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The Existence of Certain Pooling Designs by Programming

Student: Chia-An Liu Advisor: Chih-Wen Weng

Institute of Mathematical Modeling and Scientific Computing

National Chiao Tung University

Abstract

This thesis introduces a certain pooling design first, including the properties
it has. Then proposes three programs to identify the existence of this pooling
design, list the primitive. roots, and optimize the conditions of this pooling

design.

il



}égg‘;\m:f}:‘l %?iﬁi‘;év%éﬂ;o_ﬁgﬂ;m }fﬂ: %\mg&ﬁ_' sy A A %\3
FART S G MR AEE LS o4 RALL BN B LR Y RS R

d R FIER § oo B P EF TR A T RLR

}i’.ﬁ:]—i pf %3 ’fr‘f "/I"ﬁﬁ%‘f—g\ ° —5% 7\1-\“ 1[’3 ik L 0 4 A g»}; ‘:‘E"%;ﬁnv E"h}é,{fé °},§~\;'

HRER 1 o (P LBR)TT L E b AT A 2 FAEY PR

k)’@ 11-\_/_4_ -J:\Z“ I:T‘JZ‘I *ﬁ#pE‘IJ s 14 1]’37\1,\&.&*;77]2;10 4 }'E\:/;TL-:L%E_ er%?%’-li#vlfg o (ﬁ@ﬁ

BLE)E S O P e N AR S I T GR35
BB RARE RS RN RERE R L A RS

ﬁxf@},&)’&f\ A B E 2K e —;{:\‘-;[;g BB i

BATF o P A 2FY > BN EMT

3R REERY o ARG P RN T R AR o R

A_
2
3
R
L
'3‘
i~

=
H 0 LAE T RAMEAL B 2 FREANCHR BB B0

AT E4 B A o WL e e R A g R B g o

2010 £ 6 7 ¥ RTH S

il



Contents

I INErOAUCLION ...t e 1
N O 101 0103 41 4317 510§ P 1
3 Testing program of Our CONSIUCHION .. .uuuientitt ettt e e eeeeeaannn 6
4 Generators of each prime less than 100 ..., 7
5 The minimal elements set Z, xF, based on our construction .................ccoeeeeinnnen. 11
6 Conclusions and fUture WOTKS .o . ..ottt e i e 14
REferences ..o i e e 14

v



1. Introduction

A binary matrix M is called d-disjunct if any column of M is not covered by the boolean
sum of d other columns. We construct ¢xn d-disjunct matrices for (¢,n)=((d +1)m,

(d +1)m+1), where d is a prime power, m=2d -4, m=2d -3,or m>2d—1 [1]. The
details of this construction are introduced in the chapter 2.

We proposed an algorithm in each chapter 3 to 5. They have different functions, but the
main purpose is the same: to find the existence of the certain pooling designs based on our
construction introduced in chapter 2. We also applied some theorems of the Number Theory
[2] to certify the correctness of the algorithm. Especially, in chapter 5 we have some new

conclusions beyond the thesis [1]. It might be the future work of this research.

2. Our construction

This construction is operated in the sense of finite geometry. Let P be a set of mxn

elements. In this chapter we call an element point, and a n-subset of P a line. Our object is to
find a class B of lines in P such that-{B|= P|+1, and-any two lines in B have at most one

point in common.

Let ¢ be a prime power and m > ¢ bean integer. Let F, :={0,a°,a',---,a"*} denote
the finite field of g elements. Let Z, = {0,1,---,m —1} be the addition group of integers

modulo m. Our construction starts fromthe elements of Z, x F, as points. Then we try to

properly pick subsets such that any two lines intersect at at most one point. The followings are

the foundations of our construction.

Definition 2.1. (Forward Difference Distinct Property)
For T cZ, xF,, Tis said to have the forward difference distinct property if the set

FDp =10, y)= (%) (0, x),(j,y) € T with i < j}

(71T =D

consists of elements.

