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Abstract--We study the Berman problem 

f "  + Re0 c'2 - i f " )  = K, Re > 0, (' = d//dr/), 

subject to the conditions f(0) =f"(0)  = i f ( l )  =f(1)  - 1 = 0, which arises from laminar flows in a porous 
channel with suction. The existence of nonnegative concave solutions for each Re is verified by applying 
a topological method. With an a priori estimate, the uniqueness for small Re is also shown. 

1. I N T R O D U C T I O N  

The study of the flow of a viscous fluid confined by a porous wall is important, such as the 
separation of 235U from 238U by gaseous diffusion and the transpiration cooling of a heated surface. 
The separation process is performed by first converting uranium to the gas U F  6 and then forcing 
the converted gas through a porous wall via a pressure gradient. Consequently, a concentration 
of the desired component is obtained due to the difference in the rates of diffusion through the 
porous wall, which is caused by the difference in the molecular weights. Moreover, the transpiration 
cooling of heated surfaces such as a rocket wall or a wing surface in high-speed flight is carried 
out by injecting a cooler fluid through the porous-metal combustion-chamber lining to form a 
protective layer of cooler fluid near the wall for cooling the surface. 

Suppose that the porous wall is uniform and the rectangular channel is long enough such that 
the end effects are negligible. Berman [1] first showed that the corresponding two-dimensional 
Navier-Stokes system can be reduced to a similarity two-point boundary value problem: 

f"( t / )  + Re[(f'(t/)) 2 -f(~/)f"(~/)] = K, (1) 

with 

f(0) =f"(0)  =f ' (1 )  = f ( l )  - 1 = 0. (2) 

It was found that the solutions of problem (1,2) are governed by the crossflow Reynold number 
Re = V d / v ,  where V represents the normal velocity at the wall, v is the kinematic viscosity of the 
fluid and d denotes the half-width of the rectangular channel. It should be pointed out that a 
positive V represents the suction for a separation problem, while a negative V corresponds to the 
injection for cooling. Moreover, the similarity function f i s  related to the stream function, ~ is the 
normalized coordinate, with t /=  + 1 at the wall, and K is an integration constant from the 
derivation of problem (1,2). For convenience, we call problem (1,2) the Berman problem. 

Preliminary studies [1-5] of the Berman problem concentrated on the numerical reports for the 
one, and only, solution for each Re. However, a second similarity solution was first found by 
Raithby [6] for large suction, i.e. Re is large. Robinson [7] further presented numerically the second 
and third solutions for some moderate positive Re. With a transformation and the shooting 
method, Skalak and Wang [8] then studied an equivalent initial value problem and classified all 
possible solutions for both suction and injection. For injection, the Berman problem can only 
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possess nonnegative solutions. Shih [9] then gave a mathematical verification for the existence of  
solutions with each injection Re < 0. 

For suction, Skalak and Wang classified three different types of  solutions. Especially, if the 
parameters Re, - f" (1 )  and K are chosen on the first branch of  the bifurcation diagrams, as shown 
in Figs 1 and 2, the Berman problem has only nonnegative concave solutions. In this paper, the 
existence of  such solutions for each positive Re and the uniqueness of  the solution with small Re 
are verified. 

2. THE EXISTENCE THEOREM 

To study the existence property, some qualitative properties of  the solutions are given in the 
following lemma: 

[,emma 1. For Re # 0, i f f  is a solution of  the Berman problem, then 
(i) R e f  (iv) < 0 and f ' f" - f f "  > 0 on (0, 1]; 

(ii) 0 <<f,2 _ f f ,  <~ - f " (1 )  on (0, 1]. 

The proof of  assertion (i) was given by Skalak and Wang [8]. Let FO0 =f,2 _ff, , .  Then, from 
assertion (i), (F(D)(~/) is increasing. But, (F(f) ) (0)=f ' (O)  2 >>.0 and (F(f ) ) (1)=  - f"(1) .  Hence, 
assertion (ii) follows immediately and f(r/) can not be convex near ~/= 1. Now we state the main 
result: 

Theorem 1. For each Re > 0, there exists a real number K such that the Berman 
problem has at least one nonnegative concave solution. 

