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A study on wellbore flow-rate solution and drawdown solution for a finite

confined aquifer with considering well skin effect

Student : Chi-San Tsai Advisor : Hund-Der Yeh

Institute of Environmental Engineering

National Chiao Tung University

Abstract

The constant-head test and constant-flux test are commonly employed for
estimating the aquifer parameters in engineering practice. The constant-head test
injects or pumps water with a variable. flow rate for maintaining a constant hydraulic
head in a low-permeability aquifer while the constant-flux test keeps a constant flow
rate to record the drawdown distribution from the observation well of a
high-permeability aquifer. The solutions for the wellbore flow rate and drawdown at
a well with a finite radius in an infinite confined aquifer with or without a skin zone
have been reported in the groundwater literature. The effects of well radius and skin
zone are negligible if the test period is very long and/or the distance between the
observation well and test well is large. However, little attention has been paid to the
effect of a finite boundary on the flow-rate and drawdown solutions in the

il



groundwater community. The main objectives of this thesis are first to develop new

semi-analytical solutions for exploring the effect of finite boundary on the wellbore

flow-rate and drawdown solutions in a confined aquifer where a finite skin zone is

present. These solutions are then calculated by the modified Crump algorithm.

The Laplace-domain solution can reduce to the existing infinite-domain solution in

some special cases. In addition, an approximate solution for small- or large-time

condition is useful if the analytical solution is very complicated and not easy to

evaluate accurately. The second objective of this thesis is to derive approximate

solutions with considering the effect of skin zone in a finite or infinite confined

aquifer based on the relationship between the  Laplace variable and time. An

approximate solution for an infihite confined aquifer with a skin zone can reduce to

the solution without a skin zone if the skin is absent. The large-time solution is

equal to the steady-state solution for a finite confined aquifer with a skin zone. In

addition, this solution can reduce to Thiem’s equation if the skin zone is absent.

Keywords: Groundwater, constant-flux test, constant-head test, Laplace transform,

finite confined aquifer.
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CHAPTER 1 INTRODUCTION

1.1 Background

The constant-head and constant-flux tests are normally utilized to obtain wellbore
flow-rate or drawdown data for estimating the hydraulic properties (e.g.,
transmissivity and storage coefficient). The constant-head test, which injects or
pumps water with a variable flow rate by keeping a constant hydraulic head at the test
well, is commonly performed in low-permeability aquifers. On the other hand, the
constant-flux test maintains a constant well: discharge rate to observe the various
drawdown distributions in a confined aquifer with high-permeability.

1.2 Literature Review

A finite thickness of the skin zone may exist near the well due to well drilling,
installation, and development. Several researchers had addressed the issue of
constant-head test for aquifers without skin and presented mathematical models for
engineering applications. Yang and Yeh (2002) proposed a closed-form flow-rate
solution at the wellbore for describing the flow rate with considering the effects of
skin zone and finite well radius. They mentioned that the formation zone and skin
zone may significantly affect the magnitude of the flow rate at the wellbore.

Yeh and Wang (2007) presented a new large-time wellbore flow-rate solution for



the problem of constant-head tests based on the relationship of small Laplace-domain

variable p versus large time-domain variable ¢ (hereinafter referred to as SPLT).

Their approximate solution was obtained for the confined aquifer of homogeneous,

isotropic, infinitely extended in lateral, and without considering the skin zone.

Furthermore, Wang and Yeh (2008) gave a review on the constant-head solution.

They mentioned that the finite-domain drawdown solution rather than the

infinite-domain drawdown solution can converge to the Thiem equation when the

time becomes infinitely large. Nevertheless, to our knowledge, the issue of the effect

of finite boundary on the wellbore: flow-rate solution has not been address so far.

Theis equation (Theis 1935) is-the most famous solution for estimating the aquifer

drawdown or determining the aquifer'parameters for the constant-flux test. Theis

equation is applicable to an aquifer with an infinitesimal diameter well when the

observation well is located far away from the test well and/or the test period is very

large. However, this equation is not applicable when the skin zone is present. The

drawdown equation for the test well with a finite radius can be derived based on the

analogy of the heat flow equation presented in Carslaw and Jaeger (1959).