Lemma 2.2.

Let T, ={(i,a')|ieZ,,0<i<g-1}. Then T, has the forward difference distinct

m,q *

propertyin 7, xF,.



@)
Given pair (c,d)€Z, xF,, solve the equation (c,d)=(j,a’)—(i,a"),for 0<i< j<qg-1.
If c=qg—1,then i=0 and j=¢g-1.1f c#q—1,then a'=d/(a°-1) and j=c+i.In

each case the (i,a’) and (j,a’) are uniquely determined. It follows that 7 consists of

m,q

|7, 14T, 1 =D
2

elements. O

We canview 7, =~ asaline in the plane Z, xF, as Figure 1 shows.

I-T;n.q

012 qg—1 m—1

Figure 1: T .- Z XF,

Definition 2.3. (Difference Distinct Property)

For T cZ, xF,, Tis said to have the difference distinct property if the set

DT = {(_],y)—(l,X)|(l,X),(],y)ET Wlthli]}
consists of |T|(|T|—1) elements.

Lemma 2.4.

Let T, ={(i,a")|ieZ,k,0<i<q-1}.1f m>2g—1,then T, has the difference

m,q * m,q
distinct property in 7, x F,.

®/)
-1 : .
By Lemma 2.2, we have | FDTM = - FDqu E % . The first coordinate of an element in

FD, runsfrom 1 to g-—1, and the first coordinate of an element in —FD, runs from

q



m+1—q to m—1.The assumption m=>2g—1 implies that FD, N (-FD; )=¢. O

Lemma 2.5.

The set T, , has the difference distinct property m 7, xF, for m=2g-3 and

m=2q—4.

@/

ByL 22, wehave |FD, H-Fp, =497V g; d)eFD;
y Lemma 2.2, we have |FD; |5 . = 5 - Given (c,d)e FDy

(1) If m=2¢g-3,then 1<c<qg—-1 and g—-2<—-—c<2g—4.The repletion of differences can

only occurat c=¢g—1 or c=¢g—2. Since (q—l,O)eFDTM and (q—2,0)e—FDTM,

(g-2.0)¢ FD, and (g-10)¢—FD, .

(1) If m=2g—-4,then 1<c<g-1 and gq+-3<-c<2qg-5. The repletion of differences

canonly occurat c=g—-1 or ¢=g—-2 or c=¢g=3.Since (¢g—10)e FDTM and
(g—-3,0)¢e —FDTM , (g—3,0)¢ FDTM and (¢—1,0)¢ —FDTM . Now focus oncase c=g—2.
The only two elements of FD;  with the first coordinate ¢—2 is (g- 2,a"?-2) and

(g—2,a""' —a), where a is a generator for E] Af a?—2=4a""—a,then a=-1, which

is a contradiction. O

Lemma 2.6.

Suppose that 7, =~ has the difference distinct property, and B'={u+T, |ueZ, xF,}.

m,q
Then |L,NL,|<1, for VL,L, B\ L #L,.
@/
Suppose not. Then 3L,,L, € B',L, # L, suchthat |L (1L, [>2.Suppose L, =(u;,v)+T,,,

L,=u,,v,)+T,, and p,p,eLNL,p #p,. Let p =@,v)+(c,d)=u,,v,)+(c,,d,),
Py =, v) +(cs5,d;y) = (uy,v,) +(¢y,d,) . Then (u,v) —(uy,v,) =(¢,,d,) —(¢,,d,) = (¢5,d5)
—(c,,d,), and it is true only when (c,,d,) =(c;,d;) and (c,,d,)=(c,,d,). Hence p, =p,,

which is a contradiction. |



Note that there are mgq lines and mq points in Z, x F, , and a line has ¢ =T, | points

with ¢ different first coordinates. This is the frame of our work. Now, add more points and

linesin B'.Since (0,x)¢-FD, UFD, , LN((0,x)+L)=¢ foranynonzero xeF,

and Le B'. We add a common point (i+g¢,©)eZ, x(F,U{o}) toeachline L=u+T,

m,q

to forms anew set B" where ieZ,  1is the first coordinate of u . Note that the points set of

B" becomes Z, x(F,U{o}). To show that any two lines in B" also intersect at at most

one point, we prove the following Lemma 2.7 first.

