具有高感測範圍之

非晶矽薄膜電晶體光感測器

研究生:游腾瑞

指導教授:戴亞翔 博士

國立交通大學

顯示科技研究所

摘要

非晶矽薄膜電晶體(a-Si TFTs)最近在液晶顯示器(AMLCD)的周邊電路整合 應用上,之所以會是眾所注目的焦點,是因為其具有較低的製造成本,而將顯示 器周邊電路整合於同一片玻璃基板周圍,也已經被廣泛地研究了。為了實現所謂 的高附加價值以及有輸入功能的薄型化面板,除了將這些周邊電路整合至玻璃基 板外,將一些電路整合至畫素上已是必要的考量,尤其是應用於行動裝置上。從 各式各樣的不同高階功能如:環境光感測器、影像掃描、觸控式面板等,整合一 個非晶矽光感測器似乎是一個最重要的關鍵技術。在這些高附加價值的功能之 中,環境光感測器可以藉由偵測面板週遭環境光強度來控制背光源的亮度,進而 達到降低功率消耗並且改善螢幕的清晰度。

在本篇論文中,我們先針對非晶矽薄膜電晶體在鹵素燈照射下的光特性做仔細的研究,並進一步確認元件在不同的操作區域內的光效應。我們還提出一種利用相同於非晶矽薄膜電晶體製程的新型光感測電路,故可在不變動製程步驟和不增加成本的情況下達到整合的目的。這個含有源極隨耦器的新型電路,可以感測 到不同光照強度下的光漏電流訊號,將此電流訊號轉換成類比的電壓訊號。根據 實際電路在環境光 0~63315lux 下的量測結果,我們確定此光感測電路可以準確 地完成感測和讀出訊號。然而,我們分析了對光感測準確性影響的因素,還提出 了校正方法,使具有高感測性範圍之環境光感測器,在 0~63315 lux 之間,將提 供良好的感測準確性(誤差<10%)。

Study on the a-Si TFT Light Sensor with Wide Dynamic Range

Student : Teng-Jui Yu

Advisor : Dr. Ya-Hsiang Tai

Department of Display Institute National Chiao Tung University, Hsinchu, Taiwan

Abstract

Amorphous silicon (a-Si) thin-film transistors (TFTs) have attracted much attention in the application on the integrated peripheral circuits of display electronics such as active matrix liquid crystal displays (AMLCDs) due to its lower the manufacturing cost. Various attempts have been reported to integrate display circuits to peripheral area of the glass substrate. In addition to the peripheral area integration, circuit integration to pixel is considered to be required to realize so-called high-value added display or sheet computer having input function, especially in mobile equipments. Integration of a-Si optical sensor is considered to have a potential to be a key technology for various kinds of advanced functions such as ambient light sensors, image scanners, touch panel, etc. An ambient light-sensing function, which is one of several high-value added functions, can contribute to low power consumption and improve visibility by detecting ambient light around the display panel and controlling the brightness of the display panel.

In this thesis, we present a detailed experimental study of the a-Si TFTs behavior under halogen lamp illumination and identify the different TFT operating regimes. We also propose the light-sensing circuits using the identical a-Si TFTs fabrication processes without any extra cost. The proposed circuit, which has a source follower, can sense the photo leakage current under different illumination intensities and convert the current to analog voltage signal. Through the measurement of the proposed circuit under light variation from 0 to 63315 lux, we confirmed that the proposed light-sensing circuit can perform sensing and readout operations accurately. However, we analyze the possible factors that can affect the sensing accuracy and propose the calibration methods to provide good sensing accuracy (error < 10%) in the wide dynamic range of ambient light from 0 lux to 63315 lux.

