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摘  要 

 

 本文先介紹一種特定群試設計方法，討論此設計方法所具有的性

質，並提出三個程式，來論證此種設計方法可應用的情況。程式內容包括

論證此設計方法的存在性、原根(primitive root)的列表、以及找尋此設計方

法存在的最佳情況。 
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Abstract 
 

This thesis introduces a certain pooling design first, including the properties 

it has. Then proposes three programs to identify the existence of this pooling 

design, list the primitive roots, and optimize the conditions of this pooling 

design. 
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1. Introduction 
 

A binary matrix M is called d-disjunct if any column of M is not covered by the boolean 
sum of d other columns. We construct t n  d-disjunct matrices for  

, where d is a prime power, 

( , ) (( 1) ,t n d m 
( 1) 1d m  ) 2 4m d  , 2m d 3  , or  [1]. The 

details of this construction are introduced in the chapter 2. 

2 1m d 

 We proposed an algorithm in each chapter 3 to 5. They have different functions, but the 

main purpose is the same: to find the existence of the certain pooling designs based on our 

construction introduced in chapter 2. We also applied some theorems of the Number Theory 

[2] to certify the correctness of the algorithm. Especially, in chapter 5 we have some new 

conclusions beyond the thesis [1]. It might be the future work of this research. 

 

 

2. Our construction 
 

This construction is operated in the sense of finite geometry. Let P be a set of m n  

elements. In this chapter we call an element point, and a n-subset of P a line. Our object is to 
find a class  of lines in P such that  | | | | 1P   , and any two lines in  have at most one 

point in common. 



 Let q be a prime power and  be an integer. Let  denote 

the finite field of q elements. Let 

m q

:m

0 1 2: {0, , , , }q
qF a a a  

{0,1, , 1}m    

 the elements of 

be the addition group of integers 

modulo m. Our construction starts from m qF  as points. Then we try to 

properly pick subsets such that any two lines intersect at at most one point. The followings are 

efinition 2.1. (Forward Difference Distinct Property) 

erence distinct property if the set 

consists of 

the foundations of our construction. 

 

D

 For T F  , T is said to have the forward diffm q

: {( , ) ( , ) | ( , ), ( , )  with }TFD j y i x i x j y T i j     

| | (| | 1)

2

T T 
 elements. 

Lemma 2.2. 

Let  . Then  has the forward difference distinct 

 

 : {( , ) | ,0 1}i
mT i a i i q   

 m qF . 

 ,m q ,m qT

property in

 1



 

(pf) 

Given pair , solve the equation , for . ( , ) m qc d F 

, then 0i

( , ) ( , ) ( , )j ic d j a i a  0 1i j q   

If 1c q    and 1j q  . If c q 1  , then / (i ca d a 1)   and j c i  . In 

each case the ( , )ii a  and ( , )jj a  are uniquely determined. It follows that ,m qT  consists of 

, ,| | (|m q m qT T | 1)

2


 elements. □ 

 We can view as a line in the plane ,m qT  m qF  as Figure 1 shows. 

 

Figure 1:  in ,m qT m qF  

 

Definition 2.3. (Difference Distin y) 

 For , T is said to have the difference distinct property if the set 

j

 

 

Lemma 2.4. 

 . If , then  has the difference 

istinct p

By Lemma 2.2, we have 

ct Propert

m qT F 

: {( , ) ( , ) | ( ,TD j y i x i  ), ( , )  with }x j y T i   

consists of 1)  elements. | | (| |T T 

 Let m q mT i, : {( , ) | ,0 1}ia i i q   

roperty in m qF . 

2 1m q  ,m qT

d

(pf) 

, ,

( 1)
| | | |

2m q m qT T

q q
FD FD


   . The first coordinate of an element in 

 runs from  to , and the first coordinate of an element in  runs from 
,m qTFD  1 1q 

,m qTFD

 2



 

1m q  to . The assumption  implies that  1m  2 1m q 
, ,

( )
m q m qT TFD FD   . 

m qF

□ 

 has the  in 

 

Lemm

 The 

a 2.5. 

set ,m qT difference distinct property   for 2 3m q   and 

2 4m q 

) 

. 

