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中文摘要 

 

   本論文主要的研究目的為利用高解析度動量空間時空守恆法(CESE method)

模擬多種一維波動方程問題並用已知的真解當作校對，最後將之應用於強場作用

下單電子原子薛丁格方程式。時空守恆法為在時間和空間上均具有二階準確度的

新數值方法，此時間演化的過程是一種顯式的方法。發展動量空間時空守恆法主

要的動機為避免處理複雜的非反射邊界條件於座標空間和保留完整的資訊對於

散射狀態。在此我們提供了完整的推演對於非反射邊界條件的處理，亦提出了各

種技巧以增加解的精確度；針對非線性問題亦提出一相對的修正；最後推導出非

均勻網格之動量空間時空守恆法。由數值解與解析解比較顯示，時空守恆法模擬

各種情況的波方程均具有相當精確的結果。相較於座標空間的方法，於動量空間

計算波方程在時間演化下仍保持完整的資訊，對於散射狀態的問題，動量空間的

方法尤其適合。 
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Momentum space conservation element and solution 

element method and some applications 
 
 

Zhen-Ting Huang 
 

Institute of Mathematical Modeling and Scientific Computing 
 
 

Abstract 
 

   In this thesis, the purpose of investigation is to apply high accuracy numerical 
scheme - the "momentum space space-time conservation element and solution 
element (CESE) method" to simulate several one-dimensional wave equations. 
Several paradigmatic wave equations are solved by the method and calibrated with 
known solutions. Finally, we apply the method to the problem of single atom and 
single-active electron Schrödinger equation with strong field. The CESE method use 
explicit time marching and has a second-order accuracy both in space and time. 
Development of the CESE method in momentum space is motivated by a goal to 
avoid the troubles from boundary reflection, and to preserve information completely 
for scattering states. In this article, we complete detail deduction for the treatment of 
non-reflecting boundary conditions, and the skills to improve numerical accuracy. 
Besides, some modifications of improving numerical accuracy needed for nonlinear 
problems are also introduced. In the end, we derive a non-uniform grid momentum 
space CESE method. Comparing the numerical results with the exact solutions for 
each case, we have showed that the momentum CESE method produces excellent 
results in each kind of wave equation. Compared to the solution in coordinate space 
method, this method preserves the completeness of the wave’s information during the 
time evolution. This is a useful feature of the momentum space method especially for 
the scattering state problems. 



Chapter 1 Introduction

In the early 90’s, the method of space-time conservation element and solution element (to

be abbreviated as CESE) was developed by Chang et al. for solving the wave problems [1][7].

Since its inception, the CESE method shows distinguished power in solving various partial

differential equations (PDEs) such as problems in computational fluid dynamics, aeroacoustics,

electromagnetism and magnetohydrodynamic problems etc. [8]. The concept and methodology

in this method are significantly different from those in the well-established traditional method

such as the finite difference, finite element, finite volume and spectral methods. The CESE

method satisfies physical concept and casts the governing equation in integral form obeyed

conservation law. The time marching scheme in this method is explicit. The CESE method has

many nontraditional features, such as, a unified treatment of space and time, enforced both local

and global flux conservation, all the dependent variables and their derivatives are considered as

individual unknowns to be solved simultaneously at each grid point, the concepts of conservation

element and solution element are introduced to enforce both the local and global flux conservation

without using interpolation or extrapolation, and so on.

In the CESE method, the space coordinate and the time degree of freedom are treated in a

unified way. The space-time domain is discretized into solution element (SE). The non-overlap

space-time cells bounded by SE are called the conservation elements (CE) as depicted in Figure

2.2. The space-time flux conservation law is enforced in each CE. Time marching scheme

is then derived from the conservation law. Apply the flux conservation idea at boundary CE

naturally implies the non-reflecting boundary condition (NRBC) [3]. We do not need to add filter

functions and absorbing potential etc. [10] near the boundary to keep the numerical solution from

contaminated by the aliased reflection generated from the boundary.

1



However, there is a general trouble of calculation in coordinate space. Namely, we do

obtain the correct information in our model numerical region, but we lose the part of wave

that flows out of our space region. In some physics problems, we also interest in the wave

outside of the numerical region. For examples, in the problem of highly excited states or the

photoionized electron spectrum, their wave functions both extend to very large spatial range. The

coordinate space calculation becomes intractable for these problems. Theoretically, we can solve

a problem in either coordinate space or momentum space representation. They are equivalent

and complementary to each other in case the solution is complete. Thus, a widely diffusive

wave in coordinate space is transformed to narrowly localized one in momentum space. Due

to extremely large energy for a system is usually unphysical. So, only a moderate momentum

region is sufficient for numerical modeling. As a result, zero Dirichlet boundary condition can be

imposed in the momentum space. Solving problems in momentum space is naturally attempted.

However, the application of CESE method in momentum space has never touched to our

knowledge. In this article, we aim to develop a new momentum space CESE method that reserves

the power of CESE and still keeps the complete information of solution simultaneously during the

time evolution. A Fourier transformation can convert momentum space solution into coordinate

space representation at any time if the information in the latter is requested. The momentum space

approach will then be useful for both the time-dependent systems and scattering problems. This

article contains the layout of the fundamental idea of the momentum space CESE method.

The purpose of investigation is to apply high accuracy numerical scheme – the "momentum

space space-time conservation element and solution element (CESE) method" to simulate several

one-dimensional wave equations. Several paradigmatic wave equations are solved by the method

and calibrated with known solutions. Finally, we apply the method to the problem of single

atom and single-active electron Schrödinger equation with strong field [11]. For particular, we
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investigate the popular research topic "strong field atomic ionization" in atomic physics, such as,

above-threshold ionization (ATI) spectra. We present the results for the photoelectron spectra

observed when atoms are submitted to an intense laser field, and focus our discussion of the

parameters’s range where conspicuous enhancements are observed in the high-energy part of the

above-threshold (ATI) spectra.

Development of the CESE method in momentum space is motivated by the goal to prevent

boundary reflection like method in coordinate space, and to preserve information completely for

scattering states. We introduce three kind of different non-reflecting boundary conditions, and

describe the complete information on how to apply it to momentum space or coordinate space

method. In this article, we add an iterating process to improve numerical accuracy. For nonlinear

problem, we give a modification about the convolution integral treatment which satisfies the

basic idea of the solution element. In the end, we derive a non-uniform grid momentum space

CESE method, and provide a method to increase accuracy about the shock wave problem. For the

single-active electron systems, we introduce a simple discretization method and lead the problem

into the standard eigenvalue problem. For the eigenvalue problem, we use the QZ algorithm

(small size matrix) or JD method (large scale matrix) as a solver [18]. After that we obtain a

pair set of eigenvalues and eigenfunctions. The reliable pseudocomplete set of momentum space

eigenfunctions is then applied to the calculate of time-evolution of intense laser pulse on Ar atom.

At the end of the simulation we obtaine the final state wave function. For this state, a renormalized

process is introduced to confirm the normalization.

Comparing the numerical results with the exact solutions for each case, we have shown

that the momentum space CESE method has excellent results in simulating the nonlinear wave

function. Moreover, the momentum space CESE method also provide a reasonable numerical

solution of shock wave problem. Compare to the solution methods in coordinate space, this

3



method preserves the complete information of the wave during the time evolution. This is a useful

feature of the momentum space method especially for the scattering state problems. With the

advantage of having no boundary reflection during the time evolution, the photoelectron spectra of

above-threshold ionization (ATI) are elucidated. Some of which are not feasible or very difficult

to solve with the coordinate space method. Generalization of the method to single-active electron

systems is straightforward. In our discussion, the conspicuous enhancements appears in the

high-energy part of the above-threshold (ATI) spectra, too. Because of such the basic derivation

of the momentum space CESE method is realized and verified in solving many kinds of wave

equation. The developed numerical method has more potential on the following works in "strong

field ionization problem". The rest of this article is organized as follows: In Sec. II, we present

the formulation of the CESE method for the simple wave equation. In Sec. III, we introduce

the momentum space CESE method for the simple wave equation. In Sec. IV, the nonlinear

Korteweg-de Vries (KdV) equation and shock wave problem are solved by momentum space

CESE method. In Sec. V, the non-uniform grid momentum space CESE method is presented. And

in Sec. VI, we calculate the time-dependent Schrödinger equation of single-active electron system

with an intense laser field. The numerical results are given in Sec. VII and VIII. The discussion

and conclusions are given in Sec. IX.
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Chapter 2 Review of the CESE Method

2.1 The core scheme

The basic CESE description is followed [6]. The CESE method is enforce conservation laws

locally and globally in their natural space-time unity forms and build a dissipative scheme from

a non-dissipative core scheme. Computations involving a neutrally stable scheme are performed

right on the edge of the instability and free of numerical dissipation. As such numerical dissipation

can be controlled effectively if the deviation of a solver from its non-dissipative core scheme can

be adjusted using some built-in parameters. The CESE method uses the simplest stencil. This is

because the observations that direct physical interaction generally occur only among immediate

neighbors and a desire to simplify boundary treatment. The CESE method evaluates the flux at an

interface in a simple and consistent manner. No Riemann solvers or flux splitting techniques are

used. The stability bound for each scheme is showed in the Table 2.11 without analysis. For more

details, the references from Chang’s papers are needed.

2.1.1 Convection equation

In this section, we shall introduce the 1D a-scheme described in Ref.[1]. The a-scheme

has space-time staggered mesh points, two independent mesh variables and two equations per

mesh point and two diagonally opposite neighboring mesh points are linked by one conservation

condition and form a basic stencil.

Consider the PDE

∂u

∂t
+ a

∂u

∂x
= 0, (2.1)

where the convection coefficient, a ̸= 0, is a constant. Let x and t be the coordinate of a two

1 The definition of τ0

(
ν2

)
can see the Ref. [5].
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Figure 2.1: A surface element on the boundary S(V ) of an arbitrary space-time volume V .

dimensional Euclidean space E2. By using Gauss divergence theorem in E2∮
S(V )

−→
h · d−→s = 0. (2.2)

As depicted in Figure 2.1, S(V ) is the boundary of an arbitrary space-time region V in E2,

−→
h = (au, u) is a current density vector in E2, and the surface element d−→s = −→n · dσ with dσ and

−→n being the area and the outward unit normal vector of a surface element on S(V ), respectively.

