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ABSTRACT

This thesis consists of four parts: (1) the chaotic behaviors of Double-Froude
system are studied numerically by phase portraits, Pooincaré maps, bifurcation
diagrams and Lyapunov exponent diagrams. (2) generalized synchronization and
control of chaos is studied by GYC partial region stability theory. (3) the Rossler
system with Legendre function is studied for chaos, hyperchaos and synchronization.
(4) Yin-Yang generalized synchronization (YYGS) of Yang Lii and Yin Lii systems are

studied by adaptive control based on pragmatical asymptotical stability theory.
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Chapter 1

Introduction

Synchronization of chaotic systems has become an important topic since the
pioneering work of Pecora and Carroll in 1990 [1]. Furthermore, chaos synchroni-
zation has many potential applications in laser physics, chemical reactor, secure
communication, biomedical and so on [2-4]. Chaos synchronization has been widely
investigated in a variety of fields [5-8]. Many chaos synchronization methods have
been developed, such as invariant manifold method [9], adaptive control method [10],
active control method [11] and synchronization in unidirectionally and bidirectionally
coupled systems [12].

Since Ott et al. [13] gave the famous. OGY control method in 1990, the
applications of the various methods to control a chaotic behavior in natural sciences
and engineering are well known. For example, the adaptive control [14-17], the
method of chaos control based on sampled data [ 18], the method of impulse feedback
of systematic variable [19], the active control [20-21] and linear error feedback
control [22-23].

Chaos is a typical phenomenon in nonlinear dynamic systems whose phase space
has a dimension not lower than three. Chaos exists in many physical and engineering
systems as a desirable behavior in many systems such as secure communications,
liquid mixing, heat transfer and chemical reactions. Therefore, to investigate the
hyperchaos and chaos appears to be one of the fundamentally important problems in
nonlinear dynamics.

When a chaotic system has more than one positive Lyapunov exponent, the

dynamics of the system is expanded in more than one direction, giving rise to a more



complex attractor. Usually, this kind of system is called hyperchaotic. Hyperchaos
was first reported by Rdssler [24] and received great attention because of its potential
in various engineering systems [25-28].

In Chinese philosophy [35-37], Yang is the positive, contemporary or feminine
principle in nature, while Yin is the negative, historical or masculine principle in nature.
So the contemporary Lii system or chaos may be called Yang Lii system, or Yang chaos,
while the historical Lii system and chaos, Yin Lii system, or Yin chaos. There are large
amounts of articles in researching Yang Lii system [29-34]. Although the Yang Lii
system has been analyzed in detail, there are no articles in looking for the Yin Lii

system. In this paper, we find there are rich dynamics in Yin Lii system.

In Chapter 2, a new chaos generalized synchronization strategy by GYC partial
region stability theory ( Appendix A,By)uis.proposed [38-40]. By using the GYC
partial region stability theory; the controllers are-of lower degree than that of
controllers by using traditional Eyapunov asymptotical stability theorem [41-49]. The
simple linear homogeneous Lyapunov| function of error states makes that the
controllers introduce less simulation error.

In Chapter 3, a new strategy to achieve chaos control by GYC partial region
stability theory is proposed [38-40]. Via the GYC partial region stability theory, the
new Lyapunov function is a simple linear homogeneous function of error states and the
lower degree controllers are much more simple and introduce less simulation error.

In Chapter 4, hyperchaos and chaos of Rossler system with Legendre function
parameters are studied. They are identified by phase portraits, bifurcation diagrams,
Lyapunov exponents, time histories of states, Poincaré maps and parameter diagrams.
Both hyperchaos and chaos exist abundantly. They give various applications,

especially for secret communication.



In Chapter 5, the Yin Lii system is introduced and the chaotic behavior with Yin
parameters is investigated by phase portrait, Lyapunov exponents and bifurcation
diagram in the following simulation results. We use Yang parameters for the Yang Lii
system, and Yin parameters for the Yin Lii system. Yin-Yang generalized
synchronization of chaotic Lii systems by pragmatical asymptotical stability theorem

(Appendix C ) is given. Conclusions are presented in Chapter 6.



Chapter 2
Chaos Generalized Synchronization of a New
Double-Froude System by GYC Partial Region
Stability Theory

2.1 Preliminary

In this Chapter, GYC partial region stability theory is used to achieve chaos
generalized synchronization for new double-Froude systems. The Lyapunov function
of error states becomes a simple linear homogeneous function and the controllers are
simpler than that by using traditional Lyapunov theory and so introduce less simulation
results. Numerical simulations are provided to show the effectiveness and advantage

of this method.

2.2 Generalized chaos synchronization strategy

Consider the following unidirectional coupled chaotic systems
x=f(t, X)

y=h(t, y)+u @D

T n T n
where Xz[xl,xz,--~,xn] eR", yz[yl,yz,---,yn] € R" denote the master state
vector and slave state vector respectively, f and h are nonlinear vector functions,

T . .
and U=[u,u,, --,u,] €R" isa control input vector.

>"n

The generalized synchronization can be accomplished when ¢ — oo, the limit of
T
the error vector €= [e1 1€, en] approaches zero:

lime=0 (2-2)

t—>0

where

e=G(X)-y (2-3)



G(x) isa given function of X.
By using the partial region stability theory, the Lyapunov function is linear
homogeneous function of error states. The controllers can be designed in lower

degree.

2.3 Chaos of a new double-Froude system

Two double-Froude systems[25] are introduced as typical nonlinear non-

autonomous systems:

dx,

o
dx,
dr

2

(2-4)
=(a—bx])x, —csinx, —d cos wt

LY

d

dx .
—4 =(e— fx;)x, — g sin x, <hcos wf

di (2-5)

Exchanging coswt in Eq. (2-4) and c¢oswt in Eq: (2-5) with x, and x, respectively,

we obtain an autonomous new double-Froude system:

L3

da

%z(a—bx;)x2 —csinx, —dkx,

. (2-6)
%

da

B (e i), - gsinx

where a, b, ¢, d, e, f, g h are parameters. This system exhibits chaos when the

parameters of system are a=0.35,b6 = 02, c = -1.16,d = 154, e=0.7525,
f =02, g =105 h = -1.7 and the initial states of system are x,(0)=2,
x,(0)=2.4,x,(0)=5,x,(0)=6. Its chaotic phase portrait, time histories of states,

power spectrum, bifurcation diagram and Lyapunov exponents are shown in Fig. 2.1.



2.4 Numerical simulation examples

Two double-Froude systems with unidirectional coupling are given:

X=X
):cz = (a—bx3)x, —csin x, + dx, 2-7)
X3 =Xy
%, =(e— fi})x, — gsinx, + hx,
Y=yt
¥, =(a=by;)y, —csiny, +dy, +u, (2-8)
Vs =y tu,
Vo= (e~ i)y, —gsiny; +hy, +u,
CASE I. The generalized synchronization error function is
e =x,—y +10, i=1L.2,3, 4 (2-9)

The addition of the constant 10-makes the error dynamics always happens in the first

quadrant. Our goal is y, = x, +10}, i.e.

lime, =lim(x, —y, +10) =0, i—lah*3 4 (2-10)
{—>0

t—00

The error dynamics becomes

e =X~V =X, =Y, U
€, =X,—, :(a—bxzz)x2 —csinyx, +dx3—((a—byzz)y2 —csiny, +dy;)—u,
€ =Xy = V3 =X, — Y, Uy

é,=x,—-, :(e—f)cf)x4—gsinx3+hx1 —((e—ﬁ/f)y4—gsiny3+hy1)—u4

(2-11)

Let initial states be (x,, x,, x;,x,)= (0.2, 0.35, 0.2, 0.35), (¥, »,,¥;,»,)=(1,1,1,1)
and system parameters a=035 b = 02, c = -1.16,d = 1.54, e=0.7525,
f =02,g =105, h = -1.7, we find that the error dynamic always exists in first
quadrant as shown in Fig. 2.2. By GYC partial region asymptotical stability theorem,
one can choose a Lyapunov function in the form of a positive definite function in first

quadrant:



V=e+e +e, +e, (2-12)

Its time derivative is

V=e+e +te +e,

:(xz - _“1)
+((a—bxzz)x2 —csinx, +dx, —((a—by;)y, —csin y, +dy3)—u2) (2-13)
+(x4 -y, —u3)

+((e= f)x, — gsinx, + hx, = (e~ f7)y, — gsin y, + hy))—u, )

Choose

u=x,—y,te

u, =(a—bx;)x, —csinx, +dx, —((a=by;)y, —csin y, +dy,) +e,

(2-14)
Uy =X, =Y, t 6
u, = (e_ﬁcj))% _gSinx3 +hx1 —((e—fyf))q —gsiny3 +hy1)+e4
We obtain
V=-et—-e-e—-e<0 (2-15)

which is a negative definite function in the first quadrant. Four state errors versus time

and time histories of states are shown in Fig. 2.3 and Fig. 2.4.