Moreover, this drawdown equation can be simplified to the Theis equation if the well

radius is negligible. Yeh et al. (2003) proposed a closed-form drawdown solution for

flow toward a well in an infinite confined aquifer under pumping by taking into



account the effects of well radius and skin zone. They concluded that the effect of

skin zone may be negligible at short and long pumping periods.

For the constant-flux test, Chen (1984) proposed a modified Theis equation for

describing the drawdown distributions with considering the effect of boundary in a

finite extended confined aquifer. He gave a boundary-effect time criterion for

applying the Theis equation in a finite extended confined aquifer. In other words,

the Theis equation is applicable before the influence of pump-induced drawdown

reaching the finite extended boundary. Similar to the development of Chen (1984),

the drawdown solution with considering both finite well radius and finite extended

boundary can also be obtained according to Carslaw-and Jaeger (1959, p.334). The

issue of the effect of finite boundary ‘on the drawdown solution so far has attracted

little attention in the groundwater literature.

1.3 Objectives

This thesis develops two new solutions for the constant-head and constant-flux tests

with the finite skin zone in a finite confined aquifer. The objectives of this thesis

consist of the following:

(1) To extend previous works of Yang and Yeh (2002) and Yeh et al. (2003) for finite

extended confined aquifers.

(2) To study the effect of finite boundary on the solution in a confined aquifer with a



skin zone

(3) To present the time criteria for using the infinite-domain solution to approximate

the finite-domain solution.

(4) To derive large-time solutions for aquifers with considering the well radius and

skin zone as well as finitely and infinitely extended boundaries.



CHAPTER 2 METHEMATICL MODEL

This chapter presents the mathematical models for the constant-head and
constant-flux tests in a finite extended confined aquifer.
2.1 The Mathematical Model for the Constant-head Test

This section establishes the mathematical model for the constant-head test. The
assumptions for model development are made as: (1) the aquifer is homogeneous,
isotropic, and finite extended; (2) the test well is fully penetrated with a finite well
radius; (3) the skin has a finite thickness with properties differing from those of the
formation zone ; and (4) the waterilevel (or hydraulic head) at the test well is kept
constant throughout the whole: tést period.~Figure 1 demonstrates the schematic
diagram of the aquifer for the constant-head test.

The governing equation describing the hydraulic head A(r, ¢) for the skin zone

and the formation zone are, respectively

2
Fho\oh S )
or- ror T ot

and

2
Oh YO 501 g 2
o’ ror T, ot

where subscripts 1 and 2 respectively denote the skin zone and the formation zone, the
variable 7 is the radial distance from the center of the test well, r,, is the well radius, 7

is the radial distance from the central line of the test well to outer skin zone adjacency,



R is the radial distance from the center of the well to the finite extended boundary, ¢ is
the test time, S indicates the storage coefficient, and 7 is the transmissivity.

The initial hydraulic head is assumed as zero everywhere. Therefore, the initial
conditions for Equations 1 and 2 are
h(r,0)=hy(r,0)=0 3)

In addition to the initial conditions, the hydraulic head is also assumed to
maintain zero when r approaches to the finite distance R from the test well while the
hydraulic head along the wellbore is maintained constant and denoted as 4,. Thus,

the outer and inner boundary conditions can be eXpressed, respectively, as

h(R,t)=0 4)
and
hl(rwat):hw (5)

The continuity conditions for the hydraulic head and flow rate at the interface
between the skin zone and formation zone, respectively, require
h(1,8) =y (1,1) (6)

and

T Oh(,1) _7, Ohy(1;,1)

or or ™



2.2 The Hydraulic Head Solution for the Constant-head Test in a Finite Confined

Aquifer

The detailed derivation of the hydraulic head solution for the constant-head test

in a finite confined aquifer is given in Appendix A. The results are

; hw{ @1, (q,7) - D,K, (¢,7) }

" p| @0, (qr,)-D.K, (q7,) (8)
and
—  ha| ©1,(qr)-0,K,(qr)

op L)llo(%rw)—q)zKo(%Vw):l ©)
with

__ K (@)1(2:R) K, (.R) i) (10)
I, (%R)Ko (%7”1)_[0 (%”1 )Ko (%R)

where p is the Laplace variable, ¢,'=1/pS,/T,, ¢, = m , Ip and K, are the
modified Bessel functions of the first and second kinds of order zero, respectively, and
I, and K; are the modified Bessel functions of the first and second kinds of order one,
respectively. The variables @, and @, in Equations (8) and (9) are, respectively,

