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Abstract

In this thesis, a new chaotic Froude-van der Pol system is studied. A new strategy
of achieving chaos generalized synchronization and chaos control by GYC partial
region stability is proposed. Using the GYC partial region stability theory, the Lyapunov
function used becomes a simple linear homogeneous function of error states and the
controllers are simpler than traditional controllers, and give less simulation error
because they are in lower order than that of traditional controllers. The chaotic
behaviors of a Lorenz system with Legendre function parameters is firstly studied

numerically by time histories of states, phase portraits, Poincaré maps, bifurcation
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diagram, Lyapunov exponents and parameter diagrams. Abundance of hyperchaos and
of chaos is found, which offers the potential for many applications. In this thesis, the
behavior of historical Chen system is firstly studied. To our best knowledge, most of
contemporary Chen system are researched in detail, but there are no articles in
investigating a thorough inquiry about the history of Chen system so far. Therefore, the
historical chaos of Chen system with “Yin parameters” is introduced. In this thesis, we
employ an applicable coupling parameters by linear coupling strategy to complete the
goal of generalized synchronization of Yin and Yang Chen systems and take advantage
of using an adaptive Yin-Yang chaos synchronization of Yin and Yang Chen system by
pragmatical asymptotically stability theorem. This pragmatical adaptive synchronization
of two chaotic systems of which one has uncertain parameters the another has estimated

parameters, is achieved by pragmatical asymptotically stability theorem.
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Chapter 1

Introduction

Chaos has been found in nonlinear systems of various physical field and
intensively investigated. We know that chaotic system has extremely sensitive
dependence on initial conditions. So, Dynamics behaviors of chaotic system is studied
extensively.

Synchronization of two chaotic systems was first introduced by Pecora and Corroll
[1] in 1990, and has been widely applied in science and engineering. There are many
control techniques to synchronize chaotic systems, such as adaptive control method,
active control approach, invariant manifold method, and linear error feedback control
[2-8], etc.

The generalized synchronization [9-14] is investigated among many kinds of
synchronizations. It means that there exists a given functional relationship between the
states of the master and that of the slave.

Since the famous OGY control method is given by Ott et al. [15] in 1990,
numerous control methods have been widely applied in controlling chaos. For example,
the adaptive control, the method of chaos control based on sampled data , the inverse
optimal control, the active control and linear error feedback control [16-23], etc.

A new stability theory, GYC partial region stability theory, has been proposed
[24-26]. By using the GYC partial region stability theory, generalized synchronization
and chaos control can be obtained, the new Lyapunov function becomes a simple linear
homogeneous function of error states and reduces the simulation error due to lower
order of the controllers than that of traditional controllers.

Hyperchaos and chaos are desirable in some systems such as communications,
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convective heat transfer, chemical reactions, and liquid mixing. When a chaotic system
has more than one positive Lyapunov exponent, the dynamics of the system is expanded
in more than one direction, giving rise to a more complex attractor. Generally, this type
is called hyperchaotic system. Hyperchaos was first introduced by Rossler [27] and
received great attention because of its potential in various engineering systems [28-31].
In this thesis, the constant parameters of the classical Lorenz system is replaced with
Legendre functions of time. The hyperchaos is found for this system, which gives
potential in many applications.

In general, nonlinear dynamics is called the chaos theory, which has been widely
studied over several decades before. It changes the scientific way of looking at the
dynamics of natural systems. Since the original research of an three-dimensional
nonlinear system given by mathematical meteorologist E. N. Lorenz in 1963 [32], and
he found out chaotic in a simple system' of-three autonomous ordinary differential
equations to describe the simplified”Rayleigh-Benard problem, chaos has been
extensively investigated in many physical fields, such as power converters, chemical
reactions, information processing, biological systems, secure communications [33], etc.

There are many articles in studing contemporary Chen system [34-39]. Although
the contemporary Chen system has been discussed in detail, but no article was
published in looking for the history of Chen system. As a result, there are abundant
dynamics behavior in the historical Chen system found in this thesis.

In conventional Chinese philosophy[40-42], Yin is the negative, historical or
feminine principle in nature, while Yang is the positive, contemporary or masculine
principle in nature. Yin and Yang are two basic opposites respectively in Chinese
philosophy. We call the positive parameters as Yang parameters for the contemporary
Chen system, and negative parameters as Yin parameters for the historical Chen system
to analyze the following simulation results. In this thesis, the historical Chen system is
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introduced and the historical chaotic behavior with Yin parameters is studied by phase
portraits, Poincaré maps, bifurcation diagram, Lyapunov exponents.

Historical chaos and generalized Yin-Yang synchronization are investigated for
chaotic Chen system with well designed active control via four numerical simulation
examples in this thesis.

All of the synchronization phenomena have a clear feature that the trajectories of
the drive and response systems can not identically withstand to start from different
initial conditions. However, a little bit of errors from initial conditions will lead to
completely different trajectories for chaotic systems. For this reason, how to control two
chaotic systems to be synchronized is a current objective. Generally, most of them are
based on the exact knowledge of structure and parameters of the system. But in practice,
some or all of the system parameters are uncertain.. In this thesis, an adaptive Yin-Yang
synchronization of historical = and contemporary- Chen chaos by pragmatical
asymptotically stability theorem was investigated. via three numerical simulations.

This thesis is organized as follows. In Chapter 2, in Section 2.1, preliminaries are
presented. In Section 2.2, chaos generalized synchronization strategy by GYC partial
region stability theory is proposed. In Section 2.3, a new Froude-van der Pol system is
presented. In Section 2.4, four simulation examples are given. In Section 2.5, summary
is given. The partial region stability theory is enclosed in Appendix A.

In Chapter 3, in Section 3.1, preliminaries are presented. In Section 3.2, chaos
control scheme by GYC partial region stability theory is proposed. In Section 3.3, a new
Froude-van der Pol system is presented. In Section 3.4, three simulation examples are
given. In Section 3.5, summary is given. The partial region stability theory is enclosed
in Appendix A.

In Chapter 4, in Section 4.1, preliminaries are presented. In Section 4.2, a brief
description of a classical Lorenz system and of a Lorenz system with Legendre function
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parameters are introduced. In Section 4.3, time histories of states, phase portraits,
Poincaré maps, bifurcation diagram, Lyapunov exponents and parameter diagrams are
presented. In Section 4.4, summary is given.

In Chapter 5, in Section 5.1, preliminaries are presented. In Section 5.2, the Yang
Chen system is presented. In Section 5.3, the Yin Chen system is introduced. In Section
5.4, three simulation cases of Yin and Yang Chen system are given for analyzing and
comparing. In Section 5.5, summary is given.

In Chapter 6, in Section 6.1, preliminaries are presented. In Section 6.2,
generalized Yin-Yang synchronization strategy is presented. In Section 6.3, the Yang and
Yin Chen systems are introduced. In Section 6.4, four simulation cases are given for
analyzing. In Section 6.5, summary is given.

In Chapter 7, in Section 7:l;, preliminaries are presented. In Section 7.2,
pragmatical generalized Yin-Yang synchronization scheme by adaptive control is given.
In Section 7.3, the chaotic behavior of Yang-and Yin Chen systems are introduced. In
Section 7.4, numerical simulations ‘of ;generalized Yin-Yang synchronization are given
for analyzing. In Section 7.5, summary is given. Pragmatical asymptotical stability
theory is enclosed in Appendix C.

In Chapter 8, conclusions are given.



Chapter 2

Chaos Generalized Synchronization of a New
Froude- van der Pol System by GYC Partial Region
Stability Theory

2.1 Preliminaries

In this Chapter, a new strategy of achieving chaos generalized synchronization by
GYC partial region stability is proposed. Using the GYC partial region stability theory,
the Lyapunov function used becomes a simple linear homogeneous function of error
states and the controllers are simpler than traditional controllers, and give less
simulation error because they are.in lower order.than that of traditional controllers.
Numerical simulations are given for new Froude-van der Pol system to verify the

effectiveness of the proposed method.

2.2 Chaos Generalized Synchronization Strategy
Consider the following unidirectional coupled chaotic systems

{x =£(t, x) o

y=h(,y)+u

WhereXZ[xl,xz,-n,x ]T eR", y:[yl’yzj...’yn]T € R" denote the master state vector

n

and slave state vector respectively, f and h are nonlinear vector functions, and
T . .

u=[u,u,,-,u,] €R" isacontrol input vector.

The generalized synchronization can be accomplished when ¢ — oo, the limit of

T
the error vector e=|[e,,e,,---,e,| approaches zero:



lime =0 (2.2)

1
where
e=G(x)-y (2.3)
G(x) is a given function of x.
By using the partial region stability theory, the linear homogeneous function of
entries of e can be used to construct a positive definite Lyapunov function. The
controllers can be designed in lower order than that of traditional controllers and

introduce less simulation error.

2.3 A New Froude-van der Pol System

Froude system and van dery*Pol system[43] are two typical nonlinear

nonautonomous systems:

—X, =X,
< (2.4)
;xz = (a—bx])x, + csin x, +deoswt
t
ix =X
df 37 74
g (2.5)
zx4 =—fx, + g(x; —1)x, — hsin ot
t

Changing dcoswt term in Eq.(2.4) by dx, and Asinwt term in Eq.(2.5) by

hx, , respectively, we obtain a new autonomous Froude-van der Pol system:

d
E)Cl:Xz
d 2 .
Exz =(a—bx;)x, +csinx, +dx,

2.6
d (2.6)
dt 37 M4

d
Exat =—fx +g(x32 —x, —hx,




where x,, x,,x;,x, are state variables, and a,b,c,d, f,g,hare parameters. When a
=0.35, b=0.1, ¢=1.0, d=-1, f=1, g=-0.1, h=-0.1, and the initial states of system
are x,(0)=0.2,x,(0)=0.35,x,(0)=0.2, x,(0)=0.35. Its chaotic phase portrait, time

histories of states, bifurcation diagram,and Lyapunov exponent are shown in Figs. 2.1-4.

2.4 Numerical Simulations

A master Froude-van der Pol system and a slave one with the unidirectional
coupling are given:

d —
X5 =X

dt
d

zxz = (a—bx})x, + csin x, +dx;
t 2.7)

d

—X; =X,

dt

d
Ex4 = —fr, + g(x; — )Xy —hy,

4=y +u
dtyl Vo U

d .
ok (a—by;)y, +csin y, +dy; +u,
(2.8)

d

E% =Y, U,
d 2
7= = +g(yy Dy, —hy, +u,

CASE I. The generalized synchronization error functionis e, =x, —y, +k(i=1,2,3,4):

e=x—-y +k
e,=x,—y,+k
) ) 2.9)
e =x,—y;+k

e,=x,—y,+k

where £ is positive constant, we choose k=20, in order that the error dynamics



always happens in first quadrant. Our goalis y, =x, +k , i.e.

lime, =lim(x,—y, +k) =0, (i=1,2,3,4) (2.10)

—w

The error dynamics becomes

€ =X,=Y,— Y
€= (a—bxzf)x2 +csinx, +dx,

_((a_byg)yz""csm)ﬁ+dy3)_”2 (2.11)
€ =X, =Y, Uy

é,=—fi, +g(x; = Dx, —hx, = (— i, + (7 — Dy, —hy,) —u,

where

6 =%—7, (i=1,234) (2.12)

1 1

Let initial states be (x,, x,, x;, x,)= (0.2, 0.35, 0.2, 0.35), (¥, y,, V5, v,)= (1, 2, 2.2,

1.5), we find that the error dynamies alwaysexists in first quadrant as shown in Fig. 2.5.
By GYC partial region asymptotical stability theoréim, one can choose a Lyapunov

function in the form of a positive definite function in first quadrant:
V=e+e,+e +e, (2.13)

Its time derivative is

V=e+e, +e +e,
=G =y, ~u)
+((a—bx3)x, +csinx, +dx, (2.14)
—((@a—by)y, +csiny, +dy,)—u,)
+ (o, =y, — 1)
+ (= fiey + g( —Dx, —hx = (= f; + g5 — Dy, —hy) —u,)

Choose



u=x,-y,+e
u, = (a—bx;)x, +csin x, +dx,

—((a=by;)y, +csiny, +dy,) +e, (2.15)
u,=x,—-y,+e,

u, =—fx, +g(x32 —Dx, —hx, — (= fy, +g(y§ Dy, —hy)+e,
We obtain
V=-—e-e—-e-e<0 (2.16)

which is a negative definite function in first quadrant. Four error states versus time and

time histories of states are shown in Figs. 2.6-7.
CASE II. The generalized synchronization error function is e =x, —y, +msinwt+k
,((=1,2,3,4).