CASE II. The generalized synchronization error function is
e =x,—y +msinowt+10, i=1,2,3 4 (2-16)

Our goalis y=x+msinat+10, i.e.

lime, = lim(x, — y, + msin wt +10) = 0, i=12 34 (2-17)
t—0

t—

The error dynamics becomes

e =X,—y, +maocoswt—u,
é, =(a—bx})x, —csinx, +dx, —((a—by;)y, —csin y, +dy,)
+macos wt —u,
(2-18)

€ =X, =Y, TMwCOS Ot —u,

é4 :(e_ij)xz; _gSinx3 +hx1 —((9—]375))74 _gSiny3 +hy1)
+macoswt —u,




Let initial states be (x,, x,, x;,x,)=(0.2,0.35,0.2, 0.35), (y,, y,, ¥;,»,)=(1,1,1,1)
and system parameters a=0.35b = 02, c = -1.16,d = 1.54, e=0.7525,
f =02,g =105 h = -17,m=2 and w=1, we find that the error dynamics
always exists in first quadrant as shown in Fig. 2.5. By GYC partial region
asymptotical stability theorem, one can choose a Lyapunov function in the form of a
positive definite function in first quadrant:
V=e+e, +e +e, (2-19)

Its time derivative is

V=(x,—y, +mwcoswt—u,)

+((a—bx§)x2—csinx1+dx3—((a—by22)y2—csiny1+dy3)+ma)cosa)t—u2)
2-20
+(x, =y, + mocos ot —u;) (2-20)
+((e—fxf)x4—gsinx3+hxl—((e—ﬁzf)y4—gsiny3+hy1)+ma)cosa)t—u4)
Choose
U =x,—y, +maocoswt+e
u, = (a—bx;)x, —csin x, + déy = (@=by)wy=csiny, + dy,) + mwcos wt + e, pol
U, =x,—y, +mwcoswt+e, @-2D)
u, =(e— fi;)x, —gsinx, + hx, — (e~ f})y, — gsin y, + hy,) + mocos ot +e,
We obtain
V=-e—-e-e—-e<0 (2-22)

which is negative definite function in first quadrant. Four state errors versus time and

time histories of states are shown in Fig. 2.6 and Fig. 2.7.

CASE I1I. The generalized synchronization error function is
e, =ixl.2(t—z-)—yl.+10, i=1 23,4 (2-23)

where 7 =1 is the time delay.

Our goal is y, :%xf(t—l)+10 , 1.e.



lime, = lim(ixiz (t-1)—y, +10)=0, i=1,2,3,4 (2-24)

t—x©

The error dynamics becomes

.1
G =§x1(t—1)x2(t—1)—y2 —U

é, = %xl ((a—bx; (£ =D)x, (¢ =) = esinx, (= 1) + dx, (¢ 1) )

—((a—by})y, —csiny, +dy, ) —u, s
1 (2-25)
83:5)53(1_1))54(1_1)_)’4_“3

é, =%x3 ((e— fic} (t=D)x, (1= 1) - g sinx,(t = 1) + hx, (- 1))

—((e= Ay, —gsiny, +hy ) -u,

Let initial states be (x,, x,, x;,x,)= (0.2, 0.35, 0.2, 0.35), (¥, »,,¥;,»,)=(1,1,1,1)
and system parameters a=035 b = 02, c = -1.16,d = 1.54, e=0.7525,
f =02,g =105 h = -1.7, we find the error dynamics always exists in first
quadrant as shown in Fig. 2.8. By GYC partial region asymptotical stability theorem,
one can choose a Lyapunov funetiontin the-form of apositive definite function in first
quadrant:

V=e+e,+e, +e, (2-26)

Its time derivative is

V=(%xl(l‘—1)><xz(l—1)_)’z_ulJ

%xl(t—l)x((a—bxzz(t—1))xxz(t—l)—csinxl(t—1)+a’x3(t—l))
—((a=by3)y, —csiny, +dy, ) —u,

| (2-27)
+ §x3(t—1)><x4(t—l)—y4 —u3j

%x3(r—1)x((e—ﬁc§(z—1))xx4(z—1)—gsinx3(t—1)+hx,(z—l))—

(e= £y, —gsiny, +hy,)-u,

Choose



1
U, :Exl(t_l)xz(t_l)_yz te

u, :%xl(t—l)x((a—bxi(t—l))xxz(t—1)—csinx1(t—1)+dx3(t—l))

_((a_byzz)yz _CSinyl +dy3)+€2

. (2-28)
u, =5x3(t—l)xx4(t—1)—y4+e3
u, :%x3(t—l)x((e—fxf(t—1))><x4(t—1)—gsinx3(t—1)+hxl(t—l))
—((e=fi1)ys —gsiny, + hy, ) +e,
We obtain
V=-—e-e,—e—-e <0 (2-29)

which is a negative definite function in first quadrant. Four state errors versus time

and time histories of states are shown in Fig. 2.9 and Fig. 2.10.

CASE 1V. The generalized synchronization error function is

e =x—y +z,+w +25, =123, 4 (2-30)
z= [z1 Z, Zy Z4]T is the state vector of a generalized Lorenz system.

w= [w1 w, W, w4]T 1s the state vector of a generalized Chen system.

The goal system for synchronization is the sum of two functional systems, i.e.
generalized Lorenz system and generalized Chen system. Let initial states be

(z,,2,,25,2,) = (0.2, 0.35, 0.2, 0.35), (w,w,,w,;,w,) =(5, 6, 5, 6) and system

parameterss =1, p=26, ¢=0.7, r=15,a,=36, b =3, ¢, =22, d =16

A :s(22 —zl)+rz4
Z,=pz—22,— 2, (2-31)

Z3 =212, =4z

Z,=-z, —8z,

10



w =a,(w, —w)

W, =—d,w, —ww, +c,w, —w,

. (2-32)
W, =ww, —bw,
W =W
We have
lime, =lim(x, —y, +z, +w,+50)=0 i=1 2, 3, 4 (2-33)
—0 t—0
The error dynamics becomes
G =%-y +S(Zz _Zl)+’74 +a,(w, —w) -y,
&, =(a—bx))x, —csinx, +dv, —((a—by;)y, —csin y, +dy,) +(pz — 2,2, 2,)
—dW —wws + 6w, — W, — (2-34)

& =X, — Y, (22, —qz;) + ww, —bw, —us

é,= (e—ﬁcj)x4 —gsinx, +hx, —((e—fj/f)y4 —gsiny, +hy,)+(-z —sz,)
+w —u,

Let initial states be (x,, x,, x;,x,)= (0.250:35;0.2,:0.35), (y,, y,, ¥5,»,)=(1, 1,1, 1)
and system parameters a =035, b = 0.2, ¢ =-1.16,d = 1.54, e=0.7525,
f =02,g =105, h = -1.75 we-find the-error dynamics always exists in first
quadrant as shown in Fig. 2.11. By GYC partial region asymptotical stability theorem,
one can choose a Lyapunov function in the form of a positive definite function in first
quadrant:

V=e+e,+e +e, (2-35)

Its time derivative is

V:(x2 -, +s(z2 —zl)+rz4 +a,(w, _W1)_”1)

_{(a—bxzz)xz —csinx, +dx, —((a—by; )y, —csiny, +dy,) +(pz, — 2,2, —zz)]
—dw —ww, +ew, —w, —u,

(2-36)
+(x4 — Vs (2,2, —qz) + ww, —bw, _uz)

N (e—ﬁcf)x4 —gsinx, +hx, —((e—jﬁ/j)y4 —gsiny, +hy,)+(-z, —sz,)
W —u,
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Uy=x-x +S(Zz _Zl)+rz4 +a,(w,—w)+e
u, =(a—bx;)x, —csinx, +dx, —(a—by; )y, —csiny, +dy;) +(pz, — 2.2, - 2,)

—dw —ww, +ewm —w, +e,

(2-37)
u; =x,—y,+(z2,—qz;) —u; + ww, —bw;, +e,
U, = (e—ﬁcf)x4 —gsinx; +hx, _((e_ﬁji))ﬁ —gsiny, +hy)+(-z —sz,)
+w e,
We obtain
V=-—e-e,—e—e <0 (2-38)

which is a negative definite function in first quadrant. Four state errors versus time

and time histories of states are shown in Fig. 2.12 and Fig. 2.13.

2.5 Summary

In this Chapter, a new chaos generalized synchronization method by GYC partial
region stability theory is proposed: By using theé. GYC partial region stability theory, the
controllers are of lower order than that of controllers by using traditional Lyapunov
asymptotical stability theorem. The simpledinear homogeneous Lyapunov function of
error states makes that the controllers are simpler and introduce less simulation error. In
the simulation example, generalized synchronization is extended to time delay system
and to two functional chaotic systems. The new double-Froude system, generalized
Lorenz system and generalized Chen system are used as simulation examples which

verify the effectiveness of the proposed scheme.

12
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Chapter 3
Chaos Control of a New Double-Froude Systems
System as Functional System by GYC Partial
Region Stability Theory

3.1 Preliminary

In this Chapter, GYC partial region stability theory is used to achieve chaos
control for a new double-Froude system. The Lyapunov function of error states
becomes a simple linear homogeneous function and the controllers are of lower degree
than that by using traditional Lyapunov theory and introduce less simulation error.
Numerical simulations are providedto show the effectiveness and advantage of this

method.

3.2 Chaos control scheme

Consider the following chaotic systems

x=f(z,X) (3-1)
where Xz[xl,xz,---,xn]r € R" is a the state vector, f:R xR" —> R" is a vector

function.

The goal system which can be either chaotic or regular, is
y=9(Y) (3-2)
T no . n noos
where yz[yl,yz,---,yn] eR" is a state vector, g:R xR" —>R" is a vector

function.

In order to make the chaotic state X approaching the goal state y , define error

e =X-Y as the state error. The chaos control is accomplished in the sense that :

lime =lim(x-y)=0 (3-3)

t—0 t—0
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In this Chapter, we will use examples in which the error dynamics happens in the
first quadrant of coordinate system and use the partial region stability theory. The
Lyapunov function is a simple linear homogeneous function of error states and the
controllers are simpler because they are in lower degree than that of traditional

controllers.