As depicted in Figure 2.2, let E2 be divided into non-overlapping rectangular regions and are

referred as conservation elements (CEs). The CEs with the mesh point (j, n) ∈ Ω are denoted by

CE−(j, n) and CE+(j, n), respectively. Each mesh point (j, n) is associated with a cross-shaped

solution element.

Note that the conservation law given in Eq. (2.2) is formulated in which space and time are

treated on equal footing. This unity of space and time is also a tenet in the following numerical

development.

For any (x, t) ∈ SE(j, n), u(x, t), and
−→
h (x, t) are approximated by u(x, t; j, n) and
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−→
h (x, t; j, n), respectively. Using the first-order Taylor’s expansion of u(x, t) at (xj, t

n), we

define

u(x, t; j, n) = un
j + (ux)

n
j (x − xj) + (ut)

n
j (t − tn). (2.3)

We identify un
j , (ux)

n
j and (ut)

n
j with the values of u, ∂u/∂x, and ∂u/∂t at (xj, t

n), respectively.

Not that un
j , (ux)

n
j and (ut)

n
j are constants in SE(j, n). Requiring that u = (x, t; j, n) satisfies Eq.

(2.1) within SE(j, n), one has

(ut)
n
j = −a(ux)

n
j . (2.4)

Substitution Eq. (2.4) into Eq. (2.3), one has

u(x, t; j, n) = un
j + [(x − xj) − a(t − tn)] (ux)

n
j . (2.5)

Note that the expansion coefficients un
j and (ux)

n
j in Eq. (2.5) are treated as independent variables.

In addition,
−→
h is approximated by

−→
h (x, t; j, n) = (au(x, t; j, n), u(x, t; j, n)). (2.6)

With the approximation, the total flux leaving the boundary of CE±(j, n) is

F±(j, n) =

∮
S(CE±(j,n))

−→
h · d−→s = 0, (j, n) ∈ Ω. (2.7)

As depicted in Figure 2.2 for CE−, the outward unit normal vectors −→n at AD, AE, BE and

BD are (1, 0), (0, 1), (−1, 0) and (0,−1), respectively; and for CE+, the outward unit normal

vectors −→n at AD, AF , CF and CD are (−1, 0), (0, 1), (1, 0) and (0,−1), respectively. By using

Eqns. (2.5) , and (2.6), it can be shown that Eq. (2.7) is equivalent to

(1 ∓ ν) [u ± (1 ± ν)ux]
n
j = (1 ∓ ν) [u ∓ (1 ± ν)ux]

n− 1
2

j± 1
2

, (2.8)

where ν ≡ a△t/△x and (ux)
n
j ≡ △x

4
(ux)

n
j .

Choose 1 − ν ̸= 0 and 1 + ν ̸= 0. Eq. (2.8) reduce to

[u ± (1 ± ν)ux]
n
j = [u ∓ (1 ± ν)ux]

n− 1
2

j± 1
2

. (2.9)

By using Eq. (2.9), un
j and (ux)

n
j can be solved in term of u

n− 1
2

j± 1
2

and (ux)
n− 1

2

j± 1
2

. The time-marching

7



Figure 2.2: Definitions of the space-time staggered mesh, CE and SE in E2.
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is then arrived by explicit iterations.{un
j = 1

2

{
(1 − ν) [u − (1 + ν)ux]

n− 1
2

j+ 1
2

+ (1 + ν) [u + (1 − ν)ux]
n− 1

2

j− 1
2

}
,

(ua
x)

n
j ≡ (ux)

n
j = 1

2

{
[u − (1 + ν)ux]

n− 1
2

j+ 1
2

− [u + (1 − ν)ux]
n− 1

2

j− 1
2

}
.

(2.10)

The matrix forms of the a-scheme: Let

−→q (j, n) ≡
(

un
j

(ux)
n
j

)
, (j, n) ∈ Ω, (2.11)

Q+(ν) ≡ 1

2

(
1 − ν −(1 − ν2)

1 −(1 + ν)

)
,

Q−(ν) ≡ 1

2

(
1 + ν 1 − ν2

−1 −(1 − ν)

)
.

Then the forward marching forms of the a-scheme can be cast into the matrix forms

−→q (j, n) = Q+(ν)−→q (j +
1

2
, n − 1

2
) + Q−(ν)−→q (j − 1

2
, n − 1

2
). (2.12)

2.1.2 Convection-diffusion equation

Refer to Ref.[2], consider the dimensionless form of the one-dimensional convection-diffusion

equation

∂u

∂t
+ a

∂u

∂x
− µ

∂2u

∂x2
= 0, (2.13)

where the wave velocity a, and the viscosity coefficient µ are constants. By using Gauss

divergence theorem in E2, ∮
S(V )

−→
h · d−→s = 0,

where
−→
h = (au − µux, u).

Let u = u(x, t; j, n) be defined by Eq. (2.3), it satisfies Eq. (2.13). Within SE(j, n), one has

(ut)
n
j = −a(ux)

n
j . (2.14)

Substituting Eq. (2.14) into Eq. (2.3), one has

u(x, t; j, n) = un
j + [(x − xj) − a(t − tn)] (ux)

n
j . (2.15)

In addition, we have the approximation

−→
h (x, t; j, n) = (au(x, t; j, n) − µux(x, t; j, n), u(x, t; j, n)). (2.16)

The approximation is defined by Eq. (2.7), the total flux which leaves the boundary of
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Figure 2.3: Conservation element for the leapfrog scheme.

CE±(j, n) also can be used here. And we obtain

4

△x2
F±(j, n) = ±1

2

[
(1 − ν2 + ξ)(ux)

n
j + (1 − ν2 − ξ)(ux)

n− 1
2

j± 1
2

]
+

2(1 ∓ ν)

△x

(
un

j − u
n− 1

2

j± 1
2

)
= 0,

(2.17)

where ν = a△t/△x and ξ = 4µ△t/△x2.

By Eq. (2.17), un
j and (ux)

n
j can be solved in term of (u)

n− 1
2

j± 1
2

and (ux)
n− 1

2

j± 1
2

if 1 − ν2 + ξ ̸= 0.

The time-marching scheme is then arrived by explicit iterations. Here we let (ux)
n
j ≡ △x

4
(ux)

n
j ,

−→q (j, n) ≡
( un

j

(ux)n
j

)
for all (j, n) ∈ Ω; Q+(ν) ≡ 1

2

(
1 − ν −(1 − ν2 − ξ)

1−ν2

1−ν2+ξ
− (1+ν)(1−ν2−ξ)

1−ν2+ξ

)
and

Q−(ν) ≡ 1
2

(
1 + ν 1 − ν2 − ξ

− (1−ν2)
1−ν2+ξ

− (1−ν)(1−ν2−ξ)
1−ν2+ξ

)
. Then it can be cast into the matrix forms like Eq.

(2.12). The a-µ scheme is formed, and it is easy to see it becomes a-scheme if µ = 0.

2.1.3 Comments on Leapfrog scheme

The leapfrog scheme

un+1
j − un−1

j

2△t
+

un
j+1 − un

j−1

2△x
= 0, (j, n + 1) ∈ Ω. (2.18)

can also be cast into the conservation form∮
S(FV (j,n+1))

−→
h · d−→s = 0, (j, n + 1) ∈ Ω. (2.19)

where FV (j, n + 1) is the region ABCD depicted in Figure 2.3. The average flux vectors
−→
h

at AB, BC, CD and DA are taking to be
(
aun+1

j , un+1
j

)
,
(
aun

j−1, u
n
j−1

)
,
(
aun−1

j , un−1
j

)
and(

aun
j+1, u

n
j+1

)
, respectively.
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The leapfrog scheme shares with the a-scheme three key nontraditional features, i.e., they both

are explicit two-way marching schemes, have space-time staggered stencils and their interface

fluxes can be evaluated without using any interpolation or extrapolation technique. The CESE

a-scheme can be derived into the leapfrog scheme, but not vice a versa.

2.2 Dissipative extension of the core scheme

For these extensions, instead of the conservation conditions over CE±(j, n), (j, n) ∈ Ω, the

less stringent conservation conditions∮
S(CE(j,n))

−→
h · d−→s = 0, (j, n) ∈ Ω (2.20)

are imposed. The local conservation condition Eq. (2.20) leads to a global conservation condition.

Because Eq. (2.20) ⇔

un
j =

1

2

{
(1 − ν) [u − (1 + ν)ux]

n− 1
2

j+ 1
2

+ (1 + ν) [u + (1 − ν)ux]
n− 1

2

j− 1
2

}
. (2.21)

Eq. (2.21) is shared by the a-scheme and any of its dissipative extensions. In other words, a

dissipative extension differs form a-scheme only in how (ux)
n
j is evaluated.

To proceed, consider any (j, n) ∈ Ω. Then
(
j±1/2, n − 1/2

)
∈ Ω. Let

u
′n
j± 1

2
≡ u

n− 1
2

j± 1
2

+ (
△t

2
) (ut)

n− 1
2

j± 1
2

. (2.22)

With the aid of (ux)
n
j ≡ △x

4
(ux)

n
j and the fact that the Courant number ν ≡ a△t/△x, a

substitution of the relation (ut)
n
j = −a (ux)

n
j into Eq. (2.22) results in

u
′n
j± 1

2
≡ (u − 2νux)

n− 1
2

j± 1
2

. (2.23)

Note that, to simplify notation, in the above and hereafter we adopt a convention that can be

explained using the expression on the right side of Eq. (2.23) as an example, i.e.,

u
′n
j± 1

2
≡ un

j± 1
2
− 2ν (ux)

n− 1
2

j± 1
2

. (2.24)

According to Eq. (2.24), u
′n
j± 1

2

can be interpreted as a frst-order Taylor’s approximation of u at
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Table 2.1: The stability bound for each scheme.

a-scheme c-scheme c-τ scheme a-µ scheme w-α scheme
|ν| < 1 |ν| < 1 ν2 ≤ 1, τ ≥ τ 0 (ν2) ν2 ≤ 1 |ν| < 1, α ≥ 0

(
j ± 1

2
, n

)
. Thus

(uc
x)

n
j ≡ △x

4

u
′n
j+ 1

2

− u
′n
j− 1

2

△x

 (2.25)

is a central-difference approximation of ∂u/∂x at (j, n). Note that: (i) the superscript "c" is used

to remind the reader of the central-difference nature of the term (uc
x)

n
j ; and (ii) by using Eqs.