Lemma 2.7.

Suppose that 7, < Z, x F, has the difference distinct property in Z, x F, . Let

L =(cd)+T,,, L,=(c,d,))+T, .betwodistinct linesin B'.Then L L,=4¢.

m,q

®/)
Suppose (e, f) € L, (L,, then (e, /) =(c,d,)+(x;,»)=(¢c;d,)+(x,,y,) for some

(x; 1), (x,,»,) €T, . Thus .e—c=x, =X, Since each element in 7,  has distinct first

coordinate, we can conclude that (¢,d,) = (c,d,) andhence L, =L,.Itisa contradiction. O

Lemma 2.8.

Any two distinct lines in B" intersect at at most one point.

@/

It is easy to see that B" contains exactly one point of the form (c,).Let L,L, be two
distinct lines in B" containing (c,,©), (c,,®), respectively. If ¢, #c,, L \(c,,0) and
L, \(c,,o) aretwo distinct lines in B" and have at most one point in common by Lemma
2.6.1f ¢ =c,, the set of the first coordinates of L, \(c;,o0) and L, \(c,,o0) must be the

same. Thus L, \(c,©)=(e, f,)+T,

o and L)\(c,,©)=(e, f,)+T, , forsome eeZ,,

fi.f, €F,. By Lemma 2.7, L \(c,0)1L,\(c,,0)=¢,s0 L,L, only intersectat (c,).0

Let V;={(,j)|je F,U{o}} for 0<i<m—1,and ¥, is called the i-th vertical line.

Let H={(i,0)|0<i<qg},and H is called the infinite line. We add these to B" and

complete our construction.



Lemma 2.9.
Set B:=B"U{H,V,,V,,---,V, ,} as the set of lines with underground point set Z  x

(F,U{eo}). Then any two lines in B intersect at at most one point.

2

It is easily seen that V;(1V, =¢ for i# j,and V,(1H = (i,0).It remains to show that

|LOV,|<1 and |LNH K1 forany LeB", 1<i<m-1. Since each pointin L has

distinct first coordinate and contains only one point of the type (c,), the result follows. O

Note that |Z, x(F, U{o})[=m(g+1) and |B|=m(q+1)+1, which is our final result.

Theorem 2.10.
Suppose that 7, < Z, xF, has thedifference distinct property. Let M be the incidence
matrix of Z, x(F, U{oo}) and: B. Then M is a nontrivial g-disjunct matrix with m(q +1)

rows and constant column weight (g+1).

®/)
Applying Lemma 2.4 and Lemma 2.5 to Theorem 2.10. Corollary 3.11 also follows. i

Corollary 2.11.
Let M be the incidence matrix of Z, x(F,U{~}) and B where m=2g-4, 2¢q-3,

or m=>2q—1. Then M is a nontrivial g-disjunct matrix with m(q+1) rows and constant

column weight (g+1).

Example 2.12. (A construction of 36x37 5-disjunct matrix)

Take g=5, m=6=2g—4,and a=2 isa generator of 5. Then Q,S:{(i,ai)\
i€y,0<i<4;={(0,1),(1,2),(2,4),(3,3),(4,D)} . We write T, =1{01,12,24,33,41} for

simplifying the notation.

(1) Let L(u)=(u+T,s)U(i+5,00), where i is the first coordinate of . Then



L(00)=1{01,12,24,33,41,5}, L(01)={02,13,20,34,42,5x}, L(10)={11,22,34,43,51,000},
L(11)={12,23,35,44,52,00}, ..., L(54)=1{50,01,13,22,30,400} . There are 30 lines.