3.3 Numerical simulations

The following chaotic system

Dy 10

dt

%4 _ (a-b(x, ~10)")(x, ~10) ~esin(x, ~10)~d(x, ~10)

;t (3-4)
D5y, -10

dt

% = (e~ f(x, —10)*)(x, #10) — gsing—~10)— h(x, ~ 10)

is the new double-Froude system| of which the old origin is translated to
(x,,%,,%;,x,)=(10,10,10,10) in otder that the errtor dynamics happens always in the
first quadrant of error state coordinate system. This translated new double-Froude
system presents chaotic motion when initial conditions is (x,, x,, x;,x,)= (10.2,
10.35, 10.2, 10.35) and the parameters area =0.35, b=0.2, c=-1.16, d=1.54,
e=0.7525, =02, g=105,h=—-1.7.

In order to lead (x,x,,x;,x4) to the goal, we add control terms w1, u,, uz and u4

to each equation of Eq. (3-4), respectively.

X, =x,—10+u,
%, =(a—b(x, —10)*)(x, —10) —csin(x, —10) = d (x; —10) +u,
X, =x,—10+u,

%, =(e— f(x, —10)*)(x, —10) — g sin(x, —10) — h(x, = 10) +u,

(3-5)
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CASE I. Control the chaotic motion to zero.

In this case we will control the chaotic motion of the new double-Froude system
to zero. The goal is y =0. The state error ise; = x; —y; =x;, (i=1, 2, 3, 4) and error
dynamics becomes

é=x=x,—-10+u,
é, =%, =(a—b(x, —10)")(x, —10) —csin(x, —10) = d (x; —10) +u,
e =x,=x,—10+u,

é, =%, =(e— f(x,—10)*)(x, —10) — g sin(x, —10) — h(x, —10) +u,

(3-6)

In Fig. 3.1, we see that the error dynamics always exists in first quadrant.
By GYC partial region asymptotical stability theorem, one can easily choose a
Lyapunov function in the form of a positive definite function in first quadrant as:
V=e+e,+te;+e, (3-7)
Its time derivative through error dynamics(3=6).1s

V=eé+e +e +e,

=x,—10+u,
+(a—b(x, —10)*)(x, = 10)=csin(x, =10y - d (x, = 10) +u, (3-8)
+x,—10+u,

+(e— f(x, —10)*)(x, —10) — g sin(x, —10) — A(x, —10) +u,
Choose

u, =—(x,—10)—¢
u, =—((a—b(x, —10)*)(x, —10)—csin(x, —10) - d(x, = 10)) —e,
u, =—(x,—10)—e,
u, =—((e— f(x, —10)*)(x, —10) - g sin(x, —10) = h(x, —10)) —e,

(3-9)

We obtain
which is negative definite function in first quadrant. The numerical results are shown

in Fig.3.2. After 30 sec, the error trajectories approach the origin.

CASE II. Control the chaotic motion to a regular function.
24



In this case we will control the chaotic motion of the new double-Froude system
(3-4) to regular function of time. The goal is y, = msinwt, (i=1, 2, 3, 4). The error
equation

e =x,—y =x,—msinot ,(=1,2,3,4) (3-10)

lime, =lim(x, -msinw?)=0 , (=1, 2, 3, 4)
t—00

where m=10and @, =0.5,0,=0.3,0, =0.4,0, =0.6

The error dynamics is
e =x,—10+u, —mw, cos wt
é, =(a—b(x,—10)*)(x, =10) —csin(x, —10) — d (x, —10) + u, — me, cos @,
e, =x, —10+u, —maw, cos w,t

é, =(e— f(x,—10)*)(x, —10) — g sin(x, —10) — A(x, —10) + u, — mw, cos w,t

t
(3-11)

In Fig. 3.3, the error dynamics always‘exists‘in first quadrant.
By GYC partial region asymptotical stability theorem, one can easily choose a
Lyapunov function in the form of a positive definite function in first quadrant as:
V=e +e,+te;+e,
Its time derivative is

V=¢+é +é +é, =(x,—10+u, —mam, cos wt)
+((a—b(x,—10)*)(x, —10)—csin(x, —10)

—d(x;—10)+u, — mm, cos w,t)

3-12
+(x, =10+ u, —maw, cos w,t) G-12)
+((e— / (x,~10*)(x, ~10) - g sin(x, ~10)
—h(x, —=10)+u, — mw, cos w,t)
Choose

u, =—(x, =10 —mam, coswt)—e,

u, =—((a—>b(x, —10)*)(x, —10) — csin(x, —10) — d(x, —10)
—mm, COSw,t)—e

2 )= (3-13)

uy =—(x, =10 —maw;, cos w;t) — e,
u, =—((e— f(x, —10)*)(x, —10) — g sin(x; —10) — h(x, —10)
—mm, cosm,t)—e,
25



We obtain

which is a negative definite function in first quadrant. The numerical results are
shown in Fig. 3.4 and Fig. 3.5. After 30 sec., the errors approach zero and the chaotic
trajectories approach to regular motions.
CASE I11. Control the chaotic motion of the new double-Froude system to the sum of
the chaotic motions of a generalized Lorenz system and of a generalized Chen system.
In this case we will control chaotic motion of the new double-Froude system (3-4)
to the sum of the chaotic motions of the generalized Lorenz system and of the
generalized Chen system. The goal system for control is the sum of the generalized
Lorenz system and the generalized Chen system with initial states (z,z,,z;,z,)=
(0.2, 0.35, 0.2, 0.35), (w,,wyew;,w,)i=(5:2.6, 5, 6) and system parameters
s=1, p=26, ,q=0.7, r=15a=36, b:=3, ¢, =22, d =16.

A :s(22 —zl)+rz4
2, = P2 =223 2,
23 =212, — 4z,
Z,=-z,—8z, (3-14)
W =a,(w, —w)

W, =—d,w, —ww, +c,w, —w,

W = ww, —bw,

W =W

The error equation ise, = x, —z, —w,, (i=1, 2, 3, 4). Our aim is lirrol e =0,(=1,2,3,4).
t—

The error dynamics becomes
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e =X -z, —w =(x, —lO—s(z2 —zl)—rz4 —a,(w, —w))+u,

é, =%, -z, — W, = ((a—b(x, —10)*)(x, —10) — csin(x, = 10) — d(x, —10)
—(pz, =223 = 2,) = (=d W —wws + W, —w,)) +u, (3-15)

e, =X, —z,— W, =(x, =10—z,z, + gz, —ww, + bw,) +u,

6, = %, — 2~ = (e~ f (x,~10)")(x, ~10) — g sin(x, ~10) = h(x, ~10)

+z,+52,—w)+u,

In Fig. 3.6, the error dynamics always exists in first quadrant.
By GYC partial region asymptotical stability theorem, one can easily choose a
Lyapunov function in the form of a positive definite function in first quadrant as:
V=e +e,+te;+e,
Its time derivative is

V=é+é+é+é,=((x,—10-5(z,—z)—rz, —a,(w, - w)) +u,)
+(((a—b(x, —10)*)(x, —10) ~esin(x; —10) — d (x, —10)

—(pz, =22, — z,) = (=d W — wwgt e, =w, ) +u,)

(3-16)
+((x, =10 = z,z, + gz, =ww, +bw;) +uy)
(e~ £ (x, ~10)*)(xy = 10y = g sinx, —10)= h(x, ~10)
+z,+5z,—w)+u,)
Choose

u, =—(x, —IO—S(Z2 —Zl)—VZ4 —a,(w,—w))—¢

u, =—((a—>b(x, —10)2)()62 —10) —csin(x, —10) —d(x;, —10)
—(le —ZiZ, _Zz)_(_dlwl _W1W3 +CIW2 _W4))_ez (3_17)

u, =—(x, —10—z,z, + gz, —ww, + bw,) —e,
u, =—((e— f(x, =10)*)(x, —10) — g sin(x, —10) — h(x, —10)

+z,+5z,—w)—e,
We obtain
V=—e—e, —e;—e, <0
which is negative definite function in first quadrant. The numerical results are shown

in Fig.3.7 and Fig. 3.8. After 30 sec., the errors approach zero and the chaotic

trajectories of the new double-Froude system approach to the sum of the chaotic
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motions of the generalized Lorenz system and of the generalized Chen system.

3.4 Summary

In this Chapter, a new strategy by using GYC partial region stability theory is
proposed to achieve chaos control. Via GYC partial region stability theory, the new
Lyapunov function used is a simple linear homogeneous function of error states and
the lower degree controllers are much more simple and introduce less simulation error.
A new chaotic double-Froude system and a generalized Lorenz system and a
generalized Chen system are used as simulation examples which confirm the scheme

effectively.
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Chapter 4
Hyperchaos of The Rossler System with

Legendre Function Parameters

4.1 Preliminary

Hyperchaos and chaos of Rossler system with Legendre function parameters are
studied. They are identified by phase portraits, bifurcation diagram, Lyapunov
exponents, time histories of states, Poincaré maps and parameter diagram. Both
hyperchaos and chaos exist abundantly. They give various applications, especially for

secret communication.

4.2 Chaos of The classical Réssler system and Legendre function
A classical Rossler systemiis atypical nonlinear-autonomous system:
—=—(x, +Xx;)
=X, t+ax, (4-1)

2= b+ x,x, —Cx,

dx,
dt
dx,
dt
dx
dr

where a, b, ¢ are constant parameters. When the parameters of system are
a=0.15,b=0.2, c=10 and the initial states of system are x,(0)=2,x,(0)=24,
x,(0)=5, its chaotic phase portraits and time histories are shown in Fig. 4.1.