(2.23) and (2.25), it becomes

(uc
x)

n
j =

1

4

[
(u − 2νux)

n− 1
2

j+ 1
2

− (u − 2νux)
n− 1

2

j− 1
2

]
. (2.26)

The Eq. (2.21) and Eq. (2.26) forms the c-scheme.

2.3 The Courant Number Insensitive scheme

2.3.1 Advantages and Disadvantages of the a-scheme and c-scheme

The advantages of the a-scheme: (i) It is nondissipative. (ii) Vary accurate when ν → 0.; The

disadvantages: (i) Due to its nondissipative nature, nonlinear extensions generally are unstable.

(ii) When |ν| → 1, the short-wavelength errors will not die out rapidly and appear as persistent

numerical wiggles. (iii) Comparing with the c-scheme, it costs more times to implement.

The advantages of the c-scheme: (i) Due to its dissipative nature, nonlinear extensions tend to

be more stable. (ii) When |ν| → 1, it is vary accurate. The short wavelength errors die out rapidly.

(iii) It much more superior than a-scheme in terms of ease of implementation.; The disadvantages:

(i) it is very dissipative when ν → 0.

2.3.2 Courant Number Insensitive scheme

The basic idea of the courant number insensitive scheme follows the Chang’s papers: [4][5].

In this section, the ideal solvers of Eq. (2.1) will be constructed. It is constructed such that they

possess all the advantages but none of the disadvantages of the a-scheme and the c-scheme.
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Figure 2.4: Definition of points P± and M±.

Specifically, each solver is formed by Eq. (2.21) and a new equation in which (ux)
n
j is evaluated

using a simple central-differencing procedure similar to that used to obtain (uc
x)

n
j and so obtained

is identical to (i) (uc
x)

n
j when |ν| → 1, (ii) (ua

x)
n
j when ν → 0. As such, each solver is comparable

to the c-scheme in ease of implementation, becomes the c-scheme when |ν| → 1 and becomes

the a-scheme when ν → 0. As a preliminary, we shall show that (ua
x)

n
j can also be cast into a

central-difference form when ν = 0.

To proceed, note that by assumption a ̸= 0. Thus ν = 0 if and only if △t = 0. Because∣∣EB
∣∣ =

∣∣AD
∣∣ =

∣∣FC
∣∣ = 0 (see Figure. 2.4) when △t = 0, the two conservation condition given

in Eq. (2.9) becomes

[u ± ux]
n
j = [u ∓ ux]

n− 1
2

j± 1
2

. (2.27)

An immediate result of Eq. (2.27) is

(ux)
n
j =

1

2

{
[u − ux]

n− 1
2

j+ 1
2

− [u + ux]
n− 1

2

j− 1
2

}
. (2.28)

Moreover, [u − ux]
n− 1

2

j+ 1
2

and [u + ux]
n− 1

2

j− 1
2

, respectively, represent approximations of u at the

midpoints of AE and AF ; and the distance between these two midpoint is △x/2. Thus, at ν = 0,

(ua
x)

n
j is a central-difference approximation of ux at (j, n).
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Let M+ and M− be the midpoints of AF and AE respectively.(see Figure 2.4) Also when

τ > 0, P+ is to the right of M+ and P− is to the left of M−. Let

u
′
(P±) ≡

[
u + (

△t

2
)ut ∓ (1 − τ)(

△x

4
)ux

]n− 1
2

j± 1
2

. (2.29)

By using (ux)
n
j ≡ △x

4
(ux)

n
j and (ut)

n
j = −a (ux)

n
j , one has

u
′
(P±) ≡ [u ∓ (1 ± 2ν − τ)ux]

n− 1
2

j± 1
2

. (2.30)

Because point A is the midpoint of EF , and
∣∣P+P−

∣∣ = (1 + τ)△x
2

,

(ûx)
n
j ≡

(
u

′
(P+) − u

′
(P−)

2(1 + τ)

)
, (τ ̸= −1), (2.31)

represents a central-difference analogue of ux at (j, n). Thus a solver for Eq. (2.1) (the c-τ

scheme) can be formed by Eq. (2.21) and

(ux)
n
j = (ûx)

n
j (2.32)

There has a sub-scheme of c-τ scheme, so called c-τ ∗ scheme. This scheme is just let τ = f(ν),

i.e., it means the number of τ is dependent of the number of ν. The question of finding the optimal

function f is on developing. It’s still an open problem.

2.4 The Wiggle-suppressing scheme

If discontinuities are present in a numerical solution, any scheme such as the c-scheme is

not equipped to suppress numerical wiggles that generally appear near these discontinuities. To

overcome this problem, we introduce a weighted-average method. It is the final scheme we use in

the realistic computation.

To proceed, let

(ûx+)n
j ≡ △x

4

(
u

′
(P+) − un

j

(1 + τ)△x/4

)
, and (2.33)

(ûx−)n
j ≡ △x

4

(
un

j − u
′
(P−)

(1 + τ)△x/4

)
.

Because
∣∣AP−

∣∣ =
∣∣AP+

∣∣ = (1 + τ)△x/4 (see Figure 2.4), it is easy to see that (ûx+)n
j and

(ûx+)n
j are two one-sided difference approximation of ux at the mesh point (j, n) with one being
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Figure 2.5: Ghost cells for the boundary.

evaluated from the left and another from the right. The new extension is formed by Eq. (2.21)

and

(ux)
n
j =

(
ω

′

−

)n

j
(ûx+)n

j +
(
ω

′

+

)n

j
(ûx−)n

j (2.34)

or

(ux)
n
j = (ω̃−)n

j (ûx+)n
j + (ω̃+)n

j (ûx−)n
j . (2.35)

The definition of weight factor ω
′
± and ω̃± is described in the appendix A.

2.5 Boundary treatment

At the boundary, we add the ghost cell. As depicted in Figure 2.5, we let

u
n− 1

2

jb++ 1
2

= u
n− 1

2

jb+− 1
2

; u
n− 1

2

xjb++ 1
2

= 0 or u
n− 1

2

xjb++ 1
2

= u
n− 1

2

xjb+− 1
2

, (2.36)

u
n− 1

2

jb−− 1
2

= u
n− 1

2

jb−+ 1
2

; u
n− 1

2

xjb−− 1
2

= 0 or u
n− 1

2

xjb−− 1
2

= u
n− 1

2

xjb−+ 1
2

.

, then there are CE+ (with the ghost cell) and CE− for un
jb+

and un
xjb+

(un
jb−

and un
xjb−

).

For the high-order scheme, the above method is not good enough. Because of the higher-

derivative term is always zero. We introduce a new approach for non-reflecting boundary

condition (NRBC) as

u
n− 1

2

jb++ 1
2

= u
n− 1

2

jb+− 1
2

+ △xu
n− 1

2

xjb+− 1
2

, (2.37)

u
n− 1

2

jb−− 1
2

= u
n− 1

2

jb−+ 1
2

+ △xu
n− 1

2

xjb−+ 1
2

.

, instead.
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Chapter 3 Momentum Space CESE Method

3.1 The core scheme of the momentum space CESE method

The momentum space CESE method is developed to conquer the problems of wave propagation

out of the boundary and ease the boundary treatment etc.. When the wave progresses out of

the boundary, no matter how boundary condition we use the information of the wave has lost.

To treat the scattering problem the momentum space CESE method shows its useful capability.

The original CESE method is second-order accuracy method. It approximates the numerical

solution by second-order Taylor expansion. The higher derivative term is truncated as an error.

It shows that the convection-diffusion equation Eq. (2.13) has loss its’ capability of accuracy

when the viscosity coefficient is large. However, it is natural problem of the second order scheme.

Because of the higher derivative term is truncated, the accuracy is only to first derivative term.

The higher-order CESE method is to be developed for more diffusive cases in the future. In

this section, we propose the momentum space CESE method. The higher derivative term is

transformed to the source term. The second order scheme is enough to keep the accuracy if the

source term is accurate enough. The momentum space CESE method uses the iterating process to

keep the source term accuracy. For the explicit scheme, it has to keep the stability, i.e. the △t can

not too large. It is time consuming for the explicit scheme. The iterating process added in each

time step. Even if the iterations is few, it is still time consuming. But it is not a big problem for

us, because of the space domain is smaller than the coordinate space method. For the quantum

problem we describe in chapter 6, the domain for the momentum space CESE method is only

[−5, 5]. For coordinate space method, the box size is must ≈ 3300 (see Ref.[13]). The total

computing time of the time evolution is comparable for the coordinate space method, even it is

shorter than it. However the momentum space CESE method is now a useful scheme to treat the
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large diffusive problems. But for the future the higher-order CESE method will be developed. The

higher-order CESE method can be easily extended to the momentum space CESE method. The

basic momentum space CESE method is proposed to see its capability to keep accuracy even the

equation is more diffusive.

3.1.1 Convection equation

Eq. (2.1) can be transformed into

∂ũ

∂t
+ iapũ = 0, (3.1)

by making the Fourier transformation, the system has the coordinate and the momentum

representation alternatively:

u(x, t) =

∫
ũ(p, t)eipxdp,

ũ(p, t) =
1

2π

∫
u(x, t)e−ipxdx.

For simplicity, we just use the same symbol u instead of ũ. The Eq. (3.1) becomes ∂u/∂t+iapu =

0. This is simply an ordinary differential equation. Its analytic solution is straightforward. With

initial condition u(p, t = 0), the solution at any time is u(p, t) = u(p, t = 0)e−ipat. Obviously,

the amplitude of the solution u(p, t) is stationary at any time in the momentum space. Though

the equation and its solution in momentum space are rather simple, they serve as the calibration

example for the momentum space CESE method. The Eq. (3.1) equivalently be written as

∇ · (0, u) = −iapu, (3.2)

where the operator ∇ = (∂/∂p, ∂/∂t). Consider p and t as the coordinates of a two-dimensional

Euclidean space E2. The conservation laws becomes∮
S(V )

−→
h · d−→s = −ia

∫
V

pudτ , (3.3)

where
−→
h = (0, u), dτ = dpdt and −iapu is the net flux per unit volume.

