
Pergamon PII: !%005-1098(97)00053-8
Aukmmrico, Vol. 33, No. 8, pp. 1579-1586, 1997
6 1997 Elsevier Science Ltd. All rights reserved

Printed in Great Britain
otm-1098/97 $17.ocl+ 0.00

Brief Paper

Basic Hardware Module for a Nonlinear Programming
Algorithm and Applications*

SHIN-YEU LINt

Key Words-Nonlinear programming; optimal control; nonlinear systems; nonlinear control;
implementations; integrated circuits.

Abatraet-We present a VLSI-array-processor architecture
for the implementation of a nonlinear programming
algorithm that solves discrete-time optimal control problems
for nonlinear systems with control constraints. We
incorporate this hardware module with a two-phase parallel
computing method and develop a VLSI-array-processor
architecture to implement a receding horizon controller for
constrained nonlinear systems. On the basis of current VLSI
technologies, the estimated computing time to obtain the
receding-horizon feedback-control solution meets the real-
time processing-system needs. 0 1997 Elsevier Science Ltd.

1. Introduction
Discrete-time optimal control problems for nonlinear systems
with control constraints are popular control problems.
Numerous numerical techniques (Dyer and McReynolds,
1970) have been developed for solving this type of problem;
however, computational efficiency is still a major issue that is
frequently encountered in the solution methods. In this
paper, we shall propose an algorithm that combines a
projected Jacobi method and a Lagrange-dual Jacobi method
to solve discrete-time optimization problems for nonlinear
systems, which include discrete-time optimal control
problems with control constraints. Our algorithm will achieve
a complete decomposition effect, and the data and command
flow within the algorithm are very simple and regular; these
two factors suggest that our algorithm can be implemented
by VLSI array processors to meet real-time processing-
system needs. Thus the first contribution of this paper is the
presentation of a VLSI-array-processor architecture for the
implementation of our nonlinear programming algorithm.
Implementing a computational algorithm by VLSI array
processors to improve the computational efficiency has been
a trend, especially in the area of signal processing; for
example, Frantzeskakis and Liu (1994) deal with a
least-squares problem with linear equality constraints.
However, the nonlinear programming problem considered in
this paper is more complicated because of the presence of
nonlinearity and inequality constraints.

As well as applications to solving discrete-time optimal
control problems for nonlinear systems, our hardward
implementable algorithm has important applications to
receding-horizon control. In recent years, there has been a

* Received 15 June 1995; revised 3 June 19%; received in
final form 31 January 1997. This paper was presented at the
3rd IFAC Symposium on Nonlinear Control System Design
(NOLCOS), which was held in Tahoe City, CA during 25-28
June 1995. The Published Proceedings of this IFAC meeting
may be ordered from: Elsevier Science Limited, The
Boulevard, Langford Lane, Kidlington, Oxford OX5 lGB,
U.K. This paper was recommended for publication in revised
form by Associate Editor Matthew James under the direction
of Editor Tamer Bapr. Corresponding author Professor
Shin-Yeu Lin. Tel. +886 35 731839; Fax +886 35 715998;
E-mail syhn@cc.nctu.edu.tw.

t Department of Control Engineering, National Chiao
Tung University, Hsinchu, Taiwan.

1579

growing interest for the design of receding-horizon feedback
controhers (Mayne and Michalska, 199Oa; Clarke and
Scattolini, 1991; Mayne and Polak, 1993; Richalet, 1993;
DeNicolao et al., 19%). For such controllers, stability is
guaranteed for the zero-terminal-state strategy (Mosca and
Zhane 1992: DeNicolao and Scattolini. 19941. The most
distinguished characteristic of this controller compared with
other control methodologies is its global stability for general
nonlinear systems, as shown by Mayne and Michalska
(199Oa. b. 1991): however, this is at the exoense of hieh ~ I. 1

computational complexity to obtain a control solution.
Although model reduction is an attractive approach to
reduce the computational complexity (Richalet, 1993) this
approach may not apply to a general, especially a highly
nonlinear, system. Thus, to cope with this computational
difficulty, we have proposed a two-phase parallel computing
method (Lin. 1993. 1994) to obtain the solution for
receding-horizon feedback control. The phase 1 method uses
a two-level (master- and slave-level) approach to solve a
feasibility problem to obtain an admissible control and
horizon pair. The control solution obtained in phase 1 is
improved by phase 2, and the final solution is taken as the
receding-horizon feedback control solution for the current
sampling interval. The problems formulated in this two-phase
method, except for the master-level problem in phase 1, are
discrete-time optimization problems for nonlinear systems.
Thus we can use our hardware-implementable algorithm as a
basic algorithm module in the two-phase method, and this
results in a simpler algorithm than that in Lin (1994) for
solving a receding-horizon feedback control solution. Since
the master problem in phase 1 can be solved by simple
calculations, this suggests that the two-phase method can be
implemented by VLSI array processes. Thus presenting a
VLSI-array-processor architecture for a receding-horizon
feedback controller is the second contribution of this paper.

Since receding-horizon control is one of the most
promising globally stabilizing control methodologies for
highly nonlinear systems, the work described in this paper
also represents an effort to realize a real-time controller for
nonlinear systems.