(pf

By Lemma 2.2, we have 
, ,

| |T TFD
( 1)

| |
q q

FD


2m q m q
  . Given 

,
( , )

m qTc d FD : 

(i) If 2m q  1 1c q    and 2 2 4q c q3 , then     

,
( 1,0)

m qTq F

. The repletion of differences can 

Donly occur at 1 c q  or 2c q   and ( 2,0) Tq F . Since 
,m q

, D

,
( 2,0)

m qTq FD   and (q F
,m qTD . 

3

1,0) 

(ii) If , then  and 2m  4q  1 1c q   2 5q c q     . The repletion of differences 

can only occur 1c q at   2or c q 3c q
,

0)
m qTFD( 1,q    or   . Since   and 

D
,q

, (q  ( 3,0 )q F
mT D

,
3,0) Tm q

FD  and 
,

( 1,0)
m qTq F . Now focus on case   2c q  . 

The on ents of 
,m qTFD  with the 2fily two elem rst coordinate q   is 2( 2, 2)qq a    and 

1 ( 2, qq a  )a , where a  is a generator for *
qF . If 22 1q qa a a   , then 1a  

, and ' { |

, which 

is a cont

Lemma 2.6. 

 Supp

radi □ 

os h operty

ction. 

e th

 

at ,m qT  as the difference dis ct pr , }m q m qtin B u T Fu    . 

Then 1 2| | 1L L  , for 



1 2, 'L L B  1 2, L L . 

2L

(pf) 

Suppose not. Then 1 2 1, ',L L B L  

 and 1 2 1

 such that 

2 1 2, ,

1 2| |L L  2 . Suppose 1 1( ,L u 1) m qv T  , , 

2 2( ,L u 2 ,m qT)v  p p L  L p p  . Let 1 1( , 1 1 1 2 2) ( , ) ( , ) 2( , 2 )p u v c d u v c d    , 

2 1, 1 3) ( , 3 2 2( , ) ( ,( )p u v c d 4 4 )u v c d . Then 1 1 2) ( ,u v u v2 1 1 2 2) ( , ) ( , )c d c d 3 3( , )c d( ,        

4(c 4, )d 1 1 3( , ) ( ,c d c 3 )d, and it is true only when   and ( ,2 2 4 4) ( , )c d c d . Hence 1 2p p , 

which is a contradiction.  □ 

 3



 

 Note that the  lines and mq points re are mq in m qF

s the fra

, and a line has  points 

with q different first coordinates. This i me of our work. Now, add more points and 

lines in 

,| |m qq T

'B . Since 
, ,

(0, )
m q m qT Tx FD FD  , ((0, )L x )L    for any nonzero qx F  

and . We )'L B  add a common point ( ,i q ) {(m qF }      to each line L u ,m q  T 

to forms a new set ''B  where mi  is the first coord te of u . Note that the points set ofina  

''B  becomes ( { })F  m q . To show that any two lines in ''B  also interse

 the following Lemma 2  first. 

 

 Suppose  has the difference distinct property in . Let 

, , be two distinct lines in 

ct at at most 

one point, we prove .7

Lemma 2.7. 

that ,m q m qT F 

, 2 2( , )L c d 

m qF

1 1( , ) m qL c d T  m qT  'B . Then 1 2L L  . 

(pf) 

2Suppose 1 2( , )e f L L  , then 1 1 1( , ) ( , ) ( ,e 2 2) ( , ) ( , )  for some f c d x y c d x y   

1 1 2 2( , ), ( , )x y x y  ,m qT . Thus has distinct first 1 2e c x x   . Since each element in T ,m q  

coordinate, we can conclude that 1 2( , ) ( , )c d c d  and hence 1 2L L . It is a contradiction.  □ 

 

Lemma 2.8. 