Let E2 be divided into non-overlapping rectangular regions referred to as conservation elements

CEs. The CEs with the mesh point (j, n) ∈ Ω are denoted by CE−(j, n) and CE+(j, n),

17



respectively. Let SE(j, n) be the rhombus shaped area DEGF depicted in Figure 3.1. The function

value at the the center of CE± can be approximated by u
n− 1

2

j± 1
2

, (up)
n− 1

2

j± 1
2

and (ut)
n− 1

2

j± 1
2

.

Definitions of CE and SE in E2.

For any (p, t) ∈ SE(j, n), u(p, t) and
−→
h (p, t) are approximated by u(p, t; j, n) and

−→
h (p, t; j, n), respectively. We define

u(p, t; j, n) = un
j + (up)

n
j (p − pj) + (ut)

n
j (t − tn), (3.4)

where (pj, t
n) is the coordinate of the mesh point (j, n) .

Note that un
j , (up)

n
j and (ut)

n
j are constants in SE(j, n). We also have

−→
h (p, t; j, n) = (0, u(x, t; j, n)). (3.5)

Requiring that u = u(p, t; j, n) satisfies Eq. (3.1) within SE(j, n), one has

(ut)
n
j = −iapju

n
j . (3.6)
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The approximation of the total flux leaving the boundary of CE±(j, n) is

F±(j, n) =

∮
S(CE±(j,n))

−→
h · d−→s = −ia

∫
CE±(j,n)

pudτ. (3.7)

By Eqs. (3.5) and (3.7), the total flux leaving CE±(j, n) can be derived as

F±(j, n) =
△p

2

{
un

j ± (up)
n
j −

[
(u)

n− 1
2

j± 1
2

∓ (up)
n− 1

2

j± 1
2

]}
= −ipj± 1

4

[
(u)

n− 1
2

j± 1
2

∓ (up)
n− 1

2

j± 1
2

+
1

4
(ut)

n− 1
2

j± 1
2

]
△p

2

△t

2
,

(3.8)

where we use Taylor expansion to estimate the function value at the center of CE± and we also

designate up = △p
4

up. In this section, the value of (ut)
n
j is easy to solve. Using the transform in

Eq. (3.6), we can easily obtain the value of (ut)
n
j . So the iterating process is not necessary. Here

we just show that the iterating process also works in linear cases. For the following nonlinear

cases the value of (ut)
n
j has convolution integral with unknown value. It is not easy to solve like

the simple case here. In order to prepare for nonlinear situation (in chapter 4). With the aid of

Eqs. (3.6) and (3.8), un
j and (up)

n
j can be solved in terms of (u)

n− 1
2

j± 1
2

and (up)
n− 1

2

j± 1
2

, and for further

iterations,

un
j,ℓ ± (up)

n
j,ℓ −

[
(u)

n− 1
2

j± 1
2

∓ (up)
n− 1

2

j± 1
2

]
= −ipj± 1

4

[
u

n− 1
2

j,ℓ−1 ∓ (up)
n− 1

2
j,ℓ−1

] △t

2
. (3.9)

We can check the convergence of un
j . Eq. (3.9) can also be derived from Eq. (3.7) by

approximating the source term to the Taylor expansion of the center of
∣∣BD

∣∣ and
∣∣CD

∣∣ . Here the

index ℓ is the number of time that Eq. (3.9) has been iterated, and un
j solved by Eq. (3.8) can be

denoted by un
j,0. Using the Cauchy criterion, we define the convergence as∣∣un

j,ℓ − un
j,ℓ−1

∣∣ < ϵ. (3.10)

We stop the iterations if the convergence criterion is reached for a plausible small ϵ. The criterion

is usually arrived within iterations less than ten times.

3.1.2 Convection-diffusion equation

In the momentum space, Eq. (2.13) can be transformed into

∂ũ

∂t
+ (iap + µp2)ũ = 0, (3.11)
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by making the Fourier transformation. For simplicity, we just use the same symbol u instead of ũ.

The Eq. (3.11) becomes ∂u/∂t + (iap + µp2)u = 0. By using Gauss divergence theorem in E2∮
S(V )

−→
h · d−→s = −

∫
V

(iap + µp2)udτ, (3.12)

where
−→
h is defined by Eq. (3.5), too. Requirig that u = u(p, t; j, n) defined by Eq. (3.4) satisfies

Eq. (3.11) within SE(j, n), one has

(ut)
n
j = −(iapj + µp2

j)u
n
j . (3.13)

The approximation of the total flux leaving the boundary of CE±(j, n) is

F±(j, n) =

∮
S(CE±(j,n))

−→
h · d−→s = −i

∫
CE±(j,n)

(iap + µp2)udτ. (3.14)

By Eqs. (3.4) and (3.14), the total flux leaving CE±(j, n) can be derived as

F±(j, n) =
△p

2

{
un

j ± (up)
n
j −

[
(u)

n− 1
2

j± 1
2

∓ (up)
n− 1

2

j± 1
2

]}
(3.15)

= −(iapj± 1
4

+ µp2
j± 1

4
)

[
(u)

n− 1
2

j± 1
2

∓ (up)
n− 1

2

j± 1
2

+
△t

4
(ut)

n− 1
2

j± 1
2

]
△p

2

△t

2
,

where the conditions are similar to the previous simple wave problem. With the aid of Eqs. (3.15)

and (3.13), un
j and (up)

n
j can be solved iteratively in terms of (u)

n− 1
2

j± 1
2

and (up)
n− 1

2

j± 1
2

. This explicit

time-marching scheme is derived similar to the previous simple wave case. The iterating process

can be added in the source term, too. But for the equation, it is not necessary to use the iterating

process. So we do not go detail to describe it. For more details, we will show in the nonlinear

chapter.

3.2 Boundary treatment

The boundary treatment in the momentum space CESE method is quite easy. Because the

momentum is directly related to the kinetic energy, extremely large energy for a system is usually

unphysical. So, only a moderate momentum region will be sufficient for numerical modeling.

Also, the wave will simply vanish at the numerical boundary and cause no trouble like the

methods in coordinate space. The non-reflecting boundary condition for momentum space CESE

method is obtained in a simple way. That is when the numerical solution at the boundary, we add
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the ghost cell. As depicted in Figure 2.5, we let

u
n− 1

2

jb++ 1
2

= 0; u
n− 1

2

pjb++ 1
2

= 0, (3.16)

u
n− 1

2

jb−− 1
2

= 0; u
n− 1

2

pjb−− 1
2

= 0.

, then there are CE+ (with the ghost cell) and CE− for un
jb+

and un
pjb+

(un
jb−

and un
pjb−

).
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Chapter 4 Nonlinear Problem

4.1 Korteweg-de Vries equation

The Korteweg-de Vries (KdV) equation is a classic example of the nonlinear system [16] The

general form is

1

β

∂u

∂t
+

α

γ
u
∂u

∂x
+

1

γ3

∂3u

∂x3
= 0, (4.1)

where α, β and γ are non-zero constants. The system contains both nonlinearity and dispersion.

For convenience, we study in this section the scaled equation

∂u

∂t
− 6u

∂u

∂x
+

∂3u

∂x3
= 0. (4.2)

By making the Fourier transformation and some manipulations, the momentum space equation

is

∂ũ(p, t)

∂t
= 3ip

∫ ∞

−∞
ũ(q, t)ũ(p − q, t)dq + ip3ũ(p, t). (4.3)

For simplicity, we just use the same symbol u instead of ũ. The Eq. (4.3) becomes

∂u(p, t)/∂t = 3ip

∫ ∞

−∞
u(q, t)u(p − q, t)dq + ip3u(p, t). Let

−→
h = (0, u) and apply the Gauss

divergence theorem in E2, Eq. (4.3) becomes∮
S(V )

−→
h · d−→s =

∫
V

[
3ip

∫ ∞

−∞
u(q, t)u(p − q, t)dq + ip3u(p, t)

]
dτ , (4.4)

where dτ = dpdt. In the right-hand side of Eq. (4.4) is the source term. We can see that for

a nonlinear system, the source term contains the convolution integral with unknown function.

Hence the straightforward explicit iteration scheme described in previous section does not work.

I implement two new ideas for the treatment of nonlinear problems in momentum space CESE

method. First, at each time level, we calculate u(p, t) and ∂u(p, t)/∂p at grids of half spacing,

instead of spacing at △p in previous linear examples. Then the convolution integral can be

calculated by the Simpson’s rule [19]. Next, for every half-marching time step, say from tn−
1
2 to

tn, we begin by use u and up at tn−
1
2 for the source term to find the solution at tn; then use the
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obtained for source term calculation to generate new solution iteratively till the generated solution

converged. Usually, the results converge within a few iterations.

To make it clear, from the conservation laws for CE±(j, n),∮
S(CE±(j,n))

−→
h (p, t; j, n)·d−→s = 3ip

∫
CE±(j,n)

[∫ ∞

−∞
u(q, t)u(p − q, t)dq

]
dτ+

∫
CE±(j,n)

ip3u(p, t)dτ ,

(4.5)

where
−→
h (p, t; j, n) = (0, u(p, t; j, n)). We can derive the following core scheme

un
j =

1

2

{
[u − up]

n− 1
2

j+ 1
2

+ [u + up]
n− 1

2

j− 1
2

}
+

F

△p
+

G

△p
, (4.6)

(up)
n
j =

1

2

{
[u − up]

n− 1
2

j+ 1
2

− [u + up]
n− 1

2

j− 1
2

}
+

F

△p
− G

△p
,

where we designated un
j = u(pj, t

n), (up)
n
j ≡ △p

4
(up)

n
j , and △τ = △t

2
△p
2

for shorthand. And

{F =

{
3ipi+ 1

4

∑
j

u(pi+ 1
4
− q, tn−

1
2 )u(qj, t

n− 1
2 )△p

2
+ ip3

i+ 1
4

u(pi+ 1
4
, tn−

1
2 )

}
△τ ,

G =

{
3ipi− 1

4

∑
j

u(pi− 1
4
− q, tn−

1
2 )u(qj, t

n− 1
2 )△p

2
+ ip3

i− 1
4

u(pi− 1
4
, tn−

1
2 )

}
△τ .

