國立交通大學

材料科學與工程學系 碩士論文

氧化鋯內添加不同比例氧化鈣與鈦金屬高溫擴散

研究生:曾淵愈

指導教授:林健正 博士

中華民國 九十八年七月

氧化鋯內添加不同比例氧化鈣與鈦金屬高溫擴散

介面反應

Interfacial Phenomenon between Titanium and Calcia

Stabilized Zirconia

研究生:曾淵愈 Student: Yuan-Yu Tseng

指導教授:林健正教授 Advisor: Chien-Cheng Lin

國立交通大學

材料科學與工程學系

Submitted to Department of Material Science and Engineering College of Engineering

A Thesis

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of Master

in Material Science and Engineering July 2009 Hsinchu, Taiwan, Republic of China

中華民國 九十八年七月

氧化鋯內添加不同比例氧化鈣與鈦金屬高溫擴散 介面反應

研究生:曾淵愈 指導教授:林健正

國立交通大學

材料科學與工程研究所

摘要

以熱壓法製備不同組成之 CaO/ZrO₂(Calcia/Zirconia)陶瓷試片, 與鈦(Titanium, Ti)在 latm 氫(Ar)氟氯下,進行 1550°C/6 hr 之擴散反 應,探討 CaO 含量對 CaO/ZrO₂ 系陶瓷材料與鈦金屬高溫擴散介面反 應之影響。本實驗利用 X 光繞射(x-ray diffraction, XRD)、掃描式電子 顯微鏡(Scanning Electron Microscopy/Energy Dispersive Spectroscopy, SEM/EDS),分析擴散反應後介面之微觀結構。實驗結果顯示,在 5mole% CaO/ZrO₂與鈦高溫擴散反應後,介面擴散反應受到抑制,鈦 側發現僅有一層反應層,厚度約 2 μ m 之 TiO 反應層,而在氧化鋯側 發現有大量的 α -Zr 與 t-ZrO_{2-x}的產生,可知反應層 TiO 的產生像一層 擴散阻擋(barrier)層,使 Ti、Zr 的擴散明顯受到抑制。

CaO/ZrO₂ 陶瓷試片 9mole%與 17mole%,分別與鈦高溫擴散反應後, 發現 Ti 與 Zr 之間有相當劇烈的擴散反應,而 Zr、O 大量固溶於 Ti 中,在鈦側發現有三層反應層,依序為 α -Ti+Ti₂ZrO、 β '-Ti+ α -Ti+ Ti₂ZrO 及 β '-Ti+acicular α -Ti, 而在氧化鋯側接近介面處則發現有 β '-Ti 與 CaZrO₃ 共存,而在遠離介面處之陶瓷側影響區則有大量 α -Zr 與 c-ZrO_{2-x} 的產生。但在 17mole% CaO/ZrO₂ 中,在遠離介面之陶瓷 影響區,除了有 α-Zr 與 c-ZrO_{2-x}的產生,有少量 CaZrO₃ 會存在於晶 界上。在陶瓷側 α-Zr 析出量隨 CaO 含量增加而有明顯減少。

Interfacial Phenomenon Between Titanium and Calcia

Stabilized Zirconia

Student : Yuan-Yu Tseng Advisor : Chien-Cheng Lin

Department of Material Science and Engineering National Chiao Tung University

Abstract

Various CaO/ZrO₂ hot press sample was reacted with titanium at 1550° C/6 hr. in argon Investigate the ratio of the CaO/ZrO₂ can be effective to control the interfacial reaction. The microstructure of the reaction interface was characterized using x-ray diffraction(XRD) and analytical electron microscopy(SEM/EDS).

A few reactions take place at interface between Ti and 5mole% CaO/ZrO₂. Interfacial reactions were effectively suppressed by incorporating less than 5mole% CaO. TiO reaction layer effectively obstruct Ti and Zr diffuse mutually. TiO layer function was like a reaction barrier phase and found in the Ti side. 9mole% and 17mole% CaO/ZrO₂ react with Ti at 1550°C 6 hr gave rise to strong reaction. A large amount of Zr and O was dissolved into Ti . Product three reactive layers of α -Ti+Ti₂ZrO $\times \beta'$ -Ti+ α -Ti+Ti₂ZrO $\not{R} \beta'$ -Ti+acicular α -Ti in the Ti side. And on the zirconia side near the original interface were found β' -Ti and CaZrO₃ coexist, result in Ti and Ca cannot mutual solubility. In region of

far away the original interface, α -Zr, c-ZrO_{2-x}, and/or residual CaZrO₃ were found in the ceramic side. More than 17mole% CaO/ZrO₂ the amount of α -Zr decreased with increasing CaO.

致謝

隨著論文的撰寫,驚覺到兩年碩班生涯即將結束。隨著口試的結束, 意味著我即將從交大畢業了。隨著致謝的文字,讓我心中充滿感激。 這兩年幫助我的人很多很多,無論是實驗研究或是生活上,由衷感謝 大家的幫助,而使論文可以順利完成。

首先要感謝指導教授林健正博士,感謝老師這兩年在百忙之中,抽 出非常寶貴時間在實驗上教導與指正,讓我獲益良多。此外,衷心感 謝學長耀文、宏達、桓德、紳紘在論文與實驗上的指導,讓我對實驗 更加了解與上手。最後也要感謝實驗室永達、然翔以及學弟妹們在這 兩年的幫忙與加油打氣。

在這兩年生活,感謝材料系棒所有的學長學弟們,我們一起打了大大 小小的比賽,雖然球場上有勝負也有歡樂,但是和大家打球都是快樂 的,也藉由打球享受到的歡樂,將實驗上的辛苦與苦悶給稀釋掉。

再來要感謝和我同居兩年室友建誌,在這兩年我修課上的照顧。接下 來要感謝偉志、俞中、與宇、承佑、岱民、承璋、筑文這群假日都會 安排出遊的同學們。 最後,要感謝我的家人,謝謝爸媽兩年前支持我往研究所深造,在碩 士求學這兩年給我精神上的鼓勵,讓我全心全力專注在實驗研究上, 使得論文能順利完成。

目錄

第一章	前言	1
第二章	原理與文獻回顧	6
第三章	實驗步驟	16
3.1	粉體混合製備	16
3.2	陶瓷粉末熱壓燒結	16
3.3	密度量測	17
3.4	介面擴散反應實驗	18
3.5	試片製作	19
3.6	分析儀器	20
	3.6.1 X-ray 繞射分析.896	20
	3.6.1 掃描式電子顯微鏡(SEM/EDS)	21
第四章	結果與討論	22
4.1	X-ray 繞射分析	22
4.2	SEM/EDS	24
	4.2.1 5C/95Z (5mole%CaO-ZrO ₂)	24
	4.2.2 9C/91Z (9mol%CaO- ZrO ₂)	27
	4.2.3 17C/83Z (17mol%CaO- ZrO ₂)	
第五章	結果與討論	43
參考文獻	<u>.</u>	45

表目錄

Table.1 未與鈦擴散反應前,各組陶瓷試片組成條件及相關資料....49 Table.2 高溫擴散反應後,各層反應物相關資料......50

圖目錄

Fig. 2-1. 純鈦之同素晶體結構圖51
Fig. 2-2. 鈦由β相轉變至α相之晶體結構圖51
Fig. 2-3. 添加不同 α 相穩定元素之相圖
Fig. 2-4. 添加不同β相穩定元素之相圖52
Fig. 2-5. 添加不同合金元素之分類53
Fig. 2-6. 氧化鋯之相變化過程53
Fig. 3-1 擴散反應實驗流程圖
Fig. 3-2. 鈦與氧化錯試片熱壓示意圖
Fig. 3-3. X-ray 及 SEM 試片圖55
Fig. 4-1. 未與鈦擴散反應前,各組陶瓷試片之 XRD 分析
Fig. 4-2. ZrO ₂ - CaO 之二元相圖
Fig. 4-3. Ti 與 5C/95Z 經 1550℃/6 hr 擴散反應後,介面微觀結構圖
(BEI)
Fig. 4-4. (a) Ti 與 5C/95Z 1550℃/6 hr 擴散反應後,反應層 I、氧化鋯
側之微觀結構圖(BEI);(b) 圖(a)介面處局部放大圖(BEI)59
Fig. 4-4. (c) Ti 與 5C/95Z 經 1550℃/6 hr 擴散反應後,反應層 I 、氧
化鋯側之微觀結構圖(BEI);(d) EDS 定量分析60
Fig. 4-5. Zr-O 之二元相圖61

Fig. 4-6. (a). 5C/95Z, 經 1600℃/0.5 hr 陶瓷熱壓試片之微觀結構

(BEI);(b) 5C/91Z,經 1600℃/0.5 hr 陶瓷熱壓試片之局部放

大圖;(c) EDS 定量分析......62

Fig. 4-7. (a) Ti 與 5C/95Z 經 1550℃/6 hr 擴散反應後, 鈦側、反應層

I、氧化鋯側之微觀結構圖(BEI);(b)至(e)依序為 Ti、Zr、O

Fig. 4-8. J. L. Murray 提出之Ti-Ca 系統相圖......64

Fig. 4-9. Ti 與 9C/91Z 經 1550℃/6 hr 擴散反應後,之介面微觀結構圖

Fig. 4-10. (c) Ti 與 9C/91Z 經 1550℃/6 hr 擴散反應後,反應層 I 局部

放大圖(BEI); (d) EDS 定量分析......67

Fig. 4-11. (a) Ti 與 9C/91Z 經 1550℃/6 hr 擴散反應後,反應層 II 之微

觀結構圖(BEI);(b)反應層Ⅱ局部放大微觀結構圖(BEI)...68

Fig. 4-11. (c) Ti 與 9C/91Z 經 1550℃/6 hr 擴散反應後,反應層 II 局部

放大圖;(d) EDS 定量分析......69

Fig. 4-12. Donagala et al. 提出之Ti-ZrO2相圖......70

Fig. 4-13. (a) Ti 與 9C/91Z 經 1550℃/6 hr 擴散反應後,反應層Ⅲ之微 觀結構圖(BEI);(b) 反應層Ⅲ局部放大微觀結構圖......71 Fig. 4-13. (c) Ti 與 9C/91Z 經 1550℃/6 hr 擴散反應後,反應層Ⅲ局部 Fig. 4-15. (a) Ti 與 9C/91Z 經 1550℃/6 hr 擴散反應後,反應層IV之微 觀結構圖(BEI);(b)反應層Ⅲ局部放大微觀結構圖(BEI)...74 Fig. 4-15. (c) Ti 與 9C/91Z 經 1550℃/6 hr 擴散反應後,反應層 IV 局部 Fig. 4-16. (a) Ti 與 9C/91Z 經 1550℃/6 hr 擴散反應後,反應層氧化鋯 側之微觀結構圖(BEI);(b)反應層氧化鋯側局部放大微觀結 Fig. 4-16. (c) Ti 與 9C/91Z 經 1550℃/6 hr 擴散反應後,反應層氧化鋯 侧局部放大圖(BEI);(d) EDS 定量分析......77 Fig. 4-17. (a) 9C/91Z 經 1600℃/0.5 hr 陶瓷熱壓試片之微觀結構(BEI) (b) 9C/91Z 經 1600℃/0.5 hr 陶瓷熱壓試片之局部放大圖 Fig. 4-18. (a) Ti 與 9C/91 經 1550℃/6 hr 擴散反應後,鈦側、反應層 Ⅰ、Ⅱ、Ⅲ、Ⅳ、氧化鋯側之 BEI 微觀結構圖; (b)至(e)依序

Fig. 4-19. Ti 與 17C/83Z 經 1550℃/6hr 擴散反應後之介面微觀結構圖
(BEI)80
Fig. 4-20. (a) Ti 與 17C/83Z 經 1550℃/6 hr 擴散反應後,鈦側與反應
層Ⅰ、Ⅱ之微觀結構圖(BEI);(b) 圖(a)反應層Ⅰ局部放大
微觀結構圖(BEI)81
Fig. 4-20. (c) Ti 與 17C/83Z 經 1550℃/6 hr 擴散反應後,反應層 I、
Ⅱ局部放大圖(BEI);(d) EDS 定量分析
Fig. 4-21. (a) Ti 與 17C/83Z 經 1550℃/6 hr 擴散反應後,反應層 II 之
微觀結構圖(BEI);(b)反應層Ⅱ局部放大微觀結構圖(BEI).83
Fig. 4-21. (c) Ti 與 17C/83Z 經 1550℃/6 hr 擴散反應後,反應層Ⅱ局
部放大圖(BEI);(d) EDS 定量分析
Fig. 4-22. (a) Ti 與 17C/83Z 經 1550℃/6 hr 擴散反應後,反應層Ⅲ之
微觀結構圖(BEI);(b)反應層Ⅲ局部放圖(BEI);(c)EDS 定
量分析
Fig. 4-23. (a) Ti 與 17C/83Z 經 1550℃/6 hr 擴散反應後,反應層Ⅳ、
氧化鋯側之微觀結構圖(BEI);(b) 圖(a)反應層Ⅳ局部放大微
觀結構圖(BEI)