The theorem will be proved by a topological method proposed originally by Hastings [10]. That 
is, we shall fix a positive Re and find all nonempty open sets of shooting parameter pairs 
(a, K), a =f'(O), in R 2 on which the Berman problem does not possess any desired solution. If the 
union of  these sets is a proper subset of  R 2, then the Berman problem must have a solution. To 
support the desired property, we first quote two important topological lemmas: 

Lemma 2 [11]. Let p and q be two points of  R 2 which are separated by a closed set 
K (i.e. p and q lie in distinct components of  R 2 - K). Then p and q are separated by 
some component of  K. 

Lenuna 3 [11]. Let S be a connected subset of  R 2 which intersects both U and R: - U, 
where U is a subset of  R 2. Then S intersects t3U, the boundary of  U. 

Let f(r/; ~t, K) be the solution of  equation (1) which satisfies the initial conditions 

f(0; ~, K) =f" (0 ;  a, K) = f ' ( 0 ;  ~, K) - ~ = 0. (3) 
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Now we define the following sets: 

S+ = {(~, K) ~ R2:f(1; ~, K) > 1}, 

S_ = {(a, K)~  R~:f(1; ~, K) < 1}, 

S~. = {(~, K) ~ ~2:f '(1; ~, K) > 0} 

and 
S'_ = {(~, K) ~ Rz:f'(1; ~, K) < 0}. 

It is clear that for each (~, K) in either set, the Berman problem possesses no solution. Moreover, 
the sets S+, S_,  S~_ and S'_ are open, and both S+c~S_, S'+c~S'_ are empty. Now, the following 
lemma verifies the property that S+ and S~_ are nonempty: 

Lemma 4. (i) S~. contains a subset {(~, Re ~2): ~ > 0}; 
(ii) S+ contains a subset {(~, Re,Z): ~ > 1}. 

Proof. It is clear that ~q is a solution of  equation (1), subject to the initial condition (3). Then, 
by the uniqueness of  the solution of  the initial value problem, f(r/; ~ Re ~2)= ~r/. This yields that 

f(1;  ~, Re ~2) = f ' ( l ;  ~, Re ~2) = ~. (4) 

Thus, the lemma follows immediately. Q.E.D. 

Furthermore, the nonemptyness of  S_ and S L can be obtained by the following lemma: 

I.emma 5. (i) S_ contains a subset {(~, K): K - Re c~ 2 + 6~ - 6 ~< 0} - {(1, Re)}, 
(ii) S'_ contains a subset {(~, K): K - Re ~2 + 2~ ~< 0} - {(0, 0)}. 

Proof. We consider the following two cases. 
Case I. K - Re ~2 # 0. From equation (1), we have f ' (O;  ~, K) = K - Re ~2. Then by Lemma 

l, f ' ( q ; ~ ,  K)  is decreasing. Hence, from condition (3), we have 

f" (r l ;  ~, K) < K - Re ~2 

f " (q  ; ~, K) < (K - Re ~2)r/, 

f ' ( r / ;  ~, K) < (K - Re ~2)r/2/2 + 

and 
f(r/; ~t, K) < (K - Re ~2)~/3/6 + c~r/, 

Vr/> 0. Thus, we obtain that 

f ' (1 ;  ~, K) < 0, 

and 

and 

if K - Re ct 2 + 2~ ~ 0, 

f ( 1 ; ~ , K ) < l ,  i f K - R e ~ 2 + 6 ~ - 6 ~ < 0 .  

Case 2. K -  Re ~2= 0. From condition (4), we obtain that 

f(1;  ~, Re~2 )<  1, i f ~ < l  

f ' ( 1 ; a ,  R e ~ 2 ) < 0 ,  i f c t < 0 .  

Now combine the results in both cases, and the assertions of Lemma 5 are obtained. Q.E.D. 

The correlations between the curves K - Re ~t 2 = 0, K - Re ~t 2 + 2,t = 0 and K - Re ~t 2 + 
6ct - 6 = 0, when Re = 2 and Re = 3/2, are shown in Fig. 3. Moreover, it is now necessary to study 
a property concerning the set S + w S ' .  

