時,在不同無因次轉速k下,對應於前六個振 動頻率的振動模態及相角。因為在無因次轉速k=0時, $\phi_u = \phi_v = 0$ ,且在傾 斜角 $\alpha=0^{\circ}$ 、無因次轉速 $k \neq 0$ 時, $\phi_u = 0$ 、 $\phi_v = \frac{\pi}{2}$ ,所以在其振動模態圖中 中沒有繪出相角。由圖十七至圖二十八可以發現當無因次轉速k=0時,其 軸向和側向振態不互相耦合。

由圖十七到二十四可以發現當細長比 $\eta = 50 \ Q \ 100 \ Berter, 其第四個振態及$  $第五振態分別為其第一個軸向振態,當<math>k \neq 0$ Berter, 可以看出該振態有側向分 量,其側向分量的大小隨著無因次轉速k、傾斜角 $\alpha$ 和細長比 $\eta$ 增加而增加, 但其軸向分量的形狀和大小與k = 0 Berter, 由圖十七到二十四亦可以 發現其餘的振態皆為側向振態,當 $k \neq 0$ Berter, 可以看出這些振態有軸向分量, 其軸向分量的大小隨著無因次轉速k、傾斜角 $\alpha$ 和細長比 $\eta$ 增加而增加, 但 其側向分量的形狀和大小與k = 0 Berter, Berter,

由圖二十五到二十八可以發現當細長比η=1000時,所有的振態皆為側 向振態,當k≠0時,可以看出這些振態有軸向分量,其軸向分量的大小隨 著無因次轉速k、傾斜角α增加而增加,且其側向分量的形狀和大小與k=0 時有相當的改變。

當傾斜角 $\alpha \neq 0^{\circ}$ 時,側向穩態位移隨傾斜角 $\alpha$ 、無因次轉速k及細長比  $\eta$ 增加而變大,所以以穩態解為平衡點的振動都是軸向與側向耦合的振動,

且其耦合的程度隨傾斜角 $\alpha$ 、無因次轉速k及細長比 $\eta$ 增加而增加。當傾斜 角 $\alpha = 0^{\circ}$ 時,旋轉梁的穩態解僅有軸向變形,但因科氏力不為零,故其軸向 和側向振態互相耦合,由圖十七,細長比 $\eta = 50$ 的第四個振態及圖二十一, 細長比 $\eta = 100$ 的第五振態可以發現振態耦合的現象,文獻[22]中提到當兩 個振動頻率愈接近,其對應振動模態的耦合愈明顯,由表九可以發現在無 因次轉速k = 0時,細長比 $\eta = 50$ 的第三及第四個無因次振動頻率為 1.21530 及 1.57086,細長比 $\eta = 100$ 的第四及第五個無因次振動頻率為 1.20047 及 1.57086,這兩組振動頻率分別為 $\eta = 50$ 和 100之前六個無因次振動頻率中 最接近的無因次振動頻率,所以其耦合的現象最明顯。

4.4 旋轉梁之特徵值曲線轉向(Eigenvalue curve veering)分析

由上節的例題可以發現旋轉傾斜梁的無因次振動頻率會隨著無因次轉 速k改變,且兩個振動頻率愈接近,其對應振動模態的耦合愈明顯,但上 節的例題因振動頻率不夠接近,並未發現特徵值曲線轉向(Eigenvalue curve veering)及振態交換[23,24]的現象,本節中將考慮不同細長比η的旋轉梁, 探討旋轉梁之特徵值曲線轉向及振態交換的現象。

表三十八到表四十五為無因次轉軸半徑r=1,細長比 $\eta=38$ 、38.5、39、 40、77、78、79、80,傾斜角 $\alpha=0^{\circ}$ 、5°、10°、15°、30°、45°、60°、75°、 90°之旋轉梁在不同無因次轉速k的前六個無因次振動頻率 $K_i$ (i=1-6),圖 二十九為無因次振動頻率-無因次轉速曲線,圖三十到四十五為細長比  $\eta=38、39、40、77,傾斜角\alpha=0^{\circ}、5°、30°、90°時,在不同無因次轉速$ <math>k下,對應於前六個振動頻率的振動模態。由上述的表及圖中可以發現當傾 斜角 $\alpha=0^{\circ}$ ,細長比 $\eta=38.5$ 、39、77、78、79、80時,有無因次振動頻率 曲線轉向及振態交換的現象,圖三十四中,無因次轉速k=0、0.004,振態 3和4對應的無因次振動頻率分別為 $K_3$ 和 $K_4$ ,但無因次轉速k=0.005、 0.006,振態 3和4對應的無因次振動頻率分別為 $K_4$ 和 $K_3$ ;圖四十二中,

無因次轉速k=0、0.002,振態4和5對應的無因次振動頻率分別為 $K_4$ 和 $K_5$ ,但無因次轉速k=0.003、0.004,振態4和5對應的無因次振動頻率分別為 $K_5$ 和 $K_4$ 。除了上述情況外,圖三十到四十五中,振態i(i=1-6)對應的無因次自然頻率為 $K_i$ 。由表九可以發現在無因次轉速k=0時,細長比 $\eta=38$ 、39、40的旋轉梁除了第三及第四個無因次振動頻率外,第六及第七個無因次振動頻率亦相當接近,所以由圖三十到四十一中可以發現除了第三及第四個振態外,第六振態亦有明顯的振態耦合現象。



### 第五章 結論與展望

本研究採用共旋轉有限元素法探討設定角為0°之等速旋轉的傾斜尤拉 梁的穩態變形及以該穩態變形為平衡點的微小振動之自然振動頻率。本文 中僅考慮梁的軸向位移及單一個側向位移和旋轉二維運動,本研究採用 d'Alembert 原理、虛功原理、幾何非線性梁理論的一致線性化,在梁元素當 前之元素座標上推導節點慣性力和節點變形力,將元素的節點力轉到總體 座標後組合成系統的非線性運動方程式。當設定角為0°時,旋轉梁的軸向 和側向穩態變形都不為零,本研究將旋轉梁的運動方程式的時間函數去掉 求得系統穩態平衡方程式,再用基於牛頓法的增量迭代法求出軸向位移及 側向位移的穩態解,將運動方程式在穩態平衡位置用泰勒級數展開,取到 一次項,求得旋轉傾斜梁的振動方程式,假設自然振動頻率存在,可獲得 一組代數齊次方程式,該組齊次方程式係數形成之矩陣的行列式為零時, 即可求得旋轉梁以穩態解為平衡點的自然振動的頻率及其對應的振態。

由本研究的數值例題可以得到以下的結論:

- 旋轉梁的側向穩態位移隨傾斜角α、無因次轉速 k 及細長比η增加而 變大,且以穩態解為平衡點的振動都是軸向與側向耦合的振動,且 其耦合的程度隨傾斜角α、無因次轉速 k 及細長比η增加而增加。
- 2. 旋轉梁的最大的無因次轉速 k 在傾斜角α=0°、5°,細長比η=10、
   20 時,主要由穩態解之最大膜應變決定,當傾斜角α≠0°、細長比 η>20 時,主要由穩態解最大撓曲應變決定。
- 由離心力引起的軸向拉力會增加梁的側向剛度,且其影響隨細長比 增加而增加。

- 4. 無因次轉速 k 對第 i 個無因次振動頻率 K<sub>i</sub>的影響隨著 i 的增加而減 少,但隨著梁的細長比η及無因次轉軸半徑 r 的增加而增加; 無因次 側向振動頻率隨著無因次轉速k 增加而增加,且 i 愈小、細長比η愈 大、無因次轉軸半徑 r 愈大時,其增加率愈明顯。
- 5. 梁的無因次振動頻率會隨著無因次轉速 k 改變,且兩個振動頻率愈接近,其對應振動模態的耦合愈明顯。在傾斜角為0°且細長比 η=38-40、77-80時,可發現當兩個振動頻率很接近時會發生特徵值 曲線轉向(Eigenvalue curve veering)及振態交換的現象。

本研究僅探討設定角為0°時,旋轉傾斜尤拉梁穩態變形及振動,其運動是二維的運動,以後的研究應考慮設定角不為0°時的旋轉傾斜尤拉梁的穩態變形及振動,其運動是三維的運動。



# 參考文獻

- A. Leissa, "Vibrational Aspects of Rotating Turbomachinery Blades", ASME Applied Mechanics Reviews, Vol. 34, 1981, pp. 629-635.
- [2] V. Ramamurti, P. Balasubramanian, "Analysis of Turbomachinery Blades A Review," The Shock, Vibration Digest, Vol. 16, 1984, pp. 13-28.
- [3] M. J. Schilhansl, "Bending Frequency of a Rotating Cantilever Beam", ASME Journal of Applied Mechanics, Vol. 25, 1958, pp. 28-30.
- [4] S. Y. Lee, Y. H. Kuo, "Bending frequency of a rotating beam with an elastically restrained root", ASME Journal of Applied Mechanics, Vol. 58, 1991, pp. 209-214.
- [5] T. Yokoyama, "Free Vibration Characteristics of Rotating Timoshenko Beam", International Journal of Mechanical Science, Vol. 30, No. 10, 1988, pp. 743-755.
- [6] S. Y. Lee, S. M. Lin, "Bending Vibration of Rotating nonuniform Timoshenko Beams with an Elastically Restrained Root", ASME Journal of Applied Mechanics, Vol. 61, 1994, pp. 949-955.
- [7] C. D. Eick, M. P. Mignolet, "Vibration and buckling of flexible Rotating Beams", AIAA Journal, Vol. 33, No. 3, 1995, pp. 526-538.
- [8] J. C. Simo, L. V. Quoc, "The role of non-linear theories in transient dynamic analysis of flexible structures", Journal of Sound and Vibration, Vol. 119, 1987, pp. 487-508.
- [9] S. C. Lin, K. M. Hsiao, "Vibration analysis of a rotating Timoshenko beam", Journal of Sound and Vibration, Vol. 240(2), 2001, pp. 303-322.
- [10] 洪船島, 旋轉梁結構之振動分析, 國立交通大學機械工程研究所碩士

論文,臺灣,新竹,1997.

- [11] 周志芳,旋轉梁之自由振動的級數解法,國立交通大學機械工程研究 所碩士論文,臺灣,新竹,1998.
- [12] 黃志傑, 旋轉三維 Timoshenko 梁之振動分析, 國立交通大學機械工程 研究所碩士論文, 臺灣, 新竹, 2001.
- [13] 許哲嘉, 旋轉傾斜梁之動態分析, 國立成功大學機械工程學系博士論 文, 臺灣, 臺南, 2006.
- [14] S. Y. Lee, J. J. Sheu, "Free Vibrations of a Rotating Inclined beam", ASME Journal of Applied Mechanics, Vol. 74, 2007, pp. 406-414.
- [15] S. Y. Lee, J. J. Sheu, "Free Vibrations of an Extensible Rotating Inclined Timoshenko beam", Journal of Sound and Vibration, Vol. 304, 2007, pp. 606-624.
- [16] 顏宏儒,旋轉傾斜梁之穩態及自由振動分析,國立交通大學機械工程 研究所碩士論文,臺灣,新竹,2008.
- [17] T. J. Chung, Continuous Mechanics, Prentice-Hall, Inc., Englewood Cliff, New Jersey, 1988.
- [18] J. M. Gere, Mechanics of Materials, fifth edition, 2000.
- [19] A. J. Sommese, C. W. Wampler, The Numerical solution of systems of polynomials arising in engineering and science, 2005.
- [20] K. J. Bathe, Finite element procedure, Prentice-Hall, New Jersey, 1996.
- [21] S. S. Rao, Engineering optimization: theory and practice, third edition, 2000.
- [22] P. Marugabandhu, J. H. Griffin, "A Reduced-Order Model for Evaluating the Effect of Rotational Speed on the Natural Frequencies and Mode Shapes of Blades", ASME Journal of Engineering for Gas Turbines and Power, Vol.

125, 2003, pp. 772-776.

- [23] X. Chen, A. Kareem, "Curve Veering of Eigenvalue Loci of Bridges with Aeroelastic Effects", Journal of Engineering Mechanics, Vol. 129, No. 2, 2003, pp. 146-159.
- [24] J. L. du Boisa, S. Adhikarib, Nick A. J. Lieven, "Eigenvalue curve veering in stressed structures: An experimental study", Journal of Sound and Vibration, Vol. 322, 2009, pp. 1117-1124.



| α            | 元素<br>數目 | k    | $\varepsilon_0 (10^{-3})$ | $\varepsilon_b (10^{-3})$ | $\frac{V_{tip}}{(10^{-3})}$ | <i>K</i> <sub>1</sub> | $K_{2}\left(a ight)$ | <i>K</i> <sub>3</sub> | $K_4$   | $K_5(a)$ | $K_6$   | <i>K</i> <sub>7</sub> |
|--------------|----------|------|---------------------------|---------------------------|-----------------------------|-----------------------|----------------------|-----------------------|---------|----------|---------|-----------------------|
| $5^{\circ}$  | 10       | 0.03 | 1.72672                   | 1.00662                   | 1.44842                     | .346300               | 1.57297              | 1.91534               | 4.64752 | 4.75786  | 7.82258 | 8.05791               |
|              | 20       |      | 1.76145                   | 1.00806                   | 1.44846                     | .346288               | 1.57176              | 1.91526               | 4.64593 | 4.72569  | 7.81539 | 7.90662               |
|              | 40       |      | 1.77854                   | 1.00843                   | 1.44847                     | .346286               | 1.57146              | 1.91524               | 4.64560 | 4.71775  | 7.81356 | 7.87006               |
|              | 50       |      | 1.78193                   | 1.00848                   | 1.44847                     | .346285               | 1.57142              | 1.91524               | 4.64556 | 4.71681  | 7.81324 | 7.86581               |
|              | 80       |      | 1.78701                   | 1.00853                   | 1.44847                     | .346285               | 1.57138              | 1.91524               | 4.64552 | 4.71578  | 7.81285 | 7.86126               |
|              | 100      |      | 1.78870                   | 1.00854                   | 1.44847                     | .346285               | 1.57137              | 1.91524               | 4.64551 | 4.71554  | 7.81275 | 7.86022               |
| $30^{\circ}$ | 10       | 0.01 | .173261                   | .647778                   | .936098                     | .343934               | 1.57247              | 1.91385               | 4.64995 | 4.75630  | 7.82680 | 8.05717               |
|              | 20       |      | .176628                   | .648601                   | .936101                     | .343933               | 1.57126              | 1.91380               | 4.64903 | 4.72357  | 7.82103 | 7.90479               |
|              | 40       |      | .178279                   | .648807                   | .936101                     | .343932               | 1.57096              | 1.91380               | 4.64894 | 4.71542  | 7.82046 | 7.86705               |
|              | 50       |      | .178607                   | .648832                   | .936101                     | .343932               | 1.57092              | 1.91380               | 4.64893 | 4.71445  | 7.82039 | 7.86255               |
|              | 80       |      | .179097                   | .648859                   | .936101                     | .343932               | <sup>6</sup> 1.57088 | 1.91380               | 4.64893 | 4.71339  | 7.82032 | 7.85769               |
|              | 100      |      | .179260                   | .648865                   | .936101                     | .343932               | 1.57087              | 1.91380               | 4.64892 | 4.71314  | 7.82030 | 7.85657               |
| $75^{\circ}$ | 10       | 0.01 | .0867650                  | 1.25238                   | 1.81023                     | .343750               | 1.57247              | 1.91378               | 4.65000 | 4.75630  | 7.82699 | 8.05717               |
|              | 20       |      | .0878387                  | 1.25396                   | 1.81024                     | .343749               | 1.57126              | 1.91374               | 4.64909 | 4.72357  | 7.82123 | 7.90479               |
|              | 40       |      | .0883433                  | 1.25435                   | 1.81024                     | .343749               | 1.57096              | 1.91373               | 4.64900 | 4.71542  | 7.82066 | 7.86705               |
|              | 50       |      | .0884416                  | 1.25440                   | 1.81024                     | .343749               | 1.57092              | 1.91373               | 4.64899 | 4.71445  | 7.82060 | 7.86255               |
|              | 80       |      | .0885874                  | 1.25445                   | 1.81024                     | .343749               | 1.57088              | 1.91373               | 4.64899 | 4.71339  | 7.82052 | 7.85769               |
|              | 100      |      | .0886356                  | 1.25446                   | 1.81024                     | .343749               | 1.57087              | 1.91373               | 4.64898 | 4.71314  | 7.82050 | 7.85657               |
| $90^{\circ}$ | 10       | 0.01 | .0498854                  | 1.29698                   | 1.87490                     | .343672               | 1.57247              | 1.91375               | 4.65002 | 4.75630  | 7.82707 | 8.05717               |
|              | 20       |      | .0499869                  | 1.29861                   | 1.87490                     | .343671               | 1.57126              | 1.91370               | 4.64911 | 4.72357  | 7.82131 | 7.90479               |
|              | 40       |      | .0500053                  | 1.29902                   | 1.87490                     | .343671               | 1.57096              | 1.91370               | 4.64902 | 4.71542  | 7.82074 | 7.86705               |
|              | 50       |      | .0500064                  | 1.29907                   | 1.87490                     | .343671               | 1.57092              | 1.91370               | 4.64902 | 4.71445  | 7.82068 | 7.86255               |
|              | 80       |      | .0500064                  | 1.29912                   | 1.87490                     | .343671               | 1.57088              | 1.91370               | 4.64901 | 4.71339  | 7.82061 | 7.85769               |
|              | 100      |      | .0500059                  | 1.29913                   | 1.87490                     | .343671               | 1.57087              | 1.91370               | 4.64901 | 4.71314  | 7.82059 | 7.85657               |

表一 不同傾斜角與不同轉速的旋轉梁之振動頻率的收斂分析(η=10, r=1.5)

| α            | 元素<br>數目  | k    | $\varepsilon_0  (10^{-3})$ | $\varepsilon_b (10^{-3})$ | $V_{tip} / L_T$<br>(10 <sup>-3</sup> ) | <i>K</i> <sub>1</sub> | <i>K</i> <sub>2</sub> | $K_3(a)$ | $K_4$   | $K_5(a)$ | $K_6$    | <i>K</i> <sub>7</sub> |
|--------------|-----------|------|----------------------------|---------------------------|----------------------------------------|-----------------------|-----------------------|----------|---------|----------|----------|-----------------------|
| <b>5</b> °   | 10        | 0.03 | 1 77690                    | 1 02655                   | 5 49024                                | 100000                | 1.06562               | 1 57225  | 2 82040 | 175620   | 5 10201  | × 00220               |
| 5            | 20        | 0.05 | 1.72080                    | 1.93033                   | 5.48954<br>5.48980                     | .100002               | 1.00302               | 1.57555  | 2.82949 | 4.73039  | 5 10374  | 8.00220<br>7.00467    |
|              | 20<br>40  |      | 1.70150                    | 1.94011                   | 5 40003                                | 180855                | 1.00554               | 1.57214  | 2.82878 | 4.72559  | 5 103/1  | 7.90407               |
|              | 40<br>50  |      | 1.77030                    | 1.94104                   | 5.49003                                | 180854                | 1.00552               | 1.57184  | 2.02072 | 4.71341  | 5 10220  | 7.80075               |
|              | 30<br>80  |      | 1.70193                    | 1.94113                   | 5.49004                                | 100052                | 1.00552               | 1.57176  | 2.02071 | 4./1442  | 5 10227  | 7.00221               |
|              | 80<br>100 |      | 1.78702                    | 1.94128                   | 5.49000                                | .100000               | 1.00332               | 1.3/1/0  | 2.828/1 | 4./1000  | 5 10227  | 1.83129<br>7.85615    |
|              | 100       |      | 1./88/1                    | 1.94131                   | 5.49007                                | .180833               | 1.00332               | 1.3/1/3  | 2.828/1 | 4./1312  | 5.19557  | /.83013               |
| $30^{\circ}$ | 10        | 0.01 | .173298                    | 1.29046                   | 3.72389                                | 175392                | 1.06018               | 1.57252  | 2.82541 | 4.75613  | 5.19573  | 8.00213               |
|              | 20        |      | .176647                    | 1.29216                   | 3.72393                                | .175390               | 1.06014               | 1.57131  | 2.82480 | 4.72333  | 5.19170  | 7.90455               |
|              | 40        |      | .178289                    | 1.29258                   | 3.72394                                | .175389               | 1.06014               | 1.57100  | 2.82476 | 4.71514  | 5.19143  | 7.86661               |
|              | 50        |      | .178615                    | 1.29263                   | 3.72394                                | .175389               | 1.06014               | 1.57097  | 2.82476 | 4.71416  | 5.19142  | 7.86207               |
|              | 80        |      | .179102                    | 1.29269                   | 3.72395                                | .175389               | 1.06014               | 1.57093  | 2.82476 | 4.71310  | 5.19141  | 7.85715               |
|              | 100       |      | .179264                    | 1.29270                   | 3.72395                                | .175389               | 1.06014               | 1.57092  | 2.82476 | 4.71285  | 5.19141  | 7.85601               |
| 750          | 10        | 0.01 | 00,000,40                  | 2 50172                   | 7 00 (00                               | 174000                | 1.05007               | 1 57050  | 0.00500 | 1 75 (10 | 5 105 (3 | 0.00007               |
| 15           | 10        | 0.01 | .0869040                   | 2.50173                   | 7.22633                                | .1/4999               | 1.05987               | 1.57253  | 2.82520 | 4./5612  | 5.19562  | 8.00207               |
|              | 20        |      | .08/9121                   | 2.50493                   | 7.22636                                | .1/4998               | 1.05984               | 1.5/132  | 2.82460 | 4.72332  | 5.19160  | 7.90451               |
|              | 40<br>50  |      | .0883807                   | 2.50573                   | 7.22637                                | .1/499/               | 1.05983               | 1.5/102  | 2.82456 | 4./1513  | 5.19134  | /.86659               |
|              | 50        |      | .0884715                   | 2.50583                   | 7.22637                                | .174997               | 1.05983               | 1.57098  | 2.82456 | 4.71415  | 5.19132  | 7.86205               |
|              | 80        |      | .0886060                   | 2.50593                   | 7.22638                                | .174997               | 1.05983               | 1.57094  | 2.82456 | 4.71309  | 5.19132  | 7.85713               |
|              | 100       |      | .0886504                   | 2.50596                   | 7.22638                                | .174997               | 1.05983               | 1.57093  | 2.82456 | 4.71284  | 5.19132  | 7.85599               |
| $90^{\circ}$ | 10        | 0.01 | .0500346                   | 2.59388                   | 7.49567                                | .174830               | 1.05974               | 1.57253  | 2.82511 | 4.75612  | 5.19557  | 8.00206               |
|              | 20        |      | .0500657                   | 2.59716                   | 7.49569                                | .174829               | 1.05971               | 1.57132  | 2.82451 | 4.72331  | 5.19156  | 7.90451               |
|              | 40        |      | .0500454                   | 2.59798                   | 7.49570                                | .174829               | 1.05971               | 1.57102  | 2.82447 | 4.71513  | 5.19129  | 7.86659               |
|              | 50        |      | .0500385                   | 2.59808                   | 7.49570                                | .174829               | 1.05971               | 1.57098  | 2.82447 | 4.71415  | 5.19128  | 7.86205               |
|              | 80        |      | .0500263                   | 2.59819                   | 7.49570                                | .174829               | 1.05971               | 1.57094  | 2.82447 | 4.71309  | 5.19127  | 7.85712               |
|              | 100       |      | .0500217                   | 2.59821                   | 7.49570                                | .174829               | 1.05971               | 1.57093  | 2.82447 | 4.71284  | 5.19127  | 7.85599               |

表二 不同傾斜角與不同轉速的旋轉梁之振動頻率的收斂分析(η=20, r=1.5)

| α            | 元素<br>數目 | k    | $\varepsilon_0 (10^{-3})$ | $\varepsilon_b (10^{-3})$ | $V_{tip}$ / $L_T$ | $K_1$    | $K_2$    | <i>K</i> <sub>3</sub> | $K_4\left(a ight)$ | $K_5$   | $K_{6}$ | $K_{7}\left( a ight)$ |
|--------------|----------|------|---------------------------|---------------------------|-------------------|----------|----------|-----------------------|--------------------|---------|---------|-----------------------|
| $5^{\circ}$  | 10       | 0.03 | 1.72718                   | 3.89539                   | .0250785          | .0848761 | .455824  | 1.23339               | 1.57392            | 2.37221 | 3.85294 | 4.75649               |
|              | 20       |      | 1.76166                   | 3.91291                   | .0250895          | .0848304 | .455686  | 1.23296               | 1.57270            | 2.36997 | 3.84395 | 4.72369               |
|              | 40       |      | 1.77860                   | 3.91756                   | .0250922          | .0848189 | .455654  | 1.23291               | 1.57239            | 2.36977 | 3.84326 | 4.71551               |
|              | 50       |      | 1.78196                   | 3.91814                   | .0250925          | .0848175 | .455650  | 1.23290               | 1.57236            | 2.36976 | 3.84323 | 4.71453               |
|              | 80       |      | 1.78699                   | 3.91878                   | .0250929          | .0848161 | .455646  | 1.23290               | 1.57232            | 2.36975 | 3.84320 | 4.71346               |
|              | 100      |      | 1.78866                   | 3.91893                   | .0250929          | .0848157 | .455645  | 1.23290               | 1.57231            | 2.36975 | 3.84320 | 4.71322               |
| $30^{\circ}$ | 10       | 0.01 | .173543                   | 3.14014                   | .0224082          | .0718399 | .439698  | 1.21709               | 1.57305            | 2.35587 | 3.83741 | 4.75622               |
|              | 20       |      | .176773                   | 3.14519                   | .0224097          | .0718343 | .439671  | 1.21680               | 1.57183            | 2.35382 | 3.82874 | 4.72341               |
|              | 40       |      | .178350                   | 3.14647                   | .0224101          | .0718329 | .439667  | 1.21678               | 1.57153            | 2.35368 | 3.82814 | 4.71523               |
|              | 50       |      | .178662                   | 3.14662                   | .0224101          | .0718327 | .439667  | 1.21677               | 1.57149            | 2.35367 | 3.82812 | 4.71425               |
|              | 80       |      | .179129                   | 3.14679                   | .0224101          | .0718325 | 5.439667 | 1.21677               | 1.57145            | 2.35367 | 3.82810 | 4.71318               |
|              | 100      |      | .179284                   | 3.14683                   | .0224102          | .0718325 | .439666  | 1.21677               | 1.57145            | 2.35367 | 3.82810 | 4.71294               |
| $75^{\circ}$ | 10       | 0.01 | .0878436                  | 6.19826                   | .0444794          | .0709001 | .438758  | 1.21517               | 1.57464            | 2.35531 | 3.83649 | 4.75645               |
|              | 20       |      | .0883942                  | 6.20706                   | .0444809          | .0708973 | .438738  | 1.21488               | 1.57342            | 2.35326 | 3.82783 | 4.72365               |
|              | 40       |      | .0886110                  | 6.20927                   | .0444812          | .0708966 | .438736  | 1.21486               | 1.57311            | 2.35312 | 3.82724 | 4.71547               |
|              | 50       |      | .0886496                  | 6.20953                   | .0444812          | .0708966 | .438735  | 1.21486               | 1.57307            | 2.35311 | 3.82722 | 4.71449               |
|              | 80       |      | .0887045                  | 6.20982                   | .0444813          | .0708965 | .438735  | 1.21486               | 1.57303            | 2.35311 | 3.82720 | 4.71343               |
|              | 100      |      | .0887220                  | 6.20989                   | .0444813          | .0708964 | .438735  | 1.21486               | 1.57303            | 2.35311 | 3.82720 | 4.71318               |
| $90^{\circ}$ | 10       | 0.01 | .0510541                  | 6.47860                   | .0466112          | .0704770 | .438377  | 1.21466               | 1.57485            | 2.35498 | 3.83613 | 4.75648               |
|              | 20       |      | .0505878                  | 6.48726                   | .0466120          | .0704755 | .438359  | 1.21438               | 1.57363            | 2.35294 | 3.82748 | 4.72368               |
|              | 40       |      | .0502942                  | 6.48943                   | .0466122          | .0704751 | .438357  | 1.21436               | 1.57332            | 2.35280 | 3.82689 | 4.71550               |
|              | 50       |      | .0502306                  | 6.48969                   | .0466122          | .0704751 | .438357  | 1.21436               | 1.57328            | 2.35279 | 3.82687 | 4.71452               |
|              | 80       |      | .0501320                  | 6.48997                   | .0466122          | .0704750 | .438357  | 1.21436               | 1.57325            | 2.35279 | 3.82685 | 4.71346               |
|              | 100      |      | .0500983                  | 6.49004                   | .0466122          | .0704750 | .438357  | 1.21436               | 1.57324            | 2.35279 | 3.82685 | 4.71321               |