(4.7)

Here the value of u(pi+ 1
4
, tn−

1
2 ) is obtained by the Taylor expansion in the SE(j, n − 1

2
) or

SE(j ± 1
2
, n − 1

2
). It is obtained as

u(pi± 1
4
, tn−

1
2 ) = u(pi± 1

2
, tn−

1
2 ) ∓ up(pi± 1

2
, tn−

1
2 ) (4.8)

or u(pi± 1
4
, tn−

1
2 ) = u(pi, t

n− 1
2 ) ± up(pi, t

n− 1
2 ).

The value of u(pi+ 1
4
− q, tn−

1
2 ) may locate out of the computational domain in some specific value

i and j. But there is no problem in the momentum space method. It is just to set zero when the

node point is out of the domain. And all of the other values of u(pi+ 1
4
− q, tn−

1
2 ) are located at the

numerical point for every i and j, when all of the half step grid is solved. The right-hand side of

the Eq. (4.5) is called the source term, and for discrete form is defined as F and G for CE+ and

CE−, respectively. But the value of u is centered in the space-time domain (CE±). The former

description is not correct. In the linear cases the centered value is just expanded as the Taylor

expansion of space and time. But for this nonlinear case, the value of ut is not trivial. So we must
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impose the iterations to obtain the accurate solution. The iterating process is formed by renew

the corresponding source term in the new value of u and up. For more clear, we write down the

iterating explicit scheme as

un
j,ℓ =

1

2

{
[u − up]

n− 1
2

j+ 1
2

+ [u + up]
n− 1

2

j− 1
2

}
+

Fℓ−1

△p
+

Gℓ−1

△p
, (4.9)

(up)
n
j,ℓ =

1

2

{
[u − up]

n− 1
2

j+ 1
2

− [u + up]
n− 1

2

j− 1
2

}
+

Fℓ−1

△p
− Gℓ−1

△p
,

where

Fℓ−1 = (4.10){
3ipi+ 1

4

∑
j

uℓ−1(pi+ 1
4
− q, tn)uℓ−1(qj, t

n)
△p

2
+ ip3

i+ 1
4
uℓ−1(pi+ 1

4
, tn)

}
△τ ,

Gℓ−1 = {
3ipi− 1

4

∑
j

uℓ−1(pi− 1
4
− q, tn)uℓ−1(qj, t

n)
△p

2
+ ip3

i− 1
4
uℓ−1(pi− 1

4
, tn)

}
△τ ,

and uℓ−1(pi, t
n) ≡ un

j,ℓ−1. The criterion of the above iterating process is defined as Eq. (3.10). The

Eq. (4.9) is the final core-scheme for the KdV equation.

4.2 The Shock wave problem, Burgers’s equation

In this section, we consider the Burgers’s equation as an example of the nonlinear system and

shock wave problem. The Burgers’s equation is written as

∂u

∂t
+ u

∂u

∂x
= υ

∂2u

∂x2
(υ > 0). (4.11)

In Burgers’s equation the term on the right may be interpreted as a dissipative effect; namely as

the removal of energy from the system desribed by the equation. Burgers’s equation serves to

model a gas shock wave in which energy dissipation is present (υ > 0). The steepening effect of

nonlinearity in the second term on the left can be balanced by the dissipative effect, leading to a

traveling wave of constant form, unlike the case corresponding to υ = 0 in which a smooth initial

condition evolved into a discontinuous solution (shock). The steady traveling wave solution for

Burgers’s equation is the so-called Burgers’s shock wave.

By making the Fourier transformation and some manipulations, the momentum space equation
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is

∂ũ(p, t)

∂t
= −1

2
ip

∫ ∞

−∞
ũ(q, t)ũ(p − q, t)dq − υp2ũ(p, t). (4.12)

For simplicity, we just use the same symbol u instead of ũ. The Eq. (4.12) becomes

∂u(p, t)/∂t = −1
2
ip

∫ ∞

−∞
u(q, t)u(p − q, t)dq − υp2u(p, t). Let

−→
h = (0, u) and apply the Gauss

divergence theorem in E2, Eq. (4.12) becomes∮
S(V )

−→
h · d−→s =

∫
V

[
−1

2
ip

∫ ∞

−∞
u(q, t)u(p − q, t)dq − υp2u(p, t)

]
dτ , (4.13)

where dτ = dpdt. From the conservation laws for CE±(j, n),∮
S(CE±(j,n))

−→
h (p, t; j, n)·d−→s = −1

2
ip

∫
CE±(j,n)

[∫ ∞

−∞
u(q, t)u(p − q, t)dq

]
dτ−

∫
CE±(j,n)

υp2u(p, t)dτ ,

(4.14)

where
−→
h (p, t; j, n) = (0, u(p, t; j, n)). We can derive the following core scheme same as Eq.

(4.6), where we also designated un
j = u(pj, t

n), (up)
n
j ≡ △p

4
(up)

n
j , and △τ = △t

2
△p
2

for shorthand.

And

F = (4.15){
−1

2
ipi+ 1

4

∑
j

u(pi+ 1
4
− qj, t

n− 1
2 )u(qj, t

n− 1
2 )
△p

2
− υp2

i+ 1
4
u(pi+ 1

4
, tn−

1
2 )

}
△τ ,

G = {
−1

2
ipi− 1

4

∑
j

u(pi− 1
4
− qj, t

n− 1
2 )u(qj, t

n− 1
2 )
△p

2
− υp2

i− 1
4
u(pi− 1

4
, tn−

1
2 )

}
△τ .

Here the value of u(pi+ 1
4
, tn−

1
2 ) is obtained by the Taylor expansion in the SE(j, n − 1

2
) or

SE(j ± 1
2
, n − 1

2
), too. The value of u(pi+ 1

4
− q, tn−

1
2 ) may locate out of the computational

domain in some specific value i and j. It is just to set zero as before. And all of the other values

of u(pi+ 1
4
− q, tn−

1
2 ) are treated in the same way. The right-hand side of the Eq. (4.14) is called

the source term, and for discrete form is defined as F and G for CE+ and CE−, respectively. But

the value of u is centered in the space-time domain (CE±). The iterative process is used for this

problem, too. The iterating process is formed by updating the corresponding source term in the
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new value of u and up. For more clear, we write down the iterating explicit scheme as Eq. (4.9),

where

Fℓ−1 = (4.16){
−1

2
ipi+ 1

4

∑
j

uℓ−1(pi+ 1
4
− qj, t

n)uℓ−1(qj, t
n)
△p

2
− υp2

i+ 1
4
uℓ−1(pi+ 1

4
, tn)

}
△τ ,

Gℓ−1 = {
−1

2
ipi− 1

4

∑
j

uℓ−1(pi− 1
4
− qj, t

n)uℓ−1(qj, t
n)
△p

2
− υp2

i− 1
4
uℓ−1(pi− 1

4
, tn)

}
△τ ,

and uℓ−1(pi, t
n) ≡ un

j,ℓ−1. The criterion of the above iterative process is defined as Eq. (3.10). The

Eq. (4.9) is the final core-scheme for the Burgers’s equation, too.

26



Chapter 5 Non-uniform grid Momentum Space CESE Method

The non-uniform grid momentum space CESE method is developed in this chapter. The main

goal is to treat Burgers’s equation for less grid points. The solution of Burgers’s equation has a

shock in center of domain. Dense grid near the shock region is necessary to capture the shock.

5.1 Basic derivation

Consider the space-time mesh (−L ≤ x ≤ L and t ≥ 0) depicted in Figure 5.1. Here (i) L > 0

is a given length, and (ii) the mesh structure in the region −L ≤ x ≤ 0 is the mirror image of that

in the region 0 ≤ x ≤ L. Let the domain 0 ≤ x ≤ L. on the x-coordinate line be divided into K

intervals using the dividing coordinate points x̂1, x̂2, ..., x̂K−1 where

0 < x̂1 < x̂2 < ... < x̂K−1 < L. (5.1)

Let

Lk ≡ x̂k − x̂k−1, k = 1, 2, ..., K (5.2)

with

x̂0 ≡ 0 and x̂K ≡ L. (5.3)

Then
K∑

k=1

Lk = L, and Lk > 0, k = 1, 2, ..., K. (5.4)

Moreover, for any k, let the interval (x̂k−1, x̂k) be divided into M uniform sub-intervals with

the dividing points x̂
(1)
k−1, x̂

(2)
k−1, ..., x̂

(M−1)
k−1 where M > 0 is a given integer and

x̂k−1 < x̂
(1)
k−1 < x̂

(2)
k−1 < ... < x̂

(M−1)
k−1 < x̂k. (5.5)

Thus

x̂
(m)
k−1 − x̂

(m−1)
k−1 = ℓk, m = 1, 2, ...,M (5.6)

where

x̂
(0)
k−1 ≡ x̂k−1 and x̂

(M)
k−1 ≡ x̂k. (5.7)
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Figure 5.1: A space-time mesh with nonuniform spatial intervals (K = M = 2).

For our discussion, M is usually 2.

Consider the PDE given in Eq. (4.12), and apply the conservation laws in the unity space-time

domain. The similar equation Eq. (4.13) is followed. The CE+(j, n) and CE−(j, n) with the

different size of the spatial domain, but the conservation laws are never changed. From the

conservation laws for CE±(j, n),∮
S(CE±(j,n))

−→
h (p, t; j, n)·d−→s = −1

2
ip

∫
CE±(j,n)

[∫ ∞

−∞
u(q, t)u(p − q, t)dq

]
dτ−

∫
CE±(j,n)

υp2u(p, t)dτ ,

(5.8)

where
−→
h (p, t; j, n) = (0, u(p, t; j, n)). The CE and SE is depicted in Figure 5.2. For any

(x, t) ∈ SE(j, n), u(x, t), and
−→
h (x, t) are approximated by u(x, t; j, n) and

−→
h (x, t; j, n),

respectively. Using the first order Taylor’s expansion of u(x, t) at (xj, t
n), we define

u(x, t; j, n) = un
j + (ux)

n
j (x − xj) + (ut)

n
j (t − tn). (5.9)
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Figure 5.2: The SE and CE for a non-uniform mesh. (a) CE−(j, n). (b) CE+(j, n). (c) CE(j, n).
(d)SE(j, n).
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Let
∣∣CD

∣∣ =
△p+

j

2
and

∣∣BD
∣∣ =

△p−j
2

We can derive the following conservation laws: CE+ ⇒[
un

j +
△p+

j

4
(up)

n
j − u

n− 1
2

j+ 1
2

+
△p+

j

4
(up)

n− 1
2

j+ 1
2

]
△p+

j

2
(5.10)

=

[
−1

2
ipi+ 1

4

∑
j

u(pi+ 1
4
− qj, t

n− 1
2 )u(qj, t

n− 1
2 )
△pj

2
− υp2

i+ 1
4
u(pi+ 1

4
, tn−

1
2 )

]
△p+

j

2

△t

2
.

