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ABSTRACT

Arrays with sparse and random microphone deployment are known to
be capable of delivering high quality far-field images without grating lobes.
Numerical simulations are undertaken in this thesis to optimize the
microphone deployment. Global optimization techniques including the
Monte Carlo (MC) algorithm, the Simulated Annealing (SA) algorithm and
the Intra-Block Monte Carlo (IBMC) algorithms are exploited to find the
optimal microphone deployment efficiently. As predicted by the
conventional wisdom, the results reveal that randomized deployment is
required to avoid grating lobes. The combined use of the SA and the IBMC
algorithms enables efficient search for satisfactory deployment with excellent
beam pattern and relatively uniform distribution of microphones. In
Direction of arrival (DOA) estimation, the planar wave sources are assumed
to be spherical wave sources in this thesis. Far-field acoustic imaging
algorithms including the delay and sum (DAS) algorithm, the time reversal
(TR) algorithm, the single input multiple output equivalent source inverse
filtering (SIMO-ESIF) algorithm, the Minimum Variance Distortionless
Response (MVDR) algorithm and the Multiple Signal Classification (MUSIC)
algorithm are employed to estimate DOA. Results show that the MUSIC
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algorithm can attain the highest resolution of localizing sound sources

positions.
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Introduction

Array technology has been used in many diverse areas including radar [1], sonar
[2], radio astronomy [3], tele-communications [4], and so forth. Its application
encompasses purposes including signal enhancement, spatial filtering, Direction of
Arrival (DOA) estimation, etc. Early development of arrays or beamformers was
primarily based on the far-field assumption that the source is far away and the waves
become planar at the array position. Far-field arrays are particularly useful for long
distance and large scale sources such as wind tunnels [5], trains and aircrafts. In
array implementation, transducer deployment has been one of the key issues. It is
well known that, for uniform linear arrays (ULA) and uniform rectangular arrays
(URA) [6], array deployment must comply with the A/2-rule to avoid the spatial
aliasing and the grating lobe problems [7]. Consequently, a large number of
microphones are required to cover the source area, which can render the array
configuration impractical for sources at high frequencies. This prompts the
development of non-uniform arrays that are capable of achieving high resolution and
aliasing-free imaging with sparse sensors [8]. Knowing the fact that non-uniform
spacing can be beneficial to far-field array performance, however, a question arises
naturally. What is the optimal deployment of far-field random arrays? To explore
this conjecture, numerical simulation is undertaken in this thesis with the aid of
optimization techniques.

Several global optimization techniques are employed to deploy microphones for
planar arrays used in far-field imaging. Monte Carlo (MC) simulation [9-13] is
based on straightforward random search. Despite its simplicity, the MC method can
be very time consuming. A more efficient technique, the simulated annealing (SA)
algorithm [8, 14-16] is also used in the simulation. The SA algorithm relies on a

search principle resembling the annealing process in the metallurgy. The search
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process follows an annealing schedule dictated by a temperature-dependent
probability. ~ The probability of accepting “worse” solutions in the initial
high-temperature stage lends the SA method an effective approach for problems with
many local minima [15]. Several researchers have applied the SA algorithm to
optimize far-field arrays [17, 18]. In this these, modifications are made to enhance
the search for optimal deployment. The Intra-Block Monte Carlo (IBMC) method
conducts the random search only in the pre-partitioned local regions. This approach
enhances search efficiency and often results in relatively uniform sensor deployment.
A hybrid approach combining the SA and the IBMC methods is also presented to
improve the search performance. The simulation results obtained using the MC, SA
and SA-IBMC approaches, with and without IB constraint, are compared in terms of
number of iterations and the maximum cost function values in Table 1.

In DOA estimation, the random array optimized by SA-IBMC method is used.
There are several far-field acoustic imaging algorithms have been proposed in the past.
For low resolution algorithms, the delay and sum (DAS) beamformer applies time
shifts to the array signals to compensate for the propagation delays in the arrival of the
source signal at each microphone [19-20]. The single input multiple output
equivalent source inverse filtering (SIMO-ESIF) method is a technique based on
designing inverse filters to minimize the error between the estimate sources and the
original sources [21]. For high resolution algorithms, the Minimum Variance
Distortionless Response (MVDR) algorithm adaptively finds weights to improve
source resolution that minimizes the output noise variance due to signals that arrive
from directions other than hypothesized source direction [19, 22-24]. The idea of
Multiple Signal Classification (MUSIC) algorithm is that the eigenvalues and
eigenvectors of a signal covariance matrix are used to estimate the DOA of multiple

signals received by a sensor array [19, 25, 26]. In addition to planar wave sources,
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spherical wave sources have been assumed for source resolution [20, 26-27]. The
simulated and experimental results of these algorithms are examined in resolution and

summarized in a compared table.



1. Beam pattern and cost function
For a far-field array, the beam pattern can be defined in the wave number domain

[20]

p=L 3 ek (1)
M b

m=1

where k=w/c is the wave number, @ is angular frequency, ¢ is the speed of
sound, and r, is the position vector of the mth microphone, k =—kx is the wave
number vector of a plane wave incident from the direction represented by the unit
vector k and M is number of microphone, as shown in Fig. 1.

In optimizing far-field performance, the aim is to minimize the maximum
side-lobe level (MSL) of the beam pattern [20]. First, a circle with radius 7, 1is
drawn on the k.-k, plane to define the scope of the main-lobe, which is a judicious
choice based on the beam pattern observations. The exterior of this circle is

considered the side-lobe region. The cost function for far-field arrays is defined as

Q=—, 2

hz|§z

where m and § denote the maxima of the main-lobe and the side-lobes,
respectively. Because m = 1, the cost function amounts to minimize the MSL and

maximizing Q.



