第一章 緒論

1.1 研究動機

最後在利用不同的邊界條件,去解完整的環狀標,同樣利用系統 頻率矩陣行列式為零的特性求解,求出其振態。本文還使用有限元素 軟體 ANSYS, 樑元素 BEAM4 和彈簧元素 COMBIN14 組成其分析模型, 模型採用降階法分析(REDUCE),因為模型並不複雜,故採用指令的方 式建模,寫成 TXT 檔之後直接讀取。

1.3 文獻探討

非共平面的曲樑已經有很多學者發表了不少文章。Den Hartog[1] 用 Rayleigh-Ritz 法去找出圓弧的最低頻率,他是用拓展 Volterra 和 Morell[2,3]的方法,把中心線假設成擺線、懸垂線和拋物線。 0jalvo[4]則是去研究非完整彈性環成對的扭轉彎曲的振動。

有更多的研究是去做直樑放於彈性基礎上的動力反應。Kenny [5] 和 Mathews [6] 則是把樑放於 Winkler 基礎上, Rades [7] 則是研究有 限 Bernoulli-Euler 樑置於 Pasternak 基礎上的穩態反應。Wang 和 Stephens [8]研究 Timoshenko 樑置於 Winkler-Pasternak 基礎上的自 然振動,他們是拓展 Wang 和 Gagnon [9] 的多跨樑的自由和強迫振動 的研究。Love 和 Oajalvo [3] 則是用典型的運動方程式導出非完整環 兩端固定時的自然振動頻率。Culver 和 Oestal [13] 則是利用 Rayleigh-Ritz法把雨跨曲樑和未降伏的支撑合併起來並且找到其自 然振動頻率,Lee[14]則是在U形彎管中間放支撐點而去分析其自由 振動頻率。雖然以上這兩種方法都可以用於多跨粱,但這些分析會十 分的複雜和龐大。Chen [15] 則利用動力三彎矩公式求出多跨樑在不可 移動且不可旋轉的支點之自然頻率,但是在支點是可以旋轉且有位移 是但還是無法求出。

而上面提及之研究都沒有討論水平曲樑置於彈性基礎上。

Panayotunakos 和 Theocaris[10]則是做出了圓形 Timoshenko 樑在 Winkler 基礎上的自由振動頻率分析,而這些研究都是要求出在 Winkler-Pasternak 基礎上對曲形樑有何影響。

第二章 內文

2.1 基本假設

1. 單位長度的質量為定值

2. 初應變為零

3. 初始應力為零

4. 線性彈性行為

5. 在梁只承受彎矩行為下做探討,不加入剪力變形

6. 忽略斷面翹曲現象(Warping)

7. 曲樑變形很小,而且在材料的幾何線性與彈性範圍內。

8. 振動發生在曲樑的主平面 (principle plane) 內。

9. 只考慮面外 (Out of plane)

m

2.2 理論推導

現考慮一個平放在 Winkler-Pasternak 基礎上的環狀標。假設它微

小振動並且忽略掉阻尼、旋轉慣性、翹曲如下圖 2.1 所示。

Pasternak 基礎是一個含有剪力影響的 Winkler 基礎,所以它可以想 像成不可壓縮元素在尾端連接垂直彈簧。根據 A. D. KERR 的"Elastic and viscoleast foundation models" [2]可以把 $q(\theta,t)$ 表示成以下:

由圖 2.1 和圖 2.2 之自由體可得三個平衡方程式 $\sum M = 0$

$$\begin{split} M - (M + \frac{\partial M}{\partial \theta} d\theta) \cos d\theta + (T + \frac{\partial T}{\partial \theta} d\theta) \sin d\theta + V \times (Rd\theta) = 0 \\ & = d\theta \to 0 \Rightarrow \cos d\theta = 1 \quad \sin d\theta = d\theta \quad (d\theta)^2 \to 0 \\ \Rightarrow - \frac{\partial M}{\partial \theta} d\theta + T d\theta + VR d\theta = 0 \\ \Rightarrow \frac{1}{\partial \theta} \frac{\partial M}{-\frac{T}{R}} - V = 0 \\ & \sum T = 0 \\ T - (M + \frac{\partial M}{\partial \theta} d\theta) \sin d\theta + (T + \frac{\partial T}{\partial \theta} d\theta) \cos d\theta = 0 \\ & T - M d\theta - J' + \frac{\partial T}{\partial \theta} d\theta = 0 \\ \Rightarrow M - \frac{\partial T}{\partial \theta} = 0 \\ & \sum F_{\tau} = 0 \\ & \sum \frac{1}{\partial \theta} \frac{\partial T}{\partial \theta} + RR \frac{\partial^2 y}{\partial \theta^2} Rd\theta + qRd\theta = 0 \\ & = \frac{\partial V}{\partial \theta} d\theta + mR \frac{\partial^2 y}{\partial t^2} Rd\theta + Rq d\theta = 0 \\ & \Rightarrow \frac{1}{R} \frac{\partial V}{\partial \theta} - m \frac{\partial^2 y}{\partial t^2} d\theta + Rq d\theta = 0 \\ & \Rightarrow \frac{1}{R} \frac{\partial V}{\partial \theta} - m \frac{\partial^2 y}{\partial t^2} = 0 \\ & \sum \frac{1}{R} \frac{\partial V}{\partial \theta} - m \frac{\partial^2 y}{\partial t^2} Rd\theta + Rq d\theta = 0 \\ & \Rightarrow \frac{1}{R} \frac{\partial V}{\partial \theta} - m \frac{\partial^2 y}{\partial t^2} Rd\theta + Rq d\theta = 0 \\ & = \frac{1}{R} \frac{\partial V}{\partial \theta} - m \frac{\partial^2 y}{\partial t^2} Rd\theta + Rq d\theta = 0 \\ & = \frac{1}{R} \frac{\partial V}{\partial \theta} - m \frac{\partial^2 y}{\partial t^2} Rd\theta + Rq d\theta = 0 \\ & = \frac{1}{R} \frac{\partial V}{\partial \theta} - m \frac{\partial^2 y}{\partial t^2} Rd\theta + Rq d\theta = 0 \\ & = \frac{1}{R} \frac{\partial V}{\partial \theta} - m \frac{\partial^2 y}{\partial t^2} Rd\theta + Rq d\theta = 0 \\ & = \frac{1}{R} \frac{\partial V}{\partial \theta} - m \frac{\partial^2 y}{\partial t^2} Rd\theta + Rq d\theta = 0 \\ & = \frac{1}{R} \frac{\partial V}{\partial \theta} - m \frac{\partial^2 y}{\partial t^2} Rd\theta + Rq d\theta = 0 \\ & = \frac{1}{R} \frac{\partial V}{\partial \theta} - m \frac{\partial^2 y}{\partial t^2} Rd\theta + Rq d\theta = 0 \\ & = \frac{1}{R} \frac{\partial V}{\partial \theta} - m \frac{\partial^2 y}{\partial t^2} Rd\theta + Rq d\theta = 0 \\ & = \frac{1}{R} \frac{\partial V}{\partial \theta} - m \frac{\partial^2 y}{\partial t^2} Rd\theta + Rq d\theta = 0 \\ & = \frac{1}{R} \frac{\partial V}{\partial \theta} - m \frac{\partial^2 y}{\partial t^2} Rd\theta + Rq d\theta = 0 \\ & = \frac{1}{R} \frac{\partial V}{\partial \theta} - m \frac{\partial^2 y}{\partial t^2} Rd\theta + Rq d\theta = 0 \\ & = \frac{1}{R} \frac{\partial V}{\partial t^2} Rd\theta + Rq d\theta = 0 \\ & = \frac{1}{R} \frac{\partial V}{\partial t^2} Rd\theta + Rq d\theta = 0 \\ & = \frac{1}{R} \frac{\partial V}{\partial t^2} Rd\theta + Rq d\theta = 0 \\ & = \frac{1}{R} \frac{\partial V}{\partial t^2} Rd\theta + R \frac{\partial V}{\partial t^2} Rd\theta = 0 \\ & = \frac{1}{R} \frac{\partial V}{\partial t^2} Rd\theta + R \frac{\partial V}{\partial t^2} Rd\theta + R \frac{\partial V}{\partial t^2} Rd\theta = 0 \\ & = \frac{1}{R} \frac{\partial V}{\partial t^2} Rd\theta + R \frac{\partial V}{\partial t^2} Rd\theta = 0 \\ & = \frac{1}{R} \frac{\partial V}{\partial t^2} Rd\theta + R \frac{\partial V}{\partial t^2} Rd\theta = 0 \\ & = \frac{1}{R} \frac{\partial V}{\partial t^2} Rd\theta + R \frac{\partial V}{\partial t^2} Rd\theta = 0 \\ & = \frac{1}{R} \frac{\partial V}{\partial t^2} Rd\theta + R \frac{\partial V}{\partial t^2} Rd\theta = 0 \\ & = \frac{1}{R} \frac{\partial V}{\partial t^2} Rd\theta + R \frac{\partial V}{\partial t^2} Rd\theta = 0 \\ & = \frac{1}{R} \frac{\partial V}{\partial t^2} Rd\theta + R \frac{$$

2.4 控制方程式推導

分別對(2)(3)偏微分,可得式子(7)~(10)

$$\frac{\partial \overline{M}}{\partial \theta} = (EI/R^2)(R\frac{\partial \beta}{\partial \theta} - \frac{\partial^3 y}{\partial \theta^3})$$
(7)

$$\frac{\partial^2 \overline{M}}{\partial \theta^2} = (EI/R^2) \left(R \frac{\partial^2 \beta}{\partial \theta^2} - \frac{\partial^4 y}{\partial \theta^4} \right)$$
(8)

$$\frac{\partial I}{\partial \theta} = (GJ / R^2) (R \frac{\partial \beta}{\partial \theta^2} - \frac{\partial y}{\partial \theta^2})$$
(9)
$$\frac{\partial^2 \overline{T}}{\partial \theta^2} = (GJ / R^2) (R \frac{\partial^3 \beta}{\partial \theta^3} - \frac{\partial^3 y}{\partial \theta^3})$$
(10)

(11)

(12)

式(6)經移項後可得1/(11)

$$\overline{V} = \frac{1}{R} \left(\frac{\partial \overline{M}}{\partial \theta} - \overline{T} \right)$$

次偏微分:

$$\frac{\partial \overline{V}}{\partial \theta} = \frac{1}{R} \left(\frac{\partial^2 \overline{M}}{\partial \theta^2} - \frac{\partial \overline{T}}{\partial \theta} \right)$$

將式(12)代入式(5):

 $\frac{1}{R^4}$

$$\frac{1}{R}\frac{\partial \overline{V}}{\partial \theta} - m\frac{\partial^2 y}{\partial t^2} - q = 0$$

$$\times \frac{1}{R}\left(\frac{\partial^2 \overline{M}}{\partial \theta^2} - \frac{\partial \overline{T}}{\partial \theta}\right) - m\frac{\partial^2 y}{\partial t^2} - ky = 0$$

$$EI\left(R\frac{\partial^{2}\beta}{\partial\theta^{2}} - \frac{\partial^{4}y}{\partial\theta^{4}}\right) - GJ\left(R\frac{\partial^{2}\beta}{\partial\theta^{2}} - \frac{\partial^{2}y}{\partial\theta^{2}}\right) - m\frac{\partial^{2}y}{\partialt^{2}} - ky = 0$$

$$\Rightarrow \left(R\frac{\partial^{2}\beta}{\partial\theta^{2}} - \frac{\partial^{4}y}{\partial\theta^{4}}\right) - \gamma \left(R\frac{\partial^{2}\beta}{\partial\theta^{2}} - \frac{\partial^{2}y}{\partial\theta^{2}}\right) - \frac{R^{4}}{EI}m\frac{\partial^{2}y}{\partial t^{2}} - \frac{R^{4}}{EI}ky = 0$$
$$\Rightarrow \frac{\partial^{2}\beta}{\partial\theta^{2}}(R - R\gamma) = \frac{\partial^{4}y}{\partial\theta^{4}} - \gamma \frac{\partial^{2}y}{\partial\theta^{2}} + m\frac{\partial^{2}y}{\partial t^{2}}\frac{R^{4}}{EI} + \frac{R^{4}}{EI}ky$$

$$\Rightarrow \frac{\partial^2 \beta}{\partial \theta^2} = -\frac{1}{R} \frac{1}{1+\gamma} \left(\frac{\partial^4 y}{\partial \theta^4} - \gamma \frac{\partial^2 y}{\partial \theta^2} + m \frac{\partial^2 y}{\partial t^2} \frac{R^4}{EI} + \frac{R^4}{EI} ky \right)$$
(13)