CE− ⇒ [
un

j −
△p−j

4
(up)

n
j − u

n− 1
2

j− 1
2

−
△p+

j

4
(up)

n− 1
2

j− 1
2

]
△p−j

2
(5.11)

=

[
−1

2
ipi− 1

4

∑
j

u(pi− 1
4
− qj, t

n− 1
2 )u(qj, t

n− 1
2 )
△pj

2
− υp2

i− 1
4
u(pi− 1

4
, tn−

1
2 )

]
△p−j

2

△t

2
.

Let

F ≡ (5.12)[
−1

2
ipi+ 1

4

∑
j

u(pi+ 1
4
− qj, t

n− 1
2 )u(qj, t

n− 1
2 )
△pj

2
− υp2

i+ 1
4
u(pi+ 1

4
, tn−

1
2 )

]
△p+

j

2

△t

2
,

G ≡ [
−1

2
ipi− 1

4

∑
j

u(pi− 1
4
− qj, t

n− 1
2 )u(qj, t

n− 1
2 )
△pj

2
− υp2

i− 1
4
u(pi− 1

4
, tn−

1
2 )

]
△p−j

2

△t

2
,

and

F
′ ≡ 2

△p+
j

F ; G
′ ≡ 2

△p−j
G. (5.13)

We define

ν− ≡ 1

4
△p−j and ν+ =

1

4
△p+

j (5.14)

for simplify our description. The Eq. (5.13) becomes F
′ ≡ 1

2ν+
F ; G

′ ≡ 1
2ν−

G. The core scheme

is formed by an explicit way as

un
j =

1

ν− + ν+

{
ν−u

n− 1
2

j+ 1
2

− ν−ν+ (up)
n− 1

2

j+ 1
2

+ ν+u
n− 1

2

j− 1
2

+ ν−ν+ (up)
n− 1

2

j− 1
2

}
(5.15)

+
ν−F

′

ν− + ν+

+
ν+G

′

ν− + ν+

(up)
n
j =

1

ν− + ν+

{
u

n− 1
2

j+ 1
2

− ν+ (up)
n− 1

2

j+ 1
2

− u
n− 1

2

j− 1
2

− ν− (up)
n− 1

2

j− 1
2

}
+

F
′

ν− + ν+

− G
′

ν− + ν+

The value of u(pi+ 1
4
, tn−

1
2 ) is used in the similar way as before, and the convolution treatment is
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similar,too. But a trouble occurs in computing the value of u(pi+ 1
4
− qj, t

n− 1
2 ). The values for

most i and j are not in the numerical nodes. In orther word, we do not have these numerical data.

It is much difficult and complicated than uniform grid problem. Some people will say it can be

interpolated by the known data. This is not I want to do. The CESE method compute flux in

a simple way. If I use interpolation to solve these values, I will violate the main idea of CESE

method. So I uses the nearest node to expand these points in SE. It is obtained in the similar

way about the flux computation, i.e. use the Taylor expansion from the solution element. The

non-uniform grid momentum space CESE method is consistent for previous CESE method. The

right-hand side of the Eq. (5.10) and Eq. (5.11) is called the source term, and for discrete form is

defined as F and G for CE+ and CE−, respectively. But the above interpretation is not correct

for the source term calculation. The value of u is centered in the space-time domain (CE±). So

the Eq. (5.15) is modified by an iterating processing as

un
j,ℓ =

1

ν− + ν+

{
ν−u

n− 1
2

j+ 1
2

− ν−ν+ (up)
n− 1

2

j+ 1
2

+ ν+u
n− 1

2

j− 1
2

+ ν−ν+ (up)
n− 1

2

j− 1
2

}
(5.16)

+
ν−F

′

ℓ−1

ν− + ν+

+
ν+G

′

ℓ−1

ν− + ν+

,

(up)
n
j,ℓ =

1

ν− + ν+

{
u

n− 1
2

j+ 1
2

− ν+ (up)
n− 1

2

j+ 1
2

− u
n− 1

2

j− 1
2

− ν− (up)
n− 1

2

j− 1
2

}
+

F
′

ℓ−1

ν− + ν+

−
G

′

ℓ−1

ν− + ν+

,

where

Fℓ−1 = (5.17){
−1

2
ipi+ 1

4

∑
j

uℓ−1(pi+ 1
4
− qj, t

n)uℓ−1(qj, t
n)
△pj

2
− υp2

i+ 1
4
uℓ−1(pi+ 1

4
, tn)

}
△p+

j

2

△t

2
,

Gℓ−1 = {
−1

2
ipi− 1

4

∑
j

uℓ−1(pi− 1
4
− qj, t

n)uℓ−1(qj, t
n)
△pj

2
− υp2

i− 1
4
uℓ−1(pi− 1

4
, tn)

}
△p−j

2

△t

2
.

and uℓ−1(pi, t
n) ≡ un

j,ℓ−1. The criterion of the above iterating process is defined as Eq. (3.10). The

Eq. (5.16) is the core-scheme for the non-uniform grid momentum space CESE method.
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5.2 A special technique to approve the accuracy

The non-uniform grid momentum space CESE method is described in the before section. The

convolution integral is computed by the simple Riemann integral. If we want more accurate of the

convolution integral, the Gauss-Chebyshev-Lobatto quadrature is required. The motivation of this

section is to decreasing the iterating steps. The more accurate convolution integral will decreasing

the iterating steps, and makes this non-uniform grid method more effectively.

The Gauss-Chebyshev-Lobatto grid is described as

θj =
N − j

N
π, j = 0, 1, 2, ..., N, θj ∈ [π, 0] (5.18)

yj = cos (θj) ∈ [−1, 1]

qj = R · yj ∈ [−R,R]

The quadrature formula is∫ R

−R

F (q)dq = R

∫ 1

−1

F (Ry)dy = R
N∑

j=0

wjF (Ryj)
√

1 − y2
j (5.19)

where

wj =

{
π

2N
, j = 0, N

π
N

, j = 1, 2, ..., N − 1
(5.20)

The convolution integral in Eq. (5.8) is∫ ∞

−∞
u(q, t)u(p − q, t)dq. (5.21)

Without loss of generality, we let the computation domain to be [−R,R] Eq. (5.21) becomes∫ R

−R

u(q, t)u(p − q, t)dq. (5.22)

We use the basic idea of the calculas "change of variable". The Eq. (5.22) becomes∫ R

−R

u(q, t)u(p − q, t)dq = R

∫ 1

−1

u(Ry, t)u(p − Ry, t)dy. (5.23)

= R
N∑

j=0

wju(Ryj, t)u(p − Ryj, t)
√

1 − y2
j

where θj, rj , wj are defined in Eq. (5.18). This convolution integral is computed in the

Gauss-Chebyshev-Lobatto quadrature. But it is not I want, the grids is not dense in center but
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Figure 5.3: The transformation function for non-uniform grid momentum space CESE method.
(a).The Eq. (5.21) (b).The Eq. (5.22).

dense in boundary. We introduce a new way of change of variabe to obtain the dense grids in

center. And it is transformed to Gauss-Chebyshev-Lobatto grids, too. Let

q =
y√

(1+R2)
R2 − y2

, y ∈ [−1, 1] ; x ∈ [−R,R] . (5.24)

We use the Gauss-Chebyshev-Lobatto grids to generate yj, j = 1, 2, ..., N. The transformation

defined in Eq. (5.24) transform the Gauss-Chebyshev-Lobatto grids to the dense grids in center.

Then Eq. (5.22) can be solved in∫ R

−R

u(q, t)u(p − q, t)dq = R

∫ 1

−1

u(
y√

(1+R2)
R2 − y2

, t)u(p − y√
(1+R2)

R2 − y2

, t)
dq

dy
dy.

where dq
dy

= d
dy

 y
r

(1+R2)

R2 −y2

 . The Gauss-Chebyshev-Lobatto quadrature is solved in a similar

way. We introduce the another transformation as

x = tanh−1(tanh(R)y), y ∈ [−1, 1] ; x ∈ [−R,R] . (5.25)

These two transformation function are depicted in Figure 5.3.
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Chapter 6 A Quantum Mechanical Problem

The momentum space time dependent Schrödinger equation (TDSE) with intense laser pulse is

described as

i
∂

∂t
|ψ⟩ =

p2

2
|ψ⟩ + V (p) |ψ⟩ − qA(t)p |ψ⟩ (6.1)

where V : potential, A : vector potential and q : electric charge. This is the dimensionless form,

and the electric charge q = −1 for electron. The TDSE we considered here is the single atom,

single-active electron system.

We use the so-called "soft-Coulomb" potential (Figure 6.1) which behaves asympotically

as a one-dimensional Coulomb potential and supports an infinite number of bound states. The

"soft-Coulomb" potential is defined as

V (x) = − 1√
c − x2

. (6.2)

With c = 1.41, the ground-state energy is the same as for Ar atoms: ϵ0 = −0.58 a.u. This class of

potentials has been shown to be useful to reproduce the main features of laser-atom interactions

in the strong-field regime, for a linearly polarized laser. The corresponding momentum space

potential is defined as

V (p) =

{ − 1
π
K0(

√
c |p|), p ̸= 0

− 1
π

ln(R +
√

R2 + c) + 1
2π

ln(c), p = 0
(6.3)

where K0 is the modified Bessel function of the 2nd kind.

