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利用隨機配置陣列發展遠場聲學影像演算法 

 

研究生：劉冠良                         指導教授：白明憲 教授 

國立交通大學機械工程學系 

 

摘    要 

稀疏且隨機配置的麥克風陣列已知可以用來傳遞遠場的影像而

不會產生鬼葉瓣的問題。在這篇論文中，數值模擬被用來最佳化麥克

風的配置。全域最佳化技術包括蒙地卡羅法、模擬退火法和內部方格

蒙地卡羅法被用來有效率地尋找最佳的麥克風配置。如常理所知，模

擬結果顯示出要避免鬼葉瓣的出現，隨機配置麥克風是必要的。而結

合模擬退火法和蒙地卡羅法的方法可以有效率的找到一個令人滿意

的配置，這個配置能得到傑出的波束圖和相對較均勻的麥克風分布。

在到達方向的估測中，平面波的聲源被視為球面波。遠場聲學影像的

方法包括延遲和相加法、時間反轉法、單進多出等效聲源反逆濾波

法、最小變異無失真響應法和多重信號分類法被用來估測聲源位置。

結果顯示多重信號分類法在定位噪音源位置上可得到最佳的結果。 
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ABSTRACT 

Arrays with sparse and random microphone deployment are known to 

be capable of delivering high quality far-field images without grating lobes.  

Numerical simulations are undertaken in this thesis to optimize the 

microphone deployment.  Global optimization techniques including the 

Monte Carlo (MC) algorithm, the Simulated Annealing (SA) algorithm and 

the Intra-Block Monte Carlo (IBMC) algorithms are exploited to find the 

optimal microphone deployment efficiently.  As predicted by the 

conventional wisdom, the results reveal that randomized deployment is 

required to avoid grating lobes.  The combined use of the SA and the IBMC 

algorithms enables efficient search for satisfactory deployment with excellent 

beam pattern and relatively uniform distribution of microphones.  In 

Direction of arrival (DOA) estimation, the planar wave sources are assumed 

to be spherical wave sources in this thesis.  Far-field acoustic imaging 

algorithms including the delay and sum (DAS) algorithm, the time reversal 

(TR) algorithm, the single input multiple output equivalent source inverse 

filtering (SIMO-ESIF) algorithm, the Minimum Variance Distortionless 

Response (MVDR) algorithm and the Multiple Signal Classification (MUSIC) 

algorithm are employed to estimate DOA.  Results show that the MUSIC 
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algorithm can attain the highest resolution of localizing sound sources 

positions.  
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Introduction 

Array technology has been used in many diverse areas including radar [1], sonar 

[2], radio astronomy [3], tele-communications [4], and so forth.  Its application 

encompasses purposes including signal enhancement, spatial filtering, Direction of 

Arrival (DOA) estimation, etc.  Early development of arrays or beamformers was 

primarily based on the far-field assumption that the source is far away and the waves 

become planar at the array position.  Far-field arrays are particularly useful for long 

distance and large scale sources such as wind tunnels [5], trains and aircrafts.  In 

array implementation, transducer deployment has been one of the key issues.  It is 

well known that, for uniform linear arrays (ULA) and uniform rectangular arrays 

(URA) [6], array deployment must comply with the λ/2-rule to avoid the spatial 

aliasing and the grating lobe problems [7].  Consequently, a large number of 

microphones are required to cover the source area, which can render the array 

configuration impractical for sources at high frequencies.  This prompts the 

development of non-uniform arrays that are capable of achieving high resolution and 

aliasing-free imaging with sparse sensors [8].  Knowing the fact that non-uniform 

spacing can be beneficial to far-field array performance, however, a question arises 

naturally.  What is the optimal deployment of far-field random arrays?  To explore 

this conjecture, numerical simulation is undertaken in this thesis with the aid of 

optimization techniques. 

Several global optimization techniques are employed to deploy microphones for 

planar arrays used in far-field imaging.  Monte Carlo (MC) simulation [9-13] is 

based on straightforward random search.  Despite its simplicity, the MC method can 

be very time consuming.  A more efficient technique, the simulated annealing (SA) 

algorithm [8, 14-16] is also used in the simulation.  The SA algorithm relies on a 

search principle resembling the annealing process in the metallurgy.  The search 
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process follows an annealing schedule dictated by a temperature-dependent 

probability.  The probability of accepting “worse” solutions in the initial 

high-temperature stage lends the SA method an effective approach for problems with 

many local minima [15].  Several researchers have applied the SA algorithm to 

optimize far-field arrays [17, 18].  In this these, modifications are made to enhance 

the search for optimal deployment.  The Intra-Block Monte Carlo (IBMC) method 

conducts the random search only in the pre-partitioned local regions.  This approach 

enhances search efficiency and often results in relatively uniform sensor deployment.  

A hybrid approach combining the SA and the IBMC methods is also presented to 

improve the search performance.  The simulation results obtained using the MC, SA 

and SA-IBMC approaches, with and without IB constraint, are compared in terms of 

number of iterations and the maximum cost function values in Table 1.   

In DOA estimation, the random array optimized by SA-IBMC method is used.  

There are several far-field acoustic imaging algorithms have been proposed in the past. 

For low resolution algorithms, the delay and sum (DAS) beamformer applies time 

shifts to the array signals to compensate for the propagation delays in the arrival of the 

source signal at each microphone [19-20].  The single input multiple output 

equivalent source inverse filtering (SIMO-ESIF) method is a technique based on 

designing inverse filters to minimize the error between the estimate sources and the 

original sources [21].  For high resolution algorithms, the Minimum Variance 

Distortionless Response (MVDR) algorithm adaptively finds weights to improve 

source resolution that minimizes the output noise variance due to signals that arrive 

from directions other than hypothesized source direction [19, 22-24].  The idea of 

Multiple Signal Classification (MUSIC) algorithm is that the eigenvalues and 

eigenvectors of a signal covariance matrix are used to estimate the DOA of multiple 

signals received by a sensor array [19, 25, 26].  In addition to planar wave sources, 
 2



 

spherical wave sources have been assumed for source resolution [20, 26-27].  The 

simulated and experimental results of these algorithms are examined in resolution and 

summarized in a compared table. 
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1. Beam pattern and cost function 

For a far-field array, the beam pattern can be defined in the wave number domain 

[20] 

1

1 M
m

m

jb
M

e
=

= ∑ k ri , (1) 

where /k cω=  is the wave number, ω  is angular frequency, c is the speed of 

sound, and  is the position vector of the mth microphone, mr k= −k κ  is the wave 

number vector of a plane wave incident from the direction represented by the unit 

vector  and κ M  is number of microphone, as shown in Fig. 1. 

In optimizing far-field performance, the aim is to minimize the maximum 

side-lobe level (MSL) of the beam pattern [20].  First, a circle with radius  is 

drawn on the kx-ky plane to define the scope of the main-lobe, which is a judicious 

choice based on the beam pattern observations.  The exterior of this circle is 

considered the side-lobe region.  The cost function for far-field arrays is defined as 

mr

mQ
s

=
�
�

, (2) 

where  and  denote the maxima of the main-lobe and the side-lobes, 

respectively.  Because m  = 1, the cost function amounts to minimize the MSL and 

maximizing . 

m� s�

�

Q
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2. Optimization algorithms 

In this section, global optimization methods for microphone deployment are 

presented. 

