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ABSTRACT

The thesis contains three main topics: synthesis of various solid and hollow Ag-Au
as well as Ag-Pt nanoparticles, structural characterization, and optical properties with
theoretical simulations.

Solid nanoparticles including=Ag, Au, Au/Ag and; Ag/Au core-shell, and Ag-Au
alloyed nanoparticles with various compositions' were synthesized by means of a
chemical reduction method. According to. HRTEM images, the mean sizes of the
nanoparticles prepared were found to be smaller than 20 nm with a narrow size
distribution. Those solid nanoparticles were used as the templates for the further synthesis
of hollow nanoparticles and were used as the references of structural and optical
observations. For the synthesis of hollow nanoparticles, Galvanic replace reactions with
designed compositions were carried out at various temperatures. With different Ag
template sizes, and HAuUCI, concentrations, a serious of hollow Ag-Au nanoparticles was
synthesized. From HRTEM images, two distinct nanostructures observed fully depends
on the size of Ag template. With smaller and larger Ag nanoparticles, a cross-link
nanostructure and a donut-like hollow nanostructures was obtained, respectively. These
two special nanostructures are quite different from those using much larger Ag
nanoparticles (~50 nm) in some previous studies. In addition, another hollow sphere
Ag-Pt nanostructure with many open channels was newly synthesized by using H,PtClg
as the precursor.

The optical properties were characterized by UV-vis spectroscopy. It was found that



the absorption peaks of Ag-Au alloyed nanoparticles just located between that of pure Ag
and Au nanoparticles as our expectancy. Different with the Ag-Au alloyed nanoparticles,
Au shell showed strong sheltered effect in the Ag/Au core-shell nanoparticles. As the
atomic ratio of Au shell is higher 65.9% (Ag:Au=34.1:65.9), the absorption peak exhibits
features as pure Au nanoparticles. In contrast, the UV-vis spectra of Au/Ag core-shell
nanoparticles demonstrated features of both pure Au and Ag nanoparticles. The UV-Vis
absorption of the hollow Ag-Au alloyed nanostructures mainly depends on their
nanostructures, i.e. the cross-link structures and the donut-like hollow structures. In the
case of cross-link hollow Ag-Au alloyed nanoparticles, as the concentration of addition of
Au® is lower (Ag:Au=2:1, 3:1, 4:1), a strong absorption peaks was observed at 400 nm
(pure Ag nanoparticles) due to the incomplete replacement of residual Ag template. It is
interesting that a much broadening absorption peak around 1000 nm might result from the
special cross-link nanostructures. Whereas, the donut-like hollow Ag-Au alloyed
nanoparticles showed a clear red shit at 600 nm~1000 nm indicating the similar effect as
the perfect hollow nanoparticles. By . usingsthe classic Mie theory with Drude
modification, theoretical spectra of Ag, Au;-Au/Ag and Ag/Au core-shell, and Ag-Au
alloyed nanoparticles were calculated for the comparing with our experiment data and for
the understanding of effective “structural-‘factors for the design of functional

nanostructures.
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shell thickness of one monolayer (red) and Ag/Au alloy nanoparticles.[60]
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Fig. 2-2 Core (Rc =3 nm): Ag; Shell (variable thickness): Au. Bulk dielectrical data are
deduced from Drude model. [52]
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Fig. 2-3 Absorption cross-section versus wavelength for AgcoreAUsherr NaNospheres with
different relative Au composition. With the increasing Au content, the absorption
peak decreases and red-shifts.[47]
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Fig. 2-4 Schematic illustration of the experimental procedure that generates nanoscale shells
of gold from silver templates with various morphologies. The reaction is illustrated
in the schematic as follows: (A) Addition of HAuCl, to a dispersion of silver
nanoparticles and initiation of the replacement reaction;(B) The continued
replacement reaction of HAuUCI, with the silver nanoparticles; (C) Depletion of silver
and annealing of the resultant shells to generate smooth hollow structures. Note that
the shape of each silver nanoparticle is essentially preserved in this template-engaged
reaction. [56]
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Fig. 2-5 UV-Vis absorption spectra of an aqueous dispersion of silver nanoparticles (~50 nm
in diameter) before and after various volumes of 1 mM HAuCl, aqueous solution had

been added. There existed an isosbestic point at ~530 nm.[56]
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Fig. 2-6 (A) TEM image of silver nanoparticles synthesized using the polyol process. (B, C)
TEM and SEM images of gold nanoshells formed by reacting these silver
nanoparticles with an aqueous HAuCI, solution. [56]
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Fig. 2-7 (A) UV-visible extinction spectra of solid colloids made of pure silver, pure gold, and
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with HAuCI4 and (B) gold solid colloids with diameter of ~ 30 nm.[57]
BA::? 2 AUZA4F  BIB:EFcAUZ A RFAHTEME 7 U@ A chd B

ﬂﬁ%ﬂﬁﬁ&%ﬁiﬁmﬁﬁiﬂ:

@)

A

a
o
o

oooon

300 400 500 600 700 800 ' ! !
Wavelength (nm) =

(C) UV-visible extinction spectra and (D) photographs of aqueous dispersions of gold
nanoshells (e, ~ 25 nm in core diameter) after their surfaces had been electrolessly
plated with gold of various thicknesses (b—d). As a comparison, the spectrum and
photograph of a dispersion of gold solid CO||OIdS ( ~ 30 nm in diameter) were also

shown (a). [57]
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Sk § €. 760 nm =4 ] 560 nm > Fp e o d UV-Vis k32 11 Z 3R en '

boendwlir s A kg Au 2 RS m;ﬁ# P EBABROER > B ERE R RED
R AR e S

Vb e e S U IR S R R AT A Y o e
2T F AU F A RT E P 2 AU R S A 0 ok e
(N=1.33) 4 A fel & AFROL IR T LB RANF ZH LT 22T 0% 2 Aut F
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(nm/refractive index unit) > ¥ P P 3 Au 2 KR FHIWRBE R G AR F o A
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60

Au shell with 25 nm core

and 2 nm wall
404
£
=
X 20- Au solid colloid with
‘QE diameter of 25 nm
<

1.32 1.36 1.40 1.44 1.48
Refractive index of solvent (n)

Fig. 2-9 Plots of the dependence of peak shift (AAmax, relative to the peak position calculated
for water with n = 1.33) on the refractive index of surrounding medium. The
sensitivity factors, Ahmax/n, were 328.5 and 66.5 nm RIU21 for gold nanoshell (with
a core diameter of 25 nm and.a'wall thickness of 2 nm) and solid colloid (with
diameter of 25 nm),respectively, [57]
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B e R B o el B R 0 4 Xie ¥ 4408 i AuAg

AR ER L 6T kw o B § &R (HAUCL) e » % 555 AGNOs ¥ > & i f28 4o ¢

3Ag(s) + AuCls-(ag) > Au(s) + 3Ag*(aq) + 4CI(aq)

He AQAI T 3#F 25 F oA AURFIZ FHF2BRFR- 2R TS
CRRE S RPN R B PR X3 T FERSIFIT S TERR

TR BRTERME O REIAITI O FAF ME B

2-4-2 Kirkendall effect
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!‘XL
(g e
DR pei]
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Fig. 2-10 Schematic of the Kirkendall effect.