2. Basic hardware module for a nonlinear programming
algorithm

2.1. Statement of the the discrete-time optimization problem
ofn nonlinear system. We consider discrete-time optimization
problems for nonlinear systems of the form

min 2 yTM,y,,
Y ,G)

y,+,-Ky;+p(y,)=O, i=O ,... , N-l, (I)

#(yN)=O. ,viC-yisY,, i=O ,..., N,

where the n X n matrix M, is positive-semidefinite,
Y = (Yo,. . , Y,v), y; E R”, i = 0,. , N, are variables to be
solved, K is an n x n constant matrix, p(yJ is a
n-dimensional vector function of y,, JI(yN) = 0 represents the
terminal constraints and I/I is a q-dimensional vector function,
Y, and y, represent the upper and lower bound respectively of
the variables y,. The discrete-time optimal control problem

1580 Brief Papers

for a nonlinear system with quadratic objective function and
simple control constraints is a case of (1) under the
conditions that

where I denotes the identity matrix and 0 denote the zero
submatrix or zero vector function with appropriate
dimensions; xi+, - xi -f(x,, ui) = 0 is the system dynamic
equation. Note that the formulation in (1) can include the
case of general control constraints; for the sake of simplicity,
it is not discussed here, but the explanation can be found in
Section 3.

2.2. The algorithm. To solve (l), we propose an algorithm
that combines the projected Jacobi method with the
Lagrange-dual Jacobi method. The projected Jacobi method
uses the following iterations:

y,(f + 1) = y,(l) + y, dyf(l), i = 0, , N, (2)

where y, is a step size and I is the iteration index. Here
dy:(l) is the solution of the following quadratic subproblem:

m;‘” g0 ~YT &idy, + PfM)lTdyi,

E,(l) + dy,+, -‘Kdy, +p,#)dyi = 0, i=O,...,N-1 (3)

+(y&)) + &,d,,U)dy, = 0
yi syy,(f) + dyi 5x, i = 0, . . , N,

where &(l) =~,+~(l) -KY,(~) +&y,(l)), p,(l) is the deriva-
tive of the vector function p with respect to yi at y;(f), IL,,(f)
is the derivative of Cc, with respect to y,v at yN(f), dy,,
i=O,..., N, are variables to be solved, and the diagonal
matrix & is formed by setting the kth diagonal element m,
as

mk=
(

Mkk if Mkk > S,
6 otherwise,

where Mkk is the kth diagonal element of M, and 6 is a small
positive real number.

It can b-e verified that if y,(fJ, i = 0, , N, is feasible then
dy:(f), i = 0,. . . , N, is a descent direction of (1); yi(f + l),
i=O ,..., N-l, is also feasible if OCy,=l. Thus the
projected Jacobi method is a descent iterative method, which
converges and solves (1) if y, is small.

Since (3) is a quadratic programming problem with strictly
convex objective function, by the strong duality theorem
(Bazaraa and Shetty, 1979), we can solve the corresponding
dual problem instead of solving (3) directly.

The dual problem of (3) is

m;x +(A), (4)

where the dual function

+ AT[Ei(l) + dYi+l - KdYi + Py,(WY~ll

+ dyL &&r., + MvydOITdyN
+ G[$(xvW) + clr,,(~)4d (5)

is a function of the Lagrange multiplier A, E KY, i = 0, . . , N.
We can use the following Lagrange-dual Jacobi method to
solve (4):

Ai(t + 1) = A,(r) + y2 A&(t), i = 0,. . . , N, (6)

where y2 is a step size, and AA(t) = (AA,(t), . . , AA&)) is
obtained by solving the linear equations

diag [V:,@(A(t))] AA(f) + V,~$(h(r)) = 0. (7)

Here @‘(A), the unconstrained dual function of 4, is defined

by relaxing the inequality constraints on primal variables of
4 as follows:

N-l

4“(A) = min c [My? fi&, + [Mn(01’&
,=”

+ A?‘[&(0 + dy,+ I - Kdyi + p,(WxlI
+ dy: &dy, + bWvxwYOIT4,v
+ ~~[WdO~ + ~y,,iWYrv1~ (8)

where V$,,+“(A) is the Hessian matrix of @‘(A),
diag[Vz,@(A)] is a diagonal matrix whose diagonal
elements are taken from the diagonal elements of V:,@‘(A),
and V,+(A) is the gradient of 4 with respect to A. Based on
Luenberger (1984), V,4(A) and VZ,,@‘(A) can be computed
by

i

E,(f) +&v,+,@(t)) - K& +p#)&(A(0),

V,,#(A(t)) = i=O,...,N-1, (9)

+(Y@)) + 3r,,(l)ciy~, i = N,

diag [v~iA,9”W))l

=

{

-diagI[(-K + p,(l)lfil;‘[-K + p,(W + fi,F+‘,l,
i=O,...,N-1 (10)

-diag [4Y,(f)fi,1&.Jf)Tl, i = N,

where dyi(A(r)) E R”, i = 0,. , N, in (9) is the solution of
the constrained minimization problem on the right-hand side
of (5) with A = A(r). Since diag [V:,&‘(A(r))] is a diagonal
matrix, we can compute AA(r) from (7) analytically by

AAi(r) = -{diag [V’,,+,&‘(A(r))]}-‘Vh,#A(r)), i = 0, , N,

(11)

It can easily be verified from (10) that diag [V:,9,<(A(r))]-’ is
negative-definite. Thus AA,(r), i = 0,. . , N, obtained from
(11) is an ascent direction of (4). Then the Lagrange-dual
Jacobi method (6) will converge and solve (4) provided that
yZ is small.

However, to calculate 0, 4(A(r)), we need the value of
&(A@)), i = 0,. , N, whick can be found by the following
two steps. First, we solve for the solution dyi, i = 0, . , N, of
the unconstrained minimization problem on the right-hand
side of (8), which can be obtained analytically by

&A(t))

1

fir’{-M,y,(f) - A,_, + [K -p,(l)lTA,}, i = 0, . , N - 1

= %‘[-M,YN(~) -AN-, - &,(~)‘4~1. i = N.