2.1 Intra-Block Monte Carlo (IBMC) simulation 

The basic MC algorithm is based on straightforward random search.  It often 

tends to be used when it is unfeasible or impossible to compute an exact result with 

a deterministic algorithm [9].  For M microphones to be allocated to  

rectangular grid points, the number of possible combinations is , which is 

known to be an NP-complete problem [28].  Due to the blind search nature, the MC 

algorithm can be very inefficient and result in non-uniform distribution of 

microphones that concentrate at certain areas.  To address these problems, a 

modified method IBMC is proposed.   

( 1) ( 1m n+ × +

( 1) ( 1)m n+ × +

)

d

MC

By “Intra-Block”, we mean the localized region designated to each microphone 

on the surface, as shown in Fig. 2 (a).  The MC search is only conducted within each 

block with random positions generated inside this designated region.  The M 

microphone elements will be designated to M localized regions.  Hence, each region 

necessarily contains one and only one microphone.  The flowchart of IBMC is 

shown in Fig. 3.  Initially,  divisions of a rectangular grid are set up on the 

microphone surface.  Next, M localized search regions are designated to 

microphones, as shown in Fig. 2 (a).  Each localized region in Fig. 2 (b) has the 

dimensions , whereas the inter-element spacing of the grid points is 

chosen to be 

m n×

mx myd d= =

4 /xd d m=  and 5 /d dy n= , respectively.  The localized regions are 

centered at the microphone positions of the uniform rectangular array (URA) that is 

selected to be the initial configuration in the optimization.  The associated data 

including the microphone positions , the beam pattern , and the cost function ix ib
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iQ  are calculated.  Next, each of the M  microphone positions x is randomly 

assigned to one of the search points on the localized region.  The new beam pattern b 

and the cost function Q  are calculated for the assigned microphone positions x.  

The optimal solutions ,  and Q  are then replaced by the new solutions 

,  and  if ; otherwise the solutions are discarded.  The simulation is 

continued until the number of iterations I exceed the preset value IIBMC. 

opx

opt

t optb opt

x b Q Q Q>

The IBMC algorithm is more efficient than the MC algorithm in that the search 

area for each microphone is far smaller.  In addition, the IBMC algorithm generally 

results in microphone positions that are more uniformly distributed than those of the 

MC algorithm. 

 

2.2 Simulated Annealing (SA) technique 

The MC algorithm can be very time-consuming and result in deployment that is 

far from optimal.  Instead of blind search like the MC method, another efficient SA 

algorithm is used in this study.  SA is a generic probabilistic meta-algorithm for the 

global optimization problem, namely locating a good approximation to the global 

optimum of a given function in a large search space [14-18].  SA is well suited for 

solving problems with many local optima.  Each point in the search space is 

analogous to the thermal state of the annealing process in metallurgy.  At high 

temperatures, atoms with high internal energy are free to move to the other positions.   

As temperature drops, the internal energy is decreased to a lower state to gradually 

form a crystalline structure.  The objective function  to be maximized is likened 

to the internal energy in that state.  One important feature of the SA approach is that 

it allows the search to move to a new state that is “worse” than the present one in the 

initial high-temperature stage.  It is this mechanism that prevents the search from 

Q
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being trapped in a local maximum.  The probability of accepting bad solutions 

decreases as temperature is decreased according to the Boltzmann distribution and the 

algorithm finally converges to the optimum solution.   

Figure 4 illustrates the flowchart of SA.  For the problem of maximizing the 

array cost function, the array is initially set to be the URA with microphone positions 

xi.  The corresponding beam pattern bi and cost function  are calculated.  The 

microphone surface is partitioned into 

iQ

m n×  divisions in a rectangular grid.  The 

localized regions and the associated grid points are defined in the same way as the 

IBMC.  Accordingly, each microphone can be assigned to any position within the 

localized region in the simulation.  The initial temperature , the final temperature iT

fT , and the annealing factor a  are selected accordingly.  A typical value o a  is 

in the range of 0.8 and 0.99 [16].  Initially, set 

 f 

opt i=x x , opt i=b b  and .  

Next, M microphone positions x are tentatively assigned.  Each microphone is 

randomly assigned to one of the grid points with respect to the localized region.  The 

beam pattern b  and the cost function  are evaluated for a new microphone 

positions x.  Calculate the difference between the present and the optimal cost 

function, 

opt iQ Q=

Q

 . (3) optQ Q QΔ = −

If fT T>  and , replace the optimized solutions ,  and  with 

the new solutions x, b and Q.  Otherwise, if 

0QΔ > optx optb optQ

0QΔ ≤ , evaluate the following 

probability function: 

/( , ) Q TP Q T eΔΔ = . (4) 

The above probability will be compared with a random number 0 1γ≤ ≤  generated 

subject to the uniform distribution.  A tentative solution is accepted when the 
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probability function P is greater than the random numberγ ; otherwise, the solution is 

rejected.  Namely, 

( , ) ,  accepted
( , ) ,  rejected

P Q T
P Q T

γ
γ

Δ >⎧
⎨ Δ <⎩

. (5) 

Note that the larger the cost function difference QΔ  or the higher the temperature T, 

the higher is the probability to accept a worse solution. 

As the search proceeds, the temperature is decreased according to an exponential 

annealing schedule that begins at some initial temperature T0 and decreases the 

temperature in steps 

1kT a+ = × kT

1

, (6) 

where  is the annealing coefficient.  The annealing process will be 

terminated if the temperature is lower than a preset final temperature Tf.  As the 

annealing process proceeds and T decreases, the probability of accepting a bad move 

becomes increasingly small until it finally settles to a stable solution. 

0 a< <

 

2.3 Numerical simulations for optimization algorithms 

Simulations of array optimization with and without the Intra-Block (IB) 

constraint are carried out in this section.  The MC and SA algorithms are exploited to 

optimize microphone deployment with no IB constraint.  On the other hand, the SA, 

IBMC and a combined SA-IBMC algorithm are employed to optimize microphone 

deployment with the IB constraint.  Both the URA and random arrays are used as the 

initial settings for simulations.  The radius of main-lobe region is chosen to be 2 

m^-1.   

 

2.3.1 Optimizing array deployment without IB constraint 

The MC and SA algorithm are exploited to optimize the microphone deployment.  
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Initially,  divisions (m = 24 and n = 30) of a square grid are set up on the 

microphone surface, as shown in Fig. 5 (a).  Each side of the square grid measures 

0.1m.  The source frequency 

m n×

f = 1.7 kHz and speed of sound m/s.  The 

wave number k f

340c =

2 / c 31.4π= =  m-1.  In addition, a URA of 5  (M = 30) 

deployment with inter-element spacing = 0.6m is used as a benchmark in the 

following simulations, as shown in Fig. 5 (a).  Its beam pattern calculated by Eq. (1) 

is shown in Fig. 5 (b).  As expected, the grating lobes are clearly visible because the 

microphone spacing violates the λ/2-rule (d = 3λ at 

6×

d

f = 1.7 kHz).  The cost function 

calculated by Eq. (2) is only 1.0261 because of the grating lobes.  This prompts the 

use of random deployment of microphones as follows.   