The electric field is choosed by a practical sin2 pluse ,

E(t) = E0 sin(ωt) sin2(
πt

T
), t ∈ [0, T ] . (6.4)

The vector potential is defined by E(t) = − ∂
∂t

A(t) (see Figure 6.2),

A(t) =
E0

2ω
cos(ωt) − E0

4

[
cos(ω + Ω)t

ω + Ω
+

cos(ω − Ω)t

ω − Ω

]
+

E0

2

Ω2

ω (ω2 − Ω2)
(6.5)

where Ω = 2π
T

.
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Figure 6.1: The soft-Coulomb potential.

Figure 6.2: The vector potential.
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When atoms are submitted to intense infrared laser pulses with peak intensities around

I ≈ 1014Wcm−2, the energy distributions of the fast photoelectrons can exhibit strong variations,

up to one-(or even two-) order(s) of magnitude, when the peak intensity changes by only a few

percents. Soon, it was realized that these effects could be related to the structure of the atomic

system considered. This was clearly evidenced in a series of papers devoted to the interpretation

of experiments conducted on Ar atoms submitted to Ti: sapphire laser pulses (ω = 0.0577 a.u.

and time durations T ≈ 120 f.s.) Indeed, by solving the time-dependent Schrödinger equation

(TDSE) for a model argon atom, it has been possible to reproduce the high-energy structures in

the photoelectron spectra with remarkable agreement.

6.1 Steady state problem

At the beginning of simulation, we must have the ground state wave function. The static state

Schrödinger equation must be solved.(
p2

2
+ V (x)

)
|ψ⟩ = E |ψ⟩ (6.6)

We introduced a simple man method to let problem into the eigenvalue problem.

p2
i

2
ψ(pi) + △p

∑
j

V (pi − pj)ψ(pj) = Eψ(pi) (6.7)

This becomes an eigenvalue problem (AX = λX). In this article, we use the QZ algorithm or JD

solver to solve this problem. For large scale problem, the JD solver has been shows it excellent

talent.

6.2 Time evolution, using momentum space CESE method

The discrete form of Eq. (6.1) is

i
∂

∂t
ψ(pj, t) =

(
p2

j

2
− qA(t)pj

)
ψ(pj, t) +

∑
k

V (pj − pk)△pψ(pk, t) (6.8)

It can be transform to

∂

∂t
ψ(pj, t) = −i

(
p2

j

2
− qA(t)pj

)
ψ(pj, t) − i

∑
k

V (pj − pk)△pψ(pk, t) (6.9)

The momentum space CESE method for this case can also be derived. And the explicit scheme is
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derived in the similar way. The iterating explicit scheme is same as Eq. (4.9). But the source term

must be changed to the right-hand side of Eq. (6.9). The derivation is completely similar, so we

do not derive it again.

6.3 Renormalization

At the end of the simulation we obtain the final state wave function ψ(pi) = ⟨pi|ψ⟩ which

we map onto the energy eigenstates: ψ(Ei) = ⟨Ei|pi⟩ ⟨pi|ψ⟩ where the matrix ⟨Ei|pi⟩ are

the eigenvectors of the Hamiltonian
〈
p
′
i|H|pi

〉
=

〈
p
′
i|E

′
i

〉 〈
E

′
i |H|Ei

〉
⟨Ei|pi⟩ . (Note that for

continuous states, ±pi correspond to the same Ei ∼ p2
i

2
.) The middle matrix is the diagonalized

Hamiltonian. At this point, the state vector has the normalization∑
i
|⟨Ei|ψ⟩|2 = 1.

For positive energies, we interpolate this discrete state ψ (Ei) onto a continuous probability

function Prob(E) using a step function mapping:

Pr ob(E) =
∑

i
|⟨Ei|ψ⟩|2 × h

(
Ei+ 1

2
− E

)
× h

(
E − Ei− 1

2

)
/
(
Ei+ 1

2
− Ei− 1

2

)
.

Here h (x) is the Heaviside function h(x > 0) = 1 and h(x < 0) = 0. The half interval

energy Ei+ 1
2
≡

E
i+1

2
−E

i− 1
2

2
. This continuous function Prob(E) now has the correct probability

normalization. And
∫ ∞

0

Prob(E)dE, can be interpreted as the probability per unit energy ( in

atomic units ) of finding an ionized electron.
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Chapter 7 Numerical Results for basic problems

All of the one-dimensional PDEs described in the previous section are tested using appropriate

model problems. The coordinate space and momentum space CESE method are tested with

respect to different kind of PDE. The numerical results are compared with the analytic solution

to examine their accuracy. Here we present the error analysis for this method. We define the

root-mean-square error at final moment as follow:

E(△x) =

√√√√ 1

N

N∑
j=0

(u(xj, tfinal) − uexact)
2, (7.1)

E(△p) =

√√√√ 1

N

N∑
j=0

(u(pj, tfinal) − uexact)
2.

For the quantum mechanical problem described in previous section, it has no analytic solution

about it. The numerical result of the stationary state energy is showed to examine their accuracy.

Here we can compare the results about our simulation with several results proposed at other

papers [13][14].

7.1 Coordinate space CESE Method

7.1.1 The a-scheme and the c-scheme

Consider the first-order wave equation Eq. (2.1) where a = 5 in the domain −5 ≤ x ≤ 5. The

initial condition is described as

u(x, 0) =

{
sin(ωx), x ∈ [−1, 1]

0 , others
(7.2)

or

u(x, 0) = c1 exp(
−(x − c2)

2

2c2
3

) (7.3)

where ω = 2π, c1 = 0, c2 = 0, c3 = 1 (c1: height of the Gaussian peak, c2: position of the center

of the peak, c3: width of the bump). With non-reflecting boundary condition imposed at x = −5
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and x = 5, the exact solution is

ue(x, t) =

{
sin(ω(x − at)), x − at ∈ [−1, 1]

0 , others
(7.4)

or

u(x, t) = c1 exp(
−((x − at) − c2)

2

2c2
3

) (7.5)

This problem is solved by using the CESE a-scheme and c-scheme, respectively. The problem

here we considered with the Courant number (CFL) is 0.25, △x = 0.01, △t = 0.0005 and time

duration T = 1. The numerical results for the a-scheme are depicted in Figure 7.1 and Figure 7.2.

And the numerical results for the c-scheme are depicted in Figure 7.3 and Figure 7.4.

7.1.2 The a-µ scheme

The a-µ scheme is used to solve the convection-diffusion equation Eq. (2.13) where a = 5

and µ = 0.1 in the domain −5 ≤ x ≤ 5. The initial condition is described as Eq. 7.3 with the

coefficient c1 = 1√
2
, c2 = 0, c3 =

√
2. With non-reflecting boundary condition imposed at x = −5

and x = 5, the exact solution is

u(x, t) =
c1√

1 + µt
exp(

−((x − at) − c2)
2

2c2
3(1 + µt)

) (7.6)

The problem here we considered with the Courant number (CFL) is 0.25, △x = 0.01,

△t = 0.0005 and time duration T = 2. The numerical results for the a-µ scheme are depicted in

Figure 7.5. It shows the second-order scheme is not works well. So, the higher-order scheme is

necessary.

7.1.3 The wiggle-suppressing scheme

If discontinuities, non-differentiable, or shocks are presented in a numerical solution, any

scheme introduced in above section is not equipped to suppress numerical wiggles that generally

appear near these points. This extension scheme is called w − α scheme which is introduced

as a remedy for this deficiency. We use the extension of the c-τ ∗ scheme introduced in above

section. The simplest function of the c-τ ∗ scheme results from the choice f(s) =
√

s, i.e.,
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τ = f(ν2) = |ν| , where |ν| < 1. We use the condition as Sec. 7.1.1. In Figure 7.6 and 7.7. We

show the excellent solution for this scheme. The numerical wiggles are obviously disappearing as

we expect.

7.2 Momentum space CESE Method

7.2.1 Korteweg-de Vries equation

The KdV Eq. (4.2) has a solitonic solution

u(x, t) = − c

2
sec h2(

√
c

2
(x − ct + x0)). (7.7)

Note that the solution depends on speed c of soliton. So, multiply the solution by an arbitrary

constant is no longer a solution. This invalidity of superposition principle is a notable property

of nonlinear equation. Without loss of generality, we set the initial peak position at x0 = 0. The

wave propagates at speed c to the right of x-axis without shape change. The exact solution in

momentum space is

ue(p, t) = −p csc h(
πp√

c
) exp(−ipct). (7.8)

Figure 7.9 and Figure 7.10 depict the real and the imaginary part of the numerical results together

with the analytic results at time t = 5. We arrive excellent agreements between the momentum

space CESE calculation and the analytic results.

In Figure 7.11, the comparison of magnitude for the calculated and exact solutions at t = 5

with c = 1 is shown. For the soliton solution, though the real part and the imaginary part are both

oscillating with time, but the magnitude is stationary as seen from Eq. (7.8). In Table 7.1, we

listed the errors with respect to the grid size △p. We plot in Figure 7.8 the error versus △p2. From

the plot, the straight line shows that the error behaves in ∽ O(△p2). This is the general scaling

behavior of our developed momentum space CESE core scheme method.
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Figure 7.1: Computational results u at T ≈ 0.8 by the a-scheme CESE method. Data obtained
with p ∈ [−5, 5] , △p = 0.01 and △t = 0.0005.

Table 7.1: The root-mean-square error versus mesh size shows second-order behavior for KdV
equation in our momentum space CESE method.

K: grid numbers; n: time steps Mesh size Error in momentum space
K: 26; n: 500 0.4 5.57E-02
K: 51; n: 500 0.2 1.23E-02
K: 101; n: 500 0.1 2.94E-03
K: 201; n: 1000 0.05 7.18E-04
K: 401; n: 2000 0.025 1.72E-04
K: 801; n: 4000 0.0125 3.57E-05
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Figure 7.2: Computational results u at T ≈ 1 by the a-scheme CESE method. Data obtained with
p ∈ [−5, 5] , △p = 0.01 and △t = 0.0005.
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Figure 7.3: Computational results u at T ≈ 0.8 by the c-scheme CESE method. Data obtained
with p ∈ [−5, 5] , △p = 0.01 and △t = 0.0005.
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Figure 7.4: Computational results u at T ≈ 1 by the c-scheme CESE method. Data obtained with
p ∈ [−5, 5] , △p = 0.01 and △t = 0.0005.
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Figure 7.5: Computational results u at T from 0, 0.3885, 0.7245, 1.02 to 1.45 by the a-µ scheme
CESE method. Data obtained with p ∈ [−5, 5] , △p = 0.01 and △t = 0.0005. DashDotDot line:
exact solution. Solid line: numerical solution.