將式(2)、(9)代入:

$$\overline{M} - \frac{\partial \overline{T}}{\partial \theta} = 0 \tag{4}$$

得

$$\begin{split} (EI/R^{2})(R\beta - \frac{\partial^{2}y}{\partial\theta^{2}}) &= (GJ/R^{2})(R\frac{\partial^{2}\beta}{\partial\theta^{2}} - \frac{\partial^{2}y}{\partial\theta^{2}}) \quad (14) \\ &= R\beta - \frac{\partial^{3}y}{\partial\theta^{2}} = \gamma(R\frac{\partial^{2}\beta}{\partial\theta^{2}} - \frac{\partial^{2}y}{\partial\theta^{2}}) \\ R\beta &= \gamma(R\frac{\partial^{2}\beta}{\partial\theta^{2}} - \frac{\partial^{2}y}{\partial\theta^{2}}) + \frac{\partial^{2}y}{\partial\theta^{2}} \quad (15) \\ \Re(13) \pm \mathcal{K} \wedge \pm (15) : \\ R\beta &= -R\gamma \times \frac{1}{K} \frac{1}{1+\gamma} (\frac{\partial^{4}y}{\partial\theta^{4}} - \gamma\frac{\partial^{2}y}{\partial\theta^{2}} + m\frac{\partial^{2}y}{\partial\theta^{2}}R^{4} + \frac{R^{4}}{EI}ky) - \gamma\frac{\partial^{2}y}{\partial\theta^{2}} + \frac{\partial^{2}y}{\partial\theta^{2}} \\ &= -\frac{\gamma}{1+\gamma} \left\{ \frac{\partial^{4}y}{\partial\theta^{4}} + \frac{\partial^{2}y}{\partial\theta^{2}} + m\frac{R^{4}}{EI}\frac{\partial^{2}y}{\partial\theta^{2}} + \frac{R^{4}}{EI}ky + \left[-\gamma - (-\frac{1+\gamma}{1}) + (-\frac{1+\gamma}{\gamma}) \right] \frac{\partial^{2}y}{\partial\theta^{2}} \right\} \\ &= -\frac{\gamma}{1+\gamma} \left[\frac{\partial^{4}y}{\partial\theta^{4}} + (2+\frac{1}{\gamma})\frac{\partial^{2}y}{\partial\theta^{2}} + \frac{mR^{4}}{EI}\frac{\partial^{2}y}{\partial\theta^{2}} + \frac{R^{4}}{EI}ky \right] \quad (16) \\ \Re \pm R\beta &= -\frac{\gamma}{1+\gamma} \left[\frac{\partial^{4}y}{\partial\theta^{4}} + (2+\frac{1}{\gamma})\frac{\partial^{2}y}{\partial\theta^{2}} + \frac{mR^{4}}{EI}\frac{\partial^{2}y}{\partial\theta^{2}} + \frac{R^{4}}{EI}ky \right] \quad (16) \\ \Re = R\beta &= -\frac{\gamma}{1+\gamma} \left[\frac{\partial^{4}y}{\partial\theta^{4}} + (2+\frac{1}{\gamma})\frac{\partial^{2}y}{\partial\theta^{2}} + \frac{mR^{4}}{EI}\frac{\partial^{2}y}{\partial\theta^{2}} + \frac{R^{4}}{EI}ky \right] \quad (16) \\ \Re = R\beta &= -\frac{\gamma}{1+\gamma} \left[\frac{\partial^{4}y}{\partial\theta^{4}} + (2+\frac{1}{\gamma})\frac{\partial^{4}y}{\partial\theta^{2}} + \frac{mR^{4}}{EI}\frac{\partial^{2}y}{\partial\theta^{2}} + \frac{R^{4}}{EI}\frac{\partial^{2}y}{\partial\theta^{2}} + \frac{R^{4}}{$$

$$\frac{\partial^4 y}{\partial t^2 \partial \theta^2} = Y''\ddot{G}$$
$$\frac{\partial^2 y}{\partial t^2} = Y\ddot{G}$$

故代入式(16)、(19)可得:

$$\Rightarrow Y^{\nu \gamma}G + (2 + \frac{1}{\gamma})Y^{\nu}G + (1 + \frac{kR^{4}}{EI})Y^{\mu}G - \frac{R^{4}k}{\gamma EI}YG + \frac{mR^{4}}{EI}YG - \frac{mR^{4}}{\gamma EI}XG = 0
G(Y^{\nu \gamma} + (2 + \frac{1}{\gamma})Y^{\nu \nu} + (1 + \frac{kR^{4}}{EI})Y^{\mu} - \frac{R^{4}k}{\gamma EI}Y = \ddot{G}(\frac{mR^{4}}{\gamma EI}Y - \frac{mR^{4}}{EI}Y^{\mu})
Y^{\nu \gamma} + (2 + \frac{1}{\gamma})Y^{\nu \nu} + (1 + \frac{kR^{4}}{EI})Y^{\mu} - \frac{R^{4}k}{\gamma EI}Y = \ddot{G} = -p^{2}
\frac{mR^{4}}{\mu Q Z} Y - \frac{mR^{4}p^{2}}{EI}Y - \frac{mR^{4}p^{2}}{EI} + w^{2} = \frac{kR^{4}}{EI}$$

 政 p 為自然振動頻率 + 故可以得到兩條微分方程式:
 $\ddot{G} + p^{2}G = 0$
 (20)
 $Y^{\nu \gamma} + 2Y^{\nu \nu} + (1 + w^{2} - \lambda^{2})Y^{\mu} + (\lambda^{2} - w^{2})Y / y = 0$

 (21)