In the MC simulation, the 30 microphones can freely occupy any 30 positions of 

the  grid points on array surface.  Exhaustive search would require 

 combinations for a 30-element array, while only 105 iterations are 

carried out using this MC search.  The learning curve of the MC search with random 

arrays setting is shown in Fig. 6 (a).  The search attains the optimal cost function 

2.6532 at the 27596th iteration.  The corresponding microphone positions and beam 

pattern are shown in Figs. 6 (b) and (c), respectively.   

25 31×

4 1428 49× × 116 2

Beside the extremely time-consuming MC search, the SA approach is employed 

next.  The annealing parameters of the SA for array deployment are chosen to be Ti = 

10 deg K, Tf = 10-8 deg K and 0.95a =  [14, 16].  The learning curve of the SA 

search with initial random arrays setting (405 iterations) is shown in the left portion 

(denoted as 1stSA) of Fig. 7 (a).  The curve fluctuates initially and then converges to 

a constant value 2.5767 between the 351st and the 405th iteration.  The optimal 

microphone deployment and beam pattern are shown in Figs. 7 (b) and (c).  In 

addition to optimizing the microphone positions, optimizing the microphone weights 

can further improve the value of the cost function.   
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On the basis of the configuration found previously by the SA, we continue to 

optimize the weights of microphones again using the SA algorithm.  The number of 

iterations is increased to 1000.  Starting from unity weights, the microphone weights 

are adjusted in each iteration with a random perturbation within the range of -0.1 to 

0.1.  The learning curve is shown in the right portion (denoted as 2ndSA) of Fig. 7 (a).  

The cost function is further increased to 2.7561 at the 1283rd iteration.  The resulting 

beam pattern is shown in Fig. 7 (d), where a unique main-lobe is clearly visible.   

Instead of the initial random arrays setting, the simulations using the MC and SA 

algorithms are also ran with initial URA setting.  To save space, the results are only 

listed in Table 1. 

 

2.3.2   Optimizing array deployment with IB constraint 

In this section, the SA, IBMC and a combined SA-IBMC algorithm are exploited 

to optimize microphone deployment with the IB constraint.  The MC search with IB 

constraint is particularly named IBMC in this thesis.  In order to compare the 

efficiency of IBMC with MC, the preset run iterations are chosen to be 105, as the 

same number of MC simulation.  The learning curve of the IBMC search with 

random arrays setting is shown in Fig. 8 (a).  The search attains the optimal cost 

function 2.5638 at the 7662nd iteration.  The corresponding microphone positions and 

beam pattern are shown in Figs. 8 (b) and (c), respectively.  

Apart from the IBMC search, both microphone positions and weights are to be 

optimized using the SA algorithm.  Specifically, the combined SA-IBMC method 

proceeds with three stages—the 1stSA stage, the IBMC stage, and the 2ndSA stage.  

The parameters of the two SA stages are identical to those in Section 5.1.  The 

learning curve of the 1stSA stage (405 iterations) is shown in the left portion of Fig. 9 

(a).  The curve fluctuates initially and then converges to a constant value 2.5328 
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between the 208th and the 405th iteration.  The resulting microphone deployment and 

beam pattern are shown in Figs. 9 (b) and (c).  Being able to avoid local minima by 

accepting “bad” solutions in the initial SA search can be a benefit and shortcoming as 

well.  It happens more often than never that the SA algorithm can miss the optimal 

solution in the initial stage and converge prematurely to a suboptimal one.  A hybrid 

SA-IBMC approach is used in an attempt to address this problem.   

The previous deployment obtained by the SA search is used as the input to the 

IBMC simulation.  The microphone position can be randomly chosen from the nine 

grid points in the localized region.  Each region necessarily contains one and only 

one microphone.  Exhaustive search would require prohibitively 930 combinations 

for a 30-element array, while only 100 iterations are required in the IBMC search.  

The learning curve of the IBMC (iteration 406-505) is shown in Fig. 9 (a).  By the 

IBMC search, the cost function is further increased to 2.5465 at the 482nd iteration.  

Figures 9 (d) and (e) show the optimal microphone positions and beam pattern 

obtained at the 482nd iteration.  Next, in the 2ndSA stage, the microphone weights are 

optimized based on the configuration found previously by the SA-IBMC approach.  

The microphone weights initially set to unity are adjusted in each iteration with a 

random perturbation within the range of -0.1 to 0.1.  The learning curve in 506 

iterations is shown in Fig. 9 (a).  The cost function is further increased to 2.6602 at 

the 1429th iteration.  The resulting beam pattern is shown in Fig. 9 (f), where a 

unique main-lobe is clearly visible.   

Apart from the URA, the random array deployment is also used as the initial 

setting in the simulation.  For brevity, the results of MC, IBMC, SA and SA-IBMC 

simulations are summarized in Table 1.  The simulation results obtained with and 

without the IB constraint are compared in terms of number of iterations and the 

maximum cost function values.  Although the MC approach has reached the highest 
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cost function (Q = 2.6532), it takes 27596 iterations to achieve this value.  By 

comparing the results of the MC and IBMC (with the URA as the initial setting), we 

found that the IBMC approach can attain comparable cost function value to the MC 

approach with far less amount of computation (Q = 2.5638 at the 7662nd iteration of 

IBMC vs. Q = 2.6532 at the 27596th iteration of MC).  In comparison with the results 

obtained using the SA algorithm with the IB constraint (Q = 2.6602 for the URA as 

the initial setting and Q = 2.6573 for a random array as the initial setting), the SA 

approach with no IB constraint has attained a slightly higher cost function (Q = 

2.7561) with comparable computational complexity.  It all boils down to the tradeoff 

between search time and optimality.   

Incorporating the IB constraint could potentially have the following benefits.  

First, the IBMC algorithm is computationally more efficient than the plain MC 

algorithm because of smaller search areas.  Second, in the hybrid SA-IBMC 

approach, the IB constraint could possibly improve the SA results when the SA 

algorithm converges prematurely to a suboptimal result.  Third, the IB constraint 

normally results in uniform distributions of microphones.  By “uniform”, we simply 

mean that microphones would not concentrate at only a few areas, which should not 

be confused with the deployment of the constant-spacing uniform arrays.  In 

summary, it is fair to say that the IB constraint significantly reduces the computation 

complexity at the risk of converging to a suboptimal solution which may not be far 

from the global optimum.  This is generally sufficient in practical applications. 

