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Momentum space conservation element and solution

element method and some applications

Zhen-Ting Huang

Institute of Mathematical Modeling and Scientific Computing

Abstract

In this thesis, thepurpose of investigation is to “apply-high accuracy numerical
scheme - the "momentum space._space-time conservation element and solution
element (CESE) method” to simulate several” one-dimensional wave equations.
Several paradigmatic wave equations are| solved by the method and calibrated with
known solutions. Finally, we apply the method to"the problem ofssingle atom and
single-active electron Schrodinger equation with strong field. The CESE method use
explicit time marching and has a second-order accuracy both in_space and time.
Development of the CESE method..in.momentum._space is motivated by a goal to
avoid the troubles from boundary reflection; and to preserve:information completely
for scattering states:"In this article, we complete detail deduction for the treatment of
non-reflecting boundary conditions, and the skills tofimprove numerical accuracy.
Besides, some modifications of improving-numerical accuracy needed for nonlinear
problems are also introduced. In“the end, we derive a non-uniform grid momentum
space CESE method. Comparing the numerical results with the exact solutions for
each case, we have showed that the momentum CESE method produces excellent
results in each kind of wave equation. Compared to the solution in coordinate space
method, this method preserves the completeness of the wave’s information during the
time evolution. This is a useful feature of the momentum space method especially for
the scattering state problems.
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Chapter 1 Introduction

In the early 90’s, the method of space-time conservation element and solution element (to
be abbreviated as CESE) was developed by Chang et al. for solving the wave problems [1][7].
Since its inception, the CESE method shows distinguished power in solving various partial
differential equations (PDEs) such as problems in computational fluid dynamics, aeroacoustics,
electromagnetism and magnetohydrodynamic problems etc. [8]. The concept and methodology
in this method are significantly different from those in the well-established traditional method
such as the finite difference, finiteielement, finite . volume and spectral methods. The CESE
method satisfies physical.concept.and casts the governing equation in integral form obeyed
conservation law. Theltime marching secheme in this method is explicit. The CESE method has
many nontraditional features, such as, a unified treatment of space and time, enforced both local
and global flux conservation, all the dependent vatiables and their derivatives are considered as
individual unknowns to be solved simultaneously at each grid point, the concepts of conservation
element and solution element are introduced to enforce both the local and global flux conservation
without using interpolation or extrapelation, and so on.

In the CESE method, the space coordinate and the time degree of freedom are treated in a
unified way. The space-time domain is discretized into solution element (S E). The non-overlap
space-time cells bounded by S E are called the conservation elements (C'E) as depicted in Figure
2.2. The space-time flux conservation law is enforced in each C'E. Time marching scheme
is then derived from the conservation law. Apply the flux conservation idea at boundary C'F
naturally implies the non-reflecting boundary condition (NRBC) [3]. We do not need to add filter
functions and absorbing potential etc. [10] near the boundary to keep the numerical solution from

contaminated by the aliased reflection generated from the boundary.



However, there is a general trouble of calculation in coordinate space. Namely, we do
obtain the correct information in our model numerical region, but we lose the part of wave
that flows out of our space region. In some physics problems, we also interest in the wave
outside of the numerical region. For examples, in the problem of highly excited states or the
photoionized electron spectrum, their wave functions both extend to very large spatial range. The
coordinate space calculation becomes intractable for these problems. Theoretically, we can solve
a problem in either coordinate space or momentum space representation. They are equivalent
and complementary to each other in case the solution is complete. Thus, a widely diffusive
wave in coordinate space is transformedyto narrewly localized one in momentum space. Due
to extremely large energy for'a system is usually unphysical. So, only a moderate momentum
region is sufficient for numerical modeling=mAs aresultyzero Dirichlet boundary condition can be
imposed in the momentum space. Solving problems in. momentum space is naturally attempted.

However, the application of CESE method in mementum space has never touched to our
knowledge. In this article, we aim to develop a new momentum space CESE method that reserves
the power of CESE and still keeps the'coniplete information of solution:simultaneously during the
time evolution. A Fourier transformation can convert momentum space solution into coordinate
space representation at any timeif the information in the latter is requested. The momentum space
approach will then be useful for beth the time-dependent systems and scattering problems. This
article contains the layout of the fundamental idea of the momentum space CESE method.

The purpose of investigation is to apply high accuracy numerical scheme — the "momentum
space space-time conservation element and solution element (CESE) method" to simulate several
one-dimensional wave equations. Several paradigmatic wave equations are solved by the method
and calibrated with known solutions. Finally, we apply the method to the problem of single

atom and single-active electron Schrodinger equation with strong field [11]. For particular, we



investigate the popular research topic "strong field atomic ionization" in atomic physics, such as,
above-threshold ionization (ATI) spectra. We present the results for the photoelectron spectra
observed when atoms are submitted to an intense laser field, and focus our discussion of the
parameters’s range where conspicuous enhancements are observed in the high-energy part of the
above-threshold (ATI) spectra.

Development of the CESE method in momentum space is motivated by the goal to prevent
boundary reflection like method in coordinate space, and to preserve information completely for
scattering states. We introduce three kind of different non-reflecting boundary conditions, and
describe the complete information on how to:applysit to momentum space or coordinate space
method. In this article, we add'an iterating process to improve numerical accuracy. For nonlinear
problem, we give a modification about thesconvelutionsintegral treatment which satisfies the
basic idea of the solution element. In the end, wederive a non-uniform grid momentum space
CESE method, and provide a method to increase accuracy about the shock wave problem. For the
single-active electron systems, we introduce.a simple discretization method and lead the problem
into the standard eigenvalue problem:’ Fof the eigenvalue problem, wewse the QZ algorithm
(small size matrix) orxJD method:(large scale matrix) as'a solver' [18]: After that we obtain a
pair set of eigenvalues and eigenfunctions. The reliable pseudocomplete set of momentum space
eigenfunctions is then applied to the calculate of time-evolution of intense laser pulse on Ar atom.
At the end of the simulation we obtaine the final state wave function. For this state, a renormalized
process is introduced to confirm the normalization.

Comparing the numerical results with the exact solutions for each case, we have shown
that the momentum space CESE method has excellent results in simulating the nonlinear wave
function. Moreover, the momentum space CESE method also provide a reasonable numerical

solution of shock wave problem. Compare to the solution methods in coordinate space, this



method preserves the complete information of the wave during the time evolution. This is a useful
feature of the momentum space method especially for the scattering state problems. With the
advantage of having no boundary reflection during the time evolution, the photoelectron spectra of
above-threshold ionization (ATT) are elucidated. Some of which are not feasible or very difficult
to solve with the coordinate space method. Generalization of the method to single-active electron
systems is straightforward. In our discussion, the conspicuous enhancements appears in the
high-energy part of the above-threshold (ATI) spectra, too. Because of such the basic derivation
of the momentum space CESE method is realized and verified in solving many kinds of wave
equation. The developed numerical method has moze potential on the following works in "strong
field ionization problem". Therest of this article is organized as follows: In Sec. II, we present
the formulation of the CESE method for thessimple: wave equation:“In Sec. III, we introduce
the momentum space CESE method for the simple wave-equation: In Sec. 1V, the nonlinear
Korteweg-de Vries (KdV) equation and shock wave problem are solved by momentum space
CESE method. In Sec. V, the non-uniform grid momentum space CESE method is presented. And
in Sec. VI, we calculate the timé=dependent Schrodinger equation of single-active electron system
with an intense laser field. The numerical results are given in Sec. VII and VIII. The discussion

and conclusions are givenrin Sec. IX.



Chapter 2 Review of the CESE Method

2.1 The core scheme

The basic CESE description is followed [6]. The CESE method is enforce conservation laws
locally and globally in their natural space-time unity forms and build a dissipative scheme from
a non-dissipative core scheme. Computations involving a neutrally stable scheme are performed
right on the edge of the instability and free of numerical dissipation. As such numerical dissipation
can be controlled effectively if the deviation of a solver from its non-dissipative core scheme can
be adjusted using some built-in parameters. The CESE method uses the simplest stencil. This is
because the observations that direct physical interaction generally occur only among immediate
neighbors and a desire:to simplify boundary treatment. The CESE method evaluates the flux at an
interface in a simple:and consistent manner:"No Riemann solvers or: flux splitting techniques are
used. The stability'bound for each scheme is showed in'the Table 2.1* without analysis. For more

details, the references from Chang’s papers are needed.

2.1.1 Convection'equation

In this section, we'shall.introduce the 1D a-scheme described in Ref.[1]. The a-scheme
has space-time staggered mesh points, two independent mesh variables and two equations per
mesh point and two diagonally opposite neighboring mesh points are linked by one conservation
condition and form a basic stencil.

Consider the PDE
ou n ou
_ aqa— =
ot ox

where the convection coefficient, a # 0, is a constant. Let x and ¢ be the coordinate of a two

0, (2.1)

The definition of 7 (?) can see the Ref. [5].