2. Optimization algorithms
In this section, global optimization methods for microphone deployment are
presented.
2.1 Intra-Block Monte Carlo (IBMC) simulation
The basic MC algorithm is based on straightforward random search. It often
tends to be used when it is unfeasible or impossible to compute an exact result with

a deterministic algorithm [9]. For M microphones to be allocated to (m+1)x(n+1)
rectangular grid points, the number of possible combinations is C{/"""*""*" which is

known to be an NP-complete problem [28]. Due to the blind search nature, the MC
algorithm can be very inefficient and result in non-uniform distribution of
microphones that concentrate at certain areas. To address these problems, a
modified method IBMC is proposed.

By “Intra-Block”, we mean the localized region designated to each microphone
on the surface, as shown in Fig. 2 (a). The MC search is only conducted within each
block with random positions generated inside this designated region. The M
microphone elements will be designated to M localized regions. Hence, each region
necessarily contains one and only one microphone. The flowchart of IBMC is
shown in Fig. 3. Initially, mxn divisions of a rectangular grid are set up on the
microphone surface.  Next, M localized search regions are designated to

microphones, as shown in Fig. 2 (a). Each localized region in Fig. 2 (b) has the

dimensions d, =d, =d, whereas the inter-element spacing of the grid points is

chosen to be d, =4d/m and d, =5d/n, respectively. The localized regions are

centered at the microphone positions of the uniform rectangular array (URA) that is
selected to be the initial configuration in the optimization. The associated data

including the microphone positions x,, the beam pattern b,, and the cost function
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O, are calculated. Next, each of the M microphone positions x is randomly

assigned to one of the search points on the localized region. The new beam pattern b

and the cost function Q are calculated for the assigned microphone positions x.

The optimal solutions x b, and Q. are then replaced by the new solutions

opt ? opt

x, b and QO if O>Q,_,; otherwise the solutions are discarded. The simulation is

ot 2
continued until the number of iterations / exceed the preset value ligmc.

The IBMC algorithm is more efficient than the MC algorithm in that the search
area for each microphone is far smaller. In addition, the IBMC algorithm generally

results in microphone positions that are more uniformly distributed than those of the

MC algorithm.

2.2 Simulated Annealing (SA) technique

The MC algorithm can be very time-consuming and result in deployment that is
far from optimal. Instead of blind search like the MC method, another efficient SA
algorithm is used in this study. SA'is a generic probabilistic meta-algorithm for the
global optimization problem, namely locating a good approximation to the global
optimum of a given function in a large search space [14-18]. SA is well suited for
solving problems with many local optima. Each point in the search space is
analogous to the thermal state of the annealing process in metallurgy. At high
temperatures, atoms with high internal energy are free to move to the other positions.
As temperature drops, the internal energy is decreased to a lower state to gradually
form a crystalline structure. The objective function Q to be maximized is likened
to the internal energy in that state. One important feature of the SA approach is that
it allows the search to move to a new state that is “worse” than the present one in the
initial high-temperature stage. It is this mechanism that prevents the search from

6



being trapped in a local maximum. The probability of accepting bad solutions
decreases as temperature is decreased according to the Boltzmann distribution and the
algorithm finally converges to the optimum solution.

Figure 4 illustrates the flowchart of SA. For the problem of maximizing the
array cost function, the array is initially set to be the URA with microphone positions
x;. The corresponding beam pattern b; and cost function Q, are calculated. The
microphone surface is partitioned into mxn divisions in a rectangular grid. The
localized regions and the associated grid points are defined in the same way as the
IBMC. Accordingly, each microphone can be assigned to any position within the

localized region in the simulation. The initial temperature 7, the final temperature

T,, and the annealing factor a are selected accordingly. A typical value of a is

in the range of 0.8 and 0.99 [16]. Initially, set x , =x;, b, =b, and O, =0,.

opt

Next, M microphone positions x are tentatively assigned. Each microphone is
randomly assigned to one of the grid points with respect to the localized region. The
beam pattern b and the cost function @ are evaluated for a new microphone
positions x. Calculate the difference between the present and the optimal cost

function,
AQ=0-0,,. (3)

If 7>T, and AQ>0, replace the optimized solutions x b, and O, with

opt > Popt
the new solutions x, b and Q. Otherwise, if AQ<0, evaluate the following
probability function:

P(AQ,T)=¢"9'". 4)
The above probability will be compared with a random number 0<y <1 generated

subject to the uniform distribution. A tentative solution is accepted when the



probability function P is greater than the random number y ; otherwise, the solution is

rejected. Namely,

{P(AQ, T) >y, accepted

P(AQ,T) <y, rejected (5

Note that the larger the cost function difference AQ or the higher the temperature 7,
the higher is the probability to accept a worse solution.

As the search proceeds, the temperature is decreased according to an exponential
annealing schedule that begins at some initial temperature 7, and decreases the

temperature in steps
];Hl =ax ];c ’ (6)

where 0<a<1 is the annealing coefficient. The annealing process will be
terminated if the temperature is lower than a preset final temperature 7. As the
annealing process proceeds and 7" decreases, the probability of accepting a bad move

becomes increasingly small until it finally settles to a stable solution.

2.3 Numerical simulations for optimization algorithms

Simulations of array optimization with and without the Intra-Block (IB)
constraint are carried out in this section. The MC and SA algorithms are exploited to
optimize microphone deployment with no IB constraint. On the other hand, the SA,
IBMC and a combined SA-IBMC algorithm are employed to optimize microphone
deployment with the IB constraint. Both the URA and random arrays are used as the
initial settings for simulations. The radius of main-lobe region is chosen to be 2

m”-1.

2.3.1 Optimizing array deployment without IB constraint
The MC and SA algorithm are exploited to optimize the microphone deployment.
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Initially, mxn divisions (m = 24 and n = 30) of a square grid are set up on the
microphone surface, as shown in Fig. 5 (a). Each side of the square grid measures
0.1m. The source frequency f = 1.7 kHz and speed of sound ¢ =340m/s. The
wave number k=27f/c=314 m'. In addition, a URA of 5x6 (M = 30)
deployment with inter-element spacing d = 0.6m is used as a benchmark in the
following simulations, as shown in Fig. 5 (a). Its beam pattern calculated by Eq. (1)
is shown in Fig. 5 (b). As expected, the grating lobes are clearly visible because the
microphone spacing violates the 4/2-rule (d =3\ at f=1.7 kHz). The cost function
calculated by Eq. (2) is only 1.0261 because of the grating lobes. This prompts the
use of random deployment of microphones as follows.