 Any two distinct lines in ''B  intersect at at most one point. 

(pf) 
''B  ( , )c It is easy to see that contains exactly one point of the form . Let 1 2,L L

distinct lines

 be two 

 in ''B  containing 1( , )c  , 2( , )c  , respectively. If 1 2c c 1 1\ ( ,L c ), 

tinct lin

 and 

2 2\ ( , )L c   are two dis es in ''B  and have at most one point in common by Lemma 

2.6. If 1 2c c , the set of the first coordinates of 1 1\ ( , )L c   and , )L c  be the 

same. Thus 1 1 1\ ( , ) ( , )L c e f T

2 2\ (   must

,m q   2 2, ) ( , )c e f and 2 \ (L ,m qT    for some me , 

1 2 qf f F . By Lemma 2.7, 1 1\ ( , )L c 2 2\ (L c , )    , so  1 2  ,L L only intersect at c1( , ) ., □ 

 Let {( , ) | {V i j j F    for 0 1i m   , and V  is called the i-th vertical line. 

e add thes

}}i q i

Let {( , ) | 0  is called the infinite line. W e to }H i i q    , and H ''B  and 

complete our construction. 

 4



 

 

0 1 1}m

Lemma 2.9. 
 Set : '' { , , , ,B B H V V V    with underground point set m as the set of lines   

( {qF  }) . Then any two lines in B  intersect at at most one point. 

(pf) 

t i jV V  i j , ( , )iV H i  for and It is easily seen tha .It re

1 any 

mains to show that 

 and | | 1L H | |iL V   for ''L B , 1 1i m  

ns only one point of the type 

. Since each point in L  has 

distinct first coordinate and contai ( , )c  , the result follows. □  

 

 Note that | ( { }) | ( 1)m qF m q      and | | ( 1) 1B m q   , which is our final result. 

 

Theorem 2.10. 

 has the difference distinct property. Let M be the incidence 

matrix of 

 Suppose that ,m q m qT F 

{ })    and (m qF B . Then M is a nontrivial q-disjunct matrix with ( 1)m q   

rows and constant column weight (q  . 1)

(pf) 

Applying Lemma 2.4 and Lemma 2.5 to Theorem ry 3.11 also follows.  

 2.11. 

 Let M be the incidence matrix of ( { })m qF

 2.10. Corolla □ 

 

Corollary

    and B  where 2 4m q , 2 3q   , 

or . Then M is a nontrivial trix with  2 1m q  q-disjunct ma (m q 1)  rows and constant 

( 1)q column weight . 

 

xample 2.12. (A construction of E 36 37  5-disjunct matrix) 

, and  Take 5q  , 6 2 4m q   2a   

3), (4,1

is a generator of . Then 

. We write 

5

{

6,5 {( , ) |iT i a  

24,33,41}6 ,0 4), (3, )}  4}i i  {(0,1), (1,2), (2, 6,5 01,12,T   for 

simplifying the notation. 

et , where is the first coordinate of . Then 

 

(1) L 6,5( ) ( ) ( 5, )L u u T i    i  u

 5



 

L(00) {01,12,24,33,41,5 }  , (01) {02,13,20,34,42,5 }L  
 , … , (54) {50,01,13,22,30, 4L

, (10) {11,22,34,43,51,0 }L   , 

}(11) {12,23,35L  , 44,52,0 }   . There are 30 lines. 

 

(2) Let q  for 0 5i{( , ) | { }}iV i j j F      . iV  is called rtical line. 

0 {00,01,02,04V  

 the i-th ve

, , ,03,0 } 1 {10,11,12,14,13,1 }V   2 {20,21, 22,24,23,2 }V   , 

, 5 {50,51,52,54,53,5 }V3 {30,31,32,34,33,3 }  , V 4 {40,41, 42,44,43,4V  }   . 

, an  is called . 

. There is 1 line. 