Y | ds

dr

r=(x,1)

S(V)

>
Figure 2.1: A surface elemient on the boundary S(V) of amrarbitrary space-time volume V.

dimensional Euclidean space F5. By using Gauss divergence theorem in Fs

7{ T dF =0. (2.2)
Sv)

As depicted in Figure 2.1, S(V/) is the boundary of an arbitrary space-time region V' in FEs,
q

h = (au,u) is a current density ve¢tor.inHsyandsthersurface elementd s = 7 - do with do and

7 being the area and the outward uit normal vector of a surface elément on S(V/), respectively.

As depicted in Figure 2.2, let E5 be divided into non-overlapping rectangular regions and are
referred as conservation elements (C'E's). The C'E's with the mesh point (j,n) € 2 are denoted by
CE_(j,n) and CE, (j,n), respectively. Each mesh point (j, n) is associated with a cross-shaped
solution element.

Note that the conservation law given in Eq. (2.2) is formulated in which space and time are
treated on equal footing. This unity of space and time is also a tenet in the following numerical
development.

For any (x,t) € SE(j,n), u(x,t), and ﬁ(m,t) are approximated by u(z,t; j,n) and



ﬁ(m, t; j,n), respectively. Using the first-order Taylor’s expansion of u(x,t) at (z;,t"), we
define

u(z, t; j,n) = uj + (ug)j (x — x5) + (ug)j (¢ — 1) (2.3)

We identify u}, (u,)} and (u;)} with the values of u, du/0x, and Ou/0t at (x;,t"), respectively.
Not that u7, (u,)7 and (u;)} are constants in SE(j, n). Requiring that u = (=, ; j, n) satisfies Eq.
(2.1) within SE(j,n), one has

(u) = —a(ug)j. (2.4)

Substitution Eq. (2.4) into Eq. (2.3), one has

u(z, t; jgn) = wj F (@ =25 =lat—t")] (u,)j . (2.5)

Note that the expansion coefficients v and (um);1 in Eq. (2.5) are treated as independent variables.

In addition, T is approximated by
H
h (&5t 7,n) = (@d(z, 157, m), u(®, t; j,n)). (2.6)
With the approximation, the total flux leaving the boundary of C EL(j,n) is

Fi(j7 n) — %
S(CEL(jn))

As depicted in Figure 2:2. for ¢'E 3 the outward unit normal vectors n at AD, AE, BE and

—

h-ds =0, (j,n) € L. (2.7)

BD are (1,0), (0,1), (—1,0) and (0, —1), respectively; andfor.C'E,, the outward unit normal

vectors 7 at AD, AF, C'F and' C'D are (—1,0), (0,1), (1,0) and (0, —1), respectively. By using

Eqgns. (2.5) , and (2.6), it can be shown that Eq. (2.7) is equivalent to

1

IFv)ut(lx V)uf]? =(1Fv)uF(lx V)uf]:ig , (2.8)

where v = aAt/Az and (uz); = ez (uz); -
Choose 1 — v # 0and 1 + v # 0. Eq. (2.8) reduce to

u (1 v)us]? = [ (14 y)uf];‘;%% . (2.9)

_1 nfl . .
By using Eq. (2.9), v} and (uz)? can be solved in term of u: Lrand (uf)] . i - The time-marching
2 2
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Figure 2.2: Definitions of the space-time staggered mesh, C'E and SE in Es.



is then arrived by explicit iterations.
r= 0= - (v’

NI o=

FH0) et (1= F

u ;
1 n-l (2.10)
()} = (uz)] = 3 {lu— L+ v)usl )7 — fu+ (1= v)usl)
The matrix forms of the a-scheme: Let
. . uy .
7 = ((9,) Gmen @1
(“E)j
_ 1 1-v —(1-17)
Q+(I/) = 5( 1 —(1+V) )
1/ 14v 1—02
Q-v) = 5( -1 —(1-v) )
Then the forward marching forms of the a-scheme can be cast into the matrix forms
. .1 1 N 1 1
¢ (n) =Q+(v)q U L Q-1 —5.n—3) (2.12)

2.1.2 Convection-diffus' e
Refer to Ref.[2], conSid sional convection-diffusion
equation
(2.13)
where the wave velc By using Gauss
divergence theore
where T = (au — prug,
Let u = u(x,t; j,n) be define q. (2.13). Within SE(j,n), one has
(u)j = —a(us)j. (2.14)
Substituting Eq. (2.14) into Eq. (2.3), one has
u(z,t;j,n) = u} + [(z —x;) —a(t —t")] (uz);‘ (2.15)
In addition, we have the approximation

T (2,45 4,m) = (aulw, t; §,n) — gz, 4, n), ulz, £ §,n)). (2.16)

The approximation is defined by Eq. (2.7), the total flux which leaves the boundary of



B [J! E*” A
G-1,n) § g n)

D

U!-n'ﬂ

Figure 2.3: Conservation element for the leapfrog scheme.

CFEL(j,n) also can be used here. And we obtain

4 : 1 n il 20FV) [, wed

where v = a/At/Ax and § ="4ulNt /A

n—

1 nl .
By Eq. (2.17), u} and(u,)"" can be solvedjinterm of () . 7 and (ugc)jil2 if1—12+E6#0.
2 2

j+
The time-marching Scheme is then arrived by explicit iterations. Here we let (ug)? = % (um);1
—> - um . 1 1_V _(1_V2_§)
q(j,n) = <(u;)7.l) for' all(j,m) € QL) =51, (141)(1—2—¢) | and
! 1024~ [P d-u2+¢€

T 1T0%EE 1—v2RFE
(2.12). The a-p scheme is formed, and itiS€asy tosee it becomes a-scheme if ;1 = 0.

1+v i
Q_(v) = % (1-22) (1-v)(152=€) 4} Then it can be cast into the'matrix forms like Eq.

2.1.3 Comments on Leapfrog scheme

The leapfrog scheme

u’?“ — un‘l ul, . —u”
J J j+1 T .
=0, (7, 1) € Q. 2.18
N Uon+1) (2.18)
can also be cast into the conservation form
- )
h-ds =0, (j,n+1) € Q. (2.19)
S(FV(j,n+1))

where F'V (j,n + 1) is the region ABC' D depicted in Figure 2.3. The average flux vectors n

at AB, BC, CD and DA are taking to be (au™", u™"), (au?_y,u?_ ), (au}~',u}") and

j 07 J J

(au?—i-l’ u?—i—l) , respectively.
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The leapfrog scheme shares with the a-scheme three key nontraditional features, i.e., they both
are explicit two-way marching schemes, have space-time staggered stencils and their interface
fluxes can be evaluated without using any interpolation or extrapolation technique. The CESE

a-scheme can be derived into the leapfrog scheme, but not vice a versa.

2.2 Dissipative extension of the core scheme
For these extensions, instead of the conservation conditions over C'EL(j,n), (j,n) € €2, the

less stringent conservation conditions

— s .
h-ds =0, (j,n) € (2.20)
S(CE(jm))

are imposed. The local conservation condition Eq: (2.20) leads to a global conservation condition.

Because Eq. (2.20) &

u?:%{(l—u) fu— (1 + P

;: 4 @5 ) o — v)ug]

J

Nl o

}. (2.21)

NI o~

Eq. (2.21) is shared. by the a-scheme and any of.its dissipative extensions. In other words, a
dissipative extension differs form a-scheme only in-how (uf)? 18 evaluated.
To proceed, consider any (7, 7)€ . Then (ji1/2,n — 1/2) € Q. Let

2 5 =
uji = ujig + (7) (ut)ji%2 : (2.22)
With the aid of (uz)] = % (u;); and the fact that the Courant number v = a/At/Az, a

substitution of the relation () =—a (u,)" into Eq. (2:22) results in

n n
J J

k)
JES

N|=

u;’;% = (u - 20)) (2.23)

Note that, to simplify notation, in the above and hereafter we adopt a convention that can be

explained using the expression on the right side of Eq. (2.23) as an example, i.e.,

nol
" SIS (2.24)

According to Eq. (2.24), u;”i , can be interpreted as a frst-order Taylor’s approximation of u at
2

11



Table 2.1: The stability bound for each scheme.

a-scheme | c-scheme c-T scheme a-p scheme | w-a scheme
lv| <1 <1 [ <1, 7>70(1%) v <1 v <1,a>0

(j £ 4,n). Thus

(ug); = — S M (2.25)

is a central-difference approximation of Ju/0Z at (j,n). Note that: (i) the superscript "c" is used
to remind the reader of the central-difference nature of the term (u%);‘ ; and (i1) by using Egs.

(2.23) and (2.25), it becomes

o 21/u5)j_

c\n 1 Tim
(ug) gu = > [(u - 2Vu5)j+

W= o
ISIEFCTIN

(2.26)

The Eq. (2.21) and Eq. (2.26) forms the c-scheme.
2.3 The Courant Number Insensitive scheme

2.3.1 Advantages and Disadvantages of the a-scheme and c-scheme

The advantages of the a-scheme: (i) It i1s nondissipative. (i1) Vary accurate when v — 0.; The
disadvantages: (i) Due to its nondissipative nature, nonlinear extensions generally are unstable.
(ii) When |v| — 1, the short-wavelength errors will.not.die out rapidly.and appear as persistent
numerical wiggles. (iii)/Comparing with the c-scheme, it costsmore times to implement.