Our goal is y, =x +msinwttk ", 1.e€r, lime =lim(x, —y, + msinwt +k)=0
t—0

>0
,(1=1,2,3,4)

The error dynamics become

e =x,—y, +tmwcoswt—u,
. 2 .
é, = (a—bxy)x, +csinx, +dx,

—((a=by;)y, +csin y, +dy,) + mwcoswt —u,

. (2.17)
e =X, — Y, TmwCoS Wt —u,
&, =—fi, + g(x7 —Dx, —hx, — (= fi, + g(v; =Dy, —hy)
+mwcoswt —u,
where
é =x, +mwcoswt—y,, (i=1,2,3,4) (2.18)

Let initial states be(x,, x,, x;, x,)= (0.2, 0.35, 0.2, 0.35), (¥, ¥,, ¥5, v,)= (1, 2, 2.2,

1.5), and w=1,m=2,k =20, we find that the error dynamic always exists in first
quadrant as shown in Fig. 2.8. By GYC partial region asymptoical stability theorem,

one can choose a Lyapunov function in the form of a positive definite function in first



quadrant:
V=e+e,+e +e, (2.19)
Its time derivative is

V =(x,—y, —u, +mwcos wt)
—i—((a—bxzz)x2 +csin x, +dkx, —((a—byzz)y2 +csiny, +dy;, +u,) (2.20)
+mwcos wt) +(x, — y, —u, + mwcos wt) .

+(—fx, ""g()%2 —Dx, —hx, = (=fy; + g(y32 —Dy, —hy, +u,) + mwcoswr)
Choose

U =x,—y, +tmwcoswt+e
u, =(a—bx;)x, +csinx, +dx, —((a—by;)y, +csin y, +dy,)
+mwcos wt + e, (2.21)

U, =X, —y, +mwcoswrt+e,

u, =—fi, + g(x; —1)x, —hx, — (- gt g s =)y, —hy,) + mwcoswt +e,
We obtain

V=—e-e—e—-e<0 (2.22)
which is a negative definite function:in first quadrant. Four state errors versus time and

time histories of x,—y, +k, —msin ot are shown in Figs. 2.9-10.

1
CASE III. The generalized synchronization error function is e, =in4— v, +k

,(i=12,3,4) where k=100.

Our goal is y, :ixl.4+k,i.e. limezlim(%xi4—yi+k):0,(i=1,2,3,4)

t—o t—o

The error dynamics becomes

e = xfx2 - ¥, —u

é, =x,((a—bx2)x, +csinx, +dx,)
—((a—by3)y, +csiny, +dy,)—u,

ey = XX, — Y, — Uy

&, = x; (= fi; + g (] =), = ho) = (= f; + g(v; =Dy,
—hy)—u,

(2.23)

10



where
é=x%-y, (=1234) (2.24)
Let initial states be (x,,x,, x;, x,)= (0.2, 0.35, 0.2, 0.35), (¥, y,, 5, v,)=(1, 2, 2.2,

1.5), and we find that the error dynamics always exists in first quadrant as shown in Fig.
2.11. By GYC partial region asymptotial stability theorem, one can choose a Lyapunov

function in the form of a positive definite function in first quadrant:
V=e+e +e +e, (2.25)

Its time derivative is

V=¢é+e, +e +e,

= (xfx2 -, —ul)—i-(x;((a—bxzz)x2 +csinx, +dx;)

_((a_byzz)yz +csin y, +dy3)_u2)+(x33x4 — Yy —Uy) (2.26)
+ (2 (= fiey + (2 = D)x, — b)) — (~fistg (3= 1)y,
—hy,))—u,)

Choose
.3
u=xx,—-y,te
u, = x;((a—bx;)x, +csinx, +dx;,)

—((a—by})y, +csiny, +dy;) +e,

X (2.27)
Uy =X3X,— ), + &
Uy = xi (—/fx "'g()%2 —Dx, —hx,)— (= fy; +g(y32 =Dy,
—hy)+e,
We obtain
V=—e-e—-e-e<0 (2.28)

which is a negative definite function in first quadrant. Four state errors versus time and

4
time histories of XT'+ 100, y, are shown in Figs. 2.12-13.

CASE IV. The generalized synchronization error function is e =x.(t—7)—y, +z’ +k,

z, 1s the state of hyperchaotic Lii system [44].

11



The goal system for synchronization is hyperchaotic Lii system and initial states

are (5, 8, -1, -3), delay timez =5, system parameters a, =36, b =3, ¢, =20,

rn,=-0.35.

Ezlzal(zz_%)"‘%

d Z,=—22Z,+¢z

dt 2 1<3 1<2

(2.29)

—z,=2z2z,—bz

dt 3 172 173

524 =zz,+1z,

We have lime, =lim(x,(t—7)-y,+z +k)=0, (i=1,2,3,4), where k=50.
t—© —

The error dynamics becomes

& =X~y +a(z,—z) w2, <y

é, = (a—bx;)x, + csin xg+dx; = ((@=by3 )y, £csin y,
. +dy,)+(-zz; + ¢ z5) —u, (2.30)
& =X, = Vy+ 2,2, — bz~

&, = (= fi, + g(x; = Dx, — )Y =l g(v; — Dy, —hy,)

+ (2123 + ’”124) —u,

Let initial states be(x,, x,, x;, x,)= (0.2, 0.35, 0.2, 0.35), (¥, ¥,, 5, v,)= (1, 2, 2.2,

1.5), and we find that the error dynamics always exists in first quadrant as shown in Fig.
2.14. By GYC partial region asymptotical stability theorem, one can choose a Lyapunov

function in the form of a positive definite function in first quadrant:
V=e+e,+e +e, (2.31)

By Egs. (2.30),(2.31),

V=(x,-y,+a,(z,—z)+z, —u,))+((a—bx)x, + csin x, +dx,
_((a_byg)yz +esiny, +dyy)+(—z,z; +¢,z,) —u,)
+(x, =y, + 22, — bz —u) + (- fx; +g(x32 —Dx, —hx)

—(=f, +g(y32 Dy, —hy) +(z,z, +1z,) —u,)

(2.32)

12



Choose

u =x,—y,+a,(z,—z)+z,+e
u, = (a—bx;)x, +csinx, +dx, — ((a—by; )y, +csin y,
+dy,)+(—z,z; +¢,z,) + e,

(2.33)
u,=x,—y,+z2z,—bz,+e
u, = (—fx, +g(x§ =Dx, —hx)) = (- fy, +g(y§ Dy, —hy,)
+(z,z,+1z,) +e,
We obtain
V=—e-e—e—-e<0 (2.34)

which is a negative definite function in first quadrant. Four state errors versus time and

time histories of x,(f—7)—y, +50 are shown in Figs. 2.15-16.

2.5 Summary

In this Chapter, a new chaes generalized synchronization method by GYC partial
region stability theory is proposed. By using the” GYC partial region stability the
Lyapunov function is a simple linear homogeneous function of error states and the
controllers are simpler. As a result , less simulation error is introduced. The new
Froude-van der Pol system and hyperchaotic Lii system are used as one of four

simulation examples which prove the effectiveness of the proposed method.

13
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Fig. 2.13 Time histories of fo +100 and y, for Case IIl.
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Chapter 3

Chaos Control of a New Froude-van der Pol System by GYC
Partial Region Stability Theory

3.1 Preliminaries

In this Chapter, a new strategy by using GYC partial region stability theory [24-26]
is proposed to achieve chaos control for a new Froude-van der Pol system. The new
Lyapunov function used is a simple linear homogeneous function of error states and the
lower degree controllers are simpler and introduce less simulation error. Three numerical

simulations are given to show the effectiveness of the proposed strategy.

3.2 Chaos Control Scheme

Consider the following chaotic systém

x=1(1,%) (3.1

T . .
where x=[x,x,,---,x,| €R" is a the state vector, f:R,xR"—R" is a vector

function.
The goal system which can be either chaotic or regular, is
y=g@y) (3.2)
where y=[1,,7,,-,5,] €R" isastate vector, g:R, xR" —> R" is a vector function.
In order to make the chaos state x approaching the goal state y, define
e=X-—Yy as the state error. The chaos control is accomplished in the sense that:
}Lrge = }ij}g(x -y)=0 (3.3)
In this Chapter, we will use examples in which the error dynamics always happens

in the first quadrant of coordinate system and use GYC partial region stability theory
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which is enclosed in Appendix A. The Lyapunov function is a simple linear
homogeneous function of error states and the controllers are simpler because they are of

lower degree than that of traditional controllers and introduce less simulation error.

3.3 Chaos of a new Froude-van der Pol system

Froude system and van der Pol system[43] are two typical nonlinear

nonautonomous systems:

Exl =X,

3.4
p 2 ‘ (.4)
Exz =(a—bxy)x, +csinx, +d coswt
E)% =Xy

(3.5)

%)Q =— fx, + g(x; —1)x ;= hsin @t

Changing dcoswt term in Eq,3.4)'by dx, and hsinet term in Eq.(3.5) by

hx, , respectively, we obtain a new autonomeous Froude-van der Pol system:

d
E)Cl:Xz
d 2 .
Exz =(a—bx;)x, +csinx, +dx,

3.6
a (3.6)
dt 37 M4

d
Exat =—fx +g(x32 —x, — hx,

wherex,, x,,x;,x, are state variables, and a,b,c,d, f,g,hare parameters, where a
=0.35, b=0.1, ¢=1.0, d=-1, f=1, g=-0.1, h=-0.1, and the initial states of system
are x,(0)=0.2,x,(0)=0.35,x,(0)=0.2, x,(0)=0.35 .Its chaotic phase portrait, time

histories of states, bifurcation diagram,and Lyapunov exponent are shown in Figs. 2.1-4.

25



3.4 Numerical Simulations

The following chaotic system is the new Froude-van der Pol system of which the
old origin is translated to (x,,x,,x;,x,)=(k,k,k,k) , where k is a positive constant ,
and the chaotic motion always happens in the first quadrant of coordinate system

(x,,x,,x;,x,) . Taking k=10 , this translated new Froude-Van der Pol system

ﬁ = xz —10

dt

% = (a—b(x, —10)*)(x, —10)+csin(x, —=10) + d (x, —10)

d (3.7)
oy, -10

dt

% ==/ (5 =10)+ (x5, =10)* = 1)(x, ~10)~/(x; ~10)

is presented as simulated examples, swhere ‘the initial states of system are
x,(0)=0.2,x,(0) = 0.35,x,(0) = 0.2,x,(0) = 0:35 "and “the parameters of system are
a=035 b=0.1, c=1,d=-2, =49, g==0.1, h=-1.76. The chaotic motion is
shown in Fig. 3.1.

In order to lead (xi, x2, x3, x4) to the goal, we add control terms u;, u,, u3, usto each

equation of Eq. (3.7), respectively.

%:xz —k+ul
t
%= (a=b(x, =k)")0x, k) +esin(x, k) +d (x, =k) +u,
(3.8)
ﬁ:x4 —k+u3
dt
% =~ [y~ k) + g (o, = k) =), —k) = h(x, — k) +u,

CASE I. Control the chaotic motion to zero.

In this case we will control the chaotic motion of the new Froude-van der Pol
system (3.7) to zero. The goal is y =0. The state error ise; =x; -y, =x;, (i=1, 2, 3, 4)
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and error dynamics becomes

é=x=x,-10+u,

é, =%, = (a—b(x, —10)*)(x, —10) +csin(x, —10) +d (x; —10) +u,
e, =x,=x,—10+u,

¢ =%, =~ f(x, ~10)+ g((x, ~10)° ~1)(x, ~10) ~h(x, ~10) +u, (39)
In Fig. 3.2, we see that the error dynamics always exists in first quadrant.

By GYC partial region stability, one can easily choose a Lyapunov function in the

form of a positive definite function in first quadrant as:

V=e+e,+e +e,

(3.10)
Its time derivative through error dynamics (3.9) is
V=é+é+é+é,
=(x, =10+u,) +[(a@ —b(x, —10)* )y =10) + csin(x, —10)
+d(x, —10) +u, |+ (x, —10w;,)
H = f (%, =10)+ g((x, — 10)° =D =10) = (%~ 10) +u,] 3.11)
Choose
u, =-x,+10—¢
u, =—(a—b(x, —10)*)(x, —10) —csin(x, —10) - d(x, —10) —e,
u,=-x,+10—e,
uy = f(x, ~10)~ g((x; =10)* = 1)(x, —=10) + A(x, ~10) —e, (3.12)
We obtain
V=—e-e—-e-e<0 (3.13)

which is negative definite function in first quadrant. The numerical results are shown in
Fig. 3.3. After 30 sec, the motion trajectories approach the origin.
CASE II. Control the chaotic motion to a sine function.

