
IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 33, NO. 8, AUGUST 1997 1345

Controlling Chaotic Behavior of Heavy to Light
Hole Mixing Tunneling by External Electric Fields

Cheng Juang,Member, IEEE,J. Y. Wang, and Jonq Juang

Abstract—Oscillatory and chaotic motion of heavy to light hole
mixing tunneling in asymmetric coupled quantum-well structures
can be controlled by an external electric field. Chaotic behavior
occurs if the heavy-hole state in the first well is aligned with the
light-hole state in the second well under a significant in-plane
vector kk. Oscillatory motion is recovered if the external electric
field disrupts the alignment between the heavy-hole state in the
first well and the light-hole state in the second well.

Index Terms—Controlling chaos, coupled quantum wells, heavy
to light hole mixing tunneling, simplex projection method.

I. INTRODUCTION

T HE possibility of utilizing interwell coherent tunneling
in coupled quantum wells to generate the oscillation

signal has been proposed by Luryi [1]. Considerable efforts
have been devoted to this oscillation effect due to its rich
physical natures and possible device applications in the range
of terahertz radiation [2]–[4]. For the valence band, in addition
to the spatial hole tunneling (from one well to the other),
mixing tunneling (between heavy hole (HH) and light hole
(LH) states) are also involved in the process due to the band
mixing effects [5], [6]. The tunneling between
heavy and light states has been verified using the time-
resolved luminescence [7], [8]. Futhermore, the oscillatory
motion via the heavy to light tunneling were also verified
using the terahertz spectroscopy [9]. In theory, the oscillatory
motion has been described by the time-dependent Schrödinger
operator with the Luttinger Hamiltonian [6]. By calculating
the tunneling probability for each case, the mixing tunneling
and spatial tunneling which happen at the same time can be
clearly resolved.

The interplay between tunneling and chaos in a coupled
quantum well potential has become an interesting subject due
to the nonlinear nature of tunneling effects [10], [11]. In this
work, it is suggested that chaotic behavior in the valence band
of the mixing tunneling could occur [12] and be controlled
by an external electric field, as illustrated in Fig. 1. Two
competing tunneling processes have contributed to the heavy
to light hole mixing tunneling in coupled quantum wells: HH

Manuscript received February 4, 1997; revised March 31, 1997. This work
was supported by the National Science Council of R.O.C. under Contract 86-
2215-E159-001 and Contract 86-2115-M009-018.

C. Juang is with the Electronics Department, Ming Hsin Institute of
Technology, Hsinfeng, Hsinchu, Taiwan 300, R.O.C.

J. Y. Wang and J. Juang are with the Department of Applied Mathematics,
National Chiao Tung University, Hsinchu, Taiwan 300, R.O.C.

Publisher Item Identifier S 0018-9197(97)05430-4.

to LH and HH to LH , where the superscriptsand denote
the hole state in the first and the second well, respectively.
HH to LH is due to the band mixing vector [9] while HH
to LH is due to the spatial alignment of HHand LH states
[5], [8]. When one process is dominant, oscillatory motion
between the HH and LH states occurs. For example, a small
in-plane vector and alignment of HH and LH results a
dominant case of HH to LH tunneling. The other is that
misalignment between HHand LH states results a dominant
case of HH to LH tunneling. When these two processes
are compatible, the oscillatory motion between HH and LH
tunneling collapses. The tunneling probability in the oscillation
collapse region can be shown to be chaotic using the simplex
projection method [13]–[14].

In this nature, external electric fields can be used to switch
between the oscillatory motion and chaotic motion. With a
proper design of asymmetric coupled quantum-well (QW)
structures, HH to LH and HH to LH are compatible,
giving rise to a chaotic motion. Then, by adding an exter-
nal electric field to the coupled well system, the HHand
LH states become misaligned. Thus, HHto LH becomes
dominant and oscillatory motion is back. The purpose of this
paper is to show that chaotic behavior of the mixing tunneling
can be controlled by the external electric fields. Section II
describes the numerical techniques for the time-dependent
Schr̈odinger operator and the simplex projection method. The
effects of the external electric field on the wavefucntions and
tunneling probabilities will be studied in Section III. Section
IV examines the tunneling probabilities with and without
electric fields using the simplex projection method to establish
a chaotic or oscillatory motion of the particles.