 

d (3) are the 37 lines based on out construction.  □ 

3. Testing program of our construction 
 

An important work after the construction of a type of pooling at 

roperties it has. Here we provides a way to verify the existence of difference distinct 

. The existence of this pr  can ma can be 

applied into the pooling design. 

 

Algorithm 3.1. 

Step 1: Input (q,a,m), where q is a prime power, a is a generator of q, and m>q is an integer. 

Step 2: Construct the matrix of order 

There are 6 lines. 

 
(3) Let {( d H the infinite line

 The above (1), (2), an

, ) | 0 }H i i q   
{0 ,1 ,2 ,3 ,4 ,5 }H       

 

 

 design is to know wh

p

property operty ke sure the construction in chapter 2 

,m qT  2q  by 

1q, (( ) ( , ) , 1, 2, ,i
m q iT i a F i 1) th row m q      . 

Step 3: Construct another “ch  size ( 1) 4q q  ecking matrix” of . The 4 components of each 

row is minuend term, subtrahend term, and the results. 

ix. 

xample 3.2. 

atrix: 

 

Step 4: Check the repetition of each row after the construction of the checking matr

 

E

Input ( , , ) (7,3,12)q a m  , then construct ,m qT  m

Tmq = 

0  1 - term 1 

 6



 

1  3 - term 2 

2  2 - term 3 

3  6 - term 4 

5 - m 6 

6  1 - term 7 

 

hecking m

4  4 - term 5 

5  ter

The ,m qT  matrix is a 7 2  matrix. Now construct the “c atrix” of size 42 4 , in 

 each row stores the minuend term, subtrahend term, anwhic d the results in 

g 

sults: 

 

1 7 6 0 

7 1 6 0 

It means the result of term 1 minus als to the result of term 7 

minus term 1. Additionally, since th

cannot have the difference distinct p uction. In f
proved that will not ha rty

 

 

4. Generators of each prime 

In th  prop prime less 

than 100, and then show the results as a table of generator database. Also showing is the 

emmas

proposed to help the program be faster as finding the generators of large prime. 

m 4.1. (See if a is a generator of prime p or not.) 

put prime p and generator a 

=1, count=1; 

while count≤p-2 

temp=temp×a (mod p); 

   if temp=1 

a+1

h 5 7F . Then, 

check the repetition of the checking matrix. In this example, it will run out the followin

re

 

ans =

 
term 7 is (6,0) , which equ

ere are some results run out, this case ( , , ) (7,3,12)q a m   

act, it is easy to 
 based on our construction. 

roperty based on our constr
2 2m q   ve difference distinct prope

less than 100 
 

is chapter we ose an algorithm for finding the all generators of each 

relation between the Euler's phi function and the number of generators. Two l  are 

 

Algorith

In

Set temp

 

      break the while loop and try next a= ; 

    end 

 7



 

    if count=p-2 

      pri  next a=a+1; nt a and try

   end 

   count=count+1; 

Tabl
)

 

 

end 

 

e 4.2. (The generators of each prime less than 100.) 