2-4-3 B~ i8]
2-4-3-1 Alloy process
1452 e o d ot AUCL AU SR 5 1 R 12(0.99V)  AGAQ(0.8V) kst o 4t

L g * A EFp g gope™ L B~ F K (Galvanic Replacement Reaction) » I 25 = & £ (4
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Fig. 2-13 ~ Fig. 2-14) » ¥ 5540 ¢

3Ag(s) + AuCly (ag) = Au(s) + 3Ag*(aq) + 4Cl (aqg)

Fig. 2-11 The schematic illustration the proposed mechanism for the formation of gold
truncated octahedra. A truncated cuboctahedron is used to represent the starting
spherical silver nanocrystal. A replacement reaction between gold and silver removes
silver atoms preferentially from (111) facets, while depositing gold atoms selectively
to higher energy facets such as (100) and (110).[58]

Fig. 2-12 (A) HRTEM image of a silver nanocrystal, confirming spherical morphology and
single crystalline structure. (B-D) HRTEM images of gold hollow nanocrystals,
showing a faceted morphology and a single crystalline domain within each particle:
(B) imaged along the <100> direction and (D) imaged along the <110> direction.
Various views of the faceted nanocrystals are consistent with a truncated octahedron
as the dominant particle shape, as illustrated schematically.[58]

Yadong % 4 [58]% 4 4t » o *+{110}5 %k & #c -] >0 {100} ~ {111} » #502 fe b B 4o
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ferw F EFEOPEE > AU € LA A gkt Ag 3T {11035 oo gt o d 3
- B AUZ K RFFT R B AQZF RS {110} e ¢ gﬂjsw{w 734 Jf (4o Fig.
2-13) 5 d 3t Au R oF RS B AQ R OK RS g R 2 A F L FCC g > T g
A p AP R A hIRRIEE £ (Au rich)sEk B § 4~ AU B H RS
|- TAMER DPEIE 0 FUIF §ARE R N AU B KR A S e R PR o @ 1T A e

Ag F bt mi2 L ARE Fh ko Pt AR AL Alloy process o

2-4-3-2 Dealloy process

FharEEPAUPRE 0 B8 ERE BT :H“iw] hIRAQ E KRS e
Fedi koo fe b RA G AT IR AQ F AR RIEZ AT R 0 A AR Ag 2 R
g Mo BIR G- AP g A8 000 Ag 2 KRS e AU R SF e (rich) ehal B B g
piEARA PR 4 & £ 1 (dealloy) (4 Fig. 2-15) -

Fig. 2-13 Simulated evolution of an artificial pit in Aul0%Ag90% (atomic%), ®=1.8 eV.
Cross sections along the (111) plane defined by the yellow line in a are shown below
each plan view. (a), The initial condition is a surface fully passivated with gold
except within a circular region (the “artificial pit”). (b), After 1 s, the pit has
penetrated a few monolayers into the bulk. We note how there are fewer gold clusters
near the side wall than at the centre of the pit. (c), After 10 s, a gold cluster has
nucleated in the centre of the pit. (d), At 100 s, the pit has split into multiple pits.[59]
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PR RmBEHR

31 RH%ES
Table 3-1 The chemicals used for preparing the experimetanl nanoparticles.
Ly R

AgNOs (silver nitrate) Mallinckrodt
HAuUCI4(hydrogen tetrachloroaurate hexahydrate) | STREM CHEMICALS
H,PtCls(Dihydrogen hexachloroplatinate hydrate) | ACROS

NH;OH (Ammonia solution) SHOWA
NaBH.(Sodium borohydride)# #5 fi 4 Riedel-de Haen
CsHsNaz0O; + 2H,0 (Sodium Citrate) J.T.Baker
Polyvinylpyrrolidone (PVP Mw 58000) ACROS

CeHgOs (L(+)ascorbic acid) ‘& & C fit Panreac

3-2 REEA
REFH g2 A5
X kSt ik SIEMENS ; BD5000
UV-Vis % ¢ /7 B kwfo k3 ik Thermo Scientific /Evolution 300 BB
(UV-Vis spectroscope)
FE B AT SR T s JEOL /JEM-2100F

(Field Emission HRTEM)

CRUE A HITACHI, CF15RXI|
e

E e

it 3% & 7 R (TEM/EDS) Oxford Instruments

AR AR 1S

DELTA , DC200H
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3-3 &2

3-3-1Ag-Au & £ 3 kR F el i 2

fe @l 25ml Jk & 1mM 1 AgNO;3 ki3 i »
4e ~ 25ml & & 1.0mM 1 HAUCI, -

4~ 2ml & A 0.007mM =7 Sodium citrate -

A w0 e

AR A £ 1) 100C > F 2 HEE - ) PE e

fe @l 25ml Jk & 1mM =1 AgNO; -k /3 i%

4v ~ 25ml /)%}i 1.0mM = HAUC|4

4¢ ~ 2ml 3k B 0.007 mM < Sodium citrate

se#F) 100°C » & 7 R - ] pE

Fig. 3-1 Process of synthesizing Ag-Au alloy nanoparticles by aqueous process.
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3-3-2 AU/Ag i 8 3 K kT el g S 2
WHE Au 7 F Rt
1. 2 33ml k& 1.0mM s HAUCIl, e #: 3 100C -
2. 4 5ml kB 1%+ Sodium citrate i ® 48 — /] pF o
W4 Au/Ag &z K3
1 B2 i e =+ en AU 2 K+ 73 0% Sml Se ~ 30ml 2 3 -k -
2. 2 {8tk B4~ Iml k& 38.8mM 1 Sodium citrate~1.2ml J& & 10mM =7 AgNO3~
0.4ml ;% & 100mM = ascorbic acid °

3. MR R4 # 3] 100C > 1 F 4FE - ] BF o

P~ 33ml k& 1.0mM enHAUCI, 7% 7% 4 #. 2 100°C

T

4v »~ 5ml ik & 1%¢n Sodium citrate » 4% 8 - /] PF

3
e
-
fon
el
R

l-r-
(=
o5
¥
ol
3
14

¥ ? 4 x 30ml 2 3 oK

(s

% B 4 ~ 1ml & & 38.8mM 0 Sodium citrate ~
1.2ml Jk & 10mM = AgNOs ~ 0.4ml J& 2 100mM
&1 ascorbic acid

(s

4o 7] 100°C » & 2 R - ) pE

Fig. 3-2 Process of synthesizing pure Au and Au/Ag core-shell nanoparticles by aqueous
process.