We shall use Legendre functions [26] as parameters of the system in next section.

The Legendre functions are defined by
P (x)=(=1)" (1-2) 2 () (4-2)
where P, (X) is the Legendre polynomial of degree n.
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1| d" [, v
Pn(x)=2nn![dxn (x —1)} (4-3)

Choosing n=2, we obtain

L (x)=F(x)=P(x)
d22 P, (x) (4-4)

L(0)= B2 ()= (1) (1-2°)
Pz(x) - 221_2![5_:2()62 _1)2}

Changing the variable

xX=cos t, -1<x<1 (4-5)

The Legendre functions become given periodic functions of time t:

L (t) =P (cost) =P, (cost)
()= B (cost) = (-1 {1} 2o ) (4-6)

hl)= 221'2!{572()62_1)2}

as shown in Fig. 4.2.

4.3 Numerical results

CASET:

dx
d_tl =—(x,+x;)

dx
—2 = x, + Ax,

dt
>
dt

(4-7)

=B+xx,—Cx,

Now, the parameters of Rossler system are taken as A=0.1L,+k, B=b, C=
c¢+0.1L, ;and the initial states of system are Xx,(0)=2,x,(0)=2.4,x,(0)=5, the

bifurcation diagram by changing parameter & is shown in Fig. 4.3 with b=0.2, c=12. Its
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corresponding Lyapunov exponents are shown in Fig. 4.4. The phase portraits, time
histories, and Poincaré maps of the systems are showed in Fig. 4.5 and Fig. 4.6. When
k=-0.2, period 1 phenomena are shown in Fig. 4.5. When k=0. 1, the chaotic behaviors
are given in Fig.4.6.

When 5=0.2 and ¢=12 are fixed while parameter k varies, system (4-7) is chaotic
in the range —0.12<k <-0.09, —0.085<k <0.1 for increment of 0.01. Some typical
values of parameter & that generate hyperchaos, and the range of & for different system

behaviors, are listed in Table 4.1. System (4-7) is chaotic in the above ranges.

Table 4.1The ranges of k for different system dynamics.

System dynamics Ranges of k
e Periodic -02=%k =-0.15;:0.15= £=-0.12,-0.09= k=-0.085
» Chaotic 0.12= £k =-0:09, -0.085=£k=0.03
e Hyperchaotic 0.03 £4k=0:08
¢ Chaotic-hyperchaotic
0.08=k=0.1
interweaving
CASEII -

When the parameters of system are A=0.1L; +a, B=b, C=k +0.1L, and the initial
states of system are x,(0)=2,x,(0)=2.4,x,(0)=35, a=0.15 and b=0.2 are fixed while
parameter k varies, system (4-7) is chaotic in the range 2<k <15, for increment of
0.028. Some typical values of parameter & that generate hyperchaos, and the range of £
for different system behaviors, are listed in Table 4.2. The Lyapunov exponents are

shown in Fig. 4.7.
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Table 4.2 The ranges of k for different system dynamics.

System dynamics Ranges of £

e Periodic 0.8=k=1,1.05=k=1.15,12=k=2,3=k=3.1

* Chaotic 1=k=1.051.15=k=12,2= £k =3,3.1= k=105
e Hyperchaotic 105= k=143
CASEIII :

When the parameters of system are 4=0.1L, + j, B=b, C=c+ kL, ,and the initial
states of system are x,(0)=2,x,(0)=2.4,x,(0)=35.

When »=0.2 and ¢=12 are fixed while parameter j, k£ varies. Some typical values of
parameter j, k that generate hyperchaos, and the ranges of j, k£ for different system
behaviors, are listed in Table 4.3.,System (4-7).is chaotic in the above range. The
parameter diagram is shown in Fig. 4.8.

Table 4.3 The ranges of j, k for different’system dynamics.

System dynamics Ranges of j Ranges of £

* Periodic -0.2=j=-0.135 -10= k=10

e Periodic -0.135= j=-0.07 -0.135= k=-0.07
* Chaotic -0.135= j=0.1 5= k=10

¢ Chaotic -0.07= j=0.1 -10= k=-5

e Hyperchaotic -0.02= j=0.03,0.08=,=0.1 8= k=10

e Hyperchaotic 0=,=0.1 0= k=5

e Hyperchaotic -0.03= ;=0.03 -10= k=-6.5

4.4 Summary

Hyperchaos and chaos of a Rossler system with Legendre function parameters are

studied firstly. The results are verified by time histories of states, phase portraits,
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Poincaré maps, bifurcation analysis, Lyapunov exponents and parametric diagram.
Abundant hyperchaos is found for this system, which gives potential in various

applications, particularly in secret communication.
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Fig. 4.8 Parameter diagram of system (4-7) with varying j, k.
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Chapter 5
Yin-Yang Generalized Synchronization of
Chaotic LU Systems by Pragmatical
Asymptotical Stability Theorem

5.1 Preliminary

In this Chapter, the history of Lii system is studied in the first time. Simulation
results are shown that chaos of historical, i.e. negative time Lii system is appeared when
using “Yin”, i.e. negative parameters. Yin Lii system is studied in this paper and the
behavior of Yin Lii system is investigated by Lyapunov exponents, phase portraits and
bifurcation diagrams.

Projective Yin-Yang generalized synchronization of chaotic Li systems is

accomplished by pragmatical asymptotical stability theorem.

5.2 YYGS scheme by adaptive control and pragmatical

asymptotical stability theorem

There are two identical nonlinear dynamical systems, and the master system
controls the slave system. The master system is given by

% = Ax() + £ (x(t), B) (5-1)

where  x(t) =[x,(¢),x,(¢),-x,()] € R" denotes a state vector, 4 is an nxn

uncertain constant coefficient matrix, f'is a nonlinear vector function, and B is a vector

of uncertain constant coefficients in f. The slave system is given by
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dy(=t) _ 5 A A _
1<) = Ay(=1) + f (y(=1), B) + u(?) (5-2)

A

where y(=t) =[y,(=1), y,(~1),---y,(-t)]" € R" denotes a state vector, A isan nxn

A

estimated coefficient matrix, B 1is a vector of estimated coefficients in f, and
u(?) =[u,(t),u,(t),---u, ()" €R" is a control input vector.

Our goal is to design a controller u(#) so that the state vector of the slave system
(5-2) asymptotically approaches the state vector of the master system (5-1) plus a
given chaotic vector function F(¢) =[F,(¢), F,(t);--F, (t)]".This is a special kind of
generalized synchronization, y(—f) is a given function for x(¢)

(=)= G (x,t) = x(t)+F(¢) (5-3)

The synchronization can be accomplished when ¢ — oo, the limit of the error

vector e(t) = [e1 (®),e,(t), e, (t)]T approaches zero:

lime, () =0 (i=12,..5n) (5-4)
where
e(t) =[x()+ F(t)]- y(-1) (5-5)

The error dynamics is

de(t) _ [dx(t) . dF (1) } _dy(=1) _ [dx(z) . dF (1) } . dy(~t) (5-6)
di di | di dt di | di d(—1)
dz(; ) = Ax(t)+ Av(—t)+ f(x(t). B) + (1) B)+ F(6) + u(t). (5-7)

A Lyapunov function ¥ (e, 4,B) is chosen as a positive definite function of

e, A, B:
B"B (5-8)

49



~ A

where A=A-A, B=B-B, Its time derivative along any solution of Eq. (5-7) and

update parameter differential equations for 4 an B Is

Vie A B)=¢" [Ax(t)—/ly(—m fx(0),B)+f (1), é)+F(z)+u(t)]+212+§§ (5-9)

where u(t),;land Bare chosen so that ¥ =e’Ce, where C is a diagonal negative
definite matrix. ¥ is a negative semi-definite function of e and parameter differences

Aand B.In current scheme of adaptive synchronization [57-60], traditional Lyapunov
stability theorem and Babalat lemma are used to prove the error vector approaches zero,
as time approaches infinity. But the question, that the estimated parameters also
approach to the uncertain parameters, remains no answer. By pragmatical asymptotical

stability theorem, the question can be answered strictly.

5.3 Yang LU system

Before introducing the Yin-Lii system, the Yang Lii system can be recalled firstly

as follow:

—= =—X,X, +CX 5-10
173 2

When initial condition (x,y,x,y,x5,) = (0.2,0.35,0.2) and parameters a=36, b=3 and
c=20,chaos of the Yang Lii system is appeared. The chaotic behaviors of Eq. (5-9) is

shown in Fig. 5.1.

