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Abatraet-We present a VLSI-array-processor architecture 
for the implementation of a nonlinear programming 
algorithm that solves discrete-time optimal control problems 
for nonlinear systems with control constraints. We 
incorporate this hardware module with a two-phase parallel 
computing method and develop a VLSI-array-processor 
architecture to implement a receding horizon controller for 
constrained nonlinear systems. On the basis of current VLSI 
technologies, the estimated computing time to obtain the 
receding-horizon feedback-control solution meets the real- 
time processing-system needs. 0 1997 Elsevier Science Ltd. 

1. Introduction 
Discrete-time optimal control problems for nonlinear systems 
with control constraints are popular control problems. 
Numerous numerical techniques (Dyer and McReynolds, 
1970) have been developed for solving this type of problem; 
however, computational efficiency is still a major issue that is 
frequently encountered in the solution methods. In this 
paper, we shall propose an algorithm that combines a 
projected Jacobi method and a Lagrange-dual Jacobi method 
to solve discrete-time optimization problems for nonlinear 
systems, which include discrete-time optimal control 
problems with control constraints. Our algorithm will achieve 
a complete decomposition effect, and the data and command 
flow within the algorithm are very simple and regular; these 
two factors suggest that our algorithm can be implemented 
by VLSI array processors to meet real-time processing- 
system needs. Thus the first contribution of this paper is the 
presentation of a VLSI-array-processor architecture for the 
implementation of our nonlinear programming algorithm. 
Implementing a computational algorithm by VLSI array 
processors to improve the computational efficiency has been 
a trend, especially in the area of signal processing; for 
example, Frantzeskakis and Liu (1994) deal with a 
least-squares problem with linear equality constraints. 
However, the nonlinear programming problem considered in 
this paper is more complicated because of the presence of 
nonlinearity and inequality constraints. 

As well as applications to solving discrete-time optimal 
control problems for nonlinear systems, our hardward 
implementable algorithm has important applications to 
receding-horizon control. In recent years, there has been a 
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growing interest for the design of receding-horizon feedback 
controhers (Mayne and Michalska, 199Oa; Clarke and 
Scattolini, 1991; Mayne and Polak, 1993; Richalet, 1993; 
DeNicolao et al., 19%). For such controllers, stability is 
guaranteed for the zero-terminal-state strategy (Mosca and 
Zhane 1992: DeNicolao and Scattolini. 19941. The most 
distinguished characteristic of this controller compared with 
other control methodologies is its global stability for general 
nonlinear systems, as shown by Mayne and Michalska 
(199Oa. b. 1991): however, this is at the exoense of hieh ~ I. 1 

computational complexity to obtain a control solution. 
Although model reduction is an attractive approach to 
reduce the computational complexity (Richalet, 1993) this 
approach may not apply to a general, especially a highly 
nonlinear, system. Thus, to cope with this computational 
difficulty, we have proposed a two-phase parallel computing 
method (Lin. 1993. 1994) to obtain the solution for 
receding-horizon feedback control. The phase 1 method uses 
a two-level (master- and slave-level) approach to solve a 
feasibility problem to obtain an admissible control and 
horizon pair. The control solution obtained in phase 1 is 
improved by phase 2, and the final solution is taken as the 
receding-horizon feedback control solution for the current 
sampling interval. The problems formulated in this two-phase 
method, except for the master-level problem in phase 1, are 
discrete-time optimization problems for nonlinear systems. 
Thus we can use our hardware-implementable algorithm as a 
basic algorithm module in the two-phase method, and this 
results in a simpler algorithm than that in Lin (1994) for 
solving a receding-horizon feedback control solution. Since 
the master problem in phase 1 can be solved by simple 
calculations, this suggests that the two-phase method can be 
implemented by VLSI array processes. Thus presenting a 
VLSI-array-processor architecture for a receding-horizon 
feedback controller is the second contribution of this paper. 

Since receding-horizon control is one of the most 
promising globally stabilizing control methodologies for 
highly nonlinear systems, the work described in this paper 
also represents an effort to realize a real-time controller for 
nonlinear systems. 

2. Basic hardware module for a nonlinear programming 
algorithm 

2.1. Statement of the the discrete-time optimization problem 
ofn nonlinear system. We consider discrete-time optimization 
problems for nonlinear systems of the form 

min 2 yTM,y,, 
Y ,G) 

y,+,-Ky;+p(y,)=O, i=O ,... , N-l, (I) 

#(yN)=O. ,viC-yisY,, i=O ,..., N, 

where the n X n matrix M, is positive-semidefinite, 
Y = (Yo,. . , Y,v), y; E R”, i = 0,. , N, are variables to be 
solved, K is an n x n constant matrix, p(yJ is a 
n-dimensional vector function of y,, JI( yN) = 0 represents the 
terminal constraints and I/I is a q-dimensional vector function, 
Y, and y, represent the upper and lower bound respectively of 
the variables y,. The discrete-time optimal control problem 
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for a nonlinear system with quadratic objective function and 
simple control constraints is a case of (1) under the 
conditions that 

where I denotes the identity matrix and 0 denote the zero 
submatrix or zero vector function with appropriate 
dimensions; xi+, - xi -f(x,, ui) = 0 is the system dynamic 
equation. Note that the formulation in (1) can include the 
case of general control constraints; for the sake of simplicity, 
it is not discussed here, but the explanation can be found in 
Section 3. 