The advantages of the c-scheme: (1) Due to its dissipative nature, nonlinear extensions tend to
be more stable. (i) When || — 1, it is vary accurate. The short wavelength errors die out rapidly.
(ii1) It much more superior than a-scheme in terms of ease of implementation.; The disadvantages:

(1) it is very dissipative when v — 0.

2.3.2 Courant Number Insensitive scheme
The basic idea of the courant number insensitive scheme follows the Chang’s papers: [4][5].
In this section, the ideal solvers of Eq. (2.1) will be constructed. It is constructed such that they

possess all the advantages but none of the disadvantages of the a-scheme and the c-scheme.

12



(-3, n) - M- A Mt P
Ee 2 K I\T*I T T F4
(1-1)Ax P (1+7)AX (1+7)AX . (1-gax
4 4 4 N 4
AX e AX - AX e Ax .| At
4 ! 4 4 ! 4 2
- & - E -
2 2
Be . X
.1 1 D .1 1
(i-3: n-3) (i+5, n-3)

Figure 2.4: Definition of points P* and M*.

Specifically, each solver is formed by Eq. (2.21) and a new equation in which (u;)? is evaluated
using a simple centralsdifferencing procedure similar to that used to ebtain (ug)? and so obtained
is identical to (i) (ug); when [v| = T, (i) (#5) when v'=+0. As such,each solver is comparable
to the c-scheme in‘ease ofl implementation, becomes the ¢-scheme when || — 1 and becomes
the a-scheme when 7 — 0. As a preliminary,swe shall show that (ug);1 can also be cast into a
central-difference form when v = 0.

To proceed, note that by assumption a # 0. Thus v = 0 if.and only if At = 0. Because

}EB | = ‘AD‘ = ‘F C | = 0(see Figure. 2.4) when At = 0, the two conservation condition given

in Eq. (2.9) becomes

[utug]] = [u=F uf]ji% : (2.27)
An immediate result of Eq. (2.27) is
n 1 nol nol
(uz)y = 5 {lw— sl F — [utual) 7} (2.28)

Moreover, [u — uz] . 2 and [u + uz]

el jLs respectively, represent approximations of u at the
2

ML

midpoints of AE and AF'; and the distance between these two midpoint is Az /2. Thus, at v = 0,

(ug)] is a central-difference approximation of uz at (j, 7).

13



Let M+ and M~ be the midpoints of AF and AFE respectively.(see Figure 2.4) Also when

7 > 0, P" is to the right of M and P~ is to the left of M ~. Let

1

/ At Ax "
u (P%) = |u+ (7>ut F(1- T)(T)ux . (2.29)

S

By using (uz); = £z (ur); and (us); = —a(u,); , one has
, nol
uw(PH)=[uF (1+£2v— T)uf]jig . (2.30)
Ax

Because point A is the midpoint of EF, and |[PTP~| = (1 +7)5%,

= (D) s, (2.31)

21+ 1)

represents a central-difference analogue of uz at (j,n). Thus a solver for Eq. (2.1) (the c-7
scheme) can be formed by Eq. (2.21) ‘and

(UE)? - (ai);l (2.32)
There has a sub-scheme of ¢-7 scheme, so ealled ¢-7* scheme. This scheme is just let 7 = f(v),
i.e., it means the number of 7 is dependent of the number of . The question of finding the optimal

function f is on developing. It’s still an open problem.

2.4 The Wiggle-suppressing scheme

If discontinuities are present'in a numerical solution, any scheme such as the c-scheme is
not equipped to suppres$ numerical wiggles that generally appear near these discontinuities. To
overcome this problem, we introduce a weighted-averagé method. It is the final scheme we use in
the realistic computation.

To proceed, let

_ Az [ (PF) —u]
) = = —L 2.
(uﬂi+)] 4 ((1 4 T)Ax/4 ) and ( 33)
o Ax [ uf — u'(P*)
(Uz-); = —|————1|-
J 4 \(14+7)Ax/4
Because ‘AP“ = }APJF‘ = (1 + 7)Ax/4 (see Figure 2.4), it is easy to see that (tz); and

(Uz4 )} are two one-sided difference approximation of uz at the mesh point (j, ) with one being

14



Jo-12 3, jutlR2 Josm12 4, jotl2

n — —1
A2 Av2
-1 —n-1/2
[aar [

Figure 2.5: Ghost cells for the boundary.

evaluated from the left and another from the right. The new extension is formed by Eq. (2.21)

and
(2.34)
or
(2.35)
The definition of wei;
2.5 Boundaryt
At the boundar)z
(2.36)

For the high-order scheme, the above method is not good enough. Because of the higher-

derivative term is always zero. We introduce a new approach for non-reflecting boundary

condition (NRBC) as
1l 1l 1l
2 2 2
U, = u. Axu_ . 2.37
Jorti Jor—3 + Tipy—3 ( )
1 1 1
n—s n—s n—s
w, *, = u. °? Axu_. ? .
o=t jootd T O, 1
, instead.
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Chapter 3 Momentum Space CESE Method

3.1 The core scheme of the momentum space CESE method

The momentum space CESE method is developed to conquer the problems of wave propagation
out of the boundary and ease the boundary treatment etc.. When the wave progresses out of
the boundary, no matter how boundary condition we use the information of the wave has lost.
To treat the scattering problem the momentum space CESE method shows its useful capability.
The original CESE method is second-order accuracy method. It approximates the numerical
solution by second-order Taylor expansion. The higher derivative term is truncated as an error.
It shows that the convection-diffusion equation Eq. (2:13) has loss its’ capability of accuracy
when the viscosity coefficient is large. . However, it is natural problem.ef the second order scheme.
Because of the higher derivative termris truncated, the accuracy is only to first derivative term.
The higher-order CESE 'method is to be developed for more diffusive cases in the future. In
this section, we propose the momentum space CESE method. The higher derivative term is
transformed to the source term. The secondrordersschemeris enough to keep the accuracy if the
source term is accurate enough. The:momentum space CESE method uses the iterating process to
keep the source term accuracy. Forthe explicit scheme, ithas to keep the stability, i.e. the At can
not too large. It is time consuming for the explicit scheme. The iterating process added in each
time step. Even if the iterations is few, it is still time consuming. But it is not a big problem for
us, because of the space domain is smaller than the coordinate space method. For the quantum
problem we describe in chapter 6, the domain for the momentum space CESE method is only
[—5, 5]. For coordinate space method, the box size is must = 3300 (see Ref.[13]). The total
computing time of the time evolution is comparable for the coordinate space method, even it is

shorter than it. However the momentum space CESE method is now a useful scheme to treat the
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large diffusive problems. But for the future the higher-order CESE method will be developed. The
higher-order CESE method can be easily extended to the momentum space CESE method. The
basic momentum space CESE method is proposed to see its capability to keep accuracy even the

equation is more diffusive.

3.1.1 Convection equation
Eq. (2.1) can be transformed into
g—? + iapu = 0, (3.1)
by making the Fourier transformation, the system has the coordinate and the momentum
representation alternatively:
AR — /ﬁ(p, t)ePxdp,
- 1 i
u(p,t) = 3t u(z, t)e P dw.
For simplicity, we just use the same-symbeol w instead of w: The Eq. (3.1)becomes Ou/dt +iapu =
0. This is simply amrordinary differential equation. Its analytic solution i8I straightforward. With
initial condition u(p, ¢ = 0), the solution atany time is u(p, t) = u(p,t= 0)e~?**. Obviously,
the amplitude of the solution u(p,¢) is stationary-at-any-time in the;momentum space. Though
the equation and its solution.in momentum space are rather simple, they serve as the calibration
example for the momentum space’CESE method. The Eq«'(3.1) equivalently be written as
V- (0,u) = =iapu, (3.2)

where the operator V = (0/dp, 0/0t). Consider p and t as the coordinates of a two-dimensional

Euclidean space £5. The conservation laws becomes

]{ nds = —ia/pudT, (3.3)
S(v) v

—_
where h = (0,u), dT = dpdt and —iapu is the net flux per unit volume.
Let E5 be divided into non-overlapping rectangular regions referred to as conservation elements

CFEs. The C'Es with the mesh point (j,n) € Q are denoted by CE_(j,n) and CE, (j,n),
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respectively. Let SE(j,n) be the rhombus shaped area DEGF depicted in Figure 3.1. The function

value at the the center of C'E can be approximated by u;f , (up):;f and (ut)?;f
_ (i (7. m) (3.m)
At /2 :
(7,m) _
T E @ F O
Fa 1 1 ¢ 1 14
i\!‘l_-';ﬂ —-—sn—3) J+s3.n—3)
D - s - ‘o 1
- | CE_(7,n) CE,(7.n)
Ap/2 Ap/2
SE(7,n) Q
E F

Definitions of C £ and SE in F.

For any (p,t) € SE(j,n), u(p,t)and ﬁ(p, t). are’approximated by u(p,t; j,n) and

—

h (p,t; j,n), respectively. We define
u(p, t;jyn) = i + (up)j (p — pj) + (ue)j (¢ =), (3.4)
where (p;, ") is the coordinate of the mesh point (j,n) .