(2) Let V,={(, /)| je F,U{o}} for 0<i<5. V, is called the i-th vertical line.
V,=100,01,02,04,03,00}, V, =1{10,11,12,14,13,10}, V, ={20,21,22,24,23,200},
V; =1{30,31,32,34,33,300}, V, ={40,41,42,44,43,400}, V,=1{50,51,52,54,53,500}.

There are 6 lines.

(3) Let H={(i,©)|0<i<gq},and H is called the infinite line.
H ={00,100,200,30, 40,50} . There is 1 line.

The above (1), (2), and (3) are the 37 lines based on out construction. i

3. Testing program of our construction

An important work after the construction of a type of pooling design is to know what
properties it has. Here we provides.a way to verify the existence of difference distinct
property. The existence of this property can make sure the construction in chapter 2 can be

applied into the pooling design.

Algorithm 3.1.
Step 1: Input (g,a,m), where ¢ is a prime power, a is a generator of g, and m>q is an integer.

Step 2: Construct the 7, ~ matrix of order gx2 by

(Tm,q)([Jrl)—throw = (i’ai) € Zm XF:]’i = 1’2’“.9q_1 .

Step 3: Construct another “checking matrix” of size ¢g(g—1)x4. The 4 components of each

row is minuend term, subtrahend term, and the results.

Step 4: Check the repetition of each row after the construction of the checking matrix.
Example 3.2.

Input (¢,a,m)=(7,3,12), then construct T, matrix:

Tmq =
0 1 - term 1



1 3  -term2
2 2 -term3
3 6 -term4
4 4 -term 5
5 5 -term6
6 1 -term7

The 7,, matrixisa 7x2 matrix. Now construct the “checking matrix” of size 42x4, in

which each row stores the minuend term, subtrahend term, and the results in Z. x F,. Then,

check the repetition of the checking matrix. In this example, it will run out the following

results:

ans =

It means the result of term 1 minus term 7 is (6,0), which equals to the result of term 7
minus term 1. Additionally, since there are some results run out, this case (q,a,m)=(7,3,12)

cannot have the difference distinct property based on our construction. In fact, it is easy to
proved that m =2q—2 will not have difference distinct property based on our construction.

4. Generators of each prime less than 100

In this chapter we propose an algorithm for finding the all generators of each prime less
than 100, and then show the results as a table of generator database. Also showing is the
relation between the Euler's phi function and the number of generators. Two lemmas are

proposed to help the program be faster as finding the generators of large prime.

Algorithm 4.1. (See if a is a generator of prime p or not.)
Input prime p and generator a
Set temp=1, count=1,
while count<p-2
temp=temp xa (mod p);
if temp=1
break the while loop and try next a=a+1;

end



if count=p-2

end

print @ and try next a=a+1;

count=count+1,;

end

Table 4.2. (The generators of each prime less than 100.)

Prime p | Generators a ¢p(p-1)
3 2 1
5 2,3 2
7 3,5 2
11 2,6,7,8 4
13 2,6,7,11 4
17 3,5,6,7,10,11,12,14 8
19 2,3,10,13,14,15 6
23 5,7,10,11,14,15,17,19,20,21 10
29 2,3,8,10,11,14,15,18,19,21,26,27 12
31 3,11,12,13,17,21,22,24 8
37 2,5,13,15,17,18,19,20,22,24,32,35 12
41 6,7,11,12,13,15,17,19,22,24,26,28,29,30,34,35 16
43 3,5,12,18,19,20,26,28,29,30,33,34 12
47 5,10,11,13,15,19,20,22,23,26,29,30,31,33,35,38,39,40, 22
41,43,44,45

53 2,3,5,8,12,14,18,19,20,21,22,26,27,31,32,33,34,35,39, 24
41,45,48,50,51

59 2,6,8,10,11,13,14,18,23,24,30,31,32,33,34,37,38,39,40, 28
42,43,44,47,50,52,54,55,56