2.2. The algorithm. To solve (l), we propose an algorithm 
that combines the projected Jacobi method with the 
Lagrange-dual Jacobi method. The projected Jacobi method 
uses the following iterations: 

y,(f + 1) = y,(l) + y, dyf(l), i = 0, , N, (2) 

where y, is a step size and I is the iteration index. Here 
dy:(l) is the solution of the following quadratic subproblem: 

m;‘” g0 ~YT &idy, + PfM)lTdyi, 

E,(l) + dy,+, -‘Kdy, +p,#)dyi = 0, i=O,...,N-1 (3) 

+(y&)) + &,d,,U)dy, = 0 
yi syy,(f) + dyi 5x, i = 0, . . , N, 

where &(l) =~,+~(l) -KY,(~) +&y,(l)), p,(l) is the deriva- 
tive of the vector function p with respect to yi at y;(f), IL,,(f) 
is the derivative of Cc, with respect to y,v at yN(f), dy,, 
i=O,..., N, are variables to be solved, and the diagonal 
matrix & is formed by setting the kth diagonal element m, 
as 

mk= 
( 

Mkk if Mkk > S, 
6 otherwise, 

where Mkk is the kth diagonal element of M, and 6 is a small 
positive real number. 

It can b-e verified that if y,(fJ, i = 0, , N, is feasible then 
dy:(f), i = 0,. . . , N, is a descent direction of (1); yi(f + l), 
i=O ,..., N-l, is also feasible if OCy,=l. Thus the 
projected Jacobi method is a descent iterative method, which 
converges and solves (1) if y, is small. 

Since (3) is a quadratic programming problem with strictly 
convex objective function, by the strong duality theorem 
(Bazaraa and Shetty, 1979), we can solve the corresponding 
dual problem instead of solving (3) directly. 

The dual problem of (3) is 

m;x +(A), (4) 

where the dual function 

+ AT[Ei(l) + dYi+l - KdYi + Py,(WY~ll 

+ dyL &&r., + MvydOITdyN 
+ G[$(xvW) + clr,,(~)4d (5) 

is a function of the Lagrange multiplier A, E KY, i = 0, . . , N. 
We can use the following Lagrange-dual Jacobi method to 
solve (4): 

Ai(t + 1) = A,(r) + y2 A&(t), i = 0,. . . , N, (6) 

where y2 is a step size, and AA(t) = (AA,(t), . . , AA&)) is 
obtained by solving the linear equations 

diag [V:,@(A(t))] AA(f) + V,~$(h(r)) = 0. (7) 

Here @‘(A), the unconstrained dual function of 4, is defined 

by relaxing the inequality constraints on primal variables of 
4 as follows: 

N-l 

4“(A) = min c [My? fi&, + [Mn(01’& 
,=” 

+ A?‘[&(0 + dy,+ I - Kdyi + p,(WxlI 
+ dy: &dy, + bWvxwYOIT4,v 
+ ~~[WdO~ + ~y,,iWYrv1~ (8) 

where V$,,+“(A) is the Hessian matrix of @‘(A), 
diag[Vz,@(A)] is a diagonal matrix whose diagonal 
elements are taken from the diagonal elements of V:,@‘(A), 
and V,+(A) is the gradient of 4 with respect to A. Based on 
Luenberger (1984), V,4(A) and VZ,,@‘(A) can be computed 
by 

i 

E,(f) +&v,+,@(t)) - K& +p#)&(A(0), 

V,,#(A(t)) = i=O,...,N-1, (9) 

+(Y@)) + 3r,,(l)ciy~, i = N, 

diag [v~iA,9”W))l 

= 

{ 

-diagI[(-K + p,(l)lfil;‘[-K + p,(W + fi,F+‘,l, 
i=O,...,N-1 (10) 

-diag [4Y,(f)fi,1&.Jf)Tl, i = N, 

where dyi(A(r)) E R”, i = 0,. , N, in (9) is the solution of 
the constrained minimization problem on the right-hand side 
of (5) with A = A(r). Since diag [V:,&‘(A(r))] is a diagonal 
matrix, we can compute AA(r) from (7) analytically by 

AAi(r) = -{diag [V’,,+,&‘(A(r))]}-‘Vh,#A(r)), i = 0, , N, 

(11) 

It can easily be verified from (10) that diag [V:,9,<(A(r))]-’ is 
negative-definite. Thus AA,(r), i = 0,. . , N, obtained from 
(11) is an ascent direction of (4). Then the Lagrange-dual 
Jacobi method (6) will converge and solve (4) provided that 
yZ is small. 

However, to calculate 0, 4(A(r)), we need the value of 
&(A@)), i = 0,. , N, whick can be found by the following 
two steps. First, we solve for the solution dyi, i = 0, . , N, of 
the unconstrained minimization problem on the right-hand 
side of (8), which can be obtained analytically by 

&A(t)) 

1 

fir’{-M,y,(f) - A,_, + [K -p,(l)lTA,}, i = 0, . , N - 1 

= %‘[-M,YN(~) -AN-, - &,(~)‘4~1. i = N. 

