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應用 GYC 部分區域穩定理論於 Froude-van der Pol 系

統之廣義同步與控制,以 Legendre 函數為參數的

Lorenz 系統之超渾沌,歷史 Chen 系統渾沌的技巧性控

制及藉實用漸進穩定理論的陰-陽適應渾沌同步

學生:張育銘                              指導教授:戈正銘

摘要

本篇論文以 GYC 部分區域穩定理論來研究新渾沌 Froude-van der Pol 系統其

廣義同步及渾沌控制。藉由 GYC 部分區域穩定理論，Lyapunov 函數及控制器皆較

傳統系統設計簡單，且因為系統階數低於傳統系統，所以可得到較小的模擬誤差。

本篇以相圖、Lyapunov 指數、分歧圖、參數圖等數值模擬方法，研究帶有 Legendre

函數為參數的 Lorenz 系統其超渾沌現象。此外本篇首次研究歷史 Chen 系統的渾

沌行為，當代 Chen 系統皆以被詳盡研究，但至今尚未有文章對歷史 Chen 系統深

入著墨，因此，接下來研究討論 Chen 系統中“陰”參數其歷史渾沌行為。本篇藉

由線性耦合的方式，選取一合適的耦合參數，來探討“陽”和“陰” Chen 系統其

廣義同步渾沌現象，並藉由實用漸進穩定理論，其原理是兩實用適應同步渾沌系

統，方程式中參數將其一設為不確定的，其餘設為估測的參數，加以利用實用漸

進穩定理論來研究 “陰-陽”適應渾沌同步。
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Abstract

In this thesis, a new chaotic Froude-van der Pol system is studied. A new strategy 

of achieving chaos generalized synchronization and chaos control by GYC partial 

region stability is proposed. Using the GYC partial region stability theory, the Lyapunov 

function used becomes a simple linear homogeneous function of error states and the 

controllers are simpler than traditional controllers, and give less simulation error 

because they are in lower order than that of traditional controllers. The chaotic 

behaviors of a Lorenz system with Legendre function parameters is firstly studied 

numerically by time histories of states, phase portraits, Poincaré maps, bifurcation 
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diagram, Lyapunov exponents and parameter diagrams. Abundance of hyperchaos and 

of chaos is found, which offers the potential for many applications. In this thesis, the 

behavior of historical Chen system is firstly studied. To our best knowledge, most of 

contemporary Chen system are researched in detail, but there are no articles in 

investigating a thorough inquiry about the history of Chen system so far. Therefore, the 

historical chaos of Chen system with “Yin parameters” is introduced. In this thesis, we 

employ an applicable coupling parameters by linear coupling strategy to complete the 

goal of generalized synchronization of Yin and Yang Chen systems and take advantage 

of using an adaptive Yin-Yang chaos synchronization of Yin and Yang Chen system by 

pragmatical asymptotically stability theorem. This pragmatical adaptive synchronization 

of two chaotic systems of which one has uncertain parameters the another has estimated 

parameters, is achieved by pragmatical asymptotically stability theorem.
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Chapter 1

Introduction

Chaos has been found in nonlinear systems of various physical field and 

intensively investigated. We know that chaotic system has extremely sensitive 

dependence on initial conditions. So, Dynamics behaviors of chaotic system is studied 

extensively.

Synchronization of two chaotic systems was first introduced by Pecora and Corroll 

[1] in 1990, and has been widely applied in science and engineering. There are many 

control techniques to synchronize chaotic systems, such as adaptive control method, 

active control approach, invariant manifold method, and linear error feedback control

[2-8], etc.

The generalized synchronization [9-14] is investigated among many kinds of 

synchronizations. It means that there exists a given functional relationship between the 

states of the master and that of the slave.

Since the famous OGY control method is given by Ott et al. [15] in 1990, 

numerous control methods have been widely applied in controlling chaos. For example, 

the adaptive control, the method of chaos control based on sampled data , the inverse 

optimal control, the active control and linear error feedback control [16-23], etc.

A new stability theory, GYC partial region stability theory, has been proposed

[24-26]. By using the GYC partial region stability theory, generalized synchronization 

and chaos control can be obtained, the new Lyapunov function becomes a simple linear 

homogeneous function of error states and reduces the simulation error due to lower 

order of the controllers than that of traditional controllers.

Hyperchaos and chaos are desirable in some systems such as communications, 
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convective heat transfer, chemical reactions, and liquid mixing. When a chaotic system 

has more than one positive Lyapunov exponent, the dynamics of the system is expanded 

in more than one direction, giving rise to a more complex attractor. Generally, this type 

is called hyperchaotic system. Hyperchaos was first introduced by Rossler [27] and 

received great attention because of its potential in various engineering systems [28-31]. 

In this thesis, the constant parameters of the classical Lorenz system is replaced with 

Legendre functions of time. The hyperchaos is found for this system, which gives 

potential in many applications.

In general, nonlinear dynamics is called the chaos theory, which has been widely 

studied over several decades before. It changes the scientific way of looking at the 

dynamics of natural systems. Since the original research of an three-dimensional 

nonlinear system given by mathematical meteorologist E. N. Lorenz in 1963 [32], and 

he found out chaotic in a simple system of three autonomous ordinary differential 

equations to describe the simplified Rayleigh-Benard problem, chaos has been 

extensively investigated in many physical fields, such as power converters, chemical 

reactions, information processing, biological systems, secure communications [33], etc. 

There are many articles in studing contemporary Chen system [34-39]. Although 

the contemporary Chen system has been discussed in detail, but no article was

published in looking for the history of Chen system. As a result, there are abundant 

dynamics behavior in the historical Chen system found in this thesis. 

In conventional Chinese philosophy[40-42], Yin is the negative, historical or 

feminine principle in nature, while Yang is the positive, contemporary or masculine 

principle in nature. Yin and Yang are two basic opposites respectively in Chinese 

philosophy. We call the positive parameters as Yang parameters for the contemporary 

Chen system, and negative parameters as Yin parameters for the historical Chen system 

to analyze the following simulation results. In this thesis, the historical Chen system is 
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introduced and the historical chaotic behavior with Yin parameters is studied by phase 

portraits, Poincaré maps, bifurcation diagram, Lyapunov exponents.

Historical chaos and generalized Yin-Yang synchronization are investigated for 

chaotic Chen system with well designed active control via four numerical simulation 

examples in this thesis. 

All of the synchronization phenomena have a clear feature that the trajectories of 

the drive and response systems can not identically withstand to start from different 

initial conditions. However, a little bit of errors from initial conditions will lead to

completely different trajectories for chaotic systems. For this reason, how to control two 

chaotic systems to be synchronized is a current objective. Generally, most of them are 

based on the exact knowledge of structure and parameters of the system. But in practice, 

some or all of the system parameters are uncertain. In this thesis, an adaptive Yin-Yang

synchronization of historical and contemporary Chen chaos by pragmatical 

asymptotically stability theorem was investigated via three numerical simulations.

This thesis is organized as follows. In Chapter 2, in Section 2.1, preliminaries are 

presented. In Section 2.2, chaos generalized synchronization strategy by GYC partial 

region stability theory is proposed. In Section 2.3, a new Froude-van der Pol system is 

presented. In Section 2.4, four simulation examples are given. In Section 2.5, summary 

is given. The partial region stability theory is enclosed in Appendix A.

In Chapter 3, in Section 3.1, preliminaries are presented. In Section 3.2, chaos 

control scheme by GYC partial region stability theory is proposed. In Section 3.3, a new 

Froude-van der Pol system is presented. In Section 3.4, three simulation examples are 

given. In Section 3.5, summary is given. The partial region stability theory is enclosed 

in Appendix A.

In Chapter 4, in Section 4.1, preliminaries are presented. In Section 4.2, a brief 

description of a classical Lorenz system and of a Lorenz system with Legendre function 
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parameters are introduced. In Section 4.3, time histories of states, phase portraits, 

Poincaré maps, bifurcation diagram, Lyapunov exponents and parameter diagrams are 

presented. In Section 4.4, summary is given.

In Chapter 5, in Section 5.1, preliminaries are presented. In Section 5.2, the Yang

Chen system is presented. In Section 5.3, the Yin Chen system is introduced. In Section 

5.4, three simulation cases of Yin and Yang Chen system are given for analyzing and 

comparing. In Section 5.5, summary is given.

In Chapter 6, in Section 6.1, preliminaries are presented. In Section 6.2, 

generalized Yin-Yang synchronization strategy is presented. In Section 6.3, the Yang and 

Yin Chen systems are introduced. In Section 6.4, four simulation cases are given for 

analyzing. In Section 6.5, summary is given.

In Chapter 7, in Section 7.1, preliminaries are presented. In Section 7.2, 

pragmatical generalized Yin-Yang synchronization scheme by adaptive control is given. 

In Section 7.3, the chaotic behavior of Yang and Yin Chen systems are introduced. In 

Section 7.4, numerical simulations of generalized Yin-Yang synchronization are given 

for analyzing. In Section 7.5, summary is given. Pragmatical asymptotical stability 

theory is enclosed in Appendix C.

    In Chapter 8, conclusions are given.
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Chapter 2

Chaos Generalized Synchronization of a New

Froude- van der Pol System by GYC Partial Region 

Stability Theory

2.1 Preliminaries

In this Chapter, a new strategy of achieving chaos generalized synchronization by 

GYC partial region stability is proposed. Using the GYC partial region stability theory, 

the Lyapunov function used becomes a simple linear homogeneous function of error 

states and the controllers are simpler than traditional controllers, and give less 

simulation error because they are in lower order than that of traditional controllers. 

Numerical simulations are given for new Froude-van der Pol system to verify the 

effectiveness of the proposed method.

2.2 Chaos Generalized Synchronization Strategy 

Consider the following unidirectional coupled chaotic systems

( , )

( , )

t

t


  

x f x

y h y u




                            (2.1)

where  1 2, , ,
T n

nx x x R x  ,  1 2, , ,
T n

ny y y R y  denote the master state vector

and slave state vector respectively, f and h are nonlinear vector functions, and 

 1 2, , ,
T n

nu u u R u  is a control input vector.

The generalized synchronization can be accomplished when t  , the limit of 

the error vector  1 2, , ,
T

ne e ee  approaches zero:
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lim 0
t

e                                                    (2.2)

where

( ) e G x y                                                 (2.3)

( )G x is a given function of x .

By using the partial region stability theory, the linear homogeneous function of 

entries of e can be used to construct a positive definite Lyapunov function. The 

controllers can be designed in lower order than that of traditional controllers and 

introduce less simulation error.

2.3 A New Froude-van der Pol System

Froude system and van der Pol system[43] are two typical nonlinear 

nonautonomous systems:

1 2

2
2 2 2 1( ) sin cos

d
x x

dt
d

x a bx x c x d t
dt



 

    


                           (2.4)

    
3 4

2
4 3 3 4( 1) sin

d
x x

dt
d

x fx g x x h t
dt



 

     


                             (2.5)

Changing cosd t term in Eq.(2.4) by 3dx and sinh t term in Eq.(2.5) by 

1hx , respectively, we obtain a new autonomous Froude-van der Pol system: 

1 2

2
2 2 2 1 3

3 4

2
4 3 3 4 1

( ) sin

( 1)

d
x x

dt
d

x a bx x c x dx
dt
d

x x
dt
d

x fx g x x hx
dt

 

    

 


     


                    (2.6)
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where 1x , 2x , 3x , 4x are state variables, and , , , , , ,a b c d f g h are parameters. When a

=0.35, b =0.1, c =1.0, d =-1, f =1, g =-0.1, h =-0.1, and the initial states of system 

are 1 2 3(0) 0.2, (0) 0.35, (0) 0.2,x x x   4 (0) 0.35x  . Its chaotic phase portrait, time 

histories of states, bifurcation diagram,and Lyapunov exponent are shown in Figs. 2.1-4.

2.4 Numerical Simulations

A master Froude-van der Pol system and a slave one with the unidirectional 

coupling are given:

1 2

2
2 2 2 1 3

3 4

2
4 3 3 4 1

( ) sin

( 1)

d
x x

dt
d

x a bx x c x dx
dt
d

x x
dt
d

x fx g x x hx
dt

 

    

 


     


          (2.7)

1 2 1

2
2 2 2 1 3 2

3 4 3

2
4 3 3 4 1 4

( ) sin

( 1)

d
y y u

dt
d

y a by y c y dy u
dt
d

y y u
dt
d

y fy g y y hy u
dt

  

     

  


      


                       (2.8)

CASE I. The generalized synchronization error function is ( 1, 2,3,4)i i ie x y k i    :

1 1 1

2 2 2

3 3 3

4 4 4

e x y k

e x y k

e x y k

e x y k

  
   
   
   

                                               (2.9)

where k is positive constant, we choose =20k , in order that the error dynamics 
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always happens in first quadrant. Our goal is i iy x k  , i.e.

lim lim( ) 0i i i
t t

e x y k
 

    , ( 1,2,3,4)i                             (2.10)

The error dynamics becomes

1 2 2 1

2
2 2 2 1 3

2
2 2 1 3 2

3 4 4 3

2 2
4 3 3 4 1 3 3 4 1 4

( ) sin

(( ) sin )

( 1) ( ( 1) )

e x y u

e a bx x c x dx

a by y c y dy u

e x y u

e fx g x x hx fy g y y hy u

  
    
     
   
           









(2.11)

where 

i i ie x y    , ( 1,2,3,4)i                                        (2.12)

Let initial states be 1 2 3 4( , , , )x x x x = (0.2, 0.35, 0.2, 0.35), 1 2 3 4( , , , )y y y y = (1, 2, 2.2,

1.5), we find that the error dynamics always exists in first quadrant as shown in Fig. 2.5. 

By GYC partial region asymptotical stability theorem, one can choose a Lyapunov 

function in the form of a positive definite function in first quadrant:

1 2 3 4V e e e e    (2.13)

Its time derivative is

1 2 3 4

2 2 1

2
2 2 1 3

2
2 2 1 3 2

4 4 3

2 2
3 3 4 1 3 3 4 1 4

( )

(( ) sin

(( ) sin ) )

( )

( ( 1) ( ( 1) ) )

V e e e e

x y u

a bx x c x dx

a by y c y dy u

x y u

fx g x x hx fy g y y hy u

   
  

   

    

  

          

    

(2.14)

Choose 
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1 2 2 1

2
2 2 2 1 3

2
2 2 1 3 2

3 4 4 3

2 2
4 3 3 4 1 3 3 4 1 4

( ) sin

(( ) sin )

( 1) ( ( 1) )

u x y e

u a bx x c x dx

a by y c y dy e

u x y e

u fx g x x hx fy g y y hy e

  

   

    
  

          

(2.15)

We obtain

1 2 3 4 0V e e e e      (2.16)

which is a negative definite function in first quadrant. Four error states versus time and 

time histories of states are shown in Figs. 2.6-7.