Note that u7, (u,)? and (u;)? are constants in SE(j,n). We also have

—

h(p,t;j,n) = (0,u(z, t; j, n)). (3.5)
Requiring that u = u(p, t; j, n) satisfies Eq. (3.1) within SE(j, n), one has
(w)j = —iapjuf. (3.6)
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The approximation of the total flux leaving the boundary of CEL(j,n) is

. - — .
Fy(j,n) = h -ds =—ia pudr. (3.7)
S(CE+(jn)) CE4(j,n)
By Egs. (3.5) and (3.7), the total flux leaving C'E'L(j, n) can be derived as
: 8P [ n n n—} n-l . n—1 w1 1] ApAt
Fy(j,n) = N {“j + (up)j — [(u)Jil T (up%i;}} = TPjE; [(u)ﬁl T (up>ai1 + 4( >Ji% 2 2
(3.8)

where we use Taylor expansion to estimate the function value at the center of C'E'y and we also
designate u; = %up. In this section, the value of (u;)] is easy to solve. Using the transform in
Eq. (3.6), we can easily obtain the value of (u;). So the iterating process is not necessary. Here
we just show that the iterating process also works in linear cases. For the following nonlinear
cases the value of (u;)} hasieonvolution integral with unknownsvalue. It is not easy to solve like
the simple case here. In‘order to prepare for nonlineat situation (in chapter 4). With the aid of

Egs. (3.6) and (3.8)yuf and (uy)7-can-be-solved infterms.of (u ) :i:l and (up)n and for further

:tl’

iterations,

1 1

uj gy, — () E P lt] = =m0 RG] S (69
We can check the convergence'of w7 B (39)can also be deriyed from Eq. (3.7) by
approximating the souree term to the Taylor expansion of the center of |@| and ‘C’_D‘ . Here the
index ¢ is the number of time that Eq. (3.9) has been iterated, and v} solved by Eq. (3.8) can be

denoted by u7. Using the Cauchy criterion, we define the convergence as

7L

ui, —ul, | <e (3.10)
We stop the iterations if the convergence criterion is reached for a plausible small €. The criterion

is usually arrived within iterations less than ten times.

3.1.2  Convection-diffusion equation

In the momentum space, Eq. (2.13) can be transformed into

ou
s + (iap + pp?)u = 0, (3.11)
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by making the Fourier transformation. For simplicity, we just use the same symbol u instead of .

The Eq. (3.11) becomes du /0t + (iap + up*)u = 0. By using Gauss divergence theorem in F,

— N . 9
74 h-ds = —/ (tap 4+ pp”)udr, (3.12)
S(V) v
where 7 is defined by Eq. (3.5), too. Requirig that u = u(p, t; j, n) defined by Eq. (3.4) satisfies

Eq. (3.11) within SE(j, n), one has

(ur)} = —(iap; + pp7)us. (3.13)

The approximation of the total flux leaving the boundary of CE.(j,n) is

F:I:(j7 n) = %
S(CE+(j,n))

By Egs. (3.4) and (3.14), the total flux leaving C'E4 (j,n)ican be derived as

FuGim) = Sl () - [ Yol (3.15)

.
o . n nei oAb -1 Ap At
50 ip, B [(“%éqﬁ(“ﬁ)ﬁ; e QU e

—

h-ds = —i/ (iap + pp®)udr. (3.14)
CE+(j,n)

where the conditions are similar to-the previous simpleswave problem. With the aid of Egs. (3.15)

=

1
. . . n—s n—s . .« .
and (3.13), u} andu(ug)} can be solved iteratively in terms of (u)j N %2 and (uﬁ)j N %2 This explicit
time-marching scheme is derived similar to the previous simple wave case. The iterating process
can be added in the Source term, too:, But for the-equation, it is not necessary to use the iterating

process. So we do not go.detail to describe it. For more details, we will show in the nonlinear

chapter.

3.2 Boundary treatment

The boundary treatment in the momentum space CESE method is quite easy. Because the
momentum is directly related to the kinetic energy, extremely large energy for a system is usually
unphysical. So, only a moderate momentum region will be sufficient for numerical modeling.
Also, the wave will simply vanish at the numerical boundary and cause no trouble like the
methods in coordinate space. The non-reflecting boundary condition for momentum space CESE

method is obtained in a simple way. That is when the numerical solution at the boundary, we add
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the ghost cell. As depicted in Figure 2.5, we let

, then there are C'E,. (with the ghost cell) and C'E_ for uf,

1
Piv++35 ’
1
nol
u_. 2, =0
PIb——35
n n
i, and uﬁjw—

n

(u

Jb

_andu
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Chapter 4 Nonlinear Problem

4.1 Korteweg-de Vries equation
The Korteweg-de Vries (KdV) equation is a classic example of the nonlinear system [16] The

general form is
18u+a 8u+ 1 P3u
—— _u_ — —
got v Oxr  ~30x3

where «, ( and ~y are non-zero constants. The system contains both nonlinearity and dispersion.

~0, (4.1)

For convenience, we study in this section the scaled equation

u Ou - 10%u
E — 6u% - @ = 0. (4.2)

By making the Fourier transformation and some manipulations, the momentum space equation

is

ou(p,t —/ ] s e
(015 ) = 3@p/ ulq, )a(p — q,)dg + ip’u(p,t). (4.3)
For simplicity, we just use the same symbol #. instead of w. The Eq. (4.3) becomes
du(p,t)/0t = 3ip / (q, 1)u(p — gs#)dg i ulp, £)- Let i = (0,u) and apply the Gauss

divergence theorem in Es, Eq. (4.3) becomes

T — . > -
j{ = / {3@]9/ u(q, t)u(p — q,t)dg +ip°u(p,t)| dr, (4.4)
S(V) 14 —00
where dr = dpdt. In the right-hand side of Eq. (4.4)is the source term. We can see that for

a nonlinear system, the source term contains the convolution integral with unknown function.
Hence the straightforward explicit iteration scheme described in previous section does not work.
I implement two new ideas for the treatment of nonlinear problems in momentum space CESE
method. First, at each time level, we calculate u(p, t) and Ju(p, t)/Op at grids of half spacing,
instead of spacing at Ap in previous linear examples. Then the convolution integral can be
calculated by the Simpson’s rule [19]. Next, for every half-marching time step, say from 72 to

t", we begin by use v and u, at "= for the source term to find the solution at t"; then use the
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obtained for source term calculation to generate new solution iteratively till the generated solution
converged. Usually, the results converge within a few iterations.

To make it clear, from the conservation laws for C' E.(j,n),

f F(p,t;j, n)-d? = Sip/ [/ u(g, t)u(p — q,t)dq} d7'+/ ipsu(p, t)dr,
S(CE+(j,n)) CE+(j,n) —00 CE+(j,n)

(4.5)
where ﬁ(p, t;j,n) = (0,u(p,t; j,n)). We can derive the following core scheme
n 1 n—1 n—1 F G
= 5{[u—up]ﬂ?+[u+up]j_§}+A—p+A—p, (4.6)
w1 n—1 n—1 F G
() = 5=l f T A -
where we designated u} = u(p;, t'%), (up)i = %(up)?, and AT = £ 2P for shorthand. And
F= {BipiJr}; Z u(pi—i—i -4 tniﬁ)u(qﬁ tnig)% + ipi%“@%i? th)} AT,
- (4.7)

G = {32’;9@.% AT u(p; 1 —¢; 112y, £ 7) A2+ ipf’iu(pi_}l’t”_é)} AT.
J
Here the value of u(p;, 1 t"=2) is obtained by the Taylor expansion in'the SE(j, n — 1) or
SE(j £ 5,n — %).1tis obtained as
w(pi s T =0 T F up(pg g 5 ?) (4.8)
or u(piii,t"_%) = u(p;, t”_%) =+ w5 (i, t”_%).
The value of u(p, ., 1—4q, t”“%) may locate out of the computational domain in some specific value
7 and j. But there is no problem in the momentum space method. It is just to set zero when the
node point is out of the domain. And all of the other values of u(p, 11—, t”_%) are located at the
numerical point for every ¢ and j, when all of the half step grid is solved. The right-hand side of
the Eq. (4.5) is called the source term, and for discrete form is defined as F' and G for CE, and
CE_, respectively. But the value of u is centered in the space-time domain (C'E.). The former
description is not correct. In the linear cases the centered value is just expanded as the Taylor

expansion of space and time. But for this nonlinear case, the value of wu; is not trivial. So we must
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impose the iterations to obtain the accurate solution. The iterating process is formed by renew
the corresponding source term in the new value of u and . For more clear, we write down the

iterating explicit scheme as

" 1 1 n—1 Froy G
wpe = s{l—usll P+ R (4.9)
. 1 n—1 n—1 Fooi Geg
ot = M -wsw ) B G
where
Fry = (4.10)
{BZpHi ZW—KPH% —q,t")ug_1(qy, t )7 + prﬁue-l(piﬁ’t )} AT,
J
Gir =

. n T AZ) e n
{3%}1 Zuf'l(pi*i — ¢, 1" Jue—1(g5, )7 + Zp?_%uﬂfmpifi?t )} AT,
J
and uy_1(p;, t") = - The criterion of the aboye iterating process is,defined as Eq. (3.10). The

Eq. (4.9) is the final.core-scheme for the KdV equation:

4.2  The Shock wave problem, Burgers’s equation
In this section, we consider the Burgers’s:€quation as an example of the nonlinear system and

shock wave problem; The Burgers’s equation is written as

2
% + ug—z = U% (v >0). (4.11)
In Burgers’s equation the term on the right may-be interpreted as a dissipative effect; namely as
the removal of energy from the system desribed by the equation. Burgers’s equation serves to
model a gas shock wave in which energy dissipation is present (v > 0). The steepening effect of
nonlinearity in the second term on the left can be balanced by the dissipative effect, leading to a
traveling wave of constant form, unlike the case corresponding to v = 0 in which a smooth initial
condition evolved into a discontinuous solution (shock). The steady traveling wave solution for

Burgers’s equation is the so-called Burgers’s shock wave.