Acknowledgements

首先要感謝的是我的指導教授 戴亞翔博士;老師積極認真的研究態度、大 膽前瞻的眼光、講求效率的處事原則及謹慎周全的思慮,以及準確的判斷,總是 能適時對學生的研究,形成很大的助力。感謝老師總是鼓舞我們、激發我們,用 心的指導我們,並且提供許多新穎的研究想法,讓我受益良多。而在做研究之餘, 老師也不忘提醒大家做人處事的態度,不論在言教還是身教,都給予我們最好的 榜樣。在此,對老師致上最深的敬意。

接著要感謝士哲學長、彥甫學長在研究方面給予啟蒙指導,助我解決研究過 程中的諸多疑惑;感謝畢業的學長姐們:憲哥、曉嫻、龍哥、首席、小黑、祥帥, 你們親切的態度,在需要時能不吝伸出援手,讓我很快的熟悉環境,使我成長茁 壯;更要感謝的是一起奮鬥的同學紹文、柏廷、國珮、耿維,研究所兩年裡共同 討論課業上的知識,也一起努力解決實驗上的問題,有你們的相扶相持是我的榮 幸;也要感謝學弟妹們:趴趴、少宏、小瓜呆,隔壁實驗室的智昱、小豬、立峯、 虛胖,謝謝你們豐富了我的生活、也擴展了我的視野。也因為有了你們,實驗室 時常充滿了歡笑,兩年的碩士生涯有了大家的陪伴,使我的碩士生活既充實也充 滿了溫馨。

更要感謝我的家人以及女友淑玲,總是在背後默默的支持及鼓勵,給予我高 度的肯定,才有今日成長的我,都是因為你們真誠無私的愛與無可替代的存在, 才能讓我堅持到最後,在此向他們送上最真摯的感謝。

最後再感謝我的口試委員:張鼎張、冉曉雯和劉漢文 教授,感謝你們的建 議和指導;也感謝交大,讓我能在如此優良的環境中,順利完成論文並取得碩士 學位。

腾瑞 2009.06.16

English Abstract	I
Acknowledgements	
Contents	v
Figure Captions	VI
Table Lists	XI
1.1 Background 1.2 Motivation 1.3 Thesis Organization	
	w
Chapter 2 Photo Effect on Device	*
Chapter 2 Photo Effect on Device 2.1 The Different Structures of a-Si TFTs 2.2 Photo Effect of Front Light Illumination	

3.2 Sensor Structure and Operation Principle	19
3.2.1 Off Region Sensing Circuit (3T1C)	19
3.2.2 ON Region Sensing Circuit (4T2C)	20

3.3 Simulation	21
3.3.1 Simulation Method	
3.3.2 Simulation Method Result	
3.3.3 Discussion	22
3.4 Digitization	23

Chapter 4 Error Factors

4.1 Uniformity	38
4.2 Temperature	38
4.4 Back Light	39
4.4 Staebler-Wronski Effect	41
4.4.1 Same Degradation Ratio of Photo current under FL Stress	41
4.4.2 Top Metal Shielding Ratio	43
4.4.3 Without Back Light Stress	43
4.4.4 With Back Light Stress	45
4.5 Discussion	46
all market be	
Chapter 5 Conclusions	66

Figure Captions

Chapter 1

Fig. 1-1	1-1	The linearity between the illuminance and the photocurrent	
		of lateral PIN photodiodes with area =1000/11000/121000 μ m ²	
		(Ref. Hyun-Sang Park et al., SID'08)	5

Fig. 2-1(a) The cross-section views of Conventional-Gate a-Si TFTs structure 10
Fig. 2-1(b) The cross-section views of Gap-Gate a-Si TFTs structure 10
Fig. 2-1(c) The cross-section views of Dual-Gate a-Si TFTs structure 10
Fig. 2-2 Conventional gate TFT transfer characteristics in the dark and under
illumination at V_{ds} =10V including regions (i) ON (ii) subthreshold
(iii) OFF
Fig. 2-3 (a) and (b) Gap-Gate TFT transfer characteristics in the dark and under
illumination at V_{ds} =10V including regions (i) ON (ii) subthreshold
(iii) OFF
Fig. 2-4 (a) and (b) Dual-Gate TFT transfer characteristics in the dark and under
illumination at V_{ds} =10V and V_{GB} =10V including regions (i) ON
(ii) subthreshold (iii) OFF 13
Fig. 2-4 (c) and (d) Dual-Gate TFT transfer characteristics in the dark and under
illumination at V_{ds} =10V and V_{GB} = -10V including regions (i) ON
(ii) subthreshold (iii) OFF 14
Fig. 2-5 The relationships between photo current and illumination intensity

