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含井膚層水層在有限邊界條件下井緣流量解與洩降解之研究 
 
 
 
 

研究生：蔡其珊                            指導教授：葉弘德 

 

 

國立交通大學環境工程研究所 

摘要 

工程上，定水頭試驗及定流量試驗的數據通常被用來推估含水層的參數。定

水頭試驗是藉由注水或抽水產生固定水頭，進而量測井緣流量，通常是應用在低

透水性的水層；定流量試驗則是藉由固定抽水量，在觀測井量測洩降的分佈值，

此試驗適合用於透水性高的水層。在過去的文獻中，已有單層或含井膚層水層的

解析解，得知當時間越久或觀測井距離試驗井越遠的情況下，井膚層的效應很小

可忽略不計。但是，當外邊界為有限值的情況下，此問題對於井緣流量解和洩降

解的影響，較少被討論。另一方面，由於此問題相關的解析解，形式複雜且不易

計算數值，因此，近似解是值得探討的議題，過去的文獻顯示，利用拉普拉斯域

變數與時間域變數成反比的關係，可自拉普拉斯解求得近似解。本論文目的為討

論有限邊界的定流量試驗及定水頭試驗問題，利用拉普拉斯轉換，分別求得洩降

及井緣流量的半解析解，再利用 Crump 數值逆轉方法，求得時間域的數值。此

外，本文探討有限邊界對於井緣流量解及洩降解的影響，也考慮於遠處邊界為無
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限或有限值的情況下，分別推導得含井膚層水層在長時間條件下的洩降及井緣流

量近似解。所得結果顯示，當遠處邊界為無限時，井緣流量解、洩降解及此兩者

的近似解經過簡化，可分別得到先前單層含水層的解。 

關鍵詞：地下水，半解析解，定流量試驗，定水頭試驗，拉普拉斯轉換，有限邊

界 
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A study on wellbore flow-rate solution and drawdown solution for a finite 

confined aquifer with considering well skin effect 

Student：Chi-San Tsai               Advisor：Hund-Der Yeh 

Institute of Environmental Engineering 

National Chiao Tung University 

 

Abstract 

  The constant-head test and constant-flux test are commonly employed for 

estimating the aquifer parameters in engineering practice.  The constant-head test 

injects or pumps water with a variable flow rate for maintaining a constant hydraulic 

head in a low-permeability aquifer while the constant-flux test keeps a constant flow 

rate to record the drawdown distribution from the observation well of a 

high-permeability aquifer.  The solutions for the wellbore flow rate and drawdown at 

a well with a finite radius in an infinite confined aquifer with or without a skin zone 

have been reported in the groundwater literature.  The effects of well radius and skin 

zone are negligible if the test period is very long and/or the distance between the 

observation well and test well is large.  However, little attention has been paid to the 

effect of a finite boundary on the flow-rate and drawdown solutions in the 
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groundwater community.  The main objectives of this thesis are first to develop new 

semi-analytical solutions for exploring the effect of finite boundary on the wellbore 

flow-rate and drawdown solutions in a confined aquifer where a finite skin zone is 

present.  These solutions are then calculated by the modified Crump algorithm.  

The Laplace-domain solution can reduce to the existing infinite-domain solution in 

some special cases.  In addition, an approximate solution for small- or large-time 

condition is useful if the analytical solution is very complicated and not easy to 

evaluate accurately.  The second objective of this thesis is to derive approximate 

solutions with considering the effect of skin zone in a finite or infinite confined 

aquifer based on the relationship between the Laplace variable and time.  An 

approximate solution for an infinite confined aquifer with a skin zone can reduce to 

the solution without a skin zone if the skin is absent.  The large-time solution is 

equal to the steady-state solution for a finite confined aquifer with a skin zone.  In 

addition, this solution can reduce to Thiem’s equation if the skin zone is absent. 

Keywords: Groundwater, constant-flux test, constant-head test, Laplace transform, 

finite confined aquifer.  

 

 

 

 

 



 v

誌謝 

 

本論文承蒙葉弘德教授細心指導與鼓勵，才得以順利完成，在此表達最誠摯

的謝意。口試期間虎尾科技大學林振德校長；台灣大學劉振宇教授；中國科技大

學陳主惠教授；及香港大學焦赳赳教授，對本論文之疏漏與指正，及精闢的見解，

使本論文更加充實完整，特於此誌謝。 

修業期間，葉弘德教授將專業知識傾囊相授，嚴謹的研究精神及生活態度，

使我受益良多。此外，由衷感謝紹洋學長及智澤學長，當我在研究上遇到的問題

與困難時，能適時給予經驗及指導，使我在研究時能更順利，也要感謝彥禎學長、

雅琪學姐、彥如學姐、士賓學長、及博傑學長在各方面的指點與幫助，以及珖儀、

仲豪、璟勝、與庚轅，在生活及課業上的幫助。 

最後，要感謝我的家人，外公、外婆、爸媽、大姐、二姐、弟弟，因為有他

們持續支持及鼓勵，才能讓我安心做研究，也感謝耀陞適時的關心、鼓勵和包容，

陪伴我度過研究生活。 

 

 



 vi

TABLE OF CONTENTS 

摘要------------------------------------------------------------------------------------------------i 

ABSTRACT-------------------------------------------------------------------------------------iii 

誌謝------------------------------------------------------------------------------------------------v 

TABLE OF CONTENTS---------------------------------------------------------------------vi 

LIST OF TABLES-----------------------------------------------------------------------------ix 

LIST OF FIGURES----------------------------------------------------------------------------x 

NOTATION------------------------------------------------------------------------------------xii 

CHAPTER 1 INTRODUCTION------------------------------------------------------------1 

      1.1.   Background--------------------------------------------------------------------1 

      1.2.   Literature Review ------------------------------------------------------------1 

1.3   Objectives-----------------------------------------------------------------------3 

CHAPTER 2 METHEMATICAL MODEL-----------------------------------------------5  

      2.1    The Mathematical Model for the Constant-head Test----------------5 

      2.2    The Hydrulic Head Solution for the Constant-head Test in a Finite 

Confined Aquifer--------------------------------------------------------------7 

      2.3    Dimensionless Wellbore Flow-rate Solution for the Constant-head 

Test------------------------------------------------------------------------------9 

2.4   The Large-time Solution for the Constant-head Test ----------------10 



 vii

2.4.1  In a Finite Confined Aquifer---------------------------------------10 

2.4.2  In an Infinite Confined Aquifer------------------------------------11 

      2.5  Drawdown Solution for the Constant-flux Test-------------------------12 

2.6 The Drawdown Solution for the Constant-flux Test in a Finite 

Confined Aquifer---------------------------------------------------------------13 