Prime p Generators a ( p 1

3 2 1 

5 2,3 2 

7 3,5 2 

11 2,6,7,8 4 

13 2,6,7,11 4 

17 3,5,6,7,10,11,12,14 8 

19 2,3,10,13,14,15 6 

23 5,7,10,11,14,15,17,19,20,21 10 

29 2,3,8,10,11,14,15,18,19,21,26,27 12 

31 3,11,12,13,17,21,22,24 8 

37 2,5,13,15,17,18,19,20,22,24,32,35 12 

41 6,7,11,12,13,15,17,19,22,24,26,28,29,30,34,35 16 

43 3,5,12,18,19,20,26,28,29,30,33,34 12 

47 5,10,11,13,15,19,20,22,23,26,29,30,31,33,35,38,39,40, 

41,43,44,45 

22 

53 2,3,5,8,12,14,18,19,20,21,22,26,27,31,32,33,34,35,39, 24 

41,45,48,50,51 

59 2,6,8,10,11,13,14,18,23,24,30,31,32,33,34,37,38,39,40, 28 

42,43,44,47,50,52,54,55,56 

61 2,6,7,10,17,18,26,30,31,35,43,44,51,54,55,59 16 

67 2,7,11,12,13,18,20,28,31,32,34,41,44,46,48,50,51,57,61,63 20 

71 7,11,13,21,22,28,31,33,35,42,44,47, 

52,53,55,56,59,61,62,63,65,67,68,69 

24 

73 5,11,13,14,15,20,26,28,29,31,33,34,39,40,42,44,45,47, 

53,58,59,60,62,68 

24 

79 3,6,7,28,29,30,34,35,37,39,43,47,48, 

53,54,59,60,63,66,68,70,74,75,77 

24 

83 2,5,6,8,13,14,15,18,19,20,22,24,32,34,35,39,42,43,45,46,47,50, 

,62,66,67,71,72,73,74,76,79,80 52,53,54,55,56,57,58,60

40 

89 3,6,7,13,14,15,19,23,24,26,27,28,29,30,31,33,35,38,41,43,46,48, 40 
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51,54,56,58,59,60,61,62,63,65,66,70,74,75,76,82,83,86 

97 5,7,10,13,14,15,17,21,23,26,29,37,38,39,40,41, 

56,57,58,59,60,68,71,74,76,80,82,83,84,87,90,92 

32 

In fac  of generators is equal to )( 1p  , where t, the number  is the Euler’s phi 

function. 

 

De tion

 The n  and some positive integer m that are relatively prime 

to  an ame: 

fini  4.3. (Euler’s Phi Function) 

umber of integers between 0

m is important quantity, so we give this quantity a n
( ) |{ |1 , ( , ) 1}|m a a m gcd a m     . 

 

Theorem 
(a)  is 

4.4. (Euler’s Phi Function Formulas) 
 If p a prime and 1k  , then 1( )k k kp p p   . 

(b) If )gcd( , ) 1m n  , then ( ) ( ) (mn m n  . 

(pf

The verifi a) is easy, so we need to check the formula (b). 

He e d : COUNT ! 
Briefly, w

) 

cation of the prime power formula (

re, w id this by using one of the most powerful tools in number theory ING
e are going to find a set contains ( )mn  elements, and find another set contains 

( ) ( )nm   elements. Then, show that the two sets contains the same number of elem . 

The first s

ents

et is: { |1 ,  and gcd( , ) 1}A a a mn a mn    . 

Th con  . 

Clearly th

e se d set is: {( , ) |1 ,  and gcd( , ) 1,B b c b m b m     and 1 ,  and gcd( , 1}c n c )n

at A has ( )mn  elements and B has ( ) ( )m n   elements. Then, find a function f 

from A to B in the following way: 
( ) ( , ),  if  (mod  ) and  (mod  )f a b c a b m a c n   . 

ow, check that f is one-to-one and onto: 
 A, such that 

N
(i) Take two numbers 1a  and 2a  from 1 2( ) ( )f a f a . Then (mod 1 2a b a 
m 1 2 (mod  )a c a n . Thus, 1 2a a) and     is divisible by both m and n, in other words, 

1 2  (mod  )a a mn , which means 1a  and 2a  are the same elements in A. 

(ii) Clearly that for any given pairs (b,c) from B, we can always find a integer n ,  

tisfying □ 

Lemma 4.5. (Euler’s Phi Function Summation Formula) 
e div  n. Then n

,  1a a m 
 (mod  ) and  (mod  )a b m a c n  . sa

 

Let 1 2, , , rd d d  be th isors of (1 2( ) ) ( )rd d d      . 