02)

Then, we project ri’y,, i = 0,. , N, to the constraint set
y 5 y(f) + dy my, and the resulting projection dy,, i =
0,. , N, can be obtained analytically by

if y, ‘n(f) + &(A(r)) 5 Y,,

&(A(r)) =

i

dyMr))
X -x(l) if yi(4 + &(A@)) >% 03)

y, -y;(l) if Yj(l) + &(A@)) <y,,

i = 0,. . , N. It can easily be verified that dy,, i = 0,. , N
obtained from (12) and (13) are indeed the solutions of the
constrained minimization problem on the right-hand side of
(5).

2.2.1. The complete decomposition property. In our
algorithm, the projected Jacobi method performs only an
update procedure in (2); all the major calculations lie in the
iterations of the Lagrange-dual Jacobi method (6) for solving
(4). Starting from -a given A(r), the Lagrange-dual Jacobi
method solves &.CACt)j. i =O.. , N. from (12) and (13), ,,. ~ ,,
then computes V,#(r)) and t;:,,,qF(A(r)), i LO:. , N: by
(9) and (10) respectively. It then calculates AA?(r),
i = 0,. , N, from (ll), updates hi(r), i = 0,. , N, by (6)
and proceed with the next iteration. This iterative process
will continue until convergence occurs. From (6) and
(9)-(13), we see that a complete decomposition effect has
been achieved by our algorithm. This property results from
(3) being separable.

Brief Papers 1581

2.2.2. The algorithm steps.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Initially guess the values of y(0) and set I = 0.

Compute K(l), p,(l), i = 0, . . . , N - 1, S(y,d)),
and &,(O.

Initially guess the value of A(O), or set it as the
previous value, and set t = 0.

Solve ay,(h(t)), i = 0, . . . , N, by (12) and (13).

Compute V,.&+(t)) by (9), and diag [V&&“(A(f))]
by(lO),i=d ,..., N.

Compute Ai(t + 1) = A&) - y*[diag (V:,,+‘)]-‘V,,
4(A(r)), i = 0, . . , N. Check whether IlAA(t)II, < E;
if yes, go to Step 7; otherwise, set t = t + 1 and return
to Step 4.

Set dyt(f) = dyi(A(t)) and update yi(l + 1) = y,(l) +
y,dyt(f), i = 0,. . . , N. Check whether IJdy*(l)(I, <
E; if yes, stop; otherwise, set I= I + 1 and return to
Step 2.

2.3. The VLSI-array-processor architecture for implement-
ing the algorithm. Since both M, and diag [V~.,,#“(A)] are
diagonal matrices, A;’ and [diag(V$@‘(A~]-l can be
computed analytically. Thus all the computations required in
our algorithm steps are simple arithmetic operations, and are
independent with each other on different time intervals
owing to the complete decomposition property. This
motivates us to implement the proposed algorithm using
VLSI array processors by assigning a processing element
(PE) to the computation required in a time interval of an
algorithm step.

2.3.1. Modijkadon of the convergence criteria. Since our
algorithm converges, the AA(r) in Step 6 and the dy*(l) in
Step 7 will approach zero as the number of iterations t and I
increase. Thus, instead of using a tolerance of accuracy, E, for
convergence criteria in Steps 6 and 7, we may assign an
arbitrary number of iterations I,,,,, for the Lagrange-dual
Jacobi method and I,, for the projected Jacobi method, and
modify the convergence criteria in Steps 6 and 7 as follows.

Step 6(m). . . . If t 2 t,,,, go to Step 7;
Step 7(m). . . . If I 2 I,,,, stop;

2.3.2. The mapping of the algorithm steps lo the
VLSI-array-processor architecture. Suppose we assign one
PE for performing the computation of an algorithm step in a
time interval; all the PEs should be linked so that the data

and command flows in between PEs can make the PE arrays
to perform the algorithm just as in a sequential computer.
Thus the construction of the array-processor architecture
should be based on the data and command flow in the
algorithm steps. Examples of data flows are as follows: the
data dyi(A(t)) and dy,+,(A(t)) computed in Step 4 are needed
in the computation of V,d(A(t)) in Step 5; the data
V,,4(A(t)) and V’,,*,&‘(A(t)) computed in Step 5 are needed
in the computation of A,(t + 1) in Step 6(m). The command
flow is more complicated; for example, in Step 6(m), if the
Lagrange-dual Jacobi method converges, the data i?yi(A(t))
computed in Step 2 should be transferred to Step 7(m). This
is a procedure of data flow followed by a command flow. In
our algorithm, there are two types of commands: one is the
initial-value request in Steps 1 and 3; another is the
notification of convergence in Steps 6(m) and 7(m).

Figure 1 shows the VLSI-array-processor architecture for
implementing our algorithm; for the sake of simplicity, but
without loss of generality, we let N = 3 in Fig. 1. Each square
block in Fig. 1 denotes a PE. The PEs lying in the same array
will perform the same algorithm step. The directed solid links
denote the data-transfer path. The directed dash-dotted links
also denote the data-transfer path; however, they differ from
the solid links in that receiving PEs will not use the
transferred data for computation immediately. The directed
dotted links in Fig. 1 denote the flow of commands of
initial-value request or convergence notification. The arrows
of these three types of links describe the data and command
flows in the architecture.