In this case we will control the chaotic motion of the new Froude-van der Pol
system (3.8) to sine function of time where k=20 .The goal is y, =msinwt

,(i=1,2,3,4). The error states are
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e =X —y =x -msinot (3.14)

lime, = lim(x, —-msinwt) =0, i=1,2,3,4
t—o

—w

and ¢é =X, —mw,coswt (i=1,2,3,4) and m=3, =05, w,=1, w,=15,
®, =0.8. The error dynamics is

é, = X, —ma, cos ot = (x, —20—mam, cos ot +u,) —maw, cos wt

é, =%, —mw, cos m,t =[(a—b(x, —20)*)(x, —20) +csin(x, —20)+d (x, —20)

o — Mm@, COS Wyt + 1, | —mw, Cos w,t (3.15)
é;, = X, —maw, cos wyt = (x, — 20 —maw, cos w,t +u, ) —mw, cos w,t

é, =%, —mw, cosa,t = [— f(x, —20)+ g((x, —20)" —1)(x, —20) - A(x, —20)

—ma@, coS @t +u, | —ma, cos w,t

In Figs. 3.4-5, the error dynamics always exists in first quadrant.
By GYC partial region stability, one can easily choose a Lyapunov function in the

form of a positive definite function in first quadrant. as:

V=e+e +te +e, (3.16)

By Eq. (3.14), its time derivative is

V=¢6+é+é+¢é,
= (x, =20 —ma, cos wt +u,) +[(a —b(x, —20)*)(x, —20) +csin(x, —20)
+d(x; —20)—mw, cosw,t +u, |+ (x, — 20— mw, cos w;t +u;) (3.17)
+[=1(x; —20)+ g((x; —20)* = 1)(x, —20) — h(x, —20) — ma, cos @,t +u, |

Choose

u, =—{(x, —=20)—mw, coswt]—e,

u, =—{(a—b(x, —20)*)(x, —20) + csin(x, — 20)
+d(x, —20)(x, —20) —mm, cos m,t]—e, G18)

u, =—{(x, —20)—maw, cos w;t] —e,

uy =~ f(x; =20) + g((x; —20)" ~1)(x, — )
—h(x, —20)—mw, cosw,t]—e,

We obtain
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V=—e-e—e—-e<0 (3.19)

which is negative definite function in first quadrant. The numerical results are shown in
Figs. 3.6-7. After 30 sec., the errors approach zero and the motion trajectories approach
to sine function.
CASE I11. Control the chaotic motion to the difference of chaotic motions of a delay
chaotic system and that of hyperchaotic Lii system [44].

In this case we will control chaotic motion of the new Froude-Van der Pol system
(3.8) to the difference of chaotic motions of a delay chaotic system and that of
hyperchaotic Lii system. The goal systems are

delay chaotic system:

dyl(t_r) _

7 =y,(t—7)
DD (b2 (1~ o))t =) e esingi e ) + o (1 -7)
) (atlt | (3.20)
y,(t—7
37:y4(t—7)
dy,(t—7
y4(dt ) i (¢~ )+ g BRI (- ) (e =)
and hyperchaotic Lii system:
Ezlzal(zz—zl)+z4
dZ =—ZZ,+CZ
T4y T T 414 12
dt (3.21)

—z.,=z2z,—bz
3 1“2 1<3
dt

—2z, =22 +1z,

dt

The error function is e, =x,+y,(t—7)—2z,, y,(t—71)is the delay state of a new

Froude-van der Pol system, and z, is the state of hyperchaotic Lii system.The goal

system for controlling are delay chaotic system and hyperchaotic Lii system, where
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initial states are (80.2, 80.35, 80.2, 80.35), (5, 8, -1, -3), respectively, delay time 7=5,

system  parameters a, =36 , b =3 , ¢=20 , r=-035 . We have

lime =lim(x, +y,(t—7)—2z)=0, (i=1,2,3,4), where k=80in Eq.(3.8).

t—x©

The error dynamics becomes

é=x+ylt-1)-z
=(x, =80+u)+y,(t—7)—(a(z, — z)) + z,)
& =X, +y,(t-1)-2,
=[(a—b(x, —80)*)(x, —80) +csin(x, —80) +d (x, —80) +u, ]
H(a=by2 (= )y (=) + esin y, (t=7) + dvy (1= 7)) = (=22, +¢,2,)
é =x,+),(t—1)-1Z,
=(x, =80+uy)+y,(t—7)—(z,z, - bz;) (3.22)
e, =x,+y,(t-1)-2,
= [~/ (x,=80) + g((x, —80)* = 1)(x, —80) = 1(x, —80) +u,]
+[= s (t =)+ g (3 (t = 7) =D, (1 = 7) it — 7)] = (2,2, +12,)

By Figs. 3.8-9, we know the error dynamics always.exists in first quadrant.

By GYC partial region stability, on€ can-easily choose a Lyapunov function in the

form of a positive definite function in first quadrant as:

V=e+e +te +e, (3.23)

Its time derivative is

V=e+e +e +e,
=[(x, =80+u)+y,(t—7)—(a,(z, —2,) +z,)]
+{[(a—b(x, —80)*)(x, —80) +csin(x, —80) +d(x, —80) +u,]
+[(a=by; (t—1))y,(t—7)+csin y,(t—7) +dy,(t —1)] —(—2123 +¢z, )}
—i—[(x4 —80+M3)+y4(t—2')—(2122 —b,z, )] (3.24)
+{[-f(x, —80)+ g((x, —80)" = 1)(x, —80) — h(x, —80) +u,]
H=fiy (=) + g(rs (t =T) =Dy, (t=7) =y, (t = D)1= (2,2, + 712, )}

Choose
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U :(al(ZZ _Zl)+Z4)_y2(t_T)_(xz —80)—¢,
u, = (_2123 +CIZZ)_[(a _byzz(t_'[))yz (t=7)+csiny,(t—1)+dy,(t—1)]
—[(a—b(x, —80)* )(x, —80) +csin(x, —80) +d(x, —80)] e,

3.2
uy; =(z,2,—bz,) -y, —1)—(x, —80) e, (-2
u, :(2123 +7’124)_[_ﬁ’3(t_7)+g(y§(t_7)_1)y4(t_7)_hy1(t_7)]
[/ (x;~80) +g((x; —80)" ~1)(xx, —80) —/(x; ~80)] e,
We obtain
V=-—e-e—-e-e<0 (3.26)

which is negative definite function in first quadrant. The numerical results are shown in
Figs. 3.10-11. After 30 sec., the errors approach zero and the chaotic trajectories of the
new Froude-Van der Pol system approach to delay chaotic system and that of

hyperchaotic Lii system.

3.5 Summary

In this Chapter, a new chaos’control' method by GYC partial region stability theory
is proposed. By using the GYC partial ‘tegion  stability theory, the controllers are of
lower order than that of controllers by using traditional Lyapunov asymptotical stability
theorem. The new Lyapunov function used is a simple linear homogeneous function of
states and the lower order controllers are simpler and introduce less simulation error.
The new Froude-van der Pol system and hyperchaotic Lii system are used as

simulation examples which confirm the effectiveness of the proposed scheme.

31



14

¥2

1
T 8 g 10 11 12 13
*3

Fig. 3.1 Chaotic phase portraits for new Froude-van der Pol system in the first quadrant.
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Fig. 3.2 Phase portraits of error dynamics for Case I.
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Fig. 3.4 Phase portrait of error dynamics (el &e2) for Case II.
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Fig. 3.5 Phase portrait of error dynamics(e3&e4) for Case I1.
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Fig. 3.6 Time histories of errors for Case /1.
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Chapter 4

Hyperchaos of a Lorenz System with Legendre Function
Parameters

4.1 Preliminaries

The chaotic behaviors of a Lorenz system with Legendre function parameters is
firstly studied numerically by time histories of states, phase portraits, Poincaré maps,
bifurcation diagram, Lyapunov exponents and parameter diagrams. Abundance of

hyperchaos and of chaos is found, which offers the potential for many applications.

4.2 Classical Lorenz System and'a Lorenz system with Legendre
Function Parameters

The classical Lorenz system: [32] 1s described as follows:

dx

7; =-a(x, —x,)

dx

7; =—X,X; +CX, — X, (4.1)
dx

7; = x,x, —bx,

where a, b, ¢ are constant parameters. When the parameters of system are a=10, h=8/3,

¢=27.43, and the initial states of system are x,(0)=6,x,(0)=5,x,(0) =10, chaos exists

in Fig. 4.1. We used Legendre functions as parameters of the system. The Legendre

functions are defined by

P (x)=(-1)"(1-’ )% Z; P, (x) (4.2)

where P, (x) is the Legendre polynomial of degree n.

39



1 [am,, v
Pn(x)=2nn!{dxn (1) } (43)

Choosing n=2, we obtain

(
L(x)= P (x) = (-1)(1-x°) dig (%) (4.4)

Changing the variable x totime ¢

x=cos(t), -1<x<1 (4.5)

We have two periodic functions of time L, (¢) and L, (¢),
L, (1) = P,(cost)

4.6

Lz(t):le(cost)z(—l)(l—coszt)%%l’z(cost) (49

as shown in Fig. 4.2.

4.3 Numerical Simulations
In this Section, the parameters of system are given as a=a,+&(L, +1,),

b=b+kL,+o , c¢c=¢+08L , and a, b, ¢, &, k, ® are constants:

a,=10,b,=8/3,¢,=27.43, ¢ =1.2,k=0.24,0=0.8. The parameters a, and b, are

fixed at 10 and 8/3, respectively, throughout this Section. Bifurcation diagrams and

Lyapunov exponents will be calculated to certify the the existence of hyperchaos.

Let us assume Lyapunov exponents A (i=1,2,3,4) satisfying 4 >4, >4,, and
A, =0 .Then the dynamics of the system can be characterized as follows:
(1)When 2,,, <0 and A4, =0, system is periodic.

(2)When 4, >0,4,, <0 and 4, =0, system is chaotic.
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(3)When 4,,>0, A4 <Oand 4, =0, system is hyperchaotic.

We consider three cases described as follows:

(1) Lete=12,0=0.8 and c¢,and k are varied. Firstly, ¢, =27.43, k=2.25are

fixed, the chaotic phase portrait with Poincaré map of x,,x, states, and chaotic time
histories of three states are shown in Figs. 4.3-4, respectively. The chaotic bifurcation
diagram by changing constant parameter k£ and enlarged diagram are shown in Figs.

4.5-6 with ¢, =27.43. Its corresponding Lyapunov exponents are shown in Fig. 4.7.
When 0.001<£<0.636 two positive Lyapunov exponents are obtained, i.e.
hyperchaos is obtained. It can be seen that when0.685 <k <1.909, 2.1<k <2.604,

2.658<k<3 , the system 1is chaotic, and when 1.915<k<1.921 , 1.975 ,

1.999<k <2.017,2.082<k <2.094,2:61 <k <2.634, the system is periodic. In order

to investigate the dynamics of the system in detail; the parameter diagrams of c, against

k are ploted in Figs. 4.8-10. Just like-Menet’s picture, they give beautiful scenes.
White area is the bank of a river, blue area.is.the water of the river and green area is the
duckweed in the river. When 0.001<k <0.636, both 4, and A, are positive, hence,
the system is hyperchaotic within this region. Some typical values of parameter &

generate hyperchaos, and the range of & for different system behaviors, are listed in

Tables 1a and 1b, respectively.

Table 1a Typical values of parameter k generate hyperchaos for ¢, =27.43, &£ =1.2and@ = 0.8

k 4 A Ay A4
0.246 0.779 0.001 -14.08 0
0.294 0.764 0.003 -14.06 0
0.312 0.753 0.007 -14.06 0
0.324 0.756 0.009 -14.06 0
0.456 0.684 0.012 -13.99 0
0.624 0.604 0.013 -13.91 0
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Table 1b The ranges of k for different system dynamics for ¢, =27.43,£=1.2 and@w=0.8

System dynamics

Ranges of k

Periodic

Chaotic

Hyperchaotic

1.915<k<1.921, 1975, 1.999<£k<2.017 )
2082<k<2.094, 2.61<k<2.634
0.685<k<1.909, 2.1<k<2.604, 2.658<k<3
0.001<k <0.636

A typical periodic phase portrait and time histories for system at k£ =2.1 are shown in

Figs. 4.11-14. The system was observed that hyperchaos can be generated when

0.001<£<0.636 , and the generation of a hyperchaotic attracter for 4 =0.35in Figs.