61 2,6,7,10,17,18,26,30,31,35,43,44,51,54,55,59 16

67 2,7,11,12,13,18,20,28,31,32,34,41,44,46,48,50,51,57,61,63 20

71 7,11,13,21,22,28,31,33,35,42,44,47, 24
52,53,55,56,59,61,62,63,65,67,68,69

73 5,11,13,14,15,20,26,28,29,31,33,34,39,40,42,44,45,47, 24
53,58,59,60,62,68

79 3,6,7,28,29,30,34,35,37,39,43,47 48, 24
53,54,59,60,63,66,68,70,74,75,77

83 2,5,6,8,13,14,15,18,19,20,22,24,32,34,35,39,42,43,45,46,47,50, 40
52,53,54,55,56,57,58,60,62,66,67,71,72,73,74,76,79,80

89 3,6,7,13,14,15,19,23,24,26,27,28,29,30,31,33,35,38,41,43,46,48, 40

8




51,54,56,58,59,60,61,62,63,65,66,70,74,75,76,82,83,86

97 5,7,10,13,14,15,17,21,23,26,29,37,38,39,40,41, 32
56,57,58,59,60,68,71,74,76,80,82,83,84,87,90,92

In fact, the number of generators is equal to @(p—1), where ¢ is the Euler’s phi

function.

Definition 4.3. (Euler’s Phi Function)
The number of integers between 0 and some positive integer m that are relatively prime

to m is an important quantity, so we give this quantity a name:
p(m)={a|l1<a<m,gcd(a,m)=1}|.

Theorem 4.4. (Euler’s Phi Function Formulas)

(a)Ifpisaprimeand k>1,then ¢(p*)=p‘-p*".

(b) If gcd(m,n)=1, then @(mn)=d(m)p(n).

®/)

The verification of the prime power formula (a) is.easy, so we need to check the formula (b).

Here, we did this by using one of:the most powerful tools in number theory: COUNTING!
Briefly, we are going to find a set contains @(mn) clements, and find another set contains

@(m)@(n) elements. Then, show that the two sets contains the same number of elements.
The first setis: A={a|l1<a<mn, and gcd(a,mn)=1}.
The second setis: B ={(b,c)|1<b<m,and ged(b,m)=1, and 1 <c <n, and ged(c,n)=1}.
Clearly that A has ¢@(mn) elements.and B has ¢@(m)@(n) elements. Then, find a function f
from 4 to B in the following way:

f(a)=(b,c), ifa=b (mod m) and a =c (mod n).
Now, check that fis one-to-one and onto:
(i) Take two numbers a, and a, from A4, suchthat f(a,)= f(a,). Then a, =b=a,(mod
m)and a, =c=a, (mod n).Thus, a —a, isdivisible by both m and », in other words,
a, =a, (mod mn),which means a, and a, are the same elements in 4.
(1) Clearly that for any given pairs (b,c) from B, we can always find a integer a, 1<a<mn,

satisfying a=b (mod m) anda=c (mod n). O

Lemma 4.5. (Euler’s Phi Function Summation Formula)
Let d,,d,,---,d  be the divisors of n. Then ¢(d,)+¢(d,)+---+¢(d.)=n.

®/)
Let F(n)=¢(d)+@(d,)+---+¢(d), and from Euler’s Phi Function Multiplication Formula

we can get that F(mn)=F(m)F(n) if ged(m,n)=1. Check the value of F(p*) for prime
powers: F(p")=¢(1)+4(p)+4(p*)-+¢(p") =1+(p-D+(p* = p)+--+(p" - p* ) =p".

Now, factor 7 into a product of prime powers, say 7= p!" pi2 --- p*  and compute F(n):

9




F(n)=F(p}py - pt)=F(p"F(ps)- F(p)=pipt-pl =n

Hence we verify that F(n) always equals n. o

Definition 4.6. (Primitive Root)

(1) e,(a)= the smallest exponent e >1 so that a® =1(mod p), for p is prime and 1<a < p-1.