表三 不同傾斜角與不同轉速的旋轉梁之振動頻率的收斂分析(η=50, r=1.5)

| α            | 元素<br>數目 | k    | $\varepsilon_0 (10^{-3})$ | $\varepsilon_b (10^{-3})$ | $V_{tip}$ / $L_T$ | $K_1$    | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$   | $K_{5}\left(a ight)$ | $K_6$   | <i>K</i> <sub>7</sub> |
|--------------|----------|------|---------------------------|---------------------------|-------------------|----------|-----------------------|-----------------------|---------|----------------------|---------|-----------------------|
| $5^{\circ}$  | 10       | 0.03 | 1.72775                   | 5.09357                   | .0511913          | .0591219 | .254778               | .652135               | 1.24001 | 1.57551              | 2.02262 | 2.99338               |
|              | 20       |      | 1.76185                   | 5.15588                   | .0512287          | .0590608 | .254541               | .651746               | 1.23871 | 1.57422              | 2.01772 | 2.97847               |
|              | 40       |      | 1.77853                   | 5.17329                   | .0512379          | .0590456 | .254483               | .651675               | 1.23857 | 1.57390              | 2.01730 | 2.97732               |
|              | 50       |      | 1.78184                   | 5.17548                   | .0512390          | .0590437 | .254476               | .651668               | 1.23856 | 1.57386              | 2.01728 | 2.97726               |
|              | 80       |      | 1.78678                   | 5.17791                   | .0512402          | .0590418 | .254469               | .651659               | 1.23855 | 1.57382              | 2.01726 | 2.97721               |
|              | 100      |      | 1.78842                   | 5.17847                   | .0512404          | .0590413 | .254467               | .651657               | 1.23855 | 1.57381              | 2.01725 | 2.97721               |
| $30^{\circ}$ | 10       | 0.01 | .174250                   | 5.74549                   | .0788668          | .0383279 | .223645               | .617615               | 1.20301 | 1.57860              | 1.98709 | 2.95692               |
|              | 20       |      | .177102                   | 5.76051                   | .0788849          | .0383174 | .223613               | .617446               | 1.20193 | 1.57731              | 1.98247 | 2.94234               |
|              | 40       |      | .178466                   | 5.76440                   | .0788893          | .0383147 | .223606               | .617431               | 1.20185 | 1.57700              | 1.98215 | 2.94131               |
|              | 50       |      | .178734                   | 5.76488                   | .0788899          | .0383144 | .223606               | .617430               | 1.20185 | 1.57696              | 1.98213 | 2.94126               |
|              | 80       |      | .179132                   | 5.76540                   | .0788905          | .0383141 | 5.223605              | .617428               | 1.20185 | 1.57692              | 1.98212 | 2.94124               |
|              | 100      |      | .179264                   | 5.76552                   | .0788906          | .0383140 | .223605               | .617428               | 1.20185 | 1.57691              | 1.98212 | 2.94123               |
| $75^{\circ}$ | 10       | 0.01 | .0907471                  | 11.9290                   | .166216           | .0368604 | .221453               | .612094               | 1.19273 | 1.59872              | 1.99177 | 2.95541               |
|              | 20       |      | .0897082                  | 11.9519                   | .166237           | .0368544 | .221434               | .611941               | 1.19168 | 1.59719              | 1.98718 | 2.94085               |
|              | 40       |      | .0890411                  | 11.9577                   | .166242           | .0368529 | .221430               | .611929               | 1.19161 | 1.59684              | 1.98684 | 2.93981               |
|              | 50       |      | .0888954                  | 11.9584                   | .166242           | .0368527 | .221430               | .611928               | 1.19160 | 1.59680              | 1.98682 | 2.93976               |
|              | 80       |      | .0886691                  | 11.9591                   | .166243           | .0368525 | .221430               | .611928               | 1.19160 | 1.59676              | 1.98680 | 2.93974               |
|              | 100      |      | .0885916                  | 11.9593                   | .166243           | .0368524 | .221429               | .611928               | 1.19160 | 1.59675              | 1.98680 | 2.93973               |
| $90^{\circ}$ | 10       | 0.01 | .0543132                  | 12.7940                   | .179785           | .0361111 | .220583               | .610488               | 1.19029 | 1.60306              | 1.99241 | 2.95467               |
|              | 20       |      | .0520411                  | 12.8146                   | .179797           | .0361073 | .220569               | .610339               | 1.18923 | 1.60148              | 1.98784 | 2.94012               |
|              | 40       |      | .0507494                  | 12.8197                   | .179800           | .0361063 | .220567               | .610328               | 1.18916 | 1.60113              | 1.98749 | 2.93907               |
|              | 50       |      | .0504783                  | 12.8203                   | .179801           | .0361062 | .220567               | .610327               | 1.18916 | 1.60109              | 1.98747 | 2.93903               |
|              | 80       |      | .0500633                  | 12.8210                   | .179801           | .0361061 | .220566               | .610327               | 1.18916 | 1.60105              | 1.98745 | 2.93900               |
|              | 100      |      | .0499228                  | 12.8211                   | .179801           | .0361060 | .220566               | .610327               | 1.18916 | 1.60104              | 1.98745 | 2.93899               |

表四 不同傾斜角與不同轉速的旋轉梁之振動頻率的收斂分析(η=100, r=1.5)

| α            | 元素<br>數目 | k     | $\varepsilon_0 (10^{-3})$ | $\varepsilon_b (10^{-3})$ | $V_{tip}$ / $L_T$ | $K_1$     | $K_2$    | <i>K</i> <sub>3</sub> | $K_4$   | $K_5$   | $K_6$   | <i>K</i> <sub>7</sub> |
|--------------|----------|-------|---------------------------|---------------------------|-------------------|-----------|----------|-----------------------|---------|---------|---------|-----------------------|
| $5^{\circ}$  | 10       | 0.03  | 1.73038                   | 5.04954                   | .0803070          | .0464280  | .134390  | .247496               | .393200 | .571561 | .784736 | 1.03544               |
|              | 20       |       | 1.76394                   | 5.76426                   | .0804024          | .0463541  | .133696  | .246343               | .391776 | .569491 | .780885 | 1.02742               |
|              | 40       |       | 1.77967                   | 6.04540                   | .0804161          | .0463376  | .133519  | .246063               | .391472 | .569153 | .780442 | 1.02671               |
|              | 50       |       | 1.78268                   | 6.08649                   | .0804174          | .0463356  | .133498  | .246030               | .391438 | .569118 | .780406 | 1.02667               |
|              | 80       |       | 1.78709                   | 6.13455                   | .0804186          | .0463336  | .133475  | .245995               | .391401 | .569083 | .780372 | 1.02663               |
|              | 100      |       | 1.78852                   | 6.14641                   | .0804189          | .0463331  | .133470  | .245986               | .391392 | .569075 | .780365 | 1.02663               |
| $30^{\circ}$ | 10       | 0.008 | .114268                   | 8.46079                   | .352547           | .0144174  | .0553632 | .133507               | .250244 | .406843 | .604350 | .843603               |
|              | 20       |       | .114306                   | 8.60956                   | .352775           | .0144002  | .0553013 | .133485               | .250083 | .405945 | .601303 | .835644               |
|              | 40       |       | .113982                   | 8.65147                   | .352830           | .0143958  | .0552855 | .133486               | .250089 | .405911 | .601126 | .835109               |
|              | 50       |       | .113885                   | 8.65675                   | .352837           | .0143953  | .0552836 | .133486               | .250091 | .405913 | .601122 | .835091               |
|              | 80       |       | .113717                   | 8.66258                   | .352844 🗧         | .0143947  | .0552815 | .133486               | .250094 | .405915 | .601122 | .835083               |
|              | 100      |       | .113655                   | 8.66395                   | .352845           | .0143946  | 0552810  | .133487               | .250094 | .405916 | .601123 | .835083               |
| $75^{\circ}$ | 10       | 0.003 | .00848906                 | 4.97759                   | .325332           | .00799673 | .0446289 | .121364               | .238962 | .396654 | .595333 | .835863               |
|              | 20       |       | .00817969                 | 4.99116                   | .325406           | .00799381 | .0446229 | .121333               | .238737 | .395692 | .592299 | .828112               |
|              | 40       |       | .00799694                 | 4.99460                   | .325425           | .00799307 | .0446215 | .121331               | .238720 | .395623 | .592080 | .827535               |
|              | 50       |       | .00795804                 | 4.99501                   | .325427           | .00799298 | .0446213 | .121330               | .238719 | .395619 | .592070 | .827510               |
|              | 80       |       | .00789818                 | 4.99546                   | .325429           | .00799288 | .0446211 | .121330               | .238719 | .395617 | .592064 | .827495               |
|              | 100      |       | .00787782                 | 4.99556                   | .325430           | .00799286 | .0446211 | .121330               | .238719 | .395617 | .592063 | .827493               |
| $90^{\circ}$ | 10       | 0.003 | .00526392                 | 5.50358                   | .363581           | .00774943 | .0441721 | .120239               | .237680 | .395230 | .593820 | .834230               |
|              | 20       |       | .00479652                 | 5.51497                   | .363632           | .00774726 | .0441682 | .120208               | .237453 | .394262 | .590779 | .826470               |
|              | 40       |       | .00453290                 | 5.51777                   | .363645           | .00774671 | .0441673 | .120206               | .237435 | .394191 | .590556 | .825889               |
|              | 50       |       | .00447769                 | 5.51810                   | .363646           | .00774664 | .0441672 | .120206               | .237434 | .394187 | .590546 | .825863               |
|              | 80       |       | .00439327                 | 5.51846                   | .363648           | .00774657 | .0441671 | .120206               | .237433 | .394185 | .590539 | .825847               |
|              | 100      |       | .00436471                 | 5.51854                   | .363648           | .00774655 | .0441671 | .120205               | .237433 | .394184 | .590538 | .825845               |

表五 不同傾斜角與不同轉速的旋轉梁之振動頻率的收斂分析( $\eta = 500$ , r = 1.5)

| α            | 元素<br>數目 | k     | $\varepsilon_0 (10^{-3})$ | $\varepsilon_b (10^{-3})$ | $V_{tip}$ / $L_T$ | $K_1$     | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$   | $K_5$   | $K_6$   | $K_7$   |
|--------------|----------|-------|---------------------------|---------------------------|-------------------|-----------|-----------------------|-----------------------|---------|---------|---------|---------|
| $5^{\circ}$  | 10       | 0.03  | 1.73113                   | 3.88613                   | .0835235          | .0454694  | .127442               | .217642               | .323061 | .442957 | .577154 | .726538 |
|              | 20       |       | 1.76526                   | 5.17029                   | .0837847          | .0453581  | .126503               | .215621               | .320468 | .439874 | .573192 | .720772 |
|              | 40       |       | 1.78106                   | 5.89061                   | .0838230          | .0453354  | .126247               | .215078               | .319816 | .439172 | .572419 | .719852 |
|              | 50       |       | 1.78397                   | 6.01548                   | .0838255          | .0453331  | .126216               | .215013               | .319740 | .439096 | .572342 | .719773 |
|              | 80       |       | 1.78809                   | 6.17213                   | .0838275          | .0453309  | .126183               | .214944               | .319660 | .439015 | .572263 | .719697 |
|              | 100      |       | 1.78938                   | 6.21315                   | .0838279          | .0453304  | .126175               | .214927               | .319641 | .438996 | .572245 | .719680 |
| $30^{\circ}$ | 10       | 0.008 | .117176                   | 8.73688                   | .429697           | .0129066  | .0405573              | .0836364              | .143457 | .221474 | .319570 | .439088 |
|              | 20       |       | .116206                   | 9.19910                   | .429937           | .0128898  | .0404478              | .0836092              | .143553 | .221286 | .318124 | .434692 |
|              | 40       |       | .114745                   | 9.34364                   | .429982           | .0128852s | .0404185              | .0836045              | .143617 | .221403 | .318213 | .434607 |
|              | 50       |       | .114344                   | 9.36265                   | .429987           | .0128846  | .0404148              | .0836039              | .143625 | .221421 | .318236 | .434627 |
|              | 80       |       | .113663                   | 9.38393                   | .429993           | .0128840  | .0404109              | .0836032              | .143634 | .221442 | .318264 | .434657 |
|              | 100      |       | .113413                   | 9.38899                   | .429994           | .0128839  | .0404101              | .0836030              | .143637 | .221447 | .318271 | .434665 |
| $75^{\circ}$ | 10       | 0.003 | .00938191                 | 7.02594                   | .663462           | .00571542 | .0238973              | .0587160              | .115623 | .193319 | .292133 | .412286 |
|              | 20       |       | .00834191                 | 7.07182                   | .663647           | .00570942 | .0238954              | .0587390              | .115534 | .192822 | .290543 | .408259 |
|              | 40       |       | .00771222                 | 7.08294                   | .663692           | .00570781 | .0238942              | .0587461              | .115530 | .192785 | .290420 | .407943 |
|              | 50       |       | .00757673                 | 7.08424                   | .663697           | .00570762 | .0238940              | .0587470              | .115531 | .192783 | .290414 | .407928 |
|              | 80       |       | .00736725                 | 7.08564                   | .663703           | .00570740 | .0238939              | .0587479              | .115531 | .192781 | .290408 | .407916 |
|              | 100      |       | .00729575                 | 7.08595                   | .663705           | .00570735 | .0238938              | .0587481              | .115531 | .192781 | .290408 | .407914 |
| $90^{\circ}$ | 10       | 0.003 | .00632598                 | 8.11019                   | .747141           | .00561366 | .0232167              | .0566047              | .113316 | .190888 | .289635 | .409720 |
|              | 20       |       | .00489502                 | 8.14495                   | .747230           | .00560767 | .0232188              | .0566244              | .113214 | .190376 | .288040 | .405709 |
|              | 40       |       | .00405954                 | 8.15225                   | .747251           | .00560603 | .0232182              | .0566290              | .113204 | .190328 | .287902 | .405375 |
|              | 50       |       | .00388231                 | 8.15303                   | .747254           | .00560584 | .0232181              | .0566295              | .113203 | .190324 | .287893 | .405356 |
|              | 80       |       | .00360996                 | 8.15384                   | .747256           | .00560562 | .0232180              | .0566301              | .113202 | .190321 | .287886 | .405341 |
|              | 100      |       | .00351746                 | 8.15402                   | .747257           | .00560557 | .0232180              | .0566302              | .113202 | .190320 | .287884 | .405339 |

表六 不同傾斜角與不同轉速的旋轉梁之振動頻率的收斂分析(η=1000, r=1.5)

| K L          | 不時候新用           | 的观将不不             | 一张助贺千             | 的干难任    | . <i>J</i> 47 ( K – | 70 70    | $\eta = 10$ |
|--------------|-----------------|-------------------|-------------------|---------|---------------------|----------|-------------|
| α            | $\varepsilon_0$ | $\mathcal{E}_{b}$ | $V_{tip}$ / $L_T$ | $K_1$   | $K_{1}[14]$         | $K_2$    | $K_{2}[14]$ |
| $0^{\circ}$  | .00761579       | 0                 | 0                 | .105427 | .104966             | .410792  | .417489     |
| $10^{\circ}$ | .00753381       | .0220374          | .119890           | .105377 | .104674             | .410400  | .416567     |
| $20^{\circ}$ | .00728963       | .0438841          | .237606           | .105225 | .102756             | .409219  | .414031     |
| $30^{\circ}$ | .00688882       | .0653510          | .351025           | .104971 | .100040             | .407246  | .410294     |
| $40^{\circ}$ | .00634057       | .0862526          | .458121           | .104612 | .0960628            | .404475  | .404936     |
| $50^{\circ}$ | .00565758       | .106408           | .557013           | .104146 | .0912700            | .400900  | .398364     |
| $60^{\circ}$ | .00485594       | .125641           | .646008           | .103568 | .0850186            | .396518  | .389997     |
| $70^{\circ}$ | .00395486       | .143786           | .723643           | .102875 | .0771729            | .391331  | .381219     |
| $80^{\circ}$ | .00297641       | .160683           | .788722           | .102058 | .0683600            | .385349  | .371329     |
| 90°          | .00194513       | .176180           | .840342           | .101109 | .0571429            | 1.378595 | .361034     |
|              |                 |                   |                   |         | TIM                 | IIIIIII  |             |

表七 不同傾斜角的旋轉梁之振動頻率的準確性分析( $k = \frac{5}{70}$ , r = 1,  $\eta = 70$ )

| α            | η    | k     | $\varepsilon_0 (10^{-4})$ | $\varepsilon_0^L (10^{-4})$ | $\mathcal{E}_b$ | $arepsilon_b^L$ | $V_{tip}$ / $L_T$ | $V_{tip}^L / L_T$ | $V_{tip} / L_T [16]$ |
|--------------|------|-------|---------------------------|-----------------------------|-----------------|-----------------|-------------------|-------------------|----------------------|
| $5^{\circ}$  | 500  | 0.02  | 5.94466                   | 5.98478                     | .00335361       | .0150958        | .0734169          | 1.08945           | .073612              |
|              | 1000 | 0.01  | 1.48600                   | 1.49619                     | .00167595       | .00754791       | .0733957          | 1.08945           | .073612              |
|              | 1000 | 0.03  | 13.3890                   | 13.4658                     | .00519998       | .0679312        | .0825422          | 9.80502           | .082773              |
| $10^{\circ}$ | 500  | 0.01  | 1.47373                   | 1.48481                     | .00305801       | .00751919       | .119162           | .542651           | .12020               |
|              | 1000 | 0.005 | .368421                   | .371202                     | .00152880       | .00375959       | .119151           | .542651           | .12020               |
| $15^{\circ}$ | 500  | 0.004 | .232945                   | .234548                     | .00133657       | .00179315       | .0825672          | .129410           | .082973              |
|              | 1000 | 0.01  | 1.45421                   | 1.46593                     | .00501583       | .0224144        | .218450           | 3.23524           | .224477              |
| $30^{\circ}$ | 100  | 0.01  | 1.35791                   | 1.36603                     | .00399154       | .00433013       | .0553226          | .0625000          | .055441              |
|              | 500  | 0.008 | .862862                   | .874256                     | .00691072       | .0138564        | .310627           | 1.00000           | .331620              |
|              | 1000 | 0.004 | .215709                   | .218564                     | .00345508       | .00692820       | 310607            | 1.00000           | .331620              |
| $45^{\circ}$ | 100  | 0.01  | 1.20113                   | 1.20711                     | .00571738       | .00612372       | .0794779          | .0883883          | .079854              |
|              | 1000 | 0.003 | .106851                   | .108640                     | .00349175       | .00551135       | .367905           | .795495           | .406945              |
| $60^{\circ}$ | 100  | 0.008 | .637717                   | .640000                     | .00464576       | .00480000       | .0656798          | .0692820          | .065896              |
|              | 500  | 0.006 | .349676                   | .360000                     | .00904678       | .0135000        | .473591           | .974279           | .568146              |
|              | 1000 | 0.003 | .0874165                  | .0900000                    | .00452322       | .00675000       | .473573           | .974279           | .568146              |
| $75^{\circ}$ | 100  | 0.008 | .485134                   | .485644                     | .00525596       | .00535370       | .0745883          | .0772741          | .074912              |
|              | 1000 | 0.003 | .0645893                  | .0682937                    | .00544045       | .00752865       | .565891           | 1.08667           | .756726              |
| $90^{\circ}$ | 100  | 0.008 | .321229                   | .320000                     | .00552865       | .00554256       | .0788019          | .0800000          | .079189              |
|              | 100  | 0.01  | .502076                   | .500000                     | .00860877       | .00866025       | .121597           | .125000           | .123034              |
|              | 1000 | 0.003 | .0398360                  | .0450000                    | .00621305       | .00779423       | .642909           | 1.12500           | .988891              |

表八 不同傾斜角與不同細長比的旋轉梁之端點位移的準確性分析(r=1)

| η    | <i>K</i> <sub>1</sub> | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$               | <i>K</i> <sub>5</sub> | $K_6$      | <i>K</i> <sub>7</sub> |
|------|-----------------------|-----------------------|-----------------------|---------------------|-----------------------|------------|-----------------------|
| 10   | .343681               | 1.57086( <i>a</i> )   | 1.91364               | 4.64936             | 4.71413 <i>(a)</i>    | 7.82132    | 7.86206( <i>a</i> )   |
| 20   | .174787               | 1.05953               | 1.57086(a)            | 2.82431             | 4.71413(a)            | 5.19120    | 7.86206(a)            |
| 38   | .0923781              | .573449               | 1.57086(a)            | 1.58182             | 3.03502               | 4.71413(a) | 4.88776               |
| 38.5 | .0911822              | .566163               | 1.56231               | 1.57086(a)          | 2.99909               | 4.71413(a) | 4.83278               |
| 39   | .0900168              | .559057               | 1.54325               | 1.57086(a)          | 2.96396               | 4.71413(a) | 4.77893               |
| 40   | .0877730              | .545362               | 1.50647               | 1.57086(a)          | 2.89600               | 4.67451    | 4.71413(a)            |
| 50   | .0702550              | .437859               | 1.21530               | 1.57086(a)          | 2.35176               | 3.82646    | 4.71413(a)            |
| 75   | .0468608              | .292950               | .817035               | 1.57086( <i>a</i> ) | 1.59193               | 2.61236    | 3.86790               |
| 76   | .0462448              | .289117               | .806427               | 1.57086(a)          | 1.57150               | 2.57930    | 3.81980               |
| 77   | .0456446              | .285383               | .796090               | 1.55157             | 1.57086( <i>a</i> )   | 2.54705    | 3.77285               |
| 78   | .0450599              | .281744               | .786013               | 1.53214             | 1.57086( <i>a</i> )   | 2.51558    | 3.72700               |
| 79   | .0444900              | .278196               | .776186               | 1.51318             | 1.57086(a)            | 2.48487    | 3.68223               |
| 80   | .0439342              | .274736               | .766600               | 1.49468             | 1.57086(a)            | 2.45488    | 3.63849               |
| 100  | .0351520              | .219989               | .614602               | 1.20047             | 1.57086(a)            | 1.97619    | 2.93707               |
| 500  | .00703197             | .0440661              | .123375               | .241735             | .399539               | .596720    | .833235               |
| 1000 | .00351601             | .0220341              | .0616949              | .120893             | .199838               | .298509    | .416903               |

表九 旋轉傾斜梁在不同細長比下的振動頻率(k=0)
| η    | k    | $\varepsilon_0 (10^{-4})$ | Eb | $\frac{V_{tip}}{L_T}$ | <i>K</i> <sub>1</sub> | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$      | $K_5$              | $K_6$   | $K_7$               |
|------|------|---------------------------|----|-----------------------|-----------------------|-----------------------|-----------------------|------------|--------------------|---------|---------------------|
| 10   | 0.01 | .499954                   | 0  | 0                     | .343670               | 1.57092(a)            | 1.91370               | 4.64902    | 4.71445(a)         | 7.82068 | 7.86255(a)          |
|      | 0.02 | 2.00007                   | 0  | 0                     | .343639               | 1.57111(a)            | 1.91389               | 4.64802    | 4.71536(a)         | 7.81886 | 7.86394(a)          |
|      | 0.04 | 8.00427                   | 0  | 0                     | .343513               | 1.57185(a)            | 1.91465               | 4.64426    | 4.71880(a)         | 7.81245 | 7.86861( <i>a</i> ) |
|      | 0.06 | 18.0246                   | 0  | 0                     | .343306               | 1.57310( <i>a</i> )   | 1.91591               | 4.63867    | 4.72385(a)         | 7.80359 | 7.87457(a)          |
| 20   | 0.01 | .499954                   | 0  | 0                     | .174823               | 1.05972               | 1.57096(a)            | 2.82446    | 4.71417(a)         | 5.19127 | 7.86208(a)          |
|      | 0.02 | 2.00007                   | 0  | 0                     | .174930               | 1.06027               | 1.57127(a)            | 2.82489    | 4.71427(a)         | 5.19148 | 7.86213(a)          |
|      | 0.04 | 8.00427                   | 0  | 0                     | .175354               | 1.06248               | 1.57251 <i>(a)</i>    | 2.82663    | 4.71467(a)         | 5.19234 | 7.86236(a)          |
|      | 0.06 | 18.0246                   | 0  | 0                     | .176054               | 1.06615               | 1.57458( <i>a</i> )   | 2.82952    | 4.71533(a)         | 5.19377 | 7.86273(a)          |
| 50   | 0.01 | .499954                   | 0  | 0                     | .0703844              | .438455               | 1.21592               | 1.57096(a) | 2.35238            | 3.82704 | 4.71417(a)          |
|      | 0.02 | 2.00007                   | 0  | 0                     | .0707689              | .440240396            | 1.21780               | 1.57125(a) | 2.35425            | 3.82879 | 4.71426(a)          |
|      | 0.04 | 8.00427                   | 0  | 0                     | .0722524              | .447313               | 1.22528               | 1.57240(a) | 2.36171            | 3.83581 | 4.71466(a)          |
|      | 0.06 | 18.0246                   | 0  | 0                     | .0745530              | .458872               | 1.23765               | 1.57433(a) | 2.37409            | 3.84748 | 4.71531(a)          |
| 100  | 0.01 | .499954                   | 0  | 0                     | .0354205              | .221216               | .615938               | 1.20187    | 1.57096(a)         | 1.97760 | 2.93847             |
|      | 0.02 | 2.00007                   | 0  | 0                     | .0361954              | .224860               | .619929               | 1.20605    | 1.57124(a)         | 1.98183 | 2.94267             |
|      | 0.04 | 8.00427                   | 0  | 0                     | .0389181              | .238890               | .635620               | 1.22261    | 1.57239(a)         | 1.99865 | 2.95942             |
|      | 0.06 | 18.0246                   | 0  | 0                     | .0425305              | .260607               | .660876               | 1.24968    | 1.57431 <i>(a)</i> | 2.02636 | 2.98715             |
| 500  | 0.01 | .499954                   | 0  | 0                     | .00814757             | .0498972              | .130004               | .248856    | .406927            | .604274 | .840899             |
|      | 0.02 | 2.00007                   | 0  | 0                     | .0100978              | .0642386              | .147927               | .268932    | .428225            | .626321 | .863435             |
|      | 0.04 | 8.00427                   | 0  | 0                     | .0135687              | .102725               | .202962               | .335905    | .503267            | .706764 | .947569             |
|      | 0.06 | 18.0246                   | 0  | 0                     | .0164590              | .145081               | .268690               | .421555    | .605093            | .821022 | 1.07120             |
| 1000 | 0.01 | .499954                   | 0  | 0                     | .00504927             | .0321223              | .0739765              | .134505    | .214203            | .313344 | .432052             |
|      | 0.02 | 2.00007                   | 0  | 0                     | .00677821             | .0513635              | .101497               | .168006    | .251762            | .353634 | .474228             |
|      | 0.04 | 8.00427                   | 0  | 0                     | .00942143             | .0942683              | .169116               | .257543    | .360229            | .477630 | .610650             |
|      | 0.06 | 18.0246                   | 0  | 0                     | .0116029              | .138373               | .240912               | .355544    | .483657            | .624839 | .779391             |

表十 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率(r=0)

| η    | k    | $\varepsilon_0  (10^{-3})$ | $\varepsilon_b$ | $rac{V_{tip}}{L_T}$ | $K_1$    | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$      | $K_5$               | $K_6$   | $K_7$               |
|------|------|----------------------------|-----------------|----------------------|----------|-----------------------|-----------------------|------------|---------------------|---------|---------------------|
| 10   | 0.01 | .0994970                   | 0               | 0                    | .343771  | 1.57092 <i>(a)</i>    | 1.91374               | 4.64898    | 4.71445( <i>a</i> ) | 7.82057 | 7.86255( <i>a</i> ) |
|      | 0.02 | .398032                    | 0               | 0                    | .344042  | 1.57111( <i>a</i> )   | 1.91404               | 4.64789    | 4.71536(a)          | 7.81843 | 7.86392(a)          |
|      | 0.04 | 1.59285                    | 0               | 0                    | .345120  | 1.57186(a)            | 1.91526               | 4.64377    | 4.71877(a)          | 7.81085 | 7.86841 <i>(a)</i>  |
|      | 0.06 | 3.58661                    | 0               | 0                    | .346903  | 1.57311(a)            | 1.91730               | 4.63762    | 4.72373(a)          | 7.80021 | 7.87390(a)          |
| 20   | 0.01 | .0994970                   | 0               | 0                    | .175041  | 1.05988               | 1.57096(a)            | 2.82457    | 4.71417(a)          | 5.19132 | 7.86208(a)          |
|      | 0.02 | .398032                    | 0               | 0                    | .175798  | 1.06092               | 1.57127(a)            | 2.82535    | 4.71427(a)          | 5.19171 | 7.86213(a)          |
|      | 0.04 | 1.59285                    | 0               | 0                    | .178785  | 1.06505               | 1.57252 <i>(a)</i>    | 2.82847    | 4.71466(a)          | 5.19326 | 7.86236(a)          |
|      | 0.06 | 3.58661                    | 0               | 0                    | .183629  | 1.07192               | 1.57459( <i>a</i> )   | 2.83366    | 4.71533(a)          | 5.19584 | 7.86273(a)          |
| 50   | 0.01 | .0994970                   | 0               | 0                    | .0709373 | .438931               | 1.21639               | 1.57096(a) | 2.35284             | 3.82747 | 4.71417(a)          |
|      | 0.02 | .398032                    | 0               | 0                    | .0729406 | .442131 896           | 1.21966               | 1.57125(a) | 2.35608             | 3.83052 | 4.71426(a)          |
|      | 0.04 | 1.59285                    | 0               | 0                    | .0803894 | .454706               | 1.23266               | 1.57241(a) | 2.36900             | 3.84268 | 4.71466(a)          |
|      | 0.06 | 3.58661                    | 0               | 0                    | .0912769 | .474929               | 1.25401               | 1.57434(a) | 2.39038             | 3.86289 | 4.71531 <i>(a)</i>  |
| 100  | 0.01 | .0994970                   | 0               | 0                    | .0365097 | .222183               | .616926               | 1.20289    | 1.57096(a)          | 1.97864 | 2.93950             |
|      | 0.02 | .398032                    | 0               | 0                    | .0402768 | .228637               | .623843               | 1.21012    | 1.57124(a)          | 1.98596 | 2.94678             |
|      | 0.04 | 1.59285                    | 0               | 0                    | .0524164 | .252784               | .650685               | 1.23857    | 1.57240(a)          | 2.01495 | 2.97574             |
|      | 0.06 | 3.58661                    | 0               | 0                    | .0674213 | .288455               | .692841               | 1.28440    | 1.57432(a)          | 2.06229 | 3.02335             |
| 500  | 0.01 | .0994970                   | 0               | 0                    | .0119675 | .0540290              | .134663               | .253929    | .412249             | .609756 | .846491             |
|      | 0.02 | .398032                    | 0               | 0                    | .0200813 | .0762383              | .163340               | .286920    | .447870             | .647045 | .884889             |
|      | 0.04 | 1.59285                    | 0               | 0                    | .0370596 | .130652               | .243280               | .387911    | .564823             | .775613 | 1.02188             |
|      | 0.06 | 3.58661                    | 0               | 0                    | .0541445 | .188305               | .332907               | .507593    | .711566             | .945280 | 1.21033             |
| 1000 | 0.01 | .0994970                   | 0               | 0                    | .0100424 | .0381228              | .0816862              | .143506    | .224040             | .323729 | .442813             |
|      | 0.02 | .398032                    | 0               | 0                    | .0185394 | .0653273              | .121659               | .194022    | .282569             | .388114 | .511474             |
|      | 0.04 | 1.59285                    | 0               | 0                    | .0356716 | .123413               | .212746               | .316745    | .434993             | .567018 | .713250             |
|      | 0.06 | 3.58661                    | 0               | 0                    | .0528045 | .182500               | .307134               | .445787    | .599005             | .765364 | .944405             |