Apart from the source frequency 1.7 kHz, we also run the simulation for the 

other frequencies 500 Hz and 1 kHz.  For brevity, we only summarize the results in 

Table 2.  Random arrays yield unique main-lobe and higher cost function than the 

URA at the frequency 1 kHz.  In lower frequency 500 Hz, no grating lobes are seen 

in the beam pattern of URA, while higher side-lobe level is found in the beam pattern 
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of the random array.  This leads to a higher value of cost function for the URA than 

the random array at low frequencies.   

 

3. Methods for Direction of Arrival (DOA) estimation 

3.1 DAS algorithm 

Before discussing DOA algorithms, an array model should be built. Considering 

an URA, the inter-element spacing is .  Assume  is a broadband frequency d ( )r t

ω  at a reference point: 

( ) ( ) j tr t s t e ω= , (7) 

where  is the phasor of .  Let ( )s t ( )r t rG  be the unit vector pointing to the sound 

source direction.  The signal received at the mth microphone located at mxG  is 

denoted as ( )mx t : 

( ) ( ) ( ) ( )
m

m m
m m

x rjx r x r j tc
c c ( )mx t r t n t s t e e n t

ω ω
⋅

⋅ ⋅= + + = + +

G G
G G G G , (8)  

where  is the noise signal of the mth microhphne and c is the speed of sound.  

In general, 

( )mn t

( ) (mx r
cs t s t⋅+ ≈ )
G G

 for far-field approximation.  For M microphone signals 

1( ), , ( )Mx t x" t , the data vector can be formed as 

1

1 1( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( )

M
M M

x rj
c

j t

x rj
c

x t v t
t r

x t v t

e
s t e

e

ω

ω

ω

⋅

⋅

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= = + = +⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎢ ⎥⎣ ⎦

x a

G G

G G

G# ## r t tn , (9)  

where a( r ) is called the array manifold vector.   G

Figure 10 illustrates a URA.  There are I and J microphones with inter-element 

spacing dx and dy in the x and y axis, respectively.  Let the left and the upper corner 

element is the reference point.  The vector of pointing to each microphone from 

reference point in the polar coordinate is given as 
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( ) (( 1) , ( 1) ,0)ij x yx t i d j d= − −
G

, (10)  

where i = 1,2,…,I and j = 1,2,…,J.  The unit vector rG  pointing for a sound source 

at the look directions θ and Φ is given by 

(sin sin ,sin cos ,cos )r θ φ θ φ θ=
G

. (11)  

The delay of each microphone will be given by 

( 1) sin sin ( 1) sin cosij x y
ij

x r i d j d
c c

θ φ θ
τ

⋅ − + −
= =
G G φ

. (12)  

Then the array manifold vector can be written as 

sin sin

( 1) sin sin

sin cos

sin sin sin cos

( 1) sin sin ( 1) sin cos

1

( , , )

x

x

y

x y

x y

dj
c

I dj
c

d
j

c

d d
j

c

I d J d
j

c

e

e
a

e

e

e

θ φω

θ φω

θ φ
ω

θ φ θ φ
ω

θ φ θ
ω

ω θ φ

−

+

− + − φ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#

#

. (13)  

With reference to the Fig. 11, the output of DAS beamformer is defined as 

0
1

( , ) ( )
M

m m
m

y t x tθ τ
=

= −∑ , (14)  

where ( )mx t

m

 is the signal received by mth microphone, as shown in Eq. (9).  In Eq. 

(14), τ  are the steering delays appropriate for focusing the array to the look 

direction, 0θ , and compensation for the direct path propagation delay associated with 

the desired signal at each microphone.   

    In this thesis, the planar waves of far-field assumption are considered to be 

spherical waves because the waves are not really comes from infinite distances.  

Consequently, the delay of each channel in Eq. (14) can be calculated by  
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m
m

x
c

τ Δ
= , (15)  

where mxΔ  is the distance between reference source positions sθ  and mth 

microphone.  However, the delay usually is not an integer number in the digital 

processing.  There are many ways to deal with the fractional delay problem.  The 

simplest approach is Lagrange interpolation [29].  By multiplying mτ  by sampling 

frequency sf , we can acquire the fractional delay mψ  including integral component 

 and fractional component , respectively.  The decomposition is illustrated as  mD me

m s m m mf D eτ ψ⋅ = = + . (16)  

For simplicity, the FIR filter coefficients are obtained from Eq. (17) to realize the 

Lagrange interpolation.   

0
,  0,1, 2,

N
m

mk
l
l k

e lw k
k l=

≠

−
= =

−∏ "N . (17)  

The coefficients for the Lagrange filters of order N=1, 2 are given in the Table 3.  

The case N=1 corresponds to linear interpolation between two samples.  In our 

decision, the case N=2 is employed.   

 

3.2 TR algorithm 

The TR algorithm is simply based on an idea of reversing the received signal.  

Figure 12 shows the block diagram of TR algorithm.  First, use a microphone array 

to receive and save sound data.  The signal x(t) is reversed to x(-t) by TR block.  

Then the reversed signal x(-t) is played by a loudspeaker array. 

 

3.3 SIMO-ESIF algorithm 

The central idea of the proposed SIMO-ESIF algorithm is introduced in this 

section.  In Fig. 13, M microphones are employed to pick up the sound emitting from 

 15



 

a source positioned in the far-field.  In the frequency domain, the sound pressure 

received at the microphones and the source signal can be related by a 1M ×  transfer 

matrix H 

( )q ω=p H , (18)  

where ( )q ω  is the Fourier transform of a scalar source strength,  

[ ]1( ) ( ) T
Mp pω ω=p "

[

 is the pressure vector with “T” denoting matrix transpose, and 

]1( ) ( ) T
Mh hω ω=H " is the 1M ×  propagation matrix.  The aim here is to estimate 

the source signal (q )ω  based on the pressure measurement p by using a set of 

inverse filters 

[ ]1( ) ( ) T
Mc cω ω=C "  (19)  

such that  and therefore T ≈C H I

ˆ T Tq == C p C Hq q≈ . (20)  

On the other hand, this problem can also be written in the context of the following 

least-squares optimization problem 

2

2
min

q
qp - H , (21)  

where 
2

 denotes vector 2-norm.  This is an overdetermined problem whose 

least-squares solution is given by 

1
2

2

ˆ ( )
H

H Hq −=
H pH H H p
H

= , (22)  

where the superscript “H” denotes hermitian transpose.  Comparison of Eqs. (20) 

and (22) yields the following optimal inverse filter 

2

2

H
T =

HC
H

, (23)  

If the scalar 2

2
H  is omitted, the inverse filters above reduce to the 
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“phase-conjugated” filters, or the “time-reversed” filters in the free-field context.  

Specifically, for a point source in the free field, it is straightforward to show that 

2
22

1

1M

m mr=

=∑H , (24)  

where  is the distance between source and the mth microphone.  Since mr
2

2
H  is a 

frequency-independent constant, the inverse filters and the time-reversed filters differ 

only by a constant.  In a reverberant environment, these filters are different in 

general.  Being able to incorporate the reverberant characteristics in the measured 

acoustical plant model represents an advantage of the proposed approach over 

conventional methods such as the DAS beamformer. 