5.4 Yin LU system

Yin Lii system is
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% =a(y,(-1)—y,(-1))
A~ EnENranEn .
d(~1) =n (=) y,(=t)—bys(-1)

It is clear that in the left hand sides, the derivatives are taken with the back-time.
It means we aims to find out the Yin behavior of the Lii system and to comprehend the

relation between history and presence. The simulation results are arranged in Table

5.1:

Table 5.1 Dynamic behaviors of Yin Lii system for different signs of parameters

a b c states

- + + Approach to infinity
+ - + Approach. to infinity
- - + Approach to infinity
- + - Approach to infinity
- - - Chaotic and periodic

Table 5.1 shows the dynamic behaviors of Yin Lii system for different signs of
parameters. An awe-inspiring phenomenon is discovered. When initial condition
(X105 %20, X30) = (0.2,0.35,0.2) and parameters a=-36, b=-3 and c=-20,chaos of the Yin
Lii system appears. Therefore, we call these parameters Yin parameters. The chaotic
behavior of Eq. (5-11) is shown in Fig. 5.2. In Chinese philosophy, Yin is the negative,
past or feminine principle in nature, while Yang is the positive, present or masculine
principle in nature. Yin and Yang are two fundamental opposites in Chinese
philosophy. Consequently, the positive value of parameters, a=36, b=3 and ¢=20, in

Yang Lii system are called Yang parameters.
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5.5 Simulation results for bifurcation diagrams and

Lyapunov exponents

In order to research the difference and similarity between Yang and Yin Li
system, the bifurcation diagram and Lyapunov exponents are used. The simulation

results are divided into three parts:

Partl: parameter c is varied and a=-36, b=-3:

Table 5.2 Contrast between Yin and Yang Lii system for Lyapunov exponents

c Yin Lii system c Yang Lu system

-29.764 10.000197 |-4.61405 |-4.62215 |29.764 |-0.0002 |-4.61547 |-4.62033

-29.5  |-0.000007|-1.20339 |-8.29661 29:5 0.000295]-0.23415|-9.26615

-29.456 (0.000022 |-0.92901 |-8.61497 129.456 10.000156/-0.81612 |-8.72803

-29.368 10.555732 |0.000253-10.188"29.368 '{0.00074 |-0.23754|-9.3952

-29.324 |0.000801 |-0.01166 |-9.66514 |29.324 |0.896088|0.000456|-10.5725

-29.28 10.001811 |-0.51764 (-9.20417 |29.28 |0.001913|-0.5179 |-9.20401

-29.236 10.001535 [-1.90309 |-7.86244 129.236 |-3.7E-05 [-1.90473 |-7.85923

-29.192 |-0.000025|-1.11772 |-8.69025 |29.192 |0.000522|-1.11769 |-8.69084

Table 5.3 Range of parameter ¢ of Yin Lii system

-13.0~-29.06 Chaos

-29.06~-35 Periodic trajectory

Table 5.2 shows different Lyapunov exponents in the some values of parameter ¢
of Yang and Yin Lii system. Different behaviors at ¢=-29.324 and c=29.324 are

especially interesting. When ¢ is -29.324, Yin Lii system is periodic, while ¢ is 29.324,
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Yang Lii system is hyperchaotic. Table5.3 shows that when ranges of parameter c is

-13.0~-29.06, the chaotic behavior is shown in Yin Lii system. while when the range of

parameter c is-29.06~-35, the periodic behavior of Yin Lii system is shown. Bifurcation

diagrams and Lyapunov exponents of chaotic Yang and Yin Lii systems are shown in

Fig. 5.3 and Fig. 5.4.

Part2: parameter a is varied and b=-3, c=-20:

Table 5.4 Contrast between Yin and Yang Lii system for Lyapunov exponents

Yin Lii system

a

Yang Lii system

-53.2

0.393326116

0.000172417

-36.59349757

53.2

0.391750789

-0.000611097

-36.59113873

-52.996

0.414701286

0.00010234

-36.41080268

52.996

0.388522269

-0.00004713

-36.38447419

-52.86

0.414233756

-0.00006142

-36.2741714

52.86

0.430180767

0.000363957

-36.29054378

-52.316

-0.000230724

-0.247495794

-35.06827262

52.316

0:000699843

-0.247791492

-35.06890748

-52.18

0.419583056

-0.00123092

-35:59835126

5218

0.430830963

0.000434407

-35.61126449

-51.976

0.495389391

0.000004097

-35.47139263

51976

0.503320761

-0.000608358

-35.47871155

-51.84

0.489573289

-0.000173319

-35.32939913

51.84

0.500249518

-0.000213826

-35.34003485

-51.772

0.513902832

-0.000152537

-35.28574945

51.772

0.490941389

0.000160239

-35.26310078

-51.704

0.641579463

-0.00005584

-35.34552277

51.704

0.633573271

-0.00026471

-35.33730771

Table 5.4 shows that the behaviors of Yang and Yin Lii system are similar but not

the same. Bifurcation diagrams and Lyapunov exponents of chaotic Yang and Yin Lii

system are shown in Fig. 5.5 and Fig. 5.6.
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Part3: parameter b is varied and a=-36, c=-20:

Table 5.5 Contrast between Yin and Yang Lii system for Lyapunov exponents

b Yin Lii system b Yang Lii system
-13.578 |0.90879810.000179 |-30.487 |13.578 10.911833]-0.000095 |-30.4897
-13.73 10.9228921-0.0001  |-30.6528 |13.73 10.921613]0.000422 |-30.652
-13.844 |0.9393751-0.000046 |-30.7833 |13.844 0.939861]0.000249 |-30.7841
-13.882 |0.9449781-0.000018 |-30.827 |13.882 ]0.946319]-0.00022 |-30.8281
-13.92 |0.950611(-0.00023 |-30.8704 |13.92 0.950943]-0.00053 |-30.8704
-13.958 |0.000771-0.1725  |-29.7863 |13.958 0.9469010.000038 |-30.9049
-13.996 |0.00052 [-0.18495 |-29.8116 [13.996 ]0.000881]-0.18479 |-29.8121
-14.11 |0.000235[-0.22197 |-29.8883 |14.11 0.000539]-0.22204 |-29.8885

Table 5.6 Range of parameter b of Yin Lii'system-and Yang Lii system

Yinl Lii system (b) Yang Lii system (b)
-20~-13.938242 Periodic trajectoryl:” 20~13.97
-13.938241~-11.6  |Quasi-periodic 13.97~11.6
-11.6~-1.8 Chaos 11.6~1.8
-1.8~-1.08 Periodic trajectory| 1.8~1.08
-1.08~-1 Chaos 1.08~1

In Table 5.5 and 5.6, the behaviors of Yang and Yin Lii system are quite different.
In Table 5.6, periodic trajectory behavior exists in Yang Lii system in ranges 20~13.97
and 1.8~1.08, while periodic trajectory behavior exists in Yin Lii system in range of

-20~-13.938242 and -1.8~-1.08. Bifurcation diagrams and Lyapunov exponents of

chaotic Yang and Yin Lii systems are shown in Fig. 5.7 and Fig. 5.8.
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5.6 YYGS of LU system by pragmatical asymptotical stability

theorem

In this Section, adaptive synchronization from Yin Lii chaos to Yang Lii chaos is
proposed. The Yin Lii system is considered as slave system and the Yang Lii system is
regarded as master system. These two equations are shown as follow.

Master system is a Yang Lii system:

D _ (6~ 3,0)
B0 om0+ e (5-12)
(1)

20—, (0-b )

Slave system is a Yin Lii system:

dj(( ))— Gy, (1)~ 3, (-1
dgz( )) (1) (1) + By~ g (5-13)
df(( )) = 3 (00— byy (1) il

where x,(¢) and y,(—¢) stands for states variables of the master system and the slave

A

system, respectively. a, b and ¢ are the uncertain parameters of master system, a,b,¢

are the estimated parameters of slave system.u,,u,andu;are nonlinear controllers
used for synchronization.

Let we define the error signal as:

e)=x,)-y,(-t) =123 (5-14)
Our aim is
lim=|x,)-y,(-0)|=0  (=123) (5-15)
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Case |

Eq. (5-14) is used. Error dynamics is
de(t)  dx(t) N dy(—t)
dt dr  d(=1)
= [a(xz —x)+ @y, (-t)=-»(-1) _”1)]
[ X% +ex, + (=, (= t)y3(_t)+éy2(_t)_”2)] (5-16)
|:x1x2 bx; + (1, ( t))’z(_t)_l;)@(_t)_”s)]

Choose a Lyapunov function in the form of a positive definite function:

Ve, e, e,d,b,é) =%(ef +el+el +at+b + &%) (5-17)

A

where a=a—-a,b=b-b,c =c—cand a,b,care estimates of uncertain parameters a,

b, c.
Its time derivative is
V =eé +eé, +eé, +add+bb+ac
=¢ [a(x, —x) +(a(y, (-0~ », (FO)=u)]
+e, [—x1x3 +cx, + (—=y, (=) (=) + ey, (1) - uz)] (5-18)
ey, —bx, + (3, (<0, (<) “ B D~ u,) |
GG+ b+
We choose
G=—4= ae,
b=—b=be, (5-19)

¢ =—C=Cce,

=] a(x,—x)+a(y,(-1)+y,(-0) +e)+a’ |
y =[x, + e, = 3, (=) y, () + &y, () + ) + & | (5-20)

[0, = b+ 31 (03, (0 =byy (1) + )+ |

Uy

Obtain

V=--e—e—el <0 (5-21)
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which is negative semi-definite function ofe,,e,,e;,a ,bandé. The Lyapunov

asymptotical stability theorem is not satisfied. We cannot obtain that common origin
of error dynamics (5-16) and parameter dynamics (5-19) is asymptotically stable. By

pragmatical asymptotically stability theorem (see Appendix C), D is a 6-manifold,
n = 6and the number of error state variablesp=3. When ¢, =¢, =e; =0and @,b,¢

take arbitrary values, V =0,s0 X is of 3 dimensions, m =n— p=6-3=3, m+1<n
is satisfied. According to the pragmatical asymptotically stability theorem, error
vector e approaches zero and the estimated parameters also approach the uncertain
parameters. The equilibrium point is pragmatically asymptotically stable. Under the
assumption of equal probability, it is actually asymptotically stable. The simulation
results are shown in Fig. 5.9~5.12.