In the MC simulation, the 30 microphones can freely occupy any 30 positions of
the 25x31 grid points on array surface. Exhaustive search would require
16* x 28" x49'? combinations for a 30-element array, while only 10’ iterations are
carried out using this MC search. The learning curve of the MC search with random
arrays setting is shown in Fig. 6 (a). The search attains the optimal cost function
2.6532 at the 27596™ iteration. The corresponding microphone positions and beam
pattern are shown in Figs. 6 (b) and (c), respectively.

Beside the extremely time-consuming MC search, the SA approach is employed
next. The annealing parameters of the SA for array deployment are chosen to be 7; =
10 deg K, Ty = 10® deg K and a=0.95 [14, 16]. The learning curve of the SA
search with initial random arrays setting (405 iterations) is shown in the left portion
(denoted as 1SA) of Fig. 7 (a). The curve fluctuates initially and then converges to
a constant value 2.5767 between the 351% and the 405" iteration. The optimal
microphone deployment and beam pattern are shown in Figs. 7 (b) and (c). In
addition to optimizing the microphone positions, optimizing the microphone weights

can further improve the value of the cost function.
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On the basis of the configuration found previously by the SA, we continue to
optimize the weights of microphones again using the SA algorithm. The number of
iterations is increased to 1000. Starting from unity weights, the microphone weights
are adjusted in each iteration with a random perturbation within the range of -0.1 to
0.1. The learning curve is shown in the right portion (denoted as 2"'SA) of Fig. 7 (a).
The cost function is further increased to 2.7561 at the 1283™ iteration. The resulting
beam pattern is shown in Fig. 7 (d), where a unique main-lobe is clearly visible.

Instead of the initial random arrays setting, the simulations using the MC and SA
algorithms are also ran with initial URA setting. To save space, the results are only

listed in Table 1.

2.3.2 Optimizing array deployment with IB constraint

In this section, the SA, IBMC and a combined SA-IBMC algorithm are exploited
to optimize microphone deployment with the IB constraint. The MC search with IB
constraint is particularly named IBMC in this thesis. In order to compare the
efficiency of IBMC with MC, the preset run iterations are chosen to be 10, as the
same number of MC simulation. The learning curve of the IBMC search with
random arrays setting is shown in Fig. 8 (a). The search attains the optimal cost
function 2.5638 at the 7662" iteration. The corresponding microphone positions and
beam pattern are shown in Figs. 8 (b) and (c), respectively.

Apart from the IBMC search, both microphone positions and weights are to be
optimized using the SA algorithm. Specifically, the combined SA-IBMC method
proceeds with three stages—the 1%'SA stage, the IBMC stage, and the 2"SA stage.
The parameters of the two SA stages are identical to those in Section 5.1. The
learning curve of the 1¥'SA stage (405 iterations) is shown in the left portion of Fig. 9

(a). The curve fluctuates initially and then converges to a constant value 2.5328
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between the 208" and the 405" iteration. The resulting microphone deployment and
beam pattern are shown in Figs. 9 (b) and (c). Being able to avoid local minima by
accepting “bad” solutions in the initial SA search can be a benefit and shortcoming as
well. It happens more often than never that the SA algorithm can miss the optimal
solution in the initial stage and converge prematurely to a suboptimal one. A hybrid
SA-IBMC approach is used in an attempt to address this problem.

The previous deployment obtained by the SA search is used as the input to the
IBMC simulation. The microphone position can be randomly chosen from the nine
grid points in the localized region. Each region necessarily contains one and only
one microphone. Exhaustive search would require prohibitively 9*° combinations
for a 30-element array, while only 100 iterations are required in the IBMC search.
The learning curve of the IBMC (iteration 406-505) is shown in Fig. 9 (a). By the
IBMC search, the cost function is further increased to 2.5465 at the 482" iteration.
Figures 9 (d) and (e) show the optimal microphone positions and beam pattern
obtained at the 482" iteration. Next, in the 2"'SA stage, the microphone weights are
optimized based on the configuration found previously by the SA-IBMC approach.
The microphone weights initially set to unity are adjusted in each iteration with a
random perturbation within the range of -0.1 to 0.1. The learning curve in 506
iterations is shown in Fig. 9 (a). The cost function is further increased to 2.6602 at
the 1429" iteration. The resulting beam pattern is shown in Fig. 9 (f), where a
unique main-lobe is clearly visible.

Apart from the URA, the random array deployment is also used as the initial
setting in the simulation. For brevity, the results of MC, IBMC, SA and SA-IBMC
simulations are summarized in Table 1. The simulation results obtained with and
without the IB constraint are compared in terms of number of iterations and the

maximum cost function values. Although the MC approach has reached the highest
11



cost function (Q = 2.6532), it takes 27596 iterations to achieve this value. By
comparing the results of the MC and IBMC (with the URA as the initial setting), we
found that the IBMC approach can attain comparable cost function value to the MC
approach with far less amount of computation (Q = 2.5638 at the 7662" iteration of
IBMC vs. O = 2.6532 at the 27596 iteration of MC). In comparison with the results
obtained using the SA algorithm with the IB constraint (Q = 2.6602 for the URA as
the initial setting and Q = 2.6573 for a random array as the initial setting), the SA
approach with no IB constraint has attained a slightly higher cost function (Q =
2.7561) with comparable computational complexity. It all boils down to the tradeoff
between search time and optimality.

Incorporating the IB constraint could potentially have the following benefits.
First, the IBMC algorithm is computationally more efficient than the plain MC
algorithm because of smaller search areas. Second, in the hybrid SA-IBMC
approach, the IB constraint could possibly improve the SA results when the SA
algorithm converges prematurely to a suboptimal result. Third, the IB constraint
normally results in uniform distributions of microphones. By “uniform”, we simply
mean that microphones would not concentrate at only a few areas, which should not
be confused with the deployment of the constant-spacing uniform arrays. In
summary, it is fair to say that the IB constraint significantly reduces the computation
complexity at the risk of converging to a suboptimal solution which may not be far
from the global optimum. This is generally sufficient in practical applications.