In the following, we shall explain the mapping of the
algorithm steps to the architecture with the aid of Table 1. In
the first column of the table, we indicate the type and the
corresponding time interval of a PE by superscript and
subscript respectively. The second column lists the
corresponding algorithm step of each PE, which means that
the computations in a time interval or a logical decision for
convergence check carried out in an algorithm step will be
performed in the corresponding PE. For example, PEZ will
compute V,,4(A(t)) and diag [A:,,,,+‘(A(r))]. Although
Steps 1 and 3 concerning the initial-value guesses do not
require any computation, they will be taken care of by PE.!
and PE? respectively. We shall explain how the initial values
are provided when we introduce columns 5 and 6 of Table 1.
Thus each algorithm step has a corresponding PE. The third
and fourth columns show the output data and the
corresponding destination of each PE, where the output data
of a PE are its computed data. These two columns explain

output output

LEGEND:
- soLlDLmK
_____..._... J’jomD JJN-K
.._._._.+ D~H_~~D LJJJK

Fig. 1. VLSI-array-processor architecture for the nonlinear programming algorithm with N = 3.

1582 Brief Papers

Table I. The characteristics of PE

Destination Destination
Algorithm output of output output of output Time

PE:% Step data data command command complexity

PE: L2 F;$!$#) PE: for p,(f), Request of PE; Unknown

JI(Y$li)i &r)
PE: for E)(l) initial

guess if I= 0

PE:

PE:

PE:

PET

374

5

6(m)

7(m)

dYM))

V*.+@(t)),
diag [~2,iA,4”O(~))l

A& + 1)

Yi(l + 1)

PET if t = t,,
in PE?, else,

PE) and PET-,

PE:

PE: and PET+,

Halt if 1 =
1 max in PET;

else, PE:

Request of
initial

guess if I= 0, t = 0

-

Convergence
if t = t,,,

PE:

-

PE:

-

2@ and
log2 (2n + 2) @

28 and
log, n2cB
28 and

log, (n + 1) CB

l@

the mapping of the data flow in the algorithm to the
architecture, as described by the following examples. The
data Et(l) (or $(y&) if i = N) computed in PE: is sent to
PE), and the data p,(l) (or $,,,(I) if i = N) is sent to PEf.
Since these data will not be used for computation
immediately, the data Rows are indicated by dash-dotted
links directed from PE: to PE: and PE: to PE: in Fig. 1. This
corresponds to the data flow from Step 2 to Step 5. The
output data ay, computed in PE: is sent to PEj) and PET-,,
which is indicated by solid links directed from PE: to PE!
and PET-, in Fig. 1. This corresponds to the data flow from
Step 4 to Step 5. However, the data ay, will be sent to PE: if
t=t IWX; this is a situation of data flow followed by a
command flow. The mapping of the data flows from Step 5 to
Step 6, from Step 6 to Step 4 and from Step 7 to Step 2 can
also be observed from the third and fourth columns of Table
1 and the directed solid links shown in Fig. 1. Columns 5 and
6 show the output commands and corresponding destinations
of each PE. There are two types of commands: one is the
request for initial guesses and another is the notification of
convergence. As we have described earlier, Steps 1 and 3
concerning the initial guesses will be taken care of by PE:
and PEf respectively. These steps are performed as follows.
When I = 0, Step 1 needs an initial guess for y(f), and when
I = 0 and f = 0, Step 3 needs an initial guess for A(f).
Therefore, when I =O, PE: will output the command of
initial-value request to PET, which will respond by sending a
default value of y,(l) to PE). This command flow is described
in columns 5 and 6 of the second row, and is indicated by the
dotted link directed from PE,! to PET in Fig. 1. A similar
situation occurs for PEf to request the initial value of A(r)
from PE! when 1 = 0 and I = 0, as indicated in columns 5 and
6 of the third row in Table 1 and the dotted links directed
from PE: to PE: in Fig. 1. For the convergence command,
we see that if the iteration index f = t,,, is detected in PEY, it
will output a command of convergence to PEf, as described
in columns 5 and 6 of the fifth row. Then PET will respond by
sending the data dyi(A(t)) to PET, as described in columns 3
and 4 of the third row in Table 1, which has not yet been
explained. As shown in Fig. 1, this command flow is indicated
by the dotted links directed from PEY to PEf, and the data
flow followed by receiving the command is indicated by the
solid links directed from PEf to PET. These command and
data flows represent the mapping of the command and data
flows from Step 6 to Step 7. However, when PET detects
1 = I,,,, it will halt the execution and output the solution, as
described in columns 3 and 4 in the sixth row, which has not
yet been explained.

2.4. Timing of the computations of the VLSI array
processors. When using VLSI array processors to perform
the algorithm, synchronization is necessary. In general, a
global clock will cause severe time delay. Thus, to circumvent
the drawback of global clock and maintain the synchroniza-

tion, the data-driven-computation PE (Kung, 1988) as-
sociated with an asynchronous handshaking communication
link (Kung, 1988) for data and command flows can be the
solution. Therefore the computation in each PE will be
activated after the completion of all the data transfers from
the solid links; this will ensure that the computations in PEs
lying in the same array are carried out asynchronously and
simultaneously. Nevertheless, a self-timed clock is needed in
each PE to control the synchronization of the operations in
each individual PE.