Fig. 4-23. (c) Ti 與 17C/83Z 經 1550℃/6 hr 擴散反應後,反應層IV之

微觀結構圖(BEI);(d) Ti 與 17C/83Z 經 1550℃/6 hr 擴散反
應後,反應層Ⅳ與氧化鋯側界面之交界圖(BEI);(e)EDS 定
量分析
Fig. 4-24. (a) Ti 與 17C/83Z 經 1550℃/6 hr 擴散反應後,反應層Ⅳ、
氧化鋯側之微觀結構圖(BEI);(b) 反應層氧化鋯側局部放大
微觀結構圖(BEI)
Fig. 4-24. (c) Ti 與 17C/83Z 經 1550℃/6 hr 擴散反應後,反應層氧化
鋯側局部放大圖(BEI);(d) EDS 定量分析
Fig. 4-25. (a) 17C/83Z 經 1600℃/0.5 hr 陶瓷熱壓試片之微觀結構
 Fig. 4-25. (a) 17C/83Z 經 1600°C/0.5 hr 陶瓷熱壓試片之微觀結構 (BEI); (b) 17C/83Z 經 1600°C/0.5 hr 陶瓷熱壓試片之局部放
 Fig. 4-25. (a) 17C/83Z 經 1600°C/0.5 hr 陶瓷熱壓試片之微觀結構 (BEI); (b) 17C/83Z 經 1600°C/0.5 hr 陶瓷熱壓試片之局部放 大圖(BEI); (c) EDS 定量分析
 Fig. 4-25. (a) 17C/83Z 經 1600°C/0.5 hr 陶瓷熱壓試片之微觀結構 (BEI); (b) 17C/83Z 經 1600°C/0.5 hr 陶瓷熱壓試片之局部放 大圖(BEI); (c) EDS 定量分析
 Fig. 4-25. (a) 17C/83Z 經 1600°C/0.5 hr 陶瓷熱壓試片之微觀結構 (BEI); (b) 17C/83Z 經 1600°C/0.5 hr 陶瓷熱壓試片之局部放 大圖(BEI); (c) EDS 定量分析

第一章 前言

 鈦元素(Titanium, Ti)在週期表中排列第 22,為第四週期的過渡金屬, 鈦原子量(47.9),而密度(4.47g/cm³)介於鋁(2.7g/cm³)及鐵(7.8g/cm³)之 間,熔點(1668°C),沸點(3206°C),熱傳導係數(0.16cal・cm/sec・°C), 鈦的楊氏係數、熱膨脹係數比鋼小。鈦的表面呈銀白色的金屬光澤, 延性良好易於加工,質地非常輕盈,且十分堅韌。鈦的晶體結構有α (Hexagonal Close Packed)及β(Body Center Cubic)兩種,純鈦在 833℃以上時為體心立方堆積結構(BCC)之β相,溫度於 833℃以 下時結構轉為六方最密堆積(HCP)之α相,其軸比(c/a=1.587)小 於其他 HCP 結構金屬

鈦有相當好的抗腐蝕能力,其抗腐蝕能力幾乎接近鉑(Pt),可抵抗鹽水,酸,氯氣的腐蝕。鈦元素在地殼表面含量約 0.6%,卻是地球上化學元素蘊藏量排列第九位,數量不算少^[1]

鈦金屬與合金有相當優越的機械(密度、重量、熱膨脹係數、強度、 高溫、疲勞、韌性等)、及化學(耐腐蝕、抗酸鹼、抗氧化等)與特殊的 強度/重量(密度)比值及高溫性能。由於鈦具有優異的防蝕能力與生物 相容性,且比重介於鐵、鋁之間,熱膨脹係數、楊氏模數比鋼小,比 強度高於鋼鐵材料,因此應用範圍極為廣泛,為目前產業界中最佳之 由於鈦金屬許多優越的性質,因此被應用在許多工業工程上,諸如航 太工業的渦輪引擎壓縮段葉片、化學工業的耐腐蝕材料、汽車工業的 零件、民生工業的日常用品(眼鏡、自行車零件、運動器材、球拍、 高爾夫球頭等)。另外在高科技及國防工業上也有許多應用(超導體、 火箭、新式飛彈、潛艇、戰鬥機用零件等)。然而,純鈦為所有金屬 中,與人體的適配性最佳,最不容易造成過敏、排斥反應的現象,因 此鈦也被應用於生醫材料上。除此之外鈦具有形狀記憶性,由於溫度 轉換麻田相鐵相和沃斯田鐵相,使得原子問距的不同可扭曲形狀達到 形狀記憶的效果。鈦的運用越來越廣,由以上可看出鈦應用於各產業 的用途,故此鈦是值得研究的材料^[4]。

2

鑄造法是製造鈦金屬元件最經濟的方法之一。鈦金屬在液態時是一種 活性極強的金屬,其活潑之化性對鑄造時金屬的流動性、陶模的抗蝕 性及產品的品質影響很大。由於液態之鈦可以將一般的坩鍋材料溶 解,鈦合金在高溫熔融態下若直接與坩鍋接觸,易在介面發生劇烈反 應,故無法如超合金以感應溶解法(Vacuum Induction Melting, VIM) 溶解鈦合金,一般鈦合金之精密鑄造係採用電弧溶解法(Vacuum Arc Remelting, VAR),以水冷式銅坩鍋盛裝鈦溶液,在坩鍋壁上產生凝固 層,以保護銅坩鍋,惟此法會使液態鈦金屬之超熱量(superheat) 無 法提高,導致流動性不良,且因熱傳導不良會使鑄造出之鈦金屬均質 性不佳。故目前多以離心鑄造法進行鈦合金之鑄造。

對於鈦合金的精密鑄造而言,由於液態之鈦金屬活性極強,易與陶模 材料發生化學反應,造成鑄件表面粗糙,產生的反應層殘留有針孔、 氣孔等缺陷。同時,鈦金屬於高溫時與氧的親和力很大,鈦中之氧含 量亦伴隨反應的發生而大幅增加,Welscht and Bunk則指出^[5],氧原 子佔據鈦晶格結構中之間隙位置(interstitial)會改變其變形機制,因 固溶強化而提高強度及楊氏模數,但降低延展性而使材料變脆。此表 面硬化層常是鑄件在使用期間產生裂縫成長的起始點,影響鑄件的機 械性質。因此,一般在鑄件完成後會以化學溶液洗蝕或噴砂法除去表 面硬化層,如此不僅增加成本,亦影響鑄件精密度。Saha and Jacob 指出^[6],鈦金屬與陶瓷氧化物介面處會發生氧化還原反應,導致鈦鑄 件與模具接觸的表面會形成一硬化層(α-case),此硬化層為鈦鑄件表 面富含氧的影響區,其延性、硬度及微觀結構皆異於內部組織。

尋找穩定的陶模材料以抵擋高溫熔融態之鈦金屬的侵蝕,並有效控制 鈦金屬與陶模間介面反應,成為長期以來之研究主題。目前應用之陶 模材料以ZrO₂及Y₂O₃為主流。以100%ZrO₂材料組成的陶模,經濟 性最佳但安定性較差,會造成鑄件表面形成富含氧的α-case 硬化層。 1896 以100%Y₂O₃材料組成的陶模,性質穩定但價格遠高於氧化鋯陶模。

如何選用最適合的坩鍋、陶模材料應用於精密鑄造,並且兼顧產品品 質與降低生產成本,是鈦合金鑄造工程實務上最重要的課題之一。所 以本實驗因氧化鈣相對較容易取得,價格又便宜,因此實驗本嘗試以 氧化鋯中加入不同成分比例的氧化鈣,探討其與在鈦金屬在高溫進行 介面反應。並以X-ray 繞射儀、熱場發射掃描式電子顯微鏡及能量分 散能譜儀(FESEM/EDS)等,分析鈦金屬與陶瓷間反應介面之微觀結 構,並探討氧化鈣含量對 CaO/ZrO2 系陶瓷材料與鈦金屬介面反應的 影響,期以獲得最佳的 CaO/ZrO2 比例。

第二章 原理及文獻回顧

2.1 鈦與鈦合金

純鈦有兩種同素異構物轉變,其結晶節構分為 α 相及 β 相兩種,純鈦 的 $\alpha \rightarrow \beta$ 相變化溫度(transition temperature)為 883° 、而此 α 相轉變成 β 相之轉換溫度稱為 β -transus,如Fig.2-1.所示^[7]。當溫度高於 883° C 為體心立方晶結構(body-center cubic,bcc)之 β 相,當溫度低於 883° C 為六方最密堆積結構(hexagonal close packed,hcp),晶體結構上轉變如 Fig.2-2.所示。

商業純淨(CP)級純鈦,其主要優點為抗蝕性強,比重輕,但是缺點為 強度較差。此外,鈦的活性相當大,添加不同的合金元素所形成之鈦 合金,會有不同的物性、化性及機械性質。以下將鈦合金種類分為下 列三種,並且加以說明:

(一) α 相穩定元素(α-stabilizer):

可分為兩類:一類為β-偏析型(β-peritectoid),通常加入Al、Ga、 Ge、Gd等金屬元素,發生共析反應;另一類為偏晶型(peritectic), 通常加入N、O等非金屬元素。這兩類合金元素大多為間隙型, 加入會造成β-transus提高,在α相有較高溶解度,使α相區域 變大,有穩定α相功能,如Fig.2-3.所示^[8]。而α相鈦合金一般 無法用熱處理來強化,可以用退火及再結晶來去除殘留應力,而 使鈦合金有良好焊接性、韌性、延展性及高溫抗潛變等。

(二)β相穩定元素(β-stabilizer):

可分為兩類:共析型(β-eutectoid),通常加入 Zr、Mn、Fe、Co、 Ni、Cu、Pt 等元素,在低溫下β相發生共析反應;另一類為同 晶型(β-isomorphous)通常加入 V、Mo、Ta 等。這兩類合金元素 加入會造成β-transus 降低,在β相有較高溶解度,使β相區域 變大,有穩定β相的功能,如Fig. 2-4.所示^[8]。β相鈦合金透過 熱處理可得到高強度,但因β相大量殘留,導致硬度變高而延展 性變差,而在大型工件也因化學偏析及晶粒粗大化,導致延展性 降低,使得β相鈦合金較無大量被應用。Fig. 2-5.所示^[9]為添加 不同合金元素的分類,可清楚了解添加不同元素造成不同反應的 結果。

(三) α +β 混合相穩定元素(α + β -stabilizer):

在合金元素中,添加α相與β相穩定元素,則此合金為α+β鈦 合金,如 Ti-6Al-4V 為此類型合金代表。α+β 鈦合金通常應用 在固溶處理及時效硬化來增加強度,使強度提高至中上程度,有 良好成形性,但是高溫潛變不如α像鈦合金。 從上述得知, 鈦合金可以分為 α 或 β 的單相鈦合金與 $\alpha + \beta$ 所構成的 鈦合金。一般而言,兩相鈦合金的強度比純鈦大,高溫性質良好,疲 勞強度與潛變強渡優良,耐蝕性也不太會降低。但是 $\alpha + \beta$ 相鈦合金 從變態點以下急冷時會變的脆化,造成焊接性困難,反之 α 或 β 相鈦 合金對熔接有利。單相鈦合金中,屬於 α 相含 Al 之鈦合金的缺點為 冷做較為困難。另一方面 β 相鈦合金,適合製造薄板,高溫強度大, 但是耐氧化性較差。此外 Sn、Hf 等中性元素的添加雖不影響 $\alpha \rightarrow \beta$ 相變化溫度,但可運用在固溶於相中造成固溶強化,為重要之強化合 金元素^{[10][11]}。

為達到溶解鈦合金的相關要求,有效地控制鈦合金與陶瓷之間介面反應,所使用的坩鍋材料需满足下列需求:

- (一)對於液態鈦要有足夠的安定性,不因溶入陶模物質而影響鈦合金性質。
- (二) 足夠的熱震抵抗性,陶模不致在加熱過程中脆裂。
- (三)於常溫下不會吸附水氣。
- (四) 陶模材料成本符合經濟性。
- (五) 可重複使用。

(六)有相當的透磁度可使用真空誘導熔煉技術。

2.2 氧化錯^{[12][13]}

錯(Zirconium, 化學符號:Zr,原子序:40)是一種有色金屬元素,元素週 期表位於鈦(Ti)與鉿(Hf)之間。氧化鋯(Zirconia, ZrO₂)的兩個主要來源 為自然界的鋯英砂(zircon, ZrSiO₄)及斜鋯礦(baddeleyite),其中全世界 80%鋯英砂主要產地集中在澳洲、南非以及美國三個國家;斜鋯礦主 要產地則在南非、巴西及蘇聯。