of Gap-Gate TFTs for several bias conditions in (a) the ON region and	
(b) OFF region, respectively	16
Fig. 2-6 show the comparison of the relative photo sensitivity between ON and	
OFF region (a) after normalized , (b) after differentiation	17

Fig. 3-1 Original light sensing circuit design	24
Fig. 3-2 Source follower as the readout part of sensor	24
Fig. 3-3 Photograph of the fabricated 2T1C light-sensing circuit	25
Fig. 3-4 Experiment result of light sensing circuit (a) in the dark	
(b) under illumination	26
Fig. 3-5 (a) Schematic of proposed 3T1C light-sensing circuit and	
(b) timing sequence	27
Fig. 3-6 (a) Schematic of proposed 4T2C light-sensing circuit and	
(b) timing sequence	28
Fig. 3-7 Illumination dependence of I_D - V_D characteristic and its fitting formula in	
(a) OFF region and (b) ON region	. 29
Fig. 3-8 (a) Schematic of conventional source follower (b) Wave form of the output	t
signal when the input triangular signal is 5V to 14V	31
Fig. 3-9 SPICE simulation results of TFT (W/L=20um/5um)	
(a) OFF region sensing, (b) ON region sensing	32
Fig. 3-10 (a) The modified 3T1C light-sensing circuit model for simulation	
(b) The modified 4T2C light-sensing circuit model for simulation	
(c) its time diagram	33
Fig. 3-11 (a) 3T1C light-sensing circuit model and (b) 4T2C light-sensing circuit	
model simulation results under illumination and in the dark	34

Fig. 3-12 (a) output voltage and (b) relative error results of the light-sensing circuits
under different illumination intensity in ON region and OFF region 35
Fig. 3-13 (a) Pixel of the fabricated 3T1C light-sensing circuit
Fig. 3-13 (b) Pixel of the fabricated 4T2C light-sensing circuit
Fig. 3-14 (a) Simplified block diagram of digitization circuit and (b) its signal
diagrams 37

Fig. 4-1 (a) OFF current variations of a-Si TFTs of 4 devices	47
Fig. 4-1 (b) ON current variations of a-Si TFTs of 4 devices	47
Fig. 4-2 Error analysis of ON current variation between the measured light intensity	
and the illuminated light intensity	48
Fig. 4-3 (a) The OFF current versus illumination intensity	
at 35°C, 40°C, and 45 °C	49
Fig. 4-3 (b) The ON current versus illumination intensity	
at 35°C, 40°C, and 45 °C	49
Fig. 4-4 Error analysis of temperature variation ($\pm 5^{\circ}$ C) between the measured light	
intensity and the illuminated light intensity in (a) OFF region and	
intensity and the illuminated light intensity in (a) OFF region and(b) ON region	50
 intensity and the illuminated light intensity in (a) OFF region and (b) ON region Fig. 4-5 (a) The ON current versus temperature at Vgs=10V, Vds = 10V 	50 51
 intensity and the illuminated light intensity in (a) OFF region and (b) ON region Fig. 4-5 (a) The ON current versus temperature at Vgs=10V, Vds = 10V Fig. 4-5 (b) The temperature coefficient versus temperature curves of 4 devices 	50 51 51
 intensity and the illuminated light intensity in (a) OFF region and (b) ON region Fig. 4-5 (a) The ON current versus temperature at Vgs=10V, Vds = 10V Fig. 4-5 (b) The temperature coefficient versus temperature curves of 4 devices Fig. 4-5 (c) Error analysis of temperature variation (±3.5°C) between the measured 	50 51 51
 intensity and the illuminated light intensity in (a) OFF region and (b) ON region Fig. 4-5 (a) The ON current versus temperature at Vgs=10V, Vds = 10V Fig. 4-5 (b) The temperature coefficient versus temperature curves of 4 devices Fig. 4-5 (c) Error analysis of temperature variation (±3.5°C) between the measured light intensity and the illuminated light intensity in ON region 	50 51 51 52
 intensity and the illuminated light intensity in (a) OFF region and (b) ON region Fig. 4-5 (a) The ON current versus temperature at Vgs=10V, Vds = 10V Fig. 4-5 (b) The temperature coefficient versus temperature curves of 4 devices Fig. 4-5 (c) Error analysis of temperature variation (±3.5°C) between the measured light intensity and the illuminated light intensity in ON region Fig. 4-6 Simulate a-Si TFT's real situation on panel 	50 51 51 52 52
 intensity and the illuminated light intensity in (a) OFF region and (b) ON region Fig. 4-5 (a) The ON current versus temperature at Vgs=10V, Vds = 10V Fig. 4-5 (b) The temperature coefficient versus temperature curves of 4 devices Fig. 4-5 (c) Error analysis of temperature variation (±3.5°C) between the measured light intensity and the illuminated light intensity in ON region Fig. 4-6 Simulate a-Si TFT's real situation on panel Fig. 4-7 (a) The OFF current versus FL illumination intensity without BL 	50 51 51 52 52