Apart from the source frequency 1.7 kHz, we also run the simulation for the
other frequencies 500 Hz and 1 kHz. For brevity, we only summarize the results in
Table 2. Random arrays yield unique main-lobe and higher cost function than the
URA at the frequency 1 kHz. In lower frequency 500 Hz, no grating lobes are seen

in the beam pattern of URA, while higher side-lobe level is found in the beam pattern
12



of the random array. This leads to a higher value of cost function for the URA than

the random array at low frequencies.

3. Methods for Direction of Arrival (DOA) estimation
3.1 DAS algorithm

Before discussing DOA algorithms, an array model should be built. Considering
an URA, the inter-element spacing is d. Assume r(¢) is a broadband frequency
@ at a reference point:

r(t) = s(t)e’”, (7)

where s(¢) is the phasor of r(¢#). Let 7 be the unit vector pointing to the sound
source direction. The signal received at the mth microphone located at X, 1is

denoted as x, (¢):
BT

x, () = r(t+ 20y 40 (1) = st +20)e’” ¢ &/ n (1) (8)

c

where n,(¢) is the noise signal of the mth microhphne and c is the speed of sound.

X,

In general, s(t+-—--)~s(¢) for far-field approximation. For M microphone signals

c

x,(t), -+, x,,(t), the data vector can be formed as

X
JO——
X (t) e ¢ 4 (t)

x®)=| 1 |=| s+ i |=a(@F)r@)+n(), )

Xy (?) J'fUiM . Vu (®)
e c

where a(7 ) is called the array manifold vector.

Figure 10 illustrates a URA. There are / and J microphones with inter-element
spacing dy and dy in the x and y axis, respectively. Let the left and the upper corner
element is the reference point. The vector of pointing to each microphone from

reference point in the polar coordinate is given as

13



X (0 =(G-Dd,,(j-1d,,0), (10)
where i = 1,2,....,/ and j = 1,2,...,J. The unit vector 7 pointing for a sound source
at the look directions 0 and @ is given by

7 =(sin@sin @,sin @ cos ¢, cos O) . (11)

The delay of each microphone will be given by

xX;-F  (i—1d sinOsing+(j—1)d, sin6cos¢

7, = (12)
c c
Then the array manifold vector can be written as
_ . -
ja)dx sinfsing
e C
jw(l—l)dx sinfsing
e c
a(0,0,9) = jolr oot (13)
e

e

_ dysin@sing+dy, sinfcos g
jor

e

jw(l_l)dx sin@sing+(J-1)d) sinfcos¢

c

c

With reference to the Fig. 11, the output of DAS beamformer is defined as

y(t,0)= x,(-1,), (14)

o
where x (f) is the signal received by mth microphone, as shown in Eq. (9). In Eq.
(14), z, are the steering delays appropriate for focusing the array to the look
direction, ,, and compensation for the direct path propagation delay associated with
the desired signal at each microphone.

In this thesis, the planar waves of far-field assumption are considered to be

spherical waves because the waves are not really comes from infinite distances.

Consequently, the delay of each channel in Eq. (14) can be calculated by

14



Ax
T =—=, (15)

where Ax, is the distance between reference source positions @, and mth

microphone. However, the delay usually is not an integer number in the digital
processing. There are many ways to deal with the fractional delay problem. The
simplest approach is Lagrange interpolation [29]. By multiplying 7z, by sampling
frequency f,, we can acquire the fractional delay y, including integral component

D, and fractional component e, , respectively. The decomposition is illustrated as

Tm.\]rszl/lszm—i_em' (16)
For simplicity, the FIR filter coefficients are obtained from Eq. (17) to realize the

Lagrange interpolation.

Noe —1
= - s k:071’29N
5= . a7

1#k

ka

The coefficients for the Lagrange filters of order N=1, 2 are given in the Table 3.
The case N=1 corresponds to linear interpolation between two samples. In our

decision, the case N=2 is employed.

3.2 TR algorithm

The TR algorithm is simply based on an idea of reversing the received signal.
Figure 12 shows the block diagram of TR algorithm. First, use a microphone array
to receive and save sound data. The signal x(#) is reversed to x(-£) by TR block.

Then the reversed signal x(-7) is played by a loudspeaker array.

3.3 SIMO-ESIF algorithm
The central idea of the proposed SIMO-ESIF algorithm is introduced in this

section. In Fig. 13, M microphones are employed to pick up the sound emitting from
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a source positioned in the far-field. In the frequency domain, the sound pressure
received at the microphones and the source signal can be related by a M x1 transfer
matrix H

p=Hyg(o), (18)

where ¢(w) 1is the Fourier transform of a scalar source strength,

p= [ p(®)---py, (a))]T is the pressure vector with “7” denoting matrix transpose, and

H :[hl(a))---hM (a))]T is the M x1 propagation matrix. The aim here is to estimate

the source signal g(w) based on the pressure measurement p by using a set of
inverse filters
C=[¢ (@), (®)] (19)
such that C"H~1 and therefore
Gg=C'p=C'Hg~q. (20)
On the other hand, this problem can also be written in the context of the following

least-squares optimization problem

min[p- H[;, (21)

where || ||2 denotes vector 2-norm. This is an overdetermined problem whose

least-squares solution is given by

H'p
l: -

2
where the superscript “H” denotes hermitian transpose. Comparison of Egs. (20)

G=(H"H)"H'p=

and (22) yields the following optimal inverse filter

HH
C'=—7s> (23)
[

If the scalar ||H||§ is omitted, the inverse filters above reduce to the

16



“phase-conjugated” filters, or the “time-reversed” filters in the free-field context.