3-3-3Ag/AU FE A K enfl g 2 2
WE Ag 7 F S
1. fet] 33ml k& 1mM 7 AgNO3 -k i3 7% - 4e 44 3 100C -
2. 4v o~ 5ml k& 1%+ Sodium citrate i ¥ 458 - ] pF -
WHE Ag/AU B R F ks
1 B ath e = Ag 2 KRS 0% 5ml 4~ 30ml & B3 ok o
2. 2 s & B4~ Iml k& 38.8mM = Sodium citrate ~ # = #8 % (15ml ~ 30ml ~ 60ml ~
75ml)k & 1mM = HAUCI, » 2 %2 0.4ml )k & 100mM = ascorbic acid °

3. MR RAcHT 100C  F P FR- L

5 33ml ik & 1.0mM 1 AgNOs 7 i 4 #4 2 100°C

(s

4v » 5ml ik B 1%+ Sodium citrate > %8 — /] BF

(s

Bt it

o5

i 5ml T 2 4o~ 30ml 2 g+ -k

% B 4~ 1ml k& 38.8mM = Sodium citrate ~ #
e %8 4% (15ml ~ 30ml ~ 60ml ~ 75ml)jk & 1mM ¢
HAUCI, » 0.4ml ;k & 100mM = ascorbic acid

Fig. 3-3 Process of synthesizing pure Ag and Ag/Au core-shell nanoparticles by aqueous
process.



3-3-4 ¢ 3 Ag-Au & & 2 KRS el 2
WE Ag 7 F S
1. el 20ml ik & 4.0 mM sh AgNO; : B~#% 71 AgNOg i3 » 20 ml 4 33 -k + ¥
20ml ;& & 4.0mM 1 AgNQO; -
2. WL B gt 0 4~ 10 B € £ 59 PVP(Mw=58000) » 5 5 e 1 5] 60°C -
T2 3R 10 448
3. @ 4.0ml kR 2.64 MM 1 NaBH, @ B~#7 % ciNaBH, 3 ~ 4ml 2 #g3 -k+ {8
ml jk & 2.64 mM =1 NaBH, °
4. % 3 s leaai e » KB 2 i Y o B L PE B35 B b2

{6 Iw %E*'E'J%;T%Jg ‘;’f"Ag ?—; 7}7&'—"‘ Z ,%\”’E’ °

el 5 Zp 4 AGNO3 3 i 4e » » 09 4c » 3 Spdr
AgNO310 & # £ 1 PVP(Mw=58000)

l b 3160°C i 2 g 10 A4

ﬁ‘:‘ A‘glii }‘—i" ’i'f’ NaBH4 % /|

EIFER2ZERELIIZR

Fihd Ag 3 A TR R

Fig. 3-4 Process of synthesizing 1hr reaction time at 60°C Ag nanoparticles by aqueous
process.
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WH? 3 Ag-Au & £33
1. ﬁf’i’o%ll 500ml ;k & 1.0mM s7HAUCI, : B~#7% s9HAUCI, 3 »~ 500ml & #3 -k v #
500ml & & 1.0mM 1 HAUCI, -

2. 1t 60°C ™ > b g L i f A R Pl B ORI e 2 W T D AQ B IR R

+

VR EE] o

3 HFERE-FOREF B2 24T FE L 4o dml kA IM 59 NH4OH -

fe 8l HAUCI, 7% i

60°C ~

B BARA S~ F RS hAG B AR 7

LR

FERR>2ZE > EAIIZE

4v »~ 4ml & R 1M 1 NH,OH

Fig. 3-5 Process of synthesizing hollow Ag-Au alloyed nanoparticles by aqueous process.
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3-3-5 ¢ Z Ag-Pt & &7 Kk el F 22
1. fie ] 500ml & & 1.OMM e HPtCls : B4+ 3 1 HoPtCle i3 » 500ml 4 4 -k v i@

500ml % & 1.0mM &1 H,PtClg -

2. 1% 60°C T - b 1 orpe Wenp R Bl Bl e 2 WAL K D AQ AR

™

VR L] o

3 FE- IR RAF 224 FE R S dml kR 1M 5 NH4OH -

e @ HoPtClg /% i

60°C T~

Bk B AL 4§ A0S hAQ F 4 A %

FR- ] P

TR LAF R

4~ 4ml k& 1M 7 NH,OH

Fig. 3-6 Process of synthesizing hollow Ag-Pt alloyed nanoparticles by agueous process.
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4 R RS LSRR

3-4-1 % ¢ k-7 B kex sk 3 (UV-vis absorption spectra)
(1) i& {7 %%k 2 Photometric Mode:% # Absorbance » Band Width # # % 0.5nm >
Scanning Speed:k =600 nm/min > #Ffy A= Bk £ 5200 nm > 4y B BEA R S
1100 nm - Data Interval 5 1 nm o
(2) #A BirimRAar - d fcel) s B2 2T HEHRANA BN - RIE
baseline -

(3) #Hk A b puiplR S 0 B Aotk iRl £ o

3-4-2 X & ¥84 4 #5 (XRD)
(1) £ 443 RiEH o L 45 ko r B AR ARy WA K B AR
FRR=5IL RFRT B A AT 2R R4 R 5 15,000
o M PR G 304 48 o MR ISTEE B iR iR By o e SR E 45 3~6
E
(2) w7 g iws Fmiﬁm* FRAGRARF AP AFE ] AR LR
FORHAE T 20w R AL
(3) 45 #-5¢ % Detector Scan (2-thetascan)? 4% it 3 /& 2 40kV > Tt 240 mA > 4
3 4 stepmode - # 45 i A& 3 0.02%sec » 445 B 5 30°2 80°

3-4-3 3% 6+ 7 % ;8§ F B4 (Field Emission Transmission Electron

Microscope, FETEM)
(1) 455 kT iz H 2 o

(2) 35 @ir > 1 4200 meshz 4 Cute iz » iRl £ ATHCH 3 K 3 230
P - A4 o
(3) #-izie 2 EACUREB ) » ¥ BT IE T FH p RiTE o

(4) > F & T+ Rasr ko
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Frd 2R FI2LBHE AERLLI
4-1Ag-Au & & 3 kS

4-1-1 BHEFEA

TEM £ 47

K Fig. 4-1 HRTEM LB 5 0 7 8 97 & 2 2 2 3 3 (AgAU=1L) > 2 4 7 40
FoorkAE R > wd > Ag(a=0.4077 nm) ~ Au(a=0.4079 nm) & 1 & #icdp § 41T 0 B AR
PR GT e FEES 0.239 nmo R 1R S FT AQ & Au(111) 0 Fr A & AL
F 5 Ag-AU £ £ o 9 TEM/EDX 4 17 (Fig. 4-2, Table 4-1) » 125 R < 262 Ag:Au
R Ll Bon AR 2 A AQ-AU £ £ m 2 A BN AU Ag Aol o e
AR R T AR e Y wAp B > B F Ag 2. Ag-Au & & o JripIpt TR % Jd
iR B REEZT > AUT AR RAG AR E 5 {2 B R T i R o Ag

ERF A G 0 P A G § AGZ AQ-Au L E2 KRS o
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1 2 3 ¢ s
ul Scule S cts Qursor S416keV 2cts)

i 2 3 4 § &
f S 100cts Curser S 4161V @)

(@)

nanoparticles (Ag:Au=1:1).

Table 4-1 HRTEM/EDX results of (a) inner part and (b) outer part of Ag-Au alloyed

nanoparticles (Ag:Au=1:1).