2.5. Realization of PEs and time complexity. Basically,
each PE consists of a self-timed clock, a control logic unit,
two counters and a dedicated arithmetic unit. The typical
structure of a PE is shown in Fig. 2. The self-timed clock is
used to control the synchronization of the operations within
the PE. The dedicated arithmetic unit may consist of
multipliers, adders and various types of registers. Counter #l
in Fig. 2 is used to count clock pulses in order to indicate the
completion of the arithmetic operations. Counter #2 is
available only in PE; and PET for each i, and detects whether
t=t max or I= I,,, in the Lagrange-dual Jacobi method and
the projected Jacobi method respectively. Note that once
Counter #2 has reached the value of t,,, in PE: or I,,, in
PET, it will be reset for next count of clock pulse. The
functions of the control logic unit include the control of the
sequence of arithmetic operations and the timing of the right
communication link for sending out the data and

DAU

L!z 4 I

CNl osc

LEGEND:
DAU - dedicated arithmetic unit
CLU - control logic unit
CNI - counter #l
CN2 - counter #2
OSC - oscillator

Fig. 2. Typical structure of the processing elements.

Brief Papers 1583

reactions to the input command. For example, as shown in
columns 3 and 4 of the third row of Table 1, and control logic
circuitry in PE: should. determine which of the following
solid links should be activated based on the value of the
iteration index appearing in Counter #2: the solid link
directed to PET or the solid links directed to PE: and PEf-,.

According to column 2 of Table 1 and the details of the
algorithm steps, the structure of the dedicated arithmetic
units of each PE can easily be realized by logical curcuitry
and arithmetic units. For example, the formulas (12) and (13)
for the computation of one component ~?y~, say ay{, in PET
can be realized as in Fig. 3, in which part of the multiplexer is
used to perform the projection (13). From Fig. 3, we can
derive the time complexity of the computations of PEY by
taking the greatest p&sibie advantage of parallelism shown
in column 7 of the third row of Table 1. where @ and @I
denote the times required for performing a multiplication
and an addition respectively. The time complexities for the
commutations reauired for PE?. PE! and PE? can be obtained
simiiarly to that’of PEf. However, the time complexity of
PE,’ cannot be analyzed unless the function p(yi) is given.

2.6. Summary of the operations of VLSI array processors.
We can summarize the operations of the VLSI array
processors shown in Fig. 1 as follows. The computations
starts from PE,‘, which commands PET to send the initial
value of yi(l), and then computes E,(l) and p,(r). Ei(l) is sent
to PET, while p,(l) is sent to PET. After recerving p,(l), PEj?
commands PE? to send the initial value of A, and then
calculates ay,, which is sent to PE: and PE:-,. After
receiving ayi and ayi+,, PET will compute V,#(A(t)) and
V:, @(h(t)), which are sent to PET. PE4 will then compute
hilt’+ 1) and send to PE: and PET+,, provided that t < t,,,.
The PE arrays formed by the PET array, PE: array and PE:
array will perform the Lagrange-dual Jacobi method until
t=t ,,_ is detected in PE:! When t = t,,,, the PEY array will
command the PE: array to send the data ayi(A(t)) to the PET
array. Then the PET array will update yi(l + 1) and continue
the above process until I = I,,, is detected in PET and halt
the execution.

3. Application to receding-horizon controller
3.1. The implementable receding-horizon controller. For a

nonlinear system with control constraints described by
i = f(x(t), u(t)), u(t) E R, where f: R“ x RF’+ Wk is twice
continuouslv differentiable and satisfies f(O. 0) = 0 and 52 is
the set of admissible controls containing at&empty convex
polytope, Mayne and Michalska (199Oa, b, 1991) proposed a
globally stable implementable receding-horizon controller.
Their control strategy employed a hybrid system i(t) =
f(x(t), u(t)), when x(t) e W, i(t) = Ax(t) otherwise, where
A =fx(O, 0) +fu(O, 0) is formed by applying a linear feedback
control u = Cx to the linearized system in a neighborhood W
with small enough radius and centered at origin, where C is

W-

the feedback gain matrix. Their algorithm first calculates an
admissible control and horizon pair

[&I, t,,,l E ZW(~Oh (14)

where the initial state x,) +! W is assumed, the set
Z,(x) = {u E S, t, E (0, 2) 1 x”(t + $;x,t) E SW}, where S
denotes the set of all piecewise-continuous functions, X”
denotes the resulting state after applying the control u and
6W denotes the boundary of W. The algorithm then sets
h = 0, t,, = 0, uh = uo, tf,,, = t,,,, and performs the following
process repeatedly to yield the receding-horizon feedback
control.

It applies the obtained control u,, for x 6 W and/or the
linear feedback control Cx for x E W to the real system over
[t,,, th + At], where At E (0, z). Let x,,+~ be the resulting state
at t,,+,(= t,, + At); then, if x,,+, E W, the algorithm switches
the control to u = Cx over (tic,, 2); otherwise, it calculates
an improved control and horizon [u,,+, , tLh+,] in the sense
that

[%+,, t,,+,l l Zw(%+,)*
(1%

V(.G+I, (,,+I, $.,,+I) 5 V(xh+,r t,,+r, u,,, tf.h - At)

where
,+,r

V(x, I, u, t,) =
I

t(Ilx”(cx, t)ll&+ llu(r)ll2R)d~
I

in which R and Q are positive-definite matrices, l/y1151
denotes yTAy, and xL denotes the state trajectory in region
W with feedback control u = Cx.