In real-time implementation, the inverse filters are converted to the time-domain 

finite-impulse-response (FIR) filters with the aid of inverse fast Fourier transform 

(IFFT) and circular shift.  Thus, the source signal can be recovered by filtering the 

pressure signals with the inverse filters c(k): 

ˆ( ) ( ) ( )Tq k k k∗= c p , (25)  

where k is discrete-time index, c(k) is the impulse response of the inverse filter, and 

“*” denotes convolution. 

 

3.4 Minimum Variance Distortionless Response (MVDR)algorithm 

Another approach has been proposed using the data covariance matrix.  This 

method has been shown to provide higher resolution in DOA estimations than the 

DAS algorithm.  In order to facilitate digital processing, we simultaneously sample 

all array inputs to form digital data ( ) ( ),  1, 2, .m mx t x kT k= = "   For D sources, we 

may invoke principle of superposition to write 
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1

1
1

( )
( ) ( , ) ( ) ( ) [ ( , )  ( , )] ( )

( )

( ) ( )

D

i j i
i

j

r k
k r k k

r k

k k

ω θ ω θ ω θ
=

⎡ ⎤
⎢ ⎥= + = ⎢ ⎥
⎢ ⎥⎣ ⎦

= +

∑x a n a a n

Ar n

" # k+
, (26)  

where iθ  is the direction of the ith source, r(k) is the source signal vector and A is 

DOA matrix.  A beamformer output is a linear combiner that produces an output 

signal by weighting and summing all components. 

1

( ) ( ) ( )
M

H
m m

m

y k w x k∗

=

= =∑ w x k , (27)  

where w is the weight vector given by .  Because the MVDR 

method exploits the correlation between array input signals, it is necessary to 

calculate the array signal correlation matrix. 

1[   ]T
Mw w=w "

{ }( ) ( )H
xx E k k=R x x . (28)  

Suppose that the noise is uncorrelated with signals { }( ) ( ) 0HE k k =r n  and the noise 

is spatially white { } 2( ) ( )H
nE k k σ=n n I .  By the preceding assumption, the Eq. (28) 

can be rewritten as 

{ } { }

2

( ) ( ) ( ) ( )H H
xx

H
rr nn

H
rr n

E k k E k k

σ

= +

= +

= +

R A r r n n

AR A R

AR A I

, (29)  

where Rrr and Rnn are the source and noise correlation matrices, respectively.  In 

practice, the data correlation matrix Rxx is usually approximated by the data 

covariance covariance 

( ) (1 ) ( 1),  1, 2 ,  (0)H
xx p p xx xxp p p Pα α= + − − =R x x R R" = 0 . (30)  

At this recursive equation, α  is a constant which satisfied 0 1α≤ ≤

[

.  The received 

signal is divided to p frames and rearranged to the data vector 1 2  p ]=x x x x" . 
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In the following, the aim is to find the MVDR weight vector MVw .  An 

optimization problem is given for solving the unknown vector MVw .  The MVDR 

beamformer attempts to minimize the output power 

{ } { }22( ) ( )H H
MV MV xxE y k E k= =w x w R wMV . (31)  

Another constraint is to maintain unity in the look direction .  The 

MVDR beamforming suppresses the undesired interference from 

0( ) 1H
MV θ =w a

0θ θ≠  and the 

noise.  The problem can be expressed as follows 

0

min

subject to  ( , ) 1
MV

H
MV xx MV

MV ω θ =
w

w R w

w a
. (32)  

This problem can be solved by Lagrange multiplier method 

0

0

[ ( , ) 1]

( , ) 1
MV MV

H
MV xx MV MV

MV

λ ω θ

ω θ

⎧∇ − ∇⎪
⎨

=⎪⎩

w ww R w w a

w a

0− =
. (33)  

If Rxx is nonsingular, Rxx can be inversed to solve the unknown vector by  

1
0( , )MV xxλ ω θ−=w R a , (34)  

where 1
0 0

1
( , ) ( , )

H
MV xx MV H

xx

λ
ω θ ω−= =w R w

a R a θ
 is the beamformer output power.  

Then λ  is substituted in Eq. (34) to obtain the MVDR weight  
1

0
1

0 0

( , )
( , ) ( , )

xx
MV H

xx

ω θ
ω θ ω

−

−=
R aw

a R a θ
. (35)  

In the preceding results, it is convenient to obtain the spatial power spectrum ( )MVS θ  

by continuing altering θ  

1

1( )
( , ) ( , )

H
MV MV xx MV H

xx

S θ
ω θ ω−= =w R w

a R a θ . (36)  

The spatial power spectrum ( )MVS θ  exhibits J peaks approximately at 1   Dθ θ" . 

 

3.5 Multiple Signal Classification (MUSIC) algorithm 

In contrast to MVDR which are based on the covariance matrix of the received 
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signals, an approach of DOA estimation has been proposed by exploiting the 

eigenvalue decomposition (EVD) of the covariance matrix.  Firstly, the array 

covariance matrix Rxx in Eq. (30) is represented by EVD 

2H
xx rr nσ

1−= + =R AR A I UΛU , (37)  

where U is a unitary matrix and comprise M linearly independent eigenvectors 

1 Mu u… .  The eigenvector associate with M eigenvalues 1 Mα α" .  The array 

correlation matrix can be represented as 

1

1 1

2 2
1 2

1

0 0
0 0

[  ]

0 0

H
xx

H

H M
H

M m m m
m

H
M M

α
α

α

α

−

=

= =

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

∑

R UΛU UΛU

u
u

u u u u u

u

"

"
# % # #

"

. (38)  

The diagonal terms of Λ have been arranged with 1 2 Mα α≥ ≥ ≥" α .  The noise 

term 2
nσ I  can be yielded to 

2 2 1 2 2

1

M
H H

n n n n m
m

σ σ σ σ−

=

= = = ∑I UU UU u um . (39)  

Because A consists of D sources, we assume that A and Rrr are of full rank D. 

Subsequently the signal-only correlation matrix Cxx is generated by subtracting the 

noise component from Rxx 

2

1
( )

M
H H

x x rr m n m
m

α σ
=

= = −∑C AR A u um . (40)  

If Rrr is rank D and small than the array size M, the smallest M D−  eigenvalues 

1D Mα α+ "  are equivalent to the noise power.  Therefore the range of Cxx are 

spanned by  to 1u Du .  If the array has no coherent source between any of two 

received signals, Rrr only has nonzero values on the diagonal terms which reprensent 

the power of the D sources.  Note that the range of Cxx is identical to the range of A 

which is spanned by the manifold vectors 1( , ) ( , )Dω θ ω θa a" .  The relation between 
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Cxx and A is 

{ } { } { }1span ( , ), , ( , ) span , ,1D DR ω θ ω θ= =A a a u" u"

Mu

 (41)  

and 

{ } { }1span , ,DR ⊥
+=A u " , (42)  

where { }1span , , Du u"  and { }1span , ,D+u u" M

M"

 are called the signal subspace and 

noise subspace, respectively.  Because the subspace is orthogonal to the noise 

subspace such that 

( , ) 0,  1, 2, , ;  1, 2, ,
s

H
m d sd D m D Dω θ = = = + +u a " . (43)  

The MUSIC technique is to exploit Eq. (43) to improve the DOA estimations.  The 

eigenvectors 1, ,D M+u " u  is used to construct the projection matrix as follows 

1

M
H

m m N
m J= +

=∑ u u P . (44)  

From Eq. (43), the direction of the source ( 1, , )i i Dθ = "  can be found by solving 

1

( , ) ( , ) ,  
s

M
H

N m m
m J

dω θ ω θ
= +

= =∑P a u u a 0 θ θ=

N

. (45)  

The projection matrix has the properties of 2   H
N N Nand= =P P P P .  The problem of 

Eq. (45) can be extended to solve Eq. (46) for simplicity. 