(b)
Fig. 4-2 HRTEM/EDX results of (a) inner part and (b) outer part of Ag-Au alloyed

Element Weight% Atomic%
AgL Inner 34.46 48.98
Outer 62.92 75.60
Aul Inner 65.54 51.02
Outer 37.08 24.40
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SEM & 3%

f1* SEM/EDX 4~ +7 (Fig. 4-3, Table 4-3) 3 .22 TEM/EDX s= (>t L & 337
(Ag:AU=1:1) » 229 STk 3t 2 & (Pl D4R iT > e & L AQAU=3D 2 3R > B Bk TR
FLARR AR av b BF AGT AR ER T Z B0 ¥R Y 5 AQAUSSL 2
>0 A W E T AQAU=2:1 2 B e

&3
10pum Electron Image 1 J | LN i 10um Electron Image 1

- 1

qpa‘lggiéigg (1) Ag:Au=1:1,(2) Ag:Au=3:1).

Fig. 4-3 SEM images of Ag-Au aﬂeyed :nj;

. La

Table 4-2 SEM/EDX results of AgAu alloys d anQpartlc:]'es
Element AgAu=1if Lo T AgiAu=3il
Ag Atomic% 5200 ™ 64.14
Au Atomic% 47.18 "TINTNIRT 35.86

XRD £ %

Fig. 4-4 5% Ag-Au & % % 4 % F 2. XRD 58> d > Ag & Au & 1 % Bcdp & 817>
Ho K YEehE M o 0 ESPE B R RLT 5 AQ-AU & & o 1 4 JCPDS
218 7] Ag(111)/Au(111) ~ Ag(200)/Au(200) ~ Ag(220)/Au(220) 2 Ag(311)/Au(311) e & &
b o 5 Ag(111)/Au(111) s 8495 L & T (FWHM)A 45 > 42 8 2 43 eh+ ] 5 7nm> 4o
Table 4-3 #1751 o
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Ag(111)/Au(111)
°

Ag(200)/Au(200)
¢ Ag(220)/Au(220)  po1391)/au(311)

Intensity (arb. units)

L ! i s s
I ¥ T v I v I v L v
30 40 50 60 70 g0

20 (degree)

Fig. 4-4 XRD of Ag-Au alloyed nanoparticles (Ag/Au=1:1).

Table 4-3 The XRD fitting result of Ag-Au alloyed nanopaticles (Ag/Au=1:1).

Composition Ag:Au=1:1
FWHM(111) 1.20
Estimated size / nm 6.95

4-1-2 %8 4540 45

UV-Vis sk 3 & 47

Fig4-5 5= Ag~Au z tf 3+ 72 AgAU » %] 5 31~ 112 Ag-Au & £ 3 K3 2
UV-Vis B jc k2 o d B 40 Ag~ AU £ 3 3w i A w3t 420 2 520nm > @ 95 &
X2 L EE RS He g 430420 2 520nm B > G 5 470 nm o

A Ag:Au=1:1 sk ¢ 0 g8 it TEM/EDX 4 47 (Fig. 4-2, Table 4-1) » 2% i3 {8 sosr
g EF RS EAAINAGAU G5 Ll A Al E_Ag F B E o T THIEE K
et p A2 LR A UVAViS sk -E LA B e Apdp & hiin o
A AQAU=3:1 sk 50 0 RO H - e giE o (e m g K'lf LA B TE L Apfp &
2% RV LR £ £ & UV-Vis ekl o ¢ B IR - B 43 Ag(420
nm) ~ Au(520 nm)z A A 2 B ehE - s jeE R F A R che s SRR ARG
fbasfcE > 2P IPRSHEEAL BY S P S TE o B Ag-AU £ £ F ARG

26



UV-Vis = fc sk 3 8 » 3% 2 % 7 § Fig. 5-3 ~ Fig. 5-7 ~ Fig. 5-13 12 2 Fig. 5-16 -

14
- - -Ag nanoparticles
—— AgAu alloy 1:1
— - -Au nanoparticles
104
I
§
2
5 06+
v
G
04 -
024
00 4
r T r T r T r T r
300 400 500 600 700 800

wavelength(nm)

Fig. 4-5 UV-Vis absorption spectra of Ag, Au and Ag-Au alloyed nanoparticles.

4-2 Au/Ag 3 3 K R+
4-2-1 HpgFis 4

TEM £ 35

d 2% AU~ AQ 3R g A dr iz 0 B B B IRIT 0 T AQ B A RTR
Fr et TEL BB 20 AuZ AT PR e RE 2 Ag K
A o A A L e » b 2F R HE L 4 (Sodium citrate) 5 B4 » AgNOs 2 {5 > € 22 sodium
citrate * Ji > Bk pRd B d P d B i (RG) > a b2t r i & C R
(ascorbic acid) » ¢ ** ascorbic acid ¥ 33:B R & > ¥ VR AF B 2AQ KRG R D
gt LG o R PR SR R RS 32 H U g A% od HRTEM & f(Fig.
4-6)F 1L IR 0 AT E S 2 3 S (AQ/AU=29/71) % R 5 - & §8 (Decahedron) 2 B 4 o
jE 4 TEM/EDX = i 4 37 (Fig. 4-7, Fig. 4-9, Table 4-4, Table 4-5) » ¥ ru .o s 2. Ag =

gt SIRLF 0 ER Y 5 AUAG PRS- 2 #U,f Au & Ag B %A% = a7 g o
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Fig. 4-6 HRTEM images of Au/Ag core-shell nanoparticles (Ag/Au=29/71).

ke ul Scale 110cts Qursor 0000 ke

'l Scale 252 cts Cursor 0000 ke

(@) (b)

Fig. 4-7 HRTEM/EDX results of (a) inner part and (b) outer part of Au/Ag core-shell

nanoparticles (Ag/Au=29/71).

Table 4-4 HRTEM/EDX results of (a) inner part and (b) outer part of Au/Ag core-shell

nanoparticles (Ag/Au=29/71).

Element Weight% Atomic%
AgL Inner 18.99 29.97
Outer 26.40 39.57
AulL Inner 81.01 70.03
Outer 73.60 60.43
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Au-Ag(111) | %
1 0.247'nm "*

™~
'.\.4

1 2 3 4 S5 6 1 & § 0 W 1@ 13 W 15 8§ 147 1 2 3 4 S5 6 1 & § 0 W 1@ 15 W 15 % 17
'l Scule N19cts Qursor S416keV (B cts) ke ul Scale 110.cts Qursor 0000 ke

() (b)
Fig. 4-9 HRTEM/EDX results of (a) inner part and (b) outer part of Au/Ag core-shell
nanoparticles (Ag/Au=29/71).

Table 4-5 HRTEM/EDX results of (a) inner part and (b) outer part of Au/Ag core-shell
nanoparticles (Ag/Au=29/71).

Element Weight% Atomic%
AgL Core 4.82 8.47
Shell 29.57 43.39
AuL Core 95.18 91.53
Shell 70.43 56.61
SEM £ 7

133 SEM/EDX » 47 eng & #F > & 2 2 3 2 2 &2 F S ATR -2 = (2 4p § v>

o Ed4t HRTEM 2 247 > A w0 daip] > F e G2 27 > 300 )& P an
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00 ’ Elecron mage 1

Fig. 4-10 SEM images of Auf;eg %Qrelshét népopartlcles (1.) Ag/Au=70/30, (2.