Specifically, for a point source in the free field, it is straightforward to show that

o |
al, =, (24)

m=1 1y

. . . . 2 .
where 7, is the distance between source and the mth microphone. Since ||H||2 isa

frequency-independent constant, the inverse filters and the time-reversed filters differ
only by a constant. In a reverberant environment, these filters are different in
general. Being able to incorporate the reverberant characteristics in the measured
acoustical plant model represents an advantage of the proposed approach over
conventional methods such as the DAS beamformer.

In real-time implementation, the inverse filters are converted to the time-domain
finite-impulse-response (FIR) filters with the aid of inverse fast Fourier transform
(IFFT) and circular shift. Thus, the source signal can be recovered by filtering the
pressure signals with the inverse filters c(k):

q(k)=c" (k)*p(k), (25)
where £ is discrete-time index, c¢(k) is the impulse response of the inverse filter, and

(33 323

denotes convolution.

3.4 Minimum Variance Distortionless Response (MVDR)algorithm

Another approach has been proposed using the data covariance matrix. This
method has been shown to provide higher resolution in DOA estimations than the
DAS algorithm. In order to facilitate digital processing, we simultaneously sample

all array inputs to form digital data x, (¢)=x,(kT), k=1,2,---. For D sources, we

may invoke principle of superposition to write

17



» (k)
x(k)= ) a(,0),(k)+n(k) =[a(,6) - a(@,0)]| : |+n(k)

) . (26)

= Ar(k)+n(k)
where 6. 1is the direction of the ith source, r(k) is the source signal vector and A is
DOA matrix. A beamformer output is a linear combiner that produces an output

signal by weighting and summing all components.
M
y(k) =2 wyx, (k) = w"x(k), 27)
m=1
where w is the weight vector given by w=[w, --- w,,]". Because the MVDR

method exploits the correlation between array input signals, it is necessary to

calculate the array signal correlation matrix.
R, = E{x(k)x" (k)} . (28)
Suppose that the noise is uncorrelated with signals £ {r(k)nH (k)} =0 and the noise

is spatially white E {n(k)nH (k)} =o.1. By the preceding assumption, the Eq. (28)

can be rewritten as

R, = AE{r()r" (k)| +E {n(k)n" (k)}
=AR A" +R : (29)
=AR A" +051

where R;; and R,, are the source and noise correlation matrices, respectively. In
practice, the data correlation matrix Ry is usually approximated by the data

covariance covariance
R _(p)= axixp +(1-a)R_ (p-1,p=12---P, R_(0)=0. (30)
At this recursive equation, « is a constant which satisfied 0<a <1. The received

signal is divided to p frames and rearranged to the data vector x =[x, x,--* x].

18



In the following, the aim is to find the MVDR weight vector w,, . An

optimization problem is given for solving the unknown vector w,,,. The MVDR

beamformer attempts to minimize the output power
2 2
E{|yof | = E{[whx(of | =wiR w, G
Another constraint is to maintain unity in the look direction w’ a(d,)=1. The

MVDR beamforming suppresses the undesired interference from &6, and the
noise. The problem can be expressed as follows

minwy, R W,
W . (32)
subjectto w,,a(w,6,) =1

This problem can be solved by Lagrange multiplier method

Vo, Wi R W, AV [w,,a(@,6,)~1]=0 33)
W a(@0,6,) =1 .
If Ry 1s nonsingular, Ry can be inversed to solve the unknown vector by
Wiy = AR;a(a)v ‘90) 5 (34)

1
a” (0,0,)R a(w,0,)

where A=wi R w,, = is the beamformer output power.

Then A is substituted in Eq. (34) to obtain the MVDR weight

R a(w,6,)
War =& O :
a’' (w,0,)R a(w,0,)

(35)
In the preceding results, it is convenient to obtain the spatial power spectrum S, (0)

by continuing altering &

1
a’ (0,0)R a(w,0)

Sy (0) = WAH/[VRxxWMV = (36)

The spatial power spectrum §,,,(6) exhibits J peaks approximately at 6, --- 6, .

3.5 Multiple Signal Classification (MUSIC) algorithm

In contrast to MVDR which are based on the covariance matrix of the received
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signals, an approach of DOA estimation has been proposed by exploiting the
eigenvalue decomposition (EVD) of the covariance matrix. Firstly, the array
covariance matrix Ry in Eq. (30) is represented by EVD
R_=AR _A" +51=UAU", (37)
where U is a unitary matrix and comprise M linearly independent eigenvectors
u,...u,, . The eigenvector associate with M eigenvalues «,---«,, . The array
correlation matrix can be represented as

R_ =UAU"' =UAU"

al 0 e O ulhr
0 o 0 S I . 38
=[u, u,---uy] ’ : HE Zamumug o
. m=1
0 0 a, || ull

The diagonal terms of A have been arranged with o, >a, >--->¢,,. The noise

term o.1 can be yielded to

M=

cl=cUU"' =c’UU" =¢>> u u? (39)

1

3
I

Because A consists of D sources, we assume that A and R, are of full rank D.
Subsequently the signal-only correlation matrix Cy is generated by subtracting the

noise component from Ry

M
C,=AR A" =>(a,-0c))u,ul . (40)

m=l

If R;; is rank D and small than the array size M, the smallest M —D eigenvalues

a -a,, are equivalent to the noise power. Therefore the range of Cy are

D+’
spanned by u, to u,. If the array has no coherent source between any of two

received signals, R; only has nonzero values on the diagonal terms which reprensent

the power of the D sources. Note that the range of Cy is identical to the range of A

which is spanned by the manifold vectors a(w,6,)---a(w,0,)). The relation between
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Cixand A 1s

R{A}=span{a(®,6,), -,a(»,6,)} =span{u,,--,u,} 41)
and

R{A}" =span{u,,,---u,}, (42)
where span{u,,---,u,} and span{u,,,---,u, } are called the signal subspace and

noise subspace, respectively. Because the subspace is orthogonal to the noise

subspace such that
ufn’a(a),@dﬁ):O, d =12,--,D;m=D+1,D+2,--- .M . (43)

The MUSIC technique is to exploit Eq. (43) to improve the DOA estimations. The

eigenvectors u -,u,, isused to construct the projection matrix as follows

D+12""

M
>, u,u, =P, (44)

m=J+1

From Eq. (43), the direction of the source 6. (i=1,---,D) can be found by solving

M
Pa(w,0)= D uu a(@,0)=0, 0=0, . (45)

mom
m=J+1

The projection matrix has the properties of Py =P, and P} =P,. The problem of
Eq. (45) can be extended to solve Eq. (46) for simplicity.

|Pya(e,0); =a(w,0)" PP a(w,0)=0, 0=0. (46)
Equivalently, the inverse of Eq. (46) has the infinitely value when 6=6,,i=1---,D.