CASE II. The generalized synchronization error function is sini i ie x y m wt k   

, ( 1,2,3,4)i  .

Our goal is sini iy x m wt k   , i.e. lim lim( sin ) 0i i i
t t

e x y m wt k
 

    

, ( 1,2,3,4)i 

The error dynamics become

1 2 2 1

2
2 2 2 1 3

2
2 2 1 3 2

3 4 4 3

2 2
4 3 3 4 1 3 3 4 1

4

cos

( ) sin

(( ) sin ) cos

cos

( 1) ( ( 1) )

cos

e x y mw wt u

e a bx x c x dx

a by y c y dy mw wt u

e x y mw wt u

e fx g x x hx fy g y y hy

mw wt u

   


   
      


   
          
  









              (2.17)

where

cosi i ie x mw wt y     , ( 1,2,3,4)i  (2.18)

Let initial states be 1 2 3 4( , , , )x x x x = (0.2, 0.35, 0.2, 0.35), 1 2 3 4( , , , )y y y y = (1, 2, 2.2, 

1.5), and w=1, =2, 20m k  , we find that the error dynamic always exists in first 

quadrant as shown in Fig. 2.8. By GYC partial region asymptoical stability theorem, 

one can choose a Lyapunov function in the form of a positive definite function in first 
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quadrant:

1 2 3 4V e e e e    (2.19)

Its time derivative is

2 2 1

2 2
2 2 1 3 2 2 1 3 2

4 4 3

2 2
3 3 4 1 3 3 4 1 4

( cos )

(( ) sin (( ) sin )

cos ) ( cos )

( ( 1) ( ( 1) ) cos )

V x y u mw wt

a bx x c x dx a by y c y dy u

mw wt x y u mw wt

fx g x x hx fy g y y hy u mw wt

   

        

    

           



(2.20)

Choose 

1 2 2 1

2 2
2 2 2 1 3 2 2 1 3

2

3 4 4 3

2 2
4 3 3 4 1 3 3 4 1 4

cos

( ) sin (( ) sin )

cos

cos

( 1) ( ( 1) ) cos

u x y mw wt e

u a bx x c x dx a by y c y dy

mw wt e

u x y mw wt e

u fx g x x hx fy g y y hy mw wt e

   

       

 
   

           

(2.21)

We obtain

1 2 3 4 0V e e e e      (2.22)

which is a negative definite function in first quadrant. Four state errors versus time and 

time histories of i ix y k  , sinm t are shown in Figs. 2.9-10.

CASE III. The generalized synchronization error function is 41

4i i ie x y k  

, ( 1,2,3,4)i  where 100k  .

Our goal is 41

4i iy x k  , i.e. 41
lim lim( ) 0

4 i it t
x y k

 
   e , ( 1,2,3,4)i 

The error dynamics becomes

3
1 1 2 2 1

3 2
2 2 2 2 1 3

2
2 2 1 3 2

3
3 3 4 4 3

3 2 2
4 4 3 3 4 1 3 3 4

1 4

(( ) sin )

(( ) sin )

( ( 1) ) ( ( 1)

)

e x x y u

e x a bx x c x dx

a by y c y dy u

e x x y u

e x fx g x x hx fy g y y

hy u

   


   
     


  
         
  









                (2.23)
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where

3
i i i ie x x y    , ( 1,2,3,4)i                                        (2.24)

Let initial states be 1 2 3 4( , , , )x x x x = (0.2, 0.35, 0.2, 0.35), 1 2 3 4( , , , )y y y y = (1, 2, 2.2, 

1.5), and we find that the error dynamics always exists in first quadrant as shown in Fig. 

2.11. By GYC partial region asymptotial stability theorem, one can choose a Lyapunov 

function in the form of a positive definite function in first quadrant:

1 2 3 4V e e e e    (2.25)

Its time derivative is

1 2 3 4

3 3 2
1 2 2 1 2 2 2 1 3

2 3
2 2 1 3 2 3 4 4 3

3 2 2
4 3 3 4 1 3 3 4

1 4

( ) ( (( ) sin )

(( ) sin ) ) ( )

( ( ( 1) ) ( ( 1)

) )

V e e e e

x x y u x a bx x c x dx

a by y c y dy u x x y u

x fx g x x hx fy g y y

hy u

   

      

       

        
 

    

                (2.26)

Choose

3
1 1 2 2 1

3 2
2 2 2 2 1 3

2
2 2 1 3 2

3
3 3 4 4 3

3 2 2
4 4 3 3 4 1 3 3 4

1 4

(( ) sin )

(( ) sin )

( ( 1) ) ( ( 1)

)

u x x y e

u x a bx x c x dx

a by y c y dy e

u x x y e

u x fx g x x hx fy g y y

hy e

  

   

    

  

        

 

(2.27)

We obtain

1 2 3 4 0V e e e e                                              (2.28)

which is a negative definite function in first quadrant. Four state errors versus time and 

time histories of 
4

100
4
ix
 , iy are shown in Figs. 2.12-13.

CASE IV. The generalized synchronization error function is 2( )i i i ie x t y z k     , 

iz is the state of hyperchaotic Lu system [44].
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The goal system for synchronization is hyperchaotic Lu system and initial states 

are (5, 8, -1, -3), delay time 5  , system parameters 1 36a  , 1 3b  , 1 20c  , 

1 0.35r   .

1 1 2 1 4

2 1 3 1 2

3 1 2 1 3

4 1 3 1 4

( )
d

z a z z z
dt
d

z z z c z
dt
d

z z z b z
dt
d

z z z r z
dt

   

   

  


  


                          (2.29)

We have 2lim lim( ( ) - ) 0i i i it t
e x t y z k

 
     , ( 1,2,3,4)i  , where 50k  .

The error dynamics becomes

1 2 2 1 2 1 4 1

2 2
2 2 2 1 3 2 2 1

3 1 3 1 2 2

3 4 4 1 2 1 3 3

2 2
4 3 3 4 1 3 3 4 1

1 3 1 4 4

( )

( ) sin (( ) sin

) ( )

( ( 1) ) ( ( 1) )

( )

e x y a z z z u

e a bx x c x dx a by y c y

dy z z c z u

e x y z z b z u

e fx g x x hx fy g y y hy

z z r z u

     
       
     
     
          


  









           (2.30)

Let initial states be 1 2 3 4( , , , )x x x x = (0.2, 0.35, 0.2, 0.35), 1 2 3 4( , , , )y y y y = (1, 2, 2.2, 

1.5), and we find that the error dynamics always exists in first quadrant as shown in Fig. 

2.14. By GYC partial region asymptotical stability theorem, one can choose a Lyapunov 

function in the form of a positive definite function in first quadrant:

1 2 3 4V e e e e    (2.31)

By Eqs. (2.30),(2.31),

2
2 2 1 2 1 4 1 2 2 1 3

2
2 2 1 3 1 3 1 2 2

2
4 4 1 2 1 3 3 3 3 4 1

2
3 3 4 1 1 3 1 4 4

( ( ) ) (( ) sin

(( ) sin ) ( ) )

( ) (( ( 1) )

( ( 1) ) ( ) )

V x y a z z z u a bx x c x dx

a by y c y dy z z c z u

x y z z b z u fx g x x hx

fy g y y hy z z r z u

         

       

         

       



  (2.32)
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Choose

1 2 2 1 2 1 4 1

2 2
2 2 2 1 3 2 2 1

3 1 3 1 2 2

3 4 4 1 2 1 3 3

2 2
4 3 3 4 1 3 3 4 1

1 3 1 4 4

( )

( ) sin (( ) sin

) ( )

( ( 1) ) ( ( 1) )

( )

u x y a z z z e

u a bx x c x dx a by y c y

dy z z c z e

u x y z z b z e

u fx g x x hx fy g y y hy

z z r z e

     

      
    

    

         
  

  (2.33)

We obtain

1 2 3 4 0V e e e e      (2.34)

which is a negative definite function in first quadrant. Four state errors versus time and 

time histories of ( ) 50i ix t y   are shown in Figs. 2.15-16.

2.5 Summary

In this Chapter, a new chaos generalized synchronization method by GYC partial 

region stability theory is proposed. By using the GYC partial region stability the 

Lyapunov function is a simple linear homogeneous function of error states and the 

controllers are simpler. As a result , less simulation error is introduced. The new  

Froude-van der Pol system and hyperchaotic Lu system are used as one of four 

simulation examples which prove the effectiveness of the proposed method.
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Fig. 2.1 Phase portrait of a new Froude-van der Pol system.

Fig. 2.2 Time histories of a new Froude-van der Pol system.
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Fig. 2.3 Bifurcation diagram of a new Froude-van der Pol system.

Fig. 2.4 Lyapunov exponents of a new Froude-van der Pol system.
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Fig. 2.5 Phase portraits of errors dynamics for Case I.
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Fig. 2.6 Time histories of errors for Case I.

Fig. 2.7 Time histories of 20,i ix y for Case I.
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Fig. 2.8 Phase portraits of error dynamics for Case II.
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Fig. 2.9 Time histories of errors for Case II.

Fig. 2.10 Time histories of 20i ix y  and sinm t for Case II.
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Fig. 2.11 Phase portraits of error dynamics for Case III.
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Fig. 2.12 Time histories of errors for Case III.

Fig. 2.13 Time histories of 41
100

4 ix  and iy for Case III.
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Fig. 2.14 Phase portraits of error dymanics for Case IV.
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Fig. 2.15 Time histories of errors for Case IV.

Fig. 2.16 Time histories of ( 5) 50i ix t y   and 2
iz for Case IV.
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Chapter 3

Chaos Control of a New Froude-van der Pol System by GYC 

Partial Region Stability Theory

3.1 Preliminaries

In this Chapter, a new strategy by using GYC partial region stability theory [24-26]

is proposed to achieve chaos control for a new Froude-van der Pol system. The new 

Lyapunov function used is a simple linear homogeneous function of error states and the 

lower degree controllers are simpler and introduce less simulation error.Three numerical 

simulations are given to show the effectiveness of the proposed strategy.

3.2 Chaos Control Scheme

Consider the following chaotic system

( , )tx f x                              (3.1)

where  1 2, , ,
T n

nx x x R x  is a the state vector, : n nR R R  f is a vector 

function. 

The goal system which can be either chaotic or regular, is

( , )ty g y                              (3.2)

where  1 2, , ,
T n

ny y y R y  is a state vector, : n nR R R  g is a vector function.

In order to make the chaos state x approaching the goal state y , define 

 e x y as the state error. The chaos control is accomplished in the sense that:

lim lim( ) 0
t t 

  e x y                      (3.3)

In this Chapter, we will use examples in which the error dynamics always happens 

in the first quadrant of coordinate system and use GYC partial region stability theory 
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which is enclosed in Appendix A. The Lyapunov function is a simple linear 

homogeneous function of error states and the controllers are simpler because they are of

lower degree than that of traditional controllers and introduce less simulation error.

3.3 Chaos of a new Froude-van der Pol system

Froude system and van der Pol system[43] are two typical nonlinear 

nonautonomous systems:

1 2

2
2 2 2 1( ) sin cos

d
x x

dt
d

x a bx x c x d t
dt



 

    


                  (3.4)

3 4

2
4 3 3 4( 1) sin

d
x x

dt
d

x fx g x x h t
dt



 

     


                   (3.5)

Changing cosd t term in Eq.(3.4) by 3dx and sinh t term in Eq.(3.5) by 

1hx , respectively, we obtain a new autonomous Froude-van der Pol system: 

1 2

2
2 2 2 1 3

3 4

2
4 3 3 4 1

( ) sin

( 1)

d
x x

dt
d

x a bx x c x dx
dt
d

x x
dt
d

x fx g x x hx
dt

 

    

 


     


                   (3.6)

where 1x , 2x , 3x , 4x are state variables, and , , , , , ,a b c d f g h are parameters, where a

=0.35, b =0.1, c =1.0, d =-1, f =1, g =-0.1, h =-0.1, and the initial states of system 

are 1 2 3(0) 0.2, (0) 0.35, (0) 0.2,x x x   4 (0) 0.35x  .Its chaotic phase portrait, time 

histories of states, bifurcation diagram,and Lyapunov exponent are shown in Figs. 2.1-4.
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3.4 Numerical Simulations

The following chaotic system is the new Froude-van der Pol system of which the 

old origin is translated to 1 2 3 4( , , , ) ( , , , )x x x x k k k k , where k is a positive constant , 

and the chaotic motion always happens in the first quadrant of coordinate system

1 2 3 4( , , , )x x x x . Taking 10k  , this translated new Froude-Van der Pol system

1
2

22
2 2 1 3

3
4

24
3 3 4 1

10

( ( 10) )( 10) sin( 10) ( 10)

10

( 10) (( 10) 1)( 10) ( 10)

dx
x

dt
dx

a b x x c x d x
dt
dx

x
dt
dx

f x g x x h x
dt

  

        

  


         


         (3.7)

is presented as simulated examples where the initial states of system are 

1 2 3 4(0) 0.2, (0) 0.35, (0) 0.2, (0) 0.35x x x x    and the parameters of system are,

0.35,a  0.1,b  1,c  2,d   4.9,f  0.1,g   1.76h   . The chaotic motion is 

shown in Fig. 3.1.

In order to lead (x1, x2, x3, x4) to the goal, we add control terms u1, u2, u3, u4 to each 

equation of Eq. (3.7), respectively.

1
2 1

22
2 2 1 3 2

3
4 3

24
3 3 4 1 4

( ( ) )( ) sin( ) ( )

( ) (( ) 1)( ) ( )

dx
x k u

dt
dx

a b x k x k c x k d x k u
dt
dx

x k u
dt
dx

f x k g x k x k h x k u
dt

   

         

   


          


        (3.8)

CASE I. Control the chaotic motion to zero.

In this case we will control the chaotic motion of the new Froude-van der Pol

system (3.7) to zero. The goal is 0y . The state error is iiii xyxe  , (i=1, 2, 3, 4)
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and error dynamics becomes

1 1 2 1

2
2 2 2 2 1 3 2

3 3 4 3

2
4 4 3 3 4 1 4

10

( ( 10) )( 10) sin( 10) ( 10)

10

( 10) (( 10) 1)( 10) ( 10)

e x x u

e x a b x x c x d x u

e x x u

e x f x g x x h x u

   
          
    
           

 

 

 

 
     (3.9)

In Fig. 3.2, we see that the error dynamics always exists in first quadrant.