Ag/Au=60/40, (3.) Ag/Au= 44/563&216.@_)%9«91#6 =29/71.

Table 4-5 SEM/EDX results of Au/Ag core-shell nanoparticles (1.) Ag/Au=70/30, (2.)
Ag/Au=60/40, (3.) Ag/Au=44/56 and (4.) Ag/Au=29/71.

Element (1.) (2.) (3.) (4.
Ag Atomic% 70.47 62.87 46.36 34.05
Au Atomic% 29.53 37.13 53.64 65.95
XRD £ %

dom iriE o d 2T AuC Ag S B BciR S BT e XRD RS A R P A E 2 KB
s n] > fe % Fig. 4-11 22 XRD Bl 22 JCPDS it {714 47 4 3 $£38 Ag(111)/Au(111)
£ Ag(200)/Au(200) 7 B 6t < FEd FWHM & 7 ¢ < 5 37 @ 5] % 3 ¢ 4 598~11
nm > 4c Table 4-6 #75% o % % #F M F AUAQ 128 3 BT 9735 3 anin K B & 3 4o @ A%
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Fig. 4-11 XRD of Au/Ag core-shell nanoparticles.

Table 4-6 The XRD fitting result of Au/Ag:core-shell nanopaticles with different Au seed

volumes.
Composition Ag:Au=44:56 AQ:Au=60:40 Ag:Au=70/30
FWHM(111) 0.77 1.34 1.11
Estimated size / nm 10.78 nm 6.25.nm 7.55 nm

4-2-2 %8 A 44

UV-Vis sk 3 4 47

Fig. 4-12 ¥ 4 3 AU 7 SR o ¥pug & 520 nm» 3% Au/Ag Pk 2 SF R+ @
TORREDECRFEF AL AR " EFAUREARSE ) TR IRDEFEREZE e Au
Aok d arjeit > R A BRI kg o XA TIPSR BBISLIRETF T A
A 3t AQ K B R E L ATE A B iTr o 54395 SEM/EDX & 4 {1k % ~ T fe
& XRD #7f & 2. 2 F 3+ = = <] »f1* MieTheory ticgt 1 # UV-Vis s 4z 3k 3 4 Fig.
4-13 % Fig. 4-14 #7510 > ¥ M IR Fig. 4-13 ¥ > § Ag 2k cnE & 5 3nm pF > H #7id
S B For A § BeE o ROTPUE A AU B RS ST S A B R AH e o
G OBE o I F PR R MR TS 2 k& ¥ 0E IR A Ag/Au=70/30 (~8 nm, Table
4-6) 12 2 Ag/Au=29/71(~16 nm, Fig. 4-6) e & ¢ o d R 4 FengZ B 5 WY
AQ/AU=70/30 2= Ag = > AQIAU=29/71 Z % - i = AQ/Au=70/30 2= Ag # & & R fri
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Table 4-7 The molar ratios and their SPR band positions of Au, Ag and Au/Ag core-shell
nanoparticles.

Sample Molar ratio (Ag/Au) & SPR (nm)
Au 522
Au-Ag (Ag/Au=70/30) 383 ~ 500
Au-Ag (Ag/Au=60/40) 399
Au-Ag (Ag/Au=44/56) 501
Au-Ag (Ag/Au=29/71) 508
Ag 423

14
- - -Ag nanoparticles

12'. —Angu 71:29

1.1
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0.7 4
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05 N~
0.4
0.3
0.2
0.1

0oL : : . . :
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—Angu—47!53
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Fig. 4-12 UV-Vis absorption spectra of of Au, Ag and Au/Ag core-shell nanoparticles (the
compositions showed here were the real compositions obtained from SEM/EDX).
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Fig. 4-13 Calculated optical extinction spectra for Au/Ag core-shell nanoparticles .We use
Quasi-static theory with Drude model:coefficients for the calculation. The Au core
radii are 5 nm, 10 nm, 15 nmj; and 20 nm.with, the same Ag shell thickness (3 nm).It
can be found that the sheltered effect-from Ag shell is very obvious.
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Fig. 4-14 Calculated optical extinction spectra for Au/Ag core-shell nanoparticles. The Au
core radii are 3 nm, 5 nm, and 7 nm, with the same Ag shell thickness (0.5 nm). It
can be found that the sheltered effect from Ag shell isn’t very obvious.
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Fig. 4-15 HRTEM images of Ag/Au core-shell nanoparticles (Ag:Au=25:75).
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Fig. 4-16 HRTEM/EDX results of (a) inner part and (b) outer part of Ag/Au core-shell
nanoparticles (Ag:Au=25:75).

Table 4-8 HRTEM/EDX results of (a) inner part and (b) outer part of Ag/Au core-shell
nanoparticles (Ag:Au=25:75).

Element Weight% Atomic%
AgL Core 24.48 37.19
Shell 21.77 41.24
AuL Core 75.52 62.81
Shell 72.23 58.76
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Fig. 4-18 HRTEM/EDX results of (a) inner part and (b) outer part of Ag/Au core-shell
nanoparticles (Ag:Au=25:75).

Table 4-9 HRTEM/EDX results of (a) inner part and (b) outer part of Ag/Au core-shell
nanoparticles (Ag:Au=25:75).

Element Weight% Atomic%
AgL Core 27.41 40.81
Shell 36.45 51.16
AuL Core 72.59 59.19
Shell 63.55 48.84
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Fig. 4-20 HRTEM/EDX results of (a) inner part and (b) outer part of Ag/Au core-shell

nanoparticles (Ag:Au=6:94).

Table 4-10 HRTEM/EDX results of (a) inner part and (b) outer part of Ag/Au core-shell

nanoparticles (Ag:Au=6:94).

Element Weight% Atomic%
core | AdL 3.74 6.63
AuL 96.26 93.37
Ag L 3.50 6.21
Shell AL 96.50 93.79
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Fig. 4-21 SEM images of Ag/Au core-shell nanoparticles (1.) Ag/Au=6/94, (2.) Ag/Au=8/92,
(3.) Ag/Au=13/87 and (4.) Ag/Au=25/75.

Table 4-11 SEM/EDX results of Ag/Au core-shell nanoparticles (1.) Ag/Au=6/94, (2.)
Ag/Au=8/92, (3.) Ag/Au=13/87 and (4.) Ag/Au=25/75.

Element (1.) (2.) (3.) 4.
Ag Atomic% 7.74 8.40 9.56 34.12
Au Atomic% 92.26 91.60 90.44 65.88
XRD & %

doan AT o d 3 AU AQ fe B W Bcte 5 4217 0 (= XRD s 4 FR T oE 2R G
sk e e 4 % Fig. 4-22 22 XRD Bl ¢ JCPDS i& {7+ $7 4r % £ Ag/Au(111)-(200)-
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Fig. 4-22 X-ray diffractionof Ag/Au.core-shell nanoparticles.