(2) A number g with maximum exponent e, (g)=p—1 is called a primitive root modulo p.

Note that the primitive root in Number Theory is so called the generator in this thesis.

Theorem 4.7. (Primitive Root Theorem)
There are exactly @(p—1) primitive roots modulo p.

®/)
We prove it by using one of the most powerful tools in number theory: COUNTING! Define a

function: y(d) = (the number of a's, with1<a<'p and ¢,(a) =d) . In particular, y(p-1)

is the number of primitive roots modulo p.
Let n be any number that dividing.p —1, say,  p—1= nk . Then,

X7 1= X" 1= (X" )X T (X T+ X+
and count how many roots these polynomials have modulo p.
First, X”"' —1=0 (mod p) hasexactly p—1 solutions X =1,2,---, p—1. On the other
hand, X" -1=0 (mod p) has at mostizselutions and (X")*" +(X")*?+---+1=0 (mod p)
has at most n(k—1) solutions. Hence the only way is X" —1=0 (mod p) has exactly n
solutions and (X)) +(X")*? +---+1=0 (mod p) has at exactly n(k—1) solutions. Now,

count the number of solutions to X" —1=0 (mod p) using another way. Let d,,d,,---,d

I

be the divisors of n. Then the number of solutions to X" —-1=0 (mod p) is equal to

w(d)+w(d,)+---+w(d ), and we have the formula: y(d,)+y(d,)+--+w(d.)=n.

() As n=g isaprime, y()+y(q)=q=41)+d@q). y)=gl)=1,50 w(q)=p).

(i) As n=q>, y()+y(@)+y(@)=4> =) +dq) +#(q). So, w(g*) =)

(iii) By induction method, w(q")=¢(¢"),as n=q" isa prime power.

(iv) As n=qq, fortwo different primes ¢,,q,, w()+w(q,)+v(q,)+v(9,9,) =44,
=p()+0(q)+¢(q,)+d(q,9,) - S0, w(q,9,) =499, =H4,9,)-

(v) By induction method, assume w/(d)=¢(d), for all numbers d <n. We may also assume
n=d,>d,i=23,--,r . From yn)+wy(d,)+-+w(d )=n=¢n)+¢(d,)+---+¢(d.),
we can get the equality w(n)=¢(n).

Take n=p-1, w(p—1)=¢(p—1), which is the desired conclusion. o

10



We also noticed the following two lemmas from the table so that the performance of

program can be enhanced as finding the generators of larger primes.

Lemma 4.8.
For prime p=1 (mod 4), if g were a generator of p, then -g is also a generator of p.

@/

Suppose not, i.e., g is a generator of p, but there exists 2<bh<(p-2),b|(p-1), such that
(-g)" =1 (mod p).

(i) if b were even, then g’ =(-g)" =1 (mod p), which is clearly a contradiction.

(1) if b were odd: 4|(p-1) implies that 2b|(p-1) and 2b<(p-1), and hence

"’ =(-g)”’ =1 (mod p), which is a contradiction. O

Lemma 4.9.
For prime p =3 (mod 4), if g were a generator of p, then -g is not a generator of p.
p-l p-1

®/)
Clearly that P 2_1 isoddand g 2 =(-1)(modp).Hence (—g)2 =1 (mod p). O

Note that g and (-g) may bothnotbe the generators of p. For example, 7 and 12 are both not

the generators of prime 19.

5. The minimal elements set Z,, X, based on our construction

After finding the generators of each prime less than 100, we are interested in the minimal

Z, xF, thatcan make 7, have the difference distinct property based on our construction.

In this chapter we introduce an algorithm first, and then get the conclusion that the minimal
size of Z, corresponding to the F, can be less than m =2g—4, which is one lower bound
that we proposed in our paper.

Recall the Algorithm 3.1 in the previous chapter. In the algorithm we input (g,a,m),
where g 1s a prime power, a 1s a generator of ¢, and m 1s the size of the addition groupZ , .