Fig. 4-7 (b) The ON current versus FL illumination intensity without BL
and with BL 53
Fig. 4-8 The relation between the measured light intensity and the illuminated light
intensity in (a) OFF region and (b) ON region 54
Fig. 4-9 Error analysis of backlight effect between the measured light intensity and
the illuminated light intensity in (a) OFF region and (b) ON region 55
Fig. 4-10 (a) Gap gate TFT transfer characteristics with SW effect at V_{DS} =10V 56
Fig. 4-10 (b) $I_{D}\text{-}V_{D}$ characteristics of OFF region and ON region with SW effect \ldots 56
Fig. 4-11 (a) Drain current versus front light stress time with different intensity 57
Fig. 4-11 (b) The power-law time dependence between drain current
and stress time
Fig. 4-12 (a) The top metal floating shielding (ES process) 58
Fig. 4-12 (b) The inverted bottom metal floating shielding (BCE process) simulating
the top metal shielding devices
Fig. 4-13 Drain current versus open ratio (a) before stress and (b) after stress 59
Fig. 4-14 The I_D /Open-ratio versus open-ratio (a) before stress and
(b) after stress
Fig. 4-15 (a) I_D /Open-ratio versus open-ratio under 50000 lux illumination
with different stress times
Fig. 4-15 (b) Error analysis of SW effect after calibration between the measured
light intensity and the illuminated light intensity
Fig. 4-16 (a) Optical stress with different light intensities and (b) I_D /Open-ratio versus
open-ratio under 50000 lux illumination with different stress times and
different stress light intensities
Fig. 4-16 (c) Error analysis of optical stress with different light intensities after
calibration between the measured light intensity and the illuminated

	light intensity	63
Fig. 4 - 17	(a) The drain current versus illumination intensity curves with different	
	optical stress times by 19160 lux FL and 16673 lux BL at $V_{\text{DS}}\text{=}10V$	64
Fig. 4-17	(b) Error analysis of optical stress by 19160 lux FL and 16673 lux BL	
	between the measured light intensity and the illuminated intensity	64

Table Lists

Chapter 2

Tab. 2-1	The comparison of the $R_{L/D}$ under illumination and in the dark and	
	the current level is shown in its inset among conventional-gate, gap-gate,	
	and dual-gate TFT	15

Table 3-1 $I_0(L)$ and $R_0 = 1/A_0(L)$ at $V_g = -10V$	
with the illumination intensity variation	30
Table 3-2 $I_0(L)$ and $R_0 = 1/A_0(L)$ at V _g = 10V	
with the illumination intensity variation	30