By GYC partial region stability, one can easily choose a Lyapunov function in the 

form of a positive definite function in first quadrant as:

1 2 3 4V e e e e                                                (3.10)

Its time derivative through error dynamics (3.9) is

1 2 3 4

2
2 1 2 2 1

3 2 4 3

2
3 3 4 1 4

( 10 ) [( ( 10) )( 10) sin( 10)

( 10) ] ( 10 )

      +[ ( 10) (( 10) 1)( 10) ( 10) ]

V e e e e

x u a b x x c x

d x u x u

f x g x x h x u

   

        

     

        

    

            (3.11)

Choose 

1 2 1

2
2 2 2 1 3 2

3 4 3

2
4 3 3 4 1 4

10

( ( 10) )( 10) sin( 10) ( 10)

10

( 10) (( 10) 1)( 10) ( 10)

u x e

u a b x x c x d x e

u x e

u f x g x x h x e

   
          
    
                   (3.12)

We obtain

1 2 3 4 0V e e e e     
                                        (3.13)

which is negative definite function in first quadrant. The numerical results are shown in 

Fig. 3.3. After 30 sec, the motion trajectories approach the origin.

CASE II. Control the chaotic motion to a sine function.

In this case we will control the chaotic motion of the new Froude-van der Pol

system (3.8) to sine function of time where 20k  .The goal is sini iy m t

, ( 1,2,3,4)i  . The error states are 
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sini i i i ie x y x m t= = -                                     (3.14)

lim lim( sin ) 0, 1, 2,3, 4i i i
t t

e x m t i
 

   

and cos ( 1, 2,3, 4)i i i ie x m t i     and 3m  , 1 0.5  , 2 1  , 3 1.5  , 

4 0.8  . The error dynamics is

1 1 1 1 2 1 1 1 1 1

2
2 2 2 2 2 2 1 3

2 2 2 2 2

3 3 3 3 4 3 3 3 3 3

4 4 4 4

cos ( 20 cos ) cos

cos [( ( 20) )( 20) sin( 20)+ ( 20)

cos ] cos

cos ( 20 cos ) cos

cos  [

e x m t x m t u m t

e x m t a b x x c x d x

m t u m t

e x m t x m t u m t

e x m t

     

 
   

     

 

      

        

  
      

  

 

 

 

  2
3 3 4 1

4 4 4 4 4

(3.15)

( 20) (( 20) 1)( 20) ( 20)

cos ] cos

f x g x x h x

m t u m t   







        


  

In Figs. 3.4-5, the error dynamics always exists in first quadrant.

By GYC partial region stability, one can easily choose a Lyapunov function in the 

form of a positive definite function in first quadrant as:

1 2 3 4V e e e e                                                (3.16)

By Eq. (3.14), its time derivative is

1 2 3 4

2
2 1 1 1 2 2 1

3 2 2 2 4 3 3 3

2
3 3 4 1 4 4 4

( 20 cos ) [( ( 20) )( 20) sin( 20)

      + ( 20) cos ] ( 20 cos ) (3.17)

[ ( 20) (( 20) 1)( 20) ( 20) cos ]

V e e e e

x m t u a b x x c x

d x m t u x m t u

f x g x x h x m t u

 
   

 

   

         
      

          

    

Choose

1 2 1 1 1

2
2 2 2 1

3 4 2 2 2

3 4 3 3 3

2
4 3 3 4

1 4 4 4

[( 20) cos ]

[( ( 20) )( 20) sin( 20)

( 20)( 20) cos ]

[( 20) cos ]

[ ( 20) (( 20) 1)( )

( 20) cos ]

u x m t e

u a b x x c x

d x x m t e

u x m t e

u f x g x x k

h x m t e

 

 
 

 

    
       
     
     
        


   

                     (3.18)

We obtain
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1 2 3 4 0V e e e e     
                                        (3.19)

which is negative definite function in first quadrant. The numerical results are shown in 

Figs. 3.6-7. After 30 sec., the errors approach zero and the motion trajectories approach

to sine function.

CASE III. Control the chaotic motion to the difference of chaotic motions of a delay 

chaotic system and that of hyperchaotic Lu system [44].

In this case we will control chaotic motion of the new Froude-Van der Pol system 

(3.8) to the difference of chaotic motions of a delay chaotic system and that of

hyperchaotic Lu system. The goal systems are

delay chaotic system:

1
2

22
2 2 1 3

3
4

24
3 3 4 1

( )
( )

( )
( ( )) ( ) sin ( ) ( )

(3.20)
( )

( )

( )
( ) ( ( ) 1) ( ) ( )

dy t
y t

dt
dy t

a by t y t c y t dy t
dt

dy t
y t

dt
dy t

fy t g y t y t hy t
dt

 

    

 

    

  


        
   

          


and hyperchaotic Lu system:

1 1 2 1 4

2 1 3 1 2

3 1 2 1 3

4 1 3 1 4

( )
d

z a z z z
dt
d

z z z c z
dt
d

z z z b z
dt
d

z z z r z
dt

   

   

  


  


                                         (3.21)

The error function is ( )i i i ie x y t z    , ( )iy t  is the delay state of a new 

Froude-van der Pol system, and iz is the state of hyperchaotic Lu system.The goal 

system for controlling are delay chaotic system and hyperchaotic Lu system, where
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initial states are (80.2, 80.35, 80.2, 80.35), (5, 8, -1, -3), respectively, delay time  5  ,

system parameters 1 36a  , 1 3b  , 1 20c  , 1 0.35r   . We have 

lim lim( ( ) ) 0i i i i
t t

e x y t z
 

     , ( 1,2,3,4)i  , where 80k  in Eq.(3.8).

The error dynamics becomes

1 1 1 1

2 1 2 1 2 1 4

2 2 2 2

2
2 2 1 3 2

2
2 2 1 3 1 3 1 2

3 3 3 3

( )

( 80 ) ( ) ( ( ) )

( )

[( ( 80) )( 80) sin( 80) ( 80) ]

[( ( )) ( ) sin ( ) ( )] ( )

( )

(

e x y t z

x u y t a z z z

e x y t z

a b x x c x d x u

a by t y t c y t dy t z z c z

e x y t z






   


   
       
   

        

          

   


   

   

   

4 3 4 1 2 1 3

4 4 4 4

2
3 3 4 1 4

2
3 3 4 1 1 3 1 4

80 ) ( ) ( ) (3.22)

( )

[ ( 80) (( 80) 1)( 80) ( 80) ]

[ ( ) ( ( ) 1) ( ) ( )] ( )

x u y t z z b z

e x y t z

f x g x x h x u

fy t g y t y t hy t z z r z




   











      


   
          
           

   

By Figs. 3.8-9, we know the error dynamics always exists in first quadrant.

By GYC partial region stability, one can easily choose a Lyapunov function in the 

form of a positive definite function in first quadrant as:

1 2 3 4V e e e e                                                (3.23)

Its time derivative is
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We obtain

1 2 3 4 0V e e e e     
                                        (3.26)

which is negative definite function in first quadrant. The numerical results are shown in 

Figs. 3.10-11. After 30 sec., the errors approach zero and the chaotic trajectories of the 

new Froude-Van der Pol system approach to delay chaotic system and that of  

hyperchaotic Lu system.

3.5 Summary

In this Chapter, a new chaos control method by GYC partial region stability theory

is proposed. By using the GYC partial region stability theory, the controllers are of 

lower order than that of controllers by using traditional Lyapunov asymptotical stability 

theorem. The new Lyapunov function used is a simple linear homogeneous function of 

states and the lower order controllers are simpler and introduce less  simulation error.

The new Froude-van der Pol system and hyperchaotic Lu system are used as 

simulation examples which confirm the effectiveness of the proposed scheme.
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Fig. 3.1 Chaotic phase portraits for new Froude-van der Pol system in the first quadrant.
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Fig. 3.2 Phase portraits of error dynamics for Case I.
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Fig. 3.3 Time histories of errors for Case I.

Fig. 3.4 Phase portrait of error dynamics (e1&e2) for Case II.
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Fig. 3.5 Phase portrait of error dynamics (e3&e4) for Case II.

Fig. 3.6 Time histories of errors for Case II.
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Fig. 3.7 Time histories of x1, x2, x3, x4 Case II.

Fig. 3.8 Phase portrait of error dynamics (e1&e2) for Case III.
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Fig. 3.9 Phase portrait of error dynamics (e3&e4) for Case III.

Fig. 3.10 Time histories of errors for Case III.
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Fig. 3.11 Time histories of x1, x2, x3 for CaseIII.
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Chapter 4

Hyperchaos of a Lorenz System with Legendre Function 

Parameters

4.1 Preliminaries

The chaotic behaviors of a Lorenz system with Legendre function parameters is 

firstly studied numerically by time histories of states, phase portraits, Poincaré maps, 

bifurcation diagram, Lyapunov exponents and parameter diagrams. Abundance of 

hyperchaos and of chaos is found, which offers the potential for many applications.

4.2 Classical Lorenz System and a Lorenz system with Legendre 

Function Parameters

The classical Lorenz system [32] is described as follows:

1
1 2

2
1 3 1 2

3
1 2 3

( )

(4.1)

dx
a x x

dt
dx

x x cx x
dt
dx

x x bx
dt

   

    



 

where a, b, c are constant parameters. When the parameters of system are a=10, b=8/3, 

c=27.43, and the initial states of system are 1 2 3(0) 6, (0) 5, (0) 10,x x x   chaos exists 

in Fig. 4.1. We used Legendre functions as parameters of the system. The Legendre 

functions are defined by

       2 21 1 (4.2)
mmmm

n nm

d
P x x P x

dx
  

where  nP x is the Legendre polynomial of degree n.
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   21
1 (4.3)

2 !

n
n

n n n

d
P x x

n dx

 
  

 

Choosing n=2, we obtain

     

        

   

0
1 2 2

1
1 2 2
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1
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Changing the variable x to time t

 cos , 1 1 (4.5)x t x   

We have two periodic functions of time  1L t and  2L t ,

   

         

1 2

1
1 2 2

2 2 2

cos
(4.6)

cos 1 1 cos cos

L t P t

d
L t P t t P t

dt





   

as shown in Fig. 4.2. 

4.3 Numerical Simulations

In this Section, the parameters of system are given as 1 1 2( )a a L L   ,

1 2b b kL    , 1 10.8c c L  , and , , , , ,a b c k  are constants:

1 1 110, 8 / 3, 27.43,a b c   1.2, 0.24, 0.8k    . The parameters 1a and 1b are

fixed at 10 and 8/3, respectively, throughout this Section. Bifurcation diagrams and

Lyapunov exponents will be calculated to certify the the existence of hyperchaos.

   Let us assume Lyapunov exponents ( 1,2,3, 4)i i  satisfying 1 2 3    , and 

4 0  .Then the dynamics of the system can be characterized as follows:

     (1)When 1,2,3 0  and 4 0  , system is periodic.

     (2)When 1 0  , 2,3 0  and 4 0  , system is chaotic.
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     (3)When 1,2 0  , 3 0  and 4 0  , system is hyperchaotic.

We consider three cases described as follows:

(1) Let 1.2, 0.8   and 1c and k are varied. Firstly, 1 27.43c  , 2.25k  are

fixed, the chaotic phase portrait with Poincaré map of 1 2,x x states, and chaotic time 

histories of three states are shown in Figs. 4.3-4, respectively. The chaotic bifurcation 

diagram by changing constant parameter k and enlarged diagram are shown in Figs. 

4.5-6 with 1 27.43c  . Its corresponding Lyapunov exponents are shown in Fig. 4.7.

When 0.001 0.636k  two positive Lyapunov exponents are obtained, i.e. 

hyperchaos is obtained. It can be seen that when 0.685 1.909k  , 2.1 2.604k  ,

2.658 3k  , the system is chaotic, and when 1.915 1.921k  , 1.975 ,

1.999 2.017k  , 2.082 2.094k  , 2.61 2.634k  , the system is periodic. In order 

to investigate the dynamics of the system in detail, the parameter diagrams of 1c against 

k are ploted in Figs. 4.8-10. Just like Monet’s picture, they give beautiful scenes. 

White area is the bank of a river, blue area is the water of the river and green area is the 

duckweed in the river. When 0.001 0.636k  , both 1 and 2 are positive, hence, 

the system is hyperchaotic within this region. Some typical values of parameter k

generate hyperchaos, and the range of k for different system behaviors, are listed in 

Tables 1a and 1b, respectively.

Table 1a Typical values of parameter k generate hyperchaos for 1 27.43c  , 1.2  and 0.8 
k

1 2 3 4
0.246
0.294
0.312
0.324
0.456
0.624

0.779
0.764
0.753
0.756
0.684
0.604

0.001
0.003
0.007
0.009
0.012
0.013

-14.08
-14.06
-14.06
-14.06
-13.99
-13.91

0
0
0
0
0
0
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Table 1b The ranges of k for different system dynamics for 1 27.43c  , 1.2  and 0.8 
System dynamics Ranges of k
Periodic 1.915 1.921, 1.975, 1.999 2.017k k    , 

2.082 2.094, 2.61 2.634k k   
Chaotic 0.685 1.909, 2.1 2.604, 2.658 3k k k     
Hyperchaotic 0.001 0.636k 

A typical periodic phase portrait and time histories for system at 2.1k  are shown in 

Figs. 4.11-14. The system was observed that hyperchaos can be generated when 

0.001 0.636k  , and the generation of a hyperchaotic attracter for 0.35k  in Figs. 

4.15-16 when 1 27.43c  , 1.2  and 0.8  .

(2) Fix 1 27.43c  , 0.24k  , 0.8  and let  is varied. System demonstrates 

hyperchaotic behavior when 0.001 5.079  . Fig. 4.17 shows the calculated 

Lyapunov exponent as a function of  to classify the chaotic or periodic motions. With 

changing  , system becomes periodic when 5.819 9.439  , and chaotic motions 

occur with 5.099 5.799  , 9.459 9.979  . Some typical values of  that 

generate hyperchaos, and the ranges of  for different system dynamics, are listed in 

Tables 2a and 2b.

Table 2a Typical values of parameter generate hyperchaos for 1 27.43c  , 0.24k  and 0.8 


1 2 3 4
3.22
3.32
3.38
3.60
4.15
4.67

0.755
0.746
0.742
0.743
0.698
0.639

0.002
0.005
0.008
0.010
0.013
0.016

-14.56
-14.58
-14.59
-14.65
-14.75
-14.82

0
0
0
0
0
0

Table 2b The ranges of  for different system dynamics for 1 27.43c  , 0.24k  and 0.8 
System dynamics Ranges of 
Periodic 5.819 9.439 
Chaotic 5.099 5.799, 9.459 9.979    
Hyperchaotic 0.001 5.079 
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(3) Fix 1 27.43c  , 1.2  and 0.24k  and let  is varied. The hyperchaos is 

identified by the existence of two positive Lyapunov exponents, as clearly shown in Fig. 