氧化鋯為同素異構物(polymorph),在室溫時的穩態結構為單斜晶相 (monoclinic),當溫度升高至 1170℃時由單斜晶轉變為正方晶相 (tetragonal),而升至 2370℃時則由正方晶相轉變成立方晶相(cubic), 於 2680℃融解為液相,結構之轉變如 Fig.2-6.所示。

Wolten^[14]指出當由正方晶轉變成單斜晶相是一種麻田散鐵型 (Martensitic transformation)的相變化,而這種相變化過程會引起 3~5% 異方性體積變化,因此會產生微裂縫(micro-crack),造成不可 避免的破裂,因此無使用價值。且也無法利用退火熱處理方式消除相 變化時所產生的應變能^[15]。後續許多研究成果發現添加一些金屬氧化 物如氧化鈣(CaO)、氧化釔(Y₂O₃)、氧化鎂(MgO)等作為安定劑 (stabilizer),可以使氧化鋯的高溫相在冷卻至室溫厚依然穩定存在。

依照安定劑在氧化鋯添加的情形及性質分述如下:

(一)純氧化鋯 (ZrO₂):

完全不添加任何安定劑。純氧化鋯具有較高的熔點及較低的熱 傳導性,於其他氧化物耐火材料上,其常被當作添加劑使增加 其性質;於室溫下,純氧化鋯呈單斜晶相並缺乏韌性,純氧化 鋯約在攝氏1100℃時會經由一種劇烈相變化而轉成正方晶相 (t-phase),此時如不添加一些安定劑,就會導致整體材料脆化, 而此其低強度與低韌性的性質導致其在陶瓷產業中的應用不 廣且稀少,因此純氧化鋯粉末均被用來做製程配方(添加劑) 1896

(二) 全安定化氧化鋯(full stabilized zirconia, FSZ):

添加足量之安定劑,使氧化鋯於常溫時全部維持在高溫的立方 晶相。因其高氧離子傳導性,完全安定氧化鋯亦常使用在氧氣 偵測器及燃料電池工業(做為固態電解質)。

(三)部分安定氧化鋯(partially stabilized zirconia, PSZ):

添加較少量的安定劑,使只能在高溫下才能產生安定之氧化鋯

正方晶相及立方晶相,亦能在常溫下安定存在於單斜晶基地相 中。這種形式的部分安定氧化鋯,當微裂縫在單斜晶相中成長 時,一但裂縫尖端到達正方晶相(t-Zr)處,即發生應力誘發 相變化(stress-induced phase transformation)造成正方晶相轉 變為單斜晶相的麻田散型相變化,由於此種相變化伴隨體積膨 脹,結果阻止裂縫繼續成長^[16]。部分安定氧化鋯具有高強度、 高韌性、低熱傳導性和優良的化學抵抗力,因此常被使用於結 構陶瓷方面,如射出件、刀具、光纖陶瓷套圈(ferrule)等。

此外氧化鋯也應用在人造寶石、陶瓷被動元件使用之基層材料、核子 反應爐燃料控制棒、固態氧化物燃料電池(SOFC)之電解質等,成 1896 為目前運用範圍最為廣泛之陶瓷材料。

2.3 氧化鈣

钙(Calcium, 元素符號是Ca)是一種化學元素, 原子序數是 20, 是一 種銀白色的鹼土金屬, 具有中等程度的軟性。雖然在地殼的含量也很 高,為地殼中第五豐富的元素, 佔地殼總質量 3%, 因為它的化學活 性頗為活潑, 可以和水或酸反應放出氫氣, 或是在空氣中便可氧化形 成緻密氧化層氧化鈣, 因此多以離子狀態或化合物形式存在, 而沒有 實際存在的"鈣礦"。在工業上的主要礦物來源如石灰岩, 石膏等, 在 建築(水泥原料)、肥料、制鹼、和醫療上用途很廣。

2.4 鈦金屬與陶瓷的介面反應

鈦合金的應用範圍極廣,但純鈦活性大,鑄造時容易與陶模中的氧、 氮、碳、氫起反應,因此造成鑄造性的困難。Saha and Jacob^[6]指出鈦 金屬和陶瓷氧化物反應,會發生氧化還原反應,且在金屬表面會產生 一富氧層,影響鈦合金的延展性、硬度及微觀結構使鑄件容易受外力 而破裂。一般稱這富氧層為α-case,α-case 為硬脆的特性,故一般鑄 件表面都會經過酸洗,將此富氧層去除。

大部分陶模材料皆含有氧元素,因氧的原子半徑較小,容易進入鈦的 間隙中,在鈦表面形成一氧化層,而影響到鑄件的機械性質。Ruh et al.^[17]指出在 Ti 與 ZrO₂ 介面反應,發現 Ti 與 Zr 晶格大小差距小於 20%,故易形成置換型固溶體;相對的氮氧氫因原子較小,在鈦中則 容易進入格隙位置形成間隙型固溶體,結果造成鈦的硬度增加,鈦的 晶格常數也會改變。Ruh et al.^[18]在另一研究上指出,Ti 與 ZrO₂的介 面反應,ZrO₂最多可溶解4 at% Ti 形成置換型固溶體。在鈦中,ZrO₂ 含量可達 10 mole%,Zr 進入 Ti 中形成置換型固溶體。而 O 在 Ti 中則容易進入間隙位置形成間隙型固溶體。 Weber^[19]指出 15.5 mole% MgO-ZrO₂與鈦合金在 1860℃反應後,有一 顯著的介面反應,使得 ZrO₂變黑,且在其介面有一羽毛狀的析出物, 由不同成份的層狀物交互排列而成,為一類似共析層狀組織。

Welscht *et al.*^[5] 另外也指出,固溶氧的鈦金屬會改變其變形機 (deformation mechanism),其滑動面(slip plane)由稜柱狀(prismatic)滑 移平面轉變為錐面狀(pyramidal)滑移平面,因而提高其強度及楊氏模 數。同時,由於氧原子佔據格隙位置(interstitial site)而提高其 $\alpha \rightarrow \beta$ 相 轉換溫度,使 α 相區域變大,且氧原子排列位置的序化(ordering)使其 硬度增加。Takahashi^[20]等人發現鈦金屬的鑄造表面非常容易受到氧 的汙染,且與包埋材料中的氧發生反應,造成鑄件表面硬度比內部增 加三倍以上。

Lin et al.^[21]的論文中指出,ZrO₂可被大量溶入高溫融熔鈦中,反應過 程會將ZrO₂還原成ZrO_{2-x},在慢速冷卻的過程中雙晶 α -Zr(O)的析出 使得 primaryZrO_{2-x}轉換為 secondaryZrO_{2-x}。而ZrO₂被還原並伴隨氧 的釋出,部分釋出的氧形成氣泡聚集在鈦金屬晶界處,部分溶入鈦中 形成 α -Ti(O)固溶體。冷卻過程中, α -Ti(O)固溶體轉變成有序化結構 的次鈦化物Ti₃O(Titanium sub-oxide)。當反應時間加長或是在多孔性 陶瓷的反應中,鈦會被氧化成TiO₂。 有些研究中指出 Ti 的加入會影響的 ZrO₂ 穩定性及機械性質。Lin et al.^[22]指出在(5-50 mole%)Ti/ZrO₂系統中,當ZrO₂二次相(second phase) 在晶界產生,使得 ZrO₂的晶粒細化,會使機械性質增加,在1200°C 以上只有4 wt%的 Ti 可溶於 ZrO₂中,但 Ti 卻可溶解超過 20 wt%的 ZrO₂並形成 α -Ti(Zr, O)的固溶體,一旦 Ti 超過在 ZrO₂中的溶解度, 就會有(Ti, Zr)₃O 從 α -Ti(Zr, O)固溶體中析出。此外 Weber et al.^[23]也 指出 Ti 加入 ZrO₂可改善 ZrO₂的穩定性和抗熱震阻力(thermal shock resistance)。

在 Correia et al.^[24]論文中指出,將 Ti 與 ZrO₂在 1162℃至 1494℃間做 擴散接合(diffusion bonding),發現在 Ti 與 ZrO₂的介面反應層中,可 發現兩層不同反應層。在靠近陶瓷側之反應層有兩相共存區,是由(Zr, Ti)O₂ + (Zr, Ti)₂O 所組成。而在靠近鈦金屬側的反應層是由單一相 (Zr,Ti)₂O 所組成,在靠近鈦金屬側的反應層中氧的濃度約為 32%,這 相當接近氧在鈦中的溶解極限,所以靠近鈦金屬側的反應層明顯為金 屬氧化層,且發現到氧在鈦中的溶解度隨著 Zr 增加而減少。

根據以上文獻,可知鈦金屬和氧化鋯反應,會發生氧化還原反應,而 在金屬表面產生α-case,α-case有硬脆特性,容易受外力而破裂,影

14

響鈦合金的延性硬度及微觀結構。而造成 α-case 硬脆特性,除了 Zr 與O元素固溶之外,是否 α-case 中有析出物,目前尚未證實。

本實驗以三種不同組成 5C/95Z (5 mole% CaO/95 mole% ZrO₂)、 9C/91Z (9 mole% CaO/91 mole% ZrO₂)、17C/83Z (17 mole% CaO/83 mole% ZrO₂)的陶瓷試片與鈦金屬在 1550°C/6 hr 反應,藉以觀察不同 比例氧化鈣/氧化鋯陶瓷對介面反應的影響。以期分析鈦金屬與陶瓷 氧化物的介面反應機構,達到有效控制鑄件與陶模之介面反應,提供 經濟上及製程上技術改善。

第三章 實驗步驟

本實驗為研究純鈦與不同比例之氧化鈣/氧化鋯陶瓷試片之高溫擴散 介面反應,實驗流程如Fig. 3-1. 所示,以下介紹氧化鈣/氧化鋯陶瓷 粉末之製備、氧化鋯粉末熱壓、純鈦與氧化鋯擴散偶試片之熱壓及分 析儀器。

3.1 粉體混合製備

將氧化鈣與氧化鋯粉末依 Table 1. 所列的不同莫耳比例混合,以乙醇 (C₂H₅OH)作為溶劑,再以氫氧化銨(NH₄OH)調整溶劑之 pH 值為 11,並通陰陽離子防止陶瓷粉末顆粒團塊,使用超音波振盪(Sonicator, 550W)7至10分鐘,再以攪拌器充分攪拌10分鐘,使其成為均匀 分散之懸浮液,然後將磁石放入燒杯中且於加熱板(Hot plate)上加 熱攪拌至成濃稠狀,接著置入烘箱中以150℃的溫度烘乾,乾燥完畢 之後再以瓷置研鉢及杵將凝結成塊的粉末搗碎,最後以 80mesh 過 篩,即可得到分散好的ZrO₂粉末。

3.2 陶瓷粉末熱壓燒結

分散好的粉末以熱壓燒結的方式製成塊狀試片。先將混合好的粉末置 於石墨模具中預壓,為了避免熱壓後發生黏模的情形,在層與層的粉 末生胚之間分別以石墨紙加以隔離,再將石墨模具放入熱壓爐(Model HP50-MTG-7010, Thermal Technol. Inc.)中,抽真空再通入一大氣壓 氫氣,重複三次後開始加熱,加熱過程中通入一大氣壓氫氣作為保護 氣氛。以升溫速率 10℃/min 升至 300℃,壓力加至 5Mpa 後,持溫 3 分鐘,再以升溫速率 15℃/min 升溫至 1000℃,壓力加至 10Mpa 後, 持溫 3 分鐘,最後階段以升溫速率 5℃/min 升溫至設定溫度,壓力加 至 30Mpa 後,持溫持壓 30 分鐘。熱壓溫度設定為 1600℃。降溫過程 中,壓力漸漸釋放,在 1100℃時將壓力完全洩掉,爐冷至室溫,試 片的熱壓溫度條件詳列於 Table 1.。

熱壓完成之試片由熱壓爐取出後,首先去除表面的石墨紙,再將表面 以鑽石砂盤研磨 (grinding)及鑽石膏拋光 (polishing)之後,再以 切割機切成寬10mm×10mm×5mm的塊狀試片。由於熱壓後得到的為 缺氧之氧化鋯,為了得到足氧的氧化鋯,最後再將切好之試片送入 CM爐空燒(1300°C/1hr)。

3.3 密度测量

熱壓試片的體密度(bulk density)是以阿基米德原理(Archmids' method)測定。依據ASTM C373-72標準規範,首先將試片置入烘相中加熱至150℃乾燥後再行冷卻,即可使用電子天平(Satorius model 1712, Accuracy ±0.01mg)量測其乾重(dry mass)B。接著將試片置

入去離子水(distilled water)中加以煮沸並持續 5 小時,再靜置 24 小時冷卻後,量測其在水中之懸浮重(suspended mass)S。懸浮重量 測完畢後,取出試片並將表面多餘之水分用乾淨的棉布稍做擦拭,即 可進行濕重(saturated mass)M的測量,在測量濕重時的量測速度要 盡量迅速,以免因試片表面的水分蒸發,而影響量測之精確度。三項 數據均量測完畢後,可依據下列公式計算,即可得試片的體密度。公 式如下:

式中 Wi 表粉末重量; Di 表粉末理論密度。熱壓試片的體密度與理論 密度的比值即為相對密度。

3.4 介面擴散反應實驗

Ti/ZrO₂反應實驗在 1550℃/6 hr 的高溫爐中進行,此設定溫度低於鈦的熔解溫度(1668℃),使鈦與陶瓷試片在固相中接合,並與固相鈦產

生反介面反應。

固態擴散反應實驗如下:

- (一) 分別將鈦及氧化鋯切割、研磨、拋光為 10mm× 10mm×5mm 的 塊狀試片。
- (二) 將鈦置於氧化鋯兩層中間,如 Fig. 3-2. 所示。將排放好試片放置於坩鍋中。
- (三) 把坩鍋置於鎢網加熱式真空電阻爐(Model 4156, Centorr Inc.Nashua, New Hampshire)內。
- (四) 將爐內抽真空至 10⁻⁴torr, 再充入氫氣(argon)至一大氣壓。
- (五) 重複步驟(四)三次後,以每分鐘 30℃升溫速率至 1000℃,接著 再以每分鐘 25℃升溫速率至 1550℃,在 1550℃持溫六小時。
- (六) 降溫時以每分鐘 25℃降溫速率降至 1000℃,接著爐冷至室溫。

3.5 試片製作

以慢速切割機(Low Speed Saw, ISOMET BUEHLER)及鑽石刀片切 取 CaO/ZrO₂ 陶瓷複合材料試片,介面反應試片則沿著垂直於 CaO/ZrO₂ 陶瓷與鈦金屬介面的方向切取試片,再分別製作 X-ray、 SEM 之試片。

(一) X-ray 試片:將 CaO/ ZrO₂ 陶瓷試片切割為適當大小(約 10mm×

10mm×5mm,如Fig. 3-3. 所示)後,依製備金相試片的標準 程序以鑽石砂紙(最小至1µm)研磨抛光,尤須注意試片表面 之平坦度,以避免X光繞射時訊號失真。

(二) SEM 試片: 切割尺寸略同於 X-ray 試片。其中背向散射電子成像

(BEI) 試片同樣以最小至 1µm 之鑽石砂紙研磨拋光。

3.6 分析儀器

3.6.1 X-ray 繞射分析(XRD)
利用同步輻射 X-ray 粉末繞射儀(Model M18XHF, Mac Science, Japan)。設定電壓為 50kV,電流為 200mA,以 Cu 靶 Cu K_α(λ=1.5406Å)產生之X射線經 Ni-filter 濾波後,在試片表面進行 10°至 90°之掃 瞄,掃瞄速度為每分鐘 10°,每隔 20=0.01°自動記錄 X-ray 強度。對 CaO/ZrO₂ 陶瓷複合材料試片作繞射分析以鑑定結晶相,掃瞄出來的 圖形再與 JCPDS 卡相互比對,以判定相別。

3.6.2 掃瞄式電子顯微鏡 (SEM/EDS)

使用熱場發射掃瞄式電子顯微鏡(FESEM, JSM-6500F, JEOL Ltd. Tokyo, Japan)之背向散射電子成像(BEI)與二次電子成像(SEI), 觀察氧化鈣/氧化鋯陶瓷與鈦金屬之反應介面微觀組織,並以EDS 鑑 定試片中各相組成元素及半定量分析,SEM 之操作電壓為 20kV。因 陶瓷部分試片不導電,為避免在腔體內觀察試片時產生電荷累積放電 (charging)現象,需使用 Ion coater 在試片表面度上一層鉑(Pt),設 定電流為 20mA, 濺鍍時間為 120 秒。

第四章 結果與討論

肉眼觀察陶瓷熱壓試片,發現在試片表面處呈現黑色,根據 Moya and Soria^[25]等人指出,氧化物(如氧化鋯、氧化鈣、氧化釔等)在還原氣氛 下容易釋出氧,而產生許多氧空缺(oxygen vacany),造成其外觀呈現 黑色。在此研究中也發現,陶瓷試片的缺氧,除了是在還原氣氛(Ar) 下,另一個重要原因是與鈦反應,導致大量缺氧。觀察陶瓷與純鈦塊 反介面擴散反應後之試片,發現陶瓷在靠近鈦側的區域比遠離處更為 黝黑,更表示出介面反應在接近鈦側處之陶瓷區缺氧情況較遠離嚴 重。

4.1 X-ray 繞射分析

Fig. 4-1. 依序為各組不同成分陶瓷熱壓(1600℃/0.5 hr)試片 5CaO/95ZrO₂(5C/95Z)、9CaO/91ZrO₂(9C/91Z)、17CaO/83ZrO₂(17C/83Z) 在未與鈦金屬反應前的 XRD 分析結果。5C/95Z 試片為 monoclinic ZrO₂ 相及 tetragonal ZrO₂ 相,9C/91Z 試片含有 monoclinic ZrO₂ 相與 cubic ZrO₂ 相及 tetragonal ZrO₂ 相,9C/91Z 試片含有 monoclinic ZrO₂ 相與 monoclinic CaZr₄O₉相。顯示出 17C/83Z 試片則含有 cubic ZrO₂ 相 與 monoclinic CaZr₄O₉相。顯示出 17C/83Z 為全安定氧化鋯,在 1600℃/0.5 hr 熱壓反應下,CaO 會完全固溶在 ZrO₂ 中或者與 ZrO₂反 應形成 CaZr₄O₉。各組未與鈦金屬擴散反應前陶瓷熱壓試片 XRD 分 析資料詳如 Fig. 4-1. 。

Fig.4-2. 為 Hellmann and Stubican^[26] 所提出之 ZrO₂-CaO 相圖,由相 圖上可知有序相為 $CaZr_4O_9(\phi_1)$ 及 $Ca_6Zr_{19}O_{44}(\phi_2)$ 。本實驗各組陶瓷試 片經熱壓(hot-press)處理後冷卻路徑分別標示於相圖上,由ZrO₂-CaO 相圖發現,5C/95Z 在 16000℃時接近 T_{ss}(ZrO₂)與 C_{ss}(ZrO₂)固相限 (solidus),而冷卻後依據相圖,依序經過 T_{ss}(ZrO₂)單相區、T_{ss}(ZrO₂) 與 $M_{ss}(ZrO_2)$ 兩相區及常溫相區 $M_{ss}(ZrO_2)$ 與 $CaZr_4O_9(\phi_1)$,由 XRD 分 析 Fig. 4-1. 結果指出 5C/95Z 為 tetragonal ZrO2 與 monoclinic ZrO2, 並未發現 CaZr₄O₉相, CaO 會完全固溶於 ZrO2 之中,而有 tetragonal ZrO2相出現,應為安定劑(CaO)導致高溫 tetragonal ZrO2相保存至低 溫。由 ZrO₂-CaO 相圖,在 9C/91Z 試片中,從高溫兩相區 T_{ss}(ZrO₂) 與 $C_{ss}(ZrO_2)$ 開始冷卻至低溫 $M_{ss}(ZrO_2)$ 與 $CaZr_4O_9(\phi_1)$ 常溫相區,而 XRD 分析 Fig. 4-1. 結果指出 9C/91Z 為 cubic ZrO₂、 tetragonal ZrO₂ 與 monoclinic ZrO₂, 而高溫相 tetragonal ZrO₂、cubic ZrO₂能保留到低 溫應為安定劑(CaO)所致,可知 CaO 會完全固溶於 ZrO2 中,此外 9C/91Z 試片 XRD 分析結果無 CaZr₄O₉(φ₁)出現,故 XRD 分析無 CaZr₄O₉ 繞射峰出現。17C/83Z 試片,由 ZrO₂-CaO 相圖可知,其從高 溫 cubic ZrO₂相,經冷卻到常溫相變成 monoclinic ZrO₂、與 CaZr₄O₉(ϕ_1), 而由 XRD 分析 Fig. 4-1. 結果為 cubic ZrO₂ 相與

monoclinic CaZr₄O₉相,其中高溫 cubic ZrO₂相在低溫下出現應為 17C/83Z 為完全安定化氧化鋯,使得高溫相 cubic ZrO₂可保存至低溫 出現,而 CaZr₄O₉的發現也和相圖一致。

4. 2 SEM/EDS

4. 2. 1 5C/95Z (5mole%CaO- ZrO₂)

Fig. 4-3. 為 Ti 與 5C/95Z 經 1550°C/6 hr 擴散反應後,介面之背向散 射電子影像(BEI)微觀結構圖。由左至右側分為鈦側、反應層 I 與氧 化鋯側影響區,反應層 I 存在於鈦側處,原始界面介於反應層 I 與氧 化鋯側之間(如箭頭所示)。由圖中可知此 5C/95Z 與 Ti 擴散反應僅產 生一層薄薄的反應層 I,而在氧化鋯側有大量明亮團塊析出物散佈。

minin i

Fig. 4-4(a). 為 Ti 與 5C/95Z 經 1550°C/6 hr 擴散反應後反應層 I、Π 微觀結構圖(BEI),反應層 I 約 1.2~2.4µm,可知在靠近鈦側處,介 面反應是並不劇烈,此外反應層 I 也有效阻止 Ti 與 Zr 之間的相互擴 散的效果,其類似一層擴散阻擋(barrier)層。而這一層薄薄的擴散阻 擋層,應用在鈦金屬鑄造時可減少 α-case 的產生,同時也獲得更好的 機械性質。

Fig.4-4(b). 鈦側處,經 [Fig. 4-4(d).] EDS 定量分析,點1為79.82 at

% Ti,0.06 at% Zr 及 20.12 at% O,顯示少量的 Zr 以及大量的 O 固 溶於 Ti 中,此應為 α-Ti(O)。因為 Ti 與 O 的親和性大且 O 在 α-Ti 中 擴散係數遠大於 ZrO₂ 中^[27],因此 O 容易擴散至鈦側造成 α-Ti(O)的存 在。Fig. 4-4(b).反應層 I 經[Fig. 4-4(d).] EDS 定量分析為 48.75 at% Ti,0.96 at% Zr,50.29 at% O(點 2)以及 49.03 at% Ti,1.01 at% Zr, 49.46 at% O(點 3),顯示大量的 O 與少量的 Zr 固溶於 Ti 中,且 Ti 與 O 經 EDS 分析後原子量比例約為 1:1,推測反應層 I 應為 TiO。 生成機制應為氧化還原反應,造成氧化鋯中大量的 O 擴散到鈦側, 因而形成 TiO 反應層,而 TiO 反應層的產生也造成 Zr 擴散到 Ti 變的 非常困難,產生一個阻擋層的效果,造成後續 Ti 與 Zr 交互擴散反應 明顯的受到抑制。

在 Fig. 4-4(c). 氧化鋯側亮區團塊中,經 [Fig. 4-4(d).] EDS 定量分析 分別為,64.96 at% Zr,35.04 at% O(點 5)以及 66.02 at% Zr,33.98 at% O(點 6),其應為α-Zr(O);而 Fig. 4-4(c). 中暗色基地相,經 [Fig. 4-4(d).] EDS 分析為,2.38 at% Ca,35.24 at% Zr,62.38 at% O(點 4),搭配 ZrO₂-CaO 相圖推測基地相應為t-ZrO_{2-x}。因為鈦和氧化鋯在 高溫擴散反應時,產生氧化還原反應,且O和 Ti 親合性遠大於 Zr, 導致 O 大量從氧化鋯中擴散出去,因而造成氧化鋯晶粒形成介穩定 (metastable) 缺氧氧化鋯(ZrO_{2-x}),從 Fig. 4-5. Zr-O 相圖^[28]中可知,從 高溫冷卻至低溫時,α-Zr(O)會從過飽和的 ZrO_{2-x} 中析出,而藉由α-Zr 的析出可得到較高 O/Zr 比。

5C/95Z 中擴散後產生反應物,α-Ti、TiO、(α-Zr+t-ZrO_{2-x}),由 Fig. 4-4(a) 微觀結構圖有清楚的標示出。而 5C/95Z 經擴散反應後,在氧化鋯側 發現有 monoclinic ZrO_{2-x}與 tetragonalZrO_{2-x}存在,由 Fig. 4-1. 未與鈦 反應前氧化鋯 XRD 分析結果比較,雖然 m 相與 t 相之氧化鋯經擴散 反應仍然存在於氧化鋯側,但已經變成缺氧狀態之氧化鋯,而缺氧比 例約為 ZrO_{1.77}。