表十一 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=0.5, \alpha=0^\circ)$ 

| η    | k     | $\varepsilon_0 (10^{-3})$ | $\varepsilon_b (10^{-3})$ | $\frac{V_{tip}}{L_T} (10^{-3})$ | $K_1$     | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$      | $K_5$              | $K_6$   | $K_7$      |
|------|-------|---------------------------|---------------------------|---------------------------------|-----------|-----------------------|-----------------------|------------|--------------------|---------|------------|
| 10   | 0.005 | .0248264                  | .00943349                 | .0136160                        | .343703   | 1.57088(a)            | 1.91366               | 4.64926    | 4.71421 <i>(a)</i> | 7.82113 | 7.86218(a) |
|      | 0.01  | .0993087                  | .0377248                  | .0544395                        | .343771   | 1.57092(a)            | 1.91374               | 4.64898    | 4.71445(a)         | 7.82057 | 7.86255(a) |
|      | 0.02  | .397280                   | .150753                   | .217366                         | .344040   | 1.57111(a)            | 1.91404               | 4.64789    | 4.71536(a)         | 7.81843 | 7.86392(a) |
|      | 0.03  | .894049                   | .338649                   | .487608                         | .344488   | 1.57142(a)            | 1.91455               | 4.64613    | 4.71683(a)         | 7.81511 | 7.86595(a) |
| 20   | 0.005 | .0248264                  | .0188599                  | .0544314                        | .174851   | 1.05962               | 1.57089(a)            | 2.82438    | 4.71414 <i>(a)</i> | 5.19123 | 7.86206(a) |
|      | 0.01  | .0993088                  | .0753371                  | .217236                         | .175040   | 1.05988               | 1.57096(a)            | 2.82457    | 4.71417(a)         | 5.19132 | 7.86208(a) |
|      | 0.02  | .397280                   | .299724                   | .861205                         | .175794   | 1.06091               | 1.57127(a)            | 2.82535    | 4.71427(a)         | 5.19171 | 7.86213(a) |
|      | 0.03  | .894050                   | .668432                   | 1.90939                         | .177043   | 1.06264               | 1.57179 <i>(a)</i>    | 2.82665    | 4.71443(a)         | 5.19235 | 7.86222(a) |
| 50   | 0.005 | .0248265                  | .0470270                  | .338773                         | .0704258  | .438127               | 1.21557               | 1.57089(a) | 2.35203            | 3.82671 | 4.71414(a) |
|      | 0.01  | .0993089                  | .186410                   | 1.33534                         | .0709353  | .43892956             | 1.21639               | 1.57096(a) | 2.35284            | 3.82747 | 4.71417(a) |
|      | 0.02  | .397281                   | .720242                   | 5.04737                         | .0729336  | .442122               | 1.21964               | 1.57127(a) | 2.35608            | 3.83051 | 4.71427(a) |
|      | 0.03  | .894048                   | 1.53748                   | 10.4047                         | .0761333  | .447393               | 1.22500               | 1.57184(a) | 2.36148            | 3.83557 | 4.71444(a) |
| 100  | 0.005 | .0248265                  | .0931927                  | 1.33514                         | .0354959  | .220538               | .615182               | 1.20108    | 1.57089(a)         | 1.97680 | 2.93767    |
|      | 0.01  | .0993091                  | .359940                   | 5.04454                         | .0365061  | .222179               | .616918               | 1.20288    | 1.57098(a)         | 1.97864 | 2.93949    |
|      | 0.02  | .397272                   | 1.27852                   | 16.5298                         | .0402677  | .228619               | .623782               | 1.20999    | 1.57150(a)         | 1.98602 | 2.94677    |
|      | 0.03  | .893967                   | 2.48198                   | 28.6429                         | .0457772  | .238965               | .635024               | 1.22164    | 1.57246(a)         | 1.99833 | 2.95888    |
| 500  | 0.005 | .0248252                  | .371275                   | 22.7407                         | .00857670 | .0467568              | .126287               | .244824    | .402727            | .599970 | .836523    |
|      | 0.01  | .0992814                  | 1.03467                   | 46.1594                         | .0119649  | .0540176              | .134605               | .253821    | .412091            | .609550 | .846218    |
|      | 0.02  | .397089                   | 2.47033                   | 64.4901                         | .0200785  | .0762298              | .163282               | .286748    | .447537            | .646508 | .884061    |
|      | 0.03  | .893645                   | 3.93617                   | 71.4377                         | .0285341  | .102679               | .201130               | .333403    | .500339            | .703443 | .943719    |
| 1000 | 0.005 | .0248196                  | .517285                   | 46.1559                         | .00598284 | .0270110              | .0673132              | .126944    | .206128            | .304950 | .423444    |
|      | 0.01  | .0992609                  | 1.23470                   | 64.4758                         | .0100409  | .0381185              | .0816572              | .143422    | .223882            | .323491 | .442492    |
|      | 0.02  | .397143                   | 2.69658                   | 75.0800                         | .0185380  | .0653250              | .121647               | .193975    | .282446            | .387868 | .511055    |
|      | 0.03  | .893990                   | 4.13175                   | 78.9386                         | .0270995  | .0941368              | .166441               | .253819    | .355873            | .472835 | .605502    |

表十二 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=0.5, \alpha=5^\circ)$ 

| η    | k     | $\varepsilon_0 (10^{-3})$ | $\varepsilon_b \ (10^{-3})$ | $\frac{V_{tip}}{L_T} (10^{-3})$ | $K_1$     | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$               | $K_5$               | $K_6$   | <i>K</i> <sub>7</sub> |
|------|-------|---------------------------|-----------------------------|---------------------------------|-----------|-----------------------|-----------------------|---------------------|---------------------|---------|-----------------------|
| 10   | 0.005 | .0246855                  | .0187952                    | .0271285                        | .343703   | 1.57088(a)            | 1.91366               | 4.64926             | 4.71421 <i>(a)</i>  | 7.82113 | 7.86218 <i>(a)</i>    |
|      | 0.01  | .0987451                  | .0751628                    | .108465                         | .343769   | 1.57092(a)            | 1.91374               | 4.64899             | 4.71445(a)          | 7.82057 | 7.86255(a)            |
|      | 0.015 | .222187                   | .169049                     | .243866                         | .343880   | 1.57100(a)            | 1.91386               | 4.64853             | 4.71483(a)          | 7.81967 | 7.86314(a)            |
|      | 0.02  | .395025                   | .300364                     | .433088                         | .344035   | 1.57111(a)            | 1.91404               | 4.64789             | 4.71536(a)          | 7.81843 | 7.86392(a)            |
| 20   | 0.005 | .0246855                  | .0375765                    | .108449                         | .174850   | 1.05962               | 1.57089(a)            | 2.82438             | 4.71414(a)          | 5.19123 | 7.86206(a)            |
|      | 0.01  | .0987452                  | .150104                     | .432832                         | .175037   | 1.05988               | 1.57096(a)            | 2.82457             | 4.71417(a)          | 5.19132 | 7.86208(a)            |
|      | 0.015 | .222188                   | .336981                     | .970271                         | .175349   | 1.06031               | 1.57109(a)            | 2.82489             | 4.71421( <i>a</i> ) | 5.19148 | 7.86210(a)            |
|      | 0.02  | .395027                   | .597219                     | 1.71605                         | .175785   | 1.06091               | 1.57128(a)            | 2.82535             | 4.71427(a)          | 5.19171 | 7.86213(a)            |
| 50   | 0.005 | .0246856                  | .0936995                    | .674997                         | .0704242  | .438125               | 1.21557               | 1.57089(a)          | 2.35203             | 3.82671 | 4.71414(a)            |
|      | 0.01  | .0987458                  | .371451                     | 2.66097                         | .0709292  | .438923               | 1.21638               | 1.57097(a)          | 2.35284             | 3.82746 | 4.71417(a)            |
|      | 0.015 | .222190                   | .823659                     | 5.84641                         | .0717626  | .440249               | 1.21772               | 1.57111( <i>a</i> ) | 2.35418             | 3.82872 | 4.71421(a)            |
|      | 0.02  | .395032                   | 1.43571                     | 10.0625                         | .0729123  | .442098               | 1.21956               | 1.57135(a)          | 2.35607             | 3.83048 | 4.71428(a)            |
| 100  | 0.005 | .0246857                  | .185701                     | 2.66058                         | .0354928  | .220535               | .615179               | 1.20107             | 1.57089(a)          | 1.97680 | 2.93767               |
|      | 0.01  | .0987467                  | .717494                     | 10.0569                         | .0364955  | .222166               | .616894               | 1.20284             | 1.57106(a)          | 1.97865 | 2.93948               |
|      | 0.015 | .222186                   | 1.53142                     | 20.7296                         | .0381045  | .224855               | .619711               | 1.20569             | 1.57149(a)          | 1.98178 | 2.94251               |
|      | 0.02  | .394995                   | 2.55085                     | 32.9871                         | .0402404  | .228564               | .623602               | 1.20957             | 1.57228(a)          | 1.98623 | 2.94675               |
| 500  | 0.005 | .0246805                  | .741032                     | 45.3966                         | .00857017 | .0467402              | .126231               | .244745             | .402627             | .599852 | .836378               |
|      | 0.01  | .0986356                  | 2.06691                     | 92.1628                         | .0119570  | .0539832              | .134432               | .253499             | .411625             | .608941 | .845417               |
|      | 0.015 | .221809                   | 3.48592                     | 115.715                         | .0159239  | .0642325              | .147134               | .267622             | .426439             | .624048 | .860520               |
|      | 0.02  | .394262                   | 4.93625                     | 128.676                         | .0200699  | .0762036              | .163106               | .286233             | .446545             | .644923 | .881650               |
| 1000 | 0.005 | .0246582                  | 1.03336                     | 92.1559                         | .00597887 | .0269938              | .0672270              | .126785             | .205904             | .304674 | .423120               |
|      | 0.01  | .0985537                  | 2.46722                     | 128.648                         | .0100366  | .0381054              | .0815699              | .143170             | .223412             | .322786 | .441549               |
|      | 0.015 | .221780                   | 3.92973                     | 142.420                         | .0142671  | .0513339              | .100529               | .166561             | .249851             | .351204 | .471215               |
|      | 0.02  | .394474                   | 5.38896                     | 149.716                         | .0185334  | .0653175              | .121609               | .193831             | .282074             | .387128 | .509801               |

表十三 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=0.5, \alpha=10^\circ)$ 

| η    | k     | $\varepsilon_0 (10^{-4})$ | $\varepsilon_b(10^{-3})$ | $\frac{V_{tip}}{L_T} (10^{-3})$ | $K_1$     | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$      | $K_5$      | $K_{6}$ | $K_7$      |
|------|-------|---------------------------|--------------------------|---------------------------------|-----------|-----------------------|-----------------------|------------|------------|---------|------------|
| 10   | 0.004 | .156492                   | .0179294                 | .0258795                        | .343695   | 1.57087(a)            | 1.91365               | 4.64930    | 4.71418(a) | 7.82120 | 7.86214(a) |
|      | 0.006 | .352109                   | .0403387                 | .0582220                        | .343712   | 1.57088(a)            | 1.91367               | 4.64922    | 4.71425(a) | 7.82105 | 7.86224(a) |
|      | 0.008 | .625978                   | .0717070                 | .103489                         | .343736   | 1.57090(a)            | 1.91370               | 4.64912    | 4.71433(a) | 7.82084 | 7.86237(a) |
|      | 0.01  | .978104                   | .112030                  | .161667                         | .343768   | 1.57092(a)            | 1.91374               | 4.64899    | 4.71445(a) | 7.82058 | 7.86255(a) |
| 20   | 0.004 | .156492                   | .0358505                 | .103479                         | .174827   | 1.05959               | 1.57088(a)            | 2.82435    | 4.71414(a) | 5.19122 | 7.86206(a) |
|      | 0.006 | .352109                   | .0806353                 | .232692                         | .174876   | 1.05966               | 1.57090(a)            | 2.82441    | 4.71415(a) | 5.19124 | 7.86207(a) |
|      | 0.008 | .625979                   | .143281                  | .413335                         | .174945   | 1.05975               | 1.57093(a)            | 2.82448    | 4.71415(a) | 5.19128 | 7.86207(a) |
|      | 0.01  | .978107                   | .223735                  | .645157                         | .175033   | 1.05987               | 1.57096( <i>a</i> )   | 2.82457    | 4.71417(a) | 5.19132 | 7.86208(a) |
| 50   | 0.004 | .156492                   | .0894812                 | .645051                         | .0703617  | .438028               | 1.21547               | 1.57088(a) | 2.35193    | 3.82662 | 4.71414(a) |
|      | 0.006 | .352111                   | .200857                  | 1.44579                         | .0704948  | .438239.96            | 1.21569               | 1.57090(a) | 2.35214    | 3.82682 | 4.71415(a) |
|      | 0.008 | .625985                   | .355903                  | 2.55653                         | .0706808  | .438535               | 1.21598               | 1.57093(a) | 2.35244    | 3.82710 | 4.71415(a) |
|      | 0.01  | .978121                   | .553765                  | 3.96727                         | .0709192  | .438914               | 1.21636               | 1.57097(a) | 2.35283    | 3.82746 | 4.71417(a) |
| 100  | 0.004 | .156493                   | .177937                  | 2.55629                         | .0353672  | .220336               | .614968               | 1.20085    | 1.57088(a) | 1.97658 | 2.93745    |
|      | 0.006 | .352117                   | .396613                  | 5.66435                         | .0356346  | .220768               | .615422               | 1.20132    | 1.57093(a) | 1.97707 | 2.93793    |
|      | 0.008 | .625999                   | .696076                  | 9.86035                         | .0360058  | .221372               | .616052               | 1.20196    | 1.57102(a) | 1.97776 | 2.93860    |
|      | 0.01  | .978140                   | 1.07029                  | 15.0050                         | .0364778  | .222145               | .616853               | 1.20276    | 1.57118(a) | 1.97866 | 2.93947    |
| 500  | 0.004 | .156464                   | .761716                  | 49.2689                         | .00804423 | .0457777              | .125164               | .243606    | .401446    | .598645 | .835150    |
|      | 0.006 | .351812                   | 1.48039                  | 85.4447                         | .00914593 | .0478334              | .127322               | .245838    | .403692    | .600876 | .837319    |
|      | 0.008 | .624910                   | 2.27095                  | 115.249                         | .0104759  | .0505844              | .130323               | .248950    | .406813    | .603957 | .840287    |
|      | 0.01  | .975640                   | 3.09429                  | 137.855                         | .0119437  | .0539259              | .134145               | .252969    | .410863    | .607954 | .844133    |
| 1000 | 0.004 | .156224                   | 1.13540                  | 115.243                         | .00523820 | .0252941              | .0651716              | .124510    | .203500    | .302189 | .420578    |
|      | 0.006 | .350988                   | 1.96781                  | 154.772                         | .00674778 | .0288771              | .0693729              | .128986    | .208055    | .306744 | .425095    |
|      | 0.008 | .623450                   | 2.82562                  | 177.669                         | .00836615 | .0332373              | .0749036              | .135153    | .214484    | .313247 | .431579    |
|      | 0.01  | .973789                   | 3.69537                  | 192.213                         | .0100294  | .0380837              | .0814241              | .142751    | .222639    | .321644 | .440042    |

表十四 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=0.5, \alpha=15^\circ)$ 

| η    | k     | $\varepsilon_0 (10^{-4})$ | $\varepsilon_b \ (10^{-3})$ | $\frac{V_{tip}}{L_T} (10^{-3})$ | $K_1$     | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$      | $K_5$              | $K_6$   | <i>K</i> <sub>7</sub> |
|------|-------|---------------------------|-----------------------------|---------------------------------|-----------|-----------------------|-----------------------|------------|--------------------|---------|-----------------------|
| 10   | 0.004 | .148580                   | .0346372                    | .0499958                        | .343693   | 1.57087(a)            | 1.91365               | 4.64930    | 4.71418(a)         | 7.82120 | 7.86214(a)            |
|      | 0.006 | .334307                   | .0779295                    | .112479                         | .343708   | 1.57088(a)            | 1.91367               | 4.64922    | 4.71425(a)         | 7.82105 | 7.86224(a)            |
|      | 0.008 | .594330                   | .138531                     | .199932                         | .343730   | 1.57090(a)            | 1.91370               | 4.64912    | 4.71433(a)         | 7.82085 | 7.86237(a)            |
|      | 0.01  | .928654                   | .216433                     | .312334                         | .343757   | 1.57092(a)            | 1.91373               | 4.64899    | 4.71445(a)         | 7.82059 | 7.86255(a)            |
| 20   | 0.004 | .148580                   | .0692600                    | .199914                         | .174823   | 1.05959               | 1.57088(a)            | 2.82435    | 4.71414 <i>(a)</i> | 5.19121 | 7.86206(a)            |
|      | 0.006 | .334308                   | .155786                     | .449566                         | .174868   | 1.05965               | 1.57090(a)            | 2.82440    | 4.71415(a)         | 5.19124 | 7.86207(a)            |
|      | 0.008 | .594334                   | .276832                     | .798628                         | .174931   | 1.05974               | 1.57093(a)            | 2.82447    | 4.71415(a)         | 5.19127 | 7.86207(a)            |
|      | 0.01  | .928663                   | .432305                     | 1.24665                         | .175012   | 1.05986               | 1.57096( <i>a</i> )   | 2.82456    | 4.71417(a)         | 5.19132 | 7.86208(a)            |
| 50   | 0.004 | .148581                   | .172899                     | 1.24646                         | .0703529  | .438020               | 1.21546               | 1.57088(a) | 2.35192            | 3.82661 | 4.71414(a)            |
|      | 0.006 | .334316                   | .388196                     | 2.79463                         | .0704751  | .438222.96            | 1.21566               | 1.57090(a) | 2.35213            | 3.82680 | 4.71415(a)            |
|      | 0.008 | .594357                   | .688087                     | 4.94376                         | .0706461  | .438503               | 1.21594               | 1.57095(a) | 2.35242            | 3.82707 | 4.71416(a)            |
|      | 0.01  | .928716                   | 1.07108                     | 7.67594                         | .0708659  | .438864               | 1.21629               | 1.57102(a) | 2.35279            | 3.82741 | 4.71418(a)            |
| 100  | 0.004 | .148586                   | .344016                     | 4.94331                         | .0353499  | .220320               | .614949               | 1.20083    | 1.57090(a)         | 1.97657 | 2.93743               |
|      | 0.006 | .334337                   | .767509                     | 10.9666                         | .0355969  | .220732               | .615371               | 1.20124    | 1.57102(a)         | 1.97705 | 2.93789               |
|      | 0.008 | .594407                   | 1.34866                     | 19.1194                         | .0359418  | .221305               | .615941               | 1.20178    | 1.57129(a)         | 1.97777 | 2.93854               |
|      | 0.01  | .928788                   | 2.07668                     | 29.1467                         | .0363833  | .222037               | .616645               | 1.20239    | 1.57180(a)         | 1.97874 | 2.93937               |
| 500  | 0.002 | .0371501                  | .415273                     | 29.1417                         | .00727916 | .0444794              | .123797               | .242174    | .399984            | .597168 | .833678               |
|      | 0.004 | .148469                   | 1.49004                     | 96.5785                         | .00799487 | .0456820              | .124887               | .243241    | .401001            | .598129 | .834529               |
|      | 0.006 | .333126                   | 2.91366                     | 168.308                         | .00908053 | .0476379              | .126599               | .244787    | .402350            | .599279 | .835362               |
|      | 0.008 | .590060                   | 4.48524                     | 227.218                         | .0104055  | .0503120              | .129142               | .247046    | .404274            | .600853 | .836444               |
| 1000 | 0.002 | .0371172                  | .745007                     | 96.5767                         | .00399752 | .0228423              | .0624517              | .121651    | .200581            | .299243 | .417623               |
|      | 0.004 | .147512                   | 2.24248                     | 227.205                         | .00520298 | .0251579              | .0645832              | .123571    | .202276            | .300760 | .418964               |
|      | 0.006 | .329805                   | 3.89809                     | 304.452                         | .00671105 | .0287201              | .0685214              | .127308    | .205649            | .303769 | .421631               |
|      | 0.008 | .584146                   | 5.60339                     | 348.562                         | .00832811 | .0330971              | .0740247              | .133053    | .211145            | .308859 | .426295               |

表十五 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=0.5, \alpha=30^\circ)$ 

| η    | k     | $\varepsilon_0 (10^{-4})$ | $\varepsilon_b(10^{-3})$ | $\frac{V_{tip}}{L_T} (10^{-3})$ | $K_1$     | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$               | $K_5$               | $K_6$   | <i>K</i> <sub>7</sub> |
|------|-------|---------------------------|--------------------------|---------------------------------|-----------|-----------------------|-----------------------|---------------------|---------------------|---------|-----------------------|
| 10   | 0.004 | .135993                   | .0489849                 | .0707057                        | .343690   | 1.57087(a)            | 1.91365               | 4.64930             | 4.71418( <i>a</i> ) | 7.82120 | 7.86214 <i>(a)</i>    |
|      | 0.006 | .305987                   | .110212                  | .159074                         | .343703   | 1.57088(a)            | 1.91367               | 4.64923             | 4.71425(a)          | 7.82106 | 7.86224(a)            |
|      | 0.008 | .543985                   | .195921                  | .282763                         | .343720   | 1.57090(a)            | 1.91369               | 4.64912             | 4.71433(a)          | 7.82086 | 7.86237(a)            |
|      | 0.01  | .849990                   | .306103                  | .441747                         | .343742   | 1.57092(a)            | 1.91373               | 4.64899             | 4.71445(a)          | 7.82061 | 7.86255(a)            |
| 20   | 0.004 | .135994                   | .0979532                 | .282739                         | .174818   | 1.05958               | 1.57088( <i>a</i> )   | 2.82435             | 4.71414 <i>(a)</i>  | 5.19121 | 7.86206(a)            |
|      | 0.006 | .305990                   | .220339                  | .635872                         | .174856   | 1.05964               | 1.57090(a)            | 2.82440             | 4.71415(a)          | 5.19124 | 7.86207(a)            |
|      | 0.008 | .543992                   | .391575                  | 1.12972                         | .174909   | 1.05973               | 1.57093(a)            | 2.82446             | 4.71415(a)          | 5.19127 | 7.86207(a)            |
|      | 0.01  | .850008                   | .611558                  | 1.76373                         | .174977   | 1.05983               | 1.57097(a)            | 2.82454             | 4.71417(a)          | 5.19131 | 7.86208(a)            |
| 50   | 0.004 | .135997                   | .244592                  | 1.76347                         | .0703388  | .438008               | 1.21545               | 1.57088(a)          | 2.35191             | 3.82660 | 4.71414 <i>(a)</i>    |
|      | 0.006 | .306005                   | .549378                  | 3.95577                         | .0704437  | .43819496             | 1.21563               | 1.57091( <i>a</i> ) | 2.35210             | 3.82677 | 4.71415 <i>(a)</i>    |
|      | 0.008 | .544039                   | .974308                  | 7.00265                         | .0705909  | .438454               | 1.21588               | 1.57098(a)          | 2.35238             | 3.82702 | 4.71416( <i>a</i> )   |
|      | 0.01  | .850114                   | 1.51763                  | 10.8821                         | .0707807  | .438786               | 1.21617               | 1.57108(a)          | 2.35273             | 3.82734 | 4.71419(a)            |
| 100  | 0.004 | .136007                   | .487119                  | 7.00207                         | .0353222  | .220295               | .614919               | 1.20079             | 1.57093(a)          | 1.97655 | 2.93741               |
|      | 0.006 | .306049                   | 1.08839                  | 15.5633                         | .0355363  | .220674               | .615292               | 1.20113             | 1.57114(a)          | 1.97703 | 2.93784               |
|      | 0.008 | .544140                   | 1.91629                  | 27.2008                         | .0358385  | .221199               | .615774               | 1.20151             | 1.57166(a)          | 1.97777 | 2.93844               |
|      | 0.01  | .850256                   | 2.95766                  | 41.5870                         | .0362301  | .221866               | .616333               | 1.20185             | 1.57266(a)          | 1.97883 | 2.93923               |
| 500  | 0.003 | .0764842                  | 1.27694                  | 86.8781                         | .00752478 | .0449027              | .124084               | .242418             | .400176             | .597310 | .833733               |
|      | 0.004 | .135750                   | 2.15140                  | 139.954                         | .00791215 | .0455302              | .124466               | .242694             | .400341             | .597372 | .833626               |
|      | 0.005 | .211495                   | 3.15828                  | 194.485                         | .00839937 | .0463332              | .124905               | .242933             | .400383             | .597235 | .833224               |
|      | 0.006 | .303365                   | 4.25202                  | 246.054                         | .00896911 | .0473213              | .125475               | .243204             | .400376             | .596978 | .832624               |
| 1000 | 0.003 | .0758403                  | 2.12594                  | 246.045                         | .00448470 | .0236623              | .0627492              | .121649             | .200324             | .298812 | .417025               |
|      | 0.004 | .133598                   | 3.29272                  | 332.757                         | .00514289 | .0249340              | .0636582              | .122163             | .200505             | .298748 | .416744               |
|      | 0.005 | .206917                   | 4.50987                  | 397.106                         | .00587487 | .0265538              | .0651281              | .123182             | .201115             | .299037 | .416766               |
|      | 0.006 | .295795                   | 5.75361                  | 444.206                         | .00664893 | .0284572              | .0671547              | .124804             | .202295             | .299848 | .417276               |

表十六 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=0.5, \alpha=45^\circ)$ 

| η    | k     | $\varepsilon_0 (10^{-5})$ | $\varepsilon_b~(10^{-3})$ | $\frac{V_{tip}}{L_T} (10^{-3})$ | $K_1$     | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$      | $K_5$               | $K_6$   | <i>K</i> <sub>7</sub> |
|------|-------|---------------------------|---------------------------|---------------------------------|-----------|-----------------------|-----------------------|------------|---------------------|---------|-----------------------|
| 10   | 0.004 | 1.19590                   | .0599949                  | .0865980                        | .343687   | 1.57087(a)            | 1.91365               | 4.64930    | 4.71418( <i>a</i> ) | 7.82121 | 7.86214 <i>(a)</i>    |
|      | 0.006 | 2.69081                   | .134985                   | .194833                         | .343695   | 1.57088(a)            | 1.91367               | 4.64923    | 4.71425(a)          | 7.82107 | 7.86224(a)            |
|      | 0.008 | 4.78373                   | .239966                   | .346338                         | .343706   | 1.57090(a)            | 1.91369               | 4.64913    | 4.71433(a)          | 7.82088 | 7.86237(a)            |
|      | 0.01  | 7.47472                   | .374931                   | .541089                         | .343721   | 1.57092(a)            | 1.91372               | 4.64900    | 4.71445(a)          | 7.82063 | 7.86255(a)            |
| 20   | 0.004 | 1.19591                   | .119975                   | .346312                         | .174811   | 1.05958               | 1.57088(a)            | 2.82435    | 4.71414(a)          | 5.19121 | 7.86206(a)            |
|      | 0.006 | 2.69084                   | .269898                   | .778925                         | .174840   | 1.05963               | 1.57090(a)            | 2.82439    | 4.71415(a)          | 5.19123 | 7.86207(a)            |
|      | 0.008 | 4.78384                   | .479701                   | 1.38407                         | .174880   | 1.05970               | 1.57093(a)            | 2.82444    | 4.71415(a)          | 5.19126 | 7.86207(a)            |
|      | 0.01  | 7.47498                   | .749299                   | 2.16122                         | .174932   | 1.05980               | 1.57097( <i>a</i> )   | 2.82452    | 4.71417(a)          | 5.19130 | 7.86207(a)            |
| 50   | 0.004 | 1.19596                   | .299686                   | 2.16094                         | .0703204  | .437992               | 1.21543               | 1.57088(a) | 2.35190             | 3.82658 | 4.71414 <i>(a)</i>    |
|      | 0.006 | 2.69108                   | .673466                   | 4.85053                         | .0704027  | .43815896             | 1.21559               | 1.57092(a) | 2.35207             | 3.82674 | 4.71415(a)            |
|      | 0.008 | 4.78454                   | 1.19522                   | 8.59432                         | .0705185  | .438390               | 1.21580               | 1.57100(a) | 2.35232             | 3.82696 | 4.71417 <i>(a)</i>    |
|      | 0.01  | 7.47658                   | 1.86339                   | 13.3707                         | .0706689  | .438685               | 1.21603               | 1.57115(a) | 2.35265             | 3.82724 | 4.71420(a)            |
| 100  | 0.004 | 1.19611                   | .597569                   | 8.59368                         | .0352859  | .220262               | .614882               | 1.20075    | 1.57095(a)          | 1.97652 | 2.93737               |
|      | 0.006 | 2.69173                   | 1.33781                   | 19.1488                         | .0354566  | .220599               | .615196               | 1.20100    | 1.57126(a)          | 1.97699 | 2.93776               |
|      | 0.008 | 4.78606                   | 2.36162                   | 33.5787                         | .0357013  | .221062               | .615575               | 1.20121    | 1.57204(a)          | 1.97774 | 2.93831               |
|      | 0.01  | 7.47867                   | 3.65658                   | 51.5416                         | .0360246  | .221647               | .615965               | 1.20124    | 1.57358(a)          | 1.97888 | 2.93903               |
| 500  | 0.001 | .0747628                  | .186314                   | 13.3687                         | .00707423 | .0441520              | .123463               | .241827    | .399632             | .596813 | .833328               |
|      | 0.002 | .299134                   | .731223                   | 51.5340                         | .00720735 | .0444011              | .123669               | .242024    | .399815             | .596982 | .833467               |
|      | 0.003 | .672458                   | 1.59370                   | 108.905                         | .00744485 | .0447970              | .123862               | .242147    | .399860             | .596957 | .833321               |
|      | 0.004 | 1.19176                   | 2.71183                   | 177.375                         | .00779555 | .0453339              | .123957               | .242049    | .399573             | .596503 | .832608               |
| 1000 | 0.001 | .0747834                  | .365610                   | 51.5338                         | .00360371 | .0222017              | .0618417              | .121039    | .199979             | .298648 | .417038               |
|      | 0.002 | .297937                   | 1.35589                   | 177.372                         | .00389785 | .0226682              | .0619880              | .121061    | .199888             | .298486 | .416803               |
|      | 0.003 | .661312                   | 2.72290                   | 316.194                         | .00440406 | .0234508              | .0620462              | .120707    | .199203             | .297583 | .415696               |
|      | 0.004 | 1.15365                   | 4.25712                   | 429.053                         | .00505566 | .0246273              | .0624752              | .120479    | .198480             | .296520 | .414351               |