The inverse of Eq. (46) is denoted as MUSIC spectrum.

1

S (O =7 O)P a(w,0)

(47)

The peaks of the MUSIC spectrum are the directions of sources. Not that the
MUSIC spectrum does not exhibit infinitely high peaks due to noises in practice.
How to determine D is a problem. It would rather be overestimated than

underestimated. The Akaike information criterion (AIC) [30] can be employed to
21



choose D. By the spirit of AIC is to calculate matching error and weight the

truncated order, the equation can be defined as
AIC(m) = HRH - R;(m)HF +w,m, R (m)= Zaiuiufi _ (48)
i=l1
The EVD of data covariance matrix is used to calculate the matching error, which is

”Rxx —R;x(m)HF. The weight part is to weight order by w, in order to make the

order with lowest AIC value would be the same order in the error line which has an
apparent turning point. For a preset two point sources simulation, the error, weight
and AIC lines are shown in Fig. 14 (a). From the figure, the turning point of error
line is at the 4™ order. Thus the weight w, should be chosen to make the AIC line
will have a lowest point at that order. In our simulation, the value is chosen to be

0.5*10"12. Figure 14(b) shows the AIC line with different weight.

3.6 Numerical simulations of DOA algorithms

In order to validate and compare the several methods of DOA estimation,
numerical simulations are conducted for a 30-channel URA and a random array
optimized by SA-IBMC optimization method. The aperture of array is 0.4mx0.5m
(d=0.1m) for URA and 0.5mx0.6m for random array, as shown in Figs. 15 (a) and (b).
There are two simulated whitenoise sources located at the positions (-0.5m, 0.5m) and
(0.5m, -0.5m). The sources are 1m from array surface. Assume the sound velocity
¢s 1s 343 m/s. Consider the A/2 rule, the maximum measurement frequency with
inter-element spacing 0.1m is f, =c/2d =1.7kHz. Therefore, we choose point
sources with the frequencies 1 kHz (d =4/4) and 7 kHz (d =24 ) to be the observed
frequencies in simulations. The magnitude of beam pattern or spectrum of each
approach is normalized to a range from O to 1. This makes the results of five

methods can easily be compared in main-lobe width and side-lobes levels.
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Figures 13 (a)-(j) illustrate the noise maps of two simulated point sources
obtained using different acoustic imaging algorithms with a URA or an optimized
random array in the frequency 1 kHz. At this frequency, the spacing is less than a
half of wave length. Therefore, grating lobes are not occurring in the simulated
results of URA and random configurations. The noise maps obtained using DAS and
TR algorithms are shown in Figs. 13 (a)-(d). Both of these figures are with poor
resolution. They have very large main lobes but cannot correctly point the preset
source positions. The noise maps of another lower resolution algorithm SIMO-ESIF
is shown in Figs. 16 (e) and (f). Compared with results of DAS and TR, SIMO-ESIF
also has large main lobes but can correctly point the source positions.  Figures 16
(2)-(j) show the noise maps obtained using MVDR and MUSIC algorithms with two
array configurations. As predicted, the results validated that the MVDR and MUSIC
are the methods which can achieve higher resolutions, especially MUSIC. They can
correctly localize the preset source points with narrow main lobes. The side-lobes of
MVDR are higher than MUSIC.

Apart from simulations at frequency 1 kHz, we also run some simulations in a
higher frequency to make the spacing exceeds a half of a wave length. Clearly, the
frequency is chosen to be 7 kHz. At this frequency, the spacing is approximate two
times of a length. Figures 14(a)-(j) show the noise maps of two simulated point
sources of DOA estimation using different approaches with a URA and an optimized
random array in the frequency 7 kHz. The simulated results are largely identical but
minor differences with the results in the frequency 1 kHz except the grating lobes
appeared at those power spectrums with URA configuration. In SIMO-ESIF and
MUSIC cases, the noise maps have no clearly visible grating lobes with URA
configuration. Nevertheless, the noise maps obtained using SIMO-ESIF still have

large main lobes and much higher side lobes than MUSIC. Summary, the MUSIC is
23



the algorithm which can obtain highest resolution in the frequency from low to high.
The MVDR is worse than MUSIC but still can get relatively higher resolution than
other algorithms. The proposed SIMO-ESIF is the only in low resolution algorithms
which can use URA to localize high frequency noise sources. The comparisons of

these five acoustic imaging algorithms are illustrated in Table 4.
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4. Experimental verifications

To validate the MUSIC algorithm, practical sources including loudspeakers, a
compressor and a scooter were chosen as the test targets for experiments. Figure 18
shows the beamformer properties at 30° opening angle. In our experimental
arrangement, inter-element spacing d =0.Im array aperture D,=0.5m and
distance between sources plane and microphone array surface z=1m. Assume

sound velocity ¢, =345m/s. The maximum and minimum measureable frequency

can be calculated by

4 ¢
L oa (49)
min DA

From Eq. (49), the maximum and minimum measureable frequency is

2.3 kHz and 690Hz, respectively. The resolution R is

R=1222 4 (50)