Fig. 4-6(a). 為未與 Ti 擴散反應前陶瓷熱壓試片熱腐蝕(1100℃/1 hr) 之微觀結構圖(BEI),晶粒大小約 9~15µm,由 Fig. 4-6(b). 經[Fig. 4-6(c).]EDS 定量分析,點 1 與點 2 分別為 2.29 at% Ca,30.12 at% Zr, 67.59 at% O 以及 2.32 at% Ca,30.78 at% Zr,66.90 at% O,顯示 在未與鈦做擴散反應之前氧化鋯陶瓷是足氧之氧化鋯,而與鈦擴散反 應後,陶瓷側氧化鋯晶粒約略成長 3~5µm,且因氧化還原反應,形 成缺氧之氧化鋯。而與 Ti 經 1550℃/6 hr 高溫擴散反應後的氧化鋯晶 粒只有略微成長因素為,原本氧化鋯內 O 大量擴散至鈦側,與鈦反 應形成 TiO,而由前文所述,當氧化鋯缺氧時,會造成 α-Zr 析出,而 隨著氧化鋯缺氧越嚴重 α-Zr 析出量越多,因此大量 α-Zr 析出至晶界上,晶界上的 α-Zr 會抑制氧化鋯晶粒成長。

Fig. 4-7(a). Ti 與 5C/95Z 經 1550°C/6 hr 擴散反應後鈦側、反應層 I、 氧化鋯側之 BEI 微觀結構圖, Fig.4-7(b)至(e)依序為 Ti、Zr、O 與 Ca 元素之 X-ray mapping。[Fig. 4-7(b).] Ti 元素 X-ray mapping 顯示出 Ti 只擴散到反應層 I 的界限,無法擴散到陶瓷側。而在[Fig. 4-7(d).] Ca 元素 X-ray mapping 顯示出, Ca 元素只有分佈在陶瓷側區域中,根據 Fig. 4-8. Ti-Ca 相圖可知 Ti 和 Ca 幾乎完全不互溶,所以 Ti、Ca 元素 X-ray mapping 結果與 Ti-Ca 相圖的論述是相符合。[Fig. 4-7(c)-(d)] Zr 元素和 O 元素在反應層 I 與左側 Ti 區域處也有訊號出現,因為少量 的 Zr 和大量 O 有擴散至 Ti 區域形成 α-Ti(O),這與之前 EDS 分析出 來的定量分析結果一致。

4. 2. 2 9C/91Z (9mol%CaO-ZrO₂)

Fig. 4-9.為Ti與9C/91Z經1550℃/6hr擴散反應後,介面處之背向 散射電子影像(BEI)微觀結構圖,由左側至右側反應層依序為(反應 層I、Ⅱ、Ⅲ、Ⅳ及氧化鋯側),反應層I、Ⅱ、Ⅲ靠近鈦側,而反 應層Ⅳ則存在於陶瓷側,原始介面位於反應層Ⅲ、Ⅳ之間(如箭頭所 示)。在靠近介面處的孔洞為 kirkendall effect 所產生。與 Fig. 4-3. 5C/95Z 比較,明顯看出 9C/91Z 反應層 5C/95Z 多,顯示出 9C/91Z 介 面反應明顯比 5C/95Z 來的劇烈許多。由 Fig. 4-9. 觀察出反應層 I 最 薄(約 7~8.5µm),反應層 IV最寬(約 87~90µm),反應層 Π、Ⅲ分別 為(約 56~59µm))與(約 37~40µm)。此外反應層 Π有大量樹枝狀析出 結構,反應層 Ⅲ 有細小針狀(acicular)析出物,反應層 IV則有橢圓狀 (oval)與毛毛蟲狀(caterpillar-like)析出物,而在陶瓷側因擴散反應後, 產生白色明亮團塊析出物,但析出量明顯比 5C/95Z 陶瓷側明亮團塊 析出物來的少。

Fig. 4-10(a).為Ti與9C/91Z,經1550℃/6 hr 擴散反應後反應層 I、 Ⅱ之微觀結構圖(BEI),觀察反應層 I,層狀組織分別由亮區條狀析 出物與暗區條狀物所組成。Fig. 4-10(c).中暗區條狀物,經 [Fig.4-10(d).] EDS分析結果為72.38 at% Ti,0.73 at% Zr及26.89 at % O(點1)及71.52 at% Ti,0.97 at% Zr及27.51 at% O(點2),顯示 出少量的Zr與大量的O固溶於Ti中,此暗區條狀物為α-Ti(O)。由 於Ti與O的親和力大,且O在α-Ti中擴散係數遠大於在ZrO2中, 導致O容易擴散至鈦側形成α-Ti(O)。Fig.4-10(c).中明亮條狀析出 物,經 [Fig. 4-10(d).] EDS定量分析為58.59 at% Ti,22.23 at% Zr 及19.18 at% O(點3),應屬 Ti₂ZrO。根據Lin and Lin^[29]指出,高溫 冷卻過程中 Ti₂ZrO 會因共析(eutectoid)反應從 α-Ti (Zr, O)中析出。反 應層 I 中反應物 α-Ti(O)與 Ti₂ZrO,由 Fig. 4-10(b). 局部微觀結構放 大圖標示出。

Fig.4-11. (a) Ti 與 9C/91Z 經 1550℃/6 hr 擴散反應後反應層 II 之微觀 結構圖(BEI)。反應層Ⅱ中,灰色基地相中有樹枝狀析出物,由 Fig. 4-11(b). 發現樹枝狀是由明暗相間的條狀析出物所形成之層狀組織。 Fig. 4-11(c). 中灰色區域之基地相,經 [Fig. 4-11(d).] EDS 定量分析為 60.02 at% Ti, 25.56 at% Zr及 14.42 at% O(點 1)及 59.94 at% Ti, 24.78 at% Zr 及 15.28 % O(點 4),基地相應為 β'-Ti;而 Fig. 4-11(c). 中明亮條狀析出物,經 [Fig. 4-11(d).]EDS 定量分析為 57.91 at% Ti, 21.63 at% Zr 及 20.46 at% O(點 3),分析結果應屬於 Ti₂ZrO;而 Fig. 4-11(c). 中暗色條狀析出物,經 [Fig. 4-11(d).] EDS 定量分析為 72.51 at% Ti, 1.28 at% Zr 及 26.21 at% O(點 2), 應屬於 α-Ti。 根據 Domagala et al.^[30]所提出的 Ti-ZrO2相圖[Fig. 4-12.],當 ZrO2固 溶在鈦中超過 20 at% 以上會有 α-Ti (Zr, O)的固溶體形成,當冷卻時 候有(TiZr)₃O 析出。根據 Lin and Lin^[31]所指出, Ti 與 ZrO₂ 在 1750℃ 的介面反應下,熔融鈦可以融解 ZrO2 並形成 α-Ti (Zr, O),而在冷卻 過程中,Ti₂ZrO 會在 α-Ti 中析出,但是 Ti₂ZrO 是在液相中產生,還

是在固相中產生在此時並不確定。而本實驗溫度在 1550℃,是低於 鈦熔點下做擴散反應,發現 Ti₂ZrO 從 α-Ti 中析出,因此可證明 Ti₂ZrO 是從固相中析出而產生。

Lin and Lin^[31] 論述也指出, Ti₂ZrO 從 α -Ti 中析出機構應為在高溫時 primary α -Ti 固溶了大量的 Zr 和 O, 形成介穩定(metastable) α -Ti (Zr, O), 而在冷卻過程中析出 Ti₂ZrO。此外 β -Ti 在介面反應過程固溶大 量的 Zr 和 O 而在冷卻下來後相變化成斜方晶相之 β '-Ti(Zr, O)。反應 層 II 中反應物為 α -Ti (Zr, O)、Ti₂ZrO 及 β '-Ti(Zr, O), 由 Fig. 4-11(b). 局部微觀結構放大圖示出。

Fig. 4-13(a). 為 Ti 與 9C/91Z 經 1550°C/6 hr 擴散反應後反應層 Ш之微 觀結構圖(BEI)。反應層 Ⅲ是由針狀析出物散佈在灰色基地相中所組 成。Fig. 4-13(c). 中針狀析出物,經 [Fig. 4-13(d).] EDS 定量分析為 54.12 at% Ti,12.97 at% Zr,32.91 at% O(點 1)及 53.69 at% Ti,13.29 at% Zr,33.02 at% O(點 3),由 EDS 分析結果推論針狀析出物應為 針狀 α-Ti (acicular α-Ti)。而 Fig. 4-13(c). 中灰色基地相,經 [Fig. 4-13(d)] EDS 定量分析為 58.57 at% Ti,30.52 at% Zr,10.91 at% O(點 2),此基地相推測應為 β'-Ti(Zr, O)。反應層 Ⅲ 中(acicular α-Ti 與 β'-Ti)生成機制由以下說明之。由 J. L. Murray 提出之 Ti-Zr 相圖 Fig.

4-14. 可知, Ti 與 Zr 可以完全互溶, 而 α→β 相變化溫度在 100%Ti 時為882℃,隨著Zr固溶量增加而降低,當固溶Zr量達到50%時 $\alpha \rightarrow \beta$ 相變化溫度為最低(605℃),表示 Zr 為 Ti 的 β stabilizer;反應層Ⅲ在 高溫時為 β-Ti 固溶了大量的 Zr 與 O 元素,冷卻後會轉變為斜方晶 (orthorhombic)相 β'-Ti(Zr, O), 並伴隨針狀 α-Ti 的析出。Porter and Easterling^[33]指出當基地相(matrix)與析出物之晶體結構有明顯差異 時。界面晶界(interface boundaries)遷移必須靠 ledge mechanism。根據 Lin et al.^[32]指出, 針狀 α -Ti 由基地相 β '-Ti 中析出的機制為 ledge mechanism, 而 ledge mechanism 是由 edge dislocation 和 misfit dislocation 所組成,很常在發生在 partially coherence interface 情況 下。此外針狀 α-Ti 析出量會隨著遠離介面而越多,而本實驗反應層 Ⅲ中針狀 α-Ti 也有相同現象產生。反應層Ⅲ中反應物為針狀 α-Ti (Zr, O)及β'-Ti(Zr, O),由 Fig. 4-13(b)局部微觀結構放大圖標示出。

Fig. 4-15(a). 為 Ti 與 9C/91Z 經 1550℃/6 hr 擴散反應後反應層 IV之 微觀結構圖(BEI)。反應層 IV 由黑色橢圓(oval)狀、毛毛蟲(caterpillar) 狀析出物散佈在灰色基地相內所組成。Fig. 4-15(c). 黑色橢圓(oval) 狀、毛毛蟲(caterpillar)析出物,經 [Fig. 4-15(d).] EDS 定量分析結果 為 19.36% Ca, 19.57 at% Zr, 61.07 at% O(點 3)及 20.48% Ca, 19.15

at% Zr,60.37 at% O(點 4),推測橢圓狀、毛毛蟲狀析出物應為CaZrO₃;而Fig.4-15(c).灰色基地相,經 [Fig.4-15(d).] EDS 定量分析結果為57.38 at% Ti,28.76 at% Zr,13.86 at% O(點 1)以及56.74 at% Ti,29.12at% Zr,14.14at% O(點 2),基地相應為β'-Ti(Zr,O)。反應層Ⅲ中反應物黑色橢圓(oval)狀、毛毛蟲(caterpillar)狀 CaZrO₃及基地相β'-Ti(Zr,O),由Fig.4-15(b).局部微觀結構放大圖標示出。

Fig. 4-16(a). 為 Ti 與 9C/91Z 經 1550°C/6 hr 擴散反應後氧化錯側之 微觀結構圖(BEI)。氧化錯側由自色明亮析出物分散在灰色基地相内 所組成。由 Fig. 4-16(c). 白色明亮析出物,經 [Fig. 4-16(d).] EDS 定 量分析結果為 64.62 at% Zr,35.38 at% O(點2)及 65.81 at% Zr,34.19 at% O(點3),推測白色明亮析出物應為 α-Zr(O)。而 Fig. 4-16(c).中灰 色基地相,經 [Fig. 4-16(d).] EDS 定量分析結果為 3.50 at% Ca,34.59 at% Zr, 61.91 at% O(點 1)及 3.44 at% Ca,34.61 at% Zr, 61.95 at % O(點 4),灰色基地相應為 ZrO_{2-x} 。由 Zr-O 相圖 Fig. 4-5.,可知 α-Zr 為 Zr-rich 情況下之低溫穩定相,由高溫反應至冷卻過程中,α-Zr(O) 會從 ZrO_{2-x} 中析出,當 α-Zr(O)析出後,O/Zr 的比值就會增加。此與 Lin and $Lin^{[21]}$ 所述, Ti 與 ZrO_2 在高溫界面擴散反應後, ZrO_2 會因缺 氧而形成 ZrO_{2-x} ,並在冷卻過程中析出 α-Zr(O)及形成 cubic ZrO_{2-x} 結 果相符合。而 9C/91Z 經擴散反應後,在氧化錯側發現只有 cubic ZrO_{2-x} 存在,由 Fig. 4-1.未與鈦反應前氧化錯 XRD 分析結果比較,monoclinic ZrO_{2-x}與 tetragonalZrO_{2-x} 在擴散反應後都沒發現,主要原因是 9C/91Z 經高溫擴散反應後,有大量的 Zr 及 O 會擴散至 Ti 側,造成氧化錯側 基地相之 CaO/ZrO₂ 的比例會變的比原來的 9C/91Z 來的高,所以經介 面反應後,氧化錯側的基材會變成 cubic ZrO_{2-x}。9C/91Z 與 Ti 經 1550°C/6 hr 擴散反應後,9C/91Z 缺氧比例約為 ZrO_{1.79},而 5C/95Z 缺 氧程度約為 ZrO_{1.77},可知 9C/91Zr 氧化錯缺氧程度較不嚴重,使得 α-Zr 析出量較少,而氧化錯晶粒成長時較不會受到 α-Zr 抑制,所以 9C/91Z 的氧化錯晶粒成長較 5C/95Z 來的明顯。