表十七 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=0.5, \alpha=60^\circ)$ 

| η    | k      | $\varepsilon_0 (10^{-5})$ | $\varepsilon_b(10^{-3})$ | $\frac{V_{tip}}{L_T} (10^{-3})$ | $K_1$     | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$      | $K_5$              | $K_6$   | <i>K</i> <sub>7</sub> |
|------|--------|---------------------------|--------------------------|---------------------------------|-----------|-----------------------|-----------------------|------------|--------------------|---------|-----------------------|
| 10   | 0.004  | 1.00489                   | .0669167                 | .0965896                        | .343683   | 1.57087(a)            | 1.91365               | 4.64930    | 4.71418 <i>(a)</i> | 7.82121 | 7.86214 <i>(a)</i>    |
|      | 0.006  | 2.26102                   | .150562                  | .217318                         | .343686   | 1.57088(a)            | 1.91366               | 4.64923    | 4.71425(a)         | 7.82108 | 7.86224(a)            |
|      | 0.008  | 4.01966                   | .267665                  | .386323                         | .343691   | 1.57090(a)            | 1.91368               | 4.64913    | 4.71433(a)         | 7.82089 | 7.86237(a)            |
|      | 0.01   | 6.28085                   | .418223                  | .603587                         | .343696   | 1.57092(a)            | 1.91371               | 4.64901    | 4.71445(a)         | 7.82066 | 7.86255(a)            |
| 20   | 0.004  | 1.00490                   | .133825                  | .386298                         | .174802   | 1.05957               | 1.57088(a)            | 2.82434    | 4.71414(a)         | 5.19121 | 7.86206(a)            |
|      | 0.006  | 2.26107                   | .301082                  | .868966                         | .174821   | 1.05962               | 1.57090(a)            | 2.82438    | 4.71415(a)         | 5.19123 | 7.86207(a)            |
|      | 0.008  | 4.01980                   | .535195                  | 1.54432                         | .174847   | 1.05968               | 1.57093(a)            | 2.82443    | 4.71415(a)         | 5.19125 | 7.86207(a)            |
|      | 0.01   | 6.28119                   | .836120                  | 2.41197                         | .174880 🔬 | 1.05976               | 1.57097( <i>a</i> )   | 2.82449    | 4.71416(a)         | 5.19128 | 7.86207(a)            |
| 50   | 0.004  | 1.00496                   | .334416                  | 2.41170                         | .0702990  | .437974               | 1.21541               | 1.57088(a) | 2.35188            | 3.82657 | 4.71414(a)            |
|      | 0.006  | 2.26136                   | .751960                  | 5.41752                         | .0703547  | .438117.6             | 1.21555               | 1.57093(a) | 2.35203            | 3.82670 | 4.71415(a)            |
|      | 0.008  | 4.02067                   | 1.33562                  | 9.60911                         | .0704337  | .438315               | 1.21571               | 1.57102(a) | 2.35225            | 3.82689 | 4.71417(a)            |
|      | 0.01   | 6.28317                   | 2.08447                  | 14.9696                         | .0705373  | .438568               | 1.21588               | 1.57120(a) | 2.35254            | 3.82713 | 4.71420(a)            |
| 100  | 0.004  | 1.00515                   | .667774                  | 9.60849                         | .0352433  | .220224               | .614840               | 1.20070    | 1.57097(a)         | 1.97648 | 2.93733               |
|      | 0.006  | 2.26217                   | 1.49846                  | 21.4738                         | .0353624  | .220512               | .615093               | 1.20087    | 1.57136(a)         | 1.97692 | 2.93767               |
|      | 0.008  | 4.02256                   | 2.65356                  | 37.8065                         | .0355376  | .220906               | .615368               | 1.20093    | 1.57234(a)         | 1.97767 | 2.93816               |
|      | 0.01   | 6.28571                   | 4.12454                  | 58.3140                         | .0357766  | .221398               | .615595               | 1.20068    | 1.57431(a)         | 1.97884 | 2.93879               |
| 500  | 0.001  | .0628291                  | .208424                  | 14.9676                         | .00706102 | .0441400              | .123450               | .241812    | .399616            | .596797 | .833311               |
|      | 0.002  | .251417                   | .824818                  | 58.3065                         | .00715769 | .0443511              | .123597               | .241943    | .399725            | .596885 | .833360               |
|      | 0.0025 | .392696                   | 1.27764                  | 89.1996                         | .00723839 | .0445011              | .123643               | .241954    | .399698            | .596823 | .833239               |
|      | 0.003  | .564857                   | 1.81927                  | 125.027                         | .00734494 | .0446775              | .123639               | .241883    | .399558            | .596622 | .832939               |
| 1000 | 0.001  | .0628543                  | .412407                  | 58.3062                         | .00357888 | .0221767              | .0618061              | .120999    | .199935            | .298601 | .416990               |
|      | 0.002  | .249711                   | 1.56838                  | 206.724                         | .00382250 | .0225558              | .0617268              | .120742    | .199523            | .298094 | .416383               |
|      | 0.0025 | .386233                   | 2.35163                  | 293.354                         | .00403219 | .0228344              | .0615122              | .120295    | .198890            | .297343 | .415521               |
|      | 0.003  | .548173                   | 3.22129                  | 376.281                         | .00429559 | .0231971              | .0612738              | .119726    | .198072            | .296367 | .414405               |

表十八 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=0.5, \alpha=75^\circ)$ 

| η    | k      | $\varepsilon_0 (10^{-5})$ | $\varepsilon_b(10^{-3})$ | $\frac{V_{tip}}{L_T} (10^{-3})$ | $K_1$     | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$      | $K_5$              | $K_{6}$ | <i>K</i> <sub>7</sub> |
|------|--------|---------------------------|--------------------------|---------------------------------|-----------|-----------------------|-----------------------|------------|--------------------|---------|-----------------------|
| 10   | 0.004  | .799902                   | .0692784                 | .0999992                        | .343679   | 1.57087( <i>a</i> )   | 1.91365               | 4.64930    | 4.71418 <i>(a)</i> | 7.82122 | 7.86214 <i>(a)</i>    |
|      | 0.006  | 1.79980                   | .155879                  | .224996                         | .343677   | 1.57088(a)            | 1.91366               | 4.64923    | 4.71425(a)         | 7.82109 | 7.86224(a)            |
|      | 0.008  | 3.19971                   | .277126                  | .399988                         | .343674   | 1.57090(a)            | 1.91368               | 4.64914    | 4.71433(a)         | 7.82091 | 7.86237(a)            |
|      | 0.01   | 4.99966                   | .433023                  | .624970                         | .343671   | 1.57092(a)            | 1.91370               | 4.64902    | 4.71445(a)         | 7.82068 | 7.86255(a)            |
| 20   | 0.004  | .799911                   | .138557                  | .399966                         | .174793   | 1.05956               | 1.57088(a)            | 2.82434    | 4.71414(a)         | 5.19121 | 7.86206(a)            |
|      | 0.006  | 1.79985                   | .311758                  | .899828                         | .174800   | 1.05960               | 1.57090(a)            | 2.82437    | 4.71415(a)         | 5.19122 | 7.86207(a)            |
|      | 0.008  | 3.19986                   | .554251                  | 1.59945                         | .174810   | 1.05965               | 1.57093(a)            | 2.82441    | 4.71415(a)         | 5.19124 | 7.86207(a)            |
|      | 0.01   | 5.00002                   | .866044                  | 2.49866                         | .174824   | 1.05972               | 1.57097( <i>a</i> )   | 2.82446    | 4.71416(a)         | 5.19127 | 7.86207(a)            |
| 50   | 0.004  | .799975                   | .346391                  | 2.49843                         | .0702760  | .437954               | 1.21539               | 1.57088(a) | 2.35186            | 3.82655 | 4.71414(a)            |
|      | 0.006  | 1.80016                   | .779385                  | 5.61696                         | .0703030  | .438072               | 1.21550               | 1.57093(a) | 2.35199            | 3.82666 | 4.71415(a)            |
|      | 0.008  | 3.20079                   | 1.38557                  | 9.97430                         | .0703421  | .438236               | 1.21563               | 1.57103(a) | 2.35218            | 3.82682 | 4.71417(a)            |
|      | 0.01   | 5.00216                   | 2.16490                  | 15.5613                         | .0703945  | .438444               | 1.21575               | 1.57122(a) | 2.35243            | 3.82702 | 4.71421(a)            |
| 100  | 0.004  | .800182                   | .692755                  | 9.97376                         | .0351974  | .220183               | .614798               | 1.20065    | 1.57098(a)         | 1.97644 | 2.93729               |
|      | 0.006  | 1.80104                   | 1.55847                  | 22.3628                         | .0352597  | .220421               | .614994               | 1.20076    | 1.57139(a)         | 1.97684 | 2.93758               |
|      | 0.008  | 3.20282                   | 2.76949                  | 39.5477                         | .0353571  | .220743               | .615180               | 1.20070    | 1.57248(a)         | 1.97753 | 2.93799               |
|      | 0.01   | 5.00481                   | 4.32362                  | 61.3395                         | .0354991  | .221139               | .615273               | 1.20027    | 1.57467(a)         | 1.97867 | 2.93853               |
| 500  | 0.001  | .0500194                  | .216470                  | 15.5596                         | .00704669 | .0441272              | .123436               | .241798    | .399601            | .596782 | .833295               |
|      | 0.002  | .200183                   | .864647                  | 61.3328                         | .00710214 | .0442990              | .123534               | .241874    | .399651            | .596807 | .833277               |
|      | 0.0025 | .312610                   | 1.34817                  | 94.6072                         | .00715405 | .0444180              | .123531               | .241829    | .399561            | .596678 | .833081               |
|      | 0.003  | .449395                   | 1.93425                  | 133.848                         | .00722824 | .0445546              | .123452               | .241670    | .399322            | .596369 | .832658               |
| 1000 | 0.001  | .0500457                  | .432322                  | 61.3326                         | .00355111 | .0221506              | .0617743              | .120964    | .199898            | .298563 | .416950               |
|      | 0.002  | .198042                   | 1.69560                  | 225.723                         | .00373046 | .0224392              | .0614996              | .120477    | .199228            | .297782 | .416054               |
|      | 0.0025 | .304202                   | 2.58480                  | 326.051                         | .00391126 | .0226422              | .0610578              | .119757    | .198288            | .296707 | .414852               |
|      | 0.003  | .426938                   | 3.59170                  | 423.658                         | .00415519 | .0229167              | .0605189              | .118825    | .197068            | .295312 | .413304               |

表十九 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=0.5, \alpha=90^\circ)$ 

| η    | k    | $\varepsilon_0 (10^{-3})$ | ε <sub>b</sub> | $rac{V_{tip}}{L_T}$ | $K_1$    | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$      | $K_5$              | $K_{6}$ | $K_7$               |
|------|------|---------------------------|----------------|----------------------|----------|-----------------------|-----------------------|------------|--------------------|---------|---------------------|
| 10   | 0.01 | .148998                   | 0              | 0                    | .343872  | 1.57092 <i>(a)</i>    | 1.91378               | 4.64895    | 4.71445 <i>(a)</i> | 7.82046 | 7.86255( <i>a</i> ) |
|      | 0.02 | .596058                   | 0              | 0                    | .344444  | 1.57111 ( <i>a</i> )  | 1.91420               | 4.64776    | 4.71536(a)         | 7.81800 | 7.86390(a)          |
|      | 0.04 | 2.38527                   | 0              | 0                    | .346719  | 1.57186(a)            | 1.91588               | 4.64328    | 4.71873(a)         | 7.80924 | 7.86822(a)          |
|      | 0.06 | 5.37076                   | 0              | 0                    | .350462  | 1.57312(a)            | 1.91869               | 4.63657    | 4.72360(a)         | 7.79677 | 7.87329(a)          |
| 20   | 0.01 | .148998                   | 0              | 0                    | .175258  | 1.06004               | 1.57096(a)            | 2.82469    | 4.71417(a)         | 5.19138 | 7.86208(a)          |
|      | 0.02 | .596058                   | 0              | 0                    | .176661  | 1.06156               | 1.57127(a)            | 2.82581    | 4.71427(a)         | 5.19194 | 7.86213(a)          |
|      | 0.04 | 2.38527                   | 0              | 0                    | .182150  | 1.06762               | 1.57252(a)            | 2.83030    | 4.71467(a)         | 5.19418 | 7.86236(a)          |
|      | 0.06 | 5.37076                   | 0              | 0                    | .190897  | 1.07766               | 1.57460( <i>a</i> )   | 2.83779    | 4.71533(a)         | 5.19792 | 7.86273(a)          |
| 50   | 0.01 | .148998                   | 0              | 0                    | .0714858 | .439405               | 1.21686               | 1.57096(a) | 2.35330            | 3.82790 | 4.71417(a)          |
|      | 0.02 | .596058                   | 0              | 0                    | .0750486 | .4440121896           | 1.22152               | 1.57125(a) | 2.35791            | 3.83224 | 4.71426(a)          |
|      | 0.04 | 2.38527                   | 0              | 0                    | .0877636 | .461975               | 1.23999               | 1.57241(a) | 2.37627            | 3.84954 | 4.71466(a)          |
|      | 0.06 | 5.37076                   | 0              | 0                    | .105339  | .490429               | 1.27012               | 1.57435(a) | 2.40655            | 3.87823 | 4.71531 <i>(a)</i>  |
| 100  | 0.01 | .148998                   | 0              | 0                    | .0375668 | .223145               | .617913               | 1.20392    | 1.57096(a)         | 1.97967 | 2.94053             |
|      | 0.02 | .596058                   | 0              | 0                    | .0439754 | .232350               | .627728               | 1.21418    | 1.57124(a)         | 1.99008 | 2.95089             |
|      | 0.04 | 2.38527                   | 0              | 0                    | .0630513 | .265905               | .665347               | 1.25429    | 1.57240(a)         | 2.03110 | 2.99195             |
|      | 0.06 | 5.37076                   | 0              | 0                    | .0852550 | .313660               | .723130               | 1.31800    | 1.57433(a)         | 2.09747 | 3.05905             |
| 500  | 0.01 | .148998                   | 0              | 0                    | .0148226 | .0578458              | .139137               | .258881    | .417488            | .615179 | .852038             |
|      | 0.02 | .596058                   | 0              | 0                    | .0265111 | .0864577              | .177158               | .303589    | .466489            | .666975 | .905720             |
|      | 0.04 | 2.38527                   | 0              | 0                    | .0505357 | .153227               | .276760               | .432184    | .618642            | .837278 | 1.08978             |
|      | 0.06 | 5.37076                   | 0              | 0                    | .0746277 | .222828               | .385008               | .578158    | .800313            | 1.05084 | 1.33083             |
| 1000 | 0.01 | .148998                   | 0              | 0                    | .0132579 | .0432330              | .0885977              | .151847    | .233362            | .333715 | .453260             |
|      | 0.02 | .596058                   | 0              | 0                    | .0252836 | .0766152              | .138402               | .216170    | .309504            | .418994 | .545501             |
|      | 0.04 | 2.38527                   | 0              | 0                    | .0494470 | .146591               | .247884               | .364608    | .495920            | .640731 | .799060             |
|      | 0.06 | 5.37076                   | 0              | 0                    | .0735850 | .217470               | .360269               | .518160    | .691561            | .878499 | 1.07803             |

表二十 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=1, lpha=0^\circ)$ 

| η    | k     | $\varepsilon_0 (10^{-3})$ | $\varepsilon_b \ (10^{-3})$ | $\frac{V_{tip}}{L_T} (10^{-3})$ | $K_1$     | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$               | $K_5$              | $K_{6}$ | $K_7$               |
|------|-------|---------------------------|-----------------------------|---------------------------------|-----------|-----------------------|-----------------------|---------------------|--------------------|---------|---------------------|
| 10   | 0.005 | .0371543                  | .0188650                    | .0272283                        | .343728   | 1.57088(a)            | 1.91367               | 4.64926             | 4.71421 <i>(a)</i> | 7.82110 | 7.86218( <i>a</i> ) |
|      | 0.01  | .148622                   | .0754183                    | .108819                         | .343871   | 1.57092(a)            | 1.91378               | 4.64895             | 4.71445(a)         | 7.82046 | 7.86255(a)          |
|      | 0.02  | .594553                   | .301007                     | .433772                         | .344441   | 1.57111( <i>a</i> )   | 1.91420               | 4.64776             | 4.71536(a)         | 7.81800 | 7.86390( <i>a</i> ) |
|      | 0.03  | 1.33799                   | .674794                     | .970406                         | .345388   | 1.57142(a)            | 1.91490               | 4.64584             | 4.71682(a)         | 7.81418 | 7.86588(a)          |
| 20   | 0.005 | .0371543                  | .0377019                    | .108796                         | .174905   | 1.05966               | 1.57089(a)            | 2.82441             | 4.71414(a)         | 5.19124 | 7.86206(a)          |
|      | 0.01  | .148622                   | .150388                     | .433403                         | .175256   | 1.06004               | 1.57096(a)            | 2.82469             | 4.71417(a)         | 5.19138 | 7.86208(a)          |
|      | 0.02  | .594555                   | .594973                     | 1.70572                         | .176655   | 1.06156               | 1.57128(a)            | 2.82581             | 4.71427(a)         | 5.19194 | 7.86213(a)          |
|      | 0.03  | 1.33800                   | 1.31504                     | 3.73772                         | .178959   | 1.06408               | 1.57180( <i>a</i> )   | 2.82768             | 4.71443(a)         | 5.19287 | 7.86222(a)          |
| 50   | 0.005 | .0371544                  | .0937658                    | .674872                         | .0705638  | .438245               | 1.21569               | 1.57089( <i>a</i> ) | 2.35214            | 3.82682 | 4.71414 <i>(a)</i>  |
|      | 0.01  | .148623                   | .368372                     | 2.62960                         | .0714819  | .43940296             | 1.21685               | 1.57096( <i>a</i> ) | 2.35330            | 3.82790 | 4.71417 <i>(a)</i>  |
|      | 0.02  | .594560                   | 1.37849                     | 9.53161                         | .0750365  | .443994               | 1.22144               | 1.57134 <i>(a)</i>  | 2.35792            | 3.83222 | 4.71428( <i>a</i> ) |
|      | 0.03  | 1.33800                   | 2.81927                     | 18.5488                         | .0805930  | .451541               | 1.22898               | 1.57208(a)          | 2.36562            | 3.83940 | 4.71448(a)          |
| 100  | 0.005 | .0371547                  | .184151                     | 2.62905                         | .0357700  | .220780               | .615428               | 1.20133             | 1.57089(a)         | 1.97706 | 2.93793             |
|      | 0.01  | .148624                   | .688752                     | 9.52424                         | .0375607  | .223136               | .617890               | 1.20387             | 1.57105(a)         | 1.97969 | 2.94052             |
|      | 0.02  | .594541                   | 2.24028                     | 27.6708                         | .0439644  | .232313               | .627575               | 1.21380             | 1.57195(a)         | 1.99029 | 2.95088             |
|      | 0.03  | 1.33786                   | 4.02653                     | 42.8179                         | .0528363  | .246845               | .643385               | 1.23009             | 1.57328(a)         | 2.00786 | 2.96808             |
| 500  | 0.005 | .0371523                  | .623972                     | 35.8503                         | .00964371 | .0478904              | .127486               | .246092             | .404032            | .601297 | .837856             |
|      | 0.01  | .148592                   | 1.53057                     | 59.7156                         | .0148209  | .0578323              | .139055               | .258706             | .417215            | .614805 | .851525             |
|      | 0.02  | .594466                   | 3.35362                     | 73.4169                         | .0265094  | .0864514              | .177104               | .303407             | .466095            | .666282 | .904574             |
|      | 0.03  | 1.33806                   | 5.16695                     | 77.9682                         | .0384949  | .119171               | .224942               | .363905             | .536149            | .743176 | .986233             |
| 1000 | 0.005 | .0371469                  | .765180                     | 59.7101                         | .00741092 | .0289187              | .0695390              | .129389             | .208697            | .307592 | .426132             |
|      | 0.01  | .148600                   | 1.67595                     | 73.3957                         | .0132571  | .0432299              | .0885713              | .151759             | .233177            | .333411 | .452825             |
|      | 0.02  | .594715                   | 3.47188                     | 80.2091                         | .0252828  | .0766140              | .138394               | .216134             | .309404            | .418777 | .545103             |
|      | 0.03  | 1.33890                   | 5.19998                     | 82.5422                         | .0373627  | .111397               | .192494               | .289119             | .400294            | .525712 | .665915             |

表二十一 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=1, \alpha=5^\circ)$ 

| η    | k     | $\varepsilon_0 (10^{-3})$ | $\varepsilon_b \ (10^{-3})$ | $\frac{V_{tip}}{L_T} (10^{-3})$ | $K_1$      | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$              | $K_5$              | $K_{6}$ | $K_7$               |
|------|-------|---------------------------|-----------------------------|---------------------------------|------------|-----------------------|-----------------------|--------------------|--------------------|---------|---------------------|
| 10   | 0.005 | .0368725                  | .0375866                    | .0542495                        | .343728    | 1.57088(a)            | 1.91367               | 4.64926            | 4.71421 <i>(a)</i> | 7.82110 | 7.86218( <i>a</i> ) |
|      | 0.01  | .147495                   | .150264                     | .216812                         | .343869    | 1.57092(a)            | 1.91378               | 4.64895            | 4.71445(a)         | 7.82047 | 7.86255(a)          |
|      | 0.015 | .331879                   | .337786                     | .487132                         | .344103    | 1.57100(a)            | 1.91395               | 4.64845            | 4.71483(a)         | 7.81942 | 7.86313( <i>a</i> ) |
|      | 0.02  | .590045                   | .599746                     | .864286                         | .344432    | 1.57111(a)            | 1.91419               | 4.64776            | 4.71536(a)         | 7.81801 | 7.86390(a)          |
| 20   | 0.005 | .0368725                  | .0751176                    | .216766                         | .174904    | 1.05966               | 1.57089( <i>a</i> )   | 2.82441            | 4.71414 <i>(a)</i> | 5.19124 | 7.86206(a)          |
|      | 0.01  | .147495                   | .299644                     | .863556                         | .175251    | 1.06004               | 1.57096(a)            | 2.82468            | 4.71417(a)         | 5.19138 | 7.86208(a)          |
|      | 0.015 | .331881                   | .671134                     | 1.92998                         | .175830    | 1.06066               | 1.57109(a)            | 2.82515            | 4.71421(a)         | 5.19161 | 7.86210(a)          |
|      | 0.02  | .590052                   | 1.18562                     | 3.39920                         | .176636    | 1.06154               | 1.57128( <i>a</i> )   | 2.82580            | 4.71426(a)         | 5.19193 | 7.86213(a)          |
| 50   | 0.005 | .0368727                  | .186831                     | 1.34473                         | .0705607   | .438242               | 1.21568               | 1.57089(a)         | 2.35214            | 3.82681 | 4.71414 <i>(a)</i>  |
|      | 0.01  | .147498                   | .734133                     | 5.24094                         | .0714704 💈 | .439390               | 1.21682               | 1.57099(a)         | 2.35329            | 3.82789 | 4.71417 <i>(a)</i>  |
|      | 0.015 | .331891                   | 1.60542                     | 11.3083                         | .0729618   | .441293               | 1.21868               | 1.57121 <i>(a)</i> | 2.35522            | 3.82967 | 4.71423 <i>(a)</i>  |
|      | 0.02  | .590072                   | 2.74889                     | 19.0110                         | .0750004   | .443941               | 1.22121               | 1.57163(a)         | 2.35793            | 3.83216 | 4.71432(a)          |
| 100  | 0.005 | .0368734                  | .366998                     | 5.23986                         | .0357642   | .220774               | .615419               | 1.20132            | 1.57091(a)         | 1.97706 | 2.93792             |
|      | 0.01  | .147501                   | 1.37346                     | 18.9963                         | .0375426   | .223109               | .617820               | 1.20373            | 1.57131 <i>(a)</i> | 1.97974 | 2.94050             |
|      | 0.015 | .331883                   | 2.80853                     | 36.9624                         | .0403322   | .226941               | .621727               | 1.20753            | 1.57238(a)         | 1.98436 | 2.94481             |
|      | 0.02  | .589994                   | 4.47238                     | 55.2464                         | .0439313   | .232203               | .627119               | 1.21266            | 1.57405(a)         | 1.99092 | 2.95085             |
| 500  | 0.005 | .0368639                  | 1.24607                     | 71.5843                         | .00963699  | .0478600              | .127360               | .245903            | .403787            | .601000 | .837484             |
|      | 0.01  | .147373                   | 3.05801                     | 119.162                         | .0148156   | .0577917              | .138807               | .258185            | .416409            | .613704 | .850035             |
|      | 0.015 | .331594                   | 4.87936                     | 137.386                         | .0205807   | .0712323              | .156015               | .277757            | .437207            | .635045 | .871422             |
|      | 0.02  | .589691                   | 6.70119                     | 146.399                         | .0265043   | .0864319              | .176943               | .302860            | .464916            | .664231 | .901243             |
| 1000 | 0.005 | .0368421                  | 1.52880                     | 119.151                         | .00740825  | .0288984              | .0694156              | .129133            | .208312            | .307095 | .425532             |
|      | 0.01  | .147405                   | 3.34889                     | 146.356                         | .0132546   | .0432202              | .0884912              | .151491            | .232621            | .332510 | .451545             |
|      | 0.015 | .331945                   | 5.15678                     | 155.338                         | .0192519   | .0595841              | .112452               | .181853            | .267806            | .371091 | .492432             |
|      | 0.02  | .590688                   | 6.93832                     | 159.879                         | .0252802   | .0766099              | .138369               | .216026            | .309101            | .418120 | .543898             |

表二十二 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=1, \alpha=10^\circ)$ 

| η    | k     | $\varepsilon_0 (10^{-4})$ | $\varepsilon_b(10^{-3})$ | $\frac{V_{tip}}{L_T} (10^{-3})$ | $K_1$     | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$      | $K_5$              | $K_6$   | $K_7$               |
|------|-------|---------------------------|--------------------------|---------------------------------|-----------|-----------------------|-----------------------|------------|--------------------|---------|---------------------|
| 10   | 0.004 | .232993                   | .0358565                 | .0517545                        | .343710   | 1.57087(a)            | 1.91366               | 4.64929    | 4.71418(a)         | 7.82118 | 7.86214(a)          |
|      | 0.006 | .524239                   | .0806657                 | .116422                         | .343747   | 1.57088(a)            | 1.91369               | 4.64921    | 4.71425(a)         | 7.82101 | 7.86224(a)          |
|      | 0.008 | .931991                   | .143377                  | .206907                         | .343799   | 1.57090(a)            | 1.91373               | 4.64910    | 4.71433(a)         | 7.82077 | 7.86237(a)          |
|      | 0.01  | 1.45626                   | .223969                  | .323161                         | .343865   | 1.57092(a)            | 1.91377               | 4.64895    | 4.71445(a)         | 7.82047 | 7.86255(a)          |
| 20   | 0.004 | .232994                   | .0716798                 | .206879                         | .174860   | 1.05961               | 1.57088( <i>a</i> )   | 2.82437    | 4.71414 <i>(a)</i> | 5.19122 | 7.86206(a)          |
|      | 0.006 | .524241                   | .161163                  | .464982                         | .174952   | 1.05971               | 1.57090(a)            | 2.82445    | 4.71415(a)         | 5.19126 | 7.86207(a)          |
|      | 0.008 | .931995                   | .286224                  | .825404                         | .175079   | 1.05985               | 1.57093(a)            | 2.82455    | 4.71415(a)         | 5.19131 | 7.86207(a)          |
|      | 0.01  | 1.45627                   | .446646                  | 1.28723                         | .175243   | 1.06003               | 1.57096( <i>a</i> )   | 2.82468    | 4.71417(a)         | 5.19138 | 7.86208(a)          |
| 50   | 0.004 | .232995                   | .178621                  | 1.28693                         | .0704475  | .438102               | 1.21554               | 1.57088(a) | 2.35200            | 3.82668 | 4.71414 <i>(a)</i>  |
|      | 0.006 | .524249                   | .399999                  | 2.87568                         | .0706875  | .43840496             | 1.21584               | 1.57090(a) | 2.35231            | 3.82696 | 4.71415 <i>(a)</i>  |
|      | 0.008 | .932020                   | .706460                  | 5.06355                         | .0710224  | .438828               | 1.21626               | 1.57095(a) | 2.35273            | 3.82736 | 4.71416( <i>a</i> ) |
|      | 0.01  | 1.45632                   | 1.09469                  | 7.81586                         | .0714511  | .439370               | 1.21678               | 1.57102(a) | 2.35328            | 3.82787 | 4.71418(a)          |
| 100  | 0.004 | .233001                   | .353188                  | 5.06288                         | .0355386  | .220486               | .615117               | 1.20100    | 1.57090(a)         | 1.97674 | 2.93761             |
|      | 0.006 | .524272                   | .780114                  | 11.0871                         | .0360170  | .221104               | .615750               | 1.20164    | 1.57102(a)         | 1.97745 | 2.93829             |
|      | 0.008 | .932074                   | 1.35273                  | 18.9983                         | .0366779  | .221965               | .616617               | 1.20248    | 1.57128(a)         | 1.97848 | 2.93924             |
|      | 0.01  | 1.45640                   | 2.05010                  | 28.3642                         | .0375124  | .223064               | .617706               | 1.20350    | 1.57175(a)         | 1.97983 | 2.94047             |
| 500  | 0.004 | .232945                   | 1.33657                  | 82.5672                         | .00878114 | .0464921              | .125811               | .244238    | .402050            | .599215 | .835658             |
|      | 0.006 | .523761                   | 2.40353                  | 127.695                         | .0105614  | .0493800              | .128805               | .247270    | .405036            | .602116 | .838383             |
|      | 0.008 | .930567                   | 3.49014                  | 158.100                         | .0126123  | .0531886              | .133036               | .251633    | .409363            | .606322 | .842347             |
|      | 0.01  | 1.45349                   | 4.57922                  | 178.071                         | .0148067  | .0577239              | .138395               | .257330    | .415102            | .611946 | .847700             |
| 1000 | 0.004 | .232637                   | 1.74492                  | 158.089                         | .00630646 | .0265964              | .0665293              | .125858    | .204796            | .303429 | .421755             |
|      | 0.006 | .523165                   | 2.83438                  | 191.617                         | .00854092 | .0314085              | .0723732              | .132190    | .211269            | .309887 | .428128             |
|      | 0.008 | .930220                   | 3.92558                  | 208.459                         | .0108760  | .0370658              | .0798239              | .140759    | .220369            | .319173 | .437418             |
|      | 0.01  | 1.45421                   | 5.01583                  | 218.450                         | .0132503  | .0432039              | .0883572              | .151045    | .231702            | .331041 | .449500             |

表二十三 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=1, \alpha=15^\circ)$ 

| η    | k     | $\varepsilon_0 (10^{-4})$ | $\varepsilon_b(10^{-3})$ | $\frac{V_{tip}}{L_T} (10^{-3})$ | $K_1$      | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$      | $K_5$               | $K_{6}$ | $K_7$              |
|------|-------|---------------------------|--------------------------|---------------------------------|------------|-----------------------|-----------------------|------------|---------------------|---------|--------------------|
| 10   | 0.004 | .217169                   | .0692704                 | .0999838                        | .343707    | 1.57087( <i>a</i> )   | 1.91366               | 4.64929    | 4.71418( <i>a</i> ) | 7.82119 | 7.86214 <i>(a)</i> |
|      | 0.006 | .488635                   | .155839                  | .224918                         | .343740    | 1.57088(a)            | 1.91368               | 4.64921    | 4.71425(a)          | 7.82102 | 7.86224(a)         |
|      | 0.008 | .868696                   | .276998                  | .399741                         | .343786    | 1.57090(a)            | 1.91372               | 4.64910    | 4.71433(a)          | 7.82079 | 7.86237(a)         |
|      | 0.01  | 1.35736                   | .432711                  | .624368                         | .343845    | 1.57092(a)            | 1.91377               | 4.64896    | 4.71445(a)          | 7.82049 | 7.86255(a)         |
| 20   | 0.004 | .217170                   | .138483                  | .399691                         | .174853    | 1.05961               | 1.57088(a)            | 2.82437    | 4.71414(a)          | 5.19122 | 7.86206(a)         |
|      | 0.006 | .488640                   | .311386                  | .898436                         | .174936    | 1.05970               | 1.57090(a)            | 2.82444    | 4.71415(a)          | 5.19126 | 7.86207(a)         |
|      | 0.008 | .868711                   | .553076                  | 1.59506                         | .175052    | 1.05983               | 1.57093(a)            | 2.82453    | 4.71415(a)          | 5.19130 | 7.86207(a)         |
|      | 0.01  | 1.35740                   | .863181                  | 2.48796                         | .175200    | 1.06000               | 1.57097( <i>a</i> )   | 2.82466    | 4.71416(a)          | 5.19137 | 7.86207(a)         |
| 50   | 0.004 | .217177                   | .345204                  | 2.48741                         | .0704300   | .438086               | 1.21552               | 1.57088(a) | 2.35199             | 3.82667 | 4.71414 <i>(a)</i> |
|      | 0.006 | .488671                   | .773414                  | 5.56161                         | .0706487 💈 | .43836996             | 1.21579               | 1.57093(a) | 2.35228             | 3.82693 | 4.71415(a)         |
|      | 0.008 | .868804                   | 1.36686                  | 9.80109                         | .0709550   | .438764               | 1.21615               | 1.57103(a) | 2.35269             | 3.82730 | 4.71417(a)         |
|      | 0.01  | 1.35761                   | 2.11970                  | 15.1438                         | .0713488   | .439268               | 1.21657               | 1.57120(a) | 2.35322             | 3.82777 | 4.71420(a)         |
| 100  | 0.004 | .217197                   | .683351                  | 9.79987                         | .0355048   | .220453               | .615073               | 1.20094    | 1.57097(a)          | 1.97673 | 2.93758            |
|      | 0.006 | .488757                   | 1.51201                  | 21.5075                         | .0359457   | .221027               | .615619               | 1.20142    | 1.57136(a)          | 1.97747 | 2.93822            |
|      | 0.008 | .869005                   | 2.62751                  | 36.9515                         | .0365619   | .221821               | .616314               | 1.20192    | 1.57227(a)          | 1.97863 | 2.93913            |
|      | 0.01  | 1.35791                   | 3.99154                  | 55.3226                         | .0373502   | .222830               | .617116               | 1.20232    | 1.57395(a)          | 1.98028 | 2.94031            |
| 500  | 0.002 | .0543143                  | .798138                  | 55.3097                         | .00747272  | .0446394              | .123905               | .242269    | .400063             | .597231 | .833714            |
|      | 0.004 | .216965                   | 2.62907                  | 162.583                         | .00872059  | .0462982              | .125115               | .243280    | .400855             | .597815 | .833958            |
|      | 0.006 | .486672                   | 4.75037                  | 251.546                         | .0105026   | .0490506              | .127347               | .245018    | .402093             | .598573 | .834055            |
|      | 0.008 | .862862                   | 6.91073                  | 310.627                         | .0125602   | .0528088              | .131069               | .248188    | .404621             | .600444 | .835114            |
| 1000 | 0.002 | .0542410                  | 1.31451                  | 162.579                         | .00436038  | .0231505              | .0625672              | .121676    | .200527             | .299137 | .417464            |
|      | 0.004 | .215709                   | 3.45508                  | 310.607                         | .00628041  | .0264065              | .0655495              | .124158    | .202506             | .300707 | .418660            |
|      | 0.006 | .484207                   | 5.61912                  | 374.732                         | .00851749  | .0312451              | .0712882              | .129769    | .207592             | .305203 | .422605            |
|      | 0.008 | .861283                   | 7.78577                  | 406.544                         | .0108529   | .0369462              | .0788909              | .138171    | .215887             | .312999 | .429813            |