 解式(20)可解得:
 $G = C_{1}e^{i\omega \mu} + C_{2}e^{-i\omega \mu}$
 C_{1}, C_{2} is constant
 (22)

 解式(21):
 $\varphi Y = e^{i\theta}$ 代入式(21)可得

 $\varphi T = e^{i\theta} + (1 + w^{2} - \lambda^{2})r^{2}e^{i\theta} + e^{i\theta}(\lambda^{2} - w^{2})/\gamma = 0
 $e^{i\theta} \Big[r^{6} - \frac{2}{\gamma}r^{4}e^{i\theta} + (1 + w^{2} - \lambda^{2})r^{2}e^{i\theta} + e^{i\theta}(\lambda^{2} - w^{2})/\gamma = 0
 $e^{i\theta} \Big[r^{6} - \frac{2}{\gamma}r^{4}e^{i\theta} + (1 + w^{2} - \lambda^{2})r^{2}e^{i\theta} + e^{i\theta}(\lambda^{2} - w^{2})/\gamma = 0
 e^{i\theta} \Big[r^{6} - \frac{2}{\gamma}r^{4}e^{i\theta} + (1 + w^{2} - \lambda^{2})r^{2}e^{i\theta} + e^{i\theta}(\lambda^{2} - w^{2})/\gamma = 0
 e^{i\theta} \Big[r^{6} - \frac{2}{\gamma}r^{4}e^{i\theta} + (1 + w^{2} - \lambda^{2})r^{2}e^{i\theta} + e^{i\theta}(\lambda^{2} - w^{2})/\gamma = 0$$$

解

$$r^{6} - \frac{2}{\gamma}r^{4} + (1 + w^{2} - \lambda^{2})r^{2} + (\lambda^{2} - w^{2})/\gamma = 0$$
(23)

(25)

(26)

r₁~r₆為上式之解,故式(23)的解為:

r₁~r₆為3對共軛的虛數,本文後面有討論

 $Y = D_1 e^{r_1 \theta} + D_2 e^{r_2 \theta} + D_3 e^{r_3 \theta} + D_4 e^{r_4 \theta} + D_5 e^{r_5 \theta} + D_6 e^{r_6 \theta} \quad D_1 \sim D_6 \text{ is constant (24)}$

2.6 代入邊界條件解代定係數

現觀察式(23)可改修正為以下:

 $\oint s = r^2$

$$\Rightarrow s^3 - \frac{2}{\gamma}s^2 + (1 + w^2 - \lambda^2)s + (\lambda^2 - w^2)/\gamma = 0$$

式(25)為一元三次方程式,可用下列方法求解:

已 年
$$as^3 + bs^2 + cs + d = 0, a \neq 0$$

2

$$s_{1} = -\frac{b}{3a} + \sqrt[3]{\frac{bc}{6a^{2}}} - \frac{b^{3}}{27a^{3}} - \frac{d}{2a} + \sqrt{(\frac{b^{3}}{27a^{3}} + \frac{d}{2a} - \frac{bc}{6a^{2}})^{2} + (\frac{c}{3a} - \frac{b^{2}}{9a^{2}})^{3}} + \sqrt[3]{\frac{bc}{6a^{2}}} - \frac{b^{3}}{27a^{3}} - \frac{d}{2a} - \sqrt{(\frac{b^{3}}{27a^{3}} + \frac{d}{2a} - \frac{bc}{6a^{2}})^{2} + (\frac{c}{3a} - \frac{b^{2}}{9a^{2}})^{3}} + \frac{bc}{3a} - \frac{b}{3a} + \frac{-1 + \sqrt{3}i}{2}\sqrt[3]{\frac{bc}{6a^{2}}} - \frac{b^{3}}{27a^{3}} - \frac{d}{2a} + \sqrt{(\frac{b^{3}}{27a^{3}} + \frac{d}{2a} - \frac{bc}{6a^{2}})^{2} + (\frac{c}{3a} - \frac{bc}{9a^{2}})^{3}} + \frac{-1 - \sqrt{3}i}{2}\sqrt[3]{\frac{bc}{6a^{2}}} - \frac{b^{3}}{27a^{3}} - \frac{d}{2a} + \sqrt{(\frac{b^{3}}{27a^{3}} + \frac{d}{2a} - \frac{bc}{6a^{2}})^{2} + (\frac{c}{3a} - \frac{bc}{6a^{2}})^{2}} + \frac{-1 - \sqrt{3}i}{2}\sqrt[3]{\frac{bc}{6a^{2}}} - \frac{b^{3}}{27a^{3}} - \frac{d}{2a} + \sqrt{(\frac{b^{3}}{27a^{3}} + \frac{d}{2a} - \frac{bc}{6a^{2}})^{2}} + \frac{c}{2a} - \frac{b^{2}}{6a^{2}} + \frac{b^{2}}{27a^{3}} - \frac{b^{2}}{2a} + \frac{b^{2}}{27a^{3}} - \frac{b^{2}}{2a} + \frac{b^{2}}{2a} - \frac{b^{2}}{2a} + \frac{b^{2}}{2a} +$$

$$s_{3} = -\frac{b}{3a} + \frac{-1 - \sqrt{3}i}{2} \sqrt[3]{\frac{bc}{6a^{2}} - \frac{b^{3}}{27a^{3}} - \frac{d}{2a}} + \sqrt{(\frac{b^{3}}{27a^{3}} + \frac{d}{2a} - \frac{bc}{6a^{2}})^{2} + (\frac{c}{3a} - \frac{b^{2}}{9a^{2}})^{3}} + \frac{-1 + \sqrt{3}i}{2} \sqrt[3]{\frac{bc}{6a^{2}} - \frac{b^{3}}{27a^{3}} - \frac{d}{2a}} - \sqrt{(\frac{b^{3}}{27a^{3}} + \frac{d}{2a} - \frac{bc}{6a^{2}})^{2} + (\frac{c}{3a} - \frac{b^{2}}{9a^{2}})^{3}}$$