4.18 and enlarged figure for observing in Fig. 4.19, and it shows the Lyapunov 

exponents as a function of varying  . This case is based on studying Fig. 4.13a, in 

which hyperchaotic motion can be hardly observed when 0.001 0.56  , 

0.6 0.82  , or 0.86 0.98  ,  because its values are not extremely obvious. In 

addition, periodic motion is clearly presented after 1.46  . Some typical values of 

that generate hyperchaos, and the ranges of  for different system dynamics, are listed

in Tables 3a and 3b, respectively.

Table 3a Typical values of parameter generate hyperchaos for 1 27.43c  , 1.2  and 0.24k 


1 2 3 4
0.12
0.20
0.54
0.76
0.92

0.778
0.792
0.845
0.849
0.877

0.001
0.002
0.003
0.004
0.005

-14.20
-14.29
-14.68
-14.91
-15.10

0
0
0
0
0

Table 3b The ranges of  for different system dynamics for 1 27.43c  , 1.2  and 0.24k 
System dynamics Ranges of 
Periodic 1.46 9.979 
Chaotic 0.58, 0.84, 1.26 1.3 
Hyperchaotic 0.001 0.56, 0.6 0.82     , 

0.86 0.98 

4.4 Summary

Lorenz system with Legendre function parameters is studied firstly.The results are 

verified by time histories of states, phase portraits, Poincaré maps, bifurcation diagram, 

Lyapunov exponents and parameter diagrams. Abundant hyperchaos is found for this 

system, which gives potential in various applications, particularly in secret 

communication.
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Fig. 4.1 Phase portrait, Poincaré maps of 1 2,x x states for classical Lorenz system.

Fig. 4.2 Time histories of 1L and 2L .
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Fig. 4.3 Phase portrait and Poincaré maps for Lorenz system with Legendre function 

parameters when 1 27.43c  , k=2.25.

Fig. 4.4 Time histories of three states for Lorenz system with Legendre function 

parameters when 1 27.43c  , k=2.25.
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Fig. 4.5 The bifurcation diagram for Lorenz system with Legendre function parameters, 

where 1 27.43c  .

Fig. 4.6 The enlarged bifurcation diagram for Lorenz system with Legendre function 

parameters, where 1 27.43c  .
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Fig. 4.7 The Lyapunov exponent for Lorenz system with Legendre function parameters.

Fig. 4.8 The parameter diagram for Lorenz system with Legendre function parameters.
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Fig. 4.9 The parameter diagram for modified Lorenz system between k=0.35~0.352.

Fig. 4.10 The parameter diagram for modified Lorenz system between k=2.05~2.35.
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Fig. 4.11 Phase portrait for Lorenz system with Legendre function parameters when 

1 27.43c  , 1.2  , 0.8  and k=2.175(period1).

Fig. 4.12 Time histories for Lorenz system with Legendre function parameters when 

1 27.43c  , 1.2  , 0.8  and k=2.175(period1).
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Fig. 4.13 Phase portrait for Lorenz system with Legendre function parameters when 

1 27.43c  , 1.2  , 0.8  and k=2.1(period2).

Fig. 4.14 Time histories for Lorenz system with Legendre function parameters when 

1 27.43c  , 1.2  , 0.8  and k=2.1(period2).
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Fig. 4.15 Phase portraits for Lorenz system with Legendre function parameters when 

k=0.35(hyperchaos).

Fig. 4.16 Time histories for Lorenz system with Legendre function parameters when 

k=0.35(hyperchaos).



52

Fig. 4.17 The Lyapunov exponent for Lorenz system with Legendre function parameters 

when 0 ~ 10  .

Fig. 4.18 The Lyapunov exponent for Lorenz system with Legendre function parameters 

when 0 ~ 10  .
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Fig. 4.19 Enlarged figure for Lorenz system with Legendre function parameters when 

0 ~ 10  .
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Chapter 5

Historical Chaos for Chen System

5.1 Preliminaries

In this Chapter, the behavior of historical Chen system is firstly studied. To our 

best knowledge, most of contemporary Chen system are researched in detail, but there 

are no articles investigating a thorough inquiry about the history of Chen system so far. 

Therefore, the historical chaos of Chen system with “Yin parameters” is introduced and 

simulation results are shown by phase portraits, Poincaré maps, bifurcation diagram, 

Lyapunov exponents in this Chapter.

5.2 Yang Chen system

The Yang Chen system [37] is described as follows:

1
2 1

2
1 1 3 2

3
1 2 3

( )
( ( ) ( ))

( )
( ) ( ) ( ) ( ) ( ) (5.1)

( )
( ) ( ) ( )

dx t
a x t x t

dt
dx t

c a x t x t x t cx t
dt

dx t
x t x t bx t

dt

  

    



 

where initial condition 1 2 3( , , )x x x = (0.5, 0.26, 0.35) and parameters a=35, b=3 and 

c=27.2,chaos of the Yang Chen system is appeared. The chaotic behavior of Eq. (5.1) as 

phase portraits, Poincaré maps, time histories, periods are shown in Figs. 5.1-6.

5.3 Yin Chen system

In this section, Yin Chen equations are: 
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1
2 1

2
1 1 3 2

3
1 2 3

( )
( ( ) ( ))

( )

( )
( ) ( ) ( ) ( ) ( ) (5.2)

( )

( )
( ) ( ) ( )

( )

dx t
a x t x t

d t

dx t
c a x t x t x t cx t

d t

dx t
x t x t bx t

d t

 
    

 
        

 
    



It is clear that the derivative are taken with the negative time through left parts of Eq. 

(5.2). It means that find out the historical behavior of the Chen system and to compare

the relation between history and presence. The simulation results are shown in Table 1:

Table 1 Dynamic behaviors of Yin Chen system for different signs of parameters

a b c States
+ - + Approach to infinity
- + + Approach to infinity
+ + - Approach to infinity
- + - Approach to infinity
- - + Approach to infinity
- - - Chaos and periodic

Table 1 shows the dynamic behaviors of Yin Chen system for different signs of 

parameters. An strange and interesting phenomenon is discovered. When initial 

condition 1 2 3( , , )x x x = (0.5,0.26,0.35) and parameters a=-35, b=-3 and c=-27.2,chaos of 

the Yin Chen system is found. Therefore, we call these parameters as Yin parameters. In 

conventional Chinese philosophy, Yin is the negative, past or feminine principle in 

nature, while Yang is the positive, present or masculine principle in nature. Yin and Yang

are two fundamental opposites in Chinese philosophy. For this reason, historical Chen

system with negative value of parameters, a=-10, b=-8/3 and c=-27.2 , can be called 

Yin Chen system with Yin parameters. The chaotic behaviors of Eq. (5.2) are shown in 

Figs. 5.7-13.

5.4 Numerical Simulations

To study the difference and similarity between Yang and Yin Chen system, the 

bifurcation diagram and Lyapunov exponents are used. We consider three cases 

described as follows:
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Case1: parameter c is varied and a, b are fixed:

The simulation results are shown in Tables 2-3.

Table 2 Range of parameter c of Yang Chen system

0.1~20.1 Converge to a fixed point
20.1~28.2 Chaos
28.2~34.2 Periodic

Table 3 Range of parameter c of Yin Chen system

-0.1~-20.0 Converge to a fixed point
-20.0~-28.1 Chaos
-28.1~-34.2 Periodic

Table 2 and 3 show different dynamics in the different ranges of parameter c of Yang

and Yin Chen system, respectively. In Table 2, the behaviors of Yang Chen system vary 

with parameter c, and become chaos, periodic or converging to a fixed point. When

0.1 20.1c  , Yang Chen system will converge to a fixed point. When 20.1 28.2c  , 

chaos appears. When 20.1 34.2c  , periodic motion is found. Table 3 shows that when 

parameter c is -34.2~-28.1, the behaviors of Yin Chen system are periodic trajectories.

When parameter c is -28.1~-20, the chaotic behaviors are shown in Yin Chen system. 

When parameter c is -20~-0.1, it will converge to a fixed point. Comparing Table 2 and 

3, it can be found that both there are chaos, periodic and fixed point in Yang and Yin

Chen system for parameter c, respectively. Bifurcation diagram and Lyapunov 

exponents are shown in Figs. 5.14-17.

Case2: parameter b is varied and a, c are fixed:

The simulation results are shown in Tables 4-5.

Table 4 Range of parameter b of Yang Chen system

2.80~3.51 Chaos
3.51~3.55 Periodic
3.55~4.40 Chaos
4.40~4.48 Periodic
4.48~4.50 Chaos

4.50~10.00 Periodic

Table 5 Range of parameter b of Yin Chen system

-2.80~-3.51 Chaos
-3.51~-3.56 Periodic
-3.56~-4.40 Chaos

-4.40~-10.00 Periodic

Table 4 and 5 show that the behaviors of Yang and Yin Lorenz system are similar but not 

the same. Comparing Table 4 and 5, it can be found an obvious difference that when 
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parameter b is 4.48~4.50, the chaotic behaviors are shown in Yang Chen system, but 

none of Yin ones. Bifurcation diagram and Lyapunov exponents are shown in Figs. 

5.18-21.

Case3: parameter a is varied and b, c are fixed:

Table 6 Range of parameter a of Yang Chen system

30.0~34.0 Periodic
34.0~42.0 Chaos
42.0~44.7 Periodic
44.7~48.0 Chaos
after-48.0 Converge to a fixed point

Table 7 Range of parameter a of Yin Chen system

-30.00~-33.26 Periodic
-33.26~-33.28 Chaos
-33.28~-33.43 Periodic
-33.43~-41.80 Chaos
-41.80~-44.70 Periodic
-44.70~-47.80 Chaos

after-47.80 Converge to a fixed point

In Table 6 and 7, there are some differences of chaotic behaviors between Yang and Yin

Chen system. When parameter a is -33.26~-33.28, the chaotic behaviors are shown in 

Yin Chen system, but none of Yang ones. Bifurcation diagram and Lyapunov exponents 

are shown in Figs. 5.22-25.

5.5 Summary

In this Chapter, the Yin Chen system is firstly introduced. Compared with the Yang

and Yin Chen system via numerical simulation, we can be found out some similarity and 

difference between history and presence. If the Yang parameter is one of the chaotic 

parameters for contemporary Chen system, then the chaotic behavior of the historical 

Chen system can be shown by using the corresponding Yin parameters. Table A and B 

give the similarity and difference between the Yang and Yin Chen system from 

bifurcation diagram and Lyapunov exponents. This Chapter explores the another half 

scope of study for chaos interestingly, which would be proved as epoch-making 

significance in future.
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Fig. 5.1 Phase portraits of Yang Chen system with 35a  , 3b  and 27.2c  .
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Fig. 5.2 Time histories of three states for Yang Chen system with parameters 35a  , 

3b  and 27.2c  .

Fig. 5.3 Period1 of phase portraits for Yang Chen system with parameters 35a  , 

3b  and c=30.
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Fig. 5.4 Period2 of phase portraits for Yang Chen system with parameters 35a  , 

3b  and c=28.8.

Fig. 5.5 Period4 of phase portraits for Yang Chen system with parameters 35a  , 

3b  and c=28.63.
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Fig. 5.6 Period8 of phase portraits for Yang Chen system with parameters 35a  , 

3b  and c=28.609.

Fig. 5.7 Phase portrait of Yin Chen system with 35a   , 3b   and 27.2c   .
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Fig. 5.8 Phase portrait of Yin Chen system with 35a   , 3b   and 27.2c   .

Fig. 5.9 Time histories of three states for Yin Chen system with 35a   , 3b   and 

27.2c   .
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Fig. 5.10 Period1 of phase portraits for Yin Chen system with parameters 35a   , 

3b   and 30c   .

Fig. 5.11 Period2 of phase portraits for Yin Chen system with parameters 35a   , 

3b   and 28.8c   .
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Fig. 5.12 Period4 of phase portraits for Yin Chen system with parameters 35a   , 

3b   and 28.63c   .

Fig. 5.13 Period8 of phase portraits for Yin Chen system with parameters 35a   , 

3b   and 28.609c   .
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Fig. 5.14 Bifurcation diagram of chaotic Yang Chen system with 35a  and 3b  .

Fig. 5.15 Lyapunov exponents of chaotic Yang Chen system with 35a  and 3b  .
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Fig. 5.16 Bifurcation diagram of chaotic Yin Chen system with 35a   and 3b   .

Fig. 5.17 Lyapunov exponents of chaotic Yin Chen system with 35a   and 3b   .
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Fig. 5.18 Bifurcation diagram of chaotic Yang Chen system with 35a  and 27.2c  .

Fig. 5.19 Lyapunov exponents of chaotic Yang Chen system with 35a  and 27.2c  .
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Fig. 5.20 Bifurcation diagram of chaotic Yin Chen system with 35a   and 27.2c   .

Fig. 5.21 Lyapunov exponents of chaotic Yin Chen system with 35a   and 27.2c   .
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Fig. 5.22 Bifurcation diagram of chaotic Yang Chen system with 3b  and 27.2c  .

Fig. 5.23 Lyapunov exponents of chaotic Yang Chen system with 3b  and 27.2c  .
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Fig. 5.24 Bifurcation diagram of chaotic Yin Chen system with 3b   and 27.2c   .

Fig. 5.25 Lyapunov exponents of chaotic Yin Chen system with 3b   and 27.2c   .
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Table A. Comparison with the Yang and Yin Chen system from bifurcation diagrams.
Yang Yin
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Table B. Comparison with the Yang and Yin Chen system from Lyapunov exponents.
Yang Yin
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Chapter 6

Historical Chaos and Yin-Yang Synchronization for Chaotic 

Chen Systems with Well Designed Active Control

6.1 Preliminaries

In this Chapter, the dynamic behaviors of Yin Chen systems is firstly studied. 

According to Chinese philosophy[40-42], the historical chaos of Chen system with “Yin” 

parameters is illustrated and compared with the contemporary Chen system with “Yang” 

parameters. We employ applicable coupling parameters by linear coupling strategy to 

complete the goal of generalized synchronization of Yin and Yang Chen systems. 

Simulation results are shown by phase portraits, time histories of states and Lyapunov 

exponents.

6.2 Generalized Yin-Yang Synchronization Strategy

Consider the following unidirectional coupled chaotic systems 

( )
( ) ( , ( ))

(6.1)
( )

( ) ( , ( ))
( )

d t
t t t

dt
d t

t t t
d t

  
      



x
Ax f x

y
Ay h y

where  1 2( ), ( ), , ( )
T n

nx t x t x t R x  ,  1 2( ), ( ), , ( )
T n

ny t y t y t R    y  , and denote 

the master state vector and slave state vector respectively, n nR A is constant matrix,

f and h are nonlinear vector functions.