Lemma 6. S+wS'_ contains a subset W = {(~, K): ~ > 2, K - Re ct 2 < 0}. 

Proof. For  (~t, K) in W, both f"(r/ ;  ~, K) and f ' ( q ;  ct, K) are nonpositive. Hence f ' ( r / ;  ~, K) is 
a concave, decreasing function. Now if ( ~ t , K ) e R 2 - S ' ,  then f '(1;0t,  K)~>0 and 
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f ' ( t / ; a , K )  1>c<-ar/VqE[0,1].  This shows that f(1;~t,K) l > ~ / 2 > l  and completes the 
proof. Q.E.D. 

To show that S+ •S_wS'+uS'_ ¢ •2, some properties concerning the components of these sets 
must be studied. Now let T~_ be the component of S~_ containing the set {(~, Re a2): c< > 0} and 
T'_ be the component of S'_ containing the set {(~t, K): K - Re az + 2a ~< 0} - {(0, 0)}. Since T~. 
and T'_ are disjoint, then any point p in T'_ must be separated from any point q in T~. by aT'_, 
the boundary of T'_. By Lemma 2, there exists a component F of OT'_ which separates p from 
q. In fact, the choice of F is independent o f p  and q, due to the fact that all points in the connected 
open set T'_ must lie in the same component of the complement of F, and the corresponding 
property holds for all points in T~_. 

Let F+ = {(~, K) e F: ~ i> 0, Re c< 2 - 2~ ~< K ~< Re ~2}. Suppose one can verify that F+ is a 
connected and unbounded set containing the origin (0, 0). Then F+ must intersect S_ and I4,'. 
Letting # be a point in F+c~ IF, then Lemma 6 implies that the point # must be in S÷. Then, by 
Lemma 3, F+ intersect 0S+. That is, there is a point # in OS'_OS+. Moreover, S+ c~S_ and S~_ c~S'_ 
are empty. Hence, the point p is not in the union of S+, S_, S~_ and S'_. Note that the point # 
must lie in the shaded region in Fig. 3. Thus, there exists at least a point (a, K) in R 2 such that 
f(1; ~t, K ) =  1 and f ' (1 ;  a, K ) =  0, and the result of Theorem 1 is obtained. In fact, we have the 
desired lemma as follows: 

Lemma 7. The set F÷ is a nonempty, connected and unbounded set containing the 
origin (0, 0). 

Proof. Suppose that the origin (0, 0) is not in F÷,  then there exists a neighborhood U of the 
origin such that U and F÷ are disjoint. Hence we may choose ct small enough that both (a, Re a:) 
and (~t, Re a 2 - 2 a )  are contained in U. This leads to a contradiction, since (a, Re~ 2) and 
(~, Re ~2_ 2a) are separated by F+. 

Let V = {(a, K): a > 0, Re a2 _ 2a < K < Re c<2}. If  F÷ is disconnected, then there are two open 
sets A and B such that A c~B = 0, (0, 0) e B and F+ c A uB. Thus, F c 2 u ~ ,  where .4 = A c~ V and 
/~ = B u ( R  2 - T0. This violates the connectness of F. 

If F÷ is bounded, then for sufficiently large a the points (a, Re ct 2) and (ct, Re ct 2 - 2~) lie in the 
same component of R: - F+. This leads to a contradiction again. Q.E.D. 

3. THE UNIQUENESS OF THE SOLUTION WITH SMALL Re 

To show the uniqueness, it is necessary to obtain an a priori estimate of solutions for the Berman 
problem. Now integrating equation (1) and applying condition (2), the Berman problem is 
equivalent to 

fo' f(t/)  = h(r/) + Re [J0/, t) - h(r/)J(1, t)l[f '2 - f f"]  dt (5) 
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and 

where J(r/, t) is given by 

and 

fO I K =  - 3 + 3 R e  J(1, t ) [ f ' 2 - f f " ] d t ,  (6) 

)'(1 -- t )q, 0 <~ ~ <~ t <~ 1, 
sO1' t )=) -½(?2+t~)+ , l ,  o ~ t  <.,1 <. l, 

~0 
1 

h(q) = 3 J(r/, s) ds = ½r/(3 - q2) =f0(r/). 