The two-phase parallel computing method (Lin, 1994) aims
to obtain a receding-horizon feedback control solution for
every At time interval fi(r), t I 5 5 t + At, based on Mayne
and Michalska’s algorithm. In the first phase, we discretize
the system into N time intervals and use slack variables to
formulate the following feasibility problem, which can also be
called the phase 1 problem, to obtain an admissible control
and horizon pair as required in (14):

(16a)

xi+,-X,-~f(Xi,Ui)+S,=O, x0=x(t), Wb)

XN+SN=O, ww
aui + b 5 0, i=O,...,N-I, (la’)

in which s denotes the vector of slack variables, and we
explicitly express the non-empty convex polytope in R by the
set of q-dimensional linear inequality constraints on
au + b s 0, where the matrix (I E Ryxp and the vector b E E?.
To apply the algorithm we proposed in Section 2, we need to

Y/(l)

M,’

Yi (4

4+,

P, Cl)Y

LEGEND: (’)’ .- the jth component if (’) is a vector
the jth row if (.) is a matrix

Fig. 3. The arithmetic unit for computing a component dy{ of the vector dyj in PEf.

1584 Brief Papers

reformulate the inequality constraints (16d’). First, we
separate the simple inequality constraints ui 5 ui 5 r& from
au; + b ~0, and then convert the rest of the inequality
constraints to equality constraints a’u, + b + z, = 0 by adding
positive variables zi, where a’ E RrxP, r or q. We can then
rewrite (Xl’) as

a’u,+b+z,=O, ui=ui517,,

ZJZO, i=o ,...) /v-l.
(164

If there is no simple inequality constraint for uir we may set
i&=m and_ui=-m.

Suppose that the optimal objective value of the phase 1
problem (16a-d) under a proper horizon tf is zero; this tr and
control solution is then the admissible horizon and control
pair required in (14). Because tf is unspecified in (16a-d), we
use a two-level (master- and slave-level) approach to solve
the phase 1 problem (16a-d). The program in the master
,-.-I ,.c l l._ 6..._ I^..^ I --+I.^,4 :.. +,. A-a,...-:..- ^l....l. :.. ‘C”Cl UI LUG Lvv”-LG”GL l‘lcilll”” I3 I” “CjL~ll‘llllS a Lf, WIUt,II 13
passed to the slave level, and the slave problem is (16a-d)
with a fixed tf given by a master program. The master
program is simple; it increases rf by 8rf each iteration, where
St, is a small positive real number. However, to increase the
computational speed, we apply a gradient method for the
first few iterations. Thus the master program (Lin, 1994) is as
follows:

f,(l + 1) = zr(l) + rd 2 fT(tf)f,(tf)
dtfi=,

if 2 ff(tf)9i(tf) > E,
,=”

N

tf(1 + 1) = Q(l) + St, if c s^,T(t,(l)s^,(t,(l)) < E and f 0,
i=”

stop otherwise,
(17)

where B(tf) denotes the solution of the slack variables in the
slave problem under a given tr The slave problem is a case of
the nonlinear programming problem considered in Section 2,
which can be solved by the algorithm presented in Section 2.

When the master program stops, the zero objective value
of the phase 1 problem is achieved. This means that the
.Amir.ihlr= rnnttnl smrl h&mm nair ir nhtaind I P+ In 7.1 ..-..I.YY.V.” _., “._“.. v”.’ .” .,“......_... --. ,.., ., ,

denote the admissible control and horizon pair obtained from
phase 1 of the two-phase method; the phase 2 method will
then improve [a, tr] in the sense of reducing the pcrformancc
index V(x, t, u, tf), as required in (15). Thus, in phase 2, we
shall solve the following phase 2 problem:

N-l
min c ($xTQx, + $u:Rui),

i=o

if
xi+, -xi - ,f(Xi, Ui) = 0, xg = x(t), XN = 0, (18)

a’ui + b + zi = 0, ui 5 ui 5 iii, zi 2 0, i = 0, . , N - i,

which is a discretized version of (15).
We see that the phase 2 problem is also a case of the

nonlinear programming problem considered in Section 2, and
so can be solved by the algorithm presented in Section 2.

3.2. The VLSI-array-processor architecture and operations
for the implementable receding-horizon controller. The slave
problem (16a-d) with a fixed C~ is a special case of (1) with
appropriate dimensions. The phase 2 problem (18) is also a
special case of (1) with

ro 0 0 02

Y, = (Xi, 4, s,, Zi), M; = ; ; ; ; L 1 0 0 0 0

K=
0 -a’I 0 -I
0 0 0 0
0 0 0 0

f (Xi, 4)

P(Yi) = “0
I 1

, #(Y,) = XN + SN,

L 0 J

where the 0s in M, and K and the 0s in pi(n) denote
respectively the zero submatrix and the zero vector with
appropriate dimensions. The phase 2 problem (18) is also a
special case of (1) with

f(xi9 ui)

P(Yi)= [1 b 7 ‘J’(YN)=XN.
0

%..r l L, XIr cr a....“.,nanrrrr nml.:t~nt..-,X . ..~“.X..,~rl :” CZ’in l,,UJ L11.z ” LIuI-CzII(LJ-pl-c-l LLI~,,II~~,U,c, plrUCLX,tiU 111 1 .a.
1 can readily be used to implement the solution methods for
the solution methods for the slave problem and the phase 2
problem. Although the computing formulas for these two
problems are the same, the data in these formulas are
different. Therefore we need to use one bit to represent the
mode for these two problems. We let 0 represent solving the
slave problem and 1 represent solving the phase 2 problem.
Thus this one-bit mode can be used to control a multiplexer
to select the corresponding data, as shown in Fig. 4 for the
calculation in PEs.