By means of the unidirectional linear coupling method, the slave system in Eq. (6.1) 

is described as follows:

( )
( ) ( , ( )) ( , ( ), ( )) (6.2)

( )

d t
t t t t t t

d t


      


y

Ay h y u x y
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where ( , ( ), ( ))t t tu x y is a control term, and which is designed on next part 

subsequently.

The generalized synchronization can be accomplished when t  , the limit of 

the error vector  1 2, , ,
T

ne e ee  , where ( ) ( )i i it t  e y x approaches zero:

lim 0 (6.3)
t

e

From (6.1) and (6.2), error equation of system can be acquired:

( ( ) ( , ( )) ( , ( ), ( ))) ( ) ( , ( ))

( , ( )) ( , ( )) ( , ( ), ( )) (6.4)

t t t t t t t t t

t t t t t t t

         
     

e Ay h y u x y Ax f x

Ae h y f x u x y



where ( ) ( )t t  e y x

6.3 The Yang and Yin Chen systems

The Yang Chen system is described as follows:

1
2 1

2
1 1 3 2

3
1 2 3

( )
( ( ) ( ))

( )
( ) ( ) ( ) ( ) ( ) (6.5)

( )
( ) ( ) ( )

dx t
a x t x t

dt
dx t

c a x t x t x t cx t
dt

dx t
x t x t bx t

dt

  

    

  

where initial condition 1 2 3( , , )x x x = (2, 3.2, 1.5) and parameters 35a  , 3b  and 28c  ,

can be called Yang parameters, and chaos of the Yang Chen system is appeared. The 

chaotic behavior of Eq. (6.5) and Lyapunov exponents are shown in Fig. 6.1.

Yin Chen equations are: 

1
1 2 1

2
1 1 1 1 3 1 2

3
1 2 1 3

( )
( ( ) ( ))

( )

( )
( ) ( ) ( ) ( ) ( ) (6.6)

( )

( )
( ) ( ) ( )

( )

dy t
a y t y t

d t

dy t
c a y t y t y t c y t

d t

dy t
y t y t b y t

d t

 
    

 
        

 
    



where initial condition 1 2 3( , , )y y y = (20, 120, 18) and parameters 1 35a   , 1 3b   and
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1 28c   ,chaos of the Yin Chen system is found. Consequently, we can describe these 

parameters as Yin parameters. Yin and Yang are two fundamental opposites in Chinese 

philosophy. The phase portrait and Lyapunov exponent of historical Chen system are 

revealed in Fig. 6.2.

6.4 Numerical Simulations

In this Section, to study the difference between Yang and Yin Chen systems, we 

used following four cases:

CASE I. Based on unidirectional linear coupling method, the slave system of Eq. (6.6) is 

reconstructed as follows:

 

 

 

1
1 2 1 1 1

2
1 1 1 1 3 1 2 2 2

3
1 2 1 3 3 3

( )
( ( ) ( )) ( ) ( )

( )

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) (6.7)

( )

( )
( ) ( ) ( ) ( ) ( )

( )

dy t
a y t y t k y t x t

d t

dy t
c a y t y t y t c y t k y t x t

d t

dy t
y t y t b y t k y t x t

d t

 
       

 
           

 
       



where k is gain of controllers.

The generalized synchronization error function is ( ) ( )i i ie y t x t   , 1,2,3i  .

1 1 1

2 2 2

3 3 3

( ) ( )

( ) ( ) (6.8)

( ) ( )

e y t x t

e y t x t

e y t x t

  
   
   

And then 

lim lim( ( ) ( )) 0i i i
t t

e y t x t
 

    , 1,2,3 (6.9)i 

The error dynamics becomes
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1 1 1 1
1 1 2 1

1 1

2 1

2 2 2 2
2 1 1 1 1 3

1 2 2 2

1 1

( ) ( ) ( ) ( )
( ( ) ( )

( )

( ) ( ) )

( ) ( )

( ) ( ) ( ) ( )
( ( ) ( ) ( )

( )

( ) ( ) ( ) )

( ) (

dy t dx t dy t dx t
e a y t y t

dt dt d t dt

k y t x t

a x t x t

dy t dx t dy t dx t
e c a y t y t y t

dt dt d t dt

c y t k y t x t

c a x t x

 
         



  

 

 
           



    

  





 

 
 

3 2

3 3 3 3
3 1 2 1 3

3 3

1 2 3

) ( ) ( )

( ) ( ) ( ) ( )
( ( ) ( ) ( )

( )

( ) ( ) )

( ) ( ) ( ) (6.10)

t x t cx t

dy t dx t dy t dx t
e y t y t b y t

dt dt d t dt

k y t x t

x t x t bx t















             


   
  




Let initial condition 1 2 3( , , )x x x = (2, 3.2, 1.5), 1 2 3( , , )y y y = (20, 120, 18),  parameters

35a  , 3b  , 28c  , 1 35a   , 1 3b   , 1 28c   , gain 3200k  , and we can find out 

that the error dynamics behaviors as shown in Figs. 6.3-5. Three error states versus time 

and time histories of states are shown in Figs. 6.6-7.

CASE II. The slave system of Eq. (6.6) is described as follows: 

 

 

 

21
1 2 1 1 1 3

22
1 1 1 1 3 1 2 2 2 1

23
1 2 1 3 3 3 3

( )
( ( ) ( )) ( ) ( ) ( )

( )

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) sin ( )

( )

( )
( ) ( ) ( ) ( ) ( ) ( ) (6.11)

( )

dy t
a y t y t k y t x t y t

d t

dy t
c a y t y t y t c y t k y t x t x t

d t

dy t
y t y t b y t k y t x t y t

d t

 
         

 
            

 
         



The error dynamics becomes



77

 

 
 

 

 

1 1 1 1
1 1 2 1

2
1 1 3

2 1

2 2 2 2
2 1 1 1 1 3

1 2 2 2

2
1

( ) ( ) ( ) ( )
( ( ) ( )

( )

( ) ( ) ( ))

( ) ( )

( ) ( ) ( ) ( )
( ( ) ( ) ( )

( )

( ) ( ) ( )

sin

dy t dx t dy t dx t
e a y t y t

dt dt d t dt

k y t x t x t

a x t x t

dy t dx t dy t dx t
e c a y t y t y t

dt dt d t dt

c y t k y t x t

x

 
         



   

 

 
           



    







  

 
 

1 1 3 2

3 3 3 3
3 1 2 1 3

2
3 3 1

1 2 3

( ))

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ( ) ( ) ( )

( )

( ) ( ) ( ))

( ) ( ) ( ) (6.12)

t

c a x t x t x t cx t

dy t dx t dy t dx t
e y t y t b y t

dt dt d t dt

k y t x t x t

x t x t bx t














    


             


   


 



where initial condition 1 2 3( , , )x x x =(2, 3.2, 1.5), 1 2 3( , , )y y y =(20, 120, 18),  

parameters 35a  , 3b  , 28c  , 1 35a   , 1 3b   , 1 28c   , gain 3100k  , and the 

error dynamics are shown in Figs. 6.8-10. Three error states versus time and time 

histories of states are shown in Figs. 6.11-12.

CASE III. The slave system of Eq. (6.6) is defined by following equations:

   

 

   

1
1 2 1 1 1 3 3

2
1 1 1 1 3 1 2 2 2

2
1

3
1 2 1 3 3 3 3 3

( )
( ( ) ( )) ( ) ( ) ( ) 2 ( )

( )

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

cos ( )

( )
( ) ( ) ( ) ( ) ( ) ( ) 2 ( )

( )

dy t
a y t y t k y t x t x t y t

d t

dy t
c a y t y t y t c y t k y t x t

d t

y t

dy t
y t y t b y t k y t x t x t y t

d t







           


          


 


          



(6.13)










The error dynamics becomes
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1 1 1 1
1 1 2 1

1 1

3 3

2 1

2 2 2 2
2 1 1 1 1 3

1 2 2 2

( ) ( ) ( ) ( )
( ( ) ( )

( )

( ) ( )

( ) 2 ( ) )

( ) ( )

( ) ( ) ( ) ( )
( ( ) ( ) ( )

( )

( ) ( ) (

dy t dx t dy t dx t
e a y t y t

dt dt d t dt

k y t x t

x t y t

a x t x t

dy t dx t dy t dx t
e c a y t y t y t

dt dt d t dt

c y t k y t x t



 
         



  

  

 

 
           



    





 

  

 
 

 

2
1

1 1 3 2

3 3 3 3
3 1 2 1 3

3 3

3 3

1 2 3

)

cos ( ))

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ( ) ( ) ( )

( )

( ) ( ) )

( ) 2 ( )

( ) ( ) ( ) (6.14)

y t

c a x t x t x t cx t

dy t dx t dy t dx t
e y t y t b y t

dt dt d t dt

k y t x t

x t y t

x t x t bx t


















  

    


             


  


  
  



where initial condition 1 2 3( , , )x x x = (2, 3.2, 1.5), 1 2 3( , , )y y y = (20, 120, 18),  

parameters 35a  , 3b  , 28c  , 1 35a   , 1 3b   , 1 28c   , gain 2700k  , control 

gain 1.8  , and phase portraits of the error dynamics are shown in Figs. 6.13-15. 

Three error states versus time and time histories of states are exhibited in Figs. 6.16-17.

CASE IV. According to unidirectional linear coupling,the slave system of Eq. (6.6) is 

described as follows:

 

 

 

1
1 2 1 1 1

2
1 1 1 1 3 1 2 2 2

3
1 2 1 3 3 3

( )
( ( ) ( )) sin ( ) ( )

( )

( )
( ) ( ) ( ) ( ) ( ) sin ( ) ( )

( )

( )
( ) ( ) ( ) sin ( ) ( ) (6.15)

( )

dy t
a y t y t k y t x t

d t

dy t
c a y t y t y t c y t k y t x t

d t

dy t
y t y t b y t k y t x t

d t

 
       

 
           

 
       



The error dynamics becomes
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1 1 1 1
1 1 2 1

1 1

2 1

2 2 2 2
2 1 1 1 1 3

1 2 2 2

1

( ) ( ) ( ) ( )
( ( ) ( )

( )

sin ( ) ( ) )

( ) ( )

( ) ( ) ( ) ( )
( ( ) ( ) ( )

( )

( ) sin ( ) ( ) )

(

dy t dx t dy t dx t
e a y t y t

dt dt d t dt

k y t x t

a x t x t

dy t dx t dy t dx t
e c a y t y t y t

dt dt d t dt

c y t k y t x t

c a x

 
         



  

 

 
           



    

 





 

 
 

1 3 2

3 3 3 3
3 1 2 1 3

3 3

1 2 3

) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ( ) ( ) ( )

( )

sin ( ) ( ) )

( ) ( ) ( ) (6.16)

t x t x t cx t

dy t dx t dy t dx t
e y t y t b y t

dt dt d t dt

k y t x t

x t x t bx t














 
             


   
  




where initial condition 1 2 3( , , )x x x = (2, 3.2, 1.5), 1 2 3( , , )y y y = (20, 120, 18),  

parameters 35a  , 3b  , 28c  , 1 35a   , 1 3b   , 1 28c   , 2900k  , and the error 

dynamics, error states versus time, time histories of states are shown in Figs. 6.18-20.

6.5 Summary

In this Chapter, Yin chaos and Yin-Yang generalized synchronization are

investigated for Chen system via four numerical simulation examples. The 

synchronization is researched by two coupled chaotic systems with a unidirectional 

linear error coupling. To choose an applicable gain parameters by linear coupling 

method achives the goal of generalized synchronization is the key note. We found that 

coupled chaotic systems with constant coupling parameters in Case I~III can achieve 

synchronized, and with function coupling in Case IV can only complete the target of 

generalized synchronization. This papers explores the relationship between the past and 

present scopes for chaos study, and investigates its error dynamics behaviors for 

generalized synchronization .
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Fig. 6.1 Phase portrait of Yang Chen system with a=35, b=3, and c=28.

Fig. 6.2 Phase portrait of Yin Chen system with 1 35a   , 1 3b   and 1 28c   .
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Fig. 6.3 Phase portrait of three errors dynamics with 3200k  for Case I.

Fig. 6.4 Phase portrait of errors dynamics (e1&e2) with 3200k  for Case I.



82

Fig. 6.5 Phase portrait of errors dynamics (e1&e3) with 3200k  for Case I.

Fig. 6.6 Time histories of errors with 3200k  for Case I.
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Fig. 6.7 Time histories of ix versus iy with 3200k  for Case I.

Fig. 6.8 Phase portrait of three errors dynamics with 3100k  for Case II.
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Fig. 6.9 Phase portrait of errors dynamics (e1&e2) with 3100k  for Case II.

Fig. 6.10 Phase portrait of errors dynamics (e1&e3) with 3100k  for Case II.
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Fig. 6.11 Time histories of errors with 3100k  for Case II.

Fig. 6.12 Time histories of ix versus iy with 3100k  for Case II.
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Fig. 6.13 Phase portrait of three errors dynamics with 2700k  for Case III.

Fig. 6.14 Phase portraits of errors dynamics (e1&e2) with 2700k  for Case III.



87

Fig. 6.15 Phase portraits of errors dynamics (e1&e3) with 2700k  for Case III.

Fig. 6.16 Time histories of errors with 2700k  for Case III.
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Fig. 6.17 Time histories of ix versus iy with 2700k  for Case III.

Fig. 6.18 Phase portraits of three errors dynamics with 2900k  for Case IV.
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Fig. 6.19 Time histories of errors with 2900k  for Case IV.

Fig. 6.20 Time histories of ix versus iy with 2900k  for Case IV.
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Chapter 7

Pragmatical Generalized Yin-Yang Synchronization for 

Chaotic Chen System by Adaptive Control

7.1 Preliminaries

In this Chapter, we study chaos synchronization of historical and contemporary 

Chen systems. In ancient Chinese philosophy, the historical chaos of Chen system with 

“Yin”, i.e. negative, parameters may be explained and compared with the chaos of the 

contemporary Chen system with “Yang”, i.e. positive, parameters. For simplicity, the 

former is termed as Yin Chen system and the later as Yang Chen system. We take 

advantage of using an adaptive Yin-Yang chaos synchronization of Yin and Yang Chen 

systems by pragmatical asymptotically stability theorem. This pragmatical adaptive 

synchronization of two chaotic systems of which one has uncertain parameters the 

another has estimated parameters, is achieved by pragmatical asymptotically stability 

theorem. In conclusion, three numerical cases are shown.