ST

D =y, ﬁ&(c]ﬁ)&(%)—lﬂ(qﬁ)l%(qua) (11)
and
@, =l//\/%lo(qﬁ)l<o(qui)+4 (ar1) Ko (1) (12)
with



(13)

The wellbore flow-rate solution in Laplace-domain can be obtained by applying

Darcy’s law and allowing r=r,, as

O, p) = 2. T s

D/ (g, )+ DK (q7,) (14)
r

d)zKO(qlrW)—q)llo(q1 W)

The w in Equation (13) and @ in Equation (10) may be simplified as
K, (g1 )/Ko(qzrl) and Ko(qzr)/KO(qzrl) , respectively, if the finite extended
boundary R becomes infinite. Equation (14) then reduces to the solution presented

in Yang and Yeh (2002,) as follows

- p)=2 ]Iqlhw{(4[1(%7@)"'¢2K1(‘]17w):| 15
O, p) =277, p ¢2Ko(%rw)—¢110(971’1v) (1
with
ST,
¢ = ST K, (%rl)Kl(‘brl)_Kl(%”1)[(0(‘]2”1) (16)
S,T,
¢, = S_Tlo(%7’1)K1(Q27’1)+[1(‘hrl)Ko(%rl) (17)

which is identical to the equation for the wellbore flux in an aquifer of infinite extend.
Clearly, the infinite-domain solution is much easier to compute than the finite-domain
solution. In addition, when the time is less than a specific time, called the
boundary-effect time criterion or simply time criterion and defined as 7, =T,¢, / St

the difference between the dimensionless finite-domain solution and dimensionless

-8-



infinite-domain solution is less than 10°. In other words, the boundary has no effect
on the solution before time reaches the time criterion.
2.3 Dimensionless Wellbore Flow-rate Solution for the Constant-head Test

Define the dimensionless variables as a=T1,/T,, f=S5,/S,, x=+/B/a,
t=Tt/Sy?, p=rlr,, p,=r/r,, px=R/r,, Opy =0, /(27T,h,). Note that
variable o represents the skin type and the aquifer has a negative skin when « <l and
positive skin when a>1. The dimensionless wellbore flow-rate solution in the

Laplace-domain Equation, (18), can be expressed as

5 . F ®,,1,(Jp | 5)+ D, 5K (P /%) (18)
b afp (DZDKO(\/;/K)_(DIDIO(\/;/K)

The variables ®,, and ®@,,, -are

©,, =y o JaBK, (\pe <) K, (oI )=Keldlp o, <) Ko (o P) (19)
and

D, :l/_/DMIO (\/;pl /K)Ko (pl\/;)-l_]l (\/;pl/K)KO (pl\/;) (20)
with

Vo= IO(pR\/;)KI(pI\/E)+Il(pl\/;)KO(pR\/E) 21)
0 Io(pR\/;)Ko(p1\/;)_10(p1\/;)[(0(p1e\/;)
The time-domain wellbore flow rate for an aquifer with a finite extended

boundary can be evaluated from Equation (18) by using the modified Crump

algorithm (de Hoog et al., 1982), a numerical Laplace inversion method. The results



obtained after numerical inversion can be compared with the infinite-domain
flow-rate solutions presented by Yang and Yeh (2002) in which they considered the
aquifer had an infinite extended boundary. Note that Equation (21) reduces to
K, ( P )/ K, ( P ) if p, = . The dimensionless flow-rate solution for an
infinite domain aquifer in Laplace-domain given by Yang and Yeh (2002) was

expressed as

T 4ol (P /0)+8,K (P /) (22)
ap ¢,K,p )=l (Jp /%)

@DW =

with

4o =B, (Jpo k) K (AP ) KPP )k, (2 P) (23)

and

bo =B, (Voo k) K (o | Iilslpeite) K, (o) (24)
Obviously, the flow-rate solution for an aquifer with an infinite-domain is in a

simpler form and much easier to evaluate than the one with a finite-domain.