02) 

Then, we project ri’y,, i = 0,. , N, to the constraint set 
y 5 y(f) + dy my, and the resulting projection dy,, i = 
0,. , N, can be obtained analytically by 

if y, ‘n(f) + &(A(r)) 5 Y,, 

&(A(r)) = 

i 

dyMr)) 
X -x(l) if yi(4 + &(A@)) >% 03) 

y, -y;(l) if Yj(l) + &(A@)) <y,, 

i = 0,. . , N. It can easily be verified that dy,, i = 0,. , N 
obtained from (12) and (13) are indeed the solutions of the 
constrained minimization problem on the right-hand side of 
(5). 

2.2.1. The complete decomposition property. In our 
algorithm, the projected Jacobi method performs only an 
update procedure in (2); all the major calculations lie in the 
iterations of the Lagrange-dual Jacobi method (6) for solving 
(4). Starting from -a given A(r), the Lagrange-dual Jacobi 
method solves &.CACt)j. i =O.. , N. from (12) and (13), ,,. ~ ,, 
then computes V,#(r)) and t;:,,,qF(A(r)), i LO:. , N: by 
(9) and (10) respectively. It then calculates AA?(r), 
i = 0,. , N, from (ll), updates hi(r), i = 0,. , N, by (6) 
and proceed with the next iteration. This iterative process 
will continue until convergence occurs. From (6) and 
(9)-(13), we see that a complete decomposition effect has 
been achieved by our algorithm. This property results from 
(3) being separable. 
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2.2.2. The algorithm steps. 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

Step 7. 

Initially guess the values of y(0) and set I = 0. 

Compute K(l), p,(l), i = 0, . . . , N - 1, S(y,d)), 
and &,(O. 

Initially guess the value of A(O), or set it as the 
previous value, and set t = 0. 

Solve ay,(h(t)), i = 0, . . . , N, by (12) and (13). 

Compute V,.&+(t)) by (9), and diag [V&&“(A(f))] 
by(lO),i=d ,..., N. 

Compute Ai(t + 1) = A&) - y*[diag (V:,,+‘)]-‘V,, 
4(A(r)), i = 0, . . , N. Check whether IlAA(t)II, < E; 
if yes, go to Step 7; otherwise, set t = t + 1 and return 
to Step 4. 

Set dyt(f) = dyi(A(t)) and update yi(l + 1) = y,(l) + 
y,dyt(f), i = 0,. . . , N. Check whether IJdy*(l)(I, < 
E; if yes, stop; otherwise, set I= I + 1 and return to 
Step 2. 

2.3. The VLSI-array-processor architecture for implement- 
ing the algorithm. Since both M, and diag [V~.,,#“(A)] are 
diagonal matrices, A;’ and [diag(V$@‘(A~]-l can be 
computed analytically. Thus all the computations required in 
our algorithm steps are simple arithmetic operations, and are 
independent with each other on different time intervals 
owing to the complete decomposition property. This 
motivates us to implement the proposed algorithm using 
VLSI array processors by assigning a processing element 
(PE) to the computation required in a time interval of an 
algorithm step. 

2.3.1. Modijkadon of the convergence criteria. Since our 
algorithm converges, the AA(r) in Step 6 and the dy*(l) in 
Step 7 will approach zero as the number of iterations t and I 
increase. Thus, instead of using a tolerance of accuracy, E, for 
convergence criteria in Steps 6 and 7, we may assign an 
arbitrary number of iterations I,,,,, for the Lagrange-dual 
Jacobi method and I,, for the projected Jacobi method, and 
modify the convergence criteria in Steps 6 and 7 as follows. 

Step 6(m). . . . If t 2 t,,,, go to Step 7; . . . . 
Step 7(m). . . . If I 2 I,,,, stop; . . . . 

2.3.2. The mapping of the algorithm steps lo the 
VLSI-array-processor architecture. Suppose we assign one 
PE for performing the computation of an algorithm step in a 
time interval; all the PEs should be linked so that the data 

and command flows in between PEs can make the PE arrays 
to perform the algorithm just as in a sequential computer. 
Thus the construction of the array-processor architecture 
should be based on the data and command flow in the 
algorithm steps. Examples of data flows are as follows: the 
data dyi(A(t)) and dy,+,(A(t)) computed in Step 4 are needed 
in the computation of V,d(A(t)) in Step 5; the data 
V,,4(A(t)) and V’,,*,&‘(A(t)) computed in Step 5 are needed 
in the computation of A,(t + 1) in Step 6(m). The command 
flow is more complicated; for example, in Step 6(m), if the 
Lagrange-dual Jacobi method converges, the data i?yi(A(t)) 
computed in Step 2 should be transferred to Step 7(m). This 
is a procedure of data flow followed by a command flow. In 
our algorithm, there are two types of commands: one is the 
initial-value request in Steps 1 and 3; another is the 
notification of convergence in Steps 6(m) and 7(m). 

Figure 1 shows the VLSI-array-processor architecture for 
implementing our algorithm; for the sake of simplicity, but 
without loss of generality, we let N = 3 in Fig. 1. Each square 
block in Fig. 1 denotes a PE. The PEs lying in the same array 
will perform the same algorithm step. The directed solid links 
denote the data-transfer path. The directed dash-dotted links 
also denote the data-transfer path; however, they differ from 
the solid links in that receiving PEs will not use the 
transferred data for computation immediately. The directed 
dotted links in Fig. 1 denote the flow of commands of 
initial-value request or convergence notification. The arrows 
of these three types of links describe the data and command 
flows in the architecture. 