4.15-16 when ¢, =27.43,6=1.2 and ®=0.8.

(2) Fix ¢,=2743, k=024, w=0.8and let ¢ is varied. System demonstrates

hyperchaotic behavior when 0.001<¢<5079 . Fig. 4.17 shows the calculated

Lyapunov exponent as a function of ¢ to-elassify the chaotic or periodic motions. With

changing &, system becomes periodic when 5.819 <& <9.439, and chaotic motions

occur with 5.099<¢<5.799, 9.459<&<9.979 { Some typical values of & that

generate hyperchaos, and the ranges of: & | for different system dynamics, are listed in

Tables 2a and 2b.
Table 2a Typical values of parameter & generate hyperchaos for ¢, =27.43 .,k =0.24 and w = 0.8
¢ ﬂ'1 ﬂ’z j-f3 14
3.22 0.755 0.002 -14.56 0
3.32 0.746 0.005 -14.58 0
3.38 0.742 0.008 -14.59 0
3.60 0.743 0.010 -14.65 0
4.15 0.698 0.013 -14.75 0
4.67 0.639 0.016 -14.82 0

Table 2b The ranges of ¢ for different system dynamics for ¢, =27.43 ,k =0.24and ® =0.8

System dynamics

Ranges of ¢

Periodic
Chaotic

Hyperchaotic

5.819<£<9.439
5.099<£<5.799, 9.459<&£<9.979

0.001<&£<5.079
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(3) Fix ¢,=2743, ¢=12 and k=0.24 and let @ is varied. The hyperchaos is

identified by the existence of two positive Lyapunov exponents, as clearly shown in Fig.
4.18 and enlarged figure for observing in Fig. 4.19, and it shows the Lyapunov
exponents as a function of varying . This case is based on studying Fig. 4.13a, in
which hyperchaotic motion can be hardly observed when 0.001<®<0.56 ,
0.6<®w<0.82,0r 0.86<®w<0.98, because its values are not extremely obvious. In
addition, periodic motion is clearly presented after @ >1.46. Some typical values of @
that generate hyperchaos, and the ranges of @ for different system dynamics, are listed

in Tables 3a and 3b, respectively.

Table 3a Typical values of parameter @ generate hyperchaos for ¢, =27.43,& =1.2andk = 0.24

@ A 4 2 2,
0.12 0.778 0.001 -14.20 0
0.20 0.792 0.002 -14.29 0
0.54 0.845 0.003 -14.68 0
0.76 0.849 0.004 -14.91 0
0.92 0.877 0.005 -15.10 0

Table 3b The ranges of @ for different System dynamics for*c, =27.43, & =1.2and k=0.24

System dynamics Ranges of "

Periodic 1.46 <0 <9.979

Chaotic 0.58,0.84,1.26<w<1.3

Hyperchaotic 0.001<w<0.56, 0.6<w<0.82 ,
0.86<w<0.98

4.4 Summary

Lorenz system with Legendre function parameters is studied firstly.The results are
verified by time histories of states, phase portraits, Poincaré maps, bifurcation diagram,
Lyapunov exponents and parameter diagrams. Abundant hyperchaos is found for this
system, which gives potential in various applications, particularly in secret

communication.
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parameters, where ¢, =27.43.
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Fig. 4.13 Phase portrait for Lorenhz systemywith Legendre function parameters when
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Chapter 5

Historical Chaos for Chen System

5.1 Preliminaries

In this Chapter, the behavior of historical Chen system is firstly studied. To our
best knowledge, most of contemporary Chen system are researched in detail, but there
are no articles investigating a thorough inquiry about the history of Chen system so far.
Therefore, the historical chaos of Chen system with “Yin parameters” is introduced and
simulation results are shown by phase portraits, Poincaré maps, bifurcation diagram,

Lyapunov exponents in this Chapter.

5.2 Yang Chen system

The Yang Chen system [37}is described as follows:

_dx:{ft) =a(x,(t)—x,())
%:(c_a)xl(l‘)—xl(t)x3(l‘)+CX2(l) (5.1)
% =X, (1)x,(1) = bx; (1)

where initial condition(x,,x,,x;)= (0.5, 0.26, 0.35) and parameters a=35, b=3 and
c=27.2,chaos of the Yang Chen system is appeared. The chaotic behavior of Eq. (5.1) as

phase portraits, Poincaré maps, time histories, periods are shown in Figs. 5.1-6.

5.3 Yin Chen system

In this section, Yin Chen equations are:
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do(-)

_d(—t) —a(xz( 1) xl( 1))

DD _ (e~ gy () = x, (=), (=) + e, (—1) (5.2)
(=)

dx,(—t) B N B

S = 00 b

It is clear that the derivative are taken with the negative time through left parts of Eq.
(5.2). It means that find out the historical behavior of the Chen system and to compare

the relation between history and presence. The simulation results are shown in Table 1:

Table 1 Dynamic behaviors of Yin Chen system for different signs of parameters

a b c States

+ - + Approach to infinity
- + + Approach to infinity
+ + - Approach to infinity
- + - Approach to infinity
- - + Approach to infinity
- - - Chaos and periodic

Table 1 shows the dynamic behaviors of Yin ‘€hen system for different signs of
parameters. An strange and interesting  phenomenon is discovered. When initial
condition (x,, x,,x;) = (0.5,0.26,0:35) and‘parameters a=-35, b=-3 and c=-27.2,chaos of
the Yin Chen system is found. Therefore, we call these parameters as Yin parameters. In
conventional Chinese philosophy, Yin is the negative, past or feminine principle in
nature, while Yang is the positive, present or masculine principle in nature. Yin and Yang
are two fundamental opposites in Chinese philosophy. For this reason, historical Chen
system with negative value of parameters, a=-10, b=-8/3 and c¢=-27.2 , can be called
Yin Chen system with Yin parameters. The chaotic behaviors of Eq. (5.2) are shown in

Figs. 5.7-13.

5.4 Numerical Simulations

To study the difference and similarity between Yang and Yin Chen system, the
bifurcation diagram and Lyapunov exponents are used. We consider three cases

described as follows:
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Casel: parameter c is varied and a, b are fixed:

The simulation results are shown in Tables 2-3.

Table 2 Range of parameter c of Yang Chen system

0.1~20.1 Converge to « fixed point
20.1~28.2 Chaos
28.2~34.2 Periodic
Table 3 Range of parameter c of Yin Chen system
-0.1~-20.0 Converge to « fixed point
-20.0~-28.1 Chaos
-28.1~-34.2 Periodic

Table 2 and 3 show different dynamics in the different ranges of parameter ¢ of Yang
and Yin Chen system, respectively. In Table 2, the behaviors of Yang Chen system vary
with parameter ¢, and become chaos, periodic or converging to a fixed point. When
0.1<¢<20.1, Yang Chen system will converge to a fixed point. When20.1<¢<28.2,
chaos appears. When 20.1 < ¢ <34.2, periodic motion is found. Table 3 shows that when
parameter c is -34.2~-28.1, the behaviors of ¥in' Chen system are periodic trajectories.
When parameter c is -28.1~-20,:the chaotic-behaviors are shown in Yin Chen system.
When parameter c is -20~-0.1, it-will converge to a fixed point. Comparing Table 2 and
3, it can be found that both there are.chaos, periodic and fixed point in Yang and Yin
Chen system for parameter c, respectively. Bifurcation diagram and Lyapunov
exponents are shown in Figs. 5.14-17.

Case2: parameter b is varied and a, c are fixed:

The simulation results are shown in Tables 4-5.

Table 4 Range of parameter b of Yang Chen system

2.80~3.51 Chaos
3.51~3.55 Periodic
3.55~4.40 Chaos
4.40~4.48 Periodic
4.48~4.50 Chaos
4.50~10.00 Periodic
Table 5 Range of parameter b of Yin Chen system
-2.80~-3.51 Chaos
-3.51~-3.56 Periodic
-3.56~-4.40 Chaos
-4.40~-10.00 Periodic

Table 4 and 5 show that the behaviors of Yang and Yin Lorenz system are similar but not

the same. Comparing Table 4 and 5, it can be found an obvious difference that when
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parameter b is 4.48~4.50, the chaotic behaviors are shown in Yang Chen system, but
none of Yin ones. Bifurcation diagram and Lyapunov exponents are shown in Figs.
5.18-21.

Case3: parameter a is varied and b, ¢ are fixed:

Table 6 Range of parameter a of Yang Chen system

30.0~34.0 Periodic
34.0~42.0 Chaos
42.0~44.7 Periodic
44.7~48.0 Chaos
after-48.0 Converge to a fixed point
Table 7 Range of parameter a of Yin Chen system
-30.00~-33.26 Periodic
-33.26~-33.28 Chaos
-33.28~-33.43 Periodic
-33.43~-41.80 Chaos
-41.80~-44.70 Periodic
-44.70~-47.80 Chaos
after-47.80 Converge to a fixed point

In Table 6 and 7, there are some differences of chaotic behaviors between Yang and Yin
Chen system. When parameter a i$ -33.26--33.28,"the chaotic behaviors are shown in
Yin Chen system, but none of Yangiones. Bifurcation diagram and Lyapunov exponents

are shown in Figs. 5.22-25.

5.5 Summary

In this Chapter, the Yin Chen system is firstly introduced. Compared with the Yang
and Yin Chen system via numerical simulation, we can be found out some similarity and
difference between history and presence. If the Yang parameter is one of the chaotic
parameters for contemporary Chen system, then the chaotic behavior of the historical
Chen system can be shown by using the corresponding Yin parameters. Table A and B
give the similarity and difference between the Yang and Yin Chen system from
bifurcation diagram and Lyapunov exponents. This Chapter explores the another half
scope of study for chaos interestingly, which would be proved as epoch-making

significance in future.
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Fig. 5.2 Time histories of three states for Yang/Chen system with parameters a =35,

b=3 and ‘¢ =272

1 5 T T T T T

10 F -

X2
=]

10 4

-15 1 1 1
-15 -10 -5 0 5 10 15

®1

Fig. 5.3 Period1 of phase portraits for Yang Chen system with parameters a =35,

b=3and ¢c=30.
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Fig. 5.6 Period8 of phase portraits for Yang Chen system with parameters a =35,
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Fig. 5.7 Phase portrait of Yin Chen system witha =-35,b=-3andc=-27.2.
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Fig. 5.10 Period1 of phase portraits for Yin Chen system with parameters a = -35,
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Fig. 5.12 Period4 of phase portraits for Yin Chen system with parameters a = -35,
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Fig. 5.13 Period8 of phase portraits for Yin Chen system with parameters a = -35,
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Table A.

Comparison with the Yang and Yin Chen system from bifurcation diagrams.
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Table B. Comparison with the Yang and Yin Chen system from Lyapunov exponents.
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Chapter 6

Historical Chaos and Yin-Yang Synchronization for Chaotic
Chen Systems with Well Designed Active Control

6.1 Preliminaries

In this Chapter, the dynamic behaviors of Yin Chen systems is firstly studied.
According to Chinese philosophy[40-42], the historical chaos of Chen system with “Yin”
parameters is illustrated and compared with the contemporary Chen system with “Yang”
parameters. We employ applicable coupling parameters by linear coupling strategy to
complete the goal of generalized synchronization of Yin and Yang Chen systems.
Simulation results are shown by phase: portraits, time histories of states and Lyapunov

exponents.

6.2 Generalized Yin-Yang Synchronization Strategy

Consider the following unidirectional coupled chaotic systems

@) _ Ax(1)+1(z, x(1))

dr (6.1
AED - pve - |
T Ay(-1)+h(z, y(~1))

wherex =[x, (1), x,(1),-+,x, ()] €R", y=[1(=0), y,(~t),+,y,(-1)] €R", and denote

the master state vector and slave state vector respectively, A € R""is constant matrix,
f and h are nonlinear vector functions.
By means of the unidirectional linear coupling method, the slave system in Eq. (6.1)

is described as follows:

O =AY +hiE V) u( X)) (6.2)
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where u(z,x(¢),y(—¢)) is a control term, and which is designed on next part
subsequently.