By making the Fourier transformation and some manipulations, the momentum space equation
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ou(p,t 1. © - -
gz ) _ —E%p/ u(q, t)ulp — q,t)dg — vp*u(p, t). (4.12)

For simplicity, we just use the same symbol « instead of u. The Eq. (4.12) becomes

Ju(p,t)/0t = —%ip/ u(q, t)u(p — q,t)dg — vp*u(p,t). Let = (0,u) and apply the Gauss

—0o0

divergence theorem in Fs, Eq. (4.12) becomes

— _ 1. o0
foaaw = [ g [ wteouw- wod-orupo|a @
S(v) vl 2 J-

o0

where dr = dpdt. From the conservation laws for C EL(j,n),

- . — Iy e 2

h(p,t;j,n)-ds =—cip u(gq, hu(p — q,t)dq| dr— vp*u(p, t)dr,

S(CE(jm)) 2" Jom. G lg--ee CEx(jm)
(4.14)

where ﬁ(p, t;7,m) = (Osu{p,t; 7,n)). We can derive the followifig core scheme same as Eq.
(4.6), where we also designated v = u(p;; 1), (up)7 = %(up);‘, and A\ = %% for shorthand.
And

F = (4.15)

L, r 1 Ap n—1
{_izpi-i-% Z“(piﬁ =gy, Hajulgy Lt 2)7 - Up?—i—%u(pi-l—i?t 2)} AT,
J

1. ol IEFRWAY o1
{—gwi_i Y onlBis — a5t ulay, ]y u(pi 1t 2)} AT,

J

Here the value of u(p;, 1, t"2) is obtained by the Taylor expansion in the SE(j,n — 1) or

>
SE(j £ %,n — 3), too. The value of u(p;, 1—q, t"~2) may locate out of the computational
domain in some specific value 7 and j. It is just to set zero as before. And all of the other values
of u(p, 11— t”*%) are treated in the same way. The right-hand side of the Eq. (4.14) is called
the source term, and for discrete form is defined as F' and GG for CE, and C'E_, respectively. But

the value of u is centered in the space-time domain (C'E. ). The iterative process is used for this

problem, too. The iterating process is formed by updating the corresponding source term in the
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new value of « and u. For more clear, we write down the iterating explicit scheme as Eq. (4.9),

where
oy = (4.16)
1' n n Ap n
{—5 Pi+i Zutz—l(l%ur}1 = ¢, 1")uea (g5, t )7 - Up?_;%uf—l(pi—i-ivt )} AT,
J
G =

1 Ap
{—521?1-_% Z UZ—I(pi_i — 5, t")ue—1(q;, t”)T — Up?_%ue—l(Pi_i ; tn)} AT,
J
and ug_1(p;, t") = uj,_,. The criterion of the above iterative process is defined as Eq. (3.10). The

Eq. (4.9) is the final core-scheme for the Burgers’s equation, too.
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Chapter 5 Non-uniform grid Momentum Space CESE Method

The non-uniform grid momentum space CESE method is developed in this chapter. The main
goal is to treat Burgers’s equation for less grid points. The solution of Burgers’s equation has a

shock in center of domain. Dense grid near the shock region is necessary to capture the shock.

5.1 Basic derivation

Consider the space-time mesh (—L < x < L and ¢ > 0) depicted in Figure 5.1. Here (i) L > 0
is a given length, and (ii) the mesh structure in the region —L < x < 0 is the mirror image of that
in the region 0 < x < L. Let the domain 0' < 2 '< L./on the x-coordinate line be divided into K

intervals using the dividing‘ceordinate points =1, s, ..., & g1 Where

0 < Bl tonE ATty < L (5.1)
Let
Lk Efk—fkfl, i = 1,2,...,K (52)
with
Zo=0andzg = L. (5.3)
Then
K
M Egis=L,-and Ly, > 0. b==1,%.. K. (5.4)
k=1

Moreover, for any k, let the interval (-1, &) be'divided into M uniform sub-intervals with

the dividing points @,(j_)l, @,(f_)l, e f,(f]\fl_ Y where M > 0is a given integer and

Teor <30 <20 < <MD o3 (5.5)

Thus

where

~(0 o~ ~
,221 =72, 1and

M
L3
I
5)
T
—
ot
J
N—
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Figure 5.1: A space-time mesh with nonuniform spatial intervals (K = M = 2).

For our discussion, M is usually 2.

Consider the PDE given in Bq. (4.12),-and apply the conservation laws in the unity space-time
domain. The similar equation Eq. (4.13) is followed.- The C'E. (j, n) and CE_(j,n) with the
different size of the spatial domain, but the conservation laws are never changed. From the

conservation laws for CE (j, n),

- . iy 1 [ - 2
h (patv.]an)d S — —Z1p ’LL((],t)U(p— qat)dq dT— vp ’LL(p, t)d7—>
S(CE+(j.n)) 2" Jersn) L -o CE+(jm)

(5.8)
where F(p, t;7,m) = (0,u(p,t;7,n)). The C'E'and SFE is depicted in Figure 5.2. For any
(xz,t) € SE(j,n), u(z,t), and ﬁ(x,t) are approximated by u(x,t; j,n) and ﬁ(x,t;j, n),
respectively. Using the first order Taylor’s expansion of u(x,t) at (z;,t"), we define

u(w,t;j,n) = uj + (ug)j (v — x5) + (ue)j(t —"). (5.9)
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Figure 5.2: The SE and C'E for a non-uniform mesh. (a) CE_(j,n). (b) CE,(j,n). (c) CE(j,n).
(DSE(j,n).
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- + - -
Let |CD} = Agj and |BD| = Ag" We can derive the following conservation laws: C'E, =
[ ApT I SVAY 4 not| Apt
uj + Tj (up) — uj+%2 TJ (“p)j+§ 2J (5.10)
[ 1 ol n1 Ap;j ol Py At
= | mgies 2wy = 4,12 )ule, ") 5 — ol ulpis, b 2)] 5 o
L J
CE_ =
i Apy . el Aph 1| Apy
§m o )y = () | (5.11)
[ 1. A 1 Ap; ] Apy At
= | =gipiny Do ulpioy = ap, " uley, ) — o yu(piy 2)] R
L J
Let
F = (5.12)
[ 1 ] Apf At
u(pi-i-iat 2) 2J 77
G =
_ 1 2p- A
i | S
and
(5.13)
We define
(5.14)

L F;G' = ;1-G. The core scheme

for simplify our description. ‘ s

is formed by an explicit way as

g v v ) v ) E )
U = —rV_u. { —v_v Up) . 1 viu. 1 vV_v u .1 .
7 v_+ vy t+s ARGy T T AP
/ /
v_F vy G

1 n—1 n_l n—l n—l
n _ - _ _ _
(up)j T U+, {Uﬂ_g Vi (Up)jJrg uj_g V- (up)]_g}
F' G’

v_+vy Vv_o+tvy

The value of u(p,, 1, t"‘%) is used in the similar way as before, and the convolution treatment is
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similar,too. But a trouble occurs in computing the value of u(p, 1= qj, t”_%). The values for
most ¢ and 7 are not in the numerical nodes. In orther word, we do not have these numerical data.
It is much difficult and complicated than uniform grid problem. Some people will say it can be
interpolated by the known data. This is not I want to do. The CESE method compute flux in

a simple way. If I use interpolation to solve these values, I will violate the main idea of CESE
method. So I uses the nearest node to expand these points in SE. It is obtained in the similar
way about the flux computation, i.e. use the Taylor expansion from the solution element. The
non-uniform grid momentum space CESE method is consistent for previous CESE method. The
right-hand side of the Eq. (5.10) and Eq«(5:11) is called the source term, and for discrete form is
defined as F" and G for C'E, "and C'F_, respectively. But'the above interpretation is not correct
for the source term calculation: The valuejof iscenteréd in the space-time domain (CEL). So

the Eq. (5.15) is modified by an iterating processing as

n 1 n—= n-1 n—1 n—3%
vl T LT = v g vl v () (5.16)
-} v Iy v+ Gy
v_+uv, (e
n 1 n_‘é‘ n—s TL—% n—%
(Up)J,e = Vot { .. Vi (Up)j+1 o Uj_% 4 (Up)]_%}
Fpy Gy
Vet Ve Vot Vg
where
Fror = (5.17)
{_§Zpi+i Zuf—l(PHi — qj, 1" )ue—1(g;, t )Tj - Upi+%uz—1(pi+i,t )} 2] 5
J
G =

1 i Ap; 1 L At
{—521%_31 Zuf—l(pz‘—% = a5, ") (g, = — oy Pyt )} - 5
J

and ug_(pi, t") = uj,_,. The criterion of the above iterating process is defined as Eq. (3.10). The

Eq. (5.16) is the core-scheme for the non-uniform grid momentum space CESE method.
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5.2 A special technique to approve the accuracy

The non-uniform grid momentum space CESE method is described in the before section. The

convolution integral is computed by the simple Riemann integral. If we want more accurate of the

convolution integral, the Gauss-Chebyshev-Lobatto quadrature is required. The motivation of this

section is to decreasing the iterating steps. The more accurate convolution integral will decreasing

the iterating steps, and makes this non-uniform grid method more effectively.