2.7  Dimensionless Drawdown Solution for the Constant-flux Test------14 

2.8  The Large-time Drawdown Solution for the Constant-flux Test----15 

       2.8.1  In Finite Confined Aquifers----------------------------------------15 

2.8.2  In Infinite Confined Aquifers--------------------------------------16 

CHAPTER 3 RESULTS AND DISCUSSION-------------------------------------------18 

3.1  Comparison of the Infinite-Domain Solution to the Finite-Domain 

Solution for Constant-head Test---------------------------------------------18 

3.1.1   Effects of skin zone and Finite Radial Distance-----------------18  

3.1.2   Time Criterion for Using the Infinite-Domain Solution -------19  

      3.2  Comparison of the Infinite-Domain Solution to the Finite-Domain 

Solution for Constant-flux Test---------------------------------------------19 

3.2.1   Effects of Skin Type, Thickness of skin zone, and Finite Radial 

Distance--------------------------------------------------------------19   

          3.2.2   Time Criterion for Using the Infinite-Domain Solution---------20 



 viii

CHAPTER 4 CONCLUSIONS-------------------------------------------------------------22 

APPENDIXES---------------------------------------------------------------------------------24 

Appendix A  Derivation of Equations (8) and (9) -------------------------------------25 

Appendix B  Derivation of Equations (30) and (31)----------------------------------27 

REFERENCES--------------------------------------------------------------------------------29 

 

 



ix 

 

LIST OF TABLES 

                                                         

Tables  Page 

1 List of Equations (26), (28), and two existing solutions for 

constant-head test.--------------------------------------------------- 

 

31 

2 List of the large-time and steady-state drawdown solutions 

for the constant-flux test.------------------------------------------ 

 

 

32 

 

 

 

 

 

 

 

 

 

 



 x

LIST OF FIGURES    

Figures  Page   

1 
Schematic diagram for a constant-head test at a finite 

diameter well in a finite-domain confined aquifer.----------- 

 

33 

2 

 

3   

Schematic diagram of the pumping test in a finite-domain 

confined aquifer.--------------------------------------------------- 

Dimensionless flow rate versus dimensionless pumping 

time for ρ1 =3 at ρ  = 1 and α  =  0.1, 1 and 10.  The solid 

line presents the flow-rate solution of infinite-domain 

aquifers and the dash line present flow-rate solution of 

finite-domain aquifers.------------------------------------------- 

 

34 

 

 

 

 

35 

4 Comparison of the drawdown of a finite-domain aquifer to 

the drawdown of an infinite-domain aquifer for ρ1 = 3 at 

ρ = 1 and α = 0.1, 1, 5, and 10.  The solid line presents 

the infinite-domain drawdown solution and the dash line 

represent the finite-domain drawdown solution.-------------- 

 

 

 

 

36 

5 Comparison of the drawdown of a finite-domain aquifer to 

the drawdown of an infinite-domain aquifer for ρ1 = 10 at 

ρ  = 1  and α = 0.1, 1, 5, and 10.  The solid line presents 

 

 

 



 xi

the infinite-domain drawdown solution and the dash line 

present the finite-domain drawdown solution.---------------- 

 

37 

6 

 

 

 

 

7 

 

 

 

 

8 

 

 

 

Comparison of the drawdown of a finite-domain aquifer to 

the drawdown of an infinite-domain aquifer for ρ1 = 3 at ρ  

= 10 and α = 0.1, 1, 5, and 10.  The solid line presents the 

infinite-domain drawdown solution and the dash line 

present the finite-domain drawdown solution.---------------- 

Comparison of the drawdown of a finite-domain aquifer to 

the drawdown of an infinite-domain aquifer for ρ1 = 10 at 

ρ = 10 and α = 0.1, 1, 5, and 10.  The solid line presents 

the infinite-domain drawdown solution and the dash line 

present the finite-domain drawdown solution.---------------- 

Time criterion τc versus dimensionless boundary distance 

ρR for various value of ρ, ρ1, and α.---------------------------- 

 

 

 

 

 

 

 

38 

 

 

 

 

39 

 

40 

 

                                                      

   .     



 xii

NOTATION  

h             Hydraulic head 

h             Hydraulic head in Laplace domain 

hw.           Hydraulic head along the wellbore 

0 0( ), ( )I u K u     Modified Bessel function of the first and second kinds of order zero    

1 1( ), ( )I u K u     Modified Bessel function of the first and second kinds of order one 

p             Laplace variable 

q             /pS T  

( )wQ r          Constant flow rate into or out wellbore 

DWQ           Dimensionless constant flow rate in Laplace domain 

( )wQ r          Constant flow rate in Laplace domain 

r             Radial distance from the central line of the test well 

1r             Thickness of the skin zone 

wr             Well radius 

R            Radial distance from the center of the well to the finite extended 

boundary 

s             Drawdown  

s             Drawdown in Laplace domain 

S             Storage coefficient 



 xiii

t              Time from the begin of test 

T             Transmissivity 

α               2 1/T T  

β               2 1/S S  

1Φ              ( ) ( ) ( ) ( )2 2
0 1 1 0 2 1 1 1 1 0 2 1

1 1

S T K q r K q r K q r K q r
S T

ψ −  

2Φ              ( ) ( ) ( ) ( )2 2
0 1 1 0 2 1 1 1 1 0 2 1

1 1

S T I q r K q r I q r K q r
S T

ψ +  

1φ               ( ) ( ) ( ) ( )2 2
0 1 1 1 2 1 1 1 1 0 2 1

1 1

S T K q r K q r K q r K q r
S T

−   

2φ              ( ) ( ) ( ) ( )2 2
0 1 1 1 2 1 1 1 1 0 2 1

1 1

S T I q r K q r I q r K q r
S T

+  

( )xΓ             Gamma function  

γ                0.5772...  Euler’s constant 

η                tλ  

λ                ( ) 2 12 2
2 1 2 2/T T

wT r r r S  

ρ               / wr r  

1ρ               1 / wr r  

Rρ               / wR r  

τ               Dimensionless time 

cτ               Time criterion 



 xiv

ϖ              ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 2 0 2 0 2 0 2 0 2 0 2 1 0 2 1 0 2/K q R I q r K q r I q R I q R K q r I q r K q R⎡ ⎤ ⎡ ⎤− + −⎣ ⎦ ⎣ ⎦ 

ξ(3)            Riemann Zeta function  

Subscripts 

D             Dimensionless 

1             skin zone 

2             Formation zone 

w            Pumping well



 - 1 -

CHAPTER 1 INTRODUCTION 

 

1.1 Background 

  The constant-head and constant-flux tests are normally utilized to obtain wellbore 

flow-rate or drawdown data for estimating the hydraulic properties (e.g., 

transmissivity and storage coefficient).  The constant-head test, which injects or 

pumps water with a variable flow rate by keeping a constant hydraulic head at the test 

well, is commonly performed in low-permeability aquifers.  On the other hand, the 

constant-flux test maintains a constant well discharge rate to observe the various 

drawdown distributions in a confined aquifer with high-permeability.  