The generalized synchronization can be accomplished when ¢ — oo |, the limit of
the error vector e = [el,ez,---,en ]T , where e, =y, (—t)—x,(¢t) approaches zero:

lime=0 (6.3)

t—to0

From (6.1) and (6.2), error equation of system can be acquired:

e=—(-Ay(=0) +h(z, y(=1)) +u(, x(1),y(-1))) — Ax(2) - £(z, x(2))
=Ae—h(z, y(-1))—£(z, x()) —u(z,x(1), y(-1)) (6.4)
where e =y(—1)—x(¢)

6.3 The Yang and Yin Chen systems

The Yang Chen system is deseribed asifollows:

RO _ ()=, 0))
%=(c—a)xl(z>—xl<r)x3<r)+cx2<r> 6.5)
dx3 (t) 1(t)x2 () - bx3 (1)

dt

where initial condition (x,, x,,x;) = (2, 3.2, 1.5) and parametersa =35,b=3 andc =28,

can be called Yang parameters, and chaos of the Yang Chen system is appeared. The
chaotic behavior of Eq. (6.5) and Lyapunov exponents are shown in Fig. 6.1.

Yin Chen equations are:

dyl( ) v (—

T a,(y,(=t) = y,(-1))

dyz(_t)_ _ N (L _ _

o~ @R REON D ey (D (6.6)
dy3( ) _ A _

(=) =0 (=)y,(=t)=by;(-1)

where initial condition(y,,y,,y;)= (20, 120, 18) and parametersa, =-35,5, =-3 and
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¢, =—28 chaos of the Yin Chen system is found. Consequently, we can describe these

parameters as Yin parameters. Yin and Yang are two fundamental opposites in Chinese
philosophy. The phase portrait and Lyapunov exponent of historical Chen system are

revealed in Fig. 6.2.

6.4 Numerical Simulations

In this Section, to study the difference between Yang and Yin Chen systems, we
used following four cases:
CASE I. Based on unidirectional linear coupling method, the slave system of Eq. (6.6) is

reconstructed as follows:

dyl(_t)_ PN Ly s

D) = a,(y, (=) =y, (=0))+k (¥, (D) =x,(1))

d;z(__t;) = (¢, —a)y, (=) 2nEOnED+ey G +k (1, () -x,0)  (6.7)
() W

d(~1) = 1 (=), (=1) = biys( t)+k(y3( 1) )C3(t))

where £ is gain of controllers.

The generalized synchronization error functionis e =y, (—t)—x,(t), i=1,2,3.

e =y, (=) —x,(?)
e, = y,(=1) = x,(?) (6.8)
e; = y5(—1) — x;(?)

And then
lime, =lim(y,(—t)—x,(¢))=0, i=1,2,3 (6.9)

The error dynamics becomes
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b BN 5@ ) Oy

dt dt d(-t)  dt
+k (3 () —x,1)))

_a('XZ(l)_'xl(t))
6 =D 2O Dn() 860 (0 _g) y,(-t) -y (-0

2 dt dt d(—t) dt
+ e (D) +k(1(-D) %))
‘((C —a)x,(t) = x,(£)x,(t) +cx, (t))

é3 _ dy3 (—?) _ dx3 () __ dy3 (-1) _ dx3 O] _ _(yl (—t)yz(—l) _b1y3 (1)

dt dt d(-t) dt
+ k(y3 (=1)—x, (Z)))
(3605, (6)— by 1) (6.10)

Let initial condition (x,,x,,x;)= (2, 3.2, 1.5), (»,,»,,¥;)= (20, 120, 18), parameters

a=35,b=3,c=28,a,=-35,b, = 3,¢,=-28, gain k=3200, and we can find out

that the error dynamics behaviors as. shown 'in Figs. 6.3-5. Three error states versus time
and time histories of states are shown in Figs. 6.6-7.

CASE I1. The slave system of Eq. (6:6)is.described as follows:

dy1(_t)_ N _ A 20_

i = BN RED (D=5 O) 45D

dc)ljz((—_l;) =(q _al)yl(_t)_yl(_t)y3(_t)+c1y2(_t)+k(yZ(_t)_XZ(t))+Sin2 x,()
%:yl(—t)yz(—t)—b1y3(—t)+k(y3(—l)—x3(l))+y32(_f) (6.11)

The error dynamics becomes
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é = dy, (=) dx,(1) __ dy,(=t) dx,(t) =—(q, (y2 (—t)—yl(—t))

dt dt d(-t)  dt
+k(y1(_t)_x1(t))+x32(t))
—a(x,(0)-x(1))

0 dn@) _ dnen du@
€ = dt i d(—) i ((cl al)yl( )=y, (=) y;(-1)

+ay,(=1) +k(y2 (-1) _xz(t))
+sin® x,(?))

~((e=a)x,(1) = x,()x,(1) + ex, (1))
. _dJ’3(_t)_dx3(t):_dy3(_t)_dx3(t):_ _ ) — _
€ = dt i d(—) i D (=0)y, (=) = by (1)

+ k(Y3(_t) _x3(t)) +x12(t))
— (%05, ()~ bx, () (6.12)

where initial condition (x,x,,x;) =(2, 3.2, 1.5), (»,»,,»;) =(20, 120, 18),

parametersa =35,b=3,¢c=28,a, =%35,5, =23, ¢, =-28, gain k=3100, and the

error dynamics are shown in Figs. 6.8-10. Three error states versus time and time

histories of states are shown in Figs. 6:11-12.

CASE I1I. The slave system of Eq. (6.6) is defined by following equations:

=050 =30 (1= 0) £ (50) ~20,(1)

dyz(_t)_ _ —)— v, (— - - )
i) ~ @R RO AR -R0)
+8cos” y, (1)

d;((:—t;)‘ = (=02, (-0 = by () + k(35 (=0) = x,(0)) + 8 (3%, (1) = 25(-1))

The error dynamics becomes
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, _dn(n) da@) _ dy (=) dn(@) Vv (—
“T it d(-1) dt (@(7.0=2()

+k(y1(_t)_x1(t))
+3(x,(1)=2y,(-1)))

—a(x,(t)=x,(0))
_dy () dn@) _ dy () do@)
G="" " prar— (e =a) »(=0) =y (=0)y;(-1)

+cy, (=) +k (y2 (—t)—x, (t))
+5cos’ y,(~t))

~((c=a)x, ()= x,(O)x, (1) + cx, (1) )
(1 (=03, (=) = byy(-1)
+ k(y3(—t) X (t)))

+ 5(x3(t) - 2)’3(_0)
(5 (050 - b, ) (6.14)

o = dy; (=) . dx; (1) __ dy,(-?) _ dx; (1) _
3 dt dt d(-t)  dt

where initial condition (x,x,,%) =2, 3.2y 1.5), (»,»,,»;) = (20, 120, 18),

parameters a =35,b=3,c=28;a, =+35,b =-3, ¢;=-28, gain k=2700, control

gain ¢ =1.8, and phase portraits of the errorsdynamics are shown in Figs. 6.13-15.

Three error states versus time and time histories of states are exhibited in Figs. 6.16-17.

CASE 1V. According to unidirectional linear coupling,the slave system of Eq. (6.6) is

described as follows:

dyl(_t)_ N\ _ : ) —

T = a,(y,(=0) = y, (=) + ksin (y, (=) = x, (1))

_dgz( S;) = (6 = @)% (0= 1 DV (D + €2y (0 + ksin (,(=0) - x,(0)

—dc)l';S((—_t;) = yl(—t)yz(—t)—b1y3(—t)+ksin(y3(—t)—x3(t)) (6.15)

The error dynamics becomes
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o = dy,(-1) _ dx, (1) __ dy,(-?) _ dx, (1) _
Ydr dt d(-t)  dt

—(a, (yz (_t)_yl(_t))

+ksin(y,(=1)—x,(1)))
_a(xz(t)_xl(t))

0 dn@) _ dnen du@
€ = dt i d(—1) i ((cl al)yl( )=y, (=0)y;(-1)

+op, (1) +ksin(y,(—1) — x,(2)))
~((e=a)x ) =x O, () +ex, (1))
. dy (=) 3 dx, (1) _ dy,(—t) B dx, (1) o L B
€ = dt i d(—1) i (=D y, (1) —by;(-1)

+ ksin (y3 (—t)—x, (t)))
(% (Dx, (0 = bx, (1) (6.16)

where initial condition (x,x,,x;) = (2, 3.2, 1.5), (»,»,,»;) = (20, 120, 18),

parametersa =35,b=3,c=28,a, =355 =43, ¢, =-28, k=2900, and the error

dynamics, error states versus time, time histories of states are shown in Figs. 6.18-20.

6.5 Summary

In this Chapter, Yin chaos and Yin-Yang generalized synchronization are
investigated for Chen system via four numerical simulation examples. The
synchronization is researched by two coupled chaotic systems with a unidirectional
linear error coupling. To choose an applicable gain parameters by linear coupling
method achives the goal of generalized synchronization is the key note. We found that
coupled chaotic systems with constant coupling parameters in Case I~II] can achieve
synchronized, and with function coupling in Case IV can only complete the target of
generalized synchronization. This papers explores the relationship between the past and
present scopes for chaos study, and investigates its error dynamics behaviors for

generalized synchronization .
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Fig. 6.2 Phase portrait of Yin Chen system with ¢,
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Chapter 7

Pragmatical Generalized Yin-Yang Synchronization for
Chaotic Chen System by Adaptive Control

7.1 Preliminaries

In this Chapter, we study chaos synchronization of historical and contemporary
Chen systems. In ancient Chinese philosophy, the historical chaos of Chen system with
“Yin”, i.e. negative, parameters may be explained and compared with the chaos of the
contemporary Chen system with “Yang”, i.e. positive, parameters. For simplicity, the
former is termed as Yin Chen system and the later as Yang Chen system. We take
advantage of using an adaptive Yin-Yang chaos synchronization of Yin and Yang Chen
systems by pragmatical asymptotically 'stability. theorem. This pragmatical adaptive
synchronization of two chaoticzsystems.0f which one has uncertain parameters the
another has estimated parameters;.is achieved by pragmatical asymptotically stability

theorem. In conclusion, three numerical cases are shown.

7.2 Pragmatical generalized Yin-Yang synchronization scheme by

adaptive control

Consider the following two nonlinear chaotic systems,

KO _ sx(t)+f(x(t). B)

dt
dy(-=1) (7.1)
dC AN+ B+

where x(1) =[x, (1), x,(1),+,x, (0] € R", y(=)=[3,(=0), »,(=1),-+-,»,(~0)] €R", and

denote the master state vector and slave state vector respectively, A,A, € R"" are
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uncertain and estimated coefficient matrices, fand gare nonlinear vector functions,

B,B, are uncertain and estimated coefficient vectors in f and g , and

u(®) =[u,,uy,,u, ]T € R" is a control input vector.
Our goal is to design a controller u(z)so that the state vector of slave system

asymptotically approaches the state vector of the master system plus a given chaotic
vector function F(t)=[E(t),Fz(t),---,Fn(t)]T. This is a special kind of generalized

synchronization called generalized Yin-Yang synchronization:

y(-1) =G(x(?),) =x(t) + F(¢) (7.2)

The chaotic system which affords F(z) is called a given system. The synchronization
is accomplished when 7>, the limit of the error vector e(r)=[e, e, e,]

approaches zero:

}i_)rge(t) =0 (7.3)
where
e(t)=x(¢t)-y(-t)+F() (7.4)

From Eq. (7.4) we have

de(t) _ dx(t) _dy(-) _dF(1)
d  at dt dt
_dx()__dy(-n)__dF( 75
dt  d(-t) dt

&() = Ax(t) +£(x(1), B) + (A,y (1) + g(y(~1), B)) +u(0)) + F(?) (7.6)
A Lyapnuov function V(e, A, B) is chosen as a positive definite function

V(e, A, B) :%eTe+%ATA+ B'B (7.7)

1
2
where A=A-A,, B=B-B,.

Its derivative along any solution of the differential equation system consisting of
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Eq. (7.5) and update parameter differential equations for Aand B is
V(e, A, B) = e [Ax(1) +£(x(1), B) + (A,y(~1) + g(y(-1), B,) +u(1)) + F(1)]

+AA+BB (7.8)

where u(?), j&, and B are chosen so that V=e"Ce, C is a diagonal negative

definite matrix, and V is a negative semi-definite function of e and parameter
differences Aand B. In current scheme [3-7] of adaptive control of chaotic motion,
traditional Lyapunov stability theorem and Babalat lemma are used to prove the error
vector approaches zero, as time approaches infinity. But the question, why the
estimated or given parameters also approach to the uncertain parameters, remains no
answer. By pragmatical asymptotical stability theorem, the question can be answered

strictly.