7.2 Pragmatical generalized Yin-Yang synchronization scheme by 

adaptive control

Consider the following two nonlinear chaotic systems,

( )
( ) f( ( ), )

(7.1)
( )

( ) g( ( ), ) ( )
( )

d t
t t

dt
d t

t t u t
d t

  
      


1 1

x
Ax x B

y
A y y B

where  1 2( ) ( ), ( ), , ( )
T n

nt x t x t x t R x  ,  1 2( ) ( ), ( ), , ( )
T n

nt y t y t y t R     y  , and 

denote the master state vector and slave state vector respectively, , n nR 1A A are
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uncertain and estimated coefficient matrices, f and g are nonlinear vector functions, 

, 1B B are uncertain and estimated coefficient vectors in f and g , and 

 1 2( ) , , ,
T n

nt u u u R u  is a control input vector.

Our goal is to design a controller ( )tu so that the state vector of slave system 

asymptotically approaches the state vector of the master system plus a given chaotic 

vector function  1 2( ) ( ), ( ), , ( )
T

nt F t F t F tF  . This is a special kind of generalized 

synchronization called generalized Yin-Yang synchronization:

( ) G( ( ), ) ( ) ( ) (7.2)t t t t t   y x x F     

The chaotic system which affords ( )tF is called a given system. The synchronization 

is accomplished when t  , the limit of the error vector  1 2( ) , , ,
T

nt e e ee 

approaches zero:

lim ( ) 0 (7.3)
t

t


e

where

( ) ( ) ( ) ( ) (7.4)t t t t   e x y F

From Eq. (7.4) we have

    

( ) ( ) ( ) ( )

( ) ( ) ( )
(7.5)

( )

d t d t d t d t

dt dt dt dt
d t d t d t

dt d t dt


  


  



e x y F

x y F

( ) ( ) ( ( ), ) ( ( ) g( ( ), ) ( )) ( ) (7.6)t t t t t t t       1 1e Ax f x B A y y B u F

A Lyapnuov function V( , , )e A B  is chosen as a positive definite function

   
1 1 1

V( , , ) (7.7)
2 2 2

  T T Te A B e e A A B B    

where  1A = A A ,  1B = B B .

Its derivative along any solution of the differential equation system consisting of 
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Eq. (7.5) and update parameter differential equations for A and B is

V( , , ) [ ( ) ( ( ), ) ( ( ) g( ( ), ) ( )) ( )]

(7.8)

t t t t t t       

 

T
1 1e A B e Ax f x B A y y B u F

AA BB

  

    

where ( )tu , A , and B are chosen so that V , Te Ce C is a diagonal negative 

definite matrix, and V is a negative semi-definite function of e and parameter 

differences A and B . In current scheme [3-7] of adaptive control of chaotic motion, 

traditional Lyapunov stability theorem and Babalat lemma are used to prove the error 

vector approaches zero, as time approaches infinity. But the question, why the 

estimated or given parameters also approach to the uncertain parameters, remains no 

answer. By pragmatical asymptotical stability theorem, the question can be answered 

strictly.

7.3 The chaotic behavior of Yang and Yin Chen systems

The Yang Chen system is described as follows:

1
2 1

2
1 1 3 2

3
1 2 3

( )
( ( ) ( ))

( )
( ) ( ) ( ) ( ) ( ) (7.9)

( )
( ) ( ) ( )

dx t
a x t x t

dt
dx t

c a x t x t x t cx t
dt

dx t
x t x t bx t

dt

  

    



 

where initial condition 1 2 3(0) 2, (0) 3.2, (0) 1.5x x x   and parameters 35a  , 3b  and

28c  , can be called Yang parameters, and chaos of the Yang Chen system is called 

Yang chaos. The chaotic behaviors of Eq. (7.9) are shown in Fig. 6.1.

The Yin Chen equations are: 
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1
1 2 1

2
1 1 1 1 3 1 2

3
1 2 1 3

( )
( ( ) ( ))

( )

( )
( ) ( ) ( ) ( ) ( ) (7.10)

( )

( )
( ) ( ) ( )

( )

dy t
a y t y t

d t

dy t
c a y t y t y t c y t

d t

dy t
y t y t b y t

d t

 
    

 
        

 
    



where initial condition 1 2 3(0) 20, (0) 120, (0) 18y y y   and parameters 1 35a   ,

1 3b   and 1 28c   , can be called Yin parameters, and chaos of the Yin Chen system is 

called Yin chaos. Obviously, the derivative are taken with the back-time in the left hand 

sides of Eq. (7.10). It means Eq. (7.10) aims to find out the historical behavior of the 

Chen system and to figure out the difference between history and presence. The phase 

portrait of Yin Chen system are revealed in Fig. 6.2. The phase portraits of Yin and Yang

Chen systems are quite different, while their Lyapunov exponents are approximately 

symmetric but small different.

7.4 Numerical simulations of generalized Yin-Yang synchronization

In this Section, adaptive synchronization from Yin Chen system to Yang Chen 

system is proposed. The Yang Chen system as master system and the Yin Chen system as 

slave system are given below: 

Yang Chen system is master:

1
2 1

2
1 1 3 2

3
1 2 3

( )
( ( ) ( ))

( )
( ) ( ) ( ) ( ) ( ) (7.11)

( )
( ) ( ) ( )

dx t
a x t x t

dt
dx t

c a x t x t x t cx t
dt

dx t
x t x t bx t

dt

  

    

  

Yin Chen system is slave:
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1
1 2 1 1

2
1 1 1 1 3 1 2 2

3
1 2 1 3 3

( )
( ( ) ( ))

( )

( )
( ) ( ) ( ) ( ) ( ) (7.12)

( )

( )
( ) ( ) ( )

( )

dy t
a y t y t u

d t

dy t
c a y t y t y t c y t u

d t

dy t
y t y t b y t u

d t

 
     

 
         

 
     



where ( )ix t and ( )iy t stand for states variables of the master system and the slave 

system, respectively. a, b and c are uncertain parameters of master system. 1a , 1b and 

1c are the estimated parameters of slave system. 1u , 2u and 3u are nonlinear controllers

to synchronize the slave Chen system to master one. Three simulation cases are given 

for analyzing as follows:

CASE I. The generalized synchronization error function is ( ) ( )i i ie x t y t   , 1, 2,3.i 

1 1 1

2 2 2

3 3 3

( ) ( )

( ) ( ) (7.13)

( ) ( )

e x t y t

e x t y t

e x t y t

  
   
   

And then 

lim lim( ( ) ( )) 0i i i
t t

e x t y t
 

    ( 1,2,3) (7.14)i 

The error dynamics becomes

1 1 1 1
1 2 1

1 2 1 1

2 2 2 2
2 1 1 3 2

1 1 1 1 3

1 2 2

3
3

( ) ( ) ( ) ( )
( ( ) ( ))

( )

( ( ) ( ))

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( )

(

dx t dy t dx t dy t
e a x t x t

dt dt dt d t

a y t y t u

dx t dy t dx t dy t
e c a x t x t x t cx t

dt dt dt d t

c a y t y t y t

c y t u

dx
e

 
     


    

 
       


     

  







 3 3 3
1 2 3

1 2 1 3 3

) ( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( ) ( ) (7.15)

t dy t dx t dy t
x t x t bx t

dt dt dt d t

y t y t b y t u













       
     




Let parameters 35a  , 3b  and 28c  , initial condition 1 2 3(0) 2, (0) 3, (0) 1.6x x x   , 
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1 2 3(0) 0.7, (0) 0.5, (0) 0.8y y y   . The two systems will approach synchronization for 

any initial conditions by appropriate controllers and update laws for the differences 

between uncertain and estimated parameters. As a result, the following controllers and 

update laws are designed by using pragmatical asymptotical stability theorem as 

follows:

Choosing Lyapunov function as:

2 2 2 2 2 2
1 2 3

1
( ) (7.16)

2
V e e e a b c      

where 1a a a  , 1b b b  and 1c c c  .

Its time derivative is:

1 1 2 2 3 3

1 2 1 1 2 1 1

2 1 1 3 2

1 1 1 1 3 1 2 2

3 1 2 3 1 2 1 3

[ ( ( ) ( )) ( ( ) ( )) ]

[( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ] (7.17)

[ ( ) ( ) ( ) ( ) ( ) ( )

V e e e e e e aa bb cc

e a x t x t a y t y t u

e c a x t x t x t cx t

c a y t y t y t c y t u

e x t x t bx t y t y t b y t

     
      
   
        
       

         

3

1 1 1

]

( ) ( ) ( )

u

a a b b c c         

We choose the update laws for those uncertain parameters are:

1 1

1 3

1 2

(7.18)

a a ae

b b be

c c ce

   
   
   

  

  

  

through Eq. (7.17) and (7.18), the appropriate controllers can be designed as: 

2
1 2 1 1 2 1 1

2 1 1 3 2

2
1 1 1 1 3 1 2 2

2
3 1 2 3 1 2 1 3 3

( ( ) ( )) ( ( ) ( ))

(( ) ( ) ( ) ( ) ( ))
(7.19)

(( ) ( ) ( ) ( ) ( ))

( ( ) ( ) ( )) ( ( ) ( ) ( ))

u a x t x t a y t y t e a

u c a x t x t x t cx t

c a y t y t y t c y t e c

u x t x t bx t y t y t b y t e b

         
     


         
          







We obtain

2 2 2
1 2 3 0 (7.20)V e e e    
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which is negative semi-definite function of 321 e,e,e , 1a , 1b and 1c . The Lyapunov 

asymptotical stability theorem is not satisfied. We cannot obtain that common origin of 

error dynamics (7.15) and parameter dynamics (7.18) is asymptotically stable. By 

pragmatical asymptotically stability theorem (see Appendix B), D is a 6-manifold, 

6n  and the number of error state variables 3p  . When 0eee 321  and 1a , 1b , 1c

take arbitrary values, 0V  ,so X is of 3 dimensions, 336pnm  , n1m 

is satisfied. According to the pragmatical asymptotically stability theorem, error vector e 

approaches zero and the estimated parameters also approach the uncertain parameters. 

The equilibrium point is pragmatically asymptotically stable. Under the assumption of 

equal probability, it is actually asymptotically stable. The simulation results are shown 

in Figs. 7.1-4.

CASE II. The given system for generalized synchronization is a Ikeda-Lorenz 

system[45] which affords ( )tF , is described as follows:

1
1 1 1 1 2 1

2
2 1 2 2 1 1 3 2

3
3 1 3 3 1 2 3

( )
( ) sin ( ) ( ( ) ( ))

( )
( ) sin ( ) ( ) ( ) ( ) ( ) (7.21)

( )
( ) sin ( ) ( ) ( ) ( )

dz t
d z t e z t f z t z t

dt
dz t

d z t e z t hz t z t z t z t
dt

dz t
d z t e z t z t z t gz t

dt

     

      



    

where 1 2 30.1, 0.2, 0.05,d d d   1 2 31, 0.3, 1.8,e e e   16, 45.92, 4f h g   , 

and initial condition 1 2 3(0) 1, (0) 2, (0) 3.z z z   Phase portrait is shown in Fig. 7.5.

By Eq. (7.4)

    ( ) ( ) ( ) ( 1, 2, 3) (7.22)i i i ie x t y t F t i    

where 
1

( ) ( )
2i iF t z t

For generalized synchronization, we have
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1
lim lim[( ( ) ( )) ( )] 0

2i i i i
t t

e x t z t y t
 

     ( 1, 2,3) (7.23)i     

Where Eq. (7.22) is rewritten as

1 1 1 1

2 2 2 2

3 3 3 3

1
[ ( ) ( )] ( )

2
1

[ ( ) ( )] ( ) (7.24)
2
1

[ ( ) ( )] ( )
2

e x t z t y t

e x t z t y t

e x t z t y t

    

    

    

from Eq. (7.24), the following error dynamics: 

1 1 1 1 1 1
1

2 1 1 1 1 1 2 1

1 2 1 1

2 2 2 2 2 2
2

( ) ( ) ( ) ( ) ( ) ( )1 1

2 2 ( )

1
( ( ) ( )) ( ( ) sin ( ) ( ( ) ( )))

2
( ( ) ( ))

( ) ( ) ( ) ( ) ( ) (1 1

2 2

dx t dz t dy t dx t dz t dy t
e

dt dt dt dt dt d t

a x t x t d z t e z t f z t z t

a y t y t u

dx t dz t dy t dx t dz t dy
e

dt dt dt dt dt

 
     



      

    
 

     





1 1 3 2 2 1 2 2 1 1 3 2

1 1 1 1 3 1 2 2

3 3 3 3 3 3
3

1 2

)

( )

1
( ) ( ) ( ) ( ) ( ) ( ( ) sin ( ) ( ) ( ) ( ) ( ))

2
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )1 1

2 2 ( )

( ) ( )

t

d t

c a x t x t x t cx t d z t e z t hz t z t z t z t

c a y t y t y t c y t u

dx t dz t dy t dx t dz t dy t
e

dt dt dt dt dt d t

x t x t



         

        

 
     







3 3 1 3 3 1 2 3

1 2 1 3 3

1
( ) ( ( ) sin ( ) ( ) ( ) ( ))

2
( ) ( ) ( ) (7.25)

bx t d z t e z t z t z t gz t

y t y t b y t u



















      

      


Choose a Lyapunov function in the form of a positive definite function:

2 2 2 2 2 2
1 2 3 1 2 3

1
( , , , , , ) ( ) (7.26)

2
V e e e a b c e e e a b c         

where 1 1 1, ,a a a b b b c c c       , and 1a , 1b , 1c are estimates of uncertain parameters 

a, b, and c, respectively.