Table 4-19 The XRD fitting result of Ag/Au core-shell nanopaticles with different Au seed

volumes .
Composition Ag/Au=6/94  Ag/Au=8/92 Ag/Au=13/87 Ag/Au=25/75
FWHM(111) 0.84 0.65 0.56 0.58
Estimated size / nm 10.004 12.83 16.09 14.82

4-3-2 %84 A 45

UV-Vis sk 3 & 47

Aufe ¥ w eip e X8 e Ag 3 F kS % 0%(0.012 mmole/50ml) 50ml >z {8 £ A
Bl 4e » 2 fe £ e & & f&i% % (0.033mmole/50ml) - 5ml -~ 8ml ~ 15ml ~ 30ml 4+ Table 4-20 -
BLEH UV-Vis & j k£ 3k (Fig. 4-23)7 1 I 0 — B4 AQ 3 K B3 sofcd =2 423 nm >

=Hf

KEE AU BT e » BB e o o PR R IR OB 50 B o ehlEiR
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Table 4-20 The molar ratios and their SPR band positions of Au, Ag,Ag/Au core-shell
nanoparticles.

Sample Au3+ Au seed Ag+ Agseed(ml)  Molar ratio
(ml) (Ag/Au)&SP
(mmol) (mmol) R(m)
Au 0.033 0.012 522
Ag-Au (Ag/Au=7/93) 75 0.033 530
Ag-Au (Ag/Au=8/92) 60 0,033 527
Ag-Au 33 0.033 507
(Ag/Au=9/91)
Ag-Au 15 0.033 527
Ag/Au=35/65.
Ag 0:033 423
20
] - - - Ag nanoparticles
184 —— Ag/Au=34.1/65.9
6 —— Ag/Au=9.6/90.4

14 4 Agifu=7.7182.3
1 — - - Au nanoparticles

absorption

wavelength{nm)

Fig. 4-23 UV-Vis absorption spectra of of Au, Ag and Ag/Au core-shell nanoparticles (the
compositions showed here were the real compositions obtained from SEM/EDX).
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Fig. 4-24 X-ray diffraction of Ag nanoparticles for 1 hr reaction time at 60°C.

Table 4-21 The XRD fitting result of Ag nanopaticles with 1 hr reaction time at 60°C.

Ag nanoparticles with 1 hr reaction time at 60°C
FWHM (111) 0.60
Estimated size / nm 14.00nm

TEM £ 3%

RSk 0 FAQIY 2 HWH A FEEMF DA F K £ (10 min 22 60 min)
RigfFpeeR IR F o 2 EE e @S bl 2 AGAU £ £ A RS 0 g
HRTEM @2 » ¥ g dsded = t#) 22 Ag 2 K85 (10 min)B~ & F Ris 2. ¥ 7

Ag-AU £ £ 2K F o % 3 R AT AR > XL P ok S o JHRF A A S Aed
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Fig. 4-25 HRTEM images of hollow Ag-Au alloyed nanoparticles with smaller initial Ag NPs.
The atomic ratio of Ag:Au is 1:1.

Table 4-22 HRTEM/EDX results of hollow Ag-Au alloyed nanoparticles with smaller initial
Ag NPs .The atomic ratio of Ag/Au=15/85.

Element Weight% Atomic%
AgL 8.77 14.93
Au L 91.23 85.07
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Fig. 4-26 HRTEM images of hollow Ag-Au alloyed nanoparticles with smaller initial Ag NPs.
The atomic ratio of Ag:Au is 1:1.

Table 4-23 HRTEM/EDX results of hollow Ag-Au alloyed nanoparticles with smaller initial
Ag NPs . The atomic ratio of Ag/Au=9/91.

Element Weight% .. Atomic%
AgL 4:99 !—} 8.74
=[N

Au L 9501

|

= 91.26

Fig. 4-27 HRTEM images of hollow Ag-Au alloyed nanoparticles with smaller initial Ag NPs.
The atomic ratio of Ag:Au is 2:1.

Table 4-24 HRTEM/EDX results of hollow Ag-Au alloyed nanoparticles with smaller initial
Ag NPs . The atomic ratio of Ag/Au=23/77.
Element | Weight% Atomic%
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AgL 13.93 22.82
Au L 86.07 77.18

Fig. 4-28 HRTEM images of hollow Ag-Au alloyed nanoparticles with smaller initial Ag NPs.
The atomic ratio of Ag:Au is 2:1.

Table 4-25 HRTEM/EDX results of:hollowrAg-Auialloyed nanoparticles with smaller initial
Ag NPs . The atomic ratio of =290 |
Element Atomic%
AgL 20.10
Au L 79.90
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Fig. 4-29 HRTEM images of hollow Ag-Au alloyed nanoparticles with smaller initial Ag NPs.
The atomic ratio of Ag:Au is 3:1.

Table 4-26 HRTEM/EDX results of hollow Ag-Au alloyed nanoparticles with smaller initial
Ag NPs . The atomic ratio of Ag/Au=82/18.

Element Weight% Atomic%
AgL 70.54 81.38
Au L 29.46 18.62

Fig. 4-30 HRTEM images of hoIIoW”Ag-Au'iallojed nanoparticles with smaller initial Ag NPs.
The atomic ratio of Ag:Au is 3:1.}

Table 4-27 HRTEM/EDX results of hollow Ag-Au alloyed nanoparticles with smaller initial
Ag NPs . The atomic ratio of Ag/Au=56/44.

Element Weight% Atomic%
Ag L 40.40 55.31
Au L 59.60 44.69
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Fig. 4-31 HRTEM images of hollow Ag-Au alloyed nanoparticles with smaller initial Ag NPs.
The atomic ratio of Ag:Au is 4:1.

Table 4-28 HRTEM/EDX results of hollow Ag-Au alloyed nanoparticles with smaller initial

Element Atomic%
Ag L 41.09
Au L

Fig. 4-32 HRTEM images of hollow Ag-Au alloyed nanoparticles with smaller initial Ag NPs.
The atomic ratio of Ag:Au is 4:1.
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Table 4-29 HRTEM/EDX results of hollow Ag-Au alloyed nanoparticles with smaller initial
Ag NPs . The atomic ratio of Ag/Au=39/61.

Element Weight% Atomic%
AgL 25.79 38.82
Au L 74.21 61.18
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Fig. 4-33 HRTEM images of hollow Ag-Au alloyed nanoparticles with larger initial Ag NPs.
The atomic ratio of Ag:Au is 1:1.
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Fig. 4-34 HRTEM/EDX results (inner part) of hollow Ag-Au nanoparticles with larger initial
Ag NPs. The atomic ratio of Ag:Au is 1:1.

Table 4-30 HRTEM/EDX results (inner part) of hollow Ag-Au alloyed nanoparticles with
larger initial Ag NPs. The atomic ratio of Ag:Au is 1:1.

Element Weight% Atomic%
Ag L 34.28 48.79
Au L 65.72 51.21
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Fig. 4-35 HRTEM/EDX results (outer part) of hollow Ag-Au alloyed nanoparticles with larger
initial Ag NPs. The atomic ratio of Ag:Au is 1:1.

Table 4-31 HRTEM/EDX results(outer part) of hollow Ag-Au alloyed nanoparticles with
larger initial Ag NPs. The atomic ratio of Ag:Au is 1:1.