The results shows the repetition between the differences of every two terms.

Algorithm 5.1. (Find the minimal Z, corresponding to the prime ¢ and generator a)

11



Input prime ¢ and generator a
for int m from g+1 to 2¢g-5
do Alorithm 3.1 with the input (g,a,m);
if there are results run out
try the next m~+1;
else (there are no results run out)
output (q,a,m);
break the for loop;
end

Table 5.2 (The minimal Z, corresponding to every generator of each prime less than 100.)

Prime ¢ Generators a

Corresponding minimal Z, x F, based on our construction

5 213 (m,q)=(5,6) isthe only case for m=gq+1
7
10 | 10
11 216171 8 Note that the minimal 7, 1is less that 2¢-4.

151151616

13 2 |6 |7 |11
20 | 18 | 20 | 18

17 3| 5|6 | 710111214
26 | 27 |26 | 27 |28 | 27 | 28 | 27

19 2 | 3]10]13]14]15
30 | 31 |30 ] 31 |30]30

23 S | 7110111411517 )19 |20 |21
36 |37 |37 3836|3837 (373838

29 2 | 3|8 10|11 |14|15|18|19| 21|26 |27
45 | 44 | 47 | 44 | 47 | 46 | 45 | 48 | 44 | 48 | 44 | 46

31 3 111213 |17 |21 |22 |24
52 [ 52 | 50 | 50 | 52 | 52 | 48 | 48

37 2 | 5113|15]17|18[19 20|22 |24 32|35
59 162 63 16263 [63[59][63]62]|63|62]|63

41 6 | 7 [11]12 13|15 |17 |19 |22 |24 26|28 |29 |30|34]35

66 | 66 | 68 | 68 | 66 | 68 | 68 | 66 | 74 | 68 | 66 | 74 | 68 | 66 | 73 | T3

43 3 [ 5[12]18|19 |20 26|28 |29 303334
72174 172 |72 |73 [ 73 |74 173 7217417473
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47 5 101113151920 |22 |23 [26|29 30 ]31[33|35]38
81 179 |74 |81 |79 8176791807781 747979 80|77
39 |40 | 41 |43 |44 | 45
78 176 | 78 | 80 | 79 | 80

53 2 |3 |5|81]12/14]18]19|20|21 2226|2731 )|32]33
91 |88 190190 92192 |88 9290 [90 |87 879192901092
34 3539414548 |50 |51
92 196 |92 | 87192190 | 9 | 87

59 2 6 8 |10 |11 |13 |14 |18 | 23 |24 |30 |31 | 32| 33
100 | 99 | 104 | 99 | 102|101 | 102|101 | 101 | 96 | 100 | 97 | 96 | 98
34 | 37 | 38 |39 |40 | 42 | 43 | 44 | 47 | 50 | 52 | 54 | 55 | 56
98 104 102|103 | 97 | 97 [ 102 | 95 | 98 | 101 | 97 | 98 | 95 | 103

61 2 6 7 110 |17 |18 | 26 | 30 | 31 | 35 | 43 | 44 | 51 | 54
103 | 104 | 105 | 104 | 107 | 107 | 107 | 105 | 103 | 105 | 101 | 101 | 104 | 107
55 | 59
104 | 105

67 2 7 111 | 12423 | 18120 (28 | 31 | 32 | 34 | 41 | 44 | 46
115 | 118 | 115 | 117 1 117110 [ 118 | 117 117 [ 114 | 115|110 | 114 | 115
48 | 50 | 51 | 57 | 61 | 63
118 [ 118 | 115 | 118 | 115 | 118

71 7 |11 13 |21} 22 28 31| 33| 35 | 42 | 44 | 47 | 52 | 53
125 | 125 | 125 | 118 [1244.126 | 122 (126 | 126 | 124 | 118 | 119 | 121 | 124
55 | 56 | 59 | 61 | 62 | 63|65 | 67 | 68 | 69
122 | 121 | 124 | 125 | 126 | 126 | 124 | 124 | 119 | 126