The Gauss-Chebyshev-Lobatto grid is described as

N
0; = ijj:QL%wM@ehﬂ

y; = cos(@)l &€ [=11]
¢ = R-y; € [-R R

The quadrature formula is

R 1 I\
/‘F@MQZR/ ﬂRw@F=R§:%FGw0 1 -y
-R =i 720

where
wj:{%, ’ J=0,N
R 1,2,..N —1

The convolution integral in Eq. (5.8) is

[%m%wwp—%w@.

[e.9]

(5.18)

(5.19)

(5.20)

(5.21)

Without loss of generality, we let the computation-domain to be [— R, R] Eq. (5.21) becomes

/‘m%wwp—%wm.

—R

We use the basic idea of the calculas "change of variable". The Eq. (5.22) becomes

R 1
/ wlg,Oulp - q.t)dg = R / w(Ry, tyulp — Ry, t)dy.

—R 1

N
= Riju(Ryj, thu(p — Ry;,t)\/1 -y
=0

where 0, r;, w; are defined in Eq. (5.18). This convolution integral is computed in the

2

(5.22)

(5.23)

Gauss-Chebyshev-Lobatto quadrature. But it is not I want, the grids is not dense in center but
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Figure 5.3: The transformatio
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id momentum space CESE method.

dense in boundary. } tain the dense grids in

center. And it is tra

(5.24)
We use the Gauss- . The transformation
defined in Eq. (5.24) the dense grids in center.

where j—g = d% # . The Gauss-Chebyshev-Lobatto quadrature is solved in a similar
1+R 2
-y
R
way. We introduce the another transformation as

r = tanh™ ' (tanh(R)y), y € [~1,1]; v € [-R, R] . (5.25)

These two transformation function are depicted in Figure 5.3.
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Chapter 6 A Quantum Mechanical Problem

The momentum space time dependent Schrodinger equation (TDSE) with intense laser pulse is

described as
2 1) =L 1)+ V () ) — g AP I9) (6.1

where V' : potential, A : vector potential and ¢ : electric charge. This is the dimensionless form,
and the electric charge ¢ = —1 for electron. The TDSE we considered here is the single atom,
single-active electron system.

We use the so-called "soft-Coulomb" potential (Figure 6.1) which behaves asympotically
as a one-dimensional Coulomb potential and supports an infinite number of bound states. The

"soft-Coulomb" potential is defined as

1
B i —— 6.2
Phe 2 (62
With ¢ = 1.41, the ground-state energy is the same as for Aratoms: €y = —0.58 a.u. This class of

potentials has been.shown to be useful to'reproduce the main features of laser-atom interactions
in the strong-field regime, for a linearly polarized laser: The corresponding momentum space

potential is defined as

V(p):{ == FKo(velpl), p#0 (6.3)
= In(R+ VR?>+ ¢) +'5-In(c), p=0 '
where K is the modified Bessel function of the 2™ kind.
The electric field is choosed by a practical sin? pluse ,
. . o, Tl
E(t) = Eysin(wt) sin (?), tel0,7]. (6.4)
The vector potential is defined by E(t) = —£ A(t) (see Figure 6.2),
E E, w Q)¢ -]  E Q2
A(t) = B0 oty - Bo [coslw £ DL coslw =Dt} | Eo (6.5)

2w 4 w+Q w— 2 w(w?—0?)

where () = 2%
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Figure 6.2: The vector potential.
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When atoms are submitted to intense infrared laser pulses with peak intensities around
I ~ 10"Wem ™2, the energy distributions of the fast photoelectrons can exhibit strong variations,
up to one-(or even two-) order(s) of magnitude, when the peak intensity changes by only a few
percents. Soon, it was realized that these effects could be related to the structure of the atomic
system considered. This was clearly evidenced in a series of papers devoted to the interpretation
of experiments conducted on Ar atoms submitted to Ti: sapphire laser pulses (w = 0.0577 a.u.
and time durations 7" ~ 120 f.s.) Indeed, by solving the time-dependent Schrodinger equation
(TDSE) for a model argon atom, it has been possible to reproduce the high-energy structures in

the photoelectron spectra with remarkable agreement.

6.1 Steady state problem
At the beginning of simulation, we must.have the ground state wave function. The static state

Schrodinger equatiofnmust be solved.

2
p
(& + V@ k= Bl (6.6)
We introduced a simple man method to let problem into the eigenvalue problem.
2

S VA DV ;i) = Elpo) (6.7)

J
This becomes an eigenvalue problem (AX = AX'). Tn this article, we use the QZ algorithm or JD

solver to solve this problem. For large scale problem, the JD solver has been shows it excellent

talent.

6.2 Time evolution, using momentum space CESE method

The discrete form of Eq. (6.1) is
0
ot = (% = aA0m ) o) + SVl - plpvt) (69

k
It can be transform to

%ij,t)_ (pQJ gA(t)p ) (pj; ) ZV — i) ApY (P, t) (6.9)

The momentum space CESE method for this case can also be derived. And the explicit scheme is
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derived in the similar way. The iterating explicit scheme is same as Eq. (4.9). But the source term
must be changed to the right-hand side of Eq. (6.9). The derivation is completely similar, so we

do not derive it again.
6.3 Renormalization
At the end of the simulation we obtain the final state wave function 1(p;) = (p;|1) which
we map onto the energy eigenstates: ¢(E;) = (E;|p;) (pi[¢)) where the matrix (E;|p;) are
the eigenvectors of the Hamiltonian (p;|H|p;) = (p;|E;) (E;|H|E;) (E;|p;) . (Note that for
P

continuous states, &p; correspond to the same F; ~ 3-.) The middle matrix is the diagonalized

Hamiltonian. At this point, the state vector has.the normalization
2
> E =k
For positive energies, we interpolate this-discrete state 1) (F;) oento a continuous probability

function Prob(E) using a step function mapping:

Prob(E) =3, KE@)P X & (EH% T E) Fh (E o Ei_%) / (EH% - Ei_%> .
Here h (x) is the Heaviside function A(z > 0)¢/= 1 and h(z i< 0) = O The half interval
£ |,

energy E; 11 = ——=25—=. This continuous.function Prob(/’) now has the correct probability

normalization. And / Prob( F)d [, can be interpreted as the probability per unit energy ( in
0

atomic units ) of finding an/ionized electron.
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Chapter 7 Numerical Results for basic problems

All of the one-dimensional PDEs described in the previous section are tested using appropriate
model problems. The coordinate space and momentum space CESE method are tested with
respect to different kind of PDE. The numerical results are compared with the analytic solution
to examine their accuracy. Here we present the error analysis for this method. We define the

root-mean-square error at final moment as follow:

E(Azx) = — Z u(xj, tfinal) — uemct)Q, (7.1)
\o' 57
E(Ap) e AT Z p tf'mal e uexact>2'

For the quantum mechanical problem descrlbed in previous section it has no analytic solution
about it. The numerieal result of the stationary state energy is showed to examine their accuracy.
Here we can compate the results about our simulation with several results proposed at other

papers [13][14].
7.1 Coordinate space CESE Method

7.1.1 The a-scheme and the csscheme
Consider the first-order waveequation Eq. (2.1) where @*= 5 in the domain —5 < x < 5. The

initial condition is described as

u(, 0) = {Sm(wg ) ftfer[gl’ ! (7.2)
w(z,0) = e exp(%) (7.3)

where w = 27, ¢; = 0, co = 0, ¢3 = 1 (¢1: height of the Gaussian peak, cy: position of the center

of the peak, c3: width of the bump). With non-reflecting boundary condition imposed at x = —5
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and z = 5, the exact solution is

w (. t) = {sin(w(m —(;Lt)): :th—e:;t € [-1,1] (7.4)

or

—((z — at) — ¢2)?

% ) (7.5)

This problem is solved by using the CESE a-scheme and c-scheme, respectively. The problem

u(z,t) = ¢ exp(

here we considered with the Courant number (CFL) is 0.25, Az = 0.01, At = 0.0005 and time
duration 7" = 1. The numerical results for the a-scheme are depicted in Figure 7.1 and Figure 7.2.

And the numerical results for the c-scheme are depicted in Figure 7.3 and Figure 7.4.