Note  that  f0(r/) is the unique solution of  the Berman problem when Re = 0. It is clear that  J(q, t) 
is Green's  function of  - v "  = 0, satisfying v (0 )=  v"(0)=  v ' (1 )=  0. F rom equation (5), f" ( r / )  can 
be written as 

f0 fo f " ( q )  = - 3tl - Re ([.,5 _ i f , , )  dt + 3 Re ~ J(l ,  t)O r'2 - i f " )  dt. (7) 

Note  that S~J(1, t )d t  = 1/3. Then, by Theorem 1, we conclude that  

--3q 4- Ref"(1)r /~<f"(r / )  ~< - 3 q  - Ref"(1)r/ ,  (8) 

since Re is positive. To establish an a p_riori bound o f f " ,  it is essential to estimate f"(1) .  However, 
3J(1, t) - 1 is nonnegative on [0, 1/x/~]. Then, from equation (7), we get 

f0' f " (1 )  = - 3  + Re [3J(1, t) - 1] [ f  '2 - i f " ]  dt 

> / - 3  + Re [3J(1, t) - 1]~ '2 - f f " ]  dt 
/X 

/> - 3  - Ref" (1 )  [3J(1, t) - 1] dt  = - 3  + Re/(3x/~]f"(1 ). 
/,/5 

Then, for each Re ~ (0, 3x/'-3), 

0 >~f"(1) t> 

Hence, we have the following lemma: 

- 3  

1 - Re/(3v/3)  " 

Lemma 8. For  every Re ~ (0, 3x/~ ), i f f  is a solution of  the Berman problem, then 

3 Re 
Ilf"ll~ ~< 3 -~ 1 - Re/(3x/~)" 

Now the uniqueness of  the solution with small Re can be given in the following theorem: 

Theorem 2. The Berman problem has a unique solution, if Re e (0, Re0), where 

Re0= - (72x/~ + 1)4- x/(72x/~ 4- 1) 5 4- 12x/~(72x/~ - 24) ~ 4.005014 x 10 -5. 
4 8 ( 3 v / 3 -  1) 

Proof. Assume that  gl and g2 are two solutions of  the Berman problem. Recall that  
FOr) = 0r') 2 - f f " .  Then, we have 

IF(g, ) - F(g2 )1 ~< Ig ~ - g ;l[Ig',l 4- [g;I] + [gil [g'l' - g;'[ 4- Ig ~l Ig, - g2 [ 

E Re 7 ,, 
~< 12 1 + 1 -  R~-~x/~)._]llg , -g~'ll~" 
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Hence, from equation (7), we get that 

I ] ,  _ Ilg',' - g~' I[~ ~< 24 Re Re-~-3 / ~ )  IIg',' - I1~. 

To reach contradiction, one requires that 

24 Re 1 + Re-~3./~) < 1. 

Hence, the condition 0 < Re < Re0 is sufficient. 

and 

In fact, let 

B = {u ~ C2[0, 1]: u(0) = u ' ( l )  = u"(O) = 0} 

Q.E.D.  

I[ul[  = Ilull  + Ilu'][  + flu"[l , 
one can show that B is a Banach space. But [lu I1~o ~< tlu'll~ ~ Ilu"ll~, Then we can choose 

9 Re 
~(Re) = 10 + 

1 - Re/(3x/~) 

and define an open set D = {u e B: [[u I[a < 6(Re)}. Now for each f i n  D, let the operator (T(/))(r/) 
be the r.h.s, of  equatien (5). Then, by routine arguments, one can apply the Leray-Schauder 
fixed-point theorem and verify the existence of  solutions for every fixed Re s (0, 3x/~), although it 
is a weak result. 

As shown in Figs 1 and 2, we have verified only a small portion of  the observed result from the 
bifurcation diagrams. However, Skalak and Wang [8] did classify all possible solutions and 
indicated that the Berman problem possesses three different types of  solutions when Re > Re*, for 
some Re* > 0. Therefore, further mathematical investigation is required to verify the existence of  
two other types of  solutions, and the multiplicity of  solutions also. 
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