Case Il

We choose the following Rossler system as the givensystem which gives F(7):

dz,(t)

P —(2,(1) + 23,(1))
E0 0 +ma) (5-22)
() =n+z,(t)z;(t)—o0z,(2)

dt

where m=0.15, n=0.2, 0=10.

Let we define the error signals as:
e (=[x +F®)]-y(-t) =123

Error dynamics is

de(r) [dx(t) . dF(t)} LD
dt | dt  at d(~t)
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é = [a(xz —x)—(z, +zy) +(@(y,(-0) -y (_t))_ul)]
e, = [_x1x3 TCX, vz tmz, + (_y1(_t))’3(_t)+éyz(_t)_uz)] (5-23)

&y =[x, b+ n+ 5.2, =0z, + O (<)) = by, (<) —uy) |

Choose a Lyapunov function in the form of a positive definite function:

V(el,ez,epd,l;,é):%(ef +el+el +a+b + ) (5-24)

where a=a—-a,b=b-b,c =c—cand a,b,care estimates of uncertain parameters a,

b, c.
Its time derivative is
V =eé +e,e,+ee +aa+bb+cc

=4 [a(x2 —x)—(z, +ZS)+(&(yz(_t)_yl(_t))_ul)]
e [_x1x3 +ex, + 2+ mzy + (=Y, (=) y5(-1) + ¢y, (_t)_”z)] (5-25)

te; |:x1x2 —bx;+n+zz;— ozt (y1(_t)y2(_t)_I;ys(_t)_%)}
v GG+ bb 4+
We choose
d=-a =ae,
b =—b = be, (5-26)

¢ =—C=Ce,

u, = I:a(xz —x)+a(, (- +y (1) +e)+a ~(z, +Z3)]

u, = [—xlx3 +ex, — Y, (=) y5 (=) + v, (1) + ) + & + 2, + m22] (5-27)

u, = [xlx2 —bx; —y,(=t)y,(~1) —l;y3 (—t)+e)+ b +n+ Z,Zy— 023}

Obtain

V=-e-c—e <0 (5-28)
which is negative semi-definite function ofe,,e,,e;, a, b and ¢. The Lyapunov

asymptotical stability theorem is not satisfied. We cannot obtain that common origin

of error dynamics (5-23) and parameter dynamics (5-26) is asymptotically stable. By
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pragmatical asymptotically stability theorem, D is a 6-manifold, n=6and the
number of error state variablesp=3. When e, =e, =¢; =0and &,b,¢take arbitrary

values, V =0,s0 X is of 3 dimensions, m =n -p=6-3=3, m+1<n is satisfied.
According to the pragmatical asymptotically stability theorem, error vector e
approaches zero and the estimated parameters also approach the uncertain parameters.
The equilibrium point is pragmatically asymptotically stable. Under the assumption of
equal probability, it is actually asymptotically stable. The simulation results are shown

in Fig. 5.13-5.16.

Case 111

We choose the following Chen system as the given system which gives F(¢)

w = —I’I/Z(Zz (t)_Zl (t))

dt
?= (0—m)z,(t) — z,z4(1) +,02,() 29
chi't(t) =2,(1)z,(t) — nz,(t)

where m=35, n=3, 0=28

Let we define the error signals as:
e(=[xO)+F@®)]-y,(-t) =123

Error dynamics is

de(t) _ [dx(t) N dF(t)} LD

dt dt dt d(-t)
e = [a(xz —x)—m(z, —z,) +(=a(y,(-1) _J’1(_t))_”1)]
€= [—x1x3 +ex, +(0—m)z, —z;z; + 0z, +(—yl(—l‘)y3(—l‘)+€y2(—t)—u2)] (5-30)

e = |:x1x2 —bx; +z,z, —nz, + (y,(-1) y, (1) _l;y3 (=) —u, )}

Choose a Lyapunov function in the form of a positive definite function:
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. 1 -
I/(el,ez,e3,c~zl,bl,51)=E(el2 te;+e +a +b’+c%) (5-31)

where @a=a—-a,b=b-b,c=c—¢ and a,b,c are estimates parameters, a, b, ¢ are

uncertain parameters of master system.
Its time derivative is
V =eé +ee, +ee, +aa+bb+cc

=€ [a(xz _xl)_m(ZZ _Zl)+ (_&(yz (_t)_yl(_t))_”ﬁ)]
+e [_xlx3 +ex, +(0—m)z, —z,z; + 0z, + (=3, (=) y; (=) + ¢y, (_t)_uz)] (5-32)

+é |:x1x2 —bx; +z,z, —nz; +(y, (_t)J’z(_t)_bA)ﬁ(_t)_”s)J

+aa+bb+cc

We choose
5:—&:ae1
b =—b = be, (5-33)

= a(x, —x) +Q(y, (~) + K (A FEIFE —m(z,~ 7)) ]
u, = [_‘xlx3 +cx, =y (=) y,(-1) Héps(=t)Fe,) + & + (0 —m)z, — 2z, +022] (5-34)

u, = [xlx2 —bx, = y,(—t)y,(=t)— 5y3 (~t)+e)+b* +z,2, - nZJ
Obtain

V:—ef—ezz—e32<0 (5-35)
which is a negative semi-definite function ofe,,e,,e;,a ,B andC. The Lyapunov

asymptotical stability theorem is not satisfied. We cannot obtain that common origin
of error dynamics (5-30) and parameter dynamics (5-33) is asymptotically stable. By

pragmatical asymptotically stability theorem, D is a 6-manifold, n=6and the
number of error state variablesp=3. When e, =e, =e; =0and a,b,¢ take arbitrary
values, V =0,s0 X is of 3 dimensions, m =n —-p=6-3=3, m+1<n is satisfied.
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According to the pragmatical asymptotically stability theorem, error vector e
approaches zero and the estimated parameters also approach the uncertain parameters.
The equilibrium point is pragmatically asymptotically stable. Under the assumption of
equal probability, it is actually asymptotically stable. The simulation results are shown

in Fig. 5-17-5-20.

5.7 Summary

In this Chapter, the Yin Lii system is firstly introduced. Via numerical simulation,
the Yin Lii system is compared with the Yang Lii system and we find out there are
similarity and difference between history and presence. In this Chapter, YYGS of Yang
Li and Yin Li system are accomplished by adaptive control based on pragmatical
asymptotical stability theory. This:Chapter explotes the another half battle field for

chaos study, would be proved to-have epoch-making significance in future.
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Fig. 5.1 Projections of phase portrait and phase portrait of chaotic Yang Lii system with
a=36, b=3 and ¢=20.
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Fig. 5.2 Projection of phase portrait and phase portrait of chaotic Yin Lorenz system
with Yin parameters a=-10, b=-8/3 and c=-28.
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Fig. 5.3 Lyapunov exponents and bifurcation diagram of chaotic Yang Lii system with
a=36 and b=3.
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Fig. 5.9 Time histories of state errors for Yin and Yang Lii chaotic systems.
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Fig. 5.10 Time histories of parametrer errors for Yin and Yang Lii chaotic systems.
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Fig. 5.12 Phase portraits of Yin and Yang Lii chaotic systems.
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Fig. 5.13 Time histories.of state errors for Case II.
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Fig. 5.14 Time histories of parameter errors for Case II.
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Fig. 5.18 Time histories of parameter errors for Case III.
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Chapter 6

Conclusions

In this thesis, the chaotic behavior of a new Double-Froude system is studied by
phase portraits, time history, Poincaré maps, Lyapunov exponent, bifurcation
diagrams, and parametric diagram.

In Chapter 2, a new chaos generalized synchronization method by GYC partial
region stability theory is proposed. By using the GYC partial region stability theory, the
controllers are of lower order than that of controllers by using traditional Lyapunov
asymptotical stability theorem. The simple linear homogeneous Lyapunov function of
error states makes that the controllers are simpler and introduce less simulation error. In
the simulation example, generalized synchronization is extended to time delay system
and to two functional chaotic systems. The new .double-Froude system, generalized
Lorenz system and generalized-Chen. system-ate used as simulation examples which
verify the effectiveness of the proposed.scheme:

In Chapter 3, a new strategy by using GYC partial region stability theory is
proposed to achieve chaos control. Via GYC partial region stability theory, the new
Lyapunov function used is a simple linear homogeneous function of error states and
the lower degree controllers are much more simple and introduce less simulation error.
A new chaotic double-Froude system and a generalized Lorenz system and a
generalized Chen system are used as simulation examples which confirm the scheme
effectively.

In Chapter 4, hyperchaos and chaos of a Rossler system with Legendre function
parameters are studied firstly. The results are verified by time histories of states, phase
portraits, Poincaré maps, bifurcation analysis, Lyapunov exponents and parametric

diagram. Abundant hyperchaos is found for this system, which gives potential in
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various applications, particularly in secret communication.

In Chapter 5, the Yin Lii system is firstly introduced. Via numerical simulation,
the Yin Lii system is compared with the Yang Lii system and we find out there are
similarity and difference between history and presence. In this Chapter, YYGS of Yang
Li and Yin Li system are accomplished by adaptive control based on pragmatical
asymptotical stability theory. This thesis explores the another half battle field for

chaos study, and would be proved to have epoch-making significance in future.
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Appendix A
GYC Partial Region Stability Theory

Consider the differential equations of disturbed motion of a nonautonomous

system in the normal form

S=X (t,x,,X,), (s=1---,n) (A-1)
where the function X, is defined on the intersection of the partial region Q

(shown in Fig. A-1) and

Y xI<H (A-2)

and ¢>t,, where ¢, and H are certain positive constants. X which vanishes when
the variables x, are all zero, is a real yalued function of #, x,,---,x,. It is assumed
that X 1s smooth enough to ensure therexistence;, uniqueness of the solution of the
initial value problem. When:= X does not contdin ¢ explicitly, the system is
autonomous.