II. M ETHOD OF THE NUMERICAL ANALYSIS

A. The Time-Dependent Schr¨odinger Operator

The time-dependent Schrödinger equation with the reduced
2 2 Luttinger Hamiltonian is written by [6], [15]

(1)
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Fig. 1. Schematic potential profiles of the mixing tunneling in an asymmetric
coupled quantum wells due to HHa to LHa and HHa to LHb tunneling.

where

(2)

and is the potential profile of the coupled QW structures,
and are HH and LH state envelop wave

functions, respectively, and are the Luttinger
parameters and are position-dependent in the heterojunction
structures, is the electron rest mass, and the in-plane vector

. The external electric field is then added to the
potential profile . The discretization of (1) with respect
to time gives [6]

(3)

where and are the time spacing and time index, respec-
tively. This discrete-time technique preserves normalization of
the wave function and introduces no extra nonlinear effect to
the system. This difference equation can be written in a linear

matrix equation with being a complex symmetry
matrix. The matrix is then solved using the L-U decomposition
technique.

B. The Simplex Projection Method

To study the motion of a particle in a physical system,
the simplex projection method is used [13]–[14]. This method
uses a reconstructed trajectory vector to make short- and long-
term predictions about future behaviors based on the previous
observed information. The prediction is based on a piecewise-
linear approximation of the past patterns in a time series.
By comparing the predicted and actual trajectories, chaotic
behavior can be established if the accuracy of the prediction
falls off as the prediction time increases.

The algorithm is summarized as follows.

1) Divide the time series into two parts: a fitting set
and an observed set .

2) Choose an embedding dimension, a delay time ,
and a prediction time .

3) Choose a delay vector for
.

4) Compute the distance of the test vector from the
delay vector , using the
maximum norm.

5) Find the nearest neighbors of of
and fit an affine model, where the parameters

are computed by least squares.
6) Repeat step 1)–5) for all to estimate a step-ahead

prediction value.
7) Compute the linear correlation coefficientbetween the

observed set and the predicted set.

If the correlation coefficient between the predicted and ob-
served values falls as the prediction extends further into the
future, this time series is thus regarded as a chaotic time
series. This technique is applicable to any time series showing
stationary, periodic, quasi-periodic, or chaotic behavior and
can distinguish chaos from noise effectively.

III. CONTROLLING MIXING TUNNELING

A. Wavepacket

Asymmetric coupled QW systems of 25-18-49 (first well
width–barrier width–second well width in Angstroms) with a
barrier height of 0.2506 eV are investigated. In this structure,
the HH state is aligned with the LHstate. The Luttinger
parameters are chosen to be (6.85, 2.1, 2.9) in the
well region and (5.15, 1.39, 2.10), which are obtained by a
linear interpolation of the Luttinger parameters of GaAs and
AlAs, in the barrier region. Also, the space intervaland time
interval are chosen to be 1̊A and 1 fs (10 ). The initial
wave functions are the HH wave functions in the first well,
and the tunneling process is initiated at .

Mixing tunneling occurs between HH and LH states due to
band mixing effects. Figs. 2 and 3 show the mixing tunneling
in 25–18–49 coupled wells without and with electric field (45
kV/cm), respectively, when 0.03. The first and the second
well of the coupled QW’s is shown by the dotted line at

frame. In Fig. 2, HH to LH are significant due to
the , and HH to LH are well aligned. Thus, these two
processes are compatible. The oscillation of the wavepacket
shows no dominant process in either HHto LH or HH
to LH (The wavepacket appears randomly in the first and
the second wells in the LH band). However, in Fig. 3, HH
to LH are significant but HH to LH becomes misaligned
because of the external electric field. Thus, the wavepacket
mainly oscillates between HHand LH states, indicating that
the HH to LH process is dominant.

B. Tunneling Probability

To characterize the properties of the HH to LH mixing
tunneling, one can define a mixing tunneling probability
as the probability of finding the HH in the HH band

(4)
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Fig. 2. The mixing tunneling in 25-18-49 coupled wells with zero electric
field whenkk = 0.03. The position of the coupled QW’s is shown by the
dotted line att = 0 frame.