2.4 The Large-time Solution for the Constant-head Test
2.4.1 In a Finite Confined Aquifer

The large-time flow-rate solution at the wellbore can be evaluated from Equation
(14) by utilizing the SPLT technique. The limiting forms of the Bessel functions for
small arguments wused for computing Equation (25) are [ (x)~1/T(1),

Il(x)~x/2F(2) , K,(x)~-In(x), and K,(x)~1/x where I'(x)is the gamma

-10 -



function (Abramowitz and Stegun 1970, p.375). Applying L’Hospital’s rule to
Equation (14) with p approaching zero, the Laplace-domain wellbore flow rate for

small p gives

27Th, -1
In (’EJ + I In (Rj
n) L \n

where the negative sign in Equation (25) expresses withdrawal at the test well.

or,.p)= (25)

Accordingly, the large-time wellbore flow-rate solution can be easily obtained by

taking the inverse Laplace transform to Equation (25) as

-1
In [rl] + I In (RJ
n) L \4

Equation (26) is independent of time and naturally-is a steady-state solution. By

o(,,t) =2xTh,

(26)

applying the Tauberian theory to:Equation (14) (Sneddon, 1972), one can also obtain

Equation (26). This result implies that the wellbore flow rate does approach steady

state at large time condition for an aquifer with a finite-domain (Wang and Yeh, 2008).

In addition, Equation (26) can be simplified to the Thiem equation if the skin zone is

absent (i.e., 7| equals ry).

2.4.2 In an Infinite Confined Aquifer

If an infinite extended boundary is considered, i.e., R — oo, Equation (14)

therefore is equivalent to Equation 15. Again, the Laplace-domain wellbore flow

rate for small p in an infinite confined aquifer can be obtained as

11 -



—4xTh, 1

o(r,,p)= G/ A)

27)

where A :Tz(rl/r2 )ZTZ/T1 /r2S,. If there is no skin zone, then 7> = T; and S, = Si;

Equation (27) is, therefore, identical to the one of Yeh and Wang (2007, Equation 3).
The large-time wellbore flow-rate solution is obtained after taking the inverse

Laplace transform to Equation (27) as (Yeh and Wang, 2007)

2 2
R R 1
Q(rw7t) = 472-]’2hw - 2 + 3 - 4 (28)
Inn (Inn) (Ing) (In7)

where » =0.5772...1s Euler’s constant and the Riemann Zeta function §(3) =
1.2020569032. The numerators ofithe right-hand side terms of Equation (28) are all
constants and the denominators are a function of  time
since n=At =T, (rl/r2 )ZTZ/Tlt/rWZS2 .. The value of Inn tends to infinity as ¢
approaches infinity; consequently, Equation (28) becomes zero. It means that the
steady-state wellbore flow rate in an infinite confined aquifer is zero implying the
constant head has reached to the infinite extended boundary.

When neglecting the skin zone, Equation (28) can reduce to the solution of Yeh
and Wang (2007, Equation 6). Table 1 provides a list for comparing Equations (26)
and (28) with two existing solutions.
2.5 Drawdown Solution for Constant-flux Test

This section presents the mathematical model for the constant-flux test. The

-12-



assumptions for the constant-flux test are the same as those for the constant-head test

except that there is a constant discharge rate, rather than a constant head, maintained

at the wellbore through out the entire pumping test. Therefore, the mathematical

model describing the constant-flux test is identical to the constant-head test except the

boundary condition specified at the wellbore. The boundary condition specified for

a constant pumping with the flow rate Q can be expressed as

dm| __0Q (29)
ar |, 2=r,T

Equations (6) and (7) representing the continuity requirements of the hydraulic
head and the flux at the interface of the skin zone'and the formation zone are also
applicable to the constant-flux test. . Figure 2 illustrates the schematic diagram of an
aquifer for the constant-flux test.

2.6 The Drawdown Solution for the Constant-flux Test in a Finite Confined
Aquifer

The obtained hydraulic head solution are

Z: 0 _l 27, q)llo(%r)_q)zKo (%r) (30)
4rT, | P r,1iq, @1, (‘J1rw)+cD2K1 (%”w)

7= 0 _l 2T,a @, (%71)_@2[{0 (%’”1) :I 31)
i 4T, | p r,1q, CI)2K1(%’%)4‘@1[1(91’%)

Appendix B lists the derivation for the drawdown solution for the constant-flux test in

a finite confined aquifer. The drawdown can be represented by s = hy—h, so the

-13 -



drawdown solution can be written as

5 = -0 {l 21, @, (Q1r)_q)2Ko (‘]1’”) } (32)
1 4T, | p r,Tq, (D1]1(Q1”w)+q)2K1(%Vw)

and

3 = 0 |1 21w @/, (qlri)_cDZKO(%ri) (33)
? 4~T,| p r,1,q, ®2Kl(qlrw)+®lll(qlrw)

If R — oo, Equations (32) and (33) can reduce the equations given in Yeh et al.