7.3 The chaotic behavior of Yang and Yin Chen systems

The Yang Chen system is des€ribed as follows:

? = a(x,(t)—x,(1))
% = (C_a)x1 (t)_xl (t)x3(t)+cx2 (t) (7.9)
% =X, ()%, (1) = bx; (1)

where initial condition x,(0) = 2,x,(0) =3.2,x,(0) =1.5and parametersa =35,b=3 and

¢ =28, can be called Yang parameters, and chaos of the Yang Chen system is called

Yang chaos. The chaotic behaviors of Eq. (7.9) are shown in Fig. 6.1.

The Yin Chen equations are:
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dyl(_t)_ PN

) =a,(y,(=0) =1 (=1)

dv.(—

zzgt;):(Cl—al)yl(—t)—yl(—t)yg(—t)+cly2(—t) (7.10)
DD oy () — by

d(—0) =1 =)y, (=t)=by,(-t)

where initial condition y, (0) = 20, y,(0) =120, y,(0) =18 and parameters a, = -35,

b, =-3 andc, =-28, can be called Yin parameters, and chaos of the Yin Chen system is

called Yin chaos. Obviously, the derivative are taken with the back-time in the left hand
sides of Eq. (7.10). It means Eq. (7.10) aims to find out the historical behavior of the
Chen system and to figure out the difference between history and presence. The phase
portrait of Yin Chen system are revealed in Fig. 6.2. The phase portraits of Yin and Yang
Chen systems are quite different, whileé their'Lyapunov exponents are approximately

symmetric but small different.

7.4 Numerical simulations of generalized Yin-Yang synchronization

In this Section, adaptive synchronization from Yin Chen system to Yang Chen
system is proposed. The Yang Chen system as master system and the Yin Chen system as
slave system are given below:

Yang Chen system is master:

@ = a(x,(6)—x, (1))
%=(c—a)xl(z)—xlu)xs(z)+cx2<t) (7.11)
D0 _ (0, (0) - b, (1)

dt

Yin Chen system is slave:
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dy,(=1) _ v (—

40 = a0 =yE0)+u,

B0 _ (6~ (0= 00+ () +u, (7.12)
d(-1)

dy,(-t) _ _ A -

d(—1) —yl( t)yz( 1) b1y3( t)+u3

where x,(¢) and y,(—¢) stand for states variables of the master system and the slave

system, respectively. a, b and c are uncertain parameters of master system. a,, b, and

¢, are the estimated parameters of slave system.u;,u,andu;are nonlinear controllers

to synchronize the slave Chen system to master one. Three simulation cases are given

for analyzing as follows:

CASE I. The generalized synchronization error function is e, = x,(¢)—y,(-t), i=1,2,3.

e =x(t)—y (1)
€, :xz(t)_yz(_t) (7.13)
e, =x,(t)— y;(-1)

And then
lime, =lim(x,(t)—y,(-t))=0 (i=1,2,3) (7.14)
t—00 t—0

The error dynamics becomes

o o) _dn(0) _dx () dy (1)
Lot dt dt  d(-1)

=a(x, (1) —x,(1))

+a,(y,(—t) = y,(=t)) +u,
o = dX2(l) _ dyz(—l) _ dxz(l) . dyz(—t)
’ dt dt dt (1)

=(c—a)x,(2) —x,(1)x;(¢) + cx, (?)

+(q—a)y, (=)= y, (=) y5(-1)
+ep, (=) +u,

= x,()x, () = bx; ()

+ 1 (=) y, (=) = b, y;(—t) +u, (7.15)

o = dX3 (t) _ dy3 (—t) _ dx3 (t) N dy3 (_t)
3 dt dt dt d(—t)

Let parametersa =35,b=3andc =28, initial conditionx, (0) =2,x,(0) =3,x,(0)=1.6,
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,(0)=0.7,5,(0)=0.5, y,(0) = 0.8 . The two systems will approach synchronization for

any initial conditions by appropriate controllers and update laws for the differences

between uncertain and estimated parameters. As a result, the following controllers and

update laws are designed by using pragmatical asymptotical stability theorem as

follows:

Choosing Lyapunov function as:

V=%(€12 +el v +a +b+?)
whered=a—a,, b=b—b, and é=c—c,.
Its time derivative is:

V = eé +eé, + e, +ad+bb+
=e[a(x, (1) —x, (1) + a,(y,=8) = v, (=) + u, ]
+e,[(c—a)x, (1) — x,(t)x,(t) +cx,(r)
+(e,—apy (=) =y, (=930 + ¢y (1) +u, ]

+ e[ x, (1) x, (2) = bx; (2) +23, () (=8) = b, ys(—1) + u,]
+a(=a) +b(=b)+E(=¢)

We choose the update laws for those uncertain parameters are:

Q-
Il

—a, = de,
b =-b, =be,
¢ =—¢, =Ce,

through Eq. (7.17) and (7.18), the appropriate controllers can be designed as:

u, =—a(x,(t) —x,()) —a,(y,(-1) - y,(-1)) —¢, -a
u, =—=((c—a)x,(t) — x,(t)x, (1) + cx, (1))
—((q—a)y, (=)= » (=) y; (=) + ¢, y,(-1)) e, -
uy =—(x,(1)x, (1) —bx; (1)) — V(=) y, (1) = b y;(-1)) — e -b’

We obtain

> 2 2 2
V=—e —e;,—e <0
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which is negative semi-definite function ofe,e,,e;,qa,,b andc, . The Lyapunov

asymptotical stability theorem is not satisfied. We cannot obtain that common origin of
error dynamics (7.15) and parameter dynamics (7.18) is asymptotically stable. By

pragmatical asymptotically stability theorem (see Appendix B), D is a 6-manifold,

n = 6 and the number of error state variablesp=3. When e, =e, =e; =0and aq,,b,,¢

take arbitrary values, V=0 ,50 X is of 3 dimensions, m=n—-p=6—-3=3, m+1<n

is satisfied. According to the pragmatical asymptotically stability theorem, error vector e
approaches zero and the estimated parameters also approach the uncertain parameters.
The equilibrium point is pragmatically asymptotically stable. Under the assumption of
equal probability, it is actually asymptotically stable. The simulation results are shown
in Figs. 7.1-4.

CASE 1II. The given system for.generalized synchronization is a Ikeda-Lorenz

system[45] which affords F(¢),s described as follows:

dZC}Et)_ =—d,z,(t)— e sin z, (£)y H f(z,(t) — z,(1))
dZ;:t(t) = —d,z,(t) —e,sin z,(¢) + hz,(¢t) — z, () z, (¢) — z,(¢) (7.21)
% =—d,z,(t) —e;sin z, () + z,(t) z,(t) — gz, (1)

where d, =0.1,d,=02,d, =0.05, ¢ =l,e,=03,e,=1.8, f=16h=4592,g=4

and initial condition z,(0)=1,z,(0) =2, z,(0) = 3. Phase portrait is shown in Fig. 7.5.
By Eq. (7.4)

eizxi(t)_yl‘(_t)""F;(t) (i=1,2,3) (7-22)
where F,(t) = %zi(t)

For generalized synchronization, we have
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lime, = lim[(x,(¢)+ %zi(t)) -y,(-t)]=0 (i=12,3) (7.23)
Where Eq. (7.22) is rewritten as
1
e =[x,(2)+ 521(1)] = (=)

r =[x (05 2 (0] 12 () (7.24)

e, = [x,()+ %zm] (1)

from Eq. (7.24), the following error dynamics:

o0 150 di(0)_ds(0) | 1d0), dnn)
di 2 dt dt di 2 dt | d(~)
=a(xz(z)—xl<t>>+§(—dlzl<t>—e1 sinz, (0 + £(2,(0)—z,(1)))

+a,(y, (=) =y (=) +y,
é, = dx, (1) +1d22(t) _ dy,(-t) _ dx, (&) +ld22(t) + dy,(-1)
dt 2 dt dt dt 2 dt d(-t)

= (C_a)xl(t)_xl(t)x3(t)+Cx2(t)+%(_d221(t)_ez 8in z, (1) + hz, () — 2, (1) z; (1) — 2, (1))

+(¢, =)y, (=1) =y, (=) y; (=) F ¢ (=D +
é, = dx, (1) +l dzy(t) _ dy;(-1) _ dx;(1) +le3(t) y dy;(-1)
dt 2 dt dt dt 20147 d(-t)

=X (t)xz(t)_bx3(t)+%(_d3zl(t)_es sin z (¢) + z,(8)z, (1) — gz5(1))

+ 0 (=0)y, (=)= b ys (=) +u, (7.25)

Choose a Lyapunov function in the form of a positive definite function:

| 2 T2 A
Ve,e,,e,,a,b,c) =E(el2 tes+e;+a +b>+¢?) (7.26)

where a=a—-a,,b=b-b,c=c—c,,and a,,b,,c, are estimates of uncertain parameters

a, b, and c, respectively.

Its time derivative is

97



V = eé +e,é, + e, +ad+bb+ &
=ela(x,(t)—x,(1))+ %(—dlz1 (t)—e sinz, (t)+ f(z,(t)—z,(1)))
+a,(y,(=t)=y,(=t)+u]+e,[(c—a)x (t)— x(¢)x;(t) +cx,(t)
+ %(—dzzl(t) —e,sinz,(t)+hz (t)—z,(t)z,(t) — z,(1))
+ (e, = a)y, (=) =y (=) y; (=) + ¢y, (=1) + u, | + e[ x, (1) x, (1) — bx; (¥)
+%(—d3zl(l‘) —e,sinz, (1) +z,(t)z,(t) — gz, (1)) + y, (=) y, (=t) = b,y (=) + u, ]
Fa(—a) +h(=b)+E(=¢,) (7.27)

We choose the update laws for a, b and & as:

Q-
Il

—a, = ae,
b=—b, =be (7.28)
1 3
¢=—¢ =0Ce,
Choose

u, =—a(x, (1) — x,(¢)) — di( y,(=1) = (1))
_%(_d1z1(t) — e sin z(#) + f (2, (F) =2, () — ¢, — a’

u, =—(c—a)x (1) + x, () x;()—cx,(t) =(¢,— a,) y, (1)
+ 1, (=) y; (=) — ¢, y,(-1)

- %(—alzz1 (t)—e,sinz,(t) + hz, () — z,(t)z,(t) — z,(t)) —e, = C°
us; = _xl(t)xz(t)+bx3(t)_y1(_t)y2(_t)+b1y3(_t)

- %(—dg,zl(t) —eysinz,(t) + z,(¢)z,(t) — gz,(t)) —e; — % (7.29)

We obtain
V=—e—e—el <0 (7.30)
which is negative semi-definite function ofe,,e,,e;,qa,,b andc,. The Lyapunov

asymptotical stability theorem is not satisfied. We cannot obtain that common origin of
error dynamics (7.25) and parameter dynamics (7.28) is asymptotically stable. In this

case, according to pragmatical asymptotically stability theorem (see Appendix B), D is a
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6-manifold, n =6and the number of error state variablesp=3. When ¢, =¢, =¢e; =0

and a,,b,,c, take arbitrary values, V=0 ,80 X is of 3 dimensions, m=n—-p=6—-3=3,

m+1<n is satisfied. Based on the pragmatical asymptotically stability theorem, error
vector e approaches zero and the estimated parameters also approach the uncertain
parameters. The equilibrium point is pragmatically asymptotically stable. Under the
assumption of equal probability, it is actually asymptotically stable. The simulation
results are shown in Figs. 7.6-9.

CASE I11. The goal system for generalized synchronization is a Rdssler system as F(¢)

described as follows:

% = (5, () + 2, (1)
L0 0+ fiz0 (7.31)
dz() o

gy =gt 3(0( 1(t) h1)

where f, =0.2,g, =0.4,h =5.7%and initial condition z,(0)=0.8,z,(0)=0.3

,2,(0) = 0.6.Phase portrait is shown in Fig. 7.10.