Fig. 3. The mixing tunneling in 25–18–49 coupled wells with an external
electric field of 45 kV/cm whenkk = 0.03.

where is the HH wave function. When ap-
proaches one, the wavepacket is mainly located in the HH
band. When is small, the wavepacket tunnels into the
LH band. By this definition, the nonlinearity is introduced,
which is an norm resembling the Landau–Lipschitz route
to chaos.

Fig. 4 shows the mixing tunneling probability of the
25–18–49 coupled QW’s under various external electric fields
(0, 20, and 45 kV/cm) when 0.03. Under zero field,
since HH to LH and HH to LH are compatible, the

Fig. 4. The mixing tunneling probabilityF (t) of the 25–18–49 coupled
QW’s under various external electric fields (0, 20, and 45 kV/cm) whenkk =
0.03.

(a)

(b)

Fig. 5. Predictions of (a) 3 and (b) 30 time steps into the future versus
observed values forkk = 0.03 under zero electric field. The first 1000 time
points and the second 1000 time points of Fig. 4 are taken to be a fitting set
and an observed set (N = 1000) with the embedding dimensionm = 3 and
delay time� = 1.

mixing tunneling probability shows much of a disorder,
as expected. As the external electric field increases, HHand
LH become misaligned. The HHto LH process is dominant
and is back to the usual periodic behavior again.
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(a)

(b)

Fig. 6. Predictions of (a) 3 and (b) 30 time steps into the future versus
observed values forkk = 0.03 under an external electric field of 45 kV/cm.

IV. CONTROLLING CHAOTIC BEHAVIOR

To further investigate the inherent properties of , the
simplex projection method is used [13], [14]. This method
is designed for making short-term and long-term predictions
about the trajectories of chaotic dynamical systems. Fig. 5(a)
and (b) show predictions of 3 and 30 time steps into the future
versus observed values for 0.03 under zero field. The first
1000 time points and the second 1000 time points of Fig. 4 are
taken to be a fitting set and an observed set (1000) with
the embedding dimension 3 and delay time 1. From
3 to 30 time steps, the loss of the prediction power is clearly
indicated, which is interpreted as a characteristic feature of
chaos. Similarly, Fig. 6(a) and (b) show predictions of 3 and
30 time steps into the future versus observed values for
0.03 under an external electric field of 45 kV/cm. From 3 to
30 time steps, the prediction power is maintained, which is
interpreted as a characteristic feature of periodical plus noise
behavior.

Fig. 7 plots the correlation coefficient as a function of
prediction time under various external electric fields (0, 20, and
45 kV/cm) when 0.03. Under zero field, the falls off
significantly due to the loss of prediction power. A decrease in
the with increasing prediction time interval is a characteristic

Fig. 7. The correlation coefficient
 as a function of prediction time under
various external electric fields (0, 20, and 45 kV/cm) whenkk = 0.03.

feature of chaos and can also give a rough measure of the
Lyapunov exponent. As the external electric field increases,
the changes less, indicating the periodical behavior of
becomes more significant than the chaotic behavior.

To verify the switching between the oscillatory motion and
chaotic motion due to the external electric fields, the pump and
probe technique, and the time-domain terahertz spectroscopy
described in [2], [3], and [9] can be used. Coupled-well
samples should be carefully prepared so that the the HH state
in the first well is aligned with the LH state in the second
well. Note that the alignment between the HH state of the first
well and the LH state of the second well can be altered by
an appropriate external electric field. Thus, it is expected that
chaotic spectroscopy is shown without the electric field, and
terahertz oscillatory spectroscopy is shown with the electric
field.

V. CONCLUSION

The mixing tunneling which occurs between HH and LH
states can be driven by: 1) the HH to the LH state in the first
well due to in-plane vector and 2) the HH to the LH state
in the second well due to the alignment of the HH state in the
first well and the LH state in the second well. If these two
tunneling processes are compatible, chaotic behavior occurs.
With an external electric field, process 2) becomes dominant
and oscillatory is recovered.
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