判別式
$$\Delta = (\frac{b^3}{27a^2} + \frac{d}{2a} - \frac{bc}{6a^2}y^2 + (\frac{c}{3a} - \frac{b^2}{9a^2})^3$$
 (27)
 $\wedge > 0$ 方程有一質根和の時共軛復根
 $\Delta = 0$ 方程有三質常根
 $\wedge < 0$ 方程有三質報
PS. 在本篇論文・只封勤小於零的案例、具他的CASE 不討論。
現把式(24) $Y = D_e^{a\theta} + D_e^{e^{x\theta}} + D_e^{e^{x\theta}} + D_e^{e^{x\theta}} + D_e^{e^{x\theta}} & D_e^{e^{x\theta$

第三章 環型標之分析

在此要分析角度為360度的樑,故其邊界條界會有所變化,會變

$$\begin{bmatrix} x_{1}(\cosh(2\pi x_{1})-1) & \sinh(2\pi x_{1}) & x_{2}(\cosh(2\pi x_{2})-1) & \sinh(2\pi x_{2}) & x_{3}(\cosh(2\pi x_{3})-1) & \sinh(2\pi x_{3}) \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{5} \\ c_{5} \end{bmatrix} = 0$$

$$\begin{bmatrix} \mathbf{E}\mathbf{C}, \mathbf{3} & R\rho(0) = R\rho(2\pi) \\ \mathbf{A} & \mathbf{B}_{e} = \begin{bmatrix} yx^{4} + (1+2y)\frac{1}{2}x^{2}_{e} + w^{2} \\ \mathbf{A} & n = 1 - 3 \\ R\rho(0) = R(c, B, \sin(x, \theta) + c_{e}B, \cosh(x, \theta) + c_{e}B, \sinh(x, \theta) + c_{e}B, \cosh(x, \theta)) \\ R\rho(0) = R(c, B, \sin(x, \theta) + c_{e}B, \cosh(x, \theta) + c_{e}B, \sinh(x, \theta) + c_{e}B, \sinh(2\pi x_{1}) + c_{e}B, \cosh(2\pi x_{1}) - 1 \end{bmatrix} = 0$$

$$\begin{bmatrix} B, \sinh(2\pi x_{1}) & c_{e}B, \sinh(2\pi x_{1}) + c_{e}B, \sinh(2\pi x_{1}) + c_{e}B, \sinh(2\pi x_{1}) + c_{e}B, \sinh(2\pi x_{1}) + c_{e}B, \cosh(2\pi x_{1}) - 1 \end{bmatrix} = 0$$

$$\begin{bmatrix} C \\ c_{2} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{4} \\ c_{2} \\ c_{5} \\ c_{5} \end{bmatrix} = 0$$

$$\begin{bmatrix} B, \sinh(2\pi x_{1}) & c_{2}B, \sinh(2\pi x_{2}) & \cosh(2\pi x_{1}) - 1 \\ \mathbf{A} \\ \mathbf{B} \\ \mathbf{B} \\ \mathbf{B} \\ \mathbf{B} \\ \mathbf{C} \\ \mathbf{A} \\ (0) = -M(2\pi) \end{bmatrix} = 0$$

$$\begin{bmatrix} C \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{5} \\ c_{5}$$

$$\begin{bmatrix} D_{1} \sinh(2\pi x_{1}) & \cosh(2\pi x_{1}) + 1 & D_{2} \sinh(2\pi x_{2}) & \cosh(2\pi x_{3}) + 1 & D_{1} \sinh(2\pi x_{1}) & \cosh(2\pi x_{1}) + 1 \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \\ c_{3} \end{bmatrix} = 0$$

$$\begin{bmatrix} \mathbf{BC}, \mathbf{5} & T(0) = -T(2\pi) & (\mathbf{34}) \\ T(\theta) = c_{1}E_{1}\cosh(x_{1}\theta) + c_{2}E_{1}\sinh(x_{1}\theta) + c_{3}E_{2}\cos(x_{2}\theta) + \\ c_{4}E_{2}\sinh(x_{1}\theta) + c_{2}E_{3}\cosh(x_{1}\theta) + c_{3}E_{3}\cosh(x_{3}\theta) \\ T(0) = c_{1}E_{1} + c_{2}E_{2} + c_{1}E_{3} \\ T(2\pi) = (c_{1}E_{1}\cosh(2\pi x_{1}) + c_{2}E_{3}\sinh(2\pi x_{1}) + c_{3}E_{3}\cos(2\pi x_{2}) + \\ c_{4}E_{2}\sinh(2\pi x_{1}) + c_{4}E_{3}\sinh(2\pi x_{1}) + c_{5}E_{5}\sinh(2\pi x_{5})) \\ c_{4}E_{1}\left[\cosh(2\pi x_{1}) + 1 + c_{4}E_{5}\sinh(2\pi x_{1}) + c_{4}E_{5}\sinh(2\pi x_{3}) + 0 \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{5} \\ c_{6} \end{bmatrix} = 0$$

$$\begin{bmatrix} \cosh(2\pi x_{1}) + 1 + E_{1}\sinh(2\pi x_{1}) & \cosh(2\pi x_{2}) + 1 + E_{5}\sinh(2\pi x_{3}) + 0 \\ B = B = B \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \\ c_{6} \end{bmatrix} = 0$$

$$\begin{bmatrix} C_{1} \\ c_{2} \\ c_{6} \\ c_{6} \end{bmatrix} = 0$$

$$\begin{bmatrix} C_{1} \\ c_{6} \\ c_{6} \\ c_{6} \end{bmatrix} = 0$$

$$\begin{bmatrix} C_{1} \\ c_{6} \\ c_{6} \\ c_{6} \end{bmatrix} = 0$$

$$\begin{bmatrix} C_{1} \\ c_{6} \\ c_{6} \\ c_{6} \end{bmatrix} = 0$$

$$\begin{bmatrix} C_{2} \\ c_{6} \\ c_{6} \\ c_{6} \end{bmatrix} = 0$$

$$\begin{bmatrix} C_{1} \\ c_{6} \\ c_{6} \\ c_{6} \\ c_{6} \end{bmatrix} = 0$$

$$\begin{bmatrix} C_{1} \\ c_{6} \\ c_{6} \\ c_{6} \\ c_{6} \end{bmatrix} = 0$$

$$\begin{bmatrix} C_{1} \\ c_{6} \\ c_{6} \\ c_{6} \\ c_{6} \\ c_{6} \end{bmatrix} = 0$$