表二十四 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=1, \alpha=30^\circ)$ 

| η    | k     | $\varepsilon_0 (10^{-4})$ | $\varepsilon_b \ (10^{-3})$ | $\frac{V_{tip}}{L_T} (10^{-2})$ | $K_1$      | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$               | $K_5$               | $K_{6}$ | $K_7$               |
|------|-------|---------------------------|-----------------------------|---------------------------------|------------|-----------------------|-----------------------|---------------------|---------------------|---------|---------------------|
| 10   | 0.004 | .191997                   | .0979652                    | .0141402                        | .343702    | 1.57087 <i>(a)</i>    | 1.91366               | 4.64929             | 4.71418 <i>(a)</i>  | 7.82119 | 7.86214 <i>(a)</i>  |
|      | 0.006 | .431998                   | .220400                     | .0318102                        | .343728    | 1.57088(a)            | 1.91368               | 4.64922             | 4.71425(a)          | 7.82103 | 7.86224(a)          |
|      | 0.008 | .768008                   | .391767                     | .0565383                        | .343765    | 1.57090(a)            | 1.91371               | 4.64911             | 4.71433(a)          | 7.82081 | 7.86237(a)          |
|      | 0.01  | 1.20004                   | .612026                     | .0883145                        | .343813    | 1.57092(a)            | 1.91376               | 4.64897             | 4.71445(a)          | 7.82053 | 7.86255(a)          |
| 20   | 0.004 | .191999                   | .195864                     | .0565319                        | .174842    | 1.05960               | 1.57088( <i>a</i> )   | 2.82436             | 4.71414 <i>(a)</i>  | 5.19122 | 7.86206(a)          |
|      | 0.006 | .432007                   | .440463                     | .127094                         | .174911    | 1.05968               | 1.57090(a)            | 2.82442             | 4.71414(a)          | 5.19125 | 7.86206(a)          |
|      | 0.008 | .768038                   | .782471                     | .225689                         | .175008    | 1.05980               | 1.57093(a)            | 2.82451             | 4.71415(a)          | 5.19129 | 7.86207(a)          |
|      | 0.01  | 1.20011                   | 1.22146                     | .352126                         | .175132    | 1.05994               | 1.57097( <i>a</i> )   | 2.82462             | 4.71416(a)          | 5.19135 | 7.86207(a)          |
| 50   | 0.004 | .192011                   | .488498                     | .352056                         | .0704020   | .438062               | 1.21550               | 1.57089(a)          | 2.35197             | 3.82665 | 4.71414 <i>(a)</i>  |
|      | 0.006 | .432069                   | 1.09530                     | .787936                         | .0705867 🗧 | .43831396             | 1.21572               | 1.57096(a)          | 2.35223             | 3.82688 | 4.71416( <i>a</i> ) |
|      | 0.008 | .768224                   | 1.93774                     | 1.39041                         | .0708469   | .438663               | 1.21598               | 1.57113( <i>a</i> ) | 2.35261             | 3.82720 | 4.71419 <i>(a)</i>  |
|      | 0.01  | 1.20053                   | 3.00891                     | 2.15186                         | .0711843   | .439107               | 1.21625               | 1.57145(a)          | 2.35312             | 3.82761 | 4.71424(a)          |
| 100  | 0.004 | .192052                   | .968774                     | 1.39025                         | .0354506   | .220402               | .615005               | 1.20085             | 1.57107( <i>a</i> ) | 1.97670 | 2.93753             |
|      | 0.006 | .432241                   | 2.14959                     | 3.06198                         | .0358306   | .220906               | .615421               | 1.20110             | 1.57183(a)          | 1.97749 | 2.93811             |
|      | 0.008 | .768627                   | 3.74874                     | 5.28369                         | .0363729   | .221596               | .615862               | 1.20110             | 1.57367(a)          | 1.97883 | 2.93894             |
|      | 0.01  | 1.20113                   | 5.71738                     | 7.94779                         | .0370830   | .222461               | .616235               | 1.20062             | 1.57710 <i>(a)</i>  | 1.98091 | 2.94004             |
| 500  | 0.003 | .108006                   | 2.37654                     | 15.7344                         | .00792274  | .0451555              | .123910               | .242068             | .399657             | .596644 | .832837             |
|      | 0.004 | .191502                   | 3.83283                     | 23.7537                         | .00861721  | .0459857              | .124039               | .241840             | .399096             | .595793 | .831570             |
|      | 0.005 | .298065                   | 5.39008                     | 30.8957                         | .00945862  | .0470968              | .124360               | .241633             | .398426             | .594730 | .830002             |
|      | 0.006 | .427412                   | 6.98381                     | 36.7920                         | .0104019   | .0485093              | .125076               | .241706             | .397955             | .593799 | .828543             |
| 1000 | 0.003 | .106851                   | 3.49175                     | 36.7905                         | .00520115  | .0242565              | .0625541              | .120920             | .199178             | .297385 | .415351             |
|      | 0.004 | .188592                   | 5.09603                     | 45.2284                         | .00623616  | .0260909              | .0640141              | .121694             | .199390             | .297176 | .414802             |
|      | 0.005 | .293352                   | 6.70054                     | 50.5786                         | .00733889  | .0283735              | .0664014              | .123470             | .200564             | .297868 | .415117             |
|      | 0.006 | .421568                   | 8.30520                     | 54.1259                         | .00847821  | .0309696              | .0695305              | .126204             | .202707             | .299497 | .416342             |

表二十五 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=1, \alpha=45^\circ)$ 

| η    | k     | $\varepsilon_0(10^{-5})$ | $\varepsilon_b(10^{-3})$ | $\frac{V_{tip}}{L_T} (10^{-2})$ | $K_1$      | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$      | $K_5$              | $K_{6}$ | $K_7$               |
|------|-------|--------------------------|--------------------------|---------------------------------|------------|-----------------------|-----------------------|------------|--------------------|---------|---------------------|
| 10   | 0.004 | 1.59191                  | .119986                  | .0173188                        | .343695    | 1.57087( <i>a</i> )   | 1.91365               | 4.64930    | 4.71418 <i>(a)</i> | 7.82120 | 7.86214 <i>(a)</i>  |
|      | 0.006 | 3.58186                  | .269950                  | .0389627                        | .343713    | 1.57088(a)            | 1.91367               | 4.64922    | 4.71425(a)         | 7.82105 | 7.86224(a)          |
|      | 0.008 | 6.36788                  | .479868                  | .0692552                        | .343739    | 1.57090(a)            | 1.91370               | 4.64912    | 4.71433(a)         | 7.82084 | 7.86237(a)          |
|      | 0.01  | 9.95007                  | .749705                  | .108188                         | .343771    | 1.57092(a)            | 1.91374               | 4.64898    | 4.71445(a)         | 7.82057 | 7.86255(a)          |
| 20   | 0.004 | 1.59194                  | .239914                  | .0692486                        | .174828    | 1.05959               | 1.57088(a)            | 2.82436    | 4.71414(a)         | 5.19122 | 7.86206(a)          |
|      | 0.006 | 3.58200                  | .539609                  | .155715                         | .174879    | 1.05966               | 1.57090(a)            | 2.82441    | 4.71414(a)         | 5.19124 | 7.86206(a)          |
|      | 0.008 | 6.36832                  | .958813                  | .276593                         | .174950    | 1.05975               | 1.57093(a)            | 2.82448    | 4.71415(a)         | 5.19128 | 7.86207(a)          |
|      | 0.01  | 9.95114                  | 1.49716                  | .431705                         | .175043    | 1.05988               | 1.57097( <i>a</i> )   | 2.82458    | 4.71416(a)         | 5.19133 | 7.86207(a)          |
| 50   | 0.004 | 1.59213                  | .598775                  | .431633                         | .0703655   | .438030               | 1.21546               | 1.57090(a) | 2.35194            | 3.82662 | 4.71414 <i>(a)</i>  |
|      | 0.006 | 3.58293                  | 1.34391                  | .967280                         | .0705054 💈 | .43824196             | 1.21562               | 1.57100(a) | 2.35217            | 3.82681 | 4.71416( <i>a</i> ) |
|      | 0.008 | 6.37111                  | 2.38084                  | 1.70989                         | .0707047   | .438532               | 1.21579               | 1.57124(a) | 2.35251            | 3.82708 | 4.71420(a)          |
|      | 0.01  | 9.95750                  | 3.70333                  | 2.65209                         | .0709666   | .438899               | 1.21588               | 1.57171(a) | 2.35298            | 3.82741 | 4.71428(a)          |
| 100  | 0.004 | 1.59275                  | 1.19032                  | 1.70972                         | .0353793   | .220335               | .614922               | 1.20074    | 1.57117(a)         | 1.97666 | 2.93746             |
|      | 0.006 | 3.58552                  | 2.65115                  | 3.78356                         | .0356773   | .220751               | .615186               | 1.20073    | 1.57232(a)         | 1.97748 | 2.93796             |
|      | 0.008 | 6.37717                  | 4.64576                  | 6.56798                         | .0361176   | .221308               | .615331               | 1.20019    | 1.57517(a)         | 1.97899 | 2.93869             |
|      | 0.01  | 9.96627                  | 7.12453                  | 9.94533                         | .0367164   | .221990               | .615201               | 1.19873    | 1.58053(a)         | 1.98153 | 2.93967             |
| 500  | 0.001 | .0995708                 | .370269                  | 2.65157                         | .00710412  | .0441743              | .123473               | .241833    | .399633            | .596811 | .833319             |
|      | 0.002 | .398630                  | 1.42467                  | 9.94347                         | .00734584  | .0444712              | .123552               | .241842    | .399566            | .596676 | .833067             |
|      | 0.003 | .895261                  | 3.00402                  | 20.0010                         | .00779944  | .0449239              | .123279               | .241278    | .398722            | .595591 | .831610             |
|      | 0.004 | 1.58240                  | 4.90168                  | 30.4970                         | .00846717  | .0455709              | .122699               | .240117    | .397048            | .593498 | .828946             |
| 1000 | 0.001 | .0996573                 | .712333                  | 9.94341                         | .00367296  | .0222367              | .0617842              | .120950    | .199862            | .298514 | .416886             |
|      | 0.002 | .395596                  | 2.45079                  | 30.4964                         | .00423367  | .0227869              | .0613626              | .120111    | .198677            | .297113 | .415275             |
|      | 0.003 | .874165                  | 4.52322                  | 47.3573                         | .00512761  | .0238860              | .0611240              | .118999    | .196928            | .294949 | .412763             |
|      | 0.004 | 1.52872                  | 6.63384                  | 57.8448                         | .00617231  | .0256517              | .0620640              | .118883    | .196085            | .293610 | .411048             |

表二十六 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=1, \alpha=60^\circ)$ 

| η    | k      | $\varepsilon_0(10^{-5})$ | $\varepsilon_b (10^{-3})$ | $\frac{V_{tip}}{L_T} (10^{-2})$ | $K_1$     | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$              | $K_5$      | $K_{6}$ | <i>K</i> <sub>7</sub> |
|------|--------|--------------------------|---------------------------|---------------------------------|-----------|-----------------------|-----------------------|--------------------|------------|---------|-----------------------|
| 10   | 0.004  | 1.20988                  | .133831                   | .0193175                        | .343687   | 1.57087(a)            | 1.91365               | 4.64930            | 4.71418(a) | 7.82121 | 7.86214 <i>(a)</i>    |
|      | 0.006  | 2.72229                  | .301112                   | .0434614                        | .343696   | 1.57088(a)            | 1.91367               | 4.64923            | 4.71425(a) | 7.82107 | 7.86224(a)            |
|      | 0.008  | 4.83976                  | .535292                   | .0772574                        | .343708   | 1.57090(a)            | 1.91369               | 4.64913            | 4.71433(a) | 7.82087 | 7.86237(a)            |
|      | 0.01   | 7.56239                  | .836356                   | .120700                         | .343723   | 1.57092(a)            | 1.91372               | 4.64900            | 4.71445(a) | 7.82063 | 7.86255(a)            |
| 20   | 0.004  | 1.20992                  | .267629                   | .0772516                        | .174811   | 1.05958               | 1.57088(a)            | 2.82435            | 4.71414(a) | 5.19121 | 7.86206(a)            |
|      | 0.006  | 2.72246                  | .602055                   | .173753                         | .174841   | 1.05963               | 1.57090(a)            | 2.82439            | 4.71414(a) | 5.19123 | 7.86206(a)            |
|      | 0.008  | 4.84031                  | 1.07005                   | .308735                         | .174883   | 1.05970               | 1.57093(a)            | 2.82445            | 4.71415(a) | 5.19126 | 7.86206(a)            |
|      | 0.01   | 7.56372                  | 1.67140                   | .482078                         | .174938 🔬 | 1.05980               | 1.57097( <i>a</i> )   | 2.82452            | 4.71416(a) | 5.19130 | 7.86206(a)            |
| 50   | 0.004  | 1.21015                  | .668484                   | .482015                         | .0703228  | .437993               | 1.21542               | 1.57090(a)         | 2.35190    | 3.82658 | 4.71414(a)            |
|      | 0.006  | 2.72363                  | 1.50213                   | 1.08182                         | .0704101  | .4381576              | 1.21553               | 1.57102(a)         | 2.35209    | 3.82674 | 4.71416(a)            |
|      | 0.008  | 4.84380                  | 2.66550                   | 1.91635                         | .0705370  | .438382               | 1.21559               | 1.57132(a)         | 2.35238    | 3.82694 | 4.71421 <i>(a)</i>    |
|      | 0.01   | 7.57166                  | 4.15461                   | 2.98011                         | .0707082  | .438661               | 1.21552               | 1.57191 <i>(a)</i> | 2.35279    | 3.82719 | 4.71431(a)            |
| 100  | 0.004  | 1.21092                  | 1.33266                   | 1.91621                         | .0352951  | .220258               | .614832               | 1.20063            | 1.57124(a) | 1.97660 | 2.93738               |
|      | 0.006  | 2.72687                  | 2.98161                   | 4.26491                         | .0354939  | .220575               | .614945               | 1.20039            | 1.57270(a) | 1.97740 | 2.93779               |
|      | 0.008  | 4.85134                  | 5.25596                   | 7.45883                         | .0358065  | .220983               | .614804               | 1.19935            | 1.57639(a) | 1.97903 | 2.93839               |
|      | 0.01   | 7.58219                  | 8.11670                   | 11.3912                         | .0362605  | .221459               | .614181               | 1.19700            | 1.58348(a) | 1.98195 | 2.93922               |
| 500  | 0.001  | .0757132                 | .415405                   | 2.97964                         | .00707818 | .0441499              | .123443               | .241800            | .399598    | .596774 | .833279               |
|      | 0.002  | .303269                  | 1.62313                   | 11.3894                         | .00725456 | .0443646              | .123361               | .241618            | .399312    | .596396 | .832748               |
|      | 0.0025 | .473408                  | 2.48620                   | 17.1154                         | .00741641 | .0445017              | .123093               | .241199            | .398746    | .595706 | .831861               |
|      | 0.003  | .679771                  | 3.48824                   | 23.4115                         | .00763826 | .0446579              | .122624               | .240485            | .397803    | .594575 | .830452               |
| 1000 | 0.001  | .0758172                 | .811561                   | 11.3894                         | .00362732 | .0221834              | .0616888              | .120839            | .199738    | .298382 | .416746               |
|      | 0.002  | .298516                  | 2.89324                   | 36.2410                         | .00413243 | .0225406              | .0606359              | .119228            | .197673    | .296043 | .414143               |
|      | 0.0025 | .457932                  | 4.14845                   | 47.5851                         | .00454687 | .0228868              | .0599396              | .118028            | .196109    | .294259 | .412171               |
|      | 0.003  | .645894                  | 5.44045                   | 56.5891                         | .00502734 | .0234253              | .0595231              | .117027            | .194724    | .292633 | .410357               |

表二十七 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=1, \alpha=75^\circ)$ 

| η    | k      | $\varepsilon_0 (10^{-5})$ | $\varepsilon_b (10^{-3})$ | $\frac{V_{tip}}{L_T} (10^{-2})$ | $K_1$     | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$      | $K_5$              | $K_{6}$ | $K_7$      |
|------|--------|---------------------------|---------------------------|---------------------------------|-----------|-----------------------|-----------------------|------------|--------------------|---------|------------|
| 10   | 0.004  | .799911                   | .138557                   | .0199998                        | .343679   | 1.57087( <i>a</i> )   | 1.91365               | 4.64930    | 4.71418 <i>(a)</i> | 7.82122 | 7.86214(a) |
|      | 0.006  | 1.79985                   | .311759                   | .0449992                        | .343677   | 1.57088(a)            | 1.91366               | 4.64923    | 4.71425(a)         | 7.82109 | 7.86224(a) |
|      | 0.008  | 3.19986                   | .554252                   | .0799975                        | .343674   | 1.57090(a)            | 1.91368               | 4.64914    | 4.71433(a)         | 7.82091 | 7.86237(a) |
|      | 0.01   | 5.00003                   | .866046                   | .124994                         | .343670   | 1.57092(a)            | 1.91370               | 4.64902    | 4.71445(a)         | 7.82068 | 7.86255(a) |
| 20   | 0.004  | .799949                   | .277114                   | .0799932                        | .174793   | 1.05956               | 1.57088( <i>a</i> )   | 2.82434    | 4.71414 <i>(a)</i> | 5.19121 | 7.86206(a) |
|      | 0.006  | 1.80004                   | .623516                   | .179965                         | .174801   | 1.05960               | 1.57090(a)            | 2.82437    | 4.71414 <i>(a)</i> | 5.19122 | 7.86206(a) |
|      | 0.008  | 3.20045                   | 1.10850                   | .319889                         | .174811   | 1.05965               | 1.57093( <i>a</i> )   | 2.82441    | 4.71415(a)         | 5.19124 | 7.86206(a) |
|      | 0.01   | 5.00146                   | 1.73208                   | .499725                         | .174826 💰 | 1.05971               | 1.57097( <i>a</i> )   | 2.82446    | 4.71416(a)         | 5.19127 | 7.86206(a) |
| 50   | 0.004  | .800204                   | .692777                   | .499678                         | .0702768  | .437953               | 1.21538               | 1.57090(a) | 2.35186            | 3.82655 | 4.71414(a) |
|      | 0.006  | 1.80129                   | 1.55871                   | 1.12331                         | .0703070  | .438068               | 1.21543               | 1.57103(a) | 2.35201            | 3.82666 | 4.71417(a) |
|      | 0.008  | 3.20420                   | 2.77081                   | 1.99439                         | .0703545  | .438223               | 1.21541               | 1.57135(a) | 2.35223            | 3.82680 | 4.71422(a) |
|      | 0.01   | 5.01000                   | 4.32854                   | 3.11046                         | .0704248  | .438412               | 1.21523               | 1.57200(a) | 2.35257            | 3.82696 | 4.71432(a) |
| 100  | 0.004  | .801032                   | 1.38534                   | 1.99428                         | .0352036  | .220177               | .614745               | 1.20053    | 1.57127            | 1.97653 | 2.93730    |
|      | 0.006  | 1.80479                   | 3.11508                   | 4.46722                         | .0352910  | .220389               | .614728               | 1.20013    | 1.57288            | 1.97726 | 2.93760    |
|      | 0.008  | 3.21229                   | 5.52865                   | 7.88019                         | .0354544  | .220646               | .614359               | 1.19875    | 1.57704            | 1.97887 | 2.93806    |
|      | 0.01   | 5.02076                   | 8.60877                   | 12.1597                         | .0357312  | .220916               | .613344               | 1.19577    | 1.58523            | 1.98193 | 2.93871    |
| 500  | 0.001  | .0500975                  | .432814                   | 3.11011                         | .00704972 | .0441242              | .123414               | .241769    | .399566            | .596740 | .833244    |
|      | 0.002  | .200817                   | 1.72159                   | 12.1583                         | .00714860 | .0442553              | .123200               | .241437    | .399113            | .596183 | .832514    |
|      | 0.0025 | .313142                   | 2.66832                   | 18.5342                         | .00726241 | .0443213              | .122774               | .240833    | .398338            | .595264 | .831370    |
|      | 0.003  | .448275                   | 3.79060                   | 25.7176                         | .00743838 | .0443815              | .122046               | .239816    | .397053            | .593764 | .829553    |
| 1000 | 0.001  | .0502041                  | .860795                   | 12.1582                         | .00357433 | .0221288              | .0616084              | .120749    | .199640            | .298279 | .416639    |
|      | 0.002  | .194123                   | 3.21654                   | 40.7207                         | .00400094 | .0222722              | .0599363              | .118425    | .196788            | .295121 | .413183    |
|      | 0.0025 | .290777                   | 4.68882                   | 54.0274                         | .00440751 | .0224722              | .0587409              | .116668    | .194632            | .292733 | .410601    |
|      | 0.003  | .398359                   | 6.21305                   | 64.2909                         | .00489484 | .0228875              | .0578803              | .115176    | .192739            | .290593 | .408272    |

表二十八 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=1, lpha=90^\circ)$ 

| η    | k    | $\varepsilon_0 (10^{-3})$ | $\varepsilon_b$ | $rac{V_{tip}}{L_T}$ | $K_1$    | $K_2$               | <i>K</i> <sub>3</sub> | $K_4$      | $K_5$               | $K_6$    | <i>K</i> <sub>7</sub> |
|------|------|---------------------------|-----------------|----------------------|----------|---------------------|-----------------------|------------|---------------------|----------|-----------------------|
| 10   | 0.01 | .198500                   | 0               | 0                    | .343973  | 1.57092 <i>(a)</i>  | 1.91382               | 4.64892    | 4.71445 <i>(a)</i>  | 7.82035  | 7.86255( <i>a</i> )   |
|      | 0.02 | .794084                   | 0               | 0                    | .344846  | 1.57111( <i>a</i> ) | 1.91435               | 4.64763    | 4.71536(a)          | 7.81756  | 7.86388(a)            |
|      | 0.04 | 3.17769                   | 0               | 0                    | .348310  | 1.57186(a)          | 1.91650               | 4.64279    | 4.71870(a)          | 7.80763  | 7.86804(a)            |
|      | 0.06 | 7.15492                   | 0               | 0                    | .353985  | 1.57313(a)          | 1.92007               | 4.63552    | 4.72348(a)          | 7.79328  | 7.87272(a)            |
| 20   | 0.01 | .198500                   | 0               | 0                    | .175475  | 1.06020             | 1.57096( <i>a</i> )   | 2.82480    | 4.71417( <i>a</i> ) | 5.19144  | 7.86208(a)            |
|      | 0.02 | .794084                   | 0               | 0                    | .177520  | 1.06221             | 1.57127(a)            | 2.82627    | 4.71427(a)          | 5.19217  | 7.86213( <i>a</i> )   |
|      | 0.04 | 3.17769                   | 0               | 0                    | .185453  | 1.07019             | 1.57252(a)            | 2.83214    | 4.71467(a)          | 5.19509  | 7.86236(a)            |
|      | 0.06 | 7.15492                   | 0               | 0                    | .197894  | 1.08337             | 1.57461 (a)           | 2.84192    | 4.71534(a)          | 5.20000  | 7.86273(a)            |
| 50   | 0.01 | .198500                   | 0               | 0                    | .0720301 | .439880             | 1.21732               | 1.57096(a) | 2.35376             | 3.82833  | 4.71417(a)            |
|      | 0.02 | .794084                   | 0               | 0                    | .0770980 | .4458861896         | 1.22338               | 1.57125(a) | 2.35974             | 3.83396  | 4.71426(a)            |
|      | 0.04 | 3.17769                   | 0               | 0                    | .0945541 | .469124             | 1.24727               | 1.57241(a) | 2.38351             | 3.85639  | 4.71466(a)            |
|      | 0.06 | 7.15492                   | 0               | 0                    | .117702  | .505425             | 1.28599               | 1.57436(a) | 2.42258             | 3.89351  | 4.71531 <i>(a)</i>    |
| 100  | 0.01 | .198500                   | 0               | 0                    | .0385945 | .224102             | .618898               | 1.20494    | 1.57096(a)          | 1.98070  | 2.94156               |
|      | 0.02 | .794084                   | 0               | 0                    | .0473812 | .236000             | .631585               | 1.21823    | 1.57124(a)          | 1.99418  | 2.95499               |
|      | 0.04 | 3.17769                   | 0               | 0                    | .0721063 | .278366             | .679633               | 1.26977    | 1.57240(a)          | 2.04709  | 3.00805               |
|      | 0.06 | 7.15492                   | 0               | 0                    | .0999008 | .336839             | .751962               | 1.35058    | 1.57434(a)          | 2.13195  | 3.09426               |
| 500  | 0.01 | .198500                   | 0               | 0                    | .0172021 | .0614083            | .143445               | .263719    | .422648             | .620545  | .857542               |
|      | 0.02 | .794084                   | 0               | 0                    | .0316424 | .0955023            | .189772               | .319172    | .484211             | .686184  | .925973               |
|      | 0.04 | 3.17769                   | 0               | 0                    | .0610727 | .172703             | .305993               | .471303    | .666924             | 0.893468 | 1.15254               |
|      | 0.06 | 7.15492                   | 0               | 0                    | .0905376 | .252467             | .430045               | .639373    | .877838             | 1.14394  | 1.43827               |
| 1000 | 0.01 | .198500                   | 0               | 0                    | .0158242 | .0477558            | .0949072              | .159645    | .242235             | .343339  | .463416               |
|      | 0.02 | .794084                   | 0               | 0                    | .0305566 | .0863532            | .153022               | .235739    | .333668             | .447131  | .576950               |
|      | 0.04 | 3.17769                   | 0               | 0                    | .0601094 | .166457             | .278177               | .405893    | .548602             | .704779  | .874116               |
|      | 0.06 | 7.15492                   | 0               | 0                    | .0896171 | .247409             | .406028               | .580433    | .771135             | .975828  | 1.19320               |

表二十九 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=1.5, \alpha=0^\circ)$ 

| η    | k     | $\varepsilon_0 (10^{-3})$ | $\varepsilon_b \ (10^{-3})$ | $\frac{V_{tip}}{L_T} (10^{-3})$ | $K_1$     | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$      | $K_5$              | $K_{6}$ | $K_7$               |
|------|-------|---------------------------|-----------------------------|---------------------------------|-----------|-----------------------|-----------------------|------------|--------------------|---------|---------------------|
| 10   | 0.005 | .0494824                  | .0282946                    | .0408368                        | .343753   | 1.57088( <i>a</i> )   | 1.91368               | 4.64925    | 4.71421 <i>(a)</i> | 7.82108 | 7.86218( <i>a</i> ) |
|      | 0.01  | .197935                   | .113080                     | .163138                         | .343971   | 1.57092(a)            | 1.91382               | 4.64892    | 4.71445(a)         | 7.82035 | 7.86255(a)          |
|      | 0.02  | .791827                   | .450766                     | .649227                         | .344841   | 1.57111(a)            | 1.91435               | 4.64763    | 4.71536(a)         | 7.81757 | 7.86389(a)          |
|      | 0.03  | 1.78193                   | 1.00848                     | 1.44847                         | .346285   | 1.57142(a)            | 1.91524               | 4.64556    | 4.71681(a)         | 7.81324 | 7.86581(a)          |
| 20   | 0.005 | .0494824                  | .0565259                    | .163093                         | .174959   | 1.05970               | 1.57089(a)            | 2.82444    | 4.71414(a)         | 5.19126 | 7.86206(a)          |
|      | 0.01  | .197936                   | .225155                     | .648508                         | .175473   | 1.06020               | 1.57096(a)            | 2.82480    | 4.71417(a)         | 5.19144 | 7.86208(a)          |
|      | 0.02  | .791831                   | .885872                     | 2.53403                         | .177511   | 1.06220               | 1.57128(a)            | 2.82627    | 4.71426(a)         | 5.19217 | 7.86213(a)          |
|      | 0.03  | 1.78195                   | 1.94115                     | 5.49004                         | .180854   | 1.06552               | 1.57180 <i>(a)</i>    | 2.82871    | 4.71442(a)         | 5.19339 | 7.86221(a)          |
| 50   | 0.005 | .0494825                  | .140220                     | 1.00833                         | .0707017  | .438364               | 1.21580               | 1.57089(a) | 2.35226            | 3.82692 | 4.71414(a)          |
|      | 0.01  | .197937                   | .546082                     | 3.88463                         | .0720245  | .439874               | 1.21731               | 1.57097(a) | 2.35376            | 3.82833 | 4.71417(a)          |
|      | 0.02  | .791843                   | 1.98428                     | 13.5413                         | .0770825  | .445857               | 1.22323               | 1.57144(a) | 2.35976            | 3.83392 | 4.71429(a)          |
|      | 0.03  | 1.78196                   | 3.91814                     | 25.0925                         | .0848175  | .455650               | 1.23290               | 1.57236(a) | 2.36976            | 3.84323 | 4.71453(a)          |
| 100  | 0.005 | .0494829                  | .272974                     | 3.88359                         | .0360421  | .221021               | .615673               | 1.20158    | 1.57090(a)         | 1.97732 | 2.93819             |
|      | 0.01  | .197939                   | .991225                     | 13.5281                         | .0385867  | .224088               | .618855               | 1.20485    | 1.57114(a)         | 1.98075 | 2.94155             |
|      | 0.02  | .791821                   | 3.01351                     | 35.6750                         | .0473706  | .235948               | .631344               | 1.21758    | 1.57239(a)         | 1.99455 | 2.95498             |
|      | 0.03  | 1.78184                   | 5.17548                     | 51.2390                         | .0590437  | .254476               | .651667               | 1.23856    | 1.57386(a)         | 2.01728 | 2.97726             |
| 500  | 0.005 | .0494807                  | .817670                     | 44.3501                         | .0106024  | .0489976              | .128676               | .247355    | .405335            | .602621 | .839187             |
|      | 0.01  | .197920                   | 1.88557                     | 66.1259                         | .0172010  | .0613954              | .143356               | .263512    | .422306            | .620056 | .856854             |
|      | 0.02  | .791934                   | 3.99912                     | 76.9430                         | .0316414  | .0954978              | .189728               | .319005    | .483819            | .685449 | .924684             |
|      | 0.03  | 1.78268                   | 6.08649                     | 80.4174                         | .0463356  | .133498               | .246030               | .391438    | .569118            | .780407 | 1.02667             |
| 1000 | 0.005 | .0494786                  | .942627                     | 66.1187                         | .00860106 | .0307005              | .0716908              | .131795    | .211248            | .310231 | .428825             |
|      | 0.01  | .197962                   | 1.99825                     | 76.9150                         | .0158237  | .0477536              | .0948853              | .159564    | .242052            | .343020 | .462936             |
|      | 0.02  | .792371                   | 4.05799                     | 82.0756                         | .0305562  | .0863526              | .153016               | .235713    | .333588            | .446949 | .576597             |
|      | 0.03  | 1./839/                   | 0.01549                     | 83.8233                         | .0453331  | .126216               | .215013               | .319/40    | .439096            | .572342 | ./19//3             |