In the following, we shall explain the mapping of the 
algorithm steps to the architecture with the aid of Table 1. In 
the first column of the table, we indicate the type and the 
corresponding time interval of a PE by superscript and 
subscript respectively. The second column lists the 
corresponding algorithm step of each PE, which means that 
the computations in a time interval or a logical decision for 
convergence check carried out in an algorithm step will be 
performed in the corresponding PE. For example, PEZ will 
compute V,,4(A(t)) and diag [A:,,,,+‘(A(r))]. Although 
Steps 1 and 3 concerning the initial-value guesses do not 
require any computation, they will be taken care of by PE.! 
and PE? respectively. We shall explain how the initial values 
are provided when we introduce columns 5 and 6 of Table 1. 
Thus each algorithm step has a corresponding PE. The third 
and fourth columns show the output data and the 
corresponding destination of each PE, where the output data 
of a PE are its computed data. These two columns explain 

output output 

LEGEND: 
- soLlDLmK 
_____... . . .._... J’jomD JJN-K 
_._._._._.+ D~H_~~D LJJJK 

Fig. 1. VLSI-array-processor architecture for the nonlinear programming algorithm with N = 3. 
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Table I. The characteristics of PE 

Destination Destination 
Algorithm output of output output of output Time 

PE:% Step data data command command complexity 

PE: L2 F;$!$#) PE: for p,(f), Request of PE; Unknown 

JI(Y$li)i &r) 
PE: for E)(l) initial 

guess if I= 0 

PE: 

PE: 

PE: 

PET 

374 

5 

6(m) 

7(m) 

dYM)) 

V*.+@(t)), 
diag [~2,iA,4”O(~))l 

A& + 1) 

Yi(l + 1) 

PET if t = t,, 
in PE?, else, 

PE) and PET-, 

PE: 

PE: and PET+, 

Halt if 1 = 
1 max in PET; 

else, PE: 

Request of 
initial 

guess if I= 0, t = 0 

- 

Convergence 
if t = t,,, 

PE: 

- 

PE: 

- 

2@ and 
log2 (2n + 2) @ 

28 and 
log, n2cB 
28 and 

log, (n + 1) CB 

l@ 

the mapping of the data flow in the algorithm to the 
architecture, as described by the following examples. The 
data Et(l) (or $(y&) if i = N) computed in PE: is sent to 
PE), and the data p,(l) (or $,,,(I) if i = N) is sent to PEf. 
Since these data will not be used for computation 
immediately, the data Rows are indicated by dash-dotted 
links directed from PE: to PE: and PE: to PE: in Fig. 1. This 
corresponds to the data flow from Step 2 to Step 5. The 
output data ay, computed in PE: is sent to PEj) and PET-,, 
which is indicated by solid links directed from PE: to PE! 
and PET-, in Fig. 1. This corresponds to the data flow from 
Step 4 to Step 5. However, the data ay, will be sent to PE: if 
t=t IWX; this is a situation of data flow followed by a 
command flow. The mapping of the data flows from Step 5 to 
Step 6, from Step 6 to Step 4 and from Step 7 to Step 2 can 
also be observed from the third and fourth columns of Table 
1 and the directed solid links shown in Fig. 1. Columns 5 and 
6 show the output commands and corresponding destinations 
of each PE. There are two types of commands: one is the 
request for initial guesses and another is the notification of 
convergence. As we have described earlier, Steps 1 and 3 
concerning the initial guesses will be taken care of by PE: 
and PEf respectively. These steps are performed as follows. 
When I = 0, Step 1 needs an initial guess for y(f), and when 
I = 0 and f = 0, Step 3 needs an initial guess for A(f). 
Therefore, when I =O, PE: will output the command of 
initial-value request to PET, which will respond by sending a 
default value of y,(l) to PE). This command flow is described 
in columns 5 and 6 of the second row, and is indicated by the 
dotted link directed from PE,! to PET in Fig. 1. A similar 
situation occurs for PEf to request the initial value of A(r) 
from PE! when 1 = 0 and I = 0, as indicated in columns 5 and 
6 of the third row in Table 1 and the dotted links directed 
from PE: to PE: in Fig. 1. For the convergence command, 
we see that if the iteration index f = t,,, is detected in PEY, it 
will output a command of convergence to PEf, as described 
in columns 5 and 6 of the fifth row. Then PET will respond by 
sending the data dyi(A(t)) to PET, as described in columns 3 
and 4 of the third row in Table 1, which has not yet been 
explained. As shown in Fig. 1, this command flow is indicated 
by the dotted links directed from PEY to PEf, and the data 
flow followed by receiving the command is indicated by the 
solid links directed from PEf to PET. These command and 
data flows represent the mapping of the command and data 
flows from Step 6 to Step 7. However, when PET detects 
1 = I,,,, it will halt the execution and output the solution, as 
described in columns 3 and 4 in the sixth row, which has not 
yet been explained. 