Its time derivative is
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1 1 2 2 3 3

1 2 1 1 1 1 1 2 1

1 2 1 1 2 1 1 3 2

2 1 2 2 1 1 3 2

1
[ ( ( ) ( )) ( ( ) sin ( ) ( ( ) ( )))

2
( ( ) ( )) ] [( ) ( ) ( ) ( ) ( )

1
( ( ) sin ( ) ( ) ( ) ( ) ( ))

2
(

V e e e e e e aa bb cc

e a x t x t d z t e z t f z t z t

a y t y t u e c a x t x t x t cx t

d z t e z t hz t z t z t z t

c

     

      

        

     



         

1 1 1 1 3 1 2 2 3 1 2 3

3 1 3 3 1 2 3 1 2 1 3 3

1 1 1

) ( ) ( ) ( ) ( ) ] [ ( ) ( ) ( )

1
( ( ) sin ( ) ( ) ( ) ( )) ( ) ( ) ( ) ]

2

( ) ( ) ( ) (7.27)

a y t y t y t c y t u e x t x t bx t

d z t e z t z t z t gz t y t y t b y t u

a a b b c c

         

          

         

We choose the update laws for a , b and c as:

1 1

1 3

1 2

(7.28)

a a ae

b b be

c c ce

   
   
   

  

  

  

Choose

1 2 1 1 2 1

2
1 1 1 1 2 1 1

2 1 1 3 2 1 1 1

1 3 1 2

2 1 2 2 1 1 3 2

( ( ) ( )) ( ( ) ( ))

1
( ( ) sin ( ) ( ( ) ( )))

2
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1
( ( ) sin ( ) ( ) ( ) ( ) ( ))

2

u a x t x t a y t y t

d z t e z t f z t z t e a

u c a x t x t x t cx t c a y t

y t y t c y t

d z t e z t hz t z t z t z t e

      

      

       
    

      



2
2

3 1 2 3 1 2 1 3

2
3 1 3 3 1 2 3 3

( ) ( ) ( ) ( ) ( ) ( )

1
( ( ) sin ( ) ( ) ( ) ( )) (7.29)

2

c

u x t x t bx t y t y t b y t

d z t e z t z t z t gz t e b










 

        

       





We obtain

2 2 2
1 2 3 0 (7.30)V e e e    

which is negative semi-definite function of 321 e,e,e , 1a , 1b and 1c . The Lyapunov 

asymptotical stability theorem is not satisfied. We cannot obtain that common origin of 

error dynamics (7.25) and parameter dynamics (7.28) is asymptotically stable. In this 

case, according to pragmatical asymptotically stability theorem (see Appendix B), D is a 
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6-manifold, 6n  and the number of error state variables 3p  . When 0eee 321 

and 1a , 1b , 1c take arbitrary values, 0V  ,so X is of 3 dimensions, 336pnm  , 

n1m  is satisfied. Based on the pragmatical asymptotically stability theorem, error 

vector e approaches zero and the estimated parameters also approach the uncertain 

parameters. The equilibrium point is pragmatically asymptotically stable. Under the 

assumption of equal probability, it is actually asymptotically stable. The simulation 

results are shown in Figs. 7.6-9.

CASE III. The goal system for generalized synchronization is a Rössler system as ( )tF

described as follows: 

1
2 3

2
1 1 2

3
1 3 1 1

( )
( ( ) ( ))

( )
( ) ( ) (7.31)

( )
( )( ( ) )

dz t
z t z t

dt
dz t

z t f z t
dt

dz t
g z t z t h

dt

   

  



  

where 1 1 10.2, 0.4, 5.7f g h   , and initial condition 1 2(0) 0.8, (0) 0.3z z 

3, (0) 0.6.z  Phase portrait is shown in Fig. 7.10.

We have

2lim lim(( ( ) ( )) ( )) 0i i i it t
e x t z t y t

 
     ( 1, 2,3) (7.32)i     

where

2
1 1 1 1

2
2 2 2 2

2
3 3 3 3

[ ( ) ( )] ( )

[ ( ) ( )] ( ) (7.33)

[ ( ) ( )] ( )

e x t z t y t

e x t z t y t

e x t z t y t

    


   
    

from (7.32), the following error dynamics: 
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1 1 1 1 1 1
1 1 1

2 1 1 2 3 1 2 1 1

2 1 2 2 1
2 2 2

( ) ( ) ( ) ( ) ( ) ( )
2 ( )( ) 2 ( )( )

( )

( ( ) ( )) 2 ( ( ( ) ( ))) ( ( ) ( ))

( ) ( ) ( ) ( ) ( )
2 ( )( ) 2 ( )( )

dx t dz t dy t dx t dz t dy t
e z t z t

dt dt dt dt dt d t

a x t x t z z t z t a y t y t u

dx t dz t dy t dx t dz t
e z t z t

dt dt dt dt dt

 
     


         


     



 2

1 1 3 2 2 1 1 2

1 1 1 1 3 1 2 2

3 3 3 31 1
3 3 3

1 2

( )

( )

( ) ( ) ( ) ( ) ( ) 2 ( )( ( ) ( ))

( ) ( ) ( ) ( ) ( ) (7.34)

( ) ( ) ( ) ( )( ) ( )
2 ( )( ) 2 ( )( )

( )

( ) ( )

dy t

d t

c a x t x t x t cx t z t z t f z t

c a y t y t y t c y t u

dx t dy t dx t dy tdz t dz t
e z t z t

dt dt dt dt dt d t

x t x t bx




     

        

 
     


 



3 1 2 1 3 3 1 3 1 1 3( ) ( ) ( ) ( ) 2 ( )( ( )( ( ) ))t y t y t b y t z t g z t z t h u















         


Choose a Lyapunov function in the form of a positive definite function:

2 2 2 2 2 2
1 2 3 1 2 3

1
( , , , , , ) ( ) (7.35)

2
V e e e a b c e e e a b c         

where 1 1 1, ,a a a b b b c c c       , and 1a , 1b , 1c are estimates of uncertain parameters 

a, b, and c, respectively.

Its time derivative is

1 1 2 2 3 3

1 2 1 1 2 3 1 2 1 1

2 1 1 3 2 2 1 1 2

1 1 1 1 3 1 2 2

3 1

[ ( ( ) ( )) 2 ( ( ( ) ( ))) ( ( ) ( )) ]

[( ) ( ) ( ) ( ) ( ) 2 ( )( ( ) ( ))

( ) ( ) ( ) ( ) ( ) ]

[ (

V e e e e e e aa bb cc

e a x t x t z z t z t a y t y t u

e c a x t x t x t cx t z t z t f z t

c a y t y t y t c y t u

e x t

     
         
     
        


         

2 3 1 2 1 3

3 1 3 1 1 3 1 1 1

) ( ) ( ) ( ) ( ) ( )

2 ( )( ( )( ( ) )) ] ( ) ( ) ( ) (7.36)

x t bx t y t y t b y t

z t g z t z t h u a a b b c c

     

             

We choose the update laws for those uncertain parameters are:

1 1

1 3

1 2

(7.37)

a a ae

b b be

c c ce

   
   
   

  

  

  

Choose
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1 2 1 1 2 1

2
1 2 3 1

2 1 1 3 2 1 1 1

2
1 3 1 2 2 1 1 2 2

3 1 2 3 1 2 1 3

( ( ) ( )) ( ( ) ( ))

2 ( )( ( ( ) ( )))

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) 2 ( )

( ) ( ) ( ) ( ) ( ) ( )

2

u a x t x t a y t y t

z t z t z t e a

u c a x t x t x t cx t c a y t

y t y t c y t z z f z e c

u x t x t bx t y t y t b y t

z

      

    
       

        
       







2
3 1 3 1 1 3

(7.38)

( )( ( )( ( ) ))t g z t z t h e b









     

We obtain

2 2 2
1 2 3 0 (7.39)V e e e    

which is negative semi-definite function of 321 e,e,e , 1a , 1b and 1c . The Lyapunov 

asymptotical stability theorem is not satisfied. We cannot obtain that common origin of 

error dynamics (7.34) and parameter dynamics (7.37) is asymptotically stable. In this 

case, according to pragmatical asymptotically stability theorem (see Appendix B), D is a 

6-manifold, 6n  and the number of error state variables 3p  . When 0eee 321 

and 1a , 1b , 1c take arbitrary values, 0V  ,so X is of 3 dimensions, 336pnm  , 

n1m  is satisfied. Based on the pragmatical asymptotically stability theorem, error 

vector e approaches zero and the estimated parameters also approach the uncertain 

parameters. The equilibrium point is pragmatically asymptotically stable. Under the 

assumption of equal probability, it is actually asymptotically stable. The simulation 

results are shown in Figs. 7.11-14.

7.5 Summary

In this Chapter, pragmatical generalized Yin-Yang synchronization of chaotic Chen 

system is investigated. The Yang Chen system and Yin Chen systems are used in three 

simulation examples which exhibit its effectiveness of the proposed method. By using 

pragmatical asymptotical stability theorem, with the same conditions for the Lyapunov 
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function, 0V  , 0V  , as in the current scheme of adaptive synchronization, we not 

only obtain the generalized synchronization of chaotic systems but also prove that the 

estimated parameters approach the uncertain values. This Chapter explores the 

conjunction from the history to presence, and researches pragmatical synchronization by

adaptive control. The nonlinear Yin dynamics gives a vast new field for nonlinear 

dynamics.
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Fig. 7.1 Phase portrait of Yin and Yang chaotic systems for Case I.

Fig. 7.2 Time histories of errors for Yin and Yang Chen chaotic systems for Case I.
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Fig. 7.3 Time histories of parametric errors for Yin and Yang Chen chaotic systems for 

Case I.

Fig. 7.4 Time histories of states of Yin and Yang Chen chaotic systems for Case I.
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Fig. 7.5 Phase portrait of Ikeda-Lorenz system.

Fig. 7.6 Phase portrait of Yin and Yang chaotic systems with Ikeda-Lorenz system as 

goal system for Case II.



106

Fig. 7.7 Time histories of errors for Yin and Yang Chen chaotic systems for Case II.

Fig. 7.8 Time histories of parametric errors for Yin and Yang Chen chaotic systems for 

Case II.
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Fig. 7.9 Time histories of states of Yin and Yang Chen chaotic systems for Case II.

Fig. 7.10 Phase portrait of Rössler system.
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Fig. 7.11 Phase portrait of Yin and Yang chaotic systems with Rössler system as goal 

system for Case III.

Fig. 7.12 Time histories of errors for Yin and Yang Chen chaotic systems for Case III.
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Fig. 7.13 Time histories of parametric errors for Yin and Yang Chen chaotic systems for 

Case III.

Fig. 7.14 Time histories of states of Yin & Yang Chen chaotic systems for Case III.
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Chapter 8

Conclusions

In this thesis, a new chaos generalized synchronization method by GYC partial 

region stability theory is proposed. By using the GYC partial region stability the 

Lyapunov function is a simple linear homogeneous function of error states and the 

controllers are simpler. Lorenz system with Legendre function parameters is studied 

firstly.The results are verified by time histories of states, phase portraits, Poincaré maps, 

bifurcation diagram, Lyapunov exponents and parameter diagrams. Abundant 

hyperchaos is found for this system, which gives potential in various applications, 

particularly in secret communication. The Yin Chen system is firstly introduced. 

Comparing the Yang and Yin Chen system via numerical simulation, we find out some

similarity and difference between history and presence. This thesis explores the 

historical space for chaos study interestingly, it would be proved epoch-making 

significance in future. The synchronization is researched by two coupled chaotic 

systems with a unidirectional linear error coupling. To choose an applicable gain 

parameters skillfully by linear coupling method achives the goal of generalized 

synchronization. By using pragmatical asymptotical stability theorem, with the same

conditions for the Lyapunov function, 0V  , 0V  , as in the current scheme of 

adaptive synchronization, we not only obtain the generalized synchronization of chaotic 

systems but also prove that the estimated parameters approach the uncertain values. 

This thesis explores the conjunction from the history to presence, and studies

pragmatical synchronization by adaptive control. The nonlinear Yin dynamics gives a 

vast new field for nonlinear dynamics.
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Appendix A

GYC Partial Region Stability Theory [24-26]

A.1 Definition of the Stability on Partial Region

Consider the differential equations of disturbed motion of a nonautonomous system 

in the normal form

1( , , , ), ( 1, , )s
s n

dx
X t x x s n

dt
                    (A.1)

where the function sX is defined on the intersection of the partial region  (shown 

in Fig. A1) and

2
s

s

x H                                          (A.2)

and 0t t , where 0t and H are certain positive constants. sX which vanishes when 

the variables sx are all zero, is a real valued function of t, 1, , nx x . It is assumed that 

sX is smooth enough to ensure the existence, uniqueness of the solution of the initial

value problem. When sX does not contain t explicitly, the system is autonomous.

Obviously, 0 ( 1, )sx s n   is a solution of Eq.(A.1). We are interested to the 

asymptotical stability of this zero solution on partial region  (including the boundary) 

of the neighborhood of the origin which in general may consist of several subregions 

(Fig. A1).

Definition 1:

For any given number 0  , if there exists a 0  , such that on the closed given 

partial region  when

2
0 , ( 1, , )s

s

x s n                            (A.3)
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for all 0t t , the inequality

2 , ( 1, , )s
s

x s n                                (A.4)

is satisfied for the solutions of Eq.(A.1) on  , then the disturbed motion 

0 ( 1, )sx s n   is stable on the partial region  .

Definition 2:

If the undisturbed motion is stable on the partial region  , and there exists a 

' 0  , so that on the given partial region  when

2 '
0 , ( 1, , )s

s

x s n                                (A.5)

The equality

2lim 0st
s

x


   
 
                                      (A.6)

is satisfied for the solutions of Eq.(A.1) on  , then the undisturbed motion 

0 ( 1, )sx s n   is asymptotically stable on the partial region  .

The intersection of  and region defined by Eq.(A.5) is called the region of 

attraction.

Definition of Functions 1( , , , )nV t x x :

Let us consider the functions 1( , , , )nV t x x given on the intersection 1 of the 

partial region  and the region

2 , ( 1, , )s
s

x h s n   (A.7)

for 0 0t t  , where 0t and h are positive constants. We suppose that the functions are 

single-valued and have continuous partial derivatives and become zero when 

1 0nx x   .



113

Definition 3:

If there exists 0 0t  and a sufficiently small 0h  , so that on partial region 1

and 0t t , 0V  (or 0 ), then V is a positive (or negative) semidefinite, in general 

semidefinite, function on the 1 and 0t t .

Definition 4:

If there exists a positive (negative) definitive function 1( )nW x x on 1 , so that 

on the partial region 1 and 0t t

0 ( 0),V W or V W                              (A.8)

then 1( , , , )nV t x x is a positive definite function on the partial region 1 and 0t t .

Definition 5:

If 1( , , , )nV t x x is neither definite nor semidefinite on 1 and 0t t , then 

1( , , , )nV t x x is an indefinite function on partial region 1 and 0t t . That is, for 

any small 0h  and any large 0 0t  , 1( , , , )nV t x x can take either positive or 

negative value on the partial region 1 and 0t t .

Definition 6: Bounded function V

If there exist 0 0t  , 0h  , so that on the partial region 1 , we have

1( , , , )nV t x x L

where L is a positive constant, then V is said to be bounded on 1 .

Definition 7: Function with infinitesimal upper bound

If V is bounded, and for any 0  , there exists 0  , so that on 1 when 

2
s

s

x  , and 0t t , we have
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1( , , , )nV t x x 

then V admits an infinitesimal upper bound on 1 .

A.2 GYC Theorem of Stability and of Asymptotical Stability on Partial Region

Theorem 1

If there can be found a definite function 1( , , , )nV t x x on the partial region for 

Eq. (A.1), and the derivative with respect to time based on these equations are:

1

n

s
s s

dV V V
X

dt t x

 
 
                               (A.9)

Then, it is a semidefinite function on the paritial region whose sense is opposite to that 

of V, or if it becomes zero identically, then the undisturbed motion is stable on the 

partial region.