73 5 |11 |13 |14 |15 |20 | 26 [ 28 | 29 | 31 | 33 |34 | 39 | 40
120 [ 128 | 123 | 126 | 126 | 128 | 123 | 122 | 124 | 123 | 123 | 125 | 126 | 129
42 | 44 | 45 | 47 | 53 | 58 | 59 | 60 | 62 | 68
129 | 120 | 123 | 126 | 130 | 125 | 123 | 122 | 130 | 124

79 3 6 7 |28 |29 | 30 | 34 | 35 | 37 | 39 | 43 | 47 | 48 | 53
144 | 141 | 139139 [ 133 | 133 | 139 | 143 | 133 | 134 | 141 | 133 | 139 | 144
54 | 59 | 60 | 63 | 66 | 68 | 70 | 74 | 75 | 77
133 | 138 | 133 | 138 | 141 | 141 | 143 | 138 | 138 | 134

83 2 5 6 8 |13 |14 15|18 |19 | 20 |22 | 24 | 32 | 34
144 | 138 | 140 | 144 | 148 | 140 | 141 | 141 | 144 | 147 | 146 | 144 | 148 | 146
35 | 39 | 42 | 43 | 45 | 46 | 47 | 50 | 52 | 53 | 54 | 55 | 56 | 57
144 | 142 | 144 | 136 | 144 | 143 | 144 | 138 | 144 | 144 | 147 | 147 | 136 | 140
58 | 60 | 62 | 66 | 67 | 71 | 72 | 73 | 74 |76 | 79 | 80
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151 | 141 | 144 | 142 | 140 | 139 | 141 | 151 | 143 | 139 | 144 | 147

&9 3 6 7 |13 114 |15 |19 |23 |24 |26 |27 | 28] 29 | 30
152 | 154 | 154 | 159 | 155 | 154 | 156 | 158 | 156 | 156 | 156 | 156 | 157 | 152
31 | 33 | 35 | 38 | 41 | 43 | 46 | 48 | 51 | 54 | 56 | 58 | 59 | 60
158 | 156 | 156 | 154 | 157 | 157 | 154 | 159 | 154 | 151 | 148 | 155 | 157 | 154
61 | 62 | 63 | 65 | 66 | 70 | 74 | 75 | 76 | 82 | 83 | 86
151 | 148 | 154 | 154 | 155 | 155 | 153 | 156 | 157 | 154 | 153 | 157

97 B 7 110 |13 |14 |15 |17 | 21 | 23 | 26 | 29 | 37 | 38 | 39
168 | 166 | 175 172 | 166 | 172 | 169 | 169 | 170 | 166 | 167 | 169 | 170 | 168
40 | 41 | 56 | 57 | 58 | 59 | 60 | 68 | 71 | 74 | 76 | 80 | 82 | 83
169 | 172 | 166 | 172 | 167 | 170 | 161 | 175 | 172 | 170 | 161 | 172 | 172 | 170
84 | 87 | 90 | 92
172 1167 | 170 | 167

We can give the table a brief conclusion that we find the minimal size of Z, can be
less than 2g—4 for every prime p >11. In additionally, the distance between minimal size
of Z, and 2q gets longer as the prime gets larger.

You may also notice that (m,q)=(5,6)_is the-only case for m=q+1. In fact, it is the

Example 2.12 which is introduced to fit our construction'in chapter 2.

6. Conclusions and future works

We applied our construction to implement a certain pooling design. In this thesis we also
tried to find ways to improve the properties of this construction. Through the programming, it
shows that Z  can be less than 2g—4 for every prime p >11, and this result is better

than the results we proposed on the original paper [1].

The bound of 7Z, might be lower if we keep running the program in chapter 5 through
every generators. However, due to the complexity and lacking of memories, so far we have
not get the results. Improving the algorithm and mathematical deduction will be the following

challenge of this research.
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