2.4. Timing of the computations of the VLSI array 
processors. When using VLSI array processors to perform 
the algorithm, synchronization is necessary. In general, a 
global clock will cause severe time delay. Thus, to circumvent 
the drawback of global clock and maintain the synchroniza- 

tion, the data-driven-computation PE (Kung, 1988) as- 
sociated with an asynchronous handshaking communication 
link (Kung, 1988) for data and command flows can be the 
solution. Therefore the computation in each PE will be 
activated after the completion of all the data transfers from 
the solid links; this will ensure that the computations in PEs 
lying in the same array are carried out asynchronously and 
simultaneously. Nevertheless, a self-timed clock is needed in 
each PE to control the synchronization of the operations in 
each individual PE. 

2.5. Realization of PEs and time complexity. Basically, 
each PE consists of a self-timed clock, a control logic unit, 
two counters and a dedicated arithmetic unit. The typical 
structure of a PE is shown in Fig. 2. The self-timed clock is 
used to control the synchronization of the operations within 
the PE. The dedicated arithmetic unit may consist of 
multipliers, adders and various types of registers. Counter #l 
in Fig. 2 is used to count clock pulses in order to indicate the 
completion of the arithmetic operations. Counter #2 is 
available only in PE; and PET for each i, and detects whether 
t=t max or I= I,,, in the Lagrange-dual Jacobi method and 
the projected Jacobi method respectively. Note that once 
Counter #2 has reached the value of t,,, in PE: or I,,, in 
PET, it will be reset for next count of clock pulse. The 
functions of the control logic unit include the control of the 
sequence of arithmetic operations and the timing of the right 
communication link for sending out the data and 

DAU 

L!z 4 I 

CNl osc 

LEGEND: 
DAU - dedicated arithmetic unit 
CLU - control logic unit 
CNI - counter #l 
CN2 - counter #2 
OSC - oscillator 

Fig. 2. Typical structure of the processing elements. 
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reactions to the input command. For example, as shown in 
columns 3 and 4 of the third row of Table 1, and control logic 
circuitry in PE: should. determine which of the following 
solid links should be activated based on the value of the 
iteration index appearing in Counter #2: the solid link 
directed to PET or the solid links directed to PE: and PEf-,. 

According to column 2 of Table 1 and the details of the 
algorithm steps, the structure of the dedicated arithmetic 
units of each PE can easily be realized by logical curcuitry 
and arithmetic units. For example, the formulas (12) and (13) 
for the computation of one component ~?y~, say ay{, in PET 
can be realized as in Fig. 3, in which part of the multiplexer is 
used to perform the projection (13). From Fig. 3, we can 
derive the time complexity of the computations of PEY by 
taking the greatest p&sibie advantage of parallelism shown 
in column 7 of the third row of Table 1. where @ and @I 
denote the times required for performing a multiplication 
and an addition respectively. The time complexities for the 
commutations reauired for PE?. PE! and PE? can be obtained 
simiiarly to that’of PEf. However, the time complexity of 
PE,’ cannot be analyzed unless the function p(yi) is given. 

2.6. Summary of the operations of VLSI array processors. 
We can summarize the operations of the VLSI array 
processors shown in Fig. 1 as follows. The computations 
starts from PE,‘, which commands PET to send the initial 
value of yi(l), and then computes E,(l) and p,(r). Ei(l) is sent 
to PET, while p,(l) is sent to PET. After recerving p,(l), PEj? 
commands PE? to send the initial value of A, and then 
calculates ay,, which is sent to PE: and PE:-,. After 
receiving ayi and ayi+,, PET will compute V,#(A(t)) and 
V:, @(h(t)), which are sent to PET. PE4 will then compute 
hilt’+ 1) and send to PE: and PET+,, provided that t < t,,,. 
The PE arrays formed by the PET array, PE: array and PE: 
array will perform the Lagrange-dual Jacobi method until 
t=t ,,_ is detected in PE:! When t = t,,,, the PEY array will 
command the PE: array to send the data ayi(A(t)) to the PET 
array. Then the PET array will update yi(l + 1) and continue 
the above process until I = I,,, is detected in PET and halt 
the execution. 

3. Application to receding-horizon controller 
3.1. The implementable receding-horizon controller. For a 

nonlinear system with control constraints described by 
i = f(x(t), u(t)), u(t) E R, where f: R“ x RF’+ Wk is twice 
continuouslv differentiable and satisfies f(O. 0) = 0 and 52 is 
the set of admissible controls containing at&empty convex 
polytope, Mayne and Michalska (199Oa, b, 1991) proposed a 
globally stable implementable receding-horizon controller. 
Their control strategy employed a hybrid system i(t) = 
f(x(t), u(t)), when x(t) e W, i(t) = Ax(t) otherwise, where 
A =fx(O, 0) +fu(O, 0) is formed by applying a linear feedback 
control u = Cx to the linearized system in a neighborhood W 
with small enough radius and centered at origin, where C is 

W- 

the feedback gain matrix. Their algorithm first calculates an 
admissible control and horizon pair 

[&I, t,,,l E ZW(~Oh (14) 

where the initial state x,) +! W is assumed, the set 
Z,(x) = {u E S, t, E (0, 2) 1 x”(t + $;x,t) E SW}, where S 
denotes the set of all piecewise-continuous functions, X” 
denotes the resulting state after applying the control u and 
6W denotes the boundary of W. The algorithm then sets 
h = 0, t,, = 0, uh = uo, tf,,, = t,,,, and performs the following 
process repeatedly to yield the receding-horizon feedback 
control. 