表三十 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=1.5, \alpha=5^\circ)$ 

| η    | k     | $\varepsilon_0 (10^{-3})$ | $\varepsilon_b (10^{-3})$ | $\frac{V_{tip}}{L_T} (10^{-3})$ | $K_1$     | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$               | $K_5$              | $K_6$   | $K_7$               |
|------|-------|---------------------------|---------------------------|---------------------------------|-----------|-----------------------|-----------------------|---------------------|--------------------|---------|---------------------|
| 10   | 0.005 | .0490596                  | .0563741                  | .0813632                        | .343753   | 1.57088(a)            | 1.91368               | 4.64925             | 4.71421 <i>(a)</i> | 7.82108 | 7.86218( <i>a</i> ) |
|      | 0.01  | .196245                   | .225304                   | .325040                         | .343968   | 1.57092(a)            | 1.91381               | 4.64892             | 4.71445(a)         | 7.82036 | 7.86255(a)          |
|      | 0.015 | .441571                   | .506213                   | .729800                         | .344327   | 1.57100(a)            | 1.91404               | 4.64838             | 4.71483(a)         | 7.81918 | 7.86312 <i>(a)</i>  |
|      | 0.02  | .785067                   | .898152                   | 1.29361                         | .344828   | 1.57111(a)            | 1.91435               | 4.64764             | 4.71536(a)         | 7.81758 | 7.86389(a)          |
| 20   | 0.005 | .0490597                  | .112623                   | .324951                         | .174957   | 1.05970               | 1.57089(a)            | 2.82444             | 4.71414(a)         | 5.19125 | 7.86206(a)          |
|      | 0.01  | .196246                   | .448625                   | 1.29219                         | .175465   | 1.06020               | 1.57096(a)            | 2.82480             | 4.71417(a)         | 5.19144 | 7.86208(a)          |
|      | 0.015 | .441576                   | 1.00250                   | 2.87930                         | .176309   | 1.06102               | 1.57110(a)            | 2.82540             | 4.71421(a)         | 5.19174 | 7.86210 <i>(a)</i>  |
|      | 0.02  | .785081                   | 1.76544                   | 5.05037                         | .177484   | 1.06217               | 1.57128 <i>(a)</i>    | 2.82626             | 4.71426(a)         | 5.19216 | 7.86212(a)          |
| 50   | 0.005 | .0490602                  | .279401                   | 2.00925                         | .0706971  | .438359               | 1.21580               | 1.57089(a)          | 2.35226            | 3.82692 | 4.71414(a)          |
|      | 0.01  | .196251                   | 1.08843                   | 7.74345                         | .0720079  | .439855               | 1.21726               | 1.57102(a)          | 2.35375            | 3.82831 | 4.71418( <i>a</i> ) |
|      | 0.015 | .441598                   | 2.34914                   | 16.4217                         | .0741434  | .442333               | 1.21961               | 1.57136(a)          | 2.35626            | 3.83061 | 4.71425(a)          |
|      | 0.02  | .785127                   | 3.95809                   | 27.0172                         | .0770360  | .445772               | 1.22277               | 1.57201( <i>a</i> ) | 2.35980            | 3.83382 | 4.71438(a)          |
| 100  | 0.005 | .0490615                  | .544079                   | 7.74139                         | .0360338  | .221012               | .615657               | 1.20155             | 1.57094            | 1.97732 | 2.93818             |
|      | 0.01  | .196260                   | 1.97723                   | 26.9912                         | .0385634  | .224046               | .618727               | 1.20457             | 1.57167            | 1.98087 | 2.94153             |
|      | 0.015 | .441595                   | 3.90304                   | 49.9992                         | .0424474  | .229008               | .623708               | 1.20927             | 1.57342            | 1.98700 | 2.94712             |
|      | 0.02  | .785042                   | 6.01783                   | 71.2332                         | .0473385  | .235792               | .630623               | 1.21568             | 1.57579            | 1.99567 | 2.95497             |
| 500  | 0.005 | .0490526                  | 1.63324                   | 88.5459                         | .0105966  | .0489579              | .128494               | .247069             | .404953            | .602151 | .838591             |
|      | 0.01  | .196181                   | 3.76742                   | 131.904                         | .0171975  | .0613566              | .143089               | .262894             | .421296            | .618625 | .854865             |
|      | 0.015 | .441578                   | 5.88407                   | 146.430                         | .0243492  | .0775561              | .164368               | .287590             | .447903            | .646167 | .882631             |
|      | 0.02  | .785486                   | 7.99105                   | 153.391                         | .0316382  | .0954838              | .189594               | .318503             | .482645            | .683263 | .920925             |
| 1000 | 0.005 | .0490439                  | 1.88339                   | 131.889                         | .00859928 | .0306811              | .0715578              | .131491             | .210766            | .309586 | .428027             |
|      | 0.01  | .196348                   | 3.99293                   | 153.335                         | .0158221  | .0477466              | .0948190              | .159319             | .241501            | .342069 | .461519             |
|      | 0.015 | .442307                   | 6.07260                   | 160.161                         | .0231753  | .0667503              | .123010               | .195661             | .284370            | .389811 | .512762             |
|      | 0.02  | .787232                   | 8.10983                   | 163.575                         | .0305546  | .0863505              | .152998               | .235631             | .333346            | .446397 | .575528             |

表三十一 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=1.5, \alpha=10^\circ)$ 

| η    | k     | $\varepsilon_0(10^{-3})$ | $\varepsilon_b~(10^{-3})$ | $\frac{V_{tip}}{L_T} (10^{-3})$ | $K_1$     | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$      | $K_5$               | $K_{6}$ | $K_7$               |
|------|-------|--------------------------|---------------------------|---------------------------------|-----------|-----------------------|-----------------------|------------|---------------------|---------|---------------------|
| 10   | 0.004 | .0309495                 | .0537813                  | .0776251                        | .343726   | 1.57087(a)            | 1.91367               | 4.64929    | 4.71418( <i>a</i> ) | 7.82116 | 7.86214 <i>(a)</i>  |
|      | 0.006 | .0696370                 | .120981                   | .174598                         | .343782   | 1.57088(a)            | 1.91370               | 4.64920    | 4.71425(a)          | 7.82097 | 7.86224(a)          |
|      | 0.008 | .123800                  | .215010                   | .310253                         | .343861   | 1.57090(a)            | 1.91375               | 4.64908    | 4.71433(a)          | 7.82070 | 7.86237(a)          |
|      | 0.01  | .193441                  | .335818                   | .484481                         | .343962   | 1.57092(a)            | 1.91381               | 4.64892    | 4.71445(a)          | 7.82036 | 7.86255(a)          |
| 20   | 0.004 | .0309496                 | .107488                   | .310199                         | .174894   | 1.05964               | 1.57088(a)            | 2.82439    | 4.71414(a)          | 5.19123 | 7.86206(a)          |
|      | 0.006 | .0696373                 | .241584                   | .696872                         | .175027   | 1.05977               | 1.57090(a)            | 2.82449    | 4.71415(a)          | 5.19128 | 7.86207(a)          |
|      | 0.008 | .123801                  | .428829                   | 1.23621                         | .175214   | 1.05995               | 1.57093(a)            | 2.82462    | 4.71415(a)          | 5.19135 | 7.86207(a)          |
|      | 0.01  | .193443                  | .668737                   | 1.92625                         | .175453   | 1.06019               | 1.57097(a)            | 2.82479    | 4.71417(a)          | 5.19143 | 7.86208(a)          |
| 50   | 0.004 | .0309500                 | .267421                   | 1.92566                         | .0705333  | .438175               | 1.21561               | 1.57088(a) | 2.35207             | 3.82675 | 4.71414 <i>(a)</i>  |
|      | 0.006 | .0696391                 | .597455                   | 4.28994                         | .0708799  | .438569               | 1.21600               | 1.57092(a) | 2.35247             | 3.82711 | 4.71415( <i>a</i> ) |
|      | 0.008 | .123807                  | 1.05181                   | 7.52242                         | .0713630  | .439120               | 1.21652               | 1.57098(a) | 2.35302             | 3.82762 | 4.71416( <i>a</i> ) |
|      | 0.01  | .193456                  | 1.62331                   | 11.5507                         | .0719802  | .439825               | 1.21718               | 1.57110(a) | 2.35374             | 3.82828 | 4.71419(a)          |
| 100  | 0.004 | .0309512                 | .525825                   | 7.52113                         | .0357094  | .220635               | .615265               | 1.20115    | 1.57093(a)          | 1.97691 | 2.93777             |
|      | 0.006 | .0696442                 | 1.15128                   | 16.2826                         | .0363965  | .221438               | .616069               | 1.20193    | 1.57116(a)          | 1.97785 | 2.93865             |
|      | 0.008 | .123819                  | 1.97390                   | 27.4868                         | .0373406  | .222553               | .617158               | 1.20294    | 1.57167(a)          | 1.97923 | 2.93989             |
|      | 0.01  | .193475                  | 2.95281                   | 40.3241                         | .0385245  | .223976               | .618517               | 1.20413    | 1.57254(a)          | 1.98108 | 2.94148             |
| 500  | 0.004 | .0309468                 | 1.79896                   | 106.459                         | .00946359 | .0472001              | .126459               | .244862    | .402637             | .599760 | .836128             |
|      | 0.006 | .0695981                 | 3.08931                   | 152.668                         | .0118082  | .0508952              | .130344               | .248780    | .406467             | .603445 | .839546             |
|      | 0.008 | .123703                  | 4.36918                   | 180.195                         | .0144315  | .0556872              | .135817               | .254481    | .412137             | .608946 | .844717             |
|      | 0.01  | .193296                  | 5.64182                   | 196.988                         | .0171916  | .0612918              | .142645               | .261880    | .419662             | .616350 | .851783             |
| 1000 | 0.004 | .0309252                 | 2.18435                   | 180.181                         | .00721610 | .0278460              | .0679212              | .127287    | .206199             | .304787 | .423059             |
|      | 0.006 | .0695996                 | 3.45494                   | 207.897                         | .0100128  | .0337441              | .0753004              | .135456    | .214650             | .313264 | .431442             |
|      | 0.008 | .123827                  | 4.72050                   | 221.085                         | .0128992  | .0405083              | .0844469              | .146246    | .226329             | .325330 | .443605             |
|      | 0.01  | .193667                  | 5.98046                   | 228.768                         | .0158194  | .0477350              | .0947077              | .158910    | .240586             | .340509 | .459239             |

表三十二 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=1.5, \alpha=15^\circ)$ 

| η    | k     | $\varepsilon_0 (10^{-4})$ | $\varepsilon_b \ (10^{-3})$ | $\frac{V_{tip}}{L_T} (10^{-2})$ | $K_1$     | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$      | $K_5$               | $K_6$   | $K_7$               |
|------|-------|---------------------------|-----------------------------|---------------------------------|-----------|-----------------------|-----------------------|------------|---------------------|---------|---------------------|
| 10   | 0.004 | .285759                   | .103900                     | .0149964                        | .343721   | 1.57087( <i>a</i> )   | 1.91366               | 4.64929    | 4.71418( <i>a</i> ) | 7.82117 | 7.86214 <i>(a)</i>  |
|      | 0.006 | .642965                   | .233728                     | .0337319                        | .343771   | 1.57088(a)            | 1.91370               | 4.64920    | 4.71425(a)          | 7.82099 | 7.86224(a)          |
|      | 0.008 | 1.14307                   | .415401                     | .0599427                        | .343842   | 1.57090(a)            | 1.91374               | 4.64908    | 4.71433(a)          | 7.82072 | 7.86237(a)          |
|      | 0.01  | 1.78607                   | .648832                     | .0936101                        | .343932   | 1.57092(a)            | 1.91380               | 4.64893    | 4.71445(a)          | 7.82039 | 7.86255(a)          |
| 20   | 0.004 | .285761                   | .207670                     | .0599330                        | .174884   | 1.05963               | 1.57088(a)            | 2.82438    | 4.71414(a)          | 5.19123 | 7.86206(a)          |
|      | 0.006 | .642976                   | .466801                     | .134661                         | .175004   | 1.05975               | 1.57090(a)            | 2.82447    | 4.71414(a)          | 5.19127 | 7.86206(a)          |
|      | 0.008 | 1.14310                   | .828735                     | .238931                         | .175173   | 1.05992               | 1.57093(a)            | 2.82460    | 4.71415(a)          | 5.19134 | 7.86207(a)          |
|      | 0.01  | 1.78615                   | 1.29263                     | .372394                         | .175389 💰 | 1.06014               | 1.57097 <i>(a)</i>    | 2.82476    | 4.71416(a)          | 5.19142 | 7.86207(a)          |
| 50   | 0.004 | .285776                   | .516920                     | .372289                         | .0705071  | .438152               | 1.21558               | 1.57089(a) | 2.35205             | 3.82673 | 4.71414 <i>(a)</i>  |
|      | 0.006 | .643045                   | 1.15569                     | .830125                         | .0708225  | .438516               | 1.21591               | 1.57097(a) | 2.35243             | 3.82706 | 4.71416( <i>a</i> ) |
|      | 0.008 | 1.14331                   | 2.03651                     | 1.45737                         | .0712644  | .439022               | 1.21632               | 1.57115(a) | 2.35296             | 3.82753 | 4.71419 <i>(a)</i>  |
|      | 0.01  | 1.78662                   | 3.14662                     | 2.24101                         | .0718327  | .439667               | 1.21677               | 1.57149(a) | 2.35367             | 3.82812 | 4.71425(a)          |
| 100  | 0.004 | .285821                   | 1.01811                     | 1.45714                         | .0356599  | .220585               | .615190               | 1.20103    | 1.57109             | 1.97691 | 2.93772             |
|      | 0.006 | .643236                   | 2.23459                     | 3.16418                         | .0362954  | .221318               | .615832               | 1.20151    | 1.57189             | 1.97795 | 2.93855             |
|      | 0.008 | 1.14376                   | 3.84233                     | 5.35981                         | .0371829  | .222328               | .616599               | 1.20183    | 1.57374             | 1.97965 | 2.93973             |
|      | 0.01  | 1.78734                   | 5.76488                     | 7.88899                         | .0383144  | .223606               | .617430               | 1.20185    | 1.57696             | 1.98213 | 2.94126             |
| 500  | 0.002 | .0714904                  | 1.15266                     | 7.88670                         | .00766574 | .0447961              | .123986               | .242326    | .400093             | .597237 | .833677             |
|      | 0.004 | .285616                   | 3.54846                     | 20.9805                         | .00940468 | .0469252              | .125366               | .243308    | .400674             | .597445 | .833320             |
|      | 0.006 | .641279                   | 6.11430                     | 30.0040                         | .0117623  | .0504960              | .128400               | .245619    | .402257             | .598330 | .833313             |
|      | 0.008 | 1.13885                   | 8.65675                     | 35.2837                         | .0143953  | .0552836              | .133486               | .250091    | .405913             | .601122 | .835091             |
| 1000 | 0.002 | .0714036                  | 1.77418                     | 20.9799                         | .00470244 | .0234641              | .0626937              | .121696    | .200456             | .299002 | .417269             |
|      | 0.004 | .284703                   | 4.32794                     | 35.2810                         | .00719798 | .0276442              | .0667603              | .125121    | .203192             | .301152 | .418895             |
|      | 0.006 | .641188                   | 6.85030                     | 40.5251                         | .00999761 | .0336000              | .0742047              | .132746    | .210299             | .307548 | .424599             |
|      | 0.008 | 1.14344                   | 9.36264                     | 42.9987                         | .0128846  | .0404149              | .0836039              | .143625    | .221421             | .318236 | .434627             |

表三十三 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=1.5, \alpha=30^\circ)$ 

| η    | k     | $\varepsilon_0 (10^{-4})$ | $\varepsilon_b \ (10^{-3})$ | $\frac{V_{tip}}{L_T} (10^{-2})$ | $K_1$     | $K_2$      | <i>K</i> <sub>3</sub> | $K_4$               | $K_5$               | $K_{6}$ | $K_7$              |
|------|-------|---------------------------|-----------------------------|---------------------------------|-----------|------------|-----------------------|---------------------|---------------------|---------|--------------------|
| 10   | 0.004 | .248001                   | .146941                     | .0212090                        | .343713   | 1.57087(a) | 1.91366               | 4.64929             | 4.71418(a)          | 7.82118 | 7.86214 <i>(a)</i> |
|      | 0.006 | .558010                   | .330565                     | .0477086                        | .343754   | 1.57088(a) | 1.91369               | 4.64921             | 4.71425(a)          | 7.82100 | 7.86224(a)         |
|      | 0.008 | .992037                   | .587540                     | .0847861                        | .343811   | 1.57090(a) | 1.91373               | 4.64909             | 4.71433(a)          | 7.82076 | 7.86237(a)         |
|      | 0.01  | 1.55010                   | .917769                     | .132420                         | .343884   | 1.57092(a) | 1.91378               | 4.64895             | 4.71445(a)          | 7.82045 | 7.86255(a)         |
| 20   | 0.004 | .248005                   | .293732                     | .0847741                        | .174867   | 1.05962    | 1.57088(a)            | 2.82438             | 4.71414(a)          | 5.19123 | 7.86206(a)         |
|      | 0.006 | .558031                   | .660372                     | .190520                         | .174967   | 1.05972    | 1.57090(a)            | 2.82445             | 4.71414(a)          | 5.19127 | 7.86206(a)         |
|      | 0.008 | .992104                   | 1.17269                     | .338153                         | .175107   | 1.05987    | 1.57093(a)            | 2.82456             | 4.71415(a)          | 5.19132 | 7.86206(a)         |
|      | 0.01  | 1.55026                   | 1.82971                     | .527260                         | .175287   | 1.06006    | 1.57097( <i>a</i> )   | 2.82471             | 4.71416(a)          | 5.19139 | 7.86206(a)         |
| 50   | 0.004 | .248034                   | .731720                     | .527129                         | .0704654  | .438115    | 1.21554               | 1.57091( <i>a</i> ) | 2.35202             | 3.82669 | 4.71414 <i>(a)</i> |
|      | 0.006 | .558170                   | 1.63777                     | 1.17709                         | .0707307  | .438431    | 1.21578               | 1.57104(a)          | 2.35236             | 3.82698 | 4.71417 <i>(a)</i> |
|      | 0.008 | .992520                   | 2.89042                     | 2.07049                         | .0711059  | .438867    | 1.21602               | 1.57138( <i>a</i> ) | 2.35286             | 3.82738 | 4.71422 <i>(a)</i> |
|      | 0.01  | 1.55120                   | 4.47432                     | 3.19124                         | .0715945  | .439418    | 1.21618               | 1.57205(a)          | 2.35355             | 3.82787 | 4.71433(a)         |
| 100  | 0.004 | .248125                   | 1.44503                     | 2.07020                         | .0355805  | .220507    | .615076               | 1.20086             | 1.57130( <i>a</i> ) | 1.97689 | 2.93765            |
|      | 0.006 | .558553                   | 3.18433                     | 4.51787                         | .0361312  | .221131    | .615479               | 1.20089             | 1.57292(a)          | 1.97807 | 2.93839            |
|      | 0.008 | .993424                   | 5.50164                     | 7.69684                         | .0369233  | .221973    | .615765               | 1.20024             | 1.57670 <i>(a)</i>  | 1.98022 | 2.93946            |
|      | 0.01  | 1.55261                   | 8.29579                     | 11.3931                         | .0379644  | .223022    | .615795               | 1.19858             | 1.58334(a)          | 1.98367 | 2.94090            |
| 500  | 0.003 | .139610                   | 3.33394                     | 21.4531                         | .00832692 | .0454066   | .123645               | .241572             | .398947             | .595752 | .831679            |
|      | 0.004 | .247562                   | 5.19859                     | 30.7060                         | .00930348 | .0464778   | .123670               | .240997             | .397844             | .594204 | .829546            |
|      | 0.005 | .385611                   | 7.10727                     | 38.1086                         | .0104433  | .0479552   | .124184               | .240736             | .396936             | .592763 | .827492            |
|      | 0.006 | .553756                   | 9.01112                     | 43.7125                         | .0116840  | .0498366   | .125387               | .241080             | .396574             | .591815 | .825942            |
| 1000 | 0.003 | .138435                   | 4.50532                     | 43.7104                         | .00584218 | .0249203   | .0627121              | .120621             | .198530             | .296494 | .414262            |
|      | 0.004 | .245339                   | 6.39048                     | 51.0738                         | .00716734 | .0273072   | .0649396              | .122034             | .199241             | .296668 | .414017            |
|      | 0.005 | .383287                   | 8.26164                     | 55.4241                         | .00855346 | .0301769   | .0682729              | .124779             | .201274             | .298110 | .415002            |
|      | 0.006 | .553007                   | 10.1272                     | 58.2072                         | .00997229 | .0333560   | .0724036              | .128708             | .204555             | .300774 | .417182            |

表三十四 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=1.5, \alpha=45^\circ)$ 

| η    | k     | $\varepsilon_0 (10^{-4})$ | $\varepsilon_b (10^{-3})$ | $\frac{V_{tip}}{L_T} (10^{-2})$ | $K_1$      | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$      | $K_5$              | $K_{6}$ | $K_7$              |
|------|-------|---------------------------|---------------------------|---------------------------------|------------|-----------------------|-----------------------|------------|--------------------|---------|--------------------|
| 10   | 0.004 | .198793                   | .179973                   | .0259771                        | .343703    | 1.57087(a)            | 1.91366               | 4.64929    | 4.71418(a)         | 7.82119 | 7.86214 <i>(a)</i> |
|      | 0.006 | .447293                   | .404895                   | .0584381                        | .343731    | 1.57088(a)            | 1.91368               | 4.64922    | 4.71425(a)         | 7.82103 | 7.86224(a)         |
|      | 0.008 | .795210                   | .719706                   | .103864                         | .343771    | 1.57090(a)            | 1.91372               | 4.64911    | 4.71433(a)         | 7.82080 | 7.86237(a)         |
|      | 0.01  | 1.24256                   | 1.12432                   | .162236                         | .343822    | 1.57092(a)            | 1.91376               | 4.64897    | 4.71445(a)         | 7.82052 | 7.86255(a)         |
| 20   | 0.004 | .198799                   | .359815                   | .103852                         | .174845    | 1.05960               | 1.57088(a)            | 2.82437    | 4.71414 <i>(a)</i> | 5.19122 | 7.86206(a)         |
|      | 0.006 | .447324                   | .809133                   | .233468                         | .174918    | 1.05969               | 1.57090(a)            | 2.82443    | 4.71414(a)         | 5.19125 | 7.86206(a)         |
|      | 0.008 | .795309                   | 1.43733                   | .414557                         | .175021    | 1.05980               | 1.57093(a)            | 2.82452    | 4.71415(a)         | 5.19130 | 7.86206(a)         |
|      | 0.01  | 1.24280                   | 2.24357                   | .646744                         | .175154    | 1.05995               | 1.57098( <i>a</i> )   | 2.82464    | 4.71416(a)         | 5.19136 | 7.86205(a)         |
| 50   | 0.004 | .198842                   | .897266                   | .646613                         | .0704108   | .438067               | 1.21548               | 1.57092(a) | 2.35198            | 3.82665 | 4.71415(a)         |
|      | 0.006 | .447534                   | 2.01131                   | 1.44665                         | .0706099 💈 | .43832196             | 1.21562               | 1.57112(a) | 2.35227            | 3.82688 | 4.71418(a)         |
|      | 0.008 | .795936                   | 3.55683                   | 2.55122                         | .0708963   | .438668               | 1.21568               | 1.57162(a) | 2.35272            | 3.82719 | 4.71426(a)         |
|      | 0.01  | 1.24423                   | 5.51964                   | 3.94454                         | .0712769   | .439099               | 1.21550               | 1.57262(a) | 2.35337            | 3.82756 | 4.71442(a)         |
| 100  | 0.004 | .198980                   | 1.77823                   | 2.55092                         | .0354753   | .220405               | .614938               | 1.20067    | 1.57153(a)         | 1.97685 | 2.93755            |
|      | 0.006 | .448113                   | 3.93982                   | 5.60471                         | .0359105   | .220891               | .615063               | 1.20019    | 1.57400(a)         | 1.97815 | 2.93818            |
|      | 0.008 | .797297                   | 6.85215                   | 9.62555                         | .0365677   | .221521               | .614785               | 1.19846    | 1.57993(a)         | 1.98079 | 2.93911            |
|      | 0.01  | 1.24628                   | 10.4061                   | 14.3658                         | .0374757   | .222275               | .613860               | 1.19495    | 1.59043(a)         | 1.98539 | 2.94039            |
| 500  | 0.001 | .0124417                  | .551847                   | 3.94359                         | .00713528  | .0441953              | .123472               | .241825    | .399619            | .596790 | .833288            |
|      | 0.002 | .0498478                  | 2.08080                   | 14.3625                         | .00749782  | .0445298              | .123336               | .241523    | .399149            | .596174 | .832430            |
|      | 0.003 | .111919                   | 4.25027                   | 27.4813                         | .00818433  | .0450453              | .122528               | .240164    | .397282            | .593888 | .829537            |
|      | 0.004 | .197757                   | 6.69837                   | 39.5492                         | .00915509  | .0458747              | .121541               | .238260    | .394619            | .590640 | .825581            |
| 1000 | 0.001 | .0124619                  | 1.04039                   | 14.3624                         | .00374895  | .0222661              | .0616767              | .120794    | .199664            | .298290 | .416636            |
|      | 0.002 | .0494384                  | 3.34911                   | 39.5483                         | .00457764  | .0229389              | .0607865              | .119196    | .197503            | .295781 | .413801            |
|      | 0.003 | .109668                   | 5.85810                   | 55.9504                         | .00578511  | .0244655              | .0608303              | .118068    | .195568            | .293314 | .410915            |
|      | 0.004 | .193409                   | 8.33265                   | 64.7602                         | .00712348  | .0268352              | .0626337              | .118602    | .195239            | .292390 | .409558            |

表三十五 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=1.5, \alpha=60^\circ)$ 

| η    | k      | $\varepsilon_0(10^{-5})$ | $\varepsilon_b(10^{-3})$ | $\frac{V_{tip}}{L_T} (10^{-2})$ | $K_1$     | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$               | $K_5$      | $K_{6}$ | $K_7$              |
|------|--------|--------------------------|--------------------------|---------------------------------|-----------|-----------------------|-----------------------|---------------------|------------|---------|--------------------|
| 10   | 0.004  | 1.41488                  | .200743                  | .0289755                        | .343692   | 1.57087(a)            | 1.91365               | 4.64930             | 4.71418(a) | 7.82120 | 7.86214 <i>(a)</i> |
|      | 0.006  | 3.18358                  | .451651                  | .0651887                        | .343705   | 1.57088(a)            | 1.91367               | 4.64923             | 4.71425(a) | 7.82106 | 7.86224(a)         |
|      | 0.008  | 5.65995                  | .802882                  | .115875                         | .343724   | 1.57090(a)            | 1.91370               | 4.64912             | 4.71433(a) | 7.82086 | 7.86237(a)         |
|      | 0.01   | 8.84416                  | 1.25440                  | .181024                         | .343749   | 1.57092(a)            | 1.91373               | 4.64899             | 4.71445(a) | 7.82060 | 7.86255(a)         |
| 20   | 0.004  | 1.41496                  | .401411                  | .115865                         | .174820   | 1.05958               | 1.57088(a)            | 2.82435             | 4.71414(a) | 5.19121 | 7.86206(a)         |
|      | 0.006  | 3.18398                  | .902921                  | .260568                         | .174862   | 1.05964               | 1.57090(a)            | 2.82440             | 4.71414(a) | 5.19124 | 7.86206(a)         |
|      | 0.008  | 5.66119                  | 1.60456                  | .462908                         | .174921   | 1.05973               | 1.57093(a)            | 2.82447             | 4.71415(a) | 5.19128 | 7.86206(a)         |
|      | 0.01   | 8.84715                  | 2.50583                  | .722637                         | .174997 🔬 | 1.05983               | 1.57098( <i>a</i> )   | 2.82456             | 4.71415(a) | 5.19132 | 7.86205(a)         |
| 50   | 0.004  | 1.41550                  | 1.00220                  | .722528                         | .0703470  | .438011               | 1.21542               | 1.57093(a)          | 2.35193    | 3.82660 | 4.71415(a)         |
|      | 0.006  | 3.18659                  | 2.25048                  | 1.62014                         | .0704678  | .438195               | 1.21546               | 1.57118(a)          | 2.35216    | 3.82677 | 4.71419(a)         |
|      | 0.008  | 5.66902                  | 3.98939                  | 2.86597                         | .0706477  | .438440               | 1.21534               | 1.57181( <i>a</i> ) | 2.35254    | 3.82698 | 4.71429(a)         |
|      | 0.01   | 8.86496                  | 6.20953                  | 4.44812                         | .0708965  | .438735               | 1.21486               | 1.57307(a)          | 2.35311    | 3.82722 | 4.71449(a)         |
| 100  | 0.004  | 1.41722                  | 1.99454                  | 2.86571                         | .0353506  | .220289               | .614793               | 1.20047             | 1.57170(a) | 1.97677 | 2.93743            |
|      | 0.006  | 3.19387                  | 4.44822                  | 6.34880                         | .0356431  | .220619               | .614646               | 1.19956             | 1.57488(a) | 1.97813 | 2.93792            |
|      | 0.008  | 5.68599                  | 7.80121                  | 11.0163                         | .0361261  | .221012               | .613820               | 1.19683             | 1.58269(a) | 1.98115 | 2.93867            |
|      | 0.01   | 8.88954                  | 11.9584                  | 16.6242                         | .0368527  | .221430               | .611928               | 1.19161             | 1.59680(a) | 1.98682 | 2.93976            |
| 500  | 0.001  | .0886451                 | .620857                  | 4.44731                         | .00709709 | .0441582              | .123422               | .241770             | .399559    | .596726 | .833217            |
|      | 0.002  | .355552                  | 2.39131                  | 16.6211                         | .00737310 | .0443605              | .122979               | .241098             | .398660    | .595634 | .831812            |
|      | 0.0025 | .554825                  | 3.61686                  | 24.4522                         | .00763597 | .0444769              | .122296               | .240118             | .397400    | .594146 | .829984            |
|      | 0.003  | .795804                  | 4.99501                  | 32.5427                         | .00799298 | .0446213              | .121330               | .238719             | .395619    | .592070 | .827510            |
| 1000 | 0.001  | .0888877                 | 1.19565                  | 16.6210                         | .00368659 | .0221814              | .0614983              | .120583             | .199426    | .298036 | .416365            |
|      | 0.002  | .348595                  | 3.99716                  | 47.2665                         | .00447598 | .0225720              | .0596109              | .117788             | .195925    | .294117 | .412061            |
|      | 0.0025 | .534911                  | 5.54461                  | 58.4738                         | .00506404 | .0230877              | .0588892              | .116401             | .194095    | .292013 | .409741            |
|      | 0.003  | .757671                  | 7.08424                  | 66.3697                         | .00570761 | .0238941              | .0587470              | .115531             | .192783    | .290414 | .407928            |