$$\begin{bmatrix} C_{1} \\ c_{6} \\ c_{6} \\ c_{6} \\ c_{6} \\ c_{6} \end{bmatrix} = 0$$

$$\begin{bmatrix} C_{1} \\ c_{1} \\ c_{6} \\ c_{6} \\ c_{6} \\ c_{6} \end{bmatrix} = 0$$

$$\begin{bmatrix} C_{1} \\ c_{1} \\ c_{6} \\ c_{6} \\ c_{6} \\ c_{6} \\ c_{6} \end{bmatrix} = 0$$

$$\begin{bmatrix} C_{1} \\ c_{1} \\ c_{6} \\ c_{6} \\ c_{6} \\ c_{6} \end{bmatrix} = 0$$

$$\begin{bmatrix} C_{1} \\ c_{1} \\ c_{6} \\ c_{6} \\ c_{6} \\ c_{6} \end{bmatrix} = 0$$

$$\begin{bmatrix} C_{1} \\ c_{1} \\ c_{6} \\ c_{6} \\ c_{6} \\ c_{6} \\ c_{6} \end{bmatrix} = 0$$

$$\begin{bmatrix} C_{1} \\ c_{1} \\ c_{1} \\ c_{6} \\ c_{6} \\ c_{6} \\ c_{6} \\ c_{6} \\ c_{6} \end{bmatrix} = 0$$

$$\begin{bmatrix} C_{1} \\ c_{1} \\ c_{1} \\ c_{6} \\ c_{6}$$

$$c_{1}F_{1}[\cosh(2\pi x_{1})+1]+c_{2}F_{1}\sinh(2\pi x_{1})+c_{3}F_{2}[\cosh(2\pi x_{2})+1]+c_{6}F_{3}\sinh(2\pi x_{3})=0$$

$$[\cosh(2\pi x_{1})+1 F_{1}\sinh(2\pi x_{1}) \cosh(2\pi x_{2})+1 F_{2}\sinh(2\pi x_{2}) \cosh(2\pi x_{3})+1 F_{3}\sinh(2\pi x_{3})] \begin{bmatrix} c_{1}\\ c_{2}\\ c_{3}\\ c_{4}\\ c_{5}\\ c_{6} \end{bmatrix} = 0$$

$$\pm \frac{1}{2} \exp(2\pi x_{1}) \exp(2\pi x_{2}) \exp(2\pi x_{2})+1 F_{2}\sinh(2\pi x_{2}) \cosh(2\pi x_{3})+1 F_{3}\sinh(2\pi x_{3}) \exp(2\pi x_{3})+1 F_{3}\sinh(2\pi x_{3$$

第四章 數值分析

4.1 使用系統頻率方程式

實線為 T.M Wang & W.F Branne 的數值,虛線為吾方法所求之數值。

4.2 模態之推導

由上已求出λ²,故可以帶入式(23)和式(29)分別求出x₁~x₃、a₁~a₃, 並代入頻率矩陣[B],且令代定系數c₁=1,則可以求出c₂~c₆,故把所 有的已知帶入式(28)可得以下的圖(已正規化)。橫座標單位(rad)、 縱座標為垂直位移(已無因次化)

圖 4.3 張開角度 60 度,第二模態

圖 4.5 張開角度 80 度,第一模態

圖 4.7 張開角度 80 度,第三模態

圖 4.9 張開角度 100 度,第二模態

圖 4.11 張開角度 120 度,第一模態

圖 4.13 張開角度 120 度,第三模態

圖 4.15 張開角度 140 度,第二模態

圖 4.17 張開角度 160 度,第一模態

圖 4.19 張開角度 160 度, 第三模態

圖 4.21 張開角度 180 度,第二模態

利用矩陣 G 行列式值必須為零之條件,利用試誤法可解出其λ², 並且用模態分析方法即可得知其振態,其下為環之振態圖。

圖 4.24 角度 360 度,第二模態

0.8 0.6 0.4 0.2 ō -0.2 -0.4 -0.6 -0.8 -1 1 2 3 5 圖 4.25 角度 360 度,第三模態 4.2 討論 由系統頻率方程式得之頻率參數和文獻相比可做成圖 4.1,由圖 可知所得之頻率參數在角度小的時候,和文獻所得相差的並不多,幾 乎沒有什麼改變,且在低頻的時候所產生之差距並不大。但在大角度 時,所產生之差距會隨著模態越高而差距越大,故可推測此方法在大 角度和高頻時會產生較大的差距。

且觀看圖 4.2 至圖 4.22,其圖形形狀大都呈現為 sin 和 cos 之 圖形,和吾之假設相符合,但在其峰處並不全都為1,但其圖形都呈 現對稱的現像,和吾之模型同樣有對稱的特性,其兩端垂直位移幾乎 等於零,和吾假設之邊界符合;觀看這章的所有圖表,其兩端的線幾 乎是平的,也就是說其斜率幾乎等於零,和吾假設邊界條件第二個和 第四個假設兩邊斜率為零相符合。

垂直位移的形狀呈現波形,和吾Y之假設相同,角度120度之前 在第一模態時只有一個波峰,角度超過120度之後其第一模態會開始 有兩個波峰,之後每增加一個模態則增加一個波峰。

第五章 ANSYS 分析與比較

5.1 元素介紹

BEAM4 (樑元素)

1. BEAM4 單元是一種具有拉壓彎扭能力的 3D 彈性單元。每節點 6 個自由度。

2. BEAM4 單元的定義包括:幾何位置的確定,單元坐標系的確定

BEAM4 單元包含兩個節點(i,j)或三個節點(i,j,k),k為單 元的方向節點;單元的截面特性用實常數(REAL)給出,主要包 括截面(area),兩個方向的截面慣性矩(IZZ)和(IYY),兩個方 向的厚度(TKY和TKZ),相對單元坐標系 x 軸的方向角(THETA), 扭轉慣性矩(IXX)。其中慣性矩,厚度,方向角都是在單元坐標