2

2
( , ) ( , ) ( , ) 0,  H H

N N N iω θ ω θ ω θ θ=P a a P P a θ= = . (46)  

Equivalently, the inverse of Eq. (46) has the infinitely value when , 1, ,i i Dθ θ= = " .  

The inverse of Eq. (46) is denoted as MUSIC spectrum. 

1( )
( , ) ( , )MU H

N

S θ
ω θ ω

=
a P a θ . (47)  

The peaks of the MUSIC spectrum are the directions of sources.  Not that the 

MUSIC spectrum does not exhibit infinitely high peaks due to noises in practice.   

    How to determine D is a problem.  It would rather be overestimated than 

underestimated.  The Akaike information criterion (AIC) [30] can be employed to 
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choose D.  By the spirit of AIC is to calculate matching error and weight the 

truncated order, the equation can be defined as 

1

( ) ( ) ,   ( )
m

H
xx xx A xx i i iF

i
AIC m m w m m α∗ ∗

=

= − + =∑R R R u u . (48)  

The EVD of data covariance matrix is used to calculate the matching error, which is 

( )xx xx F
m∗−R R .  The weight part is to weight order by Aw  in order to make the 

order with lowest AIC value would be the same order in the error line which has an 

apparent turning point.  For a preset two point sources simulation, the error, weight 

and AIC lines are shown in Fig. 14 (a).  From the figure, the turning point of error 

line is at the 4th order.  Thus the weight Aw  should be chosen to make the AIC line 

will have a lowest point at that order.  In our simulation, the value is chosen to be 

0.5*10^12.  Figure 14(b) shows the AIC line with different weight.   

 

3.6 Numerical simulations of DOA algorithms 

In order to validate and compare the several methods of DOA estimation, 

numerical simulations are conducted for a 30-channel URA and a random array 

optimized by SA-IBMC optimization method.  The aperture of array is 0.4m×0.5m 

(d = 0.1m) for URA and 0.5m×0.6m for random array, as shown in Figs. 15 (a) and (b).  

There are two simulated whitenoise sources located at the positions (-0.5m, 0.5m) and 

(0.5m, -0.5m).  The sources are 1m from array surface.  Assume the sound velocity 

cs is 343 m/s.  Consider the / 2λ  rule, the maximum measurement frequency with 

inter-element spacing 0.1m is max / 2 1.7 kHzf c d= =

/ 4d

.  Therefore, we choose point 

sources with the frequencies 1 kHz ( λ= ) and 7 kHz ( 2d λ= ) to be the observed 

frequencies in simulations.  The magnitude of beam pattern or spectrum of each 

approach is normalized to a range from 0 to 1.  This makes the results of five 

methods can easily be compared in main-lobe width and side-lobes levels.   
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Figures 13 (a)-(j) illustrate the noise maps of two simulated point sources 

obtained using different acoustic imaging algorithms with a URA or an optimized 

random array in the frequency 1 kHz.  At this frequency, the spacing is less than a 

half of wave length.  Therefore, grating lobes are not occurring in the simulated 

results of URA and random configurations.  The noise maps obtained using DAS and 

TR algorithms are shown in Figs. 13 (a)-(d).  Both of these figures are with poor 

resolution.  They have very large main lobes but cannot correctly point the preset 

source positions.  The noise maps of another lower resolution algorithm SIMO-ESIF 

is shown in Figs. 16 (e) and (f).  Compared with results of DAS and TR, SIMO-ESIF 

also has large main lobes but can correctly point the source positions.   Figures 16 

(g)-(j) show the noise maps obtained using MVDR and MUSIC algorithms with two 

array configurations.  As predicted, the results validated that the MVDR and MUSIC 

are the methods which can achieve higher resolutions, especially MUSIC.  They can 

correctly localize the preset source points with narrow main lobes.  The side-lobes of 

MVDR are higher than MUSIC.   

    Apart from simulations at frequency 1 kHz, we also run some simulations in a 

higher frequency to make the spacing exceeds a half of a wave length.  Clearly, the 

frequency is chosen to be 7 kHz.  At this frequency, the spacing is approximate two 

times of a length.  Figures 14(a)-(j) show the noise maps of two simulated point 

sources of DOA estimation using different approaches with a URA and an optimized 

random array in the frequency 7 kHz.  The simulated results are largely identical but 

minor differences with the results in the frequency 1 kHz except the grating lobes 

appeared at those power spectrums with URA configuration.  In SIMO-ESIF and 

MUSIC cases, the noise maps have no clearly visible grating lobes with URA 

configuration.  Nevertheless, the noise maps obtained using SIMO-ESIF still have 

large main lobes and much higher side lobes than MUSIC.  Summary, the MUSIC is 
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the algorithm which can obtain highest resolution in the frequency from low to high.  

The MVDR is worse than MUSIC but still can get relatively higher resolution than 

other algorithms.  The proposed SIMO-ESIF is the only in low resolution algorithms 

which can use URA to localize high frequency noise sources.  The comparisons of 

these five acoustic imaging algorithms are illustrated in Table 4.   

 

 24



 

4.  Experimental verifications 

To validate the MUSIC algorithm, practical sources including loudspeakers, a 

compressor and a scooter were chosen as the test targets for experiments.  Figure 18 

shows the beamformer properties at 30o opening angle.  In our experimental 

arrangement, inter-element spacing 0.1md = array aperture  and 

distance between sources plane and microphone array surface .  Assume 

sound velocity 

0.5mAD =

1mz =

345m/svc = .  The maximum and minimum measureable frequency 

can be calculated by 

min

4  
3 2

  

v
max

v

A

cf
d

cf
D

= ⋅

=
. (49)  

From Eq. (49), the maximum and minimum measureable frequency is 

, respectively.  The resolution R is 2.3 kHz and 690Hz

  1.22
A

zR
D

λ= . (50)  

And the area covered L is 

1.15 .L = z . (51)  

Therefore, the resolution of frequency 1 kHz and 7 kHz is 0.84m and 0.12m, 

respectively.  The area covered is 1.15m at distance z = 1m.  Figure 19 shows the 

experimental arrangement.  In experiments, the array configurations are a 30-channe 

URA deployed as 5×6 and a 30-channel random array that was optimized in an 

informal numerical simulation.  The URA with spacing 0.1m and optimized random 

arrayare deployed as Figs. 15 (a) and (b), respectively.  Thirty array microphones, 

PCB 130D20, were used to make the sound pressure measurements.  Two PXI 4496 

systems [31] in conjunction with LabVIEW 8.5 software [31] were used for data 

acquisition and processing.   
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4.1 Loudspeakers experiment 

In loudspeakers experiments, two loudspeakers are situated at (0.1m, 0.2m) and 

(0.5m, 0.2m), respectively.  These loudspeakers with whitenoise sources are situated 

at 1m far from array surface.  The observed frequencies are chosen to be 1 kHz 

( / 4d λ= ) and 7 kHz ( 2d λ= ), as the same frequencies in numerical simulations.  