A

And the area covered L is
L=1.15z.. (51

Therefore, the resolution of frequency 1 kHz and 7 kHz is 0.84m and 0.12m,
respectively. The area covered is 1.15m at distance z = Im. Figure 19 shows the
experimental arrangement. In experiments, the array configurations are a 30-channe
URA deployed as 5x6 and a 30-channel random array that was optimized in an
informal numerical simulation. The URA with spacing 0.1m and optimized random
arrayare deployed as Figs. 15 (a) and (b), respectively. Thirty array microphones,
PCB 130D20, were used to make the sound pressure measurements. Two PXI 4496
systems [31] in conjunction with LabVIEW 8.5 software [31] were used for data

acquisition and processing.
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4.1 Loudspeakers experiment

In loudspeakers experiments, two loudspeakers are situated at (0.1m, 0.2m) and
(0.5m, 0.2m), respectively. These loudspeakers with whitenoise sources are situated
at Im far from array surface. The observed frequencies are chosen to be 1 kHz
(d=A/4) and 7 kHz (d =24), as the same frequencies in numerical simulations.
Figures 20 (a)-(j) show the noise maps obtained using five acoustic imaging
algorithms with random array configuration at frequency 1 kHz. In this low
frequency, the distance between loudspeakers is 0.4m. The distance is small than the
resolution R = 0.84m calculated by Eq. (50). Therefore, it cannot localize the two
too closer noise sources with either URA or random array configuration. But in high
resolution MVDR and MUSIC algorithms, it perhaps distinguishes the two sources.

For higher frequency experiments, the noise maps are shown in Figs. 21 (a)-(j).
Obviously, grating lobes occur at 7 kHz with the URA configuration. On the
contrary, the experimental results using random array are well localized the source
positions.  The experimental results get the same summary with numerical

simulations.

4.2 Compressor experiment

A compressor is chosen to be a more practical sound source in measurements
using the optimized random array. The compressor is mounted on a table inside a
semi-anechoic room. In deployment, the compressor is located in 1m from array
surface. The observed frequency is chosen to be 1 kHz. The noise map obtained
using MUSIC algorithm with the optimized random array is shown in Fig. 22. The

major noise is found at the air intake position.

4.3 Scooter experiment
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In this experiment, a 125cc scooter served as a more practical source to examine
the capability of MUSIC in DOA estimation with non-stationary sources. The
scooter is mounted on a dynamometer inside a semi-anechoic room. The distance
between the scooter and array is 3m. The observed frequency is chosen to be 7 kHz.
The MUSIC algorithm was used to estimate the DOA on the right side of the scooter
in a run-up test. The engine speed increased from 1500 rpm to 7500 rpm within ten
seconds. Figure 23 shows the noise map. From the figure, it revealed that the inlet

and outlet of exhaust pipe were the major noise source positions.
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5. Conclusion

There have two major researches in this thesis. First, optimized planar array
deployment for source imaging is investigated in this thesis. Global optimization
algorithms have been developed to facilitate the search of the optimized microphone
deployment. The SA algorithm and the combined SA-IBMC algorithm prove
effective in finding the optimal deployment. For far-field array with sparse
deployment in which inter-element spacing is large, random deployment with optimal
weights is crucial to avoid grating lobes. As predicted by the conventional wisdom,
the optimized random sparse array has excellent beam pattern with a unique
main-lobe. Second, several acoustic imaging algorithms including DAS, TR,
MVDR, MUSIC and an inverse filter-based method SIMO-ESIF have been developed
to estimate DOA.  The resolutions of noise maps in low frequency are much worse
than in high frequency with random array configuration. The proposed SIMO-ESIF
approach can use URA to estimate DOA in high frequency without grating lobes
problem. As expected, the high resolution methods such as MVDR and MUSIC can
obtain much greater results than DAS, TR and SIMO-ESIF in localizing sound source

positions.
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Table 1. The search performance of different optimization methods for array
deployment with the inter-element spacing d = 0.6 m (34 at the frequency

1.7 kHz). The letter “w” indicates that weight optimization is performed.

Find best Q Best O
Constraint Method
Iterations (Linear)
MC 27678 2.6532
without IB
SA 190 2.5833
(initially URA)
SA+w 1391 2.7218
without IB MC 27596 2.6532
(initially random SA 351 2.5767
array) SA + w 1283 2.7561
IBMC 7662 2.5638
with IB SA 208 2.5328
(initially URA) SA + IBMC 482 2.5465
SA+IBMC +w 1429 2.6602
IBMC 23285 2.5617
with 1B
SA 222 2.5224
(initially random
SA + IBMC 406 2.5224
array)
SA+IBMC +w 1352 2.6573
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Table 2. The comparison of converged cost function Q of the URA and the optimized

random arrays at three different frequencies.

£=500 Hz f=1kHz  f=1.7kHz

Array
(d=24) (d =1.751) (d=32)
URA 4.0216 1.0192 1.0261
Random array
2.5459 2.5459 2.7218
(without IB, initially URA)
Random array
2.5961 2.5451 2.7561
(without IB, initially random array)
Random array
2.5048 2.3324 2.6602
(with IB, initially URA)
Random array
2.6573 2.4305 2.6573

(with IB, initially random array)
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Table 3. Lagrange interpolation FIR filter coefficients for N=1and N =2

Wm0 Wmi Wm2
N=1 l1-en €m
N=2 (em- (em-2)/2 -em( em-2) em( em-1)/2
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Table 4. Comparisons of acoustic imaging algorithms.

DAS TR SIMO-ESIF | MVDR MUSIC

algorithm delay-sum | time-reversed | inverse MVDR MUSIC
filtering

resolution low low low high very high
complexity | low low low high high
area covered | large large small/large large large
processing time time frequency frequency | frequency
domain
frequency high high low/high low/high | low/high
range
sample/batch | sample batch batch batch batch
robustness to | poor high high low low
reverberation
acoustic no no yes no no
variables
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Source

3t

Plane wave

Fig 1. A plane wave incident from the direction k to a far-field array.
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Fig 2. The schematic diagram of localized regions and grid points. (a) The
localized regions (dashed lines) on the microphone surface with the inter-element
spacing d = 0.6m. The symbol “0” indicates the microphone position. (b) The
grid on a localized region. The microphone is constrained to move to one of
nine grid points (including itself) in the far-field optimization. The microphone
is assigned to any grid point in the localized region in the near-field optimization

for the SA search.
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Set mxn grid points on the microphone surface. Initially

microphone positions x; , beam patternb;, , cost function Q. .

v
Xopt = Xi 2 bopt = bi 4 Qopt = Qi °

v

Randomly allocate M microphones to the

v

Compute beam pattern b and the cost function Q.
& J

Fig 3. The flowchart of the IBMC optimization algorithm.
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Set mxn grids on the microphone surface. Initially microphone

positions X, , beam patternb., cost function Q.