Fig. 4-17(a). 為未與 Ti 擴散反應前陶瓷熱壓試片熱腐蝕(1100℃/1 hr) 之微觀結構圖(BEI),晶粒大小約 9~12μm。由 Fig. 4-6(b). 經 [Fig. 4-17(c).] EDS 定量分析結果分別為 3.79 at% Ca,31.32 at% Zr,64.89 at% O(點 1)以及 3.82 at% Ca,30.16 at% Zr,66.02 at% O(點 2), 由 EDS 分析顯示出,在未與鈦做擴散反應之前陶瓷試片是足氧之氧 化鋯;與鈦擴散反應後,陶瓷側氧化鋯晶粒略有成長,由於擴散反應 時產生氧化還原反應,導致形成缺氧之氧化鋯。

1896

Fig. 4-18(a). Ti 與 9C/91Z 經 1550℃/6 hr 擴散反應後鈦側、反應層

I、Ⅱ、Ⅲ、Ⅳ、氧化鋯側之 BEI 微觀結構圖; (b)至(e)依序為 Ti、 Zr、O 與 Ca 元素之 X-ray mapping。Fig. 4-18(b). Ti 元素 X-ray mapping 顯示出 Ti 元素分佈從鈦側影響區至反應層 IV都有 Ti 元素存在, 但在 氧化鋯側則無 Ti 元素訊號出現; 而 Fig. 4-18(e). Ca 元素 X-ray mapping 顯示出 Ca 元素訊號只有在反應層Ⅳ及氧化鋯側,由 Ti-Ca 相圖 Fig. 4-8. 顯示出, Ti 與 O 兩者不互溶, 此外 Ca 元素較穩定, 不容易擴散 至介面左側之外的反應層,故 Ca 訊號只在反應層Ⅳ及氧化鋯側出 現。而 Fig. 4-18(c). Zr 元素 X-ray mapping 顯示出由氧化鋯側至左邊 鈦側處 Zr 元素量慢慢遞減,在鈦側處 Zr 元素減少許多,其因除了鈦 側固溶 Zr 元素到達飽和之外,另一原因是 Ti 與 O 親合性比 Zr 好, 由[Fig. 4-18(d).] EDS 定量分析 Zr 含量只有 0.97 at%, 可印證之。Fig. 4-18(d). 為 O 元素 X-ray mapping,發現每個反應層都有 O 元素的訊 號,顯示出〇經擴散反應後,擴散至每個反應層產生反應。

4.2.3 17C/83Z (17mol%CaO-ZrO₂)

Fig. 4-19. 為 Ti 與 17C/83Z 經 1550℃/6 hr 擴散反應後,介面處之背 向散射電子影像(BEI)微觀結構圖,由左側至右側反應層依序為(反 應層 I、Ⅱ、Ⅲ、Ⅳ及氧化鋯側),反應層 I、Ⅱ、Ⅲ靠近鈦側,而 反應層 IV則存在於陶瓷側,原始介面於反應層Ⅲ、Ⅳ之間(如箭頭所 示)。與Fig. 4-3. 之 5C/95Z 比較,明顯看出 17C/83Z 反應層 5C/95Z 多,顯示出 17C/83Z 擴散反應明顯比 5C/95Z 來的劇烈許多。由 Fig. 4-18.觀察可知反應層 I 最薄(約 8~9µm),反應層 IV 最寬(約 81~ 84µm),反應層 II、III 分別為(約 49~52µm)與(約 18~21µm)。此外反 應層 II 與反應層 III,分別為樹枝狀與針狀(acicular)結構在基地相中析 出。

與 Fig. 4-9. 之 9C/91Z 比較,由圖觀察出 17C/83Z 反應層 I、Π、Π 與 9C/91Z 反應層 I、Π、Π反應析出物差異不大,但是 17C/83Z 反 應層 Ⅲ厚度比 9C/91Z 反應層 Ⅲ明顯薄了許多。然而 9C/91Z 與 17C/83Z 差異性最大應為反應層 Ⅳ與氧化鋯側,在 9C/91Z 反應層 Ⅳ 是橢圓(oval)狀、毛毛蟲(caterpillar-like)狀析出物在基地相 β'-Ti 中析 出;而在 17C/83Z 反應層 Ⅳ明顯已經變成條狀析出物在基地相中析 出。此外在氧化鋯側處 5C/95Z 與 9C/91Z 皆有大量白色明亮 α-Zr 團 塊析出散佈在 ZrO_{2-X} 晶界上,而 17C/83C 氧化鋯側中 ZrO_{2-X} 晶界上 只有少量的白色明亮 α-Zr 產生,造成此原因都於以下各反應層分析 中說明。

Fig. 4-20(a). 為 Ti 與 17C/83Z,經 1550℃/6 hr 擴散反應後反應層 I、
 Ⅱ之微觀結構圖(BEI),觀察反應層 I,層狀組織分別由亮區條狀析

出物與暗區條狀物所組成。由 Fig. 4-20(c). 暗區條狀物,經 [Fig.4-20(d)] EDS 分析結果為 71.35 at% Ti,0.78 at% Zr 及 27.87 at % O(點 1),此暗區條狀物為 α-Ti;而亮區條狀物 EDS 分析結果為 59.64 at% Ti,21.12 at% Zr 及 19.24 at% O(點 3),此應為 Ti₂ZrO。 反應層 I 中反應物 α-Ti(O)與 Ti₂ZrO,由 Fig. 4-20(b).局部微觀結構放 大圖有標示出。

Fig. 4-21(a). Ti 與 17C/83Z 經 1550°C/6 hr 擴散反應後,反應層 II 之微 觀結構圖(BEI)。反應層 II 中, 灰色基地相中有樹枝狀析出物,發現 樹枝狀是由明暗相間的條狀析出物所形成之層狀組織。Fig. 4-21(c) 中明亮條狀析出物,經 [Fig. 4-21(d)] EDS 定量分析分別為 56.17 at % Ti,22.89 at% Zr 及 20.94 at% O(點1)及 57.54 at% Ti,22.47 at % Zr19.99% O(點4),分析結果應屬於 Ti₂ZrO;而 Fig. 4-21(c).中 暗色條狀析出物,經 [Fig. 4-21(d)] EDS 定量分析為 72.16 at% Ti, 2.18 at% Zr 及 25.56 at% O(點3),應屬於 α-Ti。由 Ti-ZrO₂ 相圖 Fig. 4-12. 得知當 ZrO₂ 固溶在鈦中超過 20 at% 以上會有 α-Ti (Zr, O)的固 溶體形成,在高溫時大量的 Zr 與 O 固溶於 α-Ti,形成過飽和 α-Ti (Zr, O)固溶體,根據 Lin and Lin ^[31]所指出,高溫冷卻至低溫時 α-Ti 固溶 Zr 與 O 量降低,導致 Ti₂ZrO 會從 α-Ti(Zr, O)中析出。17C/83Z 反應

層 I 中 α-Ti 與 Ti₂ZrO 之生成機制和反應層 Ⅱ相同。

Fig. 4-21(c). 灰色區域之基地相,經 [Fig. 4-21(d).] EDS 定量分析為 60.11 at% Ti, 27.39 at% Zr 及 12.50 at% O (點 2)基地相應為 β'-Ti; 在高溫擴散反應過程,β-Ti 固溶大量的 Zr 和 O 形成 β-Ti(Zr, O)固溶 體,而 Zr 是 β-Ti 的 stabilizer,在冷卻時高溫 β-Ti 可以保存至低溫, 但是會由高溫立方晶相轉變為斜方晶相之 β'-Ti(Zr, O)。Fig. 4-21(b). 局部微觀結構放大圖有標示出,反應層 II 中反應物 α-Ti (Zr, O)、 Ti₂ZrO 及基地相 β'-Ti(Zr, O)。

Fig. 4-22(a). 為 Ti 與 17C/83Z 經 1550°C/6 hr 擴散反應後反應層 III之 1896 微觀結構圖(BEI)。反應層 III 是由針狀析出物散佈在灰色基地相中所 組成,而 17C/83Z 反應層 III 明顯比 9C/91Z 反應層 III 來的薄,推測應 為反應層 IV 大量 CaZrO3 的生成使得 Zr 與 O 擴散至 Ti 側變少,而 使反應層 III 與 9C/91Z 相比之下變薄許多,且發現反應層 III 針狀析出 物也較 9C/91Z 來的少。

Fig. 4-22(b)的針狀析出物,經 [Fig. 4-22(c).] EDS 定量分析為 54.26 at
% Ti, 12.93 at% Zr, 32.81 at% O(點 1)及 53.58 at% Ti, 13.47 at
% Zr, 32.95 at% O(點 2)由 EDS 分析結果推論針狀析出物應為針狀

α-Ti (acicular α-Ti)。而 Fig. 4-22(b). 灰色基地相,經 [Fig. 4-22(c).] EDS 定量分析為 57.96 at% Ti, 30.61 at% Zr, 11.43 at% O(點 2), 此基地相推測應為 β'-Ti(Zr, O)。J. L. Murray 提出之 Ti-Zr 相圖 Fig. 4-14. 可知, Ti 與 Zr 可以完全互溶,而鈦側區,在高溫 α-Ti + β-Ti 兩相區固溶大量 Zr 與 O,冷卻時 α-Ti 的對 Zr 元素固溶量降低,過飽 和的 Zr 在凝固過程中被排至 β-Ti,而 Zr 是 β-Ti 的 stabilizer,造成 β-Ti 固溶大量的 Zr 與 O 元素,冷卻後轉變 β'-Ti(Zr, O)。然而針狀 α-Ti 由基地相 β'-Ti(Zr, O)中析出機制,與 Lin *et al.*^[33]指出 ledge mechanism 相同。反應層Ⅲ基地相 β'-Ti 與針狀 α-Ti,於[Fig. 4-22(a).]標示出。

Fig. 4-23 (a). 為 Ti 與 17C/83Z 經 1550°C/6 hr 擴散反應後反應層 IV之 微觀結構圖(BEI)。反應層 IV 由暗色橫條狀析出物與灰色基地相所組 成。Fig. 4-23(c). 暗色橫條紋狀析出物,經 [Fig. 4-23(e)] EDS 定量分 析結果為 21.02% Ca, 19.15 at% Zr, 59.83 at% O(點 2)及 21.56% Ca, 18.02 at% Zr, 60.42 at% O(點 3),暗色條狀析出物應為 CaZrO₃。 而 Fig. 4-23(c). 灰色基地相,經 [Fig. 4-23(e)] EDS 定量分析結果為 57.69 at% Ti, 28.92 at% Zr, 13.39 at% O,基地相應為 β'-Ti(Zr, O)。 CaZrO₃ 生成機制應為,在未與 Ti 反應前 17C/83Z 經由 XRD 分析結 果 Fig.4-1. 發現有 CaZr₄O₉相,而與 Ti 經 1550°C/6 hr 高溫擴散反應

後,CaZr₄O₉的Zr與O會大量固溶於擴散至陶瓷側中的Ti中,由Ti-Ca 相圖Fig.4-8. 可知Ti與Ca兩者互不相溶,因此CaZr₄O₉因排出Zr 與O而轉變成CaZrO₃。而β'-Ti生成機制為,高溫擴散反應時大量的 Zr與O固溶於Ti中,高溫形成β-Ti(Zr,O),在冷卻過程中相變成 β'-Ti(Zr,O)。Fig.4-23(b).為反應層IV之局部放大圖,基地相β'-Ti 與暗色條狀析出物CaZrO₃皆於圖中標示出。Fig.4-23(d).Ti與 17C/83Z 經1550°C/6 hr 擴散反應後,反應層IV與氧化錯側界面之交 界圖(BEI)。發現在反應層IV與氧化錯側交界處β'-Ti與CaZrO₃的形 貌都變的較細小,推測應為熱膨脹係數差異所造成的結果。

Fig. 4-24(a). 為 Ti 與 17C/83Z 經 1550°C/6 hr 擴散反應後氧化鋯側之 微觀結構圖(BEI)。在氧化鋯側由灰色晶粒(grain)與晶界上白色明亮和 暗色析出物所組成,與 5C/95Z 和 9C/91Z 氧化鋯側層比較,非常明顯 看出白色團塊(α-Zr)的量越來越少。