1.2 Literature Review  

  A finite thickness of the skin zone may exist near the well due to well drilling, 

installation, and development.  Several researchers had addressed the issue of 

constant-head test for aquifers without skin and presented mathematical models for 

engineering applications.  Yang and Yeh (2002) proposed a closed-form flow-rate 

solution at the wellbore for describing the flow rate with considering the effects of 

skin zone and finite well radius.  They mentioned that the formation zone and skin 

zone may significantly affect the magnitude of the flow rate at the wellbore.   

Yeh and Wang (2007) presented a new large-time wellbore flow-rate solution for 
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the problem of constant-head tests based on the relationship of small Laplace-domain 

variable p versus large time-domain variable t (hereinafter referred to as SPLT).  

Their approximate solution was obtained for the confined aquifer of homogeneous, 

isotropic, infinitely extended in lateral, and without considering the skin zone.  

Furthermore, Wang and Yeh (2008) gave a review on the constant-head solution.  

They mentioned that the finite-domain drawdown solution rather than the 

infinite-domain drawdown solution can converge to the Thiem equation when the 

time becomes infinitely large.  Nevertheless, to our knowledge, the issue of the effect 

of finite boundary on the wellbore flow-rate solution has not been address so far.  

Theis equation (Theis 1935) is the most famous solution for estimating the aquifer 

drawdown or determining the aquifer parameters for the constant-flux test.  Theis 

equation is applicable to an aquifer with an infinitesimal diameter well when the 

observation well is located far away from the test well and/or the test period is very 

large.  However, this equation is not applicable when the skin zone is present.  The 

drawdown equation for the test well with a finite radius can be derived based on the 

analogy of the heat flow equation presented in Carslaw and Jaeger (1959).  

Moreover, this drawdown equation can be simplified to the Theis equation if the well 

radius is negligible.  Yeh et al. (2003) proposed a closed-form drawdown solution for 

flow toward a well in an infinite confined aquifer under pumping by taking into 
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account the effects of well radius and skin zone.  They concluded that the effect of 

skin zone may be negligible at short and long pumping periods.    

 For the constant-flux test, Chen (1984) proposed a modified Theis equation for 

describing the drawdown distributions with considering the effect of boundary in a 

finite extended confined aquifer.  He gave a boundary-effect time criterion for 

applying the Theis equation in a finite extended confined aquifer.  In other words, 

the Theis equation is applicable before the influence of pump-induced drawdown 

reaching the finite extended boundary.  Similar to the development of Chen (1984), 

the drawdown solution with considering both finite well radius and finite extended 

boundary can also be obtained according to Carslaw and Jaeger (1959, p.334).  The 

issue of the effect of finite boundary on the drawdown solution so far has attracted 

little attention in the groundwater literature. 

1.3 Objectives 

This thesis develops two new solutions for the constant-head and constant-flux tests 

with the finite skin zone in a finite confined aquifer.  The objectives of this thesis 

consist of the following:  

(1) To extend previous works of Yang and Yeh (2002) and Yeh et al. (2003) for finite 

extended confined aquifers.   

(2) To study the effect of finite boundary on the solution in a confined aquifer with a 
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skin zone  

(3) To present the time criteria for using the infinite-domain solution to approximate 

the finite-domain solution.   

(4) To derive large-time solutions for aquifers with considering the well radius and 

skin zone as well as finitely and infinitely extended boundaries.  
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CHAPTER 2 METHEMATICL MODEL 

This chapter presents the mathematical models for the constant-head and 

constant-flux tests in a finite extended confined aquifer.   

2.1 The Mathematical Model for the Constant-head Test 

This section establishes the mathematical model for the constant-head test.  The 

assumptions for model development are made as: (1) the aquifer is homogeneous, 

isotropic, and finite extended; (2) the test well is fully penetrated with a finite well 

radius; (3) the skin has a finite thickness with properties differing from those of the 

formation zone ; and (4) the water level (or hydraulic head) at the test well is kept 

constant throughout the whole test period.  Figure 1 demonstrates the schematic 

diagram of the aquifer for the constant-head test. 

The governing equation describing the hydraulic head h(r, t) for the skin zone 

and the formation zone are, respectively 

2
1 1 1 1

2
1

1h h S h
r r r T t

∂ ∂ ∂
+ =

∂ ∂ ∂
     1rrrw <≤          (1) 

and 

2
2 2 2 2

2
2

1h h S h
r r r T t

∂ ∂ ∂
+ =

∂ ∂ ∂
    Rrr ≤≤1          (2) 

where subscripts 1 and 2 respectively denote the skin zone and the formation zone, the 

variable r is the radial distance from the center of the test well, rw is the well radius, r1 

is the radial distance from the central line of the test well to outer skin zone adjacency, 
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R is the radial distance from the center of the well to the finite extended boundary, t is 

the test time, S indicates the storage coefficient, and T is the transmissivity. 

The initial hydraulic head is assumed as zero everywhere.  Therefore, the initial 

conditions for Equations 1 and 2 are 

1 2( ,0) ( ,0) 0h r h r= =                 (3) 

In addition to the initial conditions, the hydraulic head is also assumed to 

maintain zero when r approaches to the finite distance R from the test well while the 

hydraulic head along the wellbore is maintained constant and denoted as hw.  Thus, 

the outer and inner boundary conditions can be expressed, respectively, as 

2 ( , ) 0h R t =               (4) 

and 

1( , )w wh r t h=               (5) 

The continuity conditions for the hydraulic head and flow rate at the interface 

between the skin zone and formation zone, respectively, require 

1 1 2 1( , ) ( , )h r t h r t=              (6) 

and 

1 1 2 1
1 2

( , ) ( , )h r t h r tT T
r r

∂ ∂
=

∂ ∂
            (7) 
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2.2 The Hydraulic Head Solution for the Constant-head Test in a Finite Confined 

Aquifer 

The detailed derivation of the hydraulic head solution for the constant-head test 

in a finite confined aquifer is given in Appendix A.  The results are 

( ) ( )
( ) ( )