Proof:

Let us assume for the sake of definiteness that V is a positive definite function. 

Consequently, there exists a sufficiently large number 0t and a sufficiently small 

number h < H, such that on the intersection 1 of partial region  and

2 , ( 1, , )s
s

x h s n  

and 0t t , the following inequality is satisfied

1 1( , , , ) ( , , ),n nV t x x W x x 

where W is a certain positive definite function which does not depend on t. Besides that, 

Eq. (A.9) may assume only negative or zero value in this region.

Let  be an arbitrarily small positive number. We shall suppose that in any case 

h  . Let us consider the aggregation of all possible values of the quantities 1, , nx x , 

which are on the intersection 2 of 1 and
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2 ,s
s

x                                      (A.10)

and let us designate by 0l  the precise lower limit of the function W under this 

condition. By virtue of Eq. (A.8), we shall have

1( , , , )nV t x x l for 1( , , )nx x on 2 .             (A.11)

We shall now consider the quantities sx as functions of time which satisfy the 

differential equations of disturbed motion. We shall assume that the initial values 0sx

of these functions for 0t t lie on the intersection 2 of 1 and the region

2 ,s
s

x                                      (A.12)

where  is so small that

0 10 0( , , , )nV t x x l                             (A.13)

By virtue of the fact that 0( ,0, ,0) 0V t  , such a selection of the number  is 

obviously possible. We shall suppose that in any case the number  is smaller than 

 .Then the inequality

2 ,s
s

x                                      (A.14)

being satisfied at the initial instant will be satisfied, in the very least, for a sufficiently 

small 0t t , since the functions ( )sx t very continuously with time. We shall show that 

these inequalities will be satisfied for all values 0t t . Indeed, if these inequalities were 

not satisfied at some time, there would have to exist such an instant t=T for which this 

inequality would become an equality. In other words, we would have

2 ( ) ,s
s

x T 

and consequently, on the basis of Eq. (A.11)
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1( , ( ), , ( ))nV T x T x T l                         (A.15)

On the other hand, since h  , the inequality (Eq.(A.7)) is satisfied in the entire 

interval of time [t0, T], and consequently, in this entire time interval 0
dV

dt
 . This 

yields

1 0 10 0( , ( ), , ( )) ( , , , ),n nV T x T x T V t x x 

which contradicts Eq. (A.14) on the basis of Eq. (A.13). Thus, the inequality (Eq.(A.4)) 

must be satisfied for all values of 0t t , hence follows that the motion is stable.

Finally, we must point out that from the view-point of mathenatics, the stability on 

partial region in general does not be related logically to the stability on whole region. If 

an undisturbed solution is stable on a partial region, it may be either stable or unstable 

on the whole region and vice versa. In specific practical problems, we do not study the 

solution starting within 2 and running out of  .

Theorem 2

If in satisfying the conditions of Theorem 1, the derivative 
dV

dt
is a definite 

function on the partial region with opposite sign to that of V and the function V itself 

permits an infinitesimal upper limit, then the undisturbed motion is asymptotically

stable on the partial region.

Proof:

Let us suppose that V is a positive definite function on the partial region and that 

consequently, 
dV

dt
is negative definite. Thus on the intersection 1 of  and the 

region defined by Eq. (A.7) and 0t t there will be satisfied not only the inequality 

(Eq.(A.8)), but the following inequality as well:

1 1( , ),n

dV
W x x

dt
                               (A.16)
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where 1W is a positive definite function on the partial region independent of t.

Let us consider the quantities sx as functions of time which satisfy the differential 

equations of disturbed motion assuming that the initial values 0 0( )s sx x t of these 

quantities satisfy the inequalities (Eq. (A.12)). Since the undisturbed motion is stable in 

any case, the magnitude  may be selected so small that for all values of 0t t the 

quantities sx remain within 1 . Then, on the basis of Eq. (A.16) the derivative of 

function 1( , ( ), , ( ))nV t x t x t will be negative at all times and, consequently, this 

function will approach a certain limit, as t increases without limit, remaining larger than 

this limit at all times. We shall show that this limit is equal to some positive quantity 

different from zero. Then for all values of 0t t the following inequality will be 

satisfied:

1( , ( ), , ( ))nV t x t x t                          (A.17)

where 0  .

Since V permits an infinitesimal upper limit, it follows from this inequality that

2 ( ) , ( 1, , ),s
s

x t s n                           (A.18)

where  is a certain sufficiently small positive number. Indeed, if such a number 

did not exist, that is , if the quantity ( )s
s

x t were smaller than any preassigned 

number no matter how small, then the magnitude 1( , ( ), , ( ))nV t x t x t , as follows from 

the definition of an infinitesimal upper limit, would also be arbitrarily small, which 

contradicts Eq. (A.17).

If for all values of 0t t the inequality (Eq. (A.18)) is satisfied, then Eq. (A.16) 

shows that the following inequality will be satisfied at all times:
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1,
dV

l
dt

 

where 1l is positive number different from zero which constitutes the precise lower 

limit of the function 1 1( , ( ), , ( ))nW t x t x t under condition (Eq. (A.18)). Consequently, 

for all values of 0t t we shall have:

0
1 0 10 0 0 10 0 1 0( , ( ), , ( )) ( , , , ) ( , , , ) ( ),

t

n n nt

dV
V t x t x t V t x x dt V t x x l t t

dt
      

which is, obviously, in contradiction with Eq.(A.17). The contradiction thus obtained 

shows that the function 1( , ( ), , ( ))nV t x t x t approached zero as t increase without limit. 

Consequently, the same will be true for the function 1( ( ), , ( ))nW x t x t as well, from 

which it follows directly that

lim ( ) 0, ( 1, , ),s
t

x t s n


  

which proves the theorem.

Fig. A1 Partial regions  and 1 .
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Appendix B

Systems of Positive States [52-55]

B.1 Three species prey-predator system

    The three species prey-predator system which consists of two competing preys and 

one predator can be described by the following set of nonlinear differential equations:

    

1 1
1 1 1 2 1

1 1
2 2 1 2 2

1 1 2 2

(1 ) ( , )

(1 ) ( , )

( , ) ( , )

dx
r k x k c y x y z

dt
dy

r k c x k y x y z
dt
dz

e x y z e x y z z
dt



 

 

    

    

     

                             (B.1)

where , ir , ik , ie and ic , i=1,2are the model parameters assuming only positive values, 

and the functions ),( yxi , i=1,2 represent the densities of the two prey species and z

represents the density of the predator species. The predator z consumes the preys x, y

according to the response functions [52]:

    
ybxb

xa
yx

21

1
1 1

),(


 ,   
ybxb

xa
yx

21

2
2 1

),(


                   (B.2)

where ia , i=1,2are the search rates of a predator for the preys x, y respectively, while

iii ahb  , i=1,2where ih , i=1,2are the expected handing times spent with the preys x, y

respectively. The parameters 1e and 2e represent, the conversion rates of the preys x, y to 

predator z. Obviously, when 1b and 2b are very small the functional of response i , 

(i=1,2) become linear response see Volttera functional response [53]. In the other hand 

as one of both 1b and 2b tends to zero the system approaches to hyperbolic Holling type II 

[54]. The prescribed model characterized by nonlinear response since amount of food 

consumed by predator per unit time depends upon the available food sources from the 

two preys x and y.
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B.2 Double Mackey-Glass systems

    We consider two double Mackey-Glass systems which consist of two coupled 

Mackey-Glass equations [55]:
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The system is a model of blood production of patients with leukemia. The variables

1x , 2x are the concentration of the mature blood cells in the blood, and 1x , 2x are 

presented the request of the cells which is made after  seconds, i.e. )(   txx ii ,

)2,1( i . The time delay  indicates the difference between the time of cellular 

production in the bone marrow and of the release of mature cells into the blood. 

According to the observations, the time  is large in the patients with leukemia and 

the concentration of the blood cells becomes oscillatory. In this study, the delay time 

fixed in 20 second ( 20 ) and the parameters are shown as follow: 2.0b , 1.0r , 

and 10n .

B.3 Energy communication system in biological research

    The so-call static state in life sciences means that the system of life is approach to a 

stable condition. Moreover, the relation of energy communication among the elements 

in a system of life is called arrangement of static state. The energy communication of 

elements in a system of life in static state can be divided into two forms: 

(1) Independent form:

    All the elements in a system of life can communicate energy individually with 

other energy systems out of theirs. The mathematics form is as fallow:
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where iA , iB , ijC and ijD (i,j=1, 2, … , n)are parameters, 1u and 2u are two different 

elements in a system of life and 1 , 2 are modified terms. The term )( 2
iiii uBuA 

represents the energy communicated with other energy systems, and the term

jiijij uuDC )(  represents the energy communicated with the elements in the system of 

themselves. As a result, independent form can be 0)( 2  iiii uBuA , (i=1, 2, … , n) and 

jiijij uuDC )(  ,(i,j=1, 2, … , n) are very small in general. If the natural medium is 

change, such as the lack of food or the limit of living space, jiijij uuDC )(  may be 

rising. 

(2) Dependent form:

    There are two different parts of elements in these systems of life. The first part of 

elements can communicate energy individually with other energy systems out of theirs. 

The mathematics form is the same to (Eq. (B.5)). The second part of elements can not 

communicate energy individually with other energy systems out of theirs, they have to 

be provided the energy by the first part of elements. The mathematics form is as fallow:
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    ),( knjki 

where k represents the number of the first part elements and jm represents the number of 

the second part elements.

    In further studies, the system of food chain with three states can be described by 

the mathematical model as follow:
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B.4 Virus-immune system

    A mathematical model of the virus-immune system consisting of the following 

three nonlinear differential equations is considered in this study:
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where T, I and V represent the population concentrations of uninfected, infected target 

cells and virus respectively. We denote by the s constant supply of target cells from its 

precursor. These cells have a finite life time and 1 represents the average death rates of 

these cells. These target cells are assumed to grow logistically with specific growth rate

r and carrying capacity . In the presence of virus, the target cells become infected. 

Since virus must meet the cells in order to infect them, a mass action term is used to 

model infection with k as the infection rate. 2 denote the natural death rate of infected 

cells. All infected cells are assumed to be capable of producing virus. It is assumed that 

N virion are released by each infected cell during its lifetime. 3 represents the death 

rate of infected cells due to lysis. 4 is the death rate of free virus.
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Appendix C

Pragmatical Asymptotical Stability Theory [56-58]

The stability for many problems in real dynamical systems is actual asymptotical 

stability, although may not be mathematical asymptotical stability. The mathematical 

asymptotical stability demands that trajectories from all initial states in the 

neighborhood of zero solution must approach the origin as t  . If there are only a 

small part or even a few of the initial states from which the trajectories do not 

approach the origin as t  , the zero solution is not mathematically asymptotically 

stable. However, when the probability of occurrence of an event is zero, it means the 

event does not occur actually. If the probability of occurrence of the event that the 

trajectries from the initial states are that they do not approach zero when t  , is 

zero, the stability of zero solution is actual asymptotical stability though it is not 

mathematical asymptotical stability. In order to analyze the asymptotical stability of 

the equilibrium point of such systems, the pragmatical asymptotical stability theorem

is used.

Let X and Y be two manifolds of dimensions m and n (m<n), respectively, and 

be a differentiable map from X to Y, then ( )X is subset of Lebesque measure 0 of Y 

[56]. For an autonomous system

1( , , )n

dx
f x x

dt
                                              (C-1)

where  1, ,
T

nx x x  is a state vector, the function  1, ,
T

nf f f  is defined on 

nD R and 0x H  . Let x=0 be an equilibrium point for the system (C-1). Then

(0) 0f                                                     (C-2)

For a nonautonomous systems,
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          1 1( ,..., )nx f x x      (C-3)

where 1 1[ ,..., ]T
nx x x  , the function  1[ ,..., ]T

nf f f is define on 

nD R R  ,here 1nt x R   . The equilibrium point is 

   1(0, ) 0nf x   .     (C-4)

Definition The equilibrium point for the system (C-1) is pragmatically 

asymptotically stable provided that with initial points on C which is a subset of 

Lebesque measure 0 of D, the behaviors of the corresponding trajectories cannot be 

determined, while with initial points on D－C, the corresponding trajectories behave as 

that agree with traditional asymptotical stability [57-58].

Theorem Let 1[ , , ]T
nV x x  : D→R+ be positive definite and analytic on D, 

where 1 2, ,..., nx x x are all space coordinates such that the derivative of V through Eq. 

(C-1)or(C-3), V , is negative semi-definite of 1 2[ , , , ]T
nx x x .

    For autonomous system, Let X be the m-manifold consisted of point set for which 

0x  , ( ) 0V x  and D is a n-manifold. If m+1<n, then the equilibrium point of the 

system is pragmatically asymptotically stable.

    For nonautonomous system, let X be the 1m  -manifold consisting of point set 

of which 1 20, ( , ,..., ) 0nx V x x x   and D is 1n  -manifold. If 1 1 1m n    , i.e.

1m n  then the equilibrium point of the system is pragmatically asymptotically 

stable. Therefore, for both autonomous and nonautonomous system the formula 

1m n  is universal. So the following proof is only for autonomous system. The proof 

for nonautonomous system is similar.

Proof Since every point of X can be passed by a trajectory of Eq. (C-1), which is 

one- dimensional, the collection of these trajectories, A, is a (m+1)-manifold [57-58].
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If m+1＜n, then the collection C is a subset of Lebesque measure 0 of D. By the 

above definition, the equilibrium point of the system is pragmatically asymptotically 

stable.

If an initial point is ergodicly chosen in D, the probability of that the initial point 

falls on the collection C is zero. Here, equal probability is assumed for every point 

chosen as an initial point in the neighborhood of the equilibrium point. Hence, the 

event that the initial point is chosen from collection C does not occur actually.

Therefore, under the equal probability assumption, pragmatical asymptotical stability 

becomes actual asymptotical stability. When the initial point falls on D C , 

( ) 0V x  , the corresponding trajectories behave as that agree with traditional 

asymptotical stability because by the existence and uniqueness of the solution of 

initial-value problem, these trajectories never meet C. 

In Eq. (7.7) V is a positive definite function of n variables, i.e. p error state 

variables and n-p=m differences between unknown and estimated parameters, while 

TV e Ce is a negative semi-definite function of n variables. Since the number of 

error state variables is always more than one, p>1, m+1<n is always satisfied, by 

pragmatical asymptotical stability theorem we have

lim 0
t

e


                                                    (C-5)

and the estimated parameters approach the uncertain parameters. The pragmatical 

adaptive control theorem is obtained. Therefore, the equilibrium point of the system is 

pragmatically asymptotically stable. Under the equal probability assumption, it is 

actually asymptotically stable for both error state variables and parameter variables.
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