系下給出的。

截面特性的輸入。

3. BEAM4 單元坐標系的方向確定如下:單元坐標系 X 軸由節點 i, j 連線方向確定由 i 指向 j;對於兩節點確定的 BEAM4 單元, 若方向角 theta=0,則單元坐標系 y 軸默認平行於整體坐標系 的 x-y 平面;若單元坐標系 x 軸與整體坐標系 z 軸平行,則單 元坐標系 y 軸默認平行整體坐標系的 y 軸, z 軸由右手法則判 定;若用戶希望自己來控制單元繞單元坐標系 X 軸的轉動角, 則可以通過方向角 theta 或第三個節點 k 來實現, i, j, k 確 定一個平面,單元坐標系的 Z 軸就在該平面內。

COMBIN14 在縱向和扭轉有 1-D、 2-D、或 3-D 的應用。縱向的彈 簧阻尼選項為一個單軸的拉壓元素,且在每一個點有三個自由度:轉 變成點 X、y、Z 三個方向。彎曲和扭轉不在此考慮。扭轉彈簧阻尼選 項為一個純扭轉元素且每個點有三個自由度:分別對 X、Y、Z 三個軸旋轉。在此不考慮彎曲和軸向力。此彈簧組尼元素是沒有質量的。質量可以介由 MASS21 被加上。彈簧和阻尼可以從元素上面被移除。

TORQUE

因為模型較為簡單,故採用指令式的方法建模,且把它寫成txt 檔(附錄1),只需讀取指令檔就可以完成分析,且所需之所有基本 參數都和第三章相同,分析完畢之後在與理論做比較。以下為ANSYS 結果和理論的相比圖;實線為ANYSY之值,虛線為理論之值。橫座標

圖 5.2 COMBIN14 幾何形狀

單位(rad)、縱座標為垂直位移(已無因次化)

1

圖 5.4 張開角度 60 度,第二模態

圖 5.6 張開角度 80 度,第一模態

圖 5.8 張開角度 80 度,第三模態

圖 5.10 張開角度 100 度,第二模態

圖 5.12 張開角度 120 度,第一模態

圖 5.14 張開角度 120 度,第三模態

圖 5.16 張開角度 140 度, 第二模態

圖 5.18 張開角度 160 度,第一模態

圖 5.20 張開角度 160 度, 第三模態

圖 5.22 張開角度 180 度,第二模態

第六章 結論與建議

6.1 結論

1. 當張開角度變大時,其自然頻率會變小。

2. 當張開角度變大時,其頻率參數差異性會變大。

3. 張開角度大於某個程度時,其第一振態並非只有一個波峰,而是

出現多個波峰。

4. 找根時起始值很重要,會影響到最後結果是否找的到其解。

5. 找根時,利用三次方程式之判別式<0,確定其根為純實數或純虛

數,可提高找根之效率和正確性。

- 其振態圖呈現對稱現象,和吾模型形狀假設相同。
- 7. 其振態圖呈現簡諧函數之圖形,和吾用雙曲函數和指數函數有關。
- 8. 與 ANSYS 結果相比,振態圖在兩端幾乎相同,中間才出現些許變

9. 與 ANSYS 結果相比,當角度越大時,模態在低頻差異越大,到了

高頻則漸漸趨於相同。

6.2 建議

化。

本文利用對物體很直觀的物理性質求出其控制方程式,相較於用 有限元素法解同樣的問題,運算會更為精簡、快速。而在此提供一些 新的考量運用於結構物中。 (一)考慮更多形狀或是多跨距之不同響應。

(二) 改變其邊界束制條件。

(三) 可把曲線結構和直線結構做結合。

(四) 截面積為非均匀或是隨軸向變化。

896 m

參考文獻

- J.P. DEN HARTOG 1956 Mechanical Vibrations. New York: McGraw-Hill, fourth edition.
- 2. E. VOLTERRA and J. D. MORELL 1961 Journal of the Acoustical Society of America 33, 1787-1790. Lowest natural frequencies of elastic hinged arcs.
- 8. E. VOLTERRA and J. D. MORELL 1961 Journal of Applied Mechanics 28, 624-62. Lowest natural frequencies of elastic arc for vibrations outside the plane of initial curvature.
 4. I. U. OJALVO 1962 International Journal of Mechanical Sciences 4, 53-72. Coupled twist bending vibrations of incomplete elastic rings.
 - 5. J. T. KENNY 1954 Journal of Applied Mechanics 21, 359-364. Steady-state vibrations of beam on elastic foundation for moving load.
 - P. M. MATHEWS 1958 Zeitschrift für Angewandte Mathematik und Mechanik 38, 105–115. Vibrations of a beam on elastic foundation.
 - 7. M. RADES 1970 International Journal of Solids and Structures

6, 739-756. Steady-state response of a finite beam on a Pasternak-type foundation.

- 8. T. M. WANG and J. E. STEPHENS 1977 Journal of Sound and Vibration 51, 149–155. Natural frequencies of Timoshenko beams on Pasternak foundations.
- 9. T. M. Wang and L. W. GAGNON 1978 Journal of Sound and Vibration 59, 211-220. Vibrations of continuous Timoshenko beams on Winkler-Pasternak foundations.
- 10. D. E. PANAYOTOUNAKOS and P. S. THEOCARIS 1980 Journal of Applied Mechanics47, 139-144. The dynamically loaded circular beam on an elastic foundation.
- 11. E. VOLTERRA and J. H. GAINES 1971 Advanced Strength of Materials. Englewood Clift New Jersey: Prentice-Hall.
- 12. A. D. KERR 1964 Journal of Applied Mechanics 31, 491-498.Elastic and viscoelast foundation models.
- 13. C. G. CULVER and D. J. OESTAL 1969 Journal of Sound and Vibration 10, 380-389. Natural frequencies of multispan curved beams.
- 14. L. S. S. LEE 1975 Journal of Engineering for Industry,

Transactions of the American Society of Mechanical Engineers 97, 23-32. Vibrations of an intermediately supported U-bend tube.