Element Weight% Atomic%
Ag L 3390 . ... 48.37
Au L 66.10 A 51.63

Au-Ag(111)
0.239nm

Fig. 4-36 HRTEM images of hollow Ag-Au alloyed nanoparticles with larger initial Ag NPs.
The atomic ratio of Ag:Au is 2:1.

50



Spectrum 3

Full Scale 122 cts Cursor: 5.961 ke (2 ciz)

Fig. 4-37 HRTEM/EDX results of hollow Ag-Au alloyed nanoparticles with larger initial Ag
NPs. The atomic ratio of Ag:Au is 2:1.

Table 4-32 HRTEM/EDX results of hollow Ag-Au alloyed nanoparticles with larger initial Ag
NPs. The atomic ratio of Ag:Au is 2:1.

Element Weight% Atomic%
AgL 2140 ... 33.21
Au L

78.GEREE g, 66.79

Fig. 4-38 HRTEM images of hollow Ag-Au alloyed nanoparticles with larger initial Ag NPs.
The atomic ratio of Ag:Au is 3:1.
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Fig. 4-39 HRTEM/EDX results of hollow Ag-Au alloyed nanoparticles with larger initial Ag
NPs. The atomic ratio of Ag:Au is 3:1.

Table 4-33 HRTEM/EDX results of hollow Ag-Au alloyed nanoparticles with larger initial Ag
NPs. The atomic ratio of Ag:Au is 3:1.

Element Weight% Atomic%
AgL 1445 .o 23.55
Au L 85.55" . 7645

AuwAg(111) SRR SRR/ Au-ag(111)
"b_ 14 nm L

Fig. 4-40 HRTEM images of hollow Ag-Au alloyed nanoparticles with larger initial Ag NPs.
The atomic ratio of Ag:Au is 3:1.
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Fig. 4-41 HRTEM/EDX results of hollow Ag-Au alloyed nanoparticles with larger initial Ag
NPs. The atomic ratio of Ag:Au is 3:1.

Table 4-34 HRTEM/EDX results of hollow Ag-Au alloyed nanoparticles with larger initial Ag
NPs. The atomic ratio of Ag:Au is 3:1.

Element Weight% Atomic%
AgL 16.40 26.35
Au L 83.60" il _ 73.65

{\

| e B

N Auag(111) BB
0.240nm7 :

Fig. 4-42 HRTEM images of hollow Ag-Au alloyed nanoparticles with larger initial Ag NPs.
The atomic ratio of Ag:Au is 4:1.
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Fig. 4-43 HRTEM/EDX results(inner part) of hollow Ag-Au alloyed nanoparticles with larger
initial Ag NPs. The atomic ratio of Ag:Au is 4:1.

Table 4-35 HRTEM/EDX results(inner part) of hollow Ag-Au alloyed nanoparticles with
larger initial Ag NPs. The atomic ratio of Ag:Au is 4:1.

Element Weight% Atomic%
AgL 2687 ... 40.14
Au L 73.134 v, 59.86

outside

Full Scale 839 cts Qursor SS51 keV (1 cts) e

Fig. 4-44 HRTEM/EDX results(outer part) of hollow Ag-Au alloyed nanoparticles with larger
initial Ag NPs. The atomic ratio of Ag:Au is 4:1.

Table 4-36 HRTEM/EDX results(outer part) of hollow Ag-Au alloyed nanoparticles with
larger initial Ag NPs. The atomic ratio of Ag:Au is 4:1.

Element Weight% Atomic%
Ag L 27.33 40.71
Au L 72.67 59.29
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Fig. 4-45 X-ray diffraction of hollow Ag-Au alloyed nanoparticles.
Table 4-37 The XRD fitting result of hollow Ag-Au nanopaticles with different atomic ratio.

Composition Ag:Au=1:1 Ag:Au=2:1 Ag:Au=3:1 Ag:Au=4:1
FWHM(111) 1.26 1.05 1.29 2.27
Estimated size / nm 6.62 8.00 6.50 3.69
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Fig. 4-46 Ex-situ UV-Vis absorption spectra of Ag nanoparticles with 1hr reaction time at
60°C .
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Fig. 4-47 UV-Vis absorption spectra-of Ag nanaparticles with 10 min reaction time at 60°C .
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Fig. 4-48 Photographs of aqueous dispersions of Ag nanoparticles after reacted with NaBH,4
(bottle No.3~5) and the colors began to change dramatically from light orange to
brown (bottle No.10~15).

R
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Fig. 4-49 Photographs of aqueous dispersions of Ag nanoparticles after 1 hr reaction time at
60°C, the samples have less change in color.
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Fig. 4-50 Exsitu-UV-Vis absorption spectra of Ag NPs with 1 hr reaction time at 60°C
before and after they had reacted with different volumes of 1mM HAuUCI, aqueous
solution . The composition of Ag : Auyjis:3:1 .

Fig. 4-51 UV-Vis absorption spectra_of Ag NPs with 10 min reaction time at 60°C after
reacted with different volumes of ImM HAuCI, aqueous solution.
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Table 4-38 The molar ratios and their SPR band positions of 10 min reaction time at 60°C
hollow Ag/Au nanoparticles.



Composition Ag:Au=1:1 Ag:Au=2:1 Ag:Au=3:1 Ag:Au=4:1

SPR/nm 512 418 413 409
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Fig. 4-52 UV-Visabsorption spectra-of Ag NPs:with.1 hr reaction time at 60°C after reacted
with different volumes of ImM HAuUCI; aqueous:solution.

Table 4-39 The molar ratios and their. SPR band-positions of 1 hr reaction time at 600C
hollow Ag/Au nanoparticles.
Composition Ag:Au=1:1 Ag:Au=2:1 Ag:Au=3:1 Ag:Au=4:1
SPR / nm 665 882 892 774

Fig. 4-53 2 7 & = 2_ 7 7 Ag-AU 3 3 2. EX-situ UV-Vis sx jz L34k & o A 4e ~
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Fig. 4-53 Photographs of aqueous dispersiens:of hollow Ag-Au nanoparticles after they have
been reacted with increasing:volumes.of HAuCl, and the colors began to change
dramatically from brown te dark blue:(bottle No.5~46). After adding NH40OH, the
color began to change from dark blue to light blue.
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Fig. 4-54 HRTEM images of hollow Ag-Pt alloyed nanoparticles with larger initial Ag NPs.
The atomic ratio of Ag:Ptis 2:1.
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Fig. 4-55 HRTEM/EDX results(inner part) of hollow Ag-Pt alloyed nanoparticles with larger
initial Ag NPs. The atomic ratio of Ag:Pt is 2:1.

Table 4-40 HRTEM/EDX results(inner part) of hollow Ag-Pt alloyed nanoparticles with larger
initial Ag NPs. The atomic ratio of Ag:Pt is 2:1.

Element Weight% pos. . Atomic%
Ag L 10.06 e, 16.82
Pt L - 89.94 h 83.18
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Fig. 4-56 HRTEM/EDX results(outer part) of hollow Ag-Pt alloyed nanoparticles with larger
initial Ag NPs. The atomic ratio of Ag:Pt is 2:1.