(pf) 
Let 1 2( ) ( ) ( ) ( )rF n d d d      , and from Euler’s Phi Function Multiplication Formula 

we can get that ( ) ( ) ( )F mn F m F n  if gcd( , ) 1m n  . Check the value of ( )F p  for prime 

powers: 2 2 1( ) (1) ( ) ( ) ( ) 1 ( 1) ( ) ( ) .k k k k kF p p p p p p p p p p                 

Now, factor n into a product of prime power 1 2

k

 

s, say 1 2
skk k

sn p p p  , and compute ( )F n : 
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1 2 1 2 1 2s s sk k kk k k k k k
1 2 1 2 1 2( ) ( ) ( ) ( ) ( )s sF n F p p p F p F p F p p p p ns       

Hence we verify that  always equals n. □ 

(1)   

ax

( )F n

 

Definition 4.6. (Primitive Root) 

( ) the smallest exponent 1 so that 1(mod  ),  for  is prime and 1 1.ee a e a p p a p    p

(2) A number g with m imum exponent ( )pe g p 1  primitive ulo p. 

Note tha in Numb ory is so called the generator in this thesis. 

mitive Root The rem) 
( 1)p

 is called a  root mod

t the primitive root er The

 

Theorem 4.7. (Pri o
There are exactly    primitive modulo p. roots 

t by using one of the most powerfu tools in number theory: COUNTING! Define a 

nction: a d

(pf) 

We prove i l 

( ) (the number of '  with 1  and ( ) )pd a s a p e     . In particular, ( 1)p   fu

is the  primitive roots modulo p.  number of
 be any number that dividing Let n 1p  , say, 1p nk  . Then, 

any roots these polynomials have mo

1 1 1p nkX X     1 2( 1)(( ) ( ) 1)n n k n k nX X X X       

and count how m dulo p. 
First, 1 1 0p  X  (mod  )p 1p  has exactly  solutions 1,2, , 1X p 
hand, 1

. On the other 

0 (mod  )nX p   has at most n solutions and )1 2( ) ( )n k n k 1 0 (mod  X X p     
1 0 (mod  )nhas at most ( 1)n k   solutions. Hence the o ly way is n X p   has exactly n 

solutions and ) 1 0 (mod  1 2k( ) (n k n )X X p  solutions.     

1 od  n

 

0 (m

has at ex Now, actly ( 1)n k 

count the number of solutions to )X p   using another way. Let 

1 0 (mod  )

1 2, , , rd d d  

nbe the divisors of n. Then the number of solutions to X p   is equal to 

1 2( ) ( )d d ( )rd     , and we have the formula: 1 2( ) ( )d d ( )rd n      . 

) As  is a prime, (i n q (1) ( ) (1) ( )q q q      . (1) (1) 1   , so ( ) ( )q q  . 

(ii) As 2n q , (1) ( ) (q q2 2 2) (1) ( ) ( )q q q          . So, 2 2( ) ( )q q  . 

By induction method, ( ) ( )k kq q  , as kn q  (iii) is a prime power. 

for two different primes , 1 2(iv) As 1 2n q q  1 2,q q 1 2 1 2(1) ( ) ( ) ( )q q q q q q        

1 2 1 2(1) ( ) ( ) ( )q q q q       . So, 1 2( )1 2( )q q 1 2q q q q   . 

(v) By induction method, assume ( ) ( )d d  , for all numbers d n . We may also assume 

r1 , 2,3, ,in d d i r    . From 2 2( ) ( ) ( ) ( ) ( ) (rn d d n n d d )              , 

we can get the equality ( ) ( )n n  . 

Take 1n p  , ( 1) ( 1)p p    , which is the desired conclusion. □ 
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We also noticed the following two lemmas from the table so that the performance of 

Lemma 4.8. 

program can be enhanced as finding the generators of larger primes. 

 

For prime 1 (mod  4)p  , if g were a generator of p, then -g is also a generator of p. 

Suppose not, i.e., g is a generator of p, but there exists 1)

(pf) 
2 ( 2), | (b p b p    , such that 

( ) 1 (mod  )bg p  . 

(i) if b were even, then ( ) 1 (mod  )b bg g p   , which is clearly a contradiction. 

b were odd:  im(ii) if plies that 4 | ( 1)p  2 | ( 1)b p   and 2 ( 1b p )  , and hence 
2b 2( ) 1 (mb od  )g g p  □ 

 

For prim 3 (mod  4)

 , which is a contradiction. 