Obviously, x, =0 (s=1,---n) 1sia solution of Eq.( A-1). We are interested to
the asymptotical stability of this zero solution on partial region Q (including the
boundary) of the neighborhood of the origin which in general may consist of several
subregions (Fig. A.1).

Definition 1:
For any given number & >0, if there exists a 6 >0, such that on the closed

given partial region Q when

Y x5 <6, (s=L+-,n) (A-3)
for all ¢ >¢/, the inequality

szz<€, (s=1,---,n) (A-4)

is satisfied for the solutions of Eq.(A-27) on Q, then the disturbed motion
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x,=0 (s=1,---n) is stable on the partial region Q.
Definition 2:

If the undisturbed motion is stable on the partial region Q, and there exists a

& >0, so that on the given partial region Q when

Y xG<8, (s=1,n) (A-5)

The equality

[—0

lim(foJ -0 (A-6)

is satisfied for the solutions of Eq.(A-1) on Q, then the undisturbed motion
x,=0 (s=1,---n) is asymptotically stable on the partial region Q.

The intersection of Q and region, defined by Eq.(A-2) is called the region of
attraction.
Definition of Functions V (¢, x,:-%,x,):

Let us consider the functions #(f,x;+:+,x, )" given on the intersection €, of

the partial region Q and the region

Y x2<h, (s=1,n) (A-7)

for t>1,>0, where ¢, and & are positive constants. We suppose that the functions

are single-valued and have continuous partial derivatives and become zero when
x==x,=0.
Definition 3:

If there exists #,>0 and a sufficiently small %#>0, so that on partial region
Q and t>¢,, V>0 (or <0), then V is a positive (or negative) semidefinite, in

general semidefinite, function on the €, and ¢>¢,.

Definition 4:

If there exists a positive (negative) definitive function W(x,...x,) on €, so
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that on the partial region €, and 72>¢,

V-W2=0(or-V-W=0), (A-8)
then V(t,x,,...,x,) is a positive definite function on the partial region €2, and
t>t,.
Definition 5:

If V(t,x,...,x,) is neither definite nor semidefinite on €, and ¢>¢,, then
V(t,x,...,x,) is an indefinite function on partial region €, and ¢>¢,. That is, for
any small #>0 and any large ¢, >0, V(t,x,...,x,) can take either positive or
negative value on the partial region Q, and 72>¢,.

Definition 6: Bounded function V'

If there exist 7, >0, />0, so that on the partial region Q,, we have

|V(t,x1,...,xn) <L (A-9)

where L is a positive constant, then Vis said-to be bounded on Q, .

Definition 7:  Function with infinitesimal-upper bound

If V is bounded, and for any A'>/0; there exists x>0, so that on €, when

fo <u,and t=>t¢,, we have
N

V(t,x,....x,)|< 4 (A-10)
then V admits an infinitesimal upper bound on Q, .

Theorem 1 [38-40]
If there can be found for the differential equations of the disturbed motion
(Eq.(A-27)) a definite function V(z,x,,...,x,) on the partial region, and for which the

derivative with respect to time based on these equations as given by the following :

dv oV oV
a9 Ny A-11
dt ot ZL%SS (-11)

is a semidefinite function on the paritial region whose sense is opposite to that of V, or
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if it becomes zero identically, then the undisturbed motion is stable on the partial
region.
Proof:

Let us assume for the sake of definiteness that V' is a positive definite function.

Consequently, there exists a sufficiently large number f, and a sufficiently small
number / < H, such that on the intersection Q, of partial region Q and

Y x2<h, (s=1...,n) (A-12)

and ¢ 2>t,, the following inequality is satisfied
Vit,x,....x,) =2W(x,,...,x,) (A-13)
where W is a certain positive definite function which does not depend on z. Besides
that, Eq. (A-7) may assume only negative,or zero value in this region.
Let ¢ be an arbitrarily small positive number.. We shall suppose that in any case
&<h. Let us consider the aggregation of all possible values of the quantities

X,,...,X, , which are on the intersection. '@, -of- €,/ and

D xl=e, (A-14)

s

and let us designate by />0 the precise lower limit of the function W under this
condition. by virtue of Eq. (A-5), we shall have

Vit,x,...,x,)=l for (x,...,x,) on w,. (A-15)

We shall now consider the quantities x, as functions of time which satisfy the

differential equations of disturbed motion. We shall assume that the initial values x_,

of these functions for #=¢, lie on the intersection €, of € and the region

D xl <6, (A-16)

where & 1s so small that

V(lysXygerX,0) <1 (A-17)
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By virtue of the fact that V' (z,,0,...,0) =0, such a selection of the number & is
obviously possible. We shall suppose that in any case the number § is smaller than
¢ .Then the inequality

D xl<e, (A-18)

being satisfied at the initial instant will be satisfied, in the very least, for a sufficiently
small 7—t¢,, since the functions x (¢) very continuously with time. We shall show
that these inequalities will be satisfied for all values ¢>¢,. Indeed, if these
inequalities were not satisfied at some time, there would have to exist such an instant
t=T for which this inequality would become an equality. In other words, we would

have

D XD =e, (A-19)

and consequently, on the basis of Eq. (A-9)
V(T,x,(T),....,x,(T)) =1 (A-20)

On the other hand, since & </, the inequality-(Eq.(A-4)) is satisfied in the entire

) ) ) ) . dv )
interval of time [ty, T], and consequently, in this entire time interval 7 <0. This
t

yields
VT, x,(T),....x,(T) SV (), X,05--5%,0) (A-21)
which contradicts Eq. (A-12) on the basis of Eq. (A-11). Thus, the inequality
(Eq.(A-1)) must be satisfied for all values of ¢ >7,, hence follows that the motion is
stable.
Finally, we must point out that from the view-point of mathenatics, the stability
on partial region in general does not be related logically to the stability on whole
region. If an undisturbed solution is stable on a partial region, it may be either stable

or unstable on the whole region and vice versa. From the viewpoint of dynamics, we

82



wre not interesting to the solution starting from €, and going out of Q.

Theorem 2 [38-40]

If in satisfying the conditions of theorem 1, the derivative ci’_lt/ is a definite

function on the partial region with opposite sign to that of V and the function V itself
permits an infinitesimal upper limit, then the undisturbed motion is asymptotically
stable on the partial region.

Proof:

Let us suppose that V is a positive definite function on the partial region and that
v . ) . : .
consequently, = is negative definite. Thus on the intersection €2, of Q and the
t

region defined by Eq. (A-4) and ¢>¢, there will be satisfied not only the inequality

(Eq.(A-5)), but the following inequality as will:

dv
ES_VVI('XI’“'XM)’ (A-ZZ)

where W, is a positive definite function on the partial region independent of t.

Let us consider the quantities..x, as-functions of time which satisfy the
differential equations of disturbed motion assuming that the initial values x , = x (7))
of these quantities satisfy the inequalities (Eq. (A-10)). Since the undisturbed motion
is stable in any case, the magnitude 6 may be selected so small that for all values of
t>t, the quantities x, remain within €, . Then, on the basis of Eq. (A-13) the
derivative of function V(t,x(¢),...,x,(t)) will be negative at all times and,
consequently, this function will approach a certain limit, as ¢ increases without limit,
remaining larger than this limit at all times. We shall show that this limit is equal to
some positive quantity different from zero. Then for all values of ¢#>1¢, the following
inequality will be satisfied:

Vt,x (t),....,x,(t)>a (A-23)

where a>0.
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Since V permits an infinitesimal upper limit, it follows from this inequality that

DY xXX=4, (s=1,...,n), (A-24)

where A is a certain sufficiently small positive number. Indeed, if such a number A

did not exist, that is , if the quantity sz (t) were smaller than any preassigned

number no matter how small, then the magnitude V(¢,x,(¢),...,x,(¢)), as follows

from the definition of an infinitesimal upper limit, would also be arbitrarily small,
which contradicts (A-14).