Figures 20 (a)-(j) show the noise maps obtained using five acoustic imaging 

algorithms with random array configuration at frequency 1 kHz.  In this low 

frequency, the distance between loudspeakers is 0.4m.  The distance is small than the 

resolution R = 0.84m calculated by Eq. (50).  Therefore, it cannot localize the two 

too closer noise sources with either URA or random array configuration.  But in high 

resolution MVDR and MUSIC algorithms, it perhaps distinguishes the two sources.   

For higher frequency experiments, the noise maps are shown in Figs. 21 (a)-(j).  

Obviously, grating lobes occur at 7 kHz with the URA configuration.  On the 

contrary, the experimental results using random array are well localized the source 

positions.  The experimental results get the same summary with numerical 

simulations. 

 

4.2 Compressor experiment 

A compressor is chosen to be a more practical sound source in measurements 

using the optimized random array.  The compressor is mounted on a table inside a 

semi-anechoic room.  In deployment, the compressor is located in 1m from array 

surface.  The observed frequency is chosen to be 1 kHz.  The noise map obtained 

using MUSIC algorithm with the optimized random array is shown in Fig. 22.  The 

major noise is found at the air intake position.   

 

4.3 Scooter experiment 
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In this experiment, a 125cc scooter served as a more practical source to examine 

the capability of MUSIC in DOA estimation with non-stationary sources.  The 

scooter is mounted on a dynamometer inside a semi-anechoic room.  The distance 

between the scooter and array is 3m.  The observed frequency is chosen to be 7 kHz.  

The MUSIC algorithm was used to estimate the DOA on the right side of the scooter 

in a run-up test.  The engine speed increased from 1500 rpm to 7500 rpm within ten 

seconds.  Figure 23 shows the noise map.  From the figure, it revealed that the inlet 

and outlet of exhaust pipe were the major noise source positions.  
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5. Conclusion 

There have two major researches in this thesis.  First, optimized planar array 

deployment for source imaging is investigated in this thesis.  Global optimization 

algorithms have been developed to facilitate the search of the optimized microphone 

deployment.  The SA algorithm and the combined SA-IBMC algorithm prove 

effective in finding the optimal deployment.  For far-field array with sparse 

deployment in which inter-element spacing is large, random deployment with optimal 

weights is crucial to avoid grating lobes.  As predicted by the conventional wisdom, 

the optimized random sparse array has excellent beam pattern with a unique 

main-lobe.  Second, several acoustic imaging algorithms including DAS, TR, 

MVDR, MUSIC and an inverse filter-based method SIMO-ESIF have been developed 

to estimate DOA.   The resolutions of noise maps in low frequency are much worse 

than in high frequency with random array configuration.  The proposed SIMO-ESIF 

approach can use URA to estimate DOA in high frequency without grating lobes 

problem.  As expected, the high resolution methods such as MVDR and MUSIC can 

obtain much greater results than DAS, TR and SIMO-ESIF in localizing sound source 

positions.  
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Table 1. The search performance of different optimization methods for array 

deployment with the inter-element spacing d = 0.6 m (3λ at the frequency 

1.7 kHz).  The letter “w” indicates that weight optimization is performed. 

Constraint Method 
Find best  Q

Iterations 

Best  Q

(Linear) 

without IB 

(initially URA) 

MC 27678 2.6532 

SA 190 2.5833 

SA + w 1391 2.7218 

without IB 

(initially random 

 array) 

MC 27596 2.6532 

SA 351 2.5767 

SA + w 1283 2.7561 

with IB 

(initially URA) 

IBMC 7662 2.5638 

SA 208 2.5328 

SA + IBMC 482 2.5465 

SA + IBMC + w 1429 2.6602 

with IB 

(initially random 

 array) 

IBMC 23285 2.5617 

SA 222 2.5224 

SA + IBMC 406 2.5224 

SA + IBMC + w 1352 2.6573 
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Table 2. The comparison of converged cost function Q of the URA and the optimized 

random arrays at three different frequencies. 

Array 
f = 500 Hz 

( )d λ=  

f = 1 kHz 

( 1.75d )λ=  

f = 1.7 kHz 

( 3d )λ=  

URA 4.0216 1.0192 1.0261 

Random array 

(without IB, initially URA) 
2.5459 2.5459 2.7218 

Random array 

(without IB, initially random array)
2.5961 2.5451 2.7561 

Random array 

(with IB, initially URA) 
2.5048 2.3324 2.6602 

Random array 

(with IB, initially random array) 
2.6573 2.4305 2.6573 
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Table 3. Lagrange interpolation FIR filter coefficients for N = 1 and N = 2 

 wm0 wm1 wm2 

N = 1 1 - em em  

N = 2  (em - 1)( em - 2) / 2 -em ( em - 2) em( em - 1) / 2 

 

 34



 

Table 4. Comparisons of acoustic imaging algorithms.  

 DAS TR SIMO-ESIF MVDR MUSIC 

algorithm delay-sum time-reversed inverse 

filtering 

MVDR MUSIC 

resolution low low low high very high 

complexity low low low high high 

area covered large large small/large large large 

processing 

domain 

time time frequency frequency frequency 

frequency 

range 

high high low/high low/high low/high 

sample/batch sample batch batch batch batch 

robustness to 

reverberation 

poor high high low low 

acoustic 

variables 

no no yes no no 
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Fig 1. A plane wave incident from the direction to a far-field array. κ

k= −k κ

Plane wave 

1r 2r  mr 
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(a) 

dx

mxd

myd

yd

 

 
(b) 

Fig 2. The schematic diagram of localized regions and grid points.  (a) The   

localized regions (dashed lines) on the microphone surface with the inter-element 

spacing d = 0.6m.  The symbol “□” indicates the microphone position.  (b) The 

grid on a localized region.  The microphone is constrained to move to one of 

nine grid points (including itself) in the far-field optimization.  The microphone 

is assigned to any grid point in the localized region in the near-field optimization 

for the SA search. 
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Set  grid points on the microphone surface.  Initially 

microphone positions , beam pattern , cost functionQ . 

m n×

ix ib i

opt i=x x , opt i=b b , opt iQ Q= .