Lemma 4.9. 
e p  , if g were a generator of  p. 

Clearly that 

 p, then -g is not a generator of

(pf) 
1

2 ( 1) (mod  )
p

g p


  . Hence 
1

2( ) 1 (mod  
1

2

p 
 is odd and )

p

g p  . □ 

the generators of prime 19. 



Note that g and (-g) may both not be the generators of p. For example, 7 and 12 are both not 

 

 

nimal elements set m qF  5. The mi based on our construction 

rime less than 100, we are interested in the minimal  

that can make  have ifference distinct proper  based on our construction. 

orithm first, and then get the conclus

 correspond can be less than 

 

After finding the generators of each p

 the d tym qF  

size of 

,m qT

ing 

In this chapter we introduce an alg ion that the minimal 

to the m qF  2 4m q  , which is one lower bound 

that we proposed in our paper. 
ecall the lgorithm 3.1 in th e input , 

here q is a prime power, a is a generator of q, and m is the size of the addition g

The 

 
1. (Find the minimal corresponding to the prime q and generator a) 

( , , )q a m

roup m . 

 R  A e previous chapter. In the algorithm w

w

results shows the repetition between the differences of every two terms. 

 

Algorithm 5. m  
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Inpu d generator a 

t m from q+1 to 2q-5 

if there are sults run out 

1; 

output (

break the for loop; 

 
e 5.2 (The minimal corresponding to every generator of each prime less than 100.) 

Genera

t prime q an

for in
do Alorithm 3.1 with the input ( , , )q a m ; 

re

 try the next m+

else (there are no results run out) 
, )m ; ,q a

end 

Tabl m  

tors a Prime q 

Corresponding minimal m qF  based on our construction 

2 3 5 ( , ) (5,6)m q   is the only case for 1m q   

6 6 

3 5 7  

10 10 

2 6 7 8 11 

15 15 16 16 

Note that the minimal is less that 2q-4. m  

2 6 7 11 13 

20 18 20 18 

 

3 5 6 7 10 11 12 1417  

26 27 26 27 28 27 28 27

2 3 10 13 14 1519  

30 31 30 31 30 30

5 7 10 11 14 15 17 19 20 2123 

36 37 37 38 36 38 37 37 38 38

 

2 3 8 10 11 14 15 18 19 21 26 27 29 

45 44 47 44 47 46 45 48 44 48 44 46 

 

3 11 12 13 17 21 22 2431  

52 52 50 50 52 52 48 48

2 5 13 15 17 18 19 20 22 24 32 35 37 

63

 

59 62 63 62 63 59 63 62 63 62 63 

6 7 11 12 13 15 17 19 22 24 26 28 29 30 34 3541 

66 66 68 68 66 68 68 66 74 68 66 74 68 66 73 73

3 5 12 18 19 20 26 28 29 30 33 34 43

72 74 72 72 73 73 74 73 72 74 74 73 
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5 10 11 13 15 19 20 22 23 26 29 30 31 33 35 38

81 79 74 81 79 81 76 79 80 77 81 74 79 79 80 77

39 40 41 43 44 45

47

6 78  79 80

 

 

78 7 80

2 3 5 8 12 14 18 19 20 21 22 26 27 31 32 33

91 88 90 90 92 92 88 92 90 90 87 87 91 92 90 92

34 35 39 41 45 48 50 51

53 

 

92 96 92 87 92 90 96 87

2 6 8 10 11 13 14 18 23 24 30 31 32 33

100 99 104 99 102 101 01 96 100 97 96 98102 101 1

34 37 43 44 55 5638 39 40 42 47 50 52 54 

59 

98 104 102 103 97 97 102 95 98 101 97 98 95 103

2 6 7 10 17 18 26 43 44 51 5430 31 35

103 104 105 104 107 107 107 105 103 105 101 101 104 107

55 59

61 

104 105

 