Fig. 4-24(c). 灰色晶粒基地相,經 [Fig. 4-24(d).] EDS 定量分析結果為 5.16 at% Ca, 34.24 at% Zr, 60.60 at% O(點 2)及 5.24 at% Ca, 34.21 at% Zr, 60.55 at% O(點 3),基地相應為 c-ZrO_{2-X},而缺氧比例約為 ZrO_{1.79}。Fig. 4-24(c)晶界白色明亮析出物,經 [Fig. 4-24(d).]
EDS 定量分析結果為 0.03% Ca, 65.78 at% Zr, 34.19 at% O(點 1),

推測晶界白色明亮析出物應為 α-Zr(O)。而 Fig. 4-24(c). 晶界暗色析 出物,經 [Fig. 4-24(d).] EDS 定量分析結果為 19.96 at% Ca, 21.29 at % Zr, 58.75 at% O(點 4)及 20.05 at% Ca, 22.02 at% Zr, 57.93 at % O(點 5),晶界上暗色析出物應為 CaZrO₃。由 Lin and Lin^[34]指出, 氧 化 鋯 側 遠 離 原 始 介 面 的 反 應 機 制 主 要 為 氧 化 還 原 (oxidation-redution)所造成,經由在此層的 EDS 分析並無發現有 Ti 元 素可證明之。因氧化還原反應產生介穩定之缺氧(oxygen-deficient)氧 化鋯(ZrO_{2-X}),而在冷卻過程中,α-Zr 會從 ZrO_{2-X} 中析出至缺氧氧化 錯晶界上。CaZrO₃也會出現於晶界上。Fig. 4-23(b) 為氧化鋯側遠離 介面處之局部放大圖,晶界析出物 α-Zr 、CaZrO₃與基地相 c-ZrO_{2-X} 皆標示於圖中。

Fig. 4-25(a). 為未與Ti 擴散反應前陶瓷熱壓試片熱腐蝕(1100°C/1 hr)
之微觀結構圖(BEI),晶粒大小約 10~13µm。由Fig. 4-25(b).中灰色
基地相,經 [Fig. 4-25(c).] EDS 定量分析結果分別為 5.89 at% Ca,
29.92 at% Zr, 64.19 at% O(點 1)以及 6.03 at% Ca, 29.44 at% Zr,
64.53 at% O(點 2),配合Fig. 4-1. 之 XRD 比對分析,推測此為 c-buic
ZrO₂。而Fig. 4-25(b).中晶界上暗色的相,經 [Fig. 4-25(c).] EDS 定量
分析結果分別為 7.19 at% Ca, 28.33 at% Zr, 64.48 at% O(點 3), 配

合 Fig. 4-1. 之 XRD 比對分析,推測此為 monoclinic CaZr₄O₉。此外, 經與鈦擴散反應後,發現氧化錯晶粒有成長,晶粒尺寸約 20~30μm, 且在擴散反應時產生氧化還原反應,導致形成缺氧之氧化錯。

Fig. 4-26(a). Ti 與 9C/91 經 1550℃/6 hr 擴散反應後鈦側、反應層 I、 Ⅱ、Ⅲ、Ⅳ、氧化鋯側之 BEI 微觀結構圖; (b)至(e)依序為 Ti、Zr、O 與 Ca 元素之 X-ray mapping。Fig. 4-26. (b) Ti 元素 X-ray mapping 顯 示出 Ti 元素分佈從鈦側影響區至反應層 Ⅳ都有 Ti 元素存在,但在氧 化鋯側則無 Ti 元素訊號出現; 而 Fig. 4-26(e). Ca 元素 X-ray mapping 顯示出 Ca 元素訊號只有在反應層IV及氧化錯側,如 Ti-Ca 相圖 Fig. 4-8. 顯示出, Ti 與 Ca 兩者不互溶, 此外 Ca 元素較穩定, 不容易擴 散至介面左側之外的反應層,故Ca 訊號只在反應層Ⅳ、及氧化鋯侧 出現。而 Fig. 4-26(c). Zr 元素 X-ray mapping 顯示出由氧化鋯側至左 邊鈦側處 Zr 元素量慢慢遞減, 在鈦側處 Zr 元素減少許多, 其因除了 鈦側固溶 Zr 元素到達飽和之外,另一原因是 Ti 與 O 親合性比 Zr 好, 故鈦側固溶許多 O 元素後, 無法固溶 Zr。Fig. 4-26(d). O 元素 X-ray mapping,發現每個反應層都有O元素的訊號,顯示出O經擴散反應 後,擴散至每個反應層產生反應。

各組氧化鋯陶瓷試片(5C/95Z、9C/91Z、17C/83Z),與Ti高溫擴散反應後,每一反應層之反應物,列於Table 2.。

第五章 結果與討論

- 5C/95Z 與鈦 1550℃/6 hr 高溫擴散反應,產生厚度約 2µm 之 TiO 反應層,TiO 功能像一阻擋層,阻擋 Ti 與 Zr 繼續相互擴散,而在 氧化錯側則有 t-ZrO_{2-x}與大量 α-Zr 的產生。
- 2.9C/91Z 與 17C/83Z 與鈦 1550°C/6 hr 高溫擴散反應後,皆會發生劇 烈的介面反應,由於 Ti 固溶大量的 Zr 與 O,在鈦側處發現三層反 應層,依序為 α-Ti+Ti₂ZrO、β'-Ti+α-Ti+Ti₂ZrO 及 β'-Ti+acicular α-Ti。
- 3. 9C/91Z 與 17C/83Z 與鈦 1550℃/6 hr 高溫擴散反應後,9C/91Z 與 17C/83Z 反應層 I、 II、 II 之生成機構分別為:反應層 I,高溫時 為 β-Ti,冷卻過程 β-Ti 相變化成 α-Ti,最後會形成 α-Ti+Ti₂ZrO; 反應層 II,高溫時為(α-Ti + β-Ti),經冷卻最後形成 α-Ti+Ti₂ZrO+β'-Ti;反應層 II 之生成機構為,高溫時為 β-Ti,經冷 卻最後形成 acicular α-Ti+β'-Ti。
- 4. 5C/95Z、9C/91Z 及 17C/83Z 與 Ti 1550℃/6 hr 高溫擴散反應後,氧
 化鋯側皆有 α-Zr 產生,α-Zr 會隨 CaO 含量增加而減少,在陶瓷側

處之基地相氧化鋯缺氧程度越嚴重,造成 α-Zr 析出量越多,而 α-Zr 析出量越多,抑制氧化鋯晶粒成長越顯著。

5.9C/91Z 與 17C/83Z 與 Ti 在 1550℃/6 hr 高溫擴散反應後,陶瓷側靠 近原始介面處反應層 IV發現 β'-Ti 與 CaZrO₃ 共存;而在遠離原始介 面處則有 α-Zr 與 c-ZrO_{2-x} 的產生。17C/83Z 氧化鋯側遠離原始介面 處除了有 α-Zr 與 c-ZrO_{2-x}之外,晶界處發現會有 CaZrO₃殘留。

參考文獻

- 洪國裕,"鈦及鈦合金之熔煉"鑄造月刊,一一七期,民國 88 年 6
 月。
- E. R. Parker, "Materials for Missiles and Spacecraft," McGraw-Hill, 173 (1963).
- 3. J. R. Newman, "Metals Handbook," 9th edition, 3, 289 (1980).
- 4. 劉文海, "我國鈦金屬供需分析" 鍛造, 九卷二期,民國 89 年 6 月。
- G. Welsch and W. Bunk, "Deformation Modes of the Alpha-Phaseof Ti-6Al-4V as a Function of Oxygen Concentration and Aging Temperature," Met. Trans, A., 13A, 889-899 (1982).
- R. L. Saha and K. T. Jacob, "Casting of Titanium and It's Alloy," Def. Sci. J., 36[2], 121-141, (1986).
- P. Lautenschlager and P. Monaghan, "Titanium And Titanium Alloy as Dental Materials," International Dental Journal, [43], 245-531, (1993).
- E. W. Collings "Applied superconductivity, Metallurgy, and physics of Titanium Alloy Vol.1 Fundamental," splenum press, New York and London, (1985).
- E. K. Molchanova "Phase Diagrams of Titanium Alloy," [Transl. Of Atlas Diagram Sostoyaniya Titanovyk Splavov], Israel Program for Scientific Translations. (1965).

- 10. J. Matthew "Titanium A Technical Guide," p. 11(1988)
- 11. 賴耿陽, "金屬鈦理論與應用," 復漢出版社, p. 31 (1990).
- 周振嘉,"氧化鋯陶瓷中的麻田散鐵相變化與韌化,"十三卷一期,民 國 83 年1月。
- 李源弘.張文固,"氧化鋯至製備與應用,"化工技術,一卷六期,民國 82年9月。
- G. M. Wolten, "Diffusionless phase transformations in zirconia and hafnia," J. Am. Ceram. Soc. 46 [9] 418-422, (1963).
- A. H. Heuer, N. Claussen, W. M. Kriven, M. Ruhle, "Stability of Tetragonal Zr02 Particles in Ceramic Matrices," J. Am. Ceramic.Soc. 65 [12] 642-650, (1982).
- R. C. Garvie, R. H. Hannik and R. T. Pascoe, "Ceramic Steel," Nature Vol.258 (1975), p.703.
- 17. R.Ruh, "Reaction of Zirconia and Titanium at Elevated Temperature," J. Am. Ceram. Soc. 46[7], 301-306, (1976).
- R. Ruh, N. M. Tallan and H. A. Lipsitt, "Effect of Metal addition on the Microstructure of Zirconia," J. Am. Ceram. Soc. 47[12], 632-635 (1964).
- B. C. Weber and W. M. Thompson, "Ceramic Crucible for Melting Titanium," J. Am. Ceram. Soc. 40[11], 363-373 (1957).
- J. Takagashi and H. Kimura, "Casting pure titanium into commercial phosphate bonded SiO₂ investment molds," J Dent Res, 69, 1800-180 5, (1990)

- K. F. Lin and C. C. Lin, "Interface Reaction between Ti-6Al-4V alloy and Zirconia mold during casting," J. Mater. Sci., 34. 5899-5906 (1999).
- C. L. Lin, D. Gan, and P. Shen, "Stabilization of Zirconia Sintered with Titanium," J. AM. Ceram. Soc., 71[8], 624-629(1988).
- 23. B. C. Weber, H. J. Garrett, F. A Mauer, and M. A. Schwartz,
 "Observations on the stabilization of Zirconia," J. AM. Ceram. Soc.,39[6], 197-207,(1956).
- R. N Correia, J. V. Emiliano, and P. Moretto, "Microstructure of diffusional zirconia-titanium and zirconia-(Ti-6Al-4V) alloy joint," J. Mater. Sci., 33, 215-221(1998).
- J. S. Moya and J. Soria, "Black Color in Partially Stabilized Zirconia," J. Am. Ceram. Soc., 71[11] C-479-C480 (1988).
- 26. J. R. Hellmann and V. S. Stubican, "Stable and Metastable Phase Relations in the System ZrO2-CaO," J. Am. Ceram. Soc, 66 [4] 260-64 (1983).
- R. L. Saha, T. K. Nandy, R. D. K. Misra and K. T. Jacob, Bull. Mater. Sci. 12[5] 481-493 (1989).
- R. J. Ackermann, S. P. Garg, and E. G. Rauh, "High-Temperature Phase Diagram for the System Zr–O," J. Am. Ceram. Soc., 60 [7–8] 341–5 (1977).
- K. L. Lin and C. C. Lin, "Ti₂ZrO Phases Formed in the Titanium and Zirconia Interface after Reaction at 1550°C," J. Am. Ceram. Soc., 88 [5] 1268-72 (2005).

- 30. R. F. Domagala, S. R. Lyon, and R. Ruh, "The Pseudobinary Ti–ZrO₂," J. Am. Ceram. Soc., 56 [11] 584–7 (1973).
- 31. K.F. Lin and C. C. Lin, "Transmission Electron Microscope Investigation of the Interface between Titanium and Zirconia," J. Am. Ceram. Soc., 82[11], 3179-85 (1999).
- 32. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys. Chapman & Hall, New York, 1992.
- 33. K. L. Lin and C. C. Lin, "Microstructural Evolution and Formation Mechanism of the Interface Between Titanium and Zirconia Annealed

at 1550°C," J. Am. Ceram. Soc., 89 [4] 1400-8 (2006).

34. K. L. Lin and C. C. Lin, "Effect of Annealing Temperature on Microstructural Development at the Interface Between Zirconia and Titanium," J. Am. Ceram. Soc., 90 [3] 893-9 (2007).