It applies the obtained control u,, for x 6 W and/or the 
linear feedback control Cx for x E W to the real system over 
[t,,, th + At], where At E (0, z). Let x,,+~ be the resulting state 
at t,,+,( = t,, + At); then, if x,,+, E W, the algorithm switches 
the control to u = Cx over (tic,, 2); otherwise, it calculates 
an improved control and horizon [u,,+, , tLh+,] in the sense 
that 

[%+,, t,,+,l l Zw(%+,)* 
(1% 

V(.G+I, (,,+I, $.,,+I) 5 V(xh+,r t,,+r, u,,, tf.h - At) 

where 
,+,r 

V(x, I, u, t,) = 
I 

t(Ilx”(cx, t)ll&+ llu(r)ll2R)d~ 
I 

in which R and Q are positive-definite matrices, l/y1151 
denotes yTAy, and xL denotes the state trajectory in region 
W with feedback control u = Cx. 

The two-phase parallel computing method (Lin, 1994) aims 
to obtain a receding-horizon feedback control solution for 
every At time interval fi( r), t I 5 5 t + At, based on Mayne 
and Michalska’s algorithm. In the first phase, we discretize 
the system into N time intervals and use slack variables to 
formulate the following feasibility problem, which can also be 
called the phase 1 problem, to obtain an admissible control 
and horizon pair as required in (14): 

(16a) 

xi+,-X,-~f(Xi,Ui)+S,=O, x0=x(t), Wb) 

XN+SN=O, ww 
aui + b 5 0, i=O,...,N-I, (la’) 

in which s denotes the vector of slack variables, and we 
explicitly express the non-empty convex polytope in R by the 
set of q-dimensional linear inequality constraints on 
au + b s 0, where the matrix (I E Ryxp and the vector b E E?. 
To apply the algorithm we proposed in Section 2, we need to 

Y/(l) 

M,’ 

Yi (4 

4+, 

P, Cl)Y 

LEGEND: ( ’ )’ .- the jth component if ( ’ ) is a vector 
the jth row if ( . ) is a matrix 

Fig. 3. The arithmetic unit for computing a component dy{ of the vector dyj in PEf. 
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reformulate the inequality constraints (16d’). First, we 
separate the simple inequality constraints ui 5 ui 5 r& from 
au; + b ~0, and then convert the rest of the inequality 
constraints to equality constraints a’u, + b + z, = 0 by adding 
positive variables zi, where a’ E RrxP, r or q. We can then 
rewrite (Xl’) as 

a’u,+b+z,=O, ui=ui517,, 

ZJZO, i=o ,...) /v-l. 
(164 

If there is no simple inequality constraint for uir we may set 
i&=m and_ui=-m. 

Suppose that the optimal objective value of the phase 1 
problem (16a-d) under a proper horizon tf is zero; this tr and 
control solution is then the admissible horizon and control 
pair required in (14). Because tf is unspecified in (16a-d), we 
use a two-level (master- and slave-level) approach to solve 
the phase 1 problem (16a-d). The program in the master 
,-.-I ,.c l l._ 6..._ I^..^ I --+I.^,4 :.. +,. A-a,...-:..- ^ . . ..l....l. :.. ‘C”Cl UI LUG Lvv”-LG”GL l‘lcilll”” I3 I” “CjL~ll‘llllS a Lf, WIUt,II 13 
passed to the slave level, and the slave problem is (16a-d) 
with a fixed tf given by a master program. The master 
program is simple; it increases rf by 8rf each iteration, where 
St, is a small positive real number. However, to increase the 
computational speed, we apply a gradient method for the 
first few iterations. Thus the master program (Lin, 1994) is as 
follows: 

f,(l + 1) = zr(l) + rd 2 fT(tf)f,(tf) 
dtfi=, 

if 2 ff(tf)9i(tf) > E, 
,=” 

N 

tf(1 + 1) = Q(l) + St, if c s^,T(t,(l)s^,(t,(l)) < E and f 0, 
i=” 

stop otherwise, 
(17) 

where B(tf) denotes the solution of the slack variables in the 
slave problem under a given tr The slave problem is a case of 
the nonlinear programming problem considered in Section 2, 
which can be solved by the algorithm presented in Section 2. 

When the master program stops, the zero objective value 
of the phase 1 problem is achieved. This means that the 
.Amir.ihlr= rnnttnl smrl h&mm nair ir nhtaind I P+ In 7.1 ..-..I.YY.V.” _., . . . . “. . . . . . . . ..._“.. v”.’ .” .,“......_... --. ,.., ., , 

denote the admissible control and horizon pair obtained from 
phase 1 of the two-phase method; the phase 2 method will 
then improve [a, tr] in the sense of reducing the pcrformancc 
index V(x, t, u, tf), as required in (15). Thus, in phase 2, we 
shall solve the following phase 2 problem: 

N-l 
min c ($xTQx, + $u:Rui), 

i=o 

if 
xi+, -xi - ,f(Xi, Ui) = 0, xg = x(t), XN = 0, (18) 

a’ui + b + zi = 0, ui 5 ui 5 iii, zi 2 0, i = 0, . , N - i, 

which is a discretized version of (15). 
We see that the phase 2 problem is also a case of the 

nonlinear programming problem considered in Section 2, and 
so can be solved by the algorithm presented in Section 2. 