(2003) as follows

E:—Q 1 2T, @1, ( } (34)
4rT, p’”T% K (qr, +¢1

(35)

__ o1 [W qm ~Kilam) ] £, 0
*4nT, pVqu[¢2 +¢|I air; :I 0

[SS]

2.7 Dimensionless Drawdown Selution for the Constant-flux Test
The dimensionless drawdown is defined as sp =§(47IT2)/Q. Equations (32) and

(33) can then be respectively written as

Sip = 1[ 20 PonKo(pp/x)+ 0, ’0(/’@/")} (36)
Tl ok (V)= (Jp )

and

Sop = G

- _1|2am, (plf/K)+®1D10(pl\/;/K)
\/_/K q)zDKl(\/;/K)_q)lDll(\/;/K)

with

-14-



_ K, (o)1 (PP )~ Ko (P ) 1o (4P )
1,(peP) Ko (2P) -1, (2P ) Ko (PeP)

These two solutions can also be inverted to time domain numerically by the

@p

(3%)

modified Crump algorithm (de Hoog et al. 1982). The dimensionless Laplace-domain

drawdown solutions for the aquifer with an infinite domain provided by Yeh et al.

(2003) can be expressed as

[ e skl )ty ) o)
o\ bk (o e (i )

s :l_ 2a [¢2DK0(/’1J;/K)‘QDIO(“@/’(”KO(’O J;) (40)
T\l Tk (o) gl ] (o)

2.8 The Large-time Drawdown:Solution for the Constant-flux Test
2.8.1 In Finite Confined Aquifers

The drawdown solution at late time can be obtained by applying the SPLT

technique to Equations (32) and (33). Based on the L’Hospital rule, the

Laplace-domain solutions for drawdowns in skin zone and the formation zone when p

is small can be obtained respectively as

5,(r, p) = QO (i, LR (41)
aTplr T,
— R
5(r,p) = 273 i’ 42)
2

The large-time drawdown solutions are then obtained by taking the inverse

Laplace transform to Equations (41) and (42) as
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_ Qi Ly R
50 =5 (lnrJrTln ] (43)

s,(r,t) = 2Q ln£ (44)
Equations (43) and (44) are independent of time and equal to the steady-state
solution, which can also be obtained by applying the method of Tauberian theory
(Sneddon 1972) to Equations (32) and (33). Wang and Yeh (2008) also showed that
the drawdowns can reach steady state if aquifers have finite domain. In addition,
Equations (43) and (44) can reduce to the Thiem equation if the skin zone is absent.
2.8.2 In Infinite Confined Aquifers
Equations (43) and (44) are the large-timerssolutions of Equations (32) and (33),
respectively, for finite-domain confined aquifers. By applying the SPLT relationship
to Equations (34) and (35), the Laplace-domain drawdown solutions for small p in

skin zone and formation zone can be obtained respectively as

srnp) =—2 | mi by L (45)
2zTip| v T, \gn

, = ln— 46

$,(r, p) 2l g (46)

Finally, the large-time drawdown solutions in time domain can be obtained after

employing the inverse Laplace transform as

sy =—2 | ol Doy €T (47)
4T, r I, \Sy
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8,(r,t) = 4Q ln( ¢t t} (48)

T, \ S’
where C=exp(y) and y = 0.5772... is Euler’s constant. Note Equation (47) and
Equation (48) can reduce to cooper and Jacob equation (1946) if neglecting the effect
of skin zone. In addition, this large-time drawdown solution for an aquifer with
infinite extended boundary is equal to the heat flow solution at late time presented by
Carslaw and Jaeger (1959, p.339) if the limiting form of the Bessel function is
Ky(x)~—{In(x/2)+y] instead of K (x)~—In(x).

Equations (45) and (46) are function of time. Equations (47) and (48) approach
infinite when ¢ reaches infinity due to-|the term In¢ approaches infinity. This
phenomenon indicates that the drawdown solution jof the infinite extended boundary
increases with time because the infinitely extended boundary can not provide enough
groundwater to maintain the constant pumping rate at wellbore. In addition,
Equations (47) and (48) decrease with increasing r indicating that the condition of
zero drawdown at the outer boundary condition can be held. Table 2 provides a list
of comparison between the large-time drawdown and steady state solutions in finitely

and infinitely extended confined aquifers.