1 0 1 2 0 1
1

1 0 1 2 0 1

w

w w

I q r K q rhh
p I q r K q r

⎡ ⎤Φ − Φ
= ⎢ ⎥

Φ − Φ⎢ ⎥⎣ ⎦
          (8) 

and 

( ) ( )
( ) ( )

1 0 1 2 0 1
2

1 0 1 2 0 1

w

w w

I q r K q rhh
p I q r K q r
ϖ ⎡ ⎤Φ − Φ

= ⎢ ⎥
Φ − Φ⎢ ⎥⎣ ⎦

                      (9) 

with 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
0 2 0 2 0 2 0 2

0 2 0 2 1 0 2 1 0 2

K q r I q R K q R I q r
I q R K q r I q r K q R

ϖ
−

=
−

         (10) 

where p is the Laplace variable, 111 TpSq = , 222 TpSq = , I0 and K0 are the 

modified Bessel functions of the first and second kinds of order zero, respectively, and 

I1 and K1 are the modified Bessel functions of the first and second kinds of order one, 

respectively.  The variables Φ1 and Φ2 in Equations (8) and (9) are, respectively, 

( ) ( ) ( ) ( )2 2
1 0 1 1 0 2 1 1 1 1 0 2 1

1 1

S T K qr K q r K qr K q r
ST

ψΦ = −         (11) 

and 

( ) ( ) ( ) ( )2 2
2 0 1 1 0 2 1 1 1 1 0 2 1

1 1

S T I qr K q r I qr K q r
ST

ψΦ = +         (12) 

with 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 2 1 2 1 1 2 1 0 2

0 2 0 2 1 0 2 1 0 2

I q R K q r I q r K q R
I q R K q r I q r K q R

ψ
+

=
−

        (13) 

The wellbore flow-rate solution in Laplace-domain can be obtained by applying 

Darcy’s law and allowing r=rw as  

( ) ( )
( ) ( )

1 1 1 2 1 11
1

2 0 1 1 0 1

( , ) 2 w ww
w w

w w

I q r K q rq hQ r p r T
p K q r I q r

π
⎡ ⎤Φ +Φ

= ⎢ ⎥
Φ −Φ⎢ ⎥⎣ ⎦

       (14) 

The ψ in Equation (13) and ϖ in Equation (10) may be simplified as 

( ) ( )1 2 1 0 2 1K q r K q r  and ( ) ( )0 2 0 2 1K q r K q r , respectively, if the finite extended 

boundary R becomes infinite.  Equation (14) then reduces to the solution presented 

in Yang and Yeh (2002,) as follows 

( ) ( )
( ) ( )

1 1 1 2 1 11
1

2 0 1 1 0 1

( , ) 2 w ww
w w

w w

I q r K q rq hQ r p r T
p K q r I q r

φ φ
π

φ φ
⎡ ⎤+

= ⎢ ⎥
−⎢ ⎥⎣ ⎦

                             (15) 

with 

( ) ( ) ( ) ( )2 2
1 0 1 1 1 2 1 1 1 1 0 2 1

1 1

S T K q r K q r K q r K q r
S T

φ = −                           (16) 

( ) ( ) ( ) ( )2 2
2 0 1 1 1 2 1 1 1 1 0 2 1

1 1

S T I q r K q r I q r K q r
S T

φ = +                            (17) 

which is identical to the equation for the wellbore flux in an aquifer of infinite extend.  

Clearly, the infinite-domain solution is much easier to compute than the finite-domain 

solution.  In addition, when the time is less than a specific time, called the 

boundary-effect time criterion or simply time criterion and defined as 2
2 2c c wT t S rτ = , 

the difference between the dimensionless finite-domain solution and dimensionless 
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infinite-domain solution is less than 10-5.  In other words, the boundary has no effect 

on the solution before time reaches the time criterion. 

2.3 Dimensionless Wellbore Flow-rate Solution for the Constant-head Test 

Define the dimensionless variables as 12 TT=α , 12 SS=β , αβκ = , 

2
22 wrStT=τ , wrr=ρ , wrr11 =ρ , wR rR=ρ , 2/(2 )wDW WQ Q T hπ= .  Note that 

variable α represents the skin type and the aquifer has a negative skin when α <1 and 

positive skin when α >1.  The dimensionless wellbore flow-rate solution in the 

Laplace-domain Equation, (18), can be expressed as  

1 1 2 1

2 0 1 0

( / ) ( / )1
( / ) ( / )

D D
DW

D D

I p K p
Q

p K p I p
κ κ

αβ κ κ
Φ + Φ

=
Φ − Φ

                (18) 

The variables 1 2 and D DΦ Φ  are  

( ) ( ) ( ) ( )1 0 1 0 1 1 1 0 1/ /DD K p K p K p K pψ αβ ρ κ ρ ρ κ ρΦ = −    (19) 

and 

( ) ( ) ( ) ( )2 0 1 0 1 1 1 0 1/ /DD I p K p I p K pψ αβ ρ κ ρ ρ κ ρΦ = +    (20)  

with  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 1 1 1 1 0

0 0 1 0 1 0

R R
D

R R

I p K p I p K p

I p K p I p K p

ρ ρ ρ ρ
ψ

ρ ρ ρ ρ

+
=

−
         (21) 

The time-domain wellbore flow rate for an aquifer with a finite extended 

boundary can be evaluated from Equation (18) by using the modified Crump 

algorithm (de Hoog et al., 1982), a numerical Laplace inversion method.  The results 
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obtained after numerical inversion can be compared with the infinite-domain 

flow-rate solutions presented by Yang and Yeh (2002) in which they considered the 

aquifer had an infinite extended boundary.  Note that Equation (21) reduces to 

( )1 1K pρ / ( )0 1K pρ  if ∞→Rρ .  The dimensionless flow-rate solution for an 

infinite domain aquifer in Laplace-domain given by Yang and Yeh (2002) was 

expressed as 

1 1 2 1

2 0 1 0

( / ) ( / )1
( / ) ( / )

D D
DW

D D

I p K p
Q

p K p I p
φ κ φ κ

α φ κ φ κ
+

=
−

                                (22) 

with                           

( ) ( ) ( ) ( )1 0 1 1 1 1 1 0 1/ /D K p K p K p K pφ αβ ρ κ ρ ρ κ ρ= −               (23) 

and 

( ) ( ) ( ) ( )2 0 1 1 1 1 1 0 1/ /D I p K p I p K pφ αβ ρ κ ρ ρ κ ρ= +                 (24) 

Obviously, the flow-rate solution for an aquifer with an infinite-domain is in a 

simpler form and much easier to evaluate than the one with a finite-domain.  