2 7 1 2 13 3 461 1 18 20 28 31 2 34 41 44

115 5 7 117 110 118 117 117 114 115 110 114 115118 11  11

48 1 7 61 6350 5 5

67 

118 5 8 115 118

 

118 11  11

7 11 13 1 2 2 33 35 42 44 47 52 532  2 8 31

125 5 8 2 1 1 126 126 124 118 119 121 124125 12  11  1 4 26 22

55  1 6 63 65 67 68 6956 59 6  2

71 

122 4 5 2 126 124 124 119 126

 

121 12  12  1 6

5 11 13 4 1 2 31 33 34 39 401  5 0 26 28 29

120 3 6 2 1 1 4 123 123 125 126 129128 12  12  1 6 28 23 122 12

42 5 7 5 5 844 4 4  3 8 59 60 62 6

73 

129 3 6 3 1 1 0 4

 

120 12  12  1 0 25 23 122 13 12

3 6 7 8 2 3 35 37 39 43 47 48 532  9 0 34

144 9 9 3 1 1 143 133 134 141 133 139 144141 13  13  1 3 33 39

54  3 6 6 759 60 6  6 8 70 74 75 7

79 

133 3 8 4 1 1 8 4

 

138 13  13  1 1 41 43 138 13 13

2 5   1 1 0 2 36 8 3 4 15 18 19 2 2  24 2 34

144 0 4 4 1 1 4 7 6 4 1 1138 14  14  1 8 40 41 141 14 14 14  1 4 48 46

35  3 4 4 3 4 55 6 5739 42 4  5 6 47 50 52 5 5 5

144 4 6 4 1 1 4 4 7 147 136 140142 14  13  1 4 43 44 138 14 14 14

83 

58  6 6 7 6 9  60 62 6  7 1 72 73 74 7 7  80 
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 14

 4 2 4 139 141 151 143 13 144 147 151 141 14  14  1 0 9

3 6 7 3 1 15 19 23 24 26 27 28 29 301  4

152 154 4 59 5 1 1 6 6 6 5 1 115 1  1 5 54 56 158 15 15 15  1 6 57 52

31 33 35 8 4 4 4 6 53  1 3 46 48 51 5 5  58 9 60

158 6 4 5 1 1 159 154 151 148 155 157 154156 15  15  1 7 57 54

61 62 63 5 6 7 75 76 82 83 86 6  6 0 74

89 

151 148 154 154 155

 

155 153 156 157 154 153 157 

5 7 10 13 14 15 17 21 23 26 29 37 38 39

168 166 175 172 166 172 169 169 170 166 167 169 170 168

40 41 56 57 58 59 60 68 71 74 76 80 82 83

169 172 166 172 167 170 161 175 172 170 161 172 172 170

84 87 90 92 

97 

170 167 

 

172 167
 We can give the table a brief conclusion that we find the minimal size of  can be 

les an 4 r e  p  a ion y, dis ce between m

of a s s er

You m al ot ha

m
is th 2  

n

q  fo very rime 11p  . In ddit all the tan nimal size 

d 2q  get longer as the prime get  larg . 

ay so n ice t t (m
m  

, (5)q ,6) is the only case for 1m q  . In fact, it is the 

Example 2  i t onstruction in chapter 2. 

 

 

6. Conclusions and future w s 
 

 e ap ed  co uc  t pl ent a cer  po g ign  th e e o 

tried to fin y im p rt f c u . u e r i  
shows that 

.12 which s introduced to fi our c

ork

W pli  our nstr tion o im em tain olin des . In is th sis w  als

d wa s to prove the rope ies o  this onstr ction Thro gh th  prog amm ng, it

m 2 4q   11p  can be less than for every prime , and this result is better 

than the re w o i a 1
 ght be lower if we keep running the program in chapter 5 through 

every gen s w  o e n k f   a

not get the lt proving the a rith and ath atical deduction will be the following 

challenge of this research. 
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