Table 4-41 HRTEM/EDX results(outer part) of hollow Ag-Pt alloyed nanoparticles with larger
initial Ag NPs. The atomic ratio of Ag:Pt is 2:1.

Element Weight% Atomic%
AgL 4.39 7.68
PtL 95.61 92.32
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Fig. 4-57 HRTEM images of hollow Ag-Pt alloyed nanoparticles with larger initial Ag NPs.
The atomic ratio of Ag:Ptis 4:1.
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Fig. 4-58 HRTEM/EDX results(inner part) of hollow Ag-Pt alloyed nanoparticles with larger
initial Ag NPs. The atomic ratio of Ag:Pt is 4:1.

Table 4-42 HRTEM/EDX results(outer part) of hollow Ag-Pt alloyed nanoparticles with larger
initial Ag NPs. The atomic ratio of Ag:Pt is 4:1.

Element Weight% Atomic%
AgL 7.38 12.59
Pt L 92.62 87.41
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Fig. 4-59 HRTEM/EDX results(outer part) of hollow Ag-Pt alloyed nanoparticles with larger
initial Ag NPs. The atomic ratio of Ag:Pt is 4:1.

Table 4-43 HRTEM/EDX results(outer part) of hollow Ag-Pt alloyed nanoparticles with larger
initial Ag NPs. The atomic ratio of Ag:Pt is 4:1.

Element Weight% Atomic%
Ag L 591 10.19
Pt L 30T U, 89.81

Fig. 4-60 HRTEM images of hollow Ag-Pt alloyed nanoparticles with larger initial Ag NPs.
The atomic ratio of Ag:Pt is 8:1.
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Fig. 4-61 HRTEM/EDX results(inner part) of hollow Ag-Pt alloyed nanoparticles with larger
initial Ag NPs. The atomic ratio of Ag:Pt is 8:1.

Table 4-44 HRTEM/EDX results(inner part) of hollow Ag-Pt alloyed nanoparticles with larger
initial Ag NPs. The atomic ratio of Ag:Pt is 8:1.

Element Weight% Atomic%
Ag L 80.52 88.20
Pt L g T 11.80

outside

Fig. 4-62 HRTEM/EDX results(outer part) of hollow Ag/Pt alloyed nanoparticles with larger
initial Ag NPs. The atomic ratio of Ag:Pt is 8:1.

Table 4-45 HRTEM/EDX results(outer part) of hollow Ag-Pt alloyed nanoparticles with larger
initial Ag NPs. The atomic ratio of Ag:Pt is 8:1.

Element Weight% Atomic%
Ag L 18.14 28.61
PtL 81.86 71.39
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Fig. 4-63 X-ray diffraction of hollow Ag-Pt alloyed nanoparticles.

Table 4-46 The XRD fitting result of hollow Ag-Pt alloyed nanopaticles.

Composition Ag:Pt=4:1
FWHM 0.72
Estimated size / nm 11.60
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Fig.4-64 X-ray diffraction of hollow Ag-Pt alloyed nanoparticles.

Table 4-47 The XRD fitting result of hollow Ag-Pt alloyed nanopaticles .

Composition Ag:Pt=8:1
FWHM(111) 0.48
Estimated size / nm 17.46
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? 2 Ag-Pt & &7 ¥+ 2 ExsituUV & 41
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Fig. 4-65 UV-Vis absorption spectra of Ag NPs (1hr reaction time) reacted with different
volumes of 1mM H,PtCls aqueous'solution.
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Fig. 4-66 Exsitu UV-Vis absorption spectra of Ag NPs (lhr reaction time) reacted with
different volumes of 1mM H,PtClg agueous solution.
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Fig. 4-67 Photographs of aqueous dispersions of hollow Ag-Pt nanoparticles after they have
been reacted with increasing volumes of H,PtClg and the colors changed dramatically
from dark brown to light brown (bottle No.1~31). After adding of NH,OH, the color
changed from light brown to light yellow.
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Fig. 5-1 Calculated optical extinction spectra of-Au nanoparticles with different sizes by
classical Mie model.
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Fig. 5-2 Calculated optical extinction spectra of Ag nanoparticles by classical Mie model.

78



1.10E-009

Radius

1.00E-008 5 nm

8.00E-010_ —10nm
8.00E-010 — o0nm
7.00E-010_
6.00E-010 _

5.00E-010

extinction

4.00E-010
3.00E-010 _
2.00E-010._
1.00E-010 ] /\
0.00E+000 = : . :

T
300 400 500

T
600 700 800

wavelength(nm)

Fig. 5-3 Calculated optical extinction spectra of Ag-Au alloy nanoparticles by classical Mie
model.
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Fig. 5-5 Calculated optical extinction-Spectra of Au nanoparticles by Quasi-static model.

100000 _
Radius
5nm
—10 nm
80000 - '
l —20 nm
= 60000 -
i
l
(%]
E
l
w
@ 40000 -
20000 -
n —— L I AI I L I L I L
300 400 500 600 700 800

wavelength(nm)

Fig. 5-6 Calculated optical extinction spectra of Ag nanoparticles by Quasi-static model.
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Fig. 5-7 Calculated optical extinction spectra oftAg-Au alloy nanoparticles by Quasi-static
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Fig. 5-8 Calculated optical extinction spectra of Ag/Au core-shell nanoparticles by
Quasi-static model. The core radii are (a)5 nm (b)10 nm (c)15 nm (d)20nm and with

different shell thickness.
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5-9 Calculated optical extinction spectra ‘of. Au/Ag core-shell nanoparticles by
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different shell thickness.
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Fig. 5-10 Calculated optical extinction spectra of hollow Au nanoparticles by Quasi-static
model. The hollow part radii are (a)5 nm (b)10 nm and with different shell thickness.
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Fig. 5-11 Calculated optical extinction spectra of Au nanoparticles .We use Drude model

coefficient and calculate by-classical Mige theory:.
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Fig. 5-12 Calculated optical extinction spectra of Ag nanoparticles .We use Drude model
coefficient and calculate by classical Mie theory.
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Fig. 5-13 Calculated optical extinction spectra of Ag-Au alloy nanoparticles .We use Drude
model coefficient and calculateiby classical Mie theory.
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Fig. 5-14 Calculated optical extinction spectra of Au nanoparticles .We use Drude model
coefficient and calculate by Quasi-static theory.
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Fig. 5-15 Calculated optical extinction spectra of Ag nanoparticles .We use Drude model
coefficient and calculate by Quasi-static theory.
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Fig. 5-16 Calculated optical extinction spectra of Ag-Au alloy nanoparticles .We use Drude
model coefficient and calculate by Quasi-static theory.
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Fig. 5-18 Calculated optical extinction spectra of Ag/Au core-shell nanoparticles .We use
Drude model coefficient and calculate by Quasi-static theory. The core radii are (a)5
nm (b)10 nm (c)15 nm (d)20nm and with different shell thickness.
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Fig. 5-19 Calculated optical extinction spectra of hollow Au nanoparticles .We use Drude
model coefficient and calculate by Quasi-static theory.The hollow part radii are (a)5
nm (b)10 nm and with different shell thickness.
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