2.4 The Large-time Solution for the Constant-head Test 

2.4.1 In a Finite Confined Aquifer 

The large-time flow-rate solution at the wellbore can be evaluated from Equation 

(14) by utilizing the SPLT technique.  The limiting forms of the Bessel functions for 

small arguments used for computing Equation (25) are 0 ( ) ~ 1/ (1),I x Γ  

( ) ( )22~1 ΓxxI , 0 ( ) ~ ln( ),K x x−  1and  ( ) ~1/K x x  where ( )xΓ is the gamma 
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function (Abramowitz and Stegun 1970, p.375).  Applying L’Hospital’s rule to 

Equation (14) with p approaching zero, the Laplace-domain wellbore flow rate for 

small p gives  

1

1 1

2 1

2 1( , )
ln ln

w
w

w

T hQ r p
p r T R

r T r

π −
=

⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

         (25) 

where the negative sign in Equation (25) expresses withdrawal at the test well. 

Accordingly, the large-time wellbore flow-rate solution can be easily obtained by 

taking the inverse Laplace transform to Equation (25) as 

1
1 1

2 1

1( , ) 2
ln ln

w w

w

Q r t T h
r T R
r T r

π −
=

⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

         (26) 

Equation (26) is independent of time and naturally is a steady-state solution.  By 

applying the Tauberian theory to Equation (14) (Sneddon, 1972), one can also obtain 

Equation (26).  This result implies that the wellbore flow rate does approach steady 

state at large time condition for an aquifer with a finite-domain (Wang and Yeh, 2008).  

In addition, Equation (26) can be simplified to the Thiem equation if the skin zone is 

absent (i.e., r1 equals rw).  

2.4.2 In an Infinite Confined Aquifer 

If an infinite extended boundary is considered, i.e., R → ∞ , Equation (14) 

therefore is equivalent to Equation 15.  Again, the Laplace-domain wellbore flow 

rate for small p in an infinite confined aquifer can be obtained as 
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24 1( , )
ln( / )

w
w

T hQ r p
p p

π
λ

−
=            (27) 

where ( ) 2
22

212 /12 SrrrT w
TT=λ .  If there is no skin zone, then T2 = T1 and S2 = S1; 

Equation (27) is, therefore, identical to the one of Yeh and Wang (2007, Equation 3). 

The large-time wellbore flow-rate solution is obtained after taking the inverse 

Laplace transform to Equation (27) as (Yeh and Wang, 2007) 

( ) ( )

( )

( )

2 2
2 3

2 2 3 4

2 31 6 2( , ) 4
ln ln ln ln

w wQ r t T h

π πγ γ γ ξγπ
η η η η

⎡ ⎤
− − +⎢ ⎥

= − + −⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

    (28) 

where 0.5772...γ = is Euler’s constant and the Riemann Zeta function ξ(3) = 

1.2020569032.  The numerators of the right-hand side terms of Equation (28) are all 

constants and the denominators are a function of time 

since ( ) 2
22

212 /12 SrtrrTt w
TT== λη .  The value of lnη  tends to infinity as t 

approaches infinity; consequently, Equation (28) becomes zero.  It means that the 

steady-state wellbore flow rate in an infinite confined aquifer is zero implying the 

constant head has reached to the infinite extended boundary.  

When neglecting the skin zone, Equation (28) can reduce to the solution of Yeh 

and Wang (2007, Equation 6).  Table 1 provides a list for comparing Equations (26) 

and (28) with two existing solutions. 

2.5 Drawdown Solution for Constant-flux Test 

  This section presents the mathematical model for the constant-flux test.  The 
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assumptions for the constant-flux test are the same as those for the constant-head test 

except that there is a constant discharge rate, rather than a constant head, maintained 

at the wellbore through out the entire pumping test.  Therefore, the mathematical 

model describing the constant-flux test is identical to the constant-head test except the 

boundary condition specified at the wellbore.  The boundary condition specified for 

a constant pumping with the flow rate Q can be expressed as 

1

12
wr r w

dh Q
dr r Tπ=

=               (29) 

  Equations (6) and (7) representing the continuity requirements of the hydraulic 

head and the flux at the interface of the skin zone and the formation zone are also 

applicable to the constant-flux test.  Figure 2 illustrates the schematic diagram of an 

aquifer for the constant-flux test. 

2.6 The Drawdown Solution for the Constant-flux Test in a Finite Confined 

Aquifer   

The obtained hydraulic head solution are 

( ) ( )
( ) ( )

1 0 1 2 0 12
1

2 1 1 1 1 1 2 1 1

21
4 w w w

I q r K q rTQh
T p r T q I q r K q rπ

⎡ ⎤Φ − Φ
= ⎢ ⎥

Φ + Φ⎢ ⎥⎣ ⎦
                            (30) 

( ) ( )
( ) ( )

1 0 1 1 2 0 1 12
2

2 1 1 2 1 1 1 1 1

21
4 w w w

I q r K q rTQh
T p r T q K q r I q r

ϖ
π

⎡ ⎤Φ − Φ
= ⎢ ⎥

Φ + Φ⎢ ⎥⎣ ⎦
                             (31) 

Appendix B lists the derivation for the drawdown solution for the constant-flux test in 

a finite confined aquifer.  The drawdown can be represented by s = h0 – h, so the 
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drawdown solution can be written as  

( ) ( )
( ) ( )

1 0 1 2 0 12
1

2 1 1 1 1 1 2 1 1

21
4 w w w

I q r K q rTQs
T p r T q I q r K q rπ

⎡ ⎤Φ − Φ−
= ⎢ ⎥

Φ + Φ⎢ ⎥⎣ ⎦
        (32) 

and 

( ) ( )
( ) ( )

1 0 1 1 2 0 1 12
2

2 1 1 2 1 1 1 1 1

21
4 w w w

I q r K q rTQs
T p r T q K q r I q r

ϖ
π

⎡ ⎤Φ − Φ−
= ⎢ ⎥

Φ + Φ⎢ ⎥⎣ ⎦
                             (33) 

If R → ∞ , Equations (32) and (33) can reduce the equations given in Yeh et al. 