Randomly allocate M  microphones to the 

 
Fig 3. The flowchart of the IBMC optimization algorithm. 

No No

Yes 
Yes 

Compute beam pattern b  and the cost function Q . 

opQ Q>  t
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optQ Q
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=

x x

t =b b  

1I + IBMCI I>  

Stop 
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Choose initial temperature , final temperature iT fT ,  

and annealing coefficient .a

,iT a T= ×  opt i=x x , opt i=b b , opt iQ Q= . 

Randomly allocate M microphones to nine grid points.  

opt

opt

optQ Q

=

=

=

x x

b b

No No
P γ>

Yes

No 

Yes

Yes 

a T×  

Compute beam pattern and the cost function b Q . 

fT T≤  0QΔ >

Stop 

Set m n×  grids on the microphone surface.  Initially microphone 

positions x , beam patternb , cost function . i i iQ

 

Fig 4. The flowchart of the SA optimization algorithm. 
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(a) 

 
(b) 

Fig 5. The URA with inter-element spacing 0.6m (3λ at the frequency 1.7 kHz).  (a) 

Array deployment, (b) beam pattern. 
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(a) 

 

(b) 
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(c) 

Fig 6. The array optimized using the MC algorithm without the IB constraint at the 

frequency 1.7 kHz.  Maximum cost function Q = 2.6532 is attained at the 

27596th iteration.  The circle indicates the main-lobe.  (a) Learning curve, (b) 

optimal array deployment, (c) beam pattern. 
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(a) 

 

(b) 
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(c) 

 
(d) 

Fig 7. The array optimized using the SA algorithm without the IB constraint at the 

frequency 1.7 kHz.  Maximum cost function Q = 2.7561 is attained at the 

1283rd iteration.  The circle indicates the main-lobe.  (a) Learning curve, (b) 

optimal array deployment, (c) beam pattern with deployment optimized, (d) 

beam pattern with weights optimized. 

 44
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(c) 

Fig 8. The array optimized using the IBMC algorithm at the frequency 1.7 kHz.  

Maximum cost function Q = 2.5638 is attained at the 7662nd iteration.  The 

circle indicates the main-lobe.  (a) Learning curve, (b) optimal array 

deployment, (c) beam pattern. 
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(b) 
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(d) 
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(e) 

 

(f) 

Fig 9. The array optimized using the combined SA-IBMC algorithm with the IB 

constraint at the frequency 1.7 kHz.  Maximum cost function Q = 2.6602 is 

attained at the 1429th iteration.  The circle indicates the main-lobe.  (a) 

Learning curve, (b) optimal array deployment obtained by SA, (c) beam pattern 

obtained by SA, (d) optimal array deployment obtained by SA-IBMC search, (e) 

beam pattern obtained by SA-IBMC, (f) beam pattern with weights optimized. 
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Fig 10. A uniform rectangular array (URA).  A point sound source is located at 

far-field. 
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Fig 11. The DAS beamformer. 
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Fig 12. The block diagram of the TR algorithm. 
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Fig 13. The block diagram of the SIMO-ESIF algorithm. 
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(a) 

 
(b) 

Fig 14. Decide source numbers by AIC algorithm.  The truncated order is 

corresponded to the lowest point.  (a) Error, weight and AIC lines, (b) AIC lines 

with different weights.   
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(a) 

 

(b) 

Fig 15. The array configurations for DOA estimation simulations and experiments.  

(a) URA and (b) optimized random array. 
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(f) 
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(h) 
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(j) 
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Fig 16. The noise maps of two simulated point sources obtained using five acoustic 

imaging algorithms with 30-channel URA and random array.  The squares are 

the preset sound source positions.  The simulated whitenoise sources located at 

the positions (-0.5m, 0.5m) and (0.5m, -0.5m).  The observed frequency is 1 

kHz ( / 4d λ= ).  The power spectrums obtained using (a) DAS with URA 

configuration, (b) DAS with random array configuration, (c) TR with URA 

configuration, (d) TR with random array configuration, (e) SIMO-ESIF with 

URA configuration, (f) SIMO-ESIF with random array configuration, (g) MVDR 

with URA configuration, (h) MVDR with random array configuration, (i) 

MUSIC with URA configuration and (j) MUSIC with random array 

configuration. 
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(f) 
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Fig 17. The noise maps of two simulated point sources obtained using five acoustic 

imaging algorithms with 30-channel URA and random array.  The squares are 

the preset sound source positions.  The simulated whitenoise sources located at 

the positions (-0.5m, 0.5m) and (0.5m, -0.5m).  The observed frequency is 7 

kHz ( 2d λ= ).  The power spectrums obtained using (a) DAS with URA 

configuration, (b) DAS with random array configuration, (c) TR with URA 

configuration, (d) TR with random array configuration, (e) SIMO-ESIF with 

URA configuration, (f) SIMO-ESIF with random array configuration, (g) MVDR 

with URA configuration, (h) MVDR with random array configuration, (i) 

MUSIC with URA configuration and (j) MUSIC with random array 

configuration. 
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Fig 18. Beamformer properties at 30o opening angle. 
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Fig 19. The experimental arrangement for loudspeakers measurements inside a 

semi-anechoic chamber.  An optimized random array is used to deploy 30 

microphones. 
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(i) 

 

(j) 

Fig 20. The noise maps of two loudspeakers obtained using five acoustic imaging 

algorithms with 30-channel URA and random array.  The squares are the preset 
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sound source positions.  The simulated whitenoise sources located at the 

positions (-0.5m, 0.5m) and (0.5m, -0.5m).  The observed frequency is 1 kHz 

( / 4d λ= ).  The power spectrums obtained using (a) DAS with URA 

configuration, (b) DAS with random array configuration, (c) TR with URA 

configuration, (d) TR with random array configuration, (e) SIMO-ESIF with 

URA configuration, (f) SIMO-ESIF with random array configuration, (g) MVDR 

with URA configuration, (h) MVDR with random array configuration, (i) 

MUSIC with URA configuration and (j) MUSIC with random array 

configuration. 
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(i) 

 

(j) 

Fig 21. The noise maps of two loudspeakers obtained using five acoustic imaging 

algorithms with 30-channel URA and random array.  The squares are the preset 
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sound source positions.  The simulated whitenoise sources located at the 

positions (-0.5m, 0.5m) and (0.5m, -0.5m).  The observed frequency is 7 kHz 

( 2d λ= ).  The power spectrums obtained using (a) DAS with URA 

configuration, (b) DAS with random array configuration, (c) TR with URA 

configuration, (d) TR with random array configuration, (e) SIMO-ESIF with 

URA configuration, (f) SIMO-ESIF with random array configuration, (g) MVDR 

with URA configuration, (h) MVDR with random array configuration, (i) 

MUSIC with URA configuration and (j) MUSIC with random array 

configuration. 
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Fig 22. Noise map of a compressor obtained using MUSIC method.  The observed 

frequency is 1 kHz. 
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Fig 23. Noise map of a scooter obtained using MUSIC method.  The observed 

frequency is 7 kHz. 

 