3.2. The VLSI-array-processor architecture and operations 
for the implementable receding-horizon controller. The slave 
problem (16a-d) with a fixed C~ is a special case of (1) with 
appropriate dimensions. The phase 2 problem (18) is also a 
special case of (1) with 

ro 0 0 02 

Y, = (Xi, 4, s,, Zi), M; = ; ; ; ; L 1 0 0 0 0 

K= 
0 -a’I 0 -I 
0 0 0 0 
0 0 0 0 

f (Xi, 4) 

P(Yi) = “0 
I 1 

, #(Y,) = XN + SN, 

L 0 J 

where the 0s in M, and K and the 0s in pi(n) denote 
respectively the zero submatrix and the zero vector with 
appropriate dimensions. The phase 2 problem (18) is also a 
special case of (1) with 

f(xi9 ui) 

P(Yi)= [ 1 b 7 ‘J’(YN)=XN. 
0 

%..r l L, XIr cr a....“., . . . . ..nanrrrr nml.:t~nt..-,X . ..~“.X..,~rl :” CZ’in l,,UJ L11.z ” LIuI-CzII(LJ-pl-c-l LLI~,,II~~,U,c, plrUCLX,tiU 111 1 .a. 
1 can readily be used to implement the solution methods for 
the solution methods for the slave problem and the phase 2 
problem. Although the computing formulas for these two 
problems are the same, the data in these formulas are 
different. Therefore we need to use one bit to represent the 
mode for these two problems. We let 0 represent solving the 
slave problem and 1 represent solving the phase 2 problem. 
Thus this one-bit mode can be used to control a multiplexer 
to select the corresponding data, as shown in Fig. 4 for the 
calculation in PEs. 

What remains for the architecture to implement in the 
two-phase parallel computing method is the master program 
in phase 1. As we have shown in (17), the master program is 
very simple. Thus we may use a processing element PEs to 
perform the formula given in (17). However, the data 
required in PE” should be provided from the solution of 
the slate problem from all time intervals. Let (f(+), a(+), 
O(t,), A@)) be the solution of the slave problem under a 
given tf; then we need PE” array processors to calculate the 
values of ST(t,)f&) and -fir(t,)(a/at,)f(2&), a(+)), and 
pyramid-like log, (N + 1) stage PE’ array processors. 
The PE’ array processors are two-input adders in the 
~,nunrd rlirprtinn llr,=rl tn fnrm th.- c,,mc TN_. b’T(t.\B.lt.\ ..y....-- . . .._“.._.. ““II . . ..,.... . ..” -.. . . . . & ,=,,” ,\., r,\.J, 

and I% O(t,)(al+)f (ai( h(tf)), which equals 
(d/dtf) ZzoS:(f)Si(tf) (Lin, 1994). These are the data 
needed in PE to perform the gradient method when 
Z~OST(tf)~&) < E. The PE’ array processors are 
registers in the downward direction used to propagate the 
value of t, computed in the master program to the slave 
problem. Thus the overall VLSI array processors to 
implement the two-phase method are as shown in Fig. 5, in 
which the architectures of PE!, PEf, PET, PE; and PET 
arrays are almost the same as in Fig. 1, except for the 
addition of dotted links directed from PET to PE:, as 
expiained beiow. Because, when the siave probiem is soived 
for a given t,, the data A($) stored in PEY should be sent to 
PEP; these dotted links represent the fact that when PET 
detects convergence of the slave problem, it will command 
PEY to send data to PEF. Therefore there also exist solid 
links from PE4 to PEP in Fig. 5. Note that in phase 1, PEY will 
not halt the execution when detecting I = I,,,. This is 
different from Fig. 1. 

3.3. The operations of the VLSI array processors for the 
two-phase method. Initially, PEs will provide a value of t,(O) 
and set the mode to be 0, and will pass down the value of 

data for data for 
Sh? Phase2 

Fig. 4. The multiplexer controlled by the problem mode for 
selecting the corresponding data. 
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LEGEND: 
- SOLIDLINK 
.. -t DOTTEDLINK 
- - -----,t DASH-DOTTED LINK 

Fig. 5. VLSI-array-processor architecture for the two-phase parallel computing method with N = 3. 

r,(O) and mode 0 to the PE: array processors through the 
PE’ pyramid-like array processors, as shown by the solid 
links directed from PEs through the PE’ arrays to the PE: 
array in Fig. 5. Then the PE,!, PE?, PEj, PEf and PET arrays 
will perform the algorithm proposed in Section 2 to solve the 
slave problem under the value of r, given by PEs until 
convergence in PE: is detected, that is, when I = I,,,,.. The 
PET array processors will then output the values of 3i(tf) and 
(a/&r)f(f,, fi,) to the PEP array processors, and will 
command the PE4 array to send the data of Ai to PEP. 
The PE: will compute 3&~&) and hT(tr)(a/arr) 
f(.$(rr), ul,(r,)), and the PE’ arrays of processors will perform 
the sums CL3T(rf)3,(r,) and C;“=,, h^~(rr(alar,)f(~i(r,), 
G,(r )) 
PE B 