We have
lime, = lim((x,(¢) + zf(t)) -y,(-1)=0(@=12,3) (7.32)
where

e = [xl(t)+212(t)]_yl(_t)
e, =[x, (1) + 2, ()] = ¥, (-1) (7.33)
€; = [xs(t)+232(t)]_y3(_t)

from (7.32), the following error dynamics:
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6 =) dx, (t) l(l‘)(dzl (), dn(-1) _ dx, (t) l(l‘)(dzl (1) dyl (-1)
dt dt dt dt d(-t)

= a(x, (1) = x, (1)) +22,(~(z,(D) + z; (1)) + a,(y, (=) =y, (=1)) +u,

20 (0, DD 50y 5, )
“TTy T dt a2y d(~1)
=(C_a)x1(t)_x1(t)x3(t)+cx2(t)+2zz(t)(zl(t)+f122(t))

+(q—a)y, (=) =y (=) y; (=) + ¢y, (-1) +u, (7.34)
. dx3 (t) le (t) dy,(-1) _ dx, (t) dz, (l) dy3 (1)

6= Ea 2z o - B0 - B oz D S

= xl(t)xz(t)_bx3(t)+y1 (=) y,(=1) = b y;(=1) + 2z, ()(g, + z5(D)(z,(£) — hy)) +u;

Choose a Lyapunov function in the form of a positive definite function:
Ve, e, e,,d,b,é)= %(ef velt+el+at+bi+3eY) (7.35)

where d=a—-a,b=b—-b,é=c—c,and a,,b,,c,are estimates of uncertain parameters

a, b, and c, respectively.

Its time derivative is

V =eé +e,e, +eé, +adat bb %ac
= e [a(x, (1) = x, (1) + 22, (%(2,(1) + (DN + a, (¥, (=) = ¥, (=1)) + u; ]
+e,[(c—a)x,(t) —x,(t)x;(t) + cx, (1) + 2z, (1)(z,(t) + f,2,(¢))
+(¢;—a)y, (=) =y, (=) y; (=) + ¢y, (=0) + u, ]
+e;[x, (1) x, (£) = bx; (1) + y, (=1) y,(=1) = by, (1)
+2z,(1)(g, + z;()(z, (1) = h)) +us 1+ a(—a,) + 5(—51) +c¢(—=¢)) (7.36)

We choose the update laws for those uncertain parameters are:
15 =—b, = be, (7.37)

Choose
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u =—-a(x,(t)—x, () —a,(y, (=)= y,(-1))
=2z, ()(—(2,() + z,(1))) —e, — @’
u, =—(c—a)x (1) + x,(t)x;(t) — cx, (1) — (¢, —a) y, (1)

) (7.38)
+ 1, (=) y,(=t)—c,y,(=t)=2z,(z, + f,z,) —e, = C
U = _x1(t)x2 (t) + bx3 (t) - yl(_t)yz (_t) + b1y3(_t)
—22,(1)(g, + 2,()(z, (1) = b)) — e, = b
We obtain
V= —el —e; —e; <0 (7.39)

which is negative semi-definite function ofe,,e,,e;,q,,b andc,. The Lyapunov

asymptotical stability theorem is not satisfied. We cannot obtain that common origin of
error dynamics (7.34) and parameter dynamics (7.37) is asymptotically stable. In this

case, according to pragmatical asymptotically stability theorem (see Appendix B), D is a

6-manifold, n =6and the number of error state variablesp=3. When ¢, =e, =¢e; =0

and a,,b,,c, take arbitrary values,V = 0,80 X is.of 3/ dimensions, m=n-p=6-3=3,

m+1<n is satisfied. Based on the pragmatical asymptotically stability theorem, error
vector e approaches zero and the estimated parameters also approach the uncertain
parameters. The equilibrium point is pragmatically asymptotically stable. Under the
assumption of equal probability, it is actually asymptotically stable. The simulation

results are shown in Figs. 7.11-14.

7.5 Summary

In this Chapter, pragmatical generalized Yin-Yang synchronization of chaotic Chen
system is investigated. The Yang Chen system and Yin Chen systems are used in three
simulation examples which exhibit its effectiveness of the proposed method. By using

pragmatical asymptotical stability theorem, with the same conditions for the Lyapunov
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function, V' >0, V< 0, as in the current scheme of adaptive synchronization, we not
only obtain the generalized synchronization of chaotic systems but also prove that the
estimated parameters approach the uncertain values. This Chapter explores the
conjunction from the history to presence, and researches pragmatical synchronization by
adaptive control. The nonlinear Yin dynamics gives a vast new field for nonlinear

dynamics.
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Fig. 7.2 Time histories of errors for Yin and Yang Chen chaotic systems for Case 1.
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Fig. 7.4 Time histories of states of Yin and Yang Chen chaotic systems for Case I.
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Fig. 7.5 Phase portrait of Ikeda-Lorenz system.
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goal system for Case 1.
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Case 1.
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Fig. 7.11 Phase portrait of Yin and Yang chaotic systems with Rossler system as goal
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Fig. 7.12 Time histories of errors for Yin and Yang Chen chaotic systems for Case I11.
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Chapter 8

Conclusions

In this thesis, a new chaos generalized synchronization method by GYC partial
region stability theory is proposed. By using the GYC partial region stability the
Lyapunov function is a simple linear homogeneous function of error states and the
controllers are simpler. Lorenz system with Legendre function parameters is studied
firstly. The results are verified by time histories of states, phase portraits, Poincaré maps,
bifurcation diagram, Lyapunov exponents and parameter diagrams. Abundant
hyperchaos is found for this system, which gives potential in various applications,
particularly in secret communication. The Yin Chen system is firstly introduced.
Comparing the Yang and Yin Chen.system via numerical simulation, we find out some
similarity and difference between history and presence. This thesis explores the
historical space for chaos study interestingly, it' would be proved epoch-making
significance in future. The synchromization is researched by two coupled chaotic
systems with a unidirectional linear error coupling. To choose an applicable gain
parameters skillfully by linear coupling method achives the goal of generalized
synchronization. By using pragmatical asymptotical stability theorem, with the same
conditions for the Lyapunov function, V' >0, VSO, as in the current scheme of
adaptive synchronization, we not only obtain the generalized synchronization of chaotic
systems but also prove that the estimated parameters approach the uncertain values.
This thesis explores the conjunction from the history to presence, and studies
pragmatical synchronization by adaptive control. The nonlinear Yin dynamics gives a

vast new field for nonlinear dynamics.
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Appendix A

GYC Partial Region Stability Theory [24-26]

A. 1 Definition of the Stability on Partial Region
Consider the differential equations of disturbed motion of a nonautonomous system

in the normal form

a;; =X (t,x,,x,), (s=1,---,n) (A.1)

where the function X is defined on the intersection of the partial region € (shown

in Fig. A1) and

Y xI<H (A2)

s

and t>t,, where f, and H are gertain positive eonstants. X which vanishes when
the variables x, are all zero, is-a real valued functionjof 7, x,,---,x, . It is assumed that
X, 1s smooth enough to ensure the existence, uniqueness of the solution of the initial
value problem. When X does not contain ¢ explicitly, the system is autonomous.

Obviously, x, =0 (s=1,---n) is a solution of Eq.(A.1). We are interested to the

asymptotical stability of this zero solution on partial region Q (including the boundary)
of the neighborhood of the origin which in general may consist of several subregions
(Fig. Al).
Definition 1:

For any given number & >0, if there exists a ¢ >0, such that on the closed given

partial region Q when

Y X, <8, (s=1-m) (A3)
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for all t>1,, the inequality
Zx52<8, (s=1,---,n) (A.4)

is satisfied for the solutions of Eq.(A.1) on €, then the disturbed motion
x,=0 (s=1,---n) is stable on the partial region Q.

s

Definition 2:
If the undisturbed motion is stable on the partial region €, and there exists a

& >0, so that on the given partial region Q when

Y x <68, (s=1--,n) (A.5)

The equality

1im(2xfj =0 (A.6)
is satisfied for the solutions “of " Eq.(A.1) on- Q7 then the undisturbed motion
x,=0 (s=1---n) is asymptotically stable on'the partial region Q.

S

The intersection of () and region defined by Eq.(A.5) is called the region of

attraction.

Definition of Functions V(¢,x,,---,x,):

Let us consider the functions V(¢,x,,---,x,) given on the intersection €, of the

partial region Q and the region

D xi<h, (s=1-,n) (A7)

for t>=¢,>0, where ¢, and / are positive constants. We suppose that the functions are

single-valued and have continuous partial derivatives and become zero when
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Definition 3:

If there exists #, >0 and a sufficiently small % >0, so that on partial region €,
and t>¢,, V20 (or <0), then V' is a positive (or negative) semidefinite, in general

semidefinite, function on the Q, and 72>¢,.
Definition 4:

If there exists a positive (negative) definitive function W(x,...x,) on Q,, so that

on the partial region €, and ¢2>¢,

V—-W2=0(or—-V-Ww=0), (A.8)
then V(t,x,,...,x,) is a positive definite function on the partial region €, and ¢>¢,.
Definition 5:

If V(t,x,,...,x,) 1s neither definite nor- semidefinite on €, and #>¢,, then
V(t,x,,...,x,) is an indefinite function*on partial tegion €2, and ¢=>¢,. That is, for

any small #>0 and any large #,>0, V(¢,x,...,x,) can take either positive or

negative value on the partial region €, and ¢>¢,.

Definition 6: Bounded function V'

If there exist £, >0, /&> 0, so that on the partial region €2, , we have

|V(t,xl,...,xn) <L

where L is a positive constant, then V'is said to be bounded on Q,.

Definition 7: Function with infinitesimal upper bound

If V' is bounded, and for any A>0, there exists x>0, so that on €, when
fo <u,and t>1,,we have
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WV (t,x,....,x,)| <A

then / admits an infinitesimal upper bound on €, .
A.2 GYC Theorem of Stability and of Asymptotical Stability on Partial Region
Theorem 1

If there can be found a definite function V(¢,x,,...,x,) on the partial region for

Eq. (A.1), and the derivative with respect to time based on these equations are:
av_ Iy

= A9
dt o “Sox, (A9)

Then, it is a semidefinite function on the paritial region whose sense is opposite to that
of V, or if it becomes zero identically, then the undisturbed motion is stable on the
partial region.

Proof:

Let us assume for the sak¢ of definiteness that 7 is a positive definite function.

Consequently, there exists a sufficiently large number 7, and a sufficiently small
number /2 < H, such that on the intersection Q, of partial region € and

szz <h, (s=1,...,n)
and ¢ >¢,, the following inequality is satisfied

Vit,x,....x,)=2W(x,,...,x,),

where W is a certain positive definite function which does not depend on z. Besides that,
Eq. (A.9) may assume only negative or zero value in this region.

Let ¢ be an arbitrarily small positive number. We shall suppose that in any case

& < h. Let us consider the aggregation of all possible values of the quantities x,,...,x

no

which are on the intersection @, of €, and
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szz =g, (A.10)

s

and let us designate by />0 the precise lower limit of the function W under this

condition. By virtue of Eq. (A.8), we shall have

Vix,....x,)=l for (x,...,x,) on @,. (A.11)
We shall now consider the quantities x, as functions of time which satisfy the
differential equations of disturbed motion. We shall assume that the initial values x_,

of these functions for #=¢, lie on the intersection Q,of € and the region

S <s, (A.12)

s

where ¢ is so small that
V(ty,x,gr- 5 X,0) <1 (A.13)
By virtue of the fact that F(#,,0,...,0)=0, such a selection of the number s 1is

obviously possible. We shall suppose that in any ease the number & is smaller than

¢ .Then the inequality

Y xl<e, (A.14)

being satisfied at the initial instant will be satisfied, in the very least, for a sufficiently
small ¢—t,, since the functions x (¢) very continuously with time. We shall show that
these inequalities will be satisfied for all values 7 > ¢,. Indeed, if these inequalities were

not satisfied at some time, there would have to exist such an instant /=T for which this

inequality would become an equality. In other words, we would have
2x () =¢,

and consequently, on the basis of Eq. (A.11)
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V(T,x(T),...,x,(T)) =1 (A.15)
On the other hand, since & < &, the inequality (Eq.(A.7)) is satisfied in the entire
interval of time [ty, T], and consequently, in this entire time interval c;_lj <0. This
yields
V(T,x,(T),...,x, (T)<V(t), X,05--->X,0)s
which contradicts Eq. (A.14) on the basis of Eq. (A.13). Thus, the inequality (Eq.(A.4))
must be satisfied for all values of 7 >7,, hence follows that the motion is stable.
Finally, we must point out that from the view-point of mathenatics, the stability on
partial region in general does not be related logically to the stability on whole region. If

an undisturbed solution is stable on a partial region, it may be either stable or unstable

on the whole region and vice versa. In speeifiec’practical problems, we do not study the

solution starting within €, and:running outof €.