-17 -



CHAPTER 3 RESULTS AND DISCUSSION

3.1 Comparison of Infinite-Domain Solution to Finite-Domain Solution for

Constant-head Test

3.1.1 Effects of skin zone and Finite Domain

Figure 3 illustrates that the curve of the wellbore flow-rate as a function of time at p =

1 for pj=3 and o = 0.1, 1, and 10. For o= 0.1 and 1, the finite-domain flow-rate

matches with the infinite-domain flow-rate in small time (i.e., 10 <t < 100). These

results indicate that the infinite-domain flow-rate solution can approximate the

finite-domain flow-rate solution if the. test time is less than the time criterion. In

other words, the boundary distance R has|no effect on the wellbore flow-rate as the

test time is shorter than the time critérion-—-However, these two solutions deviate for

one another in the period of moderate‘time' (100 < t < 1000). The finite-domain

flow-rate solution approaches its asymptotic limit, i.e., the steady state solution, when

the test time is large while the infinite-domain flow-rate solution continuously

declines with dimensionless time.

The dimensionless flow rate with a positive skin is smaller than that with a

negative skin (Yang and Yeh, 2002) at a specific time. This result indicates that the

effect of finite boundary on the flow-rate may be negligible for a high value of a0 (say,

e.g., 10).
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3.1.2 Time Criterion for Using the Infinite-Domain Solution

Figure 3 shows that the time criterion increases with p, (=R/r,). At p; =3 and

a = 0.1, the values of time criterion 7, are 26, 67, and 204 for pr = 20, 30, and

50, respectively, as shown in Figure 3. When p; =3 and o =1, 7, isequal to 32,

77, and 231 for pr = 20, 30, and 50, respectively. In addition, 7z, increases to 45,

101, and 234 for pr = 20, 30, and 50, respectively, at p; =3 and ¢ = 10. Those

data represent that 7, increases with o if pr is fixed and 7, increases with pg if

o 1s fixed.

3.2Comparision of the Infinite-Domain Solution to the Finite-Domain Solution

for Constant-flux Test

3.2.1 Effects of Skin Type, Skin“Thickness, and-Finite-Domain

Figure 4 shows the curves of dimensionless drawdown at wellbore for aquifers with

finite-domain and infinite-domain with p;=3 and a = 0.1, 1, 5, and 10. The

drawdown curves for both aquifers match exactly at early pumping time (1 <t < 10).

However, the curves gradually deviate from one another in the middle time period (10

< 1 < 100) due to boundary effect. It indicates that the infinite-domain drawdown

solution can approximate the finite-domain solution when the time is less than the

time criterion. Finially, the finite-domain drawdown solution tends to an asymptotic

limit, the steady state solution, while the infinite-domain drawdown continuously
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increases with dimensionless time. These results reflect that the pumped water

comes from the remote constant-head boundary for the finite-domain aquifer and is

from the aquifer storage for the infinite-domain aquifer. Figure 4 also shows the

effect of skin type on the drawdown distribution. The drawdown increases

with o indicating a larger o has a larger drawdown value.

Figure 5 demonstrates the curves of dimensionless drawdown at wellbore for

aquifers with finite-domain and infinite-domain with p;=10and oo =0.1, 1, 5, and 10.

This figure has a similar pattern of temporal drawdown distribution to Figure 4 except

that the time criterion relating to the boundary effect is delayed. Yeh et al. (2003)

also mentioned that the thickness 'of the wellbore  p;-may influence the magnitude of

the dimensionless drawdown.

Figures 6 and 7 show the dimensionless drawdown curves for p;=3 and 10,

respectively, with p =10, o= 0.1, 1, 5, and 10. There two figures indicate that the

effect of skin type on the drawdown in the formation zone contrasts to that in the skin.

The drawdown of the formation zone is less sensitive for a positive skin aquifer.