表三十六 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=1.5, \alpha=75^\circ)$ 

| η    | k      | $\varepsilon_0(10^{-5})$ | $\varepsilon_b(10^{-3})$ | $\frac{V_{tip}}{L_T} (10^{-2})$ | $K_1$     | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$      | $K_5$      | $K_{6}$ | $K_7$              |
|------|--------|--------------------------|--------------------------|---------------------------------|-----------|-----------------------|-----------------------|------------|------------|---------|--------------------|
| 10   | 0.004  | .799927                  | .207835                  | .0299998                        | .343679   | 1.57087(a)            | 1.91365               | 4.64930    | 4.71418(a) | 7.82122 | 7.86214 <i>(a)</i> |
|      | 0.006  | 1.79993                  | .467638                  | .0674988                        | .343677   | 1.57088(a)            | 1.91366               | 4.64923    | 4.71425(a) | 7.82109 | 7.86224(a)         |
|      | 0.008  | 3.20011                  | .831377                  | .119996                         | .343674   | 1.57090(a)            | 1.91368               | 4.64914    | 4.71433(a) | 7.82091 | 7.86237(a)         |
|      | 0.01   | 5.00064                  | 1.29907                  | .187490                         | .343671   | 1.57092(a)            | 1.91370               | 4.64902    | 4.71445(a) | 7.82068 | 7.86255(a)         |
| 20   | 0.004  | .800011                  | .415670                  | .119990                         | .174793   | 1.05956               | 1.57088(a)            | 2.82434    | 4.71414(a) | 5.19121 | 7.86206(a)         |
|      | 0.006  | 1.80035                  | .935273                  | .269947                         | .174801   | 1.05960               | 1.57090(a)            | 2.82437    | 4.71414(a) | 5.19122 | 7.86206(a)         |
|      | 0.008  | 3.20144                  | 1.66274                  | .479828                         | .174813   | 1.05965               | 1.57093(a)            | 2.82441    | 4.71415(a) | 5.19125 | 7.86206(a)         |
|      | 0.01   | 5.00385                  | 2.59808                  | .749570                         | .174829   | 1.05971               | 1.57098( <i>a</i> )   | 2.82447    | 4.71415(a) | 5.19128 | 7.86205(a)         |
| 50   | 0.004  | .800586                  | 1.03915                  | .749498                         | .0702781  | .437952               | 1.21536               | 1.57094(a) | 2.35187    | 3.82654 | 4.71415(a)         |
|      | 0.006  | 1.80316                  | 2.33792                  | 1.68475                         | .0703135  | .438061               | 1.21532               | 1.57120(a) | 2.35204    | 3.82664 | 4.71419(a)         |
|      | 0.008  | 3.20987                  | 4.15539                  | 2.99040                         | .0703752  | .438200               | 1.21505               | 1.57188(a) | 2.35233    | 3.82676 | 4.71430(a)         |
|      | 0.01   | 5.02306                  | 6.48969                  | 4.66122                         | .0704751  | .438357               | 1.21436               | 1.57328(a) | 2.35279    | 3.82687 | 4.71452(a)         |
| 100  | 0.004  | .802448                  | 2.07760                  | 2.99023                         | .0352140  | .220167               | .614656               | 1.20032    | 1.57177(a) | 1.97667 | 2.93730            |
|      | 0.006  | 1.81104                  | 4.66797                  | 6.68756                         | .0353429  | .220337               | .614290               | 1.19909    | 1.57532(a) | 1.97797 | 2.93764            |
|      | 0.008  | 3.22810                  | 8.26754                  | 11.7482                         | .0356146  | .220490               | .613028               | 1.19568    | 1.58431(a) | 1.98111 | 2.93818            |
|      | 0.01   | 5.04783                  | 12.8203                  | 17.9801                         | .0361062  | .220567               | .610327               | 1.18916    | 1.60109(a) | 1.98747 | 2.93903            |
| 500  | 0.001  | .0502277                 | .648908                  | 4.66066                         | .00705477 | .0441193              | .123377               | .241721    | .399507    | .596672 | .833160            |
|      | 0.002  | .201893                  | 2.56381                  | 17.9777                         | .00722366 | .0441871              | .122676               | .240754    | .398276    | .595220 | .831351            |
|      | 0.0025 | .314261                  | 3.93783                  | 26.9195                         | .00743089 | .0441828              | .121667               | .239394    | .396589    | .593272 | .829019            |
|      | 0.003  | .447767                  | 5.51810                  | 36.3646                         | .00774664 | .0441672              | .120206               | .237434    | .394187    | .590546 | .825864            |
| 1000 | 0.001  | .0504732                 | 1.28190                  | 17.9776                         | .00361187 | .0220947              | .0613474              | .120412    | .199237    | .297838 | .416158            |
|      | 0.002  | .191177                  | 4.51428                  | 53.6436                         | .00434099 | .0221568              | .0584298              | .116472    | .194500    | .292648 | .410551            |
|      | 0.0025 | .283431                  | 6.34013                  | 66.3355                         | .00494287 | .0225120              | .0571632              | .114502    | .192068    | .289934 | .407619            |
|      | 0.003  | .388229                  | 8.15303                  | 74.7254                         | .00560584 | .0232181              | .0566295              | .113203    | .190324    | .287893 | .405356            |

表三十七 旋轉傾斜梁在不同細長比與不同轉速下的振動頻率 $(r=1.5, \alpha=90^\circ)$ 

表三十八 旋轉梁在不同傾斜角與不同轉速下的振動頻率 $(r=1, \eta=38)$ 

| α            | k     | <i>K</i> <sub>1</sub> | Ka                | $K_{2}(a)$ | K,                 | <i>K</i> <sub>5</sub> | $K_{\epsilon}(a)$ |
|--------------|-------|-----------------------|-------------------|------------|--------------------|-----------------------|-------------------|
| <br>         | 0     | 0923781               | 573//0            | 1 57086    | 1 58182            | 3 03502               | 1 71/13           |
| 0            | 0.01  | .0923781              | 574596            | 1.57080    | 1.58182            | 3.03502               | 4.71415           |
|              | 0.01  | 0960486               | 578022            | 1.57025    | 1.50277            | 3 03918               | 4 71424           |
|              | 0.02  | 100433                | 583687            | 1.57158    | 1.50057            | 3 04436               | 4 71438           |
|              | 0.03  | 106241                | 591528            | 1.57221    | 1 59975            | 3 05162               | 4 71457           |
|              | 0.05  | .113232               | .601458           | 1.57305    | 1.60967            | 3.06092               | 4.71483           |
|              | 0.06  | .121175               | .613377           | 1.57410    | 1.62169            | 3.07226               | 4.71514           |
| $5^{\circ}$  | 0.01  | 0022074               | 574503            | 1 57097    | 1 58202            | 2 02606               | 171116            |
| 5            | 0.01  | .0253074              | 578000            | 1.57057    | 1.58502            | 3.03000               | 4.71410           |
|              | 0.02  | .0900381              | 580557            | 1.57030    | 1.50097            | 3.03917               | 4.71423           |
|              | 0.023 | 100414                | .J00JJ7<br>583656 | 1.57023    | 1.59005            | 3.04130               | 4.71427           |
|              | 0.05  | .100414               | .383030           | 1.30963    | 1.39370            | 5.04455               | 4./1432           |
| $10^{\circ}$ | 0.005 | .0926090              | .573734           | 1.57086    | 1.58212            | 3.03528               | 4.71414           |
|              | 0.01  | .0932982              | .574585           | 1.57071    | 1.58318            | 3.03605               | 4.71416           |
|              | 0.015 | .0944361              | .575999           | 1.57013    | 1.58528            | 3.03734               | 4.71417           |
|              | 0.02  | .0960067              | .577971           | 1.56900    | 1.58854            | 3.03914               | 4.71418           |
| $15^{\circ}$ | 0.004 | .0925234              | .573629           | 1.57086    | 1.58202            | 3.03518               | 4.71414           |
|              | 0.006 | .0927048              | .573854           | 1.57082    | 1.58230            | 3.03539               | 4.71414           |
|              | 0.008 | .0929582              | .574168           | 1.57070    | 1.58275            | 3.03567               | 4.71415           |
|              | 0.01  | .0932831              | .574571           | 1.57046    | 1.58343            | 3.03604               | 4.71415           |
| $30^{\circ}$ | 0.004 | 0.0925101             | 573618            | 1.57082    | 1 58205            | 3 03517               | 4 71414           |
| 50           | 0.004 | 0926750               | 573828            | 1.57063    | 1.50205            | 3.03536               | 4 71414           |
|              | 0.008 | 0929059               | 574121            | 1.57016    | 1.50210            | 3.03563               | 4 71414           |
|              | 0.000 | 0932029               | 574496            | 1.57910    | 1.50520            | 3 03598               | 4 71413           |
| 0            | 0.01  |                       |                   |            |                    |                       |                   |
| 45           | 0.004 | .0924058              | .573487           | 1.57086    | 1.58187            | 3.03505               | 4.71413           |
|              | 0.006 | .0924888              | .573600           | 1.57077    | 1.58208            | 3.03516               | 4.71414           |
|              | 0.008 | .0926275              | .573787           | 1.57038    | 1.58268            | 3.03533               | 4.71413           |
|              | 0.01  | .0928224              | .574047           | 1.56948    | 1.58389            | 3.03557               | 4.71412           |
| $60^{\circ}$ | 0.004 | .0924610              | .573576           | 1.57071    | 1.58211            | 3.03514               | 4.71413           |
|              | 0.006 | .0925653              | .573733           | 1.57014    | 1.58287            | 3.03528               | 4.71413           |
|              | 0.008 | .0927130              | .573951           | 1.56884    | 1.58445            | 3.03549               | 4.71411           |
|              | 0.01  | .0929054              | .574227           | 1.56671    | 1.58695            | 3.03576               | 4.71405           |
| $75^{\circ}$ | 0.004 | .0924285              | .573549           | 1.57068    | 1.58213            | 3.03511               | 4.71413           |
|              | 0.006 | .0924927              | .573671           | 1.56997    | 1.58299            | 3.03523               | 4.71413           |
|              | 0.008 | .0925846              | .573840           | 1.56839    | 1.58481            | 3.03540               | 4.71410           |
|              | 0.01  | .0927063              | .574053           | 1.56586    | 1.58767            | 3.03561               | 4.71403           |
| 00°          | 0.004 | 0022027               | 572510            | 1 57066    | 1 50010            | 2 02500               | 171412            |
| 90           | 0.004 | .0923937              | .313319<br>572605 | 1.3/000    | 1.30212            | 5.05509<br>2.02517    | 4./1413           |
|              | 0.000 | .0924144              | .J/J00J<br>572700 | 1.30990    | 1.30300            | 2.02520               | 4./1412           |
|              | 0.008 | .0724437              | .JIJIZZ<br>573969 | 1.30021    | 1.J0409<br>1 58797 | 3.03329<br>3.02545    | 4.71409           |
|              | 0.01  | .0747700              |                   | 1.50551    | 1.50/0/            | J.UJJ4J               | +./14U2           |

表三十九 旋轉梁在不同傾斜角與不同轉速下的振動頻率 $(r=1, \eta=38.5)$ 

| α            | k     | $K_1$    | $K_2$   | <i>K</i> <sub>3</sub> | $K_4$              | <i>K</i> <sub>5</sub> | $K_{6}\left(a ight)$ |
|--------------|-------|----------|---------|-----------------------|--------------------|-----------------------|----------------------|
| $0^{\circ}$  | 0     | .0911822 | .566163 | 1.56231               | 1.57086(a)         | 2.99909               | 4.71413              |
|              | 0.01  | .0921270 | .567326 | 1.56340               | 1.57100(a)         | 3.00015               | 4.71416              |
|              | 0.02  | .0949006 | .570802 | 1.56655               | 1.57153 <i>(a)</i> | 3.00333               | 4.71423              |
|              | 0.03  | .0993372 | .576549 | 1.57034 <i>(a)</i>    | 1.57387            | 3.00863               | 4.71436              |
|              | 0.04  | .105208  | .584500 | 1.57179 <i>(a)</i>    | 1.58095            | 3.01603               | 4.71454              |
|              | 0.05  | 112264   | 594566  | 1.57282(a)            | 1 59085            | 3 02552               | 4 71478              |
|              | 0.06  | .120272  | .606642 | 1.57394 <i>(a)</i>    | 1.60299            | 3.03709               | 4.71509              |
| $5^{\circ}$  | 0.01  | .0921240 | .567323 | 1.56330               | 1.57110            | 3.00015               | 4.71416              |
|              | 0.02  | .0948900 | .570789 | 1.56500               | 1.57308            | 3.00332               | 4.71421              |
|              | 0.025 | .0969096 | .573374 | 1.56537               | 1.57549            | 3.00570               | 4.71423              |
|              | 0.03  | .0993184 | .576517 | 1.56544               | 1.57881            | 3.00861               | 4.71426              |
| $10^{\circ}$ | 0.005 | .0914162 | .566451 | 1.56255               | 1.57092            | 2.99935               | 4.71414              |
|              | 0.01  | .0921147 | .567315 | 1.56303               | 1.57136            | 3.00014               | 4.71415              |
|              | 0.015 | .0932676 | .568750 | 1.56304               | 1.57289            | 3.00146               | 4.71416              |
|              | 0.02  | .0948584 | .570751 | 1.56224               | 1.57586            | 3.00330               | 4.71413              |
| $15^{\circ}$ | 0.004 | .0913295 | .566345 | 1.56246               | 1.57090            | 2.99925               | 4.71414              |
|              | 0.006 | .0915133 | .566573 | 1.56259               | 1.57101            | 2.99946               | 4.71414              |
|              | 0.008 | .0917701 | .566891 | 1.56267               | 1.57127            | 2.99975               | 4.71414              |
|              | 0.01  | .0920994 | .567300 | 1.56262               | 1.57176            | 3.00013               | 4.71414              |
| $30^{\circ}$ | 0.004 | .0913159 | .566333 | 1.56239               | 1.57096            | 2.99924               | 4.71414              |
|              | 0.006 | .0914831 | .566547 | 1.56230               | 1.57128            | 2.99944               | 4.71413              |
|              | 0.008 | .0917172 | .566844 | 1.56186               | 1.57205            | 2.99971               | 4.71412              |
|              | 0.01  | .0920182 | .567225 | 1.56095               | 1.57339            | 3.00007               | 4.71410              |
| $45^{\circ}$ | 0.004 | .0912943 | .566315 | 1.56230               | 1.57103            | 2.99923               | 4.71413              |
|              | 0.006 | .0914350 | .566505 | 1.56193               | 1.57162            | 2.99940               | 4.71413              |
|              | 0.008 | .0916326 | .566769 | 1.56091               | 1.57294            | 2.99965               | 4.71410              |
|              | 0.01  | .0918881 | .567106 | 1.55919               | 1.57508            | 2.99997               | 4.71404              |
| $60^{\circ}$ | 0.004 | .0912662 | .566291 | 1.56221               | 1.57110            | 2.99921               | 4.71413              |
|              | 0.006 | .0913720 | .566450 | 1.56156               | 1.57194            | 2.99936               | 4.71412              |
|              | 0.008 | .0915218 | .566671 | 1.56006               | 1.57372            | 2.99957               | 4.71407              |
|              | 0.01  | .0917170 | .566952 | 1.55769               | 1.57648            | 2.99984               | 4.71398              |
| $75^{\circ}$ | 0.004 | .0912333 | .566263 | 1.56213               | 1.57115            | 2.99918               | 4.71413              |
|              | 0.006 | .0912984 | .566388 | 1.56129               | 1.57216            | 2.99930               | 4.71411              |
|              | 0.008 | .0913917 | .566559 | 1.55945               | 1.57424            | 2.99947               | 4.71406              |
|              | 0.01  | .0915154 | .566775 | 1.55665               | 1.57739            | 2.99969               | 4.71393              |
| $90^{\circ}$ | 0.004 | .0911980 | .566234 | 1.56209               | 1.57117            | 2.99916               | 4.71413              |
|              | 0.006 | .0912191 | .566321 | 1.56115               | 1.57223            | 2.99924               | 4.71411              |
|              | 0.008 | .0912510 | .566439 | 1.55917               | 1.57441            | 2.99937               | 4.71405              |
|              | 0.01  | .0912963 | .566587 | 1.55617               | 1.57770            | 2.99953               | 4.71391              |

表四十 旋轉梁在不同傾斜角與不同轉速下的振動頻率 $(r=1, \eta=39)$ 

| α            | k     | <i>K</i> <sub>1</sub> | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$               | <i>K</i> <sub>5</sub> | $K_6(a)$ |
|--------------|-------|-----------------------|-----------------------|-----------------------|---------------------|-----------------------|----------|
| 0°           | 0     | .0900168              | .559057               | 1.54325               | 1.57086( <i>a</i> ) | 2.96396               | 4.71413  |
|              | 0.01  | .0909741              | .560237               | 1.54439               | 1.57097( <i>a</i> ) | 2.96504               | 4.71415  |
|              | 0.02  | .0937830              | .563763               | 1.54780               | 1.57130 <i>(a)</i>  | 2.96829               | 4.71421  |
|              | 0.03  | 0982717               | 569591                | 1 55343               | 1.57189(a)          | 2 97369               | 4 71431  |
|              | 0.03  | 104204                | 577652                | 1.555 13              | 1.57287(a)          | 2.97309               | 4 71447  |
|              | 0.04  | 111225                | 597952                | 1.56061               | 157547(a)           | 2.00002               | 4.71460  |
|              | 0.05  | 110207                | .307033               | 1.50901<br>1.57330(a) | 1.57517 (u)         | 2.99092               | 4./1409  |
|              | 0.00  | .119397               | .000083               | 1.57550(a)            | 1.38325             | 5.00272               | 4./1498  |
| $5^{\circ}$  | 0.01  | .0909710              | .560234               | 1.54436               | 1.57100             | 2.96504               | 4.71415  |
|              | 0.02  | .0937723              | .563750               | 1.54735               | 1.57176             | 2.96828               | 4.71416  |
|              | 0.025 | .0958163              | .566372               | 1.54928               | 1.57264             | 2.97071               | 4.71415  |
|              | 0.03  | .0982529              | .569559               | 1.55131               | 1.57405             | 2.97368               | 4.71411  |
| $10^{\circ}$ | 0.005 | .0902539              | .559349               | 1.54353               | 1.57090             | 2.96423               | 4.71414  |
|              | 0.01  | .0909617              | .560225               | 1.54427               | 1.57109             | 2.96503               | 4.71414  |
|              | 0.015 | .0921296              | .561681               | 1.54524               | 1.57168             | 2.96637               | 4.71411  |
|              | 0.02  | .0937404              | .563711               | 1.54610               | 1.57302             | 2.96826               | 4.71401  |
| $15^{\circ}$ | 0.004 | .0901660              | .559242               | 1.54342               | 1.57088             | 2.96413               | 4.71414  |
|              | 0.006 | .0903523              | .559473               | 1.54362               | 1.57093             | 2.96434               | 4.71414  |
|              | 0.008 | .0906125              | .559796               | 1.54386               | 1.57104             | 2.96464               | 4.71413  |
|              | 0.01  | .0909462              | .560211               | 1.54412               | 1.57123             | 2.96502               | 4.71412  |
| $30^{\circ}$ | 0.004 | .0901523              | .559230               | 1.5433996             | 57090               | 2.96412               | 4.71413  |
|              | 0.006 | .0903217              | .559446               | 1.54351               | 1.57103             | 2.96432               | 4.71412  |
|              | 0.008 | .0905589              | .559748               | 1.54354               | 1.57132             | 2.96460               | 4.71409  |
|              | 0.01  | .0908640              | .560134               | 1.54340               | 1.57191             | 2.96496               | 4.71403  |
| $45^{\circ}$ | 0.004 | .0901304              | .559211               | 1.54335               | 1.57093             | 2.96410               | 4.71413  |
|              | 0.006 | .0902730              | .559404               | 1.54335               | 1.57115             | 2.96428               | 4.71411  |
|              | 0.008 | .0904734              | .559672               | 1.54311               | 1.57171             | 2.96453               | 4.71404  |
|              | 0.01  | .0907324              | .560013               | 1.54244               | 1.57279             | 2.96486               | 4.71391  |
| $60^{\circ}$ | 0.004 | .0901019              | .559187               | 1.54331               | 1.57095             | 2.96408               | 4.71413  |
|              | 0.006 | .0902092              | .559349               | 1.54318               | 1.57127             | 2.96423               | 4.71409  |
|              | 0.008 | .0903611              | .559573               | 1.54266               | 1.57208             | 2.96445               | 4.71399  |
|              | 0.01  | .0905592              | .559857               | 1.54149               | 1.57364             | 2.96473               | 4.71378  |
| $75^{\circ}$ | 0.004 | .0900686              | .559159               | 1.54326               | 1.57097             | 2.96405               | 4.71412  |
|              | 0.006 | .0901347              | .559285               | 1.54303               | 1.57136             | 2.96418               | 4.71408  |
|              | 0.008 | .0902294              | .559459               | 1.54229               | 1.57235             | 2.96435               | 4.71395  |
|              | 0.01  | .0903551              | .559677               | 1.54075               | 1.57424             | 2.96458               | 4.71368  |
| $90^{\circ}$ | 0.004 | .0900328              | .559129               | 1.54323               | 1.57098             | 2.96403               | 4.71412  |
|              | 0.006 | .0900543              | .559217               | 1.54293               | 1.57140             | 2.96412               | 4.71407  |
|              | 0.008 | .0900868              | .559338               | 1.54208               | 1.57245             | 2.96424               | 4.71394  |
|              | 0.01  | .0901331              | .559487               | 1.54036               | 1.57447             | 2.96441               | 4.71364  |

表四十一 旋轉梁在不同傾斜角與不同轉速下的振動頻率 $(r=1, \eta=40)$ 

| α            | k     | $K_1$    | $K_2$   | <i>K</i> <sub>3</sub> | $K_4(a)$ | $K_5$   | $K_{6}\left(a ight)$ |
|--------------|-------|----------|---------|-----------------------|----------|---------|----------------------|
| $0^{\circ}$  | 0     | .0877730 | .545362 | 1.50647               | 1.57086  | 2.89600 | 4.67451              |
|              | 0.01  | .0887554 | .546576 | 1.50765               | 1.57096  | 2.89713 | 4.67548              |
|              | 0.02  | .0916345 | .550201 | 1.51120               | 1.57127  | 2.90050 | 4.67838              |
|              | 0.03  | .0962265 | .556192 | 1.51709               | 1.57178  | 2.90612 | 4.68319              |
|              | 0.04  | .102280  | .564471 | 1.52529               | 1.57251  | 2.91396 | 4.68982              |
|              | 0.05  | .109529  | .574941 | 1.53572               | 1.57348  | 2.92402 | 4.69803              |
|              | 0.06  | .117725  | .587482 | 1.54828               | 1.57477  | 2.93628 | 4.70664              |
| $5^{\circ}$  | 0.01  | .0887522 | .546573 | 1.50764               | 1.57098  | 2.89712 | 4.67547              |
|              | 0.02  | .0916237 | .550188 | 1.51100               | 1.57147  | 2.90049 | 4.67826              |
|              | 0.025 | .0937162 | .552883 | 1.51341               | 1.57197  | 2.90302 | 4.68026              |
|              | 0.03  | .0962077 | .556158 | 1.51623               | 1.57269  | 2.90611 | 4.68262              |
| $10^{\circ}$ | 0.005 | .0880164 | .545663 | 1.50676               | 1.57089  | 2.89628 | 4.67475              |
|              | 0.01  | .0887426 | .546564 | 1.50759               | 1.57102  | 2.89712 | 4.67544              |
|              | 0.015 | .0899404 | .548061 | 1.50886               | 1.57136  | 2.89851 | 4.67652              |
|              | 0.02  | .0915913 | .550147 | 1.51041               | 1.57208  | 2.90047 | 4.67789              |
| $15^{\circ}$ | 0.004 | .0879261 | .545552 | 1.50665               | 1.57088  | 2.89618 | 4.67466              |
|              | 0.006 | .0881173 | .545790 | 1.50687               | 1.57091  | 2.89640 | 4.67484              |
|              | 0.008 | .0883844 | .546122 | <b>41.5</b> 0716      | 1.57098  | 2.89671 | 4.67509              |
|              | 0.01  | .0887268 | .546549 | 1.50752               | 1.57109  | 2.89711 | 4.67539              |
| $30^{\circ}$ | 0.004 | .0879121 | .545540 | 1.50663               | 1.57089  | 2.89617 | 4.67464              |
|              | 0.006 | .0880860 | .545762 | 1.50681               | 1.57096  | 2.89638 | 4.67480              |
|              | 0.008 | .0883295 | .546073 | 1.50699               | 1.57112  | 2.89667 | 4.67498              |
|              | 0.01  | .0886427 | .546470 | 1.50713               | 1.57143  | 2.89704 | 4.67515              |
| $45^{\circ}$ | 0.004 | .0878897 | .545521 | 1.50660               | 1.57090  | 2.89615 | 4.67462              |
|              | 0.006 | .0880360 | .545719 | 1.50671               | 1.57102  | 2.89634 | 4.67473              |
|              | 0.008 | .0882418 | .545994 | 1.50674               | 1.57131  | 2.89660 | 4.67481              |
|              | 0.01  | .0885079 | .546345 | 1.50660               | 1.57189  | 2.89694 | 4.67481              |
| $60^{\circ}$ | 0.004 | .0878604 | .545496 | 1.50657               | 1.57091  | 2.89613 | 4.67460              |
|              | 0.006 | .0879707 | .545662 | 1.50660               | 1.57108  | 2.89629 | 4.67465              |
|              | 0.008 | .0881268 | .545892 | 1.50647               | 1.57151  | 2.89652 | 4.67463              |
|              | 0.01  | .0883305 | .546184 | 1.50603               | 1.57236  | 2.89681 | 4.67444              |
| $75^{\circ}$ | 0.004 | .0878263 | .545467 | 1.50653               | 1.57092  | 2.89610 | 4.67457              |
|              | 0.006 | .0878942 | .545596 | 1.50649               | 1.57113  | 2.89623 | 4.67458              |
|              | 0.008 | .0879918 | .545775 | 1.50623               | 1.57165  | 2.89641 | 4.67446              |
|              | 0.01  | .0881214 | .545999 | 1.50554               | 1.57271  | 2.89665 | 4.67411              |
| $90^{\circ}$ | 0.004 | .0877895 | .545436 | 1.50650               | 1.57093  | 2.89608 | 4.67454              |
|              | 0.006 | .0878117 | .545526 | 1.50641               | 1.57115  | 2.89617 | 4.67451              |
|              | 0.008 | .0878456 | .545650 | 1.50606               | 1.57171  | 2.89630 | 4.67434              |
|              | 0.01  | .0878938 | .545804 | 1.50523               | 1.57284  | 2.89648 | 4.67389              |

表四十二 旋轉梁在不同傾斜角與不同轉速下的振動頻率 $(r=1, \eta=77)$ 

| α            | k     | <i>K</i> <sub>1</sub> | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$               | <i>K</i> <sub>5</sub> | <i>K</i> <sub>6</sub> |
|--------------|-------|-----------------------|-----------------------|-----------------------|---------------------|-----------------------|-----------------------|
| $0^{\circ}$  | 0     | .0456446              | .285383               | .796090               | 1.55157             | 1.57086( <i>a</i> )   | 2.54705               |
|              | 0.01  | .0475274              | .287806               | .798607               | 1.55415             | 1.57097(a)            | 2.54962               |
|              | 0.02  | .0527487              | .294954               | .806106               | 1.56182             | 1.57132( <i>a</i> )   | 2.55733               |
|              | 0.03  | .0603897              | .306488               | .818433               | 1.57127(a)          | 1.57514               | 2.57012               |
|              | 0.04  | .0695879              | .321922               | .835345               | 1.57226(a)          | 1.59254               | 2.58791               |
|              | 0.05  | .0797415              | .340707               | .856536               | 1.57316( <i>a</i> ) | 1.61497               | 2.61060               |
|              | 0.06  | .0904762              | .362297               | .881655               | 1.57424(a)          | 1.64193               | 2.63804               |
| $5^{\circ}$  | 0.01  | .0475221              | .287800               | .798593               | 1.55379             | 1.57135               | 2.54962               |
|              | 0.02  | .0527362              | .294925               | .805992               | 1.55723             | 1.57616               | 2.55735               |
|              | 0.025 | .0563121              | .300156               | .811477               | 1.55835             | 1.58123               | 2.56313               |
|              | 0.03  | .0603752              | .306428               | .818132               | 1.55934             | 1.58777               | 2.57019               |
| $10^{\circ}$ | 0.005 | .0461168              | .285985               | .796712               | 1.55212             | 1.57098               | 2.54769               |
|              | 0.01  | .0475062              | .287780               | .798548               | 1.55281             | 1.57240               | 2.54961               |
|              | 0.015 | .0497366              | .290742               | .801540               | 1.55205             | 1.57682               | 2.55284               |
|              | 0.02  | .0526986              | .294837               | .805649               | 1.55006             | 1.58410               | 2.55739               |
| $15^{\circ}$ | 0.004 | .0459424              | .285764               | .796483               | 1.55189             | 1.57097               | 2.54745               |
|              | 0.006 | .0463123              | .286238               | .796967               | 1.55207             | 1.57134               | 2.54796               |
|              | 0.008 | .0468261              | .286900               | .797634               | 1.55197             | 1.57225               | 2.54868               |
|              | 0.01  | .0474797              | .287748               | .798475               | 1.55139             | 1.57392               | 2.54960               |
| $30^{\circ}$ | 0.004 | .0459158              | .285739               | .796452-0             | 1.55165             | 1.57121               | 2.54743               |
|              | 0.006 | .0462548              | .286181               | .796881               | 1.55100             | 1.57246               | 2.54792               |
|              | 0.008 | .0467292              | .286795               | .797440               | 1.54916             | 1.57526               | 2.54861               |
|              | 0.01  | .0473383              | .287577               | .798100               | 1.54610             | 1.57975               | 2.54952               |
| $45^{\circ}$ | 0.004 | .0458733              | .285700               | .796405               | 1.55132             | 1.57153               | 2.54740               |
|              | 0.006 | .0461624              | .286091               | .796750               | 1.54966             | 1.57385               | 2.54784               |
|              | 0.008 | .0465726              | .286630               | .797151               | 1.54607             | 1.57863               | 2.54850               |
|              | 0.01  | .0471080              | .287309               | .797542               | 1.54082             | 1.58577               | 2.54939               |
| $60^{\circ}$ | 0.004 | .0458176              | .285650               | .796346               | 1.55098             | 1.57184               | 2.54735               |
|              | 0.006 | .0460404              | .285976               | .796592               | 1.54841             | 1.57513               | 2.54775               |
|              | 0.008 | .0463639              | .286418               | .796809               | 1.54338             | 1.58155               | 2.54835               |
|              | 0.01  | .0467976              | .286966               | .796890               | 1.53643             | 1.59090               | 2.54919               |
| $75^{\circ}$ | 0.004 | .0457522              | .285592               | .796281               | 1.55072             | 1.57207               | 2.54729               |
|              | 0.006 | .0458960              | .285842               | .796426               | 1.54749             | 1.57602               | 2.54762               |
|              | 0.008 | .0461138              | .286176               | .796464               | 1.54148             | 1.58356               | 2.54815               |
|              | 0.01  | .0464205              | .286578               | .796249               | 1.53332             | 1.59449               | 2.54891               |
| $90^{\circ}$ | 0.004 | .0456815              | .285530               | .796216               | 1.55058             | 1.57215               | 2.54723               |
|              | 0.006 | .0457381              | .285702               | .796271               | 1.54705             | 1.57636               | 2.54749               |
|              | 0.008 | .0458366              | .285923               | .796162               | 1.54056             | 1.58439               | 2.54791               |
|              | 0.01  | .0459954              | .286176               | .795716               | 1.53175             | 1.59611               | 2.54856               |