(=(d/d,,) CEo3T(rf), 3&), and input them to the 
processor to perform (17). This process will continue 

until PEs detects the convergence of the phase 1 problem, 
that is, ~f&-Ff(rf)3,(rf) = 0; then the value of the admissible 
horizon rf and the command of mode changing to 1 will be 
passed to the PE: array processors through the PE’ arrays. 
The mode-change command is indicated by dotted links 
directed from PE” through the PE’ arrays to the PE: array as 
shown in Fig. 5. The PE! array will then command the PEf, 
PE;‘, PE: and PE: arrays to change the mode to 1. For 
clarity, we do not show in Fig. 5 the dotted links for the rest 
of the mode-change command that occurs among the PE:, 
PE?, PET, PE;’ and PEj arrays. At this point, the solution of 
the phase 1 method, f,, P,, Z,, i = 0, . . . , N, is stored in the 
PET array. The PE!, PE:, PE?, PE4 and PE.5 arrays will then 
proceed to solve the phase 2 problem until I = I,, is 
detected in PE:, which will halt the execution and output the 
solution. 

3.4. Overall-time complexity. From Section 3, we see that 
all the computations of the two-phase method he in the 

Lagrange-dual Jacobi method; thus the total time complexity 
spent in the Lagrange-dual Jacobi method is the dominant 
term of the overall-time complexity. Let m, denote the actual 
numbers of iterations that the iterative two-level phase 1 
problem takes to converge. Then the total number of 
iterations of the Lagrange-dual Jacobi method performed in 
phase 1 is m 1 I InaxfInaX~ Furthermore, the total number of 
iterations of the Lagrange-dual Jacobi method performed in 
phas ‘2 is 1 maxrmax. The time complexity of the array PEs 
should count as only that of one PE, since they are executed 
asynchronously and simultaneously. Let Tpa denote the time 
complexity of PEj, which is shown in column 7 of Table 1 in 
terms of numbers of @ and CB. Also, let TCL denote the 
time complexity of the asynchronous handshaking com- 
munication link, which is equal to 3 clock pulses according to 
the design in Kung (1988). Similarly, the time complexity of 
the array communication links should count as just one Tc_. 
Thus the total time complexity spent in the Lagrange-dual 
Jacobi method based on the above notation and the 
computing architecture shown in Fig. 5 is 

(ml r 5 max max +I ma.~m&GE~ + TpEl + TPE4 + 37&). (19) 

3.5. Simulations. According to the work of Yano et al. 
(MO), G =3.8ns for a 16 X 16-bit multiplication, Tes 
0.2ns for an addition, and the period of a clock pulse is 
approximately 40 ps. We may calculate that TPE2 = [7.6 + 
0.2 tog, (2.n + 2)] ns, TpEl= (7.6 + 0.2 log, n’) ns, and TPE4 = 
[7.6 + 0.2 loga (n + l)] ns, according to column 7 of Table I, 
and r,- = 0.1 ns. Then (19) becomes 

(mIr+I ) s max max maxtmax 

X {23.1 + 0.2 log* [(2n + 2 + 2)nz(n + l)]} ns. (20) 
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Fig. 6. The final complete state trajectory for the example. 

Example. The Rayleigh equation. 

x”=xa ) x,“=-1, 

.@ = --xm + [1.4 - O.l4(xS)2] + 4u, n[ = -1, 
(21) 

where x” and xp are state variables and u is the scalar 
control. We intend to find a control solution that satisfies the 
instantaneous control constraints 1~15 0.7 and that drives the 
system from the initial state (-1, -1) at time t = 0 to (0,O) 
asymptotically. The following initial values are assumed in 
the phase 1 method: rr = 5 s, ui = 0, 05 i c N - 1, and 
xi” = xg - (i/N)xg, xf = xg - (i/N)xR, i = 0, 1, . . , N. The 
matrix 

e=[: iI 
and R = 1 are used in phase 2. The linear feedback control 
II = --x” - 2x0 is employed in the region W = {x 1 blr I 0.5) 
to result in negative eigenvalues for the linearized 
closed-loop system at (0,O). The algorithmic parameters are 
arbitrarily assigned to be N = 30, E = 0.001, y, = y2 = y3 = 
0.1, St, = 0.2 s, l,,, = 40, t,, = 40. Solving the example by 
our two-phase method-based implementable receding- 
horizont feedback control algorithm, we obtain h = 30 before 
reaching the region W, and the final complete state trajectory 
is shown in Fig. 6. 

Estimated computation time for the two-phase method. In this 
example, n = 3 which is composed of two states and one 
control. For all h, including h = 0, we have m, = 1. The 
estimated computation time of the two-phase algorithm 
calculated from (19) is 0.08ms. This shows that the . I 

receding-horizon controller hardware meets the real-time 
processing system needs. 

4. Conclusions 
We have presented the architecture of a basic hardware 

module to implement a nonlinear programming algorithm 
that solves discrete-time optimal control problems for 
nonlinear systems with quadratic objective function and 
control constraints. We have applied this basic hardware 
module in the two-phase method, and it results in a simpler 

algorithm than that in Lin (1994) for solving a receding- 
horizon feedback control solution. We have also presented 
the VLSI-array-processor architecture for this receding- 
horizon controller. The estimated computation time to obtain 
a receding-horizon feedback control solution is of the order 
of 0.1 ms, which meets the real-time processing requirement. 
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