(2003) as follows 

( ) ( )
( ) ( )

1 0 1 2 0 12
1

2 1 1 2 1 1 1 1 1

21
4 w w w

I q r K q rTQs
T p r T q K q r I q r

φ φ
π φ φ

⎡ ⎤−−
= ⎢ ⎥

+⎢ ⎥⎣ ⎦
       (34) 

( ) ( )
( ) ( )

( )
( )

1 0 1 1 2 0 1 1 0 22
2

2 1 1 0 2 12 1 1 1 1 1

21
4 w w w

I q r K q r K q rTQs
T p r T q K q rK q r I q r

φ φ
π φ φ

⎡ ⎤⎡ ⎤−− ⎣ ⎦= ⎢ ⎥
⎡ ⎤+⎢ ⎥⎣ ⎦⎣ ⎦

        (35) 

2.7 Dimensionless Drawdown Solution for the Constant-flux Test 

The dimensionless drawdown is defined as 2(4 )Ds s T Qπ= .  Equations (32) and 

(33) can then be respectively written as 

( ) ( )
( ) ( )

2 0 1 0
1D

2 1 1 1

1 2 D D

D D

K p I p
s

p p K p I p

ρ κ ρ κα
κ κ κ

⎡ ⎤Φ + Φ
⎢ ⎥=
⎢ ⎥Φ − Φ⎣ ⎦

     (36) 

and 

( ) ( )
( ) ( )

2 0 1 1 0 1
2D

2 1 1 1

21 D DD

D D

K p I p
s

p p K p I p

ρ κ ρ καϖ
κ κ κ

⎡ ⎤Φ + Φ
⎢ ⎥=
⎢ ⎥Φ − Φ⎣ ⎦

     (37) 

with 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
0 0 0 0

0 0 1 0 1 0

R R
D

R R

K p I p K p I p

I p K p I p K p

ρ ρ ρ ρ
ϖ

ρ ρ ρ ρ

−
=

−
                          (38)  

These two solutions can also be inverted to time domain numerically by the 

modified Crump algorithm (de Hoog et al. 1982). The dimensionless Laplace-domain 

drawdown solutions for the aquifer with an infinite domain provided by Yeh et al. 

(2003) can be expressed as 

( ) ( )
( ) ( )

2 0 1 0
1D

2 1 1 1

1 2 D D

D D

K p I p
s

p p K p I p

φ ρ κ φ ρ κα
κ φ κ φ κ

⎡ ⎤−
⎢ ⎥=
⎢ ⎥+⎣ ⎦

      (39) 

( ) ( ) ( )
( ) ( ) ( )

2 0 1 1 0 1 0
2D

2 1 1 1 0 1

1 2 D D

D D

K p I p K p
s

p p K p I p K p

φ ρ κ φ ρ κ ρα
κ φ κ φ κ ρ

⎡ ⎤⎡ ⎤−⎣ ⎦⎢ ⎥= ⎢ ⎥⎡ ⎤+⎢ ⎥⎣ ⎦⎣ ⎦

    (40) 

2.8 The Large-time Drawdown Solution for the Constant-flux Test 

2.8.1 In Finite Confined Aquifers 

The drawdown solution at late time can be obtained by applying the SPLT 

technique to Equations (32) and (33).  Based on the L’Hospital rule, the 

Laplace-domain solutions for drawdowns in skin zone and the formation zone when p 

is small can be obtained respectively as 

1 1
1

1 2 1

( , ) ln ln
2

Q r T Rs r p
T p r T rπ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
          (41) 

2
2

( , ) ln
2

Q Rs r p
T p rπ

=             (42) 

The large-time drawdown solutions are then obtained by taking the inverse 

Laplace transform to Equations (41) and (42) as 
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1 1
1

1 2 1

( , ) ln ln
2

Q r T Rs r t
T r T rπ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
          (43) 

2
2

( , ) ln
2

Q Rs r t
T rπ

=              (44) 

Equations (43) and (44) are independent of time and equal to the steady-state 

solution, which can also be obtained by applying the method of Tauberian theory 

(Sneddon 1972) to Equations (32) and (33).  Wang and Yeh (2008) also showed that 

the drawdowns can reach steady state if aquifers have finite domain.  In addition, 

Equations (43) and (44) can reduce to the Thiem equation if the skin zone is absent. 

2.8.2 In Infinite Confined Aquifers 

Equations (43) and (44) are the large-time solutions of Equations (32) and (33), 

respectively, for finite-domain confined aquifers.  By applying the SPLT relationship 

to Equations (34) and (35), the Laplace-domain drawdown solutions for small p in 

skin zone and formation zone can be obtained respectively as 

1 1
1

1 2 2 1

1( , ) ln ln
2

Q r Ts r p
T p r T q rπ

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
         (45) 

2
2 2

1( , ) ln
2

Qs r p
T p q rπ

=             (46) 

Finally, the large-time drawdown solutions in time domain can be obtained after 

employing the inverse Laplace transform as 

1 1 2
1 2

1 2 2 1

( , ) 2ln ln
4 S

Q r T CTs r t t
T r T rπ

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
         (47) 
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2
2 2

2 2

( , ) ln
4 S

Q CTs r t t
T rπ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
           (48) 

where ( )expC γ=  and γ = 0.5772… is Euler’s constant.  Note Equation (47) and 

Equation (48) can reduce to cooper and Jacob equation (1946) if neglecting the effect 

of skin zone.  In addition, this large-time drawdown solution for an aquifer with 

infinite extended boundary is equal to the heat flow solution at late time presented by 

Carslaw and Jaeger (1959, p.339) if the limiting form of the Bessel function is 

0 ( ) ~ [ln( / 2) ]K x x γ− +  instead of 0 ( ) ~ ln( )K x x− . 

Equations (45) and (46) are function of time.  Equations (47) and (48) approach 

infinite when t reaches infinity due to the term ln t  approaches infinity.  This 

phenomenon indicates that the drawdown solution of the infinite extended boundary 

increases with time because the infinitely extended boundary can not provide enough 

groundwater to maintain the constant pumping rate at wellbore.  In addition, 

Equations (47) and (48) decrease with increasing r indicating that the condition of 

zero drawdown at the outer boundary condition can be held.  Table 2 provides a list 

of comparison between the large-time drawdown and steady state solutions in finitely 

and infinitely extended confined aquifers. 
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CHAPTER 3 RESULTS AND DISCUSSION 

3.1 Comparison of Infinite-Domain Solution to Finite-Domain Solution for 

Constant-head Test 

3.1.1 Effects of skin zone and Finite Domain  

Figure 3 illustrates that the curve of the wellbore flow-rate as a function of time at ρ = 

1 for ρ1 = 3 and α = 0.1, 1, and 10.  For α = 0.1 and 1, the finite-domain flow-rate 

matches with the infinite-domain flow-rate in small time (i.e., 10 < τ < 100).  These 

results indicate that the infinite-domain flow-rate solution can approximate the 

finite-domain flow-rate solution if the test time is less than the time criterion.  In 

other words, the boundary distance R has no effect on the wellbore flow-rate as the 

test time is shorter than the time criterion.  However, these two solutions deviate for 

one another in the period of moderate time (100 < τ < 1000).  The finite-domain 

flow-rate solution approaches its asymptotic limit, i.e., the steady state solution, when 

the test time is large while the infinite-domain flow-rate solution continuously 

declines with dimensionless time. 