7.1.2  The a-i scheme
The a-p scheme is used to-solve the convection-diffusion equation Eq. (2.13) where a = 5

and 1 = 0.1 in the domain —5 ;< z <+5: The initial condition is described as Eq. 7.3 with the

L

oA i 0, c3 = /2. With non-reflecting boundary ‘condition imposed at = —5

coefficient ¢; =

and z = 5, the exact solution 1s
e —((@— at)'= )2
7.6
R + 1) (7.6)

The problem here:we considered with the Courant number (CFL) is 0.25, Az = 0.01,

u(z,t) =

At = 0.0005 and time duration 7" = 2. The numerical results for the a-;. scheme are depicted in
Figure 7.5. It shows the second-orderscheme is not works well. So, the higher-order scheme is

necessary.

7.1.3 The wiggle-suppressing scheme

If discontinuities, non-differentiable, or shocks are presented in a numerical solution, any
scheme introduced in above section is not equipped to suppress numerical wiggles that generally
appear near these points. This extension scheme is called w — o scheme which is introduced
as a remedy for this deficiency. We use the extension of the c-7* scheme introduced in above

section. The simplest function of the c-7* scheme results from the choice f(s) = /s, i.e.,
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7 = f(v?) = |v|, where |v| < 1. We use the condition as Sec. 7.1.1. In Figure 7.6 and 7.7. We
show the excellent solution for this scheme. The numerical wiggles are obviously disappearing as

we expect.
7.2  Momentum space CESE Method

7.2.1 Korteweg-de Vries equation
The KdV Eq. (4.2) has a solitonic solution

u(z,t) = —gsec hz(g(:z: —ct + x9)). (7.7)
Note that the solution depends on speed c of soliton. So, multiply the solution by an arbitrary
constant is no longer a solution. This invalidity of superposition principle is a notable property
of nonlinear equation. Without loss of generality, we set the initial peak position at xy = 0. The
wave propagates at speed ¢ to the right of z-axis without shape change. The exact solution in
momentum space is

ue(p,t) = —pesc h(@) exp(—ipct). (7.8)
Ve

Figure 7.9 and Figure 7.10 depict the real and.the imaginary part of the numerical results together
with the analytic results at time ¢ = 5H:"We-arrive excellent-agreements between the momentum
space CESE calculation and thefanalytic results.

In Figure 7.11, the comparison.of magnitude for the calculated and exact solutions at ¢ = 5
with ¢ = 1 is shown. For the soliton solution, though the real part and the imaginary part are both
oscillating with time, but the magnitude is stationary as seen from Eq. (7.8). In Table 7.1, we
listed the errors with respect to the grid size Ap. We plot in Figure 7.8 the error versus /Ap?. From

the plot, the straight line shows that the error behaves in «~ O(/Ap?). This is the general scaling

behavior of our developed momentum space CESE core scheme method.
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Figure 7.1: Computational results u at 7' = 0.8'by.the a-scheme CESE method. Data obtained
with p € [5,5], Ap = 0.01 and At = 0.0005.

Table 7.1: The root-mean-square error. versus mesh size shows second-order behavior for KdV
equation in our momentum space CESE method.

K: grid numbers; n: time steps | Mesh size | Error in momentum space
K: 26; n: 500 0.4 5.57E-02
K: 51; n: 500 0.2 1.23E-02
K: 101; n: 500 0.1 2.94E-03
K:201; n: 1000 0.05 7.18E-04
K:401; n: 2000 0.025 1.72E-04
K: 801; n: 4000 0.0125 3.57E-05
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Figure 7.2: Computational results # at ' = 1 by the a-scheme CESE method. Data obtained with
p € [-5,5], Ap = 0.01 and At =0.0005.
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1 numerical sol.
———— exact sol.
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Figure 7.3: Computational results u at " =~ 0:8 by the ¢-scheme CESE method. Data obtained
with p € [—5,5], Ap = 0.01 and Ati=0.0005.

43



1 -
numerical sol.
i —————— exact sol.
ne
0B
=3
04
n2pF
0
| : i 1 1 1
4 2 d 2 £
X

Figure 7.4: Computational results u at I" = 1 by the e-scheme CESE method. Data obtained with
p € [-5,5], Ap = 0.01 and At =0.0005.
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Figure 7.5: Computational results w at T" from 0, 0.3885, 0.7245, 1.02 to 1.45 by the a-p scheme
CESE method. Data obtained with p €[5, 5], /Ap'=0.01 and At = 0.0005. DashDotDot line:
exact solution. Solid line: numerical solution.
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Figure 7.6: Computational results u at 7" = 0:8 by the a-scheme and w-4 scheme CESE method.
Data obtained with p € [—5,5], Ap = 0.01 and At|= 0.0005.
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Figure 7.7: Computational results w at 1" = 1 by the a-scheme and w-4 scheme CESE method.
Data obtained with p € [—5,5], Ap = 0.01 and At|= 0.0005.
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7.2.2 Burgers’s equation

Let
V = —(u(—00)+ u(c0)), (7.9)

D —

The exact solution of the Burgers’s equation Eq. (4.11) is

- Vi
u(x,t) =V — Dtanh [Ml : (7.10)
v
We may set u(oco) = 0, then the exact solution becomes
- Vi
u(z,t) =V — V tanh {M} : (7.11)
v

Where V = Ju(—00) > 0 and'D = Zu(—0c0) = V. The corresponding exact solution in

momentum space is

o Vd(p) , forp =0
o) {iv exp(=ipVit) csch(")y, for p #.0 (7.12)

where 0(p) is delta function. The parameters here we use are IV = 1 and v = 1. Because of the
infinite value can’t show in the figures. The delta function of the analytic solution we plot in the
figures is just set as a finite value. Figure 7.12 and Figure7.14 depict the real and the imaginary
part of the numerical results-together with the analytic results at time't = 5. For describing the
shock behavior of Burgers’s equation in detail Figure 7.13.shows the zoom up of figure 7.12
near the shock, and Figure 7.15'shows zoom up of Figure 7.14. We arrive excellent agreements
between the momentum space CESE calculation and the analytic results. The momentum space
CESE method obtained the accurate solution when the shock is occurred. This is the same
capability as coordinate space CESE method.

In the chapter 5, we introduce the non-uniform grid Momentum Space CESE Method. The
purpose is to generate the grids which are much denser in center. The Burgers’s equation Eq.

(4.11) has a shock in the center of the space domain. The dense grid in center is especially
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Figure 7.8: Error in momentum space as function of square of grid size Ap. It shows O (Ap?)
behavior.

useful for this problém. The goal is to obtain the*accurate solution butease the computational
time. Because of efficient grid is used the less grid points can obtain the similar accuracy. We
compare the non-uniform grid momentum space CESE method without transform and with the
two different transform. Figure 7.16, 7:17-is the nonuniform grid method without any transform,
Figure 7.18, 7.19 is the nonuniform grid method with'the transform as Eq. (5.24), and Figure
7.20, 7.21 is the nonuniform grid method with the transform as Eq. (5.25). The above figures
shows the non-uniform grid method arrive excellent agreements in the less grid points. The grid
points are 500 for the each case. The transform cases have improved the implementation time.
And the similar accuracy is obtained. It shows the importance of the transform when the further

implementation of higher-dimensional question.
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Figure 7.9: Computational results of the real part of KdV equation solution at ¢ = 5 obtained with
p € [-5,5] and At = 0.01.
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Figure 7.10: Computational results of the imaginary part'of KdV equation solution at ¢ = 5
obtained with p € [—5,5] and At = 0.01.
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Figure 7.11: Computation results of the magnitude of KdV solution at ¢ = 5 obtained with
p € [=5,5] and At = 0.01.
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Figure 7.12: Real part of the solution of Burgers’s equation with uniform grid (Ax = 0.0125).
V' =1,v = 1 and simulation time is 5.
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Figure 7.13: Real part of the solution of Burgers’s equation with uniform grid (Az = 0.0125).
V = 1,v = 1 and simulation time is 5. (locate the view to center)
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Figure 7.14: Imaginary part of the solution of Burgers’s equation with uniform grid
(Az =0.0125). V = 1,v = 1 and simulation time is 5
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Figure 7.15: Imaginary part of the solution of Burgers’s equation with uniform grid
(Az =0.0125). V = 1,v = 1 and simulation time is 5. (locate the view to center)
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Figure 7.16: Non-uniform grid momentum space CESE method without any transformation. The
real part solution of Burgers’s equation is presented.
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Figure 7.17: Non-uniform grid momentum space CESE method without any transformation. The
real part solution of Burgers’s equation is presented. (locate the view to center)
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Figure 7.18: Non-uniform grid momentum space CESE method with transformation as Eq. (5.21).
The real part solution of Burgers’s equation is presented.
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Figure 7.19: Non-uniform grid momentum space CESE method with transformation as Eq. (5.21).
The real part solution of Burgers’s equation is presented. (locate the view to center)

60



1480 |
B numerical 500
| e exact
100
s |
+
= B
Q- -
™
E =
a0 -
0 1 1 1 I 1
4 2 0 2 4
p