What remains for the architecture to implement in the
two-phase parallel computing method is the master program
in phase 1. As we have shown in (17), the master program is
very simple. Thus we may use a processing element PEs to
perform the formula given in (17). However, the data
required in PE” should be provided from the solution of
the slate problem from all time intervals. Let (f(+), a(+),
O(t,), A@)) be the solution of the slave problem under a
given tf; then we need PE” array processors to calculate the
values of ST(t,)f&) and -fir(t,)(a/at,)f(2&), a(+)), and
pyramid-like log, (N + 1) stage PE’ array processors.
The PE’ array processors are two-input adders in the
~,nunrd rlirprtinn llr,=rl tn fnrm th.- c,,mc TN_. b’T(t.\B.lt.\ ..y....--_“.._.. ““II,.... . ..” -.. & ,=,,” ,\., r,\.J,

and I% O(t,)(al+)f (ai(h(tf)), which equals
(d/dtf) ZzoS:(f)Si(tf) (Lin, 1994). These are the data
needed in PE to perform the gradient method when
Z~OST(tf)~&) < E. The PE’ array processors are
registers in the downward direction used to propagate the
value of t, computed in the master program to the slave
problem. Thus the overall VLSI array processors to
implement the two-phase method are as shown in Fig. 5, in
which the architectures of PE!, PEf, PET, PE; and PET
arrays are almost the same as in Fig. 1, except for the
addition of dotted links directed from PET to PE:, as
expiained beiow. Because, when the siave probiem is soived
for a given t,, the data A($) stored in PEY should be sent to
PEP; these dotted links represent the fact that when PET
detects convergence of the slave problem, it will command
PEY to send data to PEF. Therefore there also exist solid
links from PE4 to PEP in Fig. 5. Note that in phase 1, PEY will
not halt the execution when detecting I = I,,,. This is
different from Fig. 1.

3.3. The operations of the VLSI array processors for the
two-phase method. Initially, PEs will provide a value of t,(O)
and set the mode to be 0, and will pass down the value of

data for data for
Sh? Phase2

Fig. 4. The multiplexer controlled by the problem mode for
selecting the corresponding data.

Brief Papers

r-z-

1585

LEGEND:
- SOLIDLINK
.. -t DOTTEDLINK
- - -----,t DASH-DOTTED LINK

Fig. 5. VLSI-array-processor architecture for the two-phase parallel computing method with N = 3.

r,(O) and mode 0 to the PE: array processors through the
PE’ pyramid-like array processors, as shown by the solid
links directed from PEs through the PE’ arrays to the PE:
array in Fig. 5. Then the PE,!, PE?, PEj, PEf and PET arrays
will perform the algorithm proposed in Section 2 to solve the
slave problem under the value of r, given by PEs until
convergence in PE: is detected, that is, when I = I,,,,.. The
PET array processors will then output the values of 3i(tf) and
(a/&r)f(f,, fi,) to the PEP array processors, and will
command the PE4 array to send the data of Ai to PEP.
The PE: will compute 3&~&) and hT(tr)(a/arr)
f(.$(rr), ul,(r,)), and the PE’ arrays of processors will perform
the sums CL3T(rf)3,(r,) and C;“=,, h^~(rr(alar,)f(~i(r,),
G,(r))
PE B

(=(d/d,,) CEo3T(rf), 3&), and input them to the
processor to perform (17). This process will continue

until PEs detects the convergence of the phase 1 problem,
that is, ~f&-Ff(rf)3,(rf) = 0; then the value of the admissible
horizon rf and the command of mode changing to 1 will be
passed to the PE: array processors through the PE’ arrays.
The mode-change command is indicated by dotted links
directed from PE” through the PE’ arrays to the PE: array as
shown in Fig. 5. The PE! array will then command the PEf,
PE;‘, PE: and PE: arrays to change the mode to 1. For
clarity, we do not show in Fig. 5 the dotted links for the rest
of the mode-change command that occurs among the PE:,
PE?, PET, PE;’ and PEj arrays. At this point, the solution of
the phase 1 method, f,, P,, Z,, i = 0, . . . , N, is stored in the
PET array. The PE!, PE:, PE?, PE4 and PE.5 arrays will then
proceed to solve the phase 2 problem until I = I,, is
detected in PE:, which will halt the execution and output the
solution.

3.4. Overall-time complexity. From Section 3, we see that
all the computations of the two-phase method he in the

Lagrange-dual Jacobi method; thus the total time complexity
spent in the Lagrange-dual Jacobi method is the dominant
term of the overall-time complexity. Let m, denote the actual
numbers of iterations that the iterative two-level phase 1
problem takes to converge. Then the total number of
iterations of the Lagrange-dual Jacobi method performed in
phase 1 is m 1 I InaxfInaX~ Furthermore, the total number of
iterations of the Lagrange-dual Jacobi method performed in
phas ‘2 is 1 maxrmax. The time complexity of the array PEs
should count as only that of one PE, since they are executed
asynchronously and simultaneously. Let Tpa denote the time
complexity of PEj, which is shown in column 7 of Table 1 in
terms of numbers of @ and CB. Also, let TCL denote the
time complexity of the asynchronous handshaking com-
munication link, which is equal to 3 clock pulses according to
the design in Kung (1988). Similarly, the time complexity of
the array communication links should count as just one Tc_.
Thus the total time complexity spent in the Lagrange-dual
Jacobi method based on the above notation and the
computing architecture shown in Fig. 5 is

(ml r 5 max max +I ma.~m&GE~ + TpEl + TPE4 + 37&). (19)

3.5. Simulations. According to the work of Yano et al.
(MO), G =3.8ns for a 16 X 16-bit multiplication, Tes
0.2ns for an addition, and the period of a clock pulse is
approximately 40 ps. We may calculate that TPE2 = [7.6 +
0.2 tog, (2.n + 2)] ns, TpEl= (7.6 + 0.2 log, n’) ns, and TPE4 =
[7.6 + 0.2 loga (n + l)] ns, according to column 7 of Table I,
and r,- = 0.1 ns. Then (19) becomes

(mIr+I) s max max maxtmax

X {23.1 + 0.2 log* [(2n + 2 + 2)nz(n + l)]} ns. (20)

Brief Papers

-1.5 L I
-1.5 -1 -0.5 0 0.5

(z”)Q

Fig. 6. The final complete state trajectory for the example.