	莫耳組成(mole%)	試片名稱	陶瓷熱壓條件	相對密度	XRD Phase
1	5%CaO+95%ZrO ₂	5C/95Z	1600°C/30 min/1 atm Ar	98.3%	t-ZrO ₂ , m -ZrO ₂
2	9%CaO+91%ZrO ₂	9C/91Zr	1600°C/30 min/1 atm Ar 1896	98.6%	c-ZrO ₂ , t -ZrO ₂ , m -ZrO ₂
3	17%CaO+83%ZrO ₂	17C/83Zr	1600°C/30 min/1 atm Ar	98.2%	<i>c</i> -ZrO ₂ , CaZr ₄ O ₉

Table 1 未與鈦擴散反應前,各組陶瓷試片組成條件及相關資料

计日夕预	CaO mol%	鈦側區	介面反應層				与儿母创
武力石柵			反應層 I	反應層Ⅱ	反應層Ⅲ	反應層IV	判115亩1则
5C/95Z	5 mol%	α-Ti	TiO	無反應層	無反應層	無反應層	α-Zr t-ZrO _{2-x}
9C/91Z	9 mol%	α-Ti	α-Ti Ti ₂ ZrO	$\begin{array}{c} \textbf{F} \\ \textbf{a} - Ti \\ \textbf{T}i_2 ZrO \\ \textbf{\beta}' - Ti_{896} \end{array}$	β'-Ti acicular α-Ti	CaZrO₃ β′-Ti	c-ZrO _{2-x} α-Zr
17C/83Z	17 mol%	α-Ti	α-Ti Ti ₂ ZrO	α-Ti Ti ₂ ZrO β΄-Ti	β'-Ti acicular α-Ti	CaZrO₃ β´-Ti	c-ZrO _{2-x} CaZrO ₃ α-Zr

Table 2 各組陶瓷試片與鈦經 1550℃/6 hr 擴散反應後,各組陶瓷試片擴散反應結果

Fig. 2-1. 純鈦之同素晶體結構圖

Fig. 2-2. 鈦由 β 相轉變至 α 相之晶體結構圖

[From Structure and Properties of Engineering Material, 4th Ed., by R.Brick, A. W. Pense and R. B. Gordon Copyright.1997 By McGraw-Hill, New York. Used with the permission of McGraw-Hill Book Company]

Fig. 2-4. 添加不同β相穩定元素之相圖 (a)β-同晶型(isomorphous)(b)β-共析型(eutectoid)

Fig. 2-5. 添加不同合金元素之分類

Cooling	Cooling	Cooling					
Monoclinic <u>Tetragonal</u> Cubic <u>Liquid</u>							
Heating 1170℃	Heating 2370°C	Heating 2680°C					

Fig. 2-6. 氧化鋯之相變化過程

Fig. 3-1 擴散反應實驗流程圖

Fig. 3-2. 鈦與氧化錯試片熱壓示意圖

SEM/X-Ray

Fig. 3-3. X-ray 及 SEM 試片圖

Fig. 4-1. 未與鈦擴散反應前各組陶瓷試片之 XRD

 C_{ss} : cubic ZrO2 T_{ss} : tetragonal ZrO2 M_{ss} : monoclinic ZrO2 ϕ_1 : CaZr4O9 ϕ_2 : Ca₆Zr₁₉O44

Fig. 4-2. ZrO₂-CaO 之二元相圖

Fig. 4-3. Ti 與 5C/95Z 經 1550℃/6 hr 擴散反應後之介面微觀結構圖 (BEI),界面位於反應層 I 、氧化鋯側之間。

Fig. 4-4. (a) Ti 與 5C/95Z 1550℃/6 hr 擴散反應後,反應 層 I、氧化鋯側之微觀結構圖(BEI); (b)圖(a)介面處局 部放大圖(BEI)

Fig. 4-4. (c) Ti 與 5C/95Z 經 1550℃/6 hr 擴散反應後,反應層 I、氧化 錯側之微觀結構圖(BEI); (d) EDS 定量分析。

Fig. 4-5. Zr-O 之二元相圖

(c)	
(\mathbf{U})	

(b)

(a)

Lavian		Content of Element, at%				
Layer		Ti	Ca	Zr	0	
純陶瓷	1		2.29	30.12	67.59	
	2		2.32	30.78	66.90	
	3		2.43	31.32	66.25	

Fig. 4-6. (a) 5C/95Z, 1600℃/0.5 hr 陶瓷熱壓試片之微觀結構(BEI);
(b) 5C/91Z 經 1600℃/0.5 hr 陶瓷熱壓試片之局部放大圖(BEI);
(c) EDS 定量分析。

Fig. 4-7. (a) Ti 與 5C/95Z 經 1550℃/6 hr 擴散反應後,鈦側、反應層 I、氧化鋯 側之微觀結構圖(BEI); (b)至(e)依序為 Ti、Zr、O 與 Ca 元素之 X-ray mapping。

Fig. 4-8. J. L. Murray 提出之 Ti-Ca 系統相圖

Fig.4-9. Ti 與 9C/91Z 經 1550℃/6 hr 擴散反應後之介面微觀結構圖 (BEI), 介面位於反應層Ⅲ、Ⅳ之間。

Fig.4-10. (a) Ti 與 9C/91Z 經 1550℃/6 hr 擴散反應後,反應
層 I、Ⅱ之微觀結構圖(BEI); (b) 圖(a)反應層 I 局部放大微
觀結構圖(BEI)。

Juli

(d)						
Lavar		Content of Element, at%				
Layer		Ti	Zr	Ο		
反應層I	1	72.38	0.73	26.89		
	2	71.52 1 396	0.97	27.51		
	3	58.59	22.23	19.18		

Fig. 4-10. (c) Ti 與 9C/91Z 經 1550℃/6 hr 擴散反應後,反應層 I 局部放 大圖(BEI); (d) EDS 定量分析。

Fig. 4-11. (a) Ti 與 9C/91Z 經 1550℃/6 hr 擴散反應後,反 應層Ⅱ之微觀結構圖(BEI);(b) 反應層Ⅱ局部放大微觀結 構圖(BEI)。

Fig. 4-11. (c) Ti 與 9C/91Z 經 1550℃/6 hr 擴散反應後,反應層 II 局部放 大圖(BEI); (d) EDS 定量分析。

Fig. 4-12. Donagala et al. 提出之 Ti-ZrO2相圖

Fig. 4-13. (a) Ti 與 9C/91Z 經 1550℃/6 hr 擴散反應後,反 應層Ⅲ之微觀結構圖(BEI);(b) 反應層Ⅲ局部放大微觀結 構圖(BEI)。

1)						
Lavan			Content of Element, at%			
Layer		Ti	Ca	Zr	0	
反應層Ⅲ	1	54.12		12.97	32.91	
	2	58.57	1896	30.52	10.91	
	3	53.69		13.29	33.02	

Fig. 4-13. (c) Ti 與 9C/91Z 經 1550℃/6 hr 擴散反應後,反應層Ⅲ局部 放大圖(BEI); (d) EDS 定量分析。

Fig. 4-14. J. L. Murray 提出之 Ti-Zr 系統相圖

Fig. 4-15. (a) Ti 與 9C/91Z 經 1550℃/6 hr 擴散反應後,反應層 IV之微觀結構圖(BEI); (b) 反應層Ⅲ局部放大微觀結構圖(BEI)。

(u)						
Τ		Content of Element, at%				
Layer	Ti	Ca	Zr	0		
反應層IV	1 57.38		28.76	13.86		
	2 56.74 1	896	29.12	14.14		
	3	19.36	19.57	61.07		
	4	20.48	19.15	60.37		

Fig. 4-15. (c) Ti 與 9C/91Z 經 1550℃/6 hr 擴散反應後,反應層IV局部放 大圖(BEI); (d) EDS 定量分析。

Fig. 4-16. (a) Ti 與 9C/91Z 經 1550℃/6 hr 擴散反應後,反應 層氧化鋯側之微觀結構圖(BEI); (b) 反應層氧化鋯側局部放 大微觀結構圖(BEI)。

(d	.)				
	Lour		Content of E	Element, at%	
	Layer	E F	Ca	Zr	О
	氧化鋯層		3.50	34.59	61.91
		2		64.62	35.38
		3	896	65.81	34.19
		4	3.44	34.61	61.95

Fig. 4-16. (c) Ti 與 9C/91Z 經 1550℃/6 hr 擴散反應後,反應層氧化 錯側局部放大圖(BEI); (d) EDS 定量分析。

(c)

т		Content of Element, at%				
Layer		Ti	Ca	Zr	0	
反應層IV	1		3.79	31.32	64.89	
	2		3.82	30.16	66.02	

Fig. 4-17. (a) 9C/91Z 經 1600℃/0.5 hr 陶瓷熱壓試片之微觀結 構(BEI); (b) 9C/91Z 經 1600℃/0.5 hr 陶瓷熱壓試片之局部放 大圖(BEI); (c) EDS 定量分析。

Fig. 4-18. (a) Ti 與 9C/91 經 1550℃/6 hr 擴散反應後,鈦側、反應層 I、Ⅱ、Ⅲ、Ⅳ、氧化鋯側之 BEI 微觀結構圖; (b)至(e)依序為 Ti、Zr、O 與 Ca 元素 之 X-ray mapping。

Fig. 4-19. Ti 與 17C/83Z 經 1550℃/6hr 擴散反應後之介面微觀結構圖 (BEI),介面位於反應層Ⅲ、Ⅳ之間。

Fig. 4-20. (a) Ti 與 17C/83Z 經 1550℃/6 hr 擴散反應後,鈦側與反應層 I、Ⅱ之微觀結構圖(BEI);(b) 圖(a)反應層 I 局部放大微觀結構圖(BEI)。

Fig. 4-20. (c) Ti 與 17C/83Z 經 1550℃/6 hr 擴散反應後,反應層 I、Ⅱ局 部放大圖(BEI); (d) EDS 定量分析。

Fig. 4-21. (a) Ti 與 17C/83Z 經 1550℃/6 hr 擴散反應後, 反應層Ⅱ之微觀結構圖(BEI);(b) 反應層Ⅱ局部放大微觀 結構圖(BEI)。

Fig. 4-21. (c) Ti 與 17C/83Z 經 1550℃/6 hr 擴散反應後,反應層 II 局部 放大圖(BEI); (d) EDS 定量分析。

(a)

(c)

Layer		Content of Element, at%				
		Ti	Ca	Zr	0	
反應層Ⅲ	1	54.26		12.93	32.81	
	2	53.58		13.47	32.95	
	3	57.96		30.61	11.43	

Fig. 4-22. (a) Ti 與 17C/83Z 經 1550℃/6 hr 擴散反應後,反應層Ⅲ之微觀 結構圖(BEI);(b) 反應層Ⅲ局部放圖(BEI);(c) EDS 定量分析

Fig. 4-23. (a) Ti 與 17C/83Z 經 1550℃/6 hr 擴散反應後,反 應層Ⅳ、氧化鋯側之微觀結構圖(BEI); (b) 圖(a)反應層Ⅳ 局部放大微觀結構圖(BEI)。

(<u>e</u>)

T		Content of Element, at%				
Layer		Ti	Ca	Zr	0	
反應層IV	1	57.69		28.92	13.39	
	2		21.02	19.15	59.83	
	3		21.56	18.02	60.42	

Fig. 4-23. (c) Ti 與 17C/83Z 經 1550℃/6 hr 擴散反應後,反應層IV之微觀結構 圖(BEI);(d) Ti 與 17C/83Z 經 1550℃/6 hr 擴散反應後,反應層IV與氧化鋯 侧界面之交界。

Fig. 4-24. (a) Ti 與 17C/83Z 經 1550℃/6 hr 擴散反應後,反應 層Ⅳ、氧化鋯側之微觀結構圖(BEI);(b) 反應層氧化鋯側局 部放大微觀結構圖(BEI)。

Fig. 4-24. (c) Ti 與 17C/83Z 經 1550℃/6 hr 擴散反應後,反應層氧化鋯 側局部放大圖(BEI); (d) EDS 定量分析。

1		`	
	\mathbf{n}	•	
	1.5		
۰.	•	,	

Lover		Content of Element, at%				
Layer		Ti	Ca	Zr	0	
氧化鋯	1		5.75	29.92	64.33	
	2		5.62	29.44	64.94	
	3		7.19	28.33	64.48	

Fig. 4-25. (a) 17C/83Z 經 1600℃/0.5 hr 陶瓷熱壓試片之微觀結構(BEI); (b) 17C/83Z 經 1600℃/0.5 hr 陶瓷熱壓試片之局部放大圖(BEI); (c) EDS 定量分析。

Fig. 4-26. (a) Ti 與 17C/83Z 經 1550℃/6 hr 擴散反應後,鈦側、反應層 I、Ⅱ、Ⅲ、Ⅳ、氧化鋯側之 BEI 微觀結構圖; (b)至(e)依序為 Ti、Zr、O 與 Ca 元素 之 X-ray mapping。