Theorem 2
. o . . dry .
If in satisfying the conditions of Theorem 1, the derivative ” is a definite
t

function on the partial region with opposite sign to that of V and the function V itself
permits an infinitesimal upper limit, then the undisturbed motion is asymptotically
stable on the partial region.

Proof:

Let us suppose that V is a positive definite function on the partial region and that

dv . . . . .
consequently, ’ is negative definite. Thus on the intersection €2, of Q and the

region defined by Eq. (A.7) and 21, there will be satisfied not only the inequality

(Eq.(A.8)), but the following inequality as well:

dv
<, (A.16)
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where W, is a positive definite function on the partial region independent of t.
Let us consider the quantities x, as functions of time which satisfy the differential

equations of disturbed motion assuming that the initial values x ,=x(¢,) of these
quantities satisfy the inequalities (Eq. (A.12)). Since the undisturbed motion is stable in
any case, the magnitude 6 may be selected so small that for all values of 7>, the

quantities x, remain within Q, . Then, on the basis of Eq. (A.16) the derivative of

function V(t,x,(¢),...,x,(t)) will be negative at all times and, consequently, this

function will approach a certain limit, as ¢ increases without limit, remaining larger than

this limit at all times. We shall show that this limit is equal to some positive quantity

different from zero. Then for allsvalues of 7>#, the following inequality will be
satisfied:
Vit x (t),..»x (0)>a (A.17)

where a >0.

Since V permits an infinitesimal upper limit, it follows from this inequality that

D X022, (s=1,...,n), (A.18)

where A is a certain sufficiently small positive number. Indeed, if such a number A

did not exist, that is , if the quantity sz (t) were smaller than any preassigned

number no matter how small, then the magnitude V(¢,x,(?),...,x,(¢)), as follows from

the definition of an infinitesimal upper limit, would also be arbitrarily small, which

contradicts Eq. (A.17).

If for all values of #>¢, the inequality (Eq. (A.18)) is satisfied, then Eq. (A.16)

shows that the following inequality will be satisfied at all times:

117



where [, is positive number different from zero which constitutes the precise lower
limit of the function W,(¢,x,(¢),...,x,(¢)) under condition (Eq. (A.18)). Consequently,
for all values of #>¢, we shall have:
tdV
Vt,x,(2),....x,() =V (t;, X051 %,0) +LO Edt SV, X055 X,0) =L (E—1,),

which is, obviously, in contradiction with Eq.(A.17). The contradiction thus obtained

shows that the function V(¢,x,(%),...,x,(¢)) approached zero as ¢ increase without limit.

Consequently, the same will be true for the function W(x,(¢),...,x,(¢)) as well, from

which it follows directly that

limx (¢) =0, (s=1....0),

which proves the theorem.

subregion 1

e

————t
subregion 2

Fig. Al Partial regions Q and Q.
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Appendix B

Systems of Positive States [52-55]

B.1 Three species prey-predator system
The three species prey-predator system which consists of two competing preys and

one predator can be described by the following set of nonlinear differential equations:

dx _ _

% =rn(1-k'x—k'c,y)—D,(x,y)z

d _ _

==k ex—k'y) - 0,(x, )2 (B.1)
dz

E =¢®,(x,y)z+6,D,(x,y)z-az

wherea, 7, k;,e;andc;, i=1,2are the model parameters assuming only positive values,

and the functions @, (x,y), i=1,2:aepresent the densities of the two prey species and z

represents the density of the predator species. The predator z consumes the preys x, y

according to the response functions.[52]:

a;x a,x

D, (x,y)= O, (x,y) =

. — (B.2)
1+bx+b,y 1+bx+b,y

wherea, , i=1,2are the search rates of a predator for the preys x, y respectively, while

b, =h;a,, i=1,2where h,, i=1,2are the expected handing times spent with the preys x, y

17712

respectively. The parameters e, and e, represent, the conversion rates of the preys x, y to

predator z. Obviously, whenb, andb, are very small the functional of response @,,

(i=1,2) become linear response see Volttera functional response [53]. In the other hand
as one of both b, and b, tends to zero the system approaches to hyperbolic Holling type II
[54]. The prescribed model characterized by nonlinear response since amount of food
consumed by predator per unit time depends upon the available food sources from the
two preys x and y.
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B.2 Double Mackey-Glass systems

We consider two double Mackey-Glass systems which consist of two coupled

Mackey-Glass equations [55]:

. bx
X = ———rx,
I+x/,
(B.3)
. bx,.
X, = —— 71X, — X,
1+x7,

The system is a model of blood production of patients with leukemia. The variables

x,, x, are the concentration of the mature blood cells in the blood, and x,,, x, are

presented the request of the cells which is made after r seconds, i.e. x;, =x,(t—7),

(i=12). The time delay 7 indicates the difference between the time of cellular
production in the bone marrow and of the release of mature cells into the blood.
According to the observations, the;time 7 is large in the patients with leukemia and
the concentration of the blood cells.becomes .oscillatory. In this study, the delay time
fixed in 20 second (7 =20) and-the parameters-are/shown as follow:56=0.2, r=0.1,
and n=10.
B.3 Energy communication system in biological research

The so-call static state in life sciences means that the system of life is approach to a
stable condition. Moreover, the relation of energy communication among the elements
in a system of life is called arrangement of static state. The energy communication of
elements in a system of life in static state can be divided into two forms:
(1) Independent form:

All the elements in a system of life can communicate energy individually with

other energy systems out of theirs. The mathematics form is as fallow:

du

711 = —Au; + By, +(Cyy — Dyt )ty — @,

. (B.5)
u

7; =—Ayu5 + By, +(Csy — Dyt Juy — @
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where 4;, B;,C;; and D; (ij=1, 2, ..., n)are parameters, u; andu,are two different

elements in a system of life and @, , @, are modified terms. The term (—A4,u’ + B,u,)

represents the energy communicated with other energy systems, and the term

(Cy — Dju;)u; represents the energy communicated with the elements in the system of

themselves. As a result, independent form can be (~4,u} + B,u,) #0, (i=1, 2, ..., n) and
(Cy = Dyu)u;,(ij=1, 2, ..., n) are very small in general. If the natural medium is

change, such as the lack of food or the limit of living space, (C; —Dju;)u;may be
rising.
(2) Dependent form:

There are two different parts of elements inthese systems of life. The first part of
elements can communicate energy individually with other energy systems out of theirs.
The mathematics form is the same to:(Eq.-(B.5)). The second part of elements can not
communicate energy individually with-other energy systems out of theirs, they have to

be provided the energy by the first part of elements. The mathematics form is as fallow:

du, S
E = _Aiui2 +Bu; + ':%H(Cij _Dijui)uj X
j (B.6)
du; m
L= X(Cy =Dy~

(iek,jen—k)

where k represents the number of the first part elements and m; represents the number of

the second part elements.
In further studies, the system of food chain with three states can be described by

the mathematical model as follow:
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du
7; = A1”12 + By +(Cyy — Dyjuy Juy — ¢,
du,
i =(Cyy = Dyjuy Juy +(Cyz — D3ty Jus — ¢, (B.7)
dus,
—==(C5y — Dyyut3))u, —
r (Cs, 32Uz Uy — @y

B.4 Virus-immune system

A mathematical model of the virus-immune system consisting of the following

three nonlinear differential equations is considered in this study:

d—T:s—u1T+rT[l—T+1}—kVT

dt

dl

kT —u. 1 B.5
i Ha (B.5)

where T, I and V represent the population concentrations of uninfected, infected target
cells and virus respectively. We denote by:the s constant supply of target cells from its

precursor. These cells have a finite life timeé-and ., represents the average death rates of
these cells. These target cells are assumed to grow logistically with specific growth rate
rand carrying capacity'. In the presence of virus, the target cells become infected.
Since virus must meet the cells in order to infect them, a mass action term is used to

model infection with k& as the infection rate. p,denote the natural death rate of infected

cells. All infected cells are assumed to be capable of producing virus. It is assumed that

N virion are released by each infected cell during its lifetime. p,represents the death

rate of infected cells due to lysis. p,1s the death rate of free virus.
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Appendix C

Pragmatical Asymptotical Stability Theory [56-58]

The stability for many problems in real dynamical systems is actual asymptotical
stability, although may not be mathematical asymptotical stability. The mathematical
asymptotical stability demands that trajectories from all initial states in the
neighborhood of zero solution must approach the origin as # —co. If there are only a
small part or even a few of the initial states from which the trajectories do not
approach the origin as ¢ — o0, the zero solution is not mathematically asymptotically
stable. However, when the probability of occurrence of an event is zero, it means the
event does not occur actually. If the probability of occurrence of the event that the
trajectries from the initial states are that they do mot approach zero when ¢ — o0, is
zero, the stability of zero solution.is actual .asymptotical stability though it is not
mathematical asymptotical stability. In-otder-to-analyze the asymptotical stability of
the equilibrium point of such systems, the pragmatical asymptotical stability theorem
is used.

Let X and Y be two manifolds of dimensions m and n (m<n), respectively, and ¢

be a differentiable map from X to Y, then ¢(X) is subset of Lebesque measure 0 of Y

[56]. For an autonomous system
dx
—=f(x,x, C-1
o S/ (x ) (C-1)
where x =[x, x,] is a state vector, the function f=[f,--, f,] is defined on

DcR" and ||xH < H >0. Let x=0 be an equilibrium point for the system (C-1). Then

£(0)=0 (C-2)

For a nonautonomous systems,
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x=f(x,...x,,,) (C-3)
where  x=[x,,..,x,]" , the function f=0fnf,]” is define on
D c R"xR, here t=x,, <R, . The equilibrium point is

f(O,an) =0. (C'4)

Definition The equilibrium point for the system (C-1) is pragmatically
asymptotically stable provided that with initial points on C which is a subset of
Lebesque measure 0 of D, the behaviors of the corresponding trajectories cannot be
determined, while with initial points on D— C, the corresponding trajectories behave as

that agree with traditional asymptotical stability [57-58].

Theorem Let V =[x, ---,xn]T : D-—=Rsibe positive definite and analytic on D,
where x,,x,,...,x, are all space-coordinates-such,that the derivative of V" through Eq.

(C-1or(C-3), V , is negative semi-definite of X, x5, x, 1.
For autonomous system, Let X be'the m-manifold consisted of point set for which
Vx#0, V(x)=0 and D is a n-manifold. If m+1<n, then the equilibrium point of the

system is pragmatically asymptotically stable.

For nonautonomous system, let X be them +1-manifold consisting of point set
of which Vx # O,V(xl,xz,...,xn) =0and Dis n+1-manifold. If m+1+1<n+1, 1e.

m+1<nthen the equilibrium point of the system is pragmatically asymptotically
stable. Therefore, for both autonomous and nonautonomous system the formula
m+1< nis universal. So the following proof is only for autonomous system. The proof
for nonautonomous system is similar.

Proof Since every point of X can be passed by a trajectory of Eq. (C-1), which is
one- dimensional, the collection of these trajectories, A4, is a (m+1)-manifold [57-58].
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If m+1 <n, then the collection C is a subset of Lebesque measure 0 of D. By the
above definition, the equilibrium point of the system is pragmatically asymptotically
stable.

If an initial point is ergodicly chosen in D, the probability of that the initial point
falls on the collection C is zero. Here, equal probability is assumed for every point
chosen as an initial point in the neighborhood of the equilibrium point. Hence, the
event that the initial point is chosen from collection C does not occur actually.
Therefore, under the equal probability assumption, pragmatical asymptotical stability

becomes actual asymptotical stability. When the initial point falls on D-C,
V(x)<0, the corresponding trajectories behave as that agree with traditional

asymptotical stability because by the existence and uniqueness of the solution of
initial-value problem, these trajectories nevermeet C.

In Eq. (7.7) V is a positive definite function of » variables, i.e. p error state
variables and n-p=m differences”between unknown-and estimated parameters, while
V =e"Ce is a negative semi-definite function of n variables. Since the number of
error state variables is always more than one, p>1, m+1<n is always satistied, by
pragmatical asymptotical stability theorem we have

lime =0 (C-5)

1>
and the estimated parameters approach the uncertain parameters. The pragmatical
adaptive control theorem is obtained. Therefore, the equilibrium point of the system is
pragmatically asymptotically stable. Under the equal probability assumption, it is

actually asymptotically stable for both error state variables and parameter variables.
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