Example. The Rayleigh equation.

x”=xa) x,“=-1,

.@ = --xm + [1.4 - O.l4(xS)2] + 4u, n[= -1,
(21)

where x” and xp are state variables and u is the scalar
control. We intend to find a control solution that satisfies the
instantaneous control constraints 1~15 0.7 and that drives the
system from the initial state (-1, -1) at time t = 0 to (0,O)
asymptotically. The following initial values are assumed in
the phase 1 method: rr = 5 s, ui = 0, 05 i c N - 1, and
xi” = xg - (i/N)xg, xf = xg - (i/N)xR, i = 0, 1, . . , N. The
matrix

e=[: iI
and R = 1 are used in phase 2. The linear feedback control
II = --x” - 2x0 is employed in the region W = {x 1 blr I 0.5)
to result in negative eigenvalues for the linearized
closed-loop system at (0,O). The algorithmic parameters are
arbitrarily assigned to be N = 30, E = 0.001, y, = y2 = y3 =
0.1, St, = 0.2 s, l,,, = 40, t,, = 40. Solving the example by
our two-phase method-based implementable receding-
horizont feedback control algorithm, we obtain h = 30 before
reaching the region W, and the final complete state trajectory
is shown in Fig. 6.

Estimated computation time for the two-phase method. In this
example, n = 3 which is composed of two states and one
control. For all h, including h = 0, we have m, = 1. The
estimated computation time of the two-phase algorithm
calculated from (19) is 0.08ms. This shows that the . I

receding-horizon controller hardware meets the real-time
processing system needs.

4. Conclusions
We have presented the architecture of a basic hardware

module to implement a nonlinear programming algorithm
that solves discrete-time optimal control problems for
nonlinear systems with quadratic objective function and
control constraints. We have applied this basic hardware
module in the two-phase method, and it results in a simpler

algorithm than that in Lin (1994) for solving a receding-
horizon feedback control solution. We have also presented
the VLSI-array-processor architecture for this receding-
horizon controller. The estimated computation time to obtain
a receding-horizon feedback control solution is of the order
of 0.1 ms, which meets the real-time processing requirement.

Acknowledgement-This research is supported by National
Science Council, Taiwan under Grant NSC84-2213-E-009
132.

References
Bazaraa, M. and Shetty, C. (1979) Nonlinear Programming,

Wiley, New York.
Clarke; D. W. and Scattohni, R. (1991) Constrained receding

horizon nredictive control. Proc. IEE. Pt D U&347-354.
DeNicolao: G. and Scattolini, R. (1994) Stability and output

terminal constraints in predictive control. In Advances in
Model-Based Predictive Control, ed. D. Clarke, pp.
105-121. Oxford University Press.

DeNicolao, G., Magni, L. and Scattolini, R. (1996) On the
robustness of receding-horizon control with terminal
constraints. IEEE Trans. Autom. Control AC4,451-453.

Dyer, P. and McReynolds, S. (1970) The Computation and
Theory of Optimal Control. Academic Press, New York.

Frantzeskakis, E. and Liu, K. (1994) A class of square root
and division free algorithms and architecture for
QRD-based adaptive signal processing. IEEE Trans. Sig.
Process. SP-42,2455-2469.

Kung, S. Y. (1988) VLSI Array Processors. Prentice-Hall,
Englewood Cliffs, NJ.

Lin, S.-Y. (1993) A two-phase parallel computing algorithm
for the solution of implementable receding horizon control
for constrained nonlinear systems. In Proc. 32nd IEEE
Conf on Decision and Control., San Antonio, TX, pp.
1304-1309.

Lin, S.-Y. (1994) A hardware implementable receding
horizon controller for constrained nonlinear systems.
IEEE Trans. Autom. Control AC-39,1893-1899.

Luenberger, D. (1984) Linear and Nonlinear Programming.
Addison-Wesley, Reading, MA.

Mayne, D. Q. and Michalska, H. (1990a) Receding horizon
control of nonlinear systems. IEEE Trans. Autom. Control
AC-35,814-824.

Mayne, D. Q. and Michalska, H. (1990b) An implementable
receding horizon controller for stabilization of nonlinear
systems: In Proc. 29th IEEE Conf on Decision and
Control. Honolulu. HI. DD. 3396-3397.

Mayne, D. Q. and ‘Michaiska, H. (1991) Robust receding
horizon control. In Proc. 30th IEEE Conf on Decision and
Control, Brighton, UK, pp. 64-69.

Mayne, D. Q. and Polak, E. (1993) Optimization based
design and control. In Proc. 12th IFAC World Congress,
Sydney, Australia, Vol. III, pp. 129-138.

Mosca. E. and Zhane. J. (1992) Stable redesinn of oredictive
control. Automatic; 28,‘1229-1233. ” 1

Richalet, J. (1993) Industrial applications of model based
predictive control. Automatica 29,1251-1274.

Yano, K., Yamanaka, T., Nishida, T., Saito, M., Shimohi-
gashi, K. and Shimizu, A. (1990) A 3%ns CMOS 16 X 16-b
multiplier using complementary pass-transition logic.
IEEE J. Solid State Circ. 25, 388-395.