Figure 7.20: Non-uniform grid momentum space CESE method with transformation as Eq. (5.22).
The real part solution of Burgers’s equation is presented.
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Figure 7.21: Non-uniform grid momentum space CESE method with transformation as Eq. (5.22).
The real part solution of Burgers’s equation is presented. (locate the view to center)
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Chapter 8 Numerical results for Quantum Mechanical Problem

In order to model the response of an atomic electron, we have used the so-called "soft-
Coulomb" potential defined in Eq. (6.2). With ¢ =1.41, the ground-state energy is the same as for
Ar atoms: ¢y = —0.58 a.u. [13]. This class of potentials has been shown to be useful to reproduce
the main features of laser-atom interactions in the strong-field regime, for linearly polarized laser.
The smaller ten bound state energies for our computation are list as table 8.1. Examples for the
ATI spectra, simulate when the above system is submitted to a sinusoidal shape laser pulse with
frequency w = 0.0577 a.u. ~ 1.57 eV, with total duration of 9 cycles, are shown in Figure 8.1,
8.2 and 8.3. The Figure 8.4 conbine all of the different intensities, to one figure, but only plot
the first degenerate stdte. The spectra-are deduced from the spectral @nalysis of the final wave
function obtained by solving the Eq. (6.1). Typical values for the grid spacing is Ap = 0.01,
At = 0.0019, and the size of the box is [-5,5]. ' We have checked that our results are robout while
varying these parameters. In Figure 8.5, the ATI spectra for three selected intensities are shown.
One can check that, at B, = 1.12 % 10™ Wem 2, a conspicuous enhancement shows up in the
region comprised between 7Up and 10U p. Conversely, it almost disapears at the neighboring
intensities F,, = 1.02 x 10" Wem=2 and E,, =.1.22:X 10" W cm 2. In spite of the fact that
the bare state basis is not really adequate for analyzing the time-dependent wave function of the
atom "dressed" by the external field, it can provide useful indications on the population dynamics.
With this caveat in mind, the results of Figure 8.6 confirm the existence of an important transfer

of population in excited state n = 3 at the intensity when the enhancement is observed.
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Table 8.1: List the bound state energies ( state: energy (a.u.) ). (i) Domain = (-5,5), (ii) Grid
numbers = 1024.

1: -0.579551339149484 2: -0.253565788269046

3:-0.142360016703607 4: -8.848649263382038E-002
5:-6.089104339480454E-002 | 6: -4.384820908308049E-002
: -3.334389254450847E-002 | 8:-2.595771290361919E-002
9: -2.091300487518327E-002 | 10: -1.707826927304287E-002

Y

i O-S i .D?

[
L

ati spectrum
3

]
on

[}
]

N TR TR RN R A R
G
Up

Figure 8.1: The ATI spectra for the £y = 1.02 x 0 Wem ™2,
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Figure 8.2: The ATI spectra for the £y = 1.12 x 0 Wem ™2,
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Figure 8.3: The ATI spectra for the £, = 1.22 x 0 Wem™2.
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Figure 8.4: The ATI spectra for all of the differenéé intensities. ( Only plot the first degenerate
state )
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Figure 8.5: Photoelectron spectra for the long-range potential and for w = 0.0577 a.u. Dotted,
DashDot, LongDash correspond to intensities of 1.12 x 10 Wem™2, 1.02 x 101 Wem ™2 and
1.22 x 10" Wem™2, respectively. The pulse duration is 977,.
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Figure 8.6: Projection of the wave function at times odd multiples of 77, /4 on the bare state n = 3
for three different intensities. Diamond, Circle and Square correspond to intensities of 1.02 x 104
Wem™2, 1.12 x 10 Wem~2(when the enhancement is observed) and 1.22 x 10 Wem ™2, re-
spectively.
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Chapter 9 Discussion and conclusions

In this thesis, we develop the CESE method in momentum space. We investigate the basic
one-dimensional wave equation, convection equation, convection-diffusion equation, nonlinear
Korteweg-de Vries equation, shock wave Burgers’s equation and a quantum mechanical problem.
The scope is on the fundamental part. In each problem, the momentum space CESE core scheme
is developed for an explicit time-marching scheme. It is straightforward for linear problems.
While for nonlinear problem such as KdV equation and Burgers’s equation the convolution
integral of the unknown functions‘in the source term s involved. We employ the half-step grid
size for the convolutions and the iterations in each half-time marching step for the nonlinearity.
Above method we hasfintroduced is sufficient only to uniform grid problem. For non-uniform grid
problem, it is not solved. We finally figure out the'idea of the solution element must be introduced
as suitable modification. The troubles occur in convolution integral for nonlinear problems is
conquered by a consistent treatment. When numerical grid is not on the node points, it is just
expanded as a Taylor expansion from the nearly solution element. For the non-reflecting boundary
condition, the zero boundary condition and the ghost cell method is employed. It shows that the
ghost cell method is excellent in coordinate and momentum space, even when the domain size is
small. Because of the boundary value is'sufficiently 'small in momentum space. It is enough to use
the zero boundary condition. For non-uniform grid momentum space CESE method, we introduce
a transformation method to shorter the computational time and improve the convolution integral
accuracy. The importance of this approach for higher-dimensional problems will be investigated
in our future studies. We calibrate each system with known exact solution. We have shown that
the momentum space CESE method works well for the systems from classical wave equation,

nonlinear equation to quantum mechanical problem. And the error behavior of the developed
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scheme is second-order. Strictly speaking, the method used in this work is not regular core
scheme. But it is still capable of generating highly accurate solution by using only the concept of
flux conservation and simple approximation techniques. The main advantages for the momentum
space CESE method, compared to the traditional CESE method in coordinate space are twofold.
First, the boundary conditions are fulfilled automatically. That is, for sufficient large momentum
value, the function and its derivatives are simply vanishing at the numerical boundary. This is
because the kinetic energy of a system is physically finite. Second, the information of the wave
is preserved completely inside the numerical momentum region without flowing out from the
boundary like the coordinate space methed: This:will be especially useful in treating scattering
problems in the future. With the efficient momentum space CESE method, we are able to calculate
the ATI photoelectron spectra.- We elucidatesthe capability of-this.method with the atom either
under a very high intensity or a very long duration laser pulse to show the nice features. There
is no loss of the continuous part of the wave functions, unlike filtering function employed in
coordinate space method to prevent boundary reflection. In this simulation, the conspicuous
enhancements appear in the high-energy part of the above-threshold (ATI) spectra, too. Because
no information of wave is lest. ‘Comparing with experiment data, the high-energy part ATI
spectra obtained from our method is more accurate than thesmethod from other coordinate space
method. Further applications of the method to intense laser pulses on atoms and molecules
will be presented in the future. In the future, we will develop the higher order of accuracy, and
the higher dimensional momentum space CESE method to practical useful in solving realistic

time-dependent problems.
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Appendix A The definition of weight factor in the wiggle-suppressing scheme

The wiggle-suppressing scheme to be abbreviated as w-a scheme. The extension is formed by

Eq. (2.21) and

(uz)} = (W-)] (@)} + (w4)] (@)} (A1)
with .
. o (=)}
(wa)} = Wa (@) (@)} @) = T —— (A.2)
‘ (Uz-);| + [(Uz+);

Because the scheme is an extension of the ¢-77 scheme in which (uf)? is expressed as an weighted

average of (uz_); and (uz) % In case that ’(ﬁﬂ);‘ i, A

is very close to 1, the only way to
prevent the weighted average from becomingralmost a.simple-average is to increase the value of
« used. However, this approach is impracticable because’ evaluation of ® would be hamperd
by very large round-off errors if o becomes very latge.”As such, there is a need to introduce
new-weighted-averaging techniques that do not have the limitation discussed above. Two
weighted-averaging formulac much morespotent-and-flexible that discussed here were described
briefly.

For motivation, note that Egs. (A+l) and (A.2) can be‘expressed as

(uz)] = WiT) + wars (A.3)
and
S1 S9
Wy = and wy = s1+89>0 A4
! S1 + So 2 S1 + S9o ( ! 2 ) ( )
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respectively if

1 = (Uz-)] and 23 = (Ugy )] (A.5)
wi = (w)f andwy = (wy)]
5 = ‘(aﬂ)y and s, = ‘(az_)’; (a > 0)

The derivation for the first scheme is derived as following. Let
1
(5550}5—5, £=1,2 (AG)

Thus the set {0,}, £ = 1,2 provides a measure of how far the weighted average is deviated from

the simple average. In the following, @ t this deviation will be introduced. Let

(A.7)
We can given any
(A.8)
Then we define
(A.9)
, where
(A.10)

(00 > 0 is a preset parameter in the order on 1).
For the second scheme describe as follows. To proceed, the indices of sy, £ = 1,2, will be

reshuffled such that

So >85>0 (All)
Let
m=2_1. (A.12)
S1



Given any adjustable real parameter o > 0, let (i) 57 = s1 and Sy = (1 + o1, )s; and (ii)
W =—=,0=1,2. (A.13)
where
S = (Z 5}) > 0. (A.14)
¢
Note that the current approach for amplifying the weight factors has one advantage over the
approach described earlier, i.e., in the current approach, there is no upper bound for the value of o

one could use. Thus, in the current approach, Eq. (A.10) can be simplified as

o= (A.15)

where o > 0 again is a prese
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