If for all values of ¢>¢, the inequality (Eq. (A-15)) is satisfied, then Eq. (A-13)

shows that the following inequality will be satisfied at all times:

oy

, A-25
dt ! (A-25)

where [ is positive number different from zero which constitutes the precise lower
limit of the function W,(¢,x,(¢)s..,x,(¢)) under condition (Eq. (A-15)). Consequently,

for all values of ¢ >7, we shall-have;
wdV
Vit,x,(t),....x,(1) = V(to,xlo,...,xn0)+jtozdt SV (ty, X055 X,0) = L(E—1,),

which is, obviously, in contradiction with Eq.(A-14). The contradiction thus obtained
shows that the function V(z,x,(¢),...,x,(¢)) approached zero as ¢ increase without
limit. Consequently, the same will be true for the function W(x,(¢),...,x,(¢)) as well,

from which it follows directly that

limx ()=0, (s=1,...,n), (A-26)

which proves the theorem.
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Appendix B

Systems of Positive States

B.1 Three species prey-predator system
The three species prey-predator system which consists of two competing preys
and one predator can be described by the following set of nonlinear differential

equations:

dx - -
E=r1(l—k1 'x—k'c,y) - D, (x,y)z

d _ .
?);=rz(l—kzlclx—kzly)—CDZ(x,y)Z (B-1)

dz
ar =@, (x,y)z+e,®,(x,y)z-az

wherea., 7, k;,e;andc;, i=1,2are the model parameters assuming only positive values,
and the functions @, (x, y), i=1,2 represent the densities of the two prey species and z

represents the density of the predatot,species-—The predator z consumes the preys x, y

according to the response functions {50]:

a,x a,x

CI)l(x’y)z CDZ(xoy):

— — (B-2)
1+bx+b,y l+bx+b,y

where a; , i=1,2are the search rates of a predator for the preys x, y respectively, while
b, = h,a; , i=1,2where h,, i=1,2are the expected handing times spent with the preys x,
v respectively. The parameters e, and e, represent, the conversion rates of the preys x, y
to predator z. Obviously, whenb, and b, are very small the functional of response ®,,
(i=1,2) become linear response see Volttera functional response [51]. In the other
hand as one of bothb, and b, tends to zero the system approaches to hyperbolic
Holling type II [52]. The prescribed model characterized by nonlinear response since

amount of food consumed by predator per unit time depends upon the available food

sources from the two preys x and y.
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B.2 Double Mackey-Glass systems
We consider two double Mackey-Glass systems which consist of two coupled

Mackey-Glass equations [53]:

bx
X, = ———rx
1+ x), (B3)
bx,.
) = T X
1+x

The system is a model of blood production of patients with leukemia. The
variables x,, x, are the concentration of the mature blood cells in the blood, and x,,

x,, are presented the request of the cells which is made after r seconds, i.e.
X, =x,(t—7),(i=12). The time delay 7 indicates the difference between the time of
cellular production in the bone marrow and of the release of mature cells into the blood.
According to the observations, the time z is'large in the patients with leukemia and
the concentration of the blood cells becomes oscillatory. In this study, the delay time
fixed in 20 second (7 = 20 ) and the parameters are-shown as follow:5=0.2, r=0.1,
and n=10.

B.3 Energy communication system in biological research

The so-call static state in life sciences means that the system of life is approach
to a stable condition. Moreover, the relation of energy communication among the
elements in a system of life is called arrangement of static state. The energy
communication of elements in a system of life in static state can be divided into two
forms:
(B-1) Independent form:

All the elements in a system of life can communicate energy individually with

other energy systems out of theirs. The mathematics form is as fallow:
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iy

" = _A1“12 + Bjuy +(Cyy — Dppuy Juy — @

(B-4)
7 —Ayu;y + Bouy +(Cy = Doty Juy =@,
where 4, B;,C;;and D; (i,j=1, 2, ..., n)are parameters, u;andu,are two different

elements in a system of life and ¢, ,p, are modified terms. The term (—4u” + B.u,)

represents the energy communicated with other energy systems, and the term

(C;; — Dyu; )u ; represents the energy communicated with the elements in the system of

themselves. As a result, independent form can be(—4u’ + Bu,) #0, (i=1, 2, ..., n)
and (C; —Dyu)u;,(ij=1, 2, ..., n) are very small in general. If the natural medium is

change, such as the lack of food or the;limit, of living space, (C; — D;u;)u;may be
rising.
(B-2) Dependent form:

There are two different parts'of elements in these systems of life. The first part of
elements can communicate energy individually with other energy systems out of
theirs. The mathematics form is the same to (Eq. (B-4)). The second part of elements
can not communicate energy individually with other energy systems out of theirs, they

have to be provided the energy by the first part of elements. The mathematics form is

as fallow:
du. ) n
d_tl =—Au; +Bu,+ Y (Cl-j —Dl-jui)uj -Q;
J=k+1 (B-S)
dui m;
7 = ;12::1(th _Djhuj)uh —Q;
(iek,jen—k)

where k represents the number of the first part elements and m represents the number

of the second part elements.
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In further studies, the system of food chain with three states can be described by

the mathematical model as follow:

du

7; = A1”12 + By +(Cyy — Dyuy Juy — ¢

du,

? =(Cyy — Dyjuy )uy +(Cp3 — Doysity Juy — @, (B-6)
dus

—==(Cy, — Dyt )u, —

r (Cs, U3 Uy — @y

B.4 Virus-immune system
A mathematical model of the virus-immune system consisting of the following

three nonlinear differential equations is considered in this study:

d—T=s—u1T+rT[1—T”}—kVT

dt

dl

E VT -l B-7
di 29 (B-7)

where 7, I and V represent-the population.concentrations of uninfected, infected
target cells and virus respectively. 'We-denote by the s constant supply of target cells
from its precursor. These cells have a finite life time andp, represents the average
death rates of these cells. These target cells are assumed to grow logistically with
specific growth rate » and carrying capacity I" . In the presence of virus, the target cells
become infected. Since virus must meet the cells in order to infect them, a mass action
term is used to model infection with & as the infection rate. p,denote the natural
death rate of infected cells. All infected cells are assumed to be capable of producing
virus. It is assumed that N virion are released by each infected cell during its lifetime.
., represents the death rate of infected cells due to lysis. p,is the death rate of free

virus.
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Appendix C
Pragmatical Asymptotical Stability Theory

The stability for many problems in real dynamical systems is actual asymptotical
stability, although may not be mathematical asymptotical stability. The mathematical
asymptotical stability demands that trajectories from all initial states in the
neighborhood of zero solution must approach the origin as ¢ — oo. If there are only a
small part or even a few of the initial states from which the trajectories do not
approach the origin as ¢ — o, the zero solution is not mathematically asymptotically
stable. However, when the probability of occurrence of an event is zero, it means the
event does not occur actually. If the probability of occurrence of the event that the
trajectries from the initial states are that they domot approach zero when ¢ — oo, is
zero, the stability of zero solution.is actual-asymptotical stability though it is not
mathematical asymptotical stability. \In"order.to, analyze the asymptotical stability of
the equilibrium point of such systems;the pragmatical asymptotical stability theorem
is used.

Let X and Y be two manifolds of dimensions m and n (m<n), respectively, and

@ be a differentiable map from X to Y, then ¢(X) is subset of Lebesque measure

0 of Y [54]. For an autonomous system
dx
O fx, C-1
parAY ) (C-D
where x =[x, xn]T is a state vector, the function f=[f, -, fn]Tis defined on

DcR" and ||x|| <H>0. Let x=0 be an equilibrium point for the system (C-1).

Then
f(0)=0 (C-2)

For a nonautonomous systems,
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X=f (X0 X,.,) (C-3)

where  x=[x,,..,x,,,]' , the function f=0frnf,]” is define on

D c R"xR, here t=x,, R, .The equilibrium point is

f(0,x,,)=0. (C-4)

Definition The equilibrium point for the system (C-1) is pragmatically
asymptotically stable provided that with initial points on C which is a subset of
Lebesque measure 0 of D, the behaviors of the corresponding trajectories cannot be
determined, while with initial points on D — C, the corresponding trajectories behave

as that agree with traditional asymptotical stability [55-56].
Theorem Let V =[x, -, x,|.33D—R. be positive definite and analytic on D,

where x,,x,,...,x, are all space.coordinates such that the derivative of ' through Eq.

(C-1)or(C-3), V', is negative semi-definiterof x,, x5,--, x, 1" .

For autonomous system, Let X ‘be ‘the!m-manifold consisted of point set for
which Vx#0, V(x)=0 and D is a n-manifold. If m+1<n, then the equilibrium
point of the system is pragmatically asymptotically stable.

For nonautonomous system, let X be them+1-manifold consisting of point
set of which Vx # O,V(xl,xz,...,xn) =0and Dis n+1-manifold. If m+1+l<n+1,

i.e.m+1< n then the equilibrium point of the system is pragmatically asymptotically
stable. Therefore, for both autonomous and nonautonomous system the formula
m+1<nis universal. So the following proof is only for autonomous system. The
proof for nonautonomous system is similar.

Proof Since every point of X can be passed by a trajectory of Eq. (C-1), which

is one- dimensional, the collection of these trajectories, C, is a (m+1)-manifold
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[55-56].

If m+1 <n, then the collection C is a subset of Lebesque measure 0 of D. By the
above definition, the equilibrium point of the system is pragmatically asymptotically
stable.

If an initial point is ergodicly chosen in D, the probability of that the initial
point falls on the collection C is zero. Here, equal probability is assumed for every
point chosen as an initial point in the neighborhood of the equilibrium point. Hence,
the event that the initial point is chosen from collection C does not occur actually.
Therefore, under the equal probability assumption, pragmatical asymptotical stability
becomes actual asymptotical stability. When the initial point falls on D-C,
V(x)<0, the corresponding trajectories behave as that agree with traditional
asymptotical stability because byithe existence and uniqueness of the solution of
initial-value problem, these trajectories never.meet C:

In Eq. (5-8) V is a positive definite-function of n variables, i.e. p error state
variables and n-p=m differences between unknown and estimated parameters, while
V =e'Ce is a negative semi-definite function of » variables. Since the number of
error state variables is always more than one, p>1, m+1<n is always satisfied, by
pragmatical asymptotical stability theorem we have

lime =0 (C-5)

1>

and the estimated parameters approach the uncertain parameters. The pragmatical
adaptive control theorem is obtained. Therefore, the equilibrium point of the system is
pragmatically asymptotically stable. Under the equal probability assumption, it is

actually asymptotically stable for both error state variables and parameter variables.
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