Choose initial temperature 7;, final temperature 7,

and annealing coefficient «.

TZCZXT, Xoptzxi’ bopt:bi’ QoptzQi'

1

Randomly allocate M microphones to nine grid points.  [€ |

Comnute beam pattern b and the cost function O. ]

Fig 4. The flowchart of the SA optimization algorithm.
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Fig 5. The URA with inter-element spacing 0.6m (34 at the frequency 1.7 kHz).
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Fig 6. The array optimized using the MC algorithm without the IB constraint at the
frequency 1.7 kHz. Maximum cost function Q = 2.6532 is attained at the
27596"™ iteration. The circle indicates the main-lobe. (a) Learning curve, (b)

optimal array deployment, (c) beam pattern.
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Fig 7. The array optimized using the SA algorithm without the IB constraint at the

frequency 1.7 kHz. Maximum cost function Q = 2.7561 is attained at the
1283 iteration. The circle indicates the main-lobe. (a) Learning curve, (b)
optimal array deployment, (c) beam pattern with deployment optimized, (d)

beam pattern with weights optimized.
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Fig 8. The array optimized using the IBMC algorithm at the frequency 1.7 kHz.

Maximum cost function Q = 2.5638 is attained at the 7662™ iteration. The

circle indicates the main-lobe. (a) Learning curve, (b) optimal array

deployment, (c) beam pattern.
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ky (1/m)

ky (14m)

Fig 9. The array optimized using the combined SA-IBMC algorithm with the IB
constraint at the frequency 1.7 kHz. Maximum cost function Q = 2.6602 is
attained at the 1429" iteration. The circle indicates the main-lobe. (a)
Learning curve, (b) optimal array deployment obtained by SA, (c) beam pattern
obtained by SA, (d) optimal array deployment obtained by SA-IBMC search, (e)

beam pattern obtained by SA-IBMC, (f) beam pattern with weights optimized.
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_ Source

Fig 10. A uniform rectangular array (URA). A point sound source is located at

far-field.
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Fig 11. The DAS beamformer.
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Fig 12. The block diagram of the TR algorithm.
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Fig 16. The noise maps of two simulated point sources obtained using five acoustic
imaging algorithms with 30-channel URA and random array. The squares are
the preset sound source positions. The simulated whitenoise sources located at
the positions (-0.5m, 0.5m) and (0.5m, -0.5m). The observed frequency is 1
kHz (d =A1/4). The power spectrums obtained using (a) DAS with URA
configuration, (b) DAS with random array configuration, (c¢) TR with URA
configuration, (d) TR with random array configuration, (e) SIMO-ESIF with
URA configuration, (f) SIMO-ESIF with random array configuration, (g) MVDR
with URA configuration, (h) MVDR with random array configuration, (i)
MUSIC with URA configuration and (j) MUSIC with random array

configuration.
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Fig 17. The noise maps of two simulated point sources obtained using five acoustic
imaging algorithms with 30-channel URA and random array. The squares are
the preset sound source positions. The simulated whitenoise sources located at
the positions (-0.5m, 0.5m) and (0.5m, -0.5m). The observed frequency is 7
kHz (d=24). The power spectrums obtained using (a) DAS with URA
configuration, (b) DAS with random array configuration, (c) TR with URA
configuration, (d) TR with random array configuration, (¢) SIMO-ESIF with
URA configuration, (f) SIMO-ESIF with random array configuration, (g) MVDR
with URA configuration, (h) MVDR with random array configuration, (i)
MUSIC with URA configuration and (j) MUSIC with random array

configuration.
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Fig 18. Beamformer properties at 30° opening angle.
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Fig 19. The experimental arrangement for loudspeakers measurements inside a

semi-anechoic chamber.

microphones.
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Fig 20. The noise maps of two loudspeakers obtained using five acoustic imaging

algorithms with 30-channel URA and random array. The squares are the preset
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sound source positions. The simulated whitenoise sources located at the
positions (-0.5m, 0.5m) and (0.5m, -0.5m). The observed frequency is 1 kHz
(d=A/4). The power spectrums obtained using (a) DAS with URA
configuration, (b) DAS with random array configuration, (c) TR with URA
configuration, (d) TR with random array configuration, (¢) SIMO-ESIF with
URA configuration, (f) SIMO-ESIF with random array configuration, (g) MVDR
with URA configuration, (h) MVDR with random array configuration, (i)
MUSIC with URA configuration and (j) MUSIC with random array

configuration.
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Fig 21. The noise maps of two loudspeakers obtained using five acoustic imaging

algorithms with 30-channel URA and random array. The squares are the preset
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sound source positions. The simulated whitenoise sources located at the
positions (-0.5m, 0.5m) and (0.5m, -0.5m). The observed frequency is 7 kHz
(d=24). The power spectrums obtained using (a) DAS with URA
configuration, (b) DAS with random array configuration, (c) TR with URA
configuration, (d) TR with random array configuration, (¢) SIMO-ESIF with
URA configuration, (f) SIMO-ESIF with random array configuration, (g) MVDR
with URA configuration, (h) MVDR with random array configuration, (i)
MUSIC with URA configuration and (j) MUSIC with random array

configuration.

81



Y-coordinate (m)

Tp2 0 0.2 0.4 06 08
#-coordinate (m)

Fig 22. Noise map of a compressor obtained using MUSIC method. The observed

frequency is 1 kHz.
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Fig 23. Noise map of a scooter obtained using MUSIC method. The observed

frequency is 7 kHz.
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