 The dimensionless flow rate with a positive skin is smaller than that with a 

negative skin (Yang and Yeh, 2002) at a specific time.  This result indicates that the 

effect of finite boundary on the flow-rate may be negligible for a high value of α  (say, 

e.g., 10).   
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3.1.2 Time Criterion for Using the Infinite-Domain Solution  

Figure 3 shows that the time criterion increases with Rρ  (= / wR r ).  At ρ1 = 3 and 

α  = 0.1, the values of time criterion cτ  are 26, 67, and 204 for ρR   =  20,  30,  and 

50, respectively, as shown in Figure 3.  When ρ1 = 3 and α  = 1, cτ  is equal to 32, 

77, and 231 for ρR  =  20,  30,  and 50, respectively.  In addition, cτ  increases to 45, 

101, and 234 for ρR  =  20,  30,  and 50, respectively, at ρ1 = 3 and α  = 10.  Those 

data represent that cτ  increases with α   if ρR is fixed and cτ  increases with ρR if 

α   is fixed.   

3.2Comparision of the Infinite-Domain Solution to the Finite-Domain Solution 

for Constant-flux Test 

3.2.1 Effects of Skin Type, Skin Thickness, and Finite-Domain 

Figure 4 shows the curves of dimensionless drawdown at wellbore for aquifers with 

finite-domain and infinite-domain with ρ1 = 3 and α  = 0.1, 1, 5, and 10.  The 

drawdown curves for both aquifers match exactly at early pumping time (1 < τ < 10).  

However, the curves gradually deviate from one another in the middle time period (10 

< τ < 100) due to boundary effect.  It indicates that the infinite-domain drawdown 

solution can approximate the finite-domain solution when the time is less than the 

time criterion.  Finially, the finite-domain drawdown solution tends to an asymptotic 

limit, the steady state solution, while the infinite-domain drawdown continuously 
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increases with dimensionless time.  These results reflect that the pumped water 

comes from the remote constant-head boundary for the finite-domain aquifer and is 

from the aquifer storage for the infinite-domain aquifer.  Figure 4 also shows the 

effect of skin type on the drawdown distribution.  The drawdown increases 

with  α  indicating a larger  α  has a larger drawdown value. 

Figure 5 demonstrates the curves of dimensionless drawdown at wellbore for 

aquifers with finite-domain and infinite-domain with ρ1 = 10 and α  = 0.1, 1, 5, and 10.  

This figure has a similar pattern of temporal drawdown distribution to Figure 4 except 

that the time criterion relating to the boundary effect is delayed.  Yeh et al. (2003) 

also mentioned that the thickness of the wellbore ρ1 may influence the magnitude of 

the dimensionless drawdown.   

Figures 6 and 7 show the dimensionless drawdown curves for ρ1 = 3 and 10, 

respectively, with ρ = 10,  α = 0.1, 1, 5, and 10.  There two figures indicate that the 

effect of skin type on the drawdown in the formation zone contrasts to that in the skin.  

The drawdown of the formation zone is less sensitive for a positive skin aquifer. 

3.2.2 Time Criterion for Various Values of Skin Type, Skin Thickness and Radial 

Distance 

The time criterion increases with the dimensionless boundary distance Rρ  as 

illustrated in Figures 4 - 7.  Figure 8 shows the time criterion versus ρR for varying  
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α ,  ρ1, and ρ.  This figure indicates that the time criterion cτ  increases with α  

(skin type) and ρ1 (skin thickness) but decreases with ρ  (dimensionless radial 

distance from the center of the test well)  if ρR is fixed.  Additionally, cτ  also 

increases with ρR if α   is fixed.     
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CHAPTER 4 CONCLUSIONS 
 

The wellbore flow-rate solution of the constant-head test and the drawdown 

solution of the constant-flux test are generally employed to analyze measuring data 

for estimating the aquifer properties.  This thesis develops mathematical models to 

describe the hydraulic head distribution for the constant-head test and the drawdown 

distribution for constant-flux test at a finite-domain confined aquifer.  The hydraulic 

head solutions and the drawdown solutions in Laplace domain for skin zone and 

formation zone are derived using the Laplace transforms for both tests. In addition, 

the solution of wellbore flow rate for the constant-head test is derived based on the 

hydraulic head solution and Darcy’ law.  The time-domain results of wellbore flow 

rate for the constant-head test and the drawdown for the constant-flux test are 

evaluated by the modified Crump algorithm.  The results show that the 

dimensionless wellbore flow-rate solution and drawdown solution for a finite-domain 

aquifer are significantly different from the one of an infinite-domain aquifer at late 

pumping times.  

For the constant-head test, the infinite-domain solution will underestimate the flow 

rate at the wellbore in a finite-domain aquifer when time is fairly large.  The effect of 

finite boundary on the flow rate appears to be considerable less for a positive skin.  

On the other hand, the infinite-domain solution for the constant-flux test may 
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overestimate the drawdown for a finite-domain aquifer at large time.  The analysis 

for the effect of skin type on the drawdown shows that the drawdown is significant in 

the skin zone and insignificant in the formation zone for a positive skin.  

For both the constant head test and constant-flux test, the infinite-domain solution 

can be used to determine the drawdown distribution, wellbore flow rate, or aquifer 

parameters if coupled with an optimization algorithm when the time is less than the 

boundary-effect time criterion.  The infinite-domain solutions are generally in 

simpler forms and much easier to evaluate than the finite-domain solutions.  

Therefore, time criteria provide a good reference for adopting the infinite-domain 

solution to calculate the drawdown or wellbore flow rate of finite-domain aquifers.   