表四十三 旋轉梁在不同傾斜角與不同轉速下的振動頻率 $(r=1, \eta=78)$ 

| α            | k     | <i>K</i> <sub>1</sub> | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$               | <i>K</i> <sub>5</sub> | K <sub>6</sub> |
|--------------|-------|-----------------------|-----------------------|-----------------------|---------------------|-----------------------|----------------|
| $0^{\circ}$  | 0     | .0450599              | .281744               | .786013               | 1.53214             | 1.57086( <i>a</i> )   | 2.51558        |
|              | 0.01  | .0469663              | .284199               | .788565               | 1.53476             | 1.57096(a)            | 2.51820        |
|              | 0.02  | .0522436              | .291438               | .796166               | 1.54258             | 1.57127( <i>a</i> )   | 2.52602        |
|              | 0.03  | .0599473              | .303111               | .808656               | 1.55549             | 1.57182(a)            | 2.53901        |
|              | 0.04  | .0692007              | .318714               | .825783               | 1.57125(a)          | 1.57470               | 2.55707        |
|              | 0.05  | .0793981              | .337682               | .847230               | 1.57309( <i>a</i> ) | 1.59649               | 2.58010        |
|              | 0.06  | .0901664              | .359459               | .872635               | 1.57421 <i>(a)</i>  | 1.62377               | 2.60794        |
| $5^{\circ}$  | 0.01  | .0469609              | .284193               | .788550               | 1.53458             | 1.57116               | 2.51819        |
|              | 0.02  | .0522311              | .291409               | .796050               | 1.54038             | 1.57374               | 2.52604        |
|              | 0.025 | .0558388              | .296704               | .801610               | 1.54380             | 1.57659               | 2.53192        |
|              | 0.03  | .0599330              | .303050               | .808353               | 1.54733             | 1.58068               | 2.53909        |
| $10^{\circ}$ | 0.005 | .0455382              | .282354               | .786643               | 1.53274             | 1.57094               | 2.51623        |
|              | 0.01  | .0469449              | .284173               | .788504               | 1.53405             | 1.57176               | 2.51819        |
|              | 0.015 | .0492011              | .287173               | .791537               | 1.53504             | 1.57449               | 2.52147        |
|              | 0.02  | .0521936              | .291319               | .795702               | 1.53521             | 1.57969               | 2.52609        |
| $15^{\circ}$ | 0.004 | .0453615              | .282130               | .786411               | 1.53251             | 1.57093               | 2.51599        |
|              | 0.006 | .0457362              | .282610               | .786902               | 1.53285             | 1.57114               | 2.51651        |
|              | 0.008 | .0462565              | .283281               | .787578               | 1.53314             | 1.57168               | 2.51724        |
|              | 0.01  | .0469182              | .284140               | .788430               | 1.53323             | 1.57270               | 2.51818        |
| $30^{\circ}$ | 0.004 | .0453346              | .282105               | .786380               | 1.53237             | 1.57106               | 2.51597        |
|              | 0.006 | .0456780              | .282553               | .786814               | 1.53223             | 1.57181               | 2.51647        |
|              | 0.008 | .0461587              | .283175               | .787380               | 1.53140             | 1.57364               | 2.51717        |
|              | 0.01  | .0467756              | .283966               | .788046               | 1.52955             | 1.57694               | 2.51811        |
| $45^{\circ}$ | 0.004 | .0452916              | .282065               | .786331               | 1.53217             | 1.57125               | 2.51593        |
|              | 0.006 | .0455846              | .282462               | .786680               | 1.53139             | 1.57270               | 2.51639        |
|              | 0.008 | .0460005              | .283007               | .787084               | 1.52918             | 1.57613               | 2.51707        |
|              | 0.01  | .0465433              | .283694               | .787476               | 1.52523             | 1.58203               | 2.51798        |
| $60^{\circ}$ | 0.004 | .0452352              | .282014               | .786271               | 1.53196             | 1.57144               | 2.51589        |
|              | 0.006 | .0454612              | .282344               | .786519               | 1.53055             | 1.57358               | 2.51629        |
|              | 0.008 | .0457895              | .282791               | .786735               | 1.52706             | 1.57850               | 2.51691        |
|              | 0.01  | .0462300              | .283345               | .786810               | 1.52133             | 1.58670               | 2.51779        |
| $75^{\circ}$ | 0.004 | .0451690              | .281955               | .786205               | 1.53178             | 1.57158               | 2.51583        |
|              | 0.006 | .0453150              | .282209               | .786350               | 1.52988             | 1.57422               | 2.51617        |
|              | 0.008 | .0455366              | .282546               | .786383               | 1.52546             | 1.58023               | 2.51672        |
|              | 0.01  | .0458490              | .282951               | .786155               | 1.51844             | 1.59012               | 2.51752        |
| $90^{\circ}$ | 0.004 | .0450974              | .281892               | .786139               | 1.53167             | 1.57163               | 2.51577        |
|              | 0.006 | .0451551              | .282067               | .786193               | 1.52953             | 1.57448               | 2.51603        |
|              | 0.008 | .0452560              | .282290               | .786076               | 1.52463             | 1.58097               | 2.51648        |
|              | 0.01  | .0454190              | .282544               | .785612               | 1.51691             | 1.59171               | 2.51717        |

表四十四 旋轉梁在不同傾斜角與不同轉速下的振動頻率 $(r=1, \eta=79)$ 

| α            | k     | <i>K</i> <sub>1</sub> | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$               | <i>K</i> <sub>5</sub> | <i>K</i> <sub>6</sub> |
|--------------|-------|-----------------------|-----------------------|-----------------------|---------------------|-----------------------|-----------------------|
| 0°           | 0     | .0444900              | .278196               | .776186               | 1.51318             | 1.57086( <i>a</i> )   | 2.48487               |
|              | 0.01  | .0464199              | .280683               | .778773               | 1.51584             | 1.57096(a)            | 2.48752               |
|              | 0.02  | .0517527              | .288014               | .786476               | 1.52379             | 1.57126( <i>a</i> )   | 2.49547               |
|              | 0.03  | .0595184              | .299824               | .799129               | 1.53692             | 1.57177 <i>(a)</i>    | 2.50865               |
|              | 0.04  | .0688257              | .315595               | .816471               | 1.55502             | 1.57255( <i>a</i> )   | 2.52699               |
|              | 0.05  | .0790658              | .334745               | .838172               | 1.57256( <i>a</i> ) | 1.57894               | 2.55035               |
|              | 0.06  | .0898666              | .356704               | .863859               | 1.57415(a)          | 1.60610               | 2.57859               |
| $5^{\circ}$  | 0.01  | .0464145              | .280677               | .778757               | 1.51571             | 1.57111               | 2.48752               |
|              | 0.02  | .0517403              | .287984               | .786358               | 1.52233             | 1.57298               | 2.49549               |
|              | 0.025 | .0553795              | .293343               | .791992               | 1.52673             | 1.57495               | 2.50146               |
|              | 0.03  | .0595043              | .299763               | .798825               | 1.53171             | 1.57768               | 2.50875               |
| $10^{\circ}$ | 0.005 | .0449744              | .278814               | .776825               | 1.51381             | 1.57093               | 2.48553               |
|              | 0.01  | .0463983              | .280656               | .778711               | 1.51534             | 1.57155               | 2.48752               |
|              | 0.015 | .0486801              | .283695               | .781783               | 1.51706             | 1.57362               | 2.49085               |
|              | 0.02  | .0517030              | .287893               | .786005               | 1.51848             | 1.57763               | 2.49555               |
| $15^{\circ}$ | 0.004 | .0447954              | .278587               | .776589               | 1.51357             | 1.57091               | 2.48529               |
|              | 0.006 | .0451749              | .279074               | .777087               | 1.51397             | 1.57108               | 2.48581               |
|              | 0.008 | .0457017              | .279753               | <i></i>               | 1.51440             | 1.57149               | 2.48655               |
|              | 0.01  | .0463715              | .280623               | .778635               | 1.51475             | 1.57227               | 2.48751               |
| $30^{\circ}$ | 0.004 | .0447682              | .278562               | .77655796             | 1.51346             | 1.57102               | 2.48526               |
|              | 0.006 | .0451161              | .279015               | .776997               | 1.51351             | 1.57159               | 2.48577               |
|              | 0.008 | .0456029              | .279645               | .777569               | 1.51311             | 1.57301               | 2.48649               |
|              | 0.01  | .0462277              | .280447               | .778243               | 1.51193             | 1.57567               | 2.48744               |
| $45^{\circ}$ | 0.004 | .0447247              | .278522               | .776509               | 1.51331             | 1.57116               | 2.48523               |
|              | 0.006 | .0450216              | .278923               | .776861               | 1.51288             | 1.57228               | 2.48570               |
|              | 0.008 | .0454431              | .279475               | .777268               | 1.51138             | 1.57503               | 2.48639               |
|              | 0.01  | .0459935              | .280170               | .777660               | 1.50837             | 1.58004               | 2.48733               |
| $60^{\circ}$ | 0.004 | .0446676              | .278470               | .776447               | 1.51314             | 1.57130               | 2.48518               |
|              | 0.006 | .0448967              | .278804               | .776697               | 1.51222             | 1.57298               | 2.48560               |
|              | 0.008 | .0452299              | .279256               | .776911               | 1.50965             | 1.57703               | 2.48624               |
|              | 0.01  | .0456773              | .279817               | .776980               | 1.50496             | 1.58426               | 2.48715               |
| $75^{\circ}$ | 0.004 | .0446006              | .278410               | .776380               | 1.51300             | 1.57141               | 2.48512               |
|              | 0.006 | .0447488              | .278667               | .776525               | 1.51169             | 1.57350               | 2.48547               |
|              | 0.008 | .0449742              | .279007               | .776553               | 1.50828             | 1.57853               | 2.48604               |
|              | 0.01  | .0452925              | .279416               | .776311               | 1.50232             | 1.58745               | 2.48688               |
| $90^{\circ}$ | 0.004 | .0445280              | .278346               | .776314               | 1.51290             | 1.57145               | 2.48506               |
|              | 0.006 | .0445869              | .278522               | .776365               | 1.51137             | 1.57371               | 2.48533               |
|              | 0.008 | .0446902              | .278748               | .776240               | 1.50753             | 1.57920               | 2.48580               |
|              | 0.01  | .0448576              | .279003               | .775757               | 1.50088             | 1.58898               | 2.48653               |

表四十五 旋轉梁在不同傾斜角與不同轉速下的振動頻率 $(r=1, \eta=80)$ 

| α            | k     | <i>K</i> <sub>1</sub> | <i>K</i> <sub>2</sub> | <i>K</i> <sub>3</sub> | $K_4$                 | <i>K</i> <sub>5</sub> | <i>K</i> <sub>6</sub> |
|--------------|-------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| $0^{\circ}$  | 0     | .0439342              | .274736               | .766600               | 1.49468               | 1.57086( <i>a</i> )   | 2.45488               |
|              | 0.01  | .0458877              | .277256               | .769222               | 1.49738               | 1.57096( <i>a</i> )   | 2.45758               |
|              | 0.02  | .0512757              | .284677               | .777027               | 1.50544               | 1.57125 <i>(a)</i>    | 2.46564               |
|              | 0.03  | 0591023               | 296624                | 789842                | 1.51876               | 1.57175(a)            | 2.47902               |
|              | 0.04  | 0684624               | 312561                | 807398                | 1 53718               | 1.57247(a)            | 2.17262               |
|              | 0.01  | 0787430               | 3312301               | 820353                | 1.55710               | 1.57356(a)            | 2.12703               |
|              | 0.05  | .0787439              | 254021                | .029555               | 1.50052<br>1.57395(a) | 1 59002               | 2.52152               |
|              | 0.00  | .0893702              | .554051               | .833520               | 1.57575 (u)           | 1.38903               | 2.34990               |
| 5°           | 0.01  | .0458823              | .277249               | .769206               | 1.49728               | 1.57108               | 2.45758               |
|              | 0.02  | .0512633              | .284647               | .776907               | 1.50433               | 1.57264               | 2.46567               |
|              | 0.025 | .0549336              | .290070               | .782615               | 1.50923               | 1.57419               | 2.47173               |
|              | 0.03  | .0590884              | .296564               | ./8953/               | 1.51496               | 1.57627               | 2.47913               |
| $10^{\circ}$ | 0.005 | .0444248              | .275362               | .767247               | 1.49532               | 1.57092               | 2.45555               |
|              | 0.01  | .0458660              | .277228               | .769158               | 1.49698               | 1.57146               | 2.45757               |
|              | 0.015 | .0481732              | .280306               | .772271               | 1.49909               | 1.57319               | 2.46096               |
|              | 0.02  | .0512261              | .284555               | .776549               | 1.50126               | 1.57654               | 2.46574               |
| $15^{\circ}$ | 0.004 | .0442436              | .275132               | .767009               | 1.49508               | 1.57091               | 2.45531               |
|              | 0.006 | .0446278              | .275626               | .767513               | 1.49552               | 1.57105               | 2.45584               |
|              | 0.008 | .0451611              | .276314               | .768206               | 1.49602               | 1.57140               | 2.45659               |
|              | 0.01  | .0458389              | .277194               | .769081               | 1.49650               | 1.57206               | 2.45756               |
| $30^{\circ}$ | 0.004 | .0442160              | .275107               | .766977               | 1.49499               | 1.57100               | 2.45529               |
|              | 0.006 | .0445684              | .275566               | .767421               | 1.49514               | 1.57148               | 2.45580               |
|              | 0.008 | .0450614              | .276204               | .768000               | 1.49496               | 1.57269               | 2.45653               |
|              | 0.01  | .0456941              | .277015               | .768681               | 1.49418               | 1.57499               | 2.45751               |
| $45^{\circ}$ | 0.004 | .0441720              | .275066               | .766927               | 1.49486               | 1.57112               | 2.45525               |
|              | 0.006 | .0444728              | .275472               | .767283               | 1.49461               | 1.57207               | 2.45573               |
|              | 0.008 | .0449000              | .276031               | .767692               | 1.49351               | 1.57445               | 2.45643               |
|              | 0.01  | .0454579              | .276734               | .768085               | 1.49113               | 1.57889               | 2.45741               |
| $60^{\circ}$ | 0.004 | .0441142              | .275014               | .766865               | 1.49472               | 1.57124               | 2.45520               |
|              | 0.006 | .0443466              | .275351               | .767116               | 1.49406               | 1.57267               | 2.45563               |
|              | 0.008 | .0446846              | .275809               | .767329               | 1.49203               | 1.57622               | 2.45629               |
|              | 0.01  | .0451389              | .276376               | .767391               | 1.48810               | 1.58277               | 2.45724               |
| $75^{\circ}$ | 0.004 | .0440464              | .274953               | .766797               | 1.49459               | 1.57133               | 2.45514               |
|              | 0.006 | .0441969              | .275213               | .766941               | 1.49359               | 1.57312               | 2.45550               |
|              | 0.008 | .0444261              | .275557               | .766963               | 1.49082               | 1.57757               | 2.45609               |
|              | 0.01  | .0447503              | .275970               | .766707               | 1.48569               | 1.58578               | 2.45698               |
| $90^{\circ}$ | 0.004 | .0439729              | .274888               | .766729               | 1.49450               | 1.57136               | 2.45508               |
|              | 0.006 | .0440330              | .275066               | .766778               | 1.49330               | 1.57331               | 2.45536               |
|              | 0.008 | .0441387              | .275294               | .766645               | 1.49013               | 1.57818               | 2.45585               |
|              | 0.01  | .0443105              | .275551               | .766141               | 1.48431               | 1.58725               | 2.45663               |






圖一 無傾斜角的旋轉梁結構



圖二 具傾斜角的旋轉梁結構



圖三 旋轉傾斜梁的上視圖



圖四 旋轉傾斜梁的側視圖



圖五 元素座標及總體座標關係圖



圖六 具傾斜角的旋轉梁結構( $\beta=0^\circ$ )





圖七 梁的變形圖



圖八 傾斜旋轉梁的(*a*)穩態變形(*b*)軸向位移(*c*)側向位移( $\eta = 80$ , *r*=1,  $\alpha = 5^{\circ}$ )



圖九 傾斜旋轉梁的(*a*)穩態變形(*b*)軸向位移(*c*)側向位移( $\eta = 80$ , *r*=1,  $\alpha = 30^{\circ}$ )



圖十 傾斜旋轉梁的(a)穩態變形(b)軸向位移(c)側向位移( $\eta = 80$ , r = 1,  $\alpha = 90^{\circ}$ )



圖十一 傾斜旋轉梁的(*a*)穩態變形(*b*)軸向位移(*c*)側向位移( $\eta$ =100, *r*=1,  $\alpha$ =5°)



圖十二 傾斜旋轉梁的(a) 穩態變形(b) 軸向位移(c) 側向位移( $\eta = 100$ , r=1,  $\alpha = 30^{\circ}$ )



圖十三 傾斜旋轉梁的(a)穩態變形(b)軸向位移(c)側向位移( $\eta$ =100, r=1,  $\alpha$ =90°)



圖十四 傾斜旋轉梁的(*a*)穩態變形(*b*)軸向位移(*c*)側向位移( $\eta$ =1000, r=1,  $\alpha = 5^{\circ}$ )



圖十五 傾斜旋轉梁的(a)穩態變形(b)軸向位移(c)側向位移( $\eta$ =1000, r=1,  $\alpha$ =30°)



圖十六 傾斜旋轉梁的(*a*)穩態變形(*b*)軸向位移(*c*)側向位移( $\eta$ =1000, r=1,  $\alpha = 90^{\circ}$ )



圖十七 不同轉速下的第一至第六振動模態( $\alpha = 0^\circ$ , r = 1,  $\eta = 50$ )



圖十八 不同轉速下的第一至第六振動模態( $\alpha = 5^\circ$ , r = 1,  $\eta = 50$ )



圖十九 不同轉速下的第一至第六振動模態( $\alpha = 30^\circ$ , r = 1,  $\eta = 50$ )



圖二十 不同轉速下的第一至第六振動模態( $\alpha = 90^\circ$ , r = 1,  $\eta = 50$ )



圖二十一 不同轉速下的第一至第六振動模態( $\alpha = 0^\circ$ , r = 1,  $\eta = 100$ )



圖二十二 不同轉速下的第一至第六振動模態( $\alpha = 5^\circ$ , r = 1,  $\eta = 100$ )



圖二十三 不同轉速下的第一至第六振動模態( $\alpha = 30^\circ$ , r = 1,  $\eta = 100$ )



圖二十四 不同轉速下的第一至第六振動模態( $\alpha = 90^\circ$ , r = 1,  $\eta = 100$ )



圖二十五 不同轉速下的第一至第六振動模態( $\alpha = 0^\circ$ , r = 1,  $\eta = 1000$ )



圖二十六 不同轉速下的第一至第六振動模態( $\alpha = 5^\circ$ , r = 1,  $\eta = 1000$ )



圖二十七 不同轉速下的第一至第六振動模態( $\alpha = 30^\circ$ , r = 1,  $\eta = 1000$ )



圖二十八 不同轉速下的第一至第六振動模態( $\alpha = 90^\circ$ , r = 1,  $\eta = 1000$ )



圖二十九 無因次振動頻率-無因次轉速曲線 $(r=1, \alpha=0^\circ)$ 



圖三十 不同轉速下的第一至第六振動模態( $\alpha = 0^\circ$ , r = 1,  $\eta = 38$ )



圖三十一 不同轉速下的第一至第六振動模態( $\alpha = 5^\circ$ , r = 1,  $\eta = 38$ )



圖三十二 不同轉速下的第一至第六振動模態( $\alpha = 30^\circ$ , r = 1,  $\eta = 38$ )



圖三十三 不同轉速下的第一至第六振動模態( $\alpha = 90^\circ$ , r = 1,  $\eta = 38$ )



圖三十四 不同轉速下的第一至第六振動模態( $\alpha = 0^\circ$ , r = 1,  $\eta = 39$ )



圖三十五 不同轉速下的第一至第六振動模態( $\alpha = 5^\circ$ , r = 1,  $\eta = 39$ )



圖三十六 不同轉速下的第一至第六振動模態( $\alpha = 30^\circ$ , r = 1,  $\eta = 39$ )



圖三十七 不同轉速下的第一至第六振動模態( $\alpha = 90^\circ$ , r = 1,  $\eta = 39$ )



圖三十八 不同轉速下的第一至第六振動模態( $\alpha = 0^\circ$ , r = 1,  $\eta = 40$ )


圖三十九 不同轉速下的第一至第六振動模態( $\alpha = 5^\circ$ , r = 1,  $\eta = 40$ )



圖四十 不同轉速下的第一至第六振動模態( $\alpha = 30^\circ$ , r = 1,  $\eta = 40$ )



圖四十一 不同轉速下的第一至第六振動模態( $\alpha = 90^\circ$ , r = 1,  $\eta = 40$ )



圖四十二 不同轉速下的第一至第六振動模態( $\alpha = 0^\circ$ , r = 1,  $\eta = 77$ )



圖四十三 不同轉速下的第一至第六振動模態( $\alpha = 5^\circ$ , r = 1,  $\eta = 77$ )



圖四十四 不同轉速下的第一至第六振動模態( $\alpha = 30^\circ$ , r = 1,  $\eta = 77$ )



圖四十五 不同轉速下的第一至第六振動模態( $\alpha = 90^\circ$ , r = 1,  $\eta = 77$ )

## 附錄A $\mathbf{f}_{a}^{D\theta} \mathcal{A} \mathbf{f}_{b}^{D\theta}$ 的推導

將(2.6.7)及(2.6.10)式代入(2.6.16)式可得

$$f_{12}^{\theta} = -f_{11}^{\theta} = f_{12} + \frac{v_1'}{L}m_1 + \frac{v_2'}{L}m_2 = f_{12} + \bar{f}_{12}$$
(A1)

$$f_{21}^{\theta} = -f_{21} + (m_1 v_1' + m_2 v_2')G_{b1} / L = f_{21} + \overline{f_{12}}G_{b1}$$
(A2)

$$f_{22}^{\theta} = -f_{22} + (m_1 v_1' + m_2 v_2')G_{b3} / L = f_{22} + \overline{f_{12}}G_{b3}$$
(A3)

$$m_1^{\theta} = (1 + \varepsilon_0)m_1 + (m_1v_1' + m_2v_2')G_{b2} / L = (1 + \varepsilon_0)m_1 + \overline{f_{12}}G_{b2}$$
(A4)

$$m_2^{\theta} = (1 + \varepsilon_0)m_2 + (m_1v_1' + m_2v_2')G_{b4} / L = (1 + \varepsilon_0)m_2 + \overline{f_{12}}G_{b4}$$
(A5)

由(2.4.10)、(2.6.28)及(2.6.29)式可得

$$f_{12} = EA\varepsilon_0 - \frac{EI(1-\varepsilon_0)}{L^2} (4v_1'^2 + 4v_1'v_2' + 4v_2'^2)$$
(A6)

$$m_1 \approx (1 - \varepsilon_0)^2 \frac{EI}{L} (4v'_1 + 2v'_2)$$
 (A7)

$$m_2 \approx (1 - \varepsilon_0)^2 \frac{EI}{L} (2v_1' + 4v_2')^{96}$$
 (A8)

將(A6) - (A8)式代入(A1)式,並保留到三次項可得

$$f_{12}^{\theta} = EA\varepsilon_0 - \frac{EI}{L}\varepsilon_0 \int v_{,xx}^2 dx$$
(A9)

由(A9)及(2.6.20)式可得

$$\mathbf{f}_{a}^{D\theta} = EA\varepsilon_{0}\mathbf{G}_{a} - \frac{EI}{L}\varepsilon_{0}\int v_{,xx}^{2}dx\mathbf{G}_{a}$$
(A10)

由(A2) - (A5)式及(2.6.24) - (2.6.27)、(2.6.29)式,保留部份的三次項,可得  $\mathbf{f}_{b}^{D\theta} =$ 

$$(\mathbf{T}_{\theta b}^{1} + \mathbf{T}_{\theta b}^{2})[EA\varepsilon_{0}\int\mathbf{N}_{b}^{\prime}v_{,x}dx + EI(1-\varepsilon_{0})^{2}\int\mathbf{N}_{b}^{\prime\prime}v_{,xx}dx - EI(1-\varepsilon_{0})\int v_{,xx}^{2}dx\mathbf{G}_{b}]$$
  

$$\approx \mathbf{T}_{\theta b}^{1}{}^{t}EI(1-\varepsilon_{0})^{2}\int\mathbf{N}_{b}^{\prime\prime}v_{,xx}dx + (m_{1}v_{1}^{\prime} + m_{2}v_{2}^{\prime})\mathbf{G}_{b} + EA\varepsilon_{0}\int\mathbf{N}_{b}^{\prime}v_{,x}dx$$
  

$$-EI(1-\varepsilon_{0})\int v_{,xx}^{2}dx\mathbf{G}_{b} \approx \mathbf{T}_{\theta b}^{1}{}^{t}EI(1-\varepsilon_{0})^{2}\int\mathbf{N}_{b}^{\prime\prime}v_{,xx}dx + \mathbf{f}_{12}^{2}\int\mathbf{N}_{b}^{\prime}v_{,x}dx \quad (A11)$$

## 附錄 B 旋轉傾斜梁的線性穩態解

若不考慮旋轉傾斜梁穩態變形對慣性力及梁之側向剛度的影響,則可用 d'Alembert 原理及剛體動力學求得慣性分布力,再用材料力學可以求得旋轉傾斜梁的線性穩態解。

令圖 B1 中r為轉軸A到旋轉梁上任一點P的位置向量, q<sub>1</sub>及q<sub>2</sub>為作用 在P點X<sub>1</sub>及X<sub>2</sub>方向的慣性分布力,則作用在P點之一小段梁dx的慣性分布 力可以表示成

$$\{q_{x}, q_{y}\}dx = \mathbf{\Omega} \times (\mathbf{\Omega} \times \mathbf{r})\rho A dx$$
(B.1)  

$$\mathbf{\Omega} = \{0, 0, \Omega\}$$
(B.2)  

$$\mathbf{r} = \{R\cos\alpha + x, -R\sin\alpha, 0\}$$
(B.3)

其中ho、A為梁的密度及斷面積, $\Omega$ 為轉速。

將(B.2)、(B.3)式代入(B.1)式整理可得

$$q_x = \frac{k^2 EA}{L_T^2} (R \cos \alpha + x) \tag{B.4}$$

$$q_y = -\frac{k^2 E A}{L_T^2} R \sin \alpha \tag{B.5}$$

$$k^2 = \frac{\rho \Omega^2 L_T^2}{E} \tag{3.3}$$

其中k為無因次化轉速。由(B.4)及(B.5)式可知旋轉傾斜梁相當於受到如圖 B2所示的分布力。





由(B.5)式及圖 B2(a)可得旋轉傾斜梁在距離固定端x處的膜應變 (membrane strain) $\varepsilon_0(x)$ 可表示成

$$\varepsilon_{0} = \frac{F_{x}}{AE} = \frac{k^{2}}{L_{T}^{2}} [R(L_{T} - x)\cos\alpha + \frac{1}{2}(L_{T}^{2} - x^{2})]$$

$$(B.6)$$

$$(B.6)$$

$$(B.6)$$

$$\varepsilon_{0\max} = k^2 (r\cos\alpha + \frac{1}{2}) \tag{B.7}$$

$$r = \frac{R}{L_T} \tag{3.5}$$

其中r為無因次轉軸半徑。

由(B.5)式及圖 B2(b)可得旋轉傾斜梁在自由端的端點位移 $\delta_B$ 為[18]

$$\frac{\delta_B}{L_T} = \frac{q_y L_T^4}{8EIL_T} = \frac{\eta^2 k^2 r \sin \alpha}{8}$$
(B.8)

$$\eta = \sqrt{\frac{AL_T^2}{I}} \tag{3.4}$$

其中E為楊氏係數,I為梁斷面的二次矩, η為細長比,r為無因次轉軸半徑。

若梁的斷面為矩形,厚度為*t*,寬度為*b*,則
$$I = \frac{1}{12}bt^3 \cdot A = bt$$
、  
 $t = \frac{2\sqrt{3}}{\eta}L_T$ ,由(B.5)式可得梁之任一斷面的最大撓曲應變(flexural strain)為

[18]

$$\varepsilon_{b} = \frac{M}{EI} \frac{t}{2} = \frac{k^{2} E A (L_{T} - x)^{2}}{2 E I L_{T}^{2}} \frac{t}{2} R \sin \alpha = \frac{\sqrt{3} \eta k^{2} (L_{T} - x)^{2} r \sin \alpha}{2 L_{T}^{2}}$$
(B.9)

由(B.9)式可知當x = 0時, $\varepsilon_b$ 有最大值,且可表示成

$$\varepsilon_{b\max} = \frac{\sqrt{3}\eta k^2 r \sin\alpha}{2} \tag{B.10}$$