3.2.2 Time Criterion for Various Values of Skin Type, Skin Thickness and Radial

Distance

The time criterion increases with the dimensionless boundary distance p, as

illustrated in Figures 4 - 7. Figure 8 shows the time criterion versus pg for varying
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a, p1, and p. This figure indicates that the time criterion 7, increases with o

(skin type) and p; (skin thickness) but decreases with p (dimensionless radial

distance from the center of the test well) if pr is fixed. Additionally, 7, also

increases with pr if « 1is fixed.
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CHAPTER 4 CONCLUSIONS

The wellbore flow-rate solution of the constant-head test and the drawdown

solution of the constant-flux test are generally employed to analyze measuring data

for estimating the aquifer properties. This thesis develops mathematical models to

describe the hydraulic head distribution for the constant-head test and the drawdown

distribution for constant-flux test at a finite-domain confined aquifer. The hydraulic

head solutions and the drawdown solutions in Laplace domain for skin zone and

formation zone are derived using the Laplace transforms for both tests. In addition,

the solution of wellbore flow rate:for the,constant-head test is derived based on the

hydraulic head solution and Darcy” law. .~The time-domain results of wellbore flow

rate for the constant-head test and:the drawdown for the constant-flux test are

evaluated by the modified Crump algorithm.  The results show that the

dimensionless wellbore flow-rate solution and drawdown solution for a finite-domain

aquifer are significantly different from the one of an infinite-domain aquifer at late

pumping times.

For the constant-head test, the infinite-domain solution will underestimate the flow

rate at the wellbore in a finite-domain aquifer when time is fairly large. The effect of

finite boundary on the flow rate appears to be considerable less for a positive skin.

On the other hand, the infinite-domain solution for the constant-flux test may
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overestimate the drawdown for a finite-domain aquifer at large time. The analysis

for the effect of skin type on the drawdown shows that the drawdown is significant in

the skin zone and insignificant in the formation zone for a positive skin.

For both the constant head test and constant-flux test, the infinite-domain solution

can be used to determine the drawdown distribution, wellbore flow rate, or aquifer

parameters if coupled with an optimization algorithm when the time is less than the

boundary-effect time criterion. The infinite-domain solutions are generally in

simpler forms and much easier to evaluate than the finite-domain solutions.

Therefore, time criteria provide a,good reference for adopting the infinite-domain

solution to calculate the drawdown or wellbore flow rate of finite-domain aquifers.

This thesis also derives large-time solutions: for the constant head test and

constant-flux test based on the relationship of small Laplace-domain variable p versus

large time-domain variable ¢. It is found that the large-time solutions in

finite-domain aquifers are equal to the steady-state solutions obtained from the

Tauberian theorem. In addition, the large-time solutions can reduce to Thiem

equation if neglecting the skin zone for finite-domain aquifers and approach infinity

as the time goes infinitely large for infinite-domain aquifers.
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APPENDIXES

Appendix A: Derivation of Equations (8) and (9)

Appendix B: Derivation of Equations (32) and (33)
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Appendix A: Derivation of Equations (8) and (9)

The solutions for the hydraulic head distribution in the skin zone and formation
zone are derived by taking the Laplace Transform to the governing equation of
Equations (1) and (2), initial condition (Equations (3) ), and boundary conditions
(Equations (4), (5), (6), and (7) (Carslaw and Jaeger, 1959, p332) The results are

Ezcllo(%r)"'CzKo(%r) (A1)

N

, =D 1(q,r)+ D,K(g,r) (A2)

The constant coefficients in Eqs. (Al) and (A2) can be solved with the boundary

conditions of Equations (4) and (5)“and continuity, requirements of Equations (6) and

(7) as
C, J—{ i } (A3)
p | © 1 (qr,)—D,Ky(qr,)
, :ﬂ{ - } (A4)
p | ®1(qr,)-D,K\(qr,)
p = CK(4R) (A5)
p xl,(q,R)
p, =& (A6)
P X
with
£ = -0,/,(¢1) +P,K,(q,1) (A7)
@,1,(qr,)— DK\ (qr,)
Zzlo(‘bR)Ko (‘12’"1)_10 (Q2’3)K0 (‘]2R) (A8)

1, (%R)

Consequently, the hydraulic head solutions in the skin zone and formation zone can be
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obtained by substituting the constants of Equations (A3) - (A6) into Equations (A1)

and (A2) as Equations (8) and (9), respectively.
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Appendix B Derivation of Equations (32) and (33)