- 15. S. -S. CHEN 1973 Journal of Acoustical Society of American53, 1179-1183. Coupled twist-bending waves and naturalfrequencies of multispan curved beams.
- 16. B. K. LEE, S. J. OH, J. M. MO and T. E. LEE 2008 Journal of Sound and Vibration 318 227-246. Out-of-plane free vibrations of curved beams with variable curvature.
 17. F. Yang, R. SEDAGHATI and E. ESMAILZADEH Journal of Sound and Vibration 318 850-867. Free in-plane vibration of general curved beams using finite element method.
 18. N. M. AUCIELLO and M. A. De ROSA-1994 Journal of Sound and Vibration 176(4) 433-458. Free vibrations of circular arches: a review.
 - 19. T. M. Wang and W. F. BRANNEN Journal of Sound and Vibration 84(2), 241-246. Natural Frequencies for out-of-plane vibrations of curved beams on elastic foundations.

附錄一(ANSYS 指令檔)

參數說明:

1. KK: 其在單位面積內彈簧所承受之力,例如:截面積為 10M×10M,
三公尺切一個元素,KK=10×3×彈簧系數。
2. K:
的慣性矩、X方向的厚度、Y方向的厚度。
3. MPDATA : 設定元素之楊式模數、波松比、密度
4. CIRCLE : 設定元素之幾何形狀,張開角度。
5. MODOPT : 設定分析方法,在此採用降階法。
模型參數說明:半徑為100公尺,截面積10×5.6米,MESH採用3,
彈簧係數由式w ² 反求出。
/prep7 1896
et, 2, combin14, , , 2
r,2,KK !!!!!!!! mesh3 k=10t
ET, 1, BEAM4
R, 1, 100, 10*10*10/12, 10*10*10/12, 10, 10, ,
MPTEMP, , , , , , , , MPTEMP, 1, 0
MPDATA, EX, 1, . 21e6
MPDATA, PRXY, 1, , 0. 3
MPTEMP, , , , , , , , ,
MPTEMP, 1, 0
MPDATA, DENS, 1, , 2300

FLST, 2, 2, 8 FITEM, 2, 0, 0, 0 FITEM, 2, 50, 0, 0 CIRCLE, P51X, , , , 180, ESIZE, 3, 0, FLST, 2, 2, 4, ORDE, 2 FITEM, 2, 1 FITEM, 2, -2 LMESH, P51X /INPUT,'N','txt','.' /INPUT,'D','txt','.' /INPUT,'L','txt','. d,1,all,0 d, 29, ux, 0 d, 29, uy, 0 /SOL !* 896 ANTYPE, 2 !* MSAVE, 0 !* MODOPT, REDUC, 10 EQSLV, FRONT MXPAND, 10, , , 0 LUMPM, 0 PSTRES, 0 !* MODOPT, REDUC, 10, 0, 10, 10, OFF TOTAL, 1000, 0 MXPAND, 10, 0, 10, 1, 0. 001, /STATUS, SOLU

附錄二

			-	
θ	M1	M2	M3	
60	4.9542	14.0147	27.4550	
80	2.9040	7.8222	14.9376	
100	1.9136	4.9471	9.3383	
120	1.4966	3.4838	6.3841	
140	1.2717	2.5647	4.6388	
160	1.1372	2.0155	3.5101	
180	1.0838	1.6839	2.7124	
表 2.1	不同角度和前三個	固模態下的頻率值	(文獻值)	
θ	M1	M2	М3	
60	5.0445	13.9119	27.5631	
80	3.0520	7.7566	15.3644	
100	2.1486	4.9959	9.7300	
120	1.6810	3.5447	6.7613	
140	1.4276	2.7014	4.9536	
160	1.2997	2.1779	3.7713	
180	1.2604	1.8391	2.9809	
表 2.2 不同角度和前三個模態下的頻率值(自己導出)				
θ	M1	M2	M3	
60	5.4489	15.2807	30.7826	
80	3.2829	8.4373	16.8063	
100	2.2981	5.5084	10.331	
120	1.8033	3.8006	7.3491	
140	1.5128	2.8526	5.3656	
160	1.3972	2.3159	4.1859	

表 2.3 不同角度和前三個模態下的頻率值(ANSYS)

附錄三

ANSYS 網格收斂分析

	5			
	θ	M1	M2	M3
	60	6.924144	20.22008	48.6645
	80	5.161244	11.61389	27.38311
	100	3.149182	6.141945	15.91557
	120	2.796168	6.263146	9.093636
	140	1.881067	4.250247	7.18935
	160	1.858297	2.799949	5.715654
	180	1.917426	2.639365	4.473857
		表 3.1 ANS	SYS 網格切5	
	θ	M1	M2	М3
	60	5.567443	18.65631	37.44015
	80	3.972485	10.92103	21.5096
	100	2.716751	5.817745	12.78523
	120	2.518614	4.973217	8.023959
	140	1.713389	3.936682	6.935679
	160	1.697818	2.509535	4.565342
	180	1.77553	2.216177	4.17028
表 3.2 ANSYS 網格切 4				
	θ	M1	M2	М3
	60	5.4489	15.2807	30.7826
	80	3.2829	8.4373	16.8063
	100	2.2981	5.5084	10.331
	120	1.8033	3.8006	7.3491
	140	1.5128	2.8526	5.3656
	160	1.3972	2.3159	4.1859
	180	1.375	2.1706	3.3515

表 3.3 ANSYS 網格切 3

θ	M1	M2	M3
60	5.034914	14.99872	25.59235
80	3.023981	7.236061	14.99682
100	1.907521	4.460231	8.745539
120	1.456406	3.525924	6.555803
140	1.320702	2.555999	4.719819
160	1.260655	2.069446	4.061394
180	1.231736	1.909493	2.90782

表 3.4 ANSYS 網格切 2

	θ	M1	M2	M3
	60	4.836869	14.66661	24.53597
	80	2.894175	6.977094	14.36166
	100	1.833367	4.344445	8.742816
	120	1.400207	3.358387	6.506702
	140	1.281476	2.527718	4.583761
	160	1.199706	1.980817	3.990458
	180	1.172608	1.816753	2.880083

表 3.5 ANSYS 網格切1

θΜ	M1	M2	M3
60	4.760506	14.45177	24.34384
80	2.877598	6.860497	14.15809
100	1.802065	4.319422	8.511371
120	1.366722	3.308093	6.487024
140	1.275518	2.453522	4.574606
160	1.197527	1.929533	3.939484
180	1.150772	1.769891	2.81147

表 3.6 ANSYS 網格切 0.5