This thesis also derives large-time solutions for the constant head test and 

constant-flux test based on the relationship of small Laplace-domain variable p versus 

large time-domain variable t.  It is found that the large-time solutions in 

finite-domain aquifers are equal to the steady-state solutions obtained from the 

Tauberian theorem.  In addition, the large-time solutions can reduce to Thiem 

equation if neglecting the skin zone for finite-domain aquifers and approach infinity 

as the time goes infinitely large for infinite-domain aquifers.  
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APPENDIXES 

Appendix A: Derivation of Equations (8) and (9) 

Appendix B: Derivation of Equations (32) and (33) 
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Appendix A: Derivation of Equations (8) and (9) 

The solutions for the hydraulic head distribution in the skin zone and formation 

zone are derived by taking the Laplace Transform to the governing equation of 

Equations (1) and (2), initial condition (Equations (3) ), and boundary conditions 

(Equations (4), (5), (6), and (7) (Carslaw and Jaeger, 1959, p332)  The results are  

1 1 0 1 2 0 1( ) ( )h C I q r C K q r= +                                             (A1) 

2 1 0 2 2 0 2( ) ( )h D I q r D K q r= +                                            (A2)  

The constant coefficients in Eqs. (A1) and (A2) can be solved with the boundary 

conditions of Equations (4) and (5) and continuity requirements of Equations (6) and 

(7) as 

1
1

1 0 1 2 0 1( ) ( )
w

w w

hC
p I q r K q r

⎡ ⎤Φ
= ⎢ ⎥Φ − Φ⎣ ⎦

                                     (A3) 

2
2

1 0 1 2 0 1( ) ( )
w

w w

hC
p I q r K q r

⎡ ⎤−Φ
= ⎢ ⎥Φ − Φ⎣ ⎦

                                   (A4) 

0 2
1

0 2

( )
( )

wh K q RD
p I q R

ζ
χ

=                                                  (A5) 

2
whD

p
ζ
χ

−
=                                                       (A6) 

with 

1 0 1 1 2 0 1 1

1 0 1 2 0 1

( ) ( )
( ) ( )w w

I q r K q r
I q r K q r

ζ −Φ + Φ
=

Φ − Φ
                                        (A7)  

( ) ( ) ( ) ( )
( )

0 2 0 2 1 0 2 1 0 2

0 2

I q R K q r I q r K q R
I q R

χ
−

=                               (A8) 

Consequently, the hydraulic head solutions in the skin zone and formation zone can be 
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obtained by substituting the constants of Equations (A3) - (A6) into Equations (A1) 

and (A2) as Equations (8) and (9), respectively. 
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Appendix B Derivation of Equations (32) and (33) 

The solutions for the hydraulic head distribution in the skin zone and formation 

zone are derived by taking the Laplace Transform to the governing equation of 

Equations (1) and (2), initial condition (Equation (3)), and boundary conditions 

Equations (5), (6), (7) and (29) (Carslaw and Jaeger, 1959, p332).  The results can be 

expressed as  

' '
1 1 0 1 2 0 1( ) ( )h C I q r C K q r= +                                             (B1) 

' '
2 1 0 2 2 0 2( ) ( )h D I q r D K q r= +                                            (B2)  

Accordingly, the drawdown solution can be written as 

1 1 0 1 2 0 1( ) ( )s C I q r C K q r= +                                             (B3) 

2 1 0 2 2 0 2( ) ( )s D I q r D K q r= +                                            (B4) 

The constant coefficients in Equations (B3) and (B4) can be solved with the boundary 

conditions of Equations (5) and (29) and continuity requirements, i.e., Equations (6) 

and (7). as 

1
1

1 1 1 1 1 2 1 12 ( ) ( )w w w

QC
r T pq I q r K q rπ

⎡ ⎤Φ−
= ⎢ ⎥Φ + Φ⎣ ⎦

                               (B5) 

2
2

1 1 1 1 1 2 1 12 ( ) ( )w w w

QC
r T pq I q r K q rπ

⎡ ⎤Φ
= ⎢ ⎥Φ + Φ⎣ ⎦

                             (B6) 

0 2
1

1 1 0 2

( )
2 ( )w

K q RQD
r T pq I q R

ζ
π χ

=                                            (B7) 

2
1 12 w

QD
r T pq

ζ
π χ

−
=                                                  (B8) 
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 The drawdown solution in the skin zone and the formation zone can therefore be 

obtained by substituting Equations (B5) - (B8) into Equations (B3) and (B4) as 

Equations (32) and (33). 
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Table 1  List of Equations (26), (28), and two existing solutions for constant-head 

test 

Solutions 
  Outer boundary 

Large-time solution Steady-state solution 

R is finite Thiem equation Thiem equation skin 

zone is 

absent  R → ∞  ( ) ( )

( )

( )

2 2
2 3

2 3 4

2 31 6 2( , ) 4
ln ln ln ln

w wQ r t Th

π πγ γ γ ξγπ
η η η η

⎡ ⎤
− − +⎢ ⎥

= − + −⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

where 2/( )wTt r Sη =  [Yeh and Wang (2007), Equation (6)] 

R is finite Equation (26) Equation (26) skin 

zone is 

present 
R → ∞  Equation (28) 
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Table 2 List of the large-time and steady-state drawdown solutions for the 

constant-flux test 

Solutions 
Outer boundary 

Large-time Steady-state 

R is finite Equations (43) and (44) Equations (43) and (44) 

R is infinite Equations (47) and (48) No solution 
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Figure 1    Schematic diagram for a constant-head test at a finite diameter well in a 

finite-domain confined aquifer.  
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Figure 2  Schematic diagram of the pumping test in a finite-domain confined aquifer. 
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Figure 3  Dimensionless flow rate versus dimensionless pumping time for ρ1 =3 at ρ  

= 1 and α =  0.1, 1 and 10.   The solid line presents the flow-rate solution of 

infinite-domain aquifers and the dash line present the flow-rate solution of 

finite-domain aquifers. 
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Figure 4 Comparison of the drawdown of a finite-domain aquifer to the drawdown of 

an infinite-domain aquifer for ρ1 = 3 at ρ = 1 and α = 0.1, 1, 5, and 10.  The solid 

line presents the infinite-domain drawdown solution and the dash line represent the 

finite-domain drawdown solution. 
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Figure 5 Comparison of the drawdown of a finite-domain aquifer to the drawdown of 

an infinite-domain aquifer for ρ1 = 10 at ρ  = 1 and α = 0.1, 1, 5, and 10.  The solid 

line presents the infinite-domain drawdown solution and the dash line present the 

finite-domain drawdown solution. 
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Figure 6 Comparison of the drawdown of a finite-domain aquifer to the drawdown of 

an infinite-domain aquifer for ρ1 = 3 at ρ  = 10  and α =0.1, 1, 5, and 10.  The solid 

line presents the infinite-domain drawdown solution and the dash line present the 

finite-domain drawdown solution. 
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Figure 7 Comparison of the drawdown of a finite-domain aquifer to the drawdown of 

an infinite-domain aquifer for ρ1 = 10 at ρ  = 10 and α = 0.1, 1, 5, and 10.  The solid 

line presents the infinite-domain drawdown solution and the dash line present the 

finite-domain drawdown solution. 
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Figure 8 Time criterion τc versus dimensionless boundary distance ρR for various 

values of ρ, ρ1, and α. 

 