The solutions for the hydraulic head distribution in the skin zone and formation
zone are derived by taking the Laplace Transform to the governing equation of
Equations (1) and (2), initial condition (Equation (3)), and boundary conditions
Equations (5), (6), (7) and (29) (Carslaw and Jaeger, 1959, p332). The results can be

expressed as

E =C,1,(q,7)+C, K (q,7) (B1)

=

, =D, 1,(¢,7)+ D, K (g,7) (B2)
Accordingly, the drawdown solutiod ¢an be writtén as

5,= Cidy(qr) + C,Ky(q,r) (B3)

5, = DiIy(¢,r)+ DK, (4,7) (B4)

The constant coefficients in Equations (B3) and (B4) can be solved with the boundary

conditions of Equations (5) and (29) and continuity requirements, i.e., Equations (6)

and (7). as
=2 [ il } (B5)
2zr T pq, | ©1,(qr,)+P,K (qr,)
-9 { @, } (B6)
27Z'er1p‘h D,/ (Q1rw)+q)2K1(Q1VW)
D, = 0 é/Ko (%R) (B7)
27r,Tipgy x1,(q,R)
S (BS)

> 27r,Tpg, x
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The drawdown solution in the skin zone and the formation zone can therefore be

obtained by substituting Equations (B5) - (B8) into Equations (B3) and (B4) as

Equations (32) and (33).
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Table 1 List of Equations (26), (28), and two existing solutions for constant-head

test
Solutions
Outer boundary
Large-time solution Steady-state solution
skin R is finite Thiem equation Thiem equation
) . -
zone is L, e e r2(3)
o(r,.t)=4rTh, nn 2T 3 4
n
absent R —> 1 (lnp)"  (lnp) (Inn7)
where 7 =Tt/(r,’S) [Yeh and Wang (2007), Equation (6)]
skin R is finite Equation (26) Equation (26)
zone is
R — Equation (28)
present

-31-



Table 2 List of the large-time and steady-state drawdown solutions for the

constant-flux test

Solutions
Outer boundary
Large-time Steady-state
R is finite Equations (43) and (44) Equations (43) and (44)
R is infinite Equations (47) and (48) No solution
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Figure I = Schematic diagram for a constant-head test at a finite diameter well in a

finite-domain confined aquifer.
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finite-domain confined aquifer.
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Figure 3 Dimensionless flow rate versus dimensionless pumping time for p; =3 at p
=1 and a= 0.1, 1 and 10. The solid line presents the flow-rate solution of

infinite-domain aquifers and the dash line present the flow-rate solution of

finite-domain aquifers.
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Figure 4 Comparison of the drawdown of a finite-domain aquifer to the drawdown of

an infinite-domain aquifer for pj=3 at p=1and « = 0.1, 1, 5, and 10. The solid

line presents the infinite-domain drawdown solution and the dash line represent the

finite-domain drawdown solution.
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Figure 5 Comparison of the drawdown of a finite-domain aquifer to the drawdown of

an infinite-domain aquifer for pyj=10atp =1and ¢=0.1, 1, 5, and 10. The solid

line presents the infinite-domain drawdown solution and the dash line present the

finite-domain drawdown solution.
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Figure 6 Comparison of the drawdown of a finite-domain aquifer to the drawdown of
an infinite-domain aquifer for p; =3 atp =10 and o=0.1, 1, 5, and 10. The solid
line presents the infinite-domain drawdown solution and the dash line present the

finite-domain drawdown solution.
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Figure 7 Comparison of the drawdown of a finite-domain aquifer to the drawdown of

an infinite-domain aquifer for p; =10atp =10and a=0.1, 1, 5, and 10. The solid

line presents the infinite-domain drawdown solution and the dash line present the

finite-domain drawdown solution.

-39 .-



| 0 p P @
_ . A 1 3 01
. X 1 3 1
N 5 0 [] 1 3
8 O 1 310
. 7 i . X A 110 01
£ X 110 1
2 o (] 110 5
T o100 — o o @) 1 10 10
2] A A 10 3 01
£ i 5 ; X 10 3 1
| o A L] 10 3 5
| O 10 3 10
A A 10 10 01
N i X 10 10 1
o [] 10 10 5
8 » O 10 10 10
A
10* \ \ ‘
10 100
Pr

Dimensionless boundary:distance

Figure 8 Time criterion 1. versus dimensionless boundary distance pr for various

values of p, pi, and a.
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