45



Figure 7.6: Computational results u at T ≈ 0.8 by the a-scheme and w-4 scheme CESE method.
Data obtained with p ∈ [−5, 5] , △p = 0.01 and △t = 0.0005.
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Figure 7.7: Computational results u at T ≈ 1 by the a-scheme and w-4 scheme CESE method.
Data obtained with p ∈ [−5, 5] , △p = 0.01 and △t = 0.0005.
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7.2.2 Burgers’s equation

Let

V =
1

2
(u(−∞) + u(∞)) , (7.9)

D =
1

2
(u(−∞) − u(∞)) .

The exact solution of the Burgers’s equation Eq. (4.11) is

u(x, t) = V − D tanh

[
V (x − V t)

2υ

]
. (7.10)

We may set u(∞) = 0, then the exact solution becomes

u(x, t) = V − V tanh

[
V (x − V t)

2υ

]
. (7.11)

Where V = 1
2
u(−∞) > 0 and D = 1

2
u(−∞) = V. The corresponding exact solution in

momentum space is

u(p, t) =

{
V δ(p) , for p = 0

iυ exp(−ipV t) csc h(υπp
V

), for p ̸= 0
(7.12)

where δ(p) is delta function. The parameters here we use are V = 1 and υ = 1. Because of the

infinite value can’t show in the figures. The delta function of the analytic solution we plot in the

figures is just set as a finite value. Figure 7.12 and Figure 7.14 depict the real and the imaginary

part of the numerical results together with the analytic results at time t = 5. For describing the

shock behavior of Burgers’s equation in detail Figure 7.13 shows the zoom up of figure 7.12

near the shock, and Figure 7.15 shows zoom up of Figure 7.14. We arrive excellent agreements

between the momentum space CESE calculation and the analytic results. The momentum space

CESE method obtained the accurate solution when the shock is occurred. This is the same

capability as coordinate space CESE method.

In the chapter 5, we introduce the non-uniform grid Momentum Space CESE Method. The

purpose is to generate the grids which are much denser in center. The Burgers’s equation Eq.

(4.11) has a shock in the center of the space domain. The dense grid in center is especially
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Figure 7.8: Error in momentum space as function of square of grid size △p. It shows O (△p2)
behavior.

useful for this problem. The goal is to obtain the accurate solution but ease the computational

time. Because of efficient grid is used the less grid points can obtain the similar accuracy. We

compare the non-uniform grid momentum space CESE method without transform and with the

two different transform. Figure 7.16, 7.17 is the nonuniform grid method without any transform,

Figure 7.18, 7.19 is the nonuniform grid method with the transform as Eq. (5.24), and Figure

7.20, 7.21 is the nonuniform grid method with the transform as Eq. (5.25). The above figures

shows the non-uniform grid method arrive excellent agreements in the less grid points. The grid

points are 500 for the each case. The transform cases have improved the implementation time.

And the similar accuracy is obtained. It shows the importance of the transform when the further

implementation of higher-dimensional question.
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Figure 7.9: Computational results of the real part of KdV equation solution at t = 5 obtained with
p ∈ [−5, 5] and △t = 0.01.
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Figure 7.10: Computational results of the imaginary part of KdV equation solution at t = 5
obtained with p ∈ [−5, 5] and △t = 0.01.
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Figure 7.11: Computation results of the magnitude of KdV solution at t = 5 obtained with
p ∈ [−5, 5] and △t = 0.01.
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Figure 7.12: Real part of the solution of Burgers’s equation with uniform grid (△x = 0.0125).
V = 1, υ = 1 and simulation time is 5.
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Figure 7.13: Real part of the solution of Burgers’s equation with uniform grid (△x = 0.0125).
V = 1, υ = 1 and simulation time is 5. (locate the view to center)
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Figure 7.14: Imaginary part of the solution of Burgers’s equation with uniform grid
(△x = 0.0125). V = 1, υ = 1 and simulation time is 5.
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Figure 7.15: Imaginary part of the solution of Burgers’s equation with uniform grid
(△x = 0.0125). V = 1, υ = 1 and simulation time is 5. (locate the view to center)
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Figure 7.16: Non-uniform grid momentum space CESE method without any transformation. The
real part solution of Burgers’s equation is presented.
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Figure 7.17: Non-uniform grid momentum space CESE method without any transformation. The
real part solution of Burgers’s equation is presented. (locate the view to center)
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Figure 7.18: Non-uniform grid momentum space CESE method with transformation as Eq. (5.21).
The real part solution of Burgers’s equation is presented.
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Figure 7.19: Non-uniform grid momentum space CESE method with transformation as Eq. (5.21).
The real part solution of Burgers’s equation is presented. (locate the view to center)
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Figure 7.20: Non-uniform grid momentum space CESE method with transformation as Eq. (5.22).
The real part solution of Burgers’s equation is presented.

61



Figure 7.21: Non-uniform grid momentum space CESE method with transformation as Eq. (5.22).
The real part solution of Burgers’s equation is presented. (locate the view to center)
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Chapter 8 Numerical results for Quantum Mechanical Problem

In order to model the response of an atomic electron, we have used the so-called "soft-

Coulomb" potential defined in Eq. (6.2). With c =1.41, the ground-state energy is the same as for

Ar atoms: ϵ0 = −0.58 a.u. [13]. This class of potentials has been shown to be useful to reproduce

the main features of laser-atom interactions in the strong-field regime, for linearly polarized laser.

The smaller ten bound state energies for our computation are list as table 8.1. Examples for the

ATI spectra, simulate when the above system is submitted to a sinusoidal shape laser pulse with

frequency ω = 0.0577 a.u. ≈ 1.57 eV, with total duration of 9 cycles, are shown in Figure 8.1,

8.2 and 8.3. The Figure 8.4 conbine all of the different intensities to one figure, but only plot

the first degenerate state. The spectra are deduced from the spectral analysis of the final wave

function obtained by solving the Eq. (6.1). Typical values for the grid spacing is △p = 0.01,

△t = 0.0019, and the size of the box is [-5,5]. We have checked that our results are robout while

varying these parameters. In Figure 8.5, the ATI spectra for three selected intensities are shown.

One can check that, at Em = 1.12 × 1014 Wcm−2, a conspicuous enhancement shows up in the

region comprised between 7Up and 10Up. Conversely, it almost disapears at the neighboring

intensities Em = 1.02 × 1014 Wcm−2 and Em = 1.22 × 1014 Wcm−2. In spite of the fact that

the bare state basis is not really adequate for analyzing the time-dependent wave function of the

atom "dressed" by the external field, it can provide useful indications on the population dynamics.

With this caveat in mind, the results of Figure 8.6 confirm the existence of an important transfer

of population in excited state n = 3 at the intensity when the enhancement is observed.
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Table 8.1: List the bound state energies ( state: energy (a.u.) ). (i) Domain = (-5,5), (ii) Grid
numbers = 1024.

1: -0.579551339149484 2: -0.253565788269046
3: -0.142360016703607 4: -8.848649263382038E-002

5: -6.089104339480454E-002 6: -4.384820908308049E-002
7: -3.334389254450847E-002 8: -2.595771290361919E-002
9: -2.091300487518327E-002 10: -1.707826927304287E-002

Figure 8.1: The ATI spectra for the E0 = 1.02 × 014 Wcm−2.
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Figure 8.2: The ATI spectra for the E0 = 1.12 × 014 Wcm−2.
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Figure 8.3: The ATI spectra for the E0 = 1.22 × 014 Wcm−2.
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Figure 8.4: The ATI spectra for all of the difference intensities. ( Only plot the first degenerate
state )
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Figure 8.5: Photoelectron spectra for the long-range potential and for ω = 0.0577 a.u. Dotted,
DashDot, LongDash correspond to intensities of 1.12 × 1014 Wcm−2, 1.02 × 1014 Wcm−2 and
1.22 × 1014 Wcm−2, respectively. The pulse duration is 9TL.
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Figure 8.6: Projection of the wave function at times odd multiples of TL/4 on the bare state n = 3
for three different intensities. Diamond, Circle and Square correspond to intensities of 1.02× 1014

Wcm−2, 1.12 × 1014 Wcm−2(when the enhancement is observed) and 1.22 × 1014 Wcm−2, re-
spectively.

69



Chapter 9 Discussion and conclusions

In this thesis, we develop the CESE method in momentum space. We investigate the basic

one-dimensional wave equation, convection equation, convection-diffusion equation, nonlinear

Korteweg-de Vries equation, shock wave Burgers’s equation and a quantum mechanical problem.

The scope is on the fundamental part. In each problem, the momentum space CESE core scheme

is developed for an explicit time-marching scheme. It is straightforward for linear problems.

While for nonlinear problem such as KdV equation and Burgers’s equation the convolution

integral of the unknown functions in the source term is involved. We employ the half-step grid

size for the convolutions and the iterations in each half-time marching step for the nonlinearity.

Above method we has introduced is sufficient only to uniform grid problem. For non-uniform grid

problem, it is not solved. We finally figure out the idea of the solution element must be introduced

as suitable modification. The troubles occur in convolution integral for nonlinear problems is

conquered by a consistent treatment. When numerical grid is not on the node points, it is just

expanded as a Taylor expansion from the nearly solution element. For the non-reflecting boundary

condition, the zero boundary condition and the ghost cell method is employed. It shows that the

ghost cell method is excellent in coordinate and momentum space, even when the domain size is

small. Because of the boundary value is sufficiently small in momentum space. It is enough to use

the zero boundary condition. For non-uniform grid momentum space CESE method, we introduce

a transformation method to shorter the computational time and improve the convolution integral

accuracy. The importance of this approach for higher-dimensional problems will be investigated

in our future studies. We calibrate each system with known exact solution. We have shown that

the momentum space CESE method works well for the systems from classical wave equation,

nonlinear equation to quantum mechanical problem. And the error behavior of the developed
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scheme is second-order. Strictly speaking, the method used in this work is not regular core

scheme. But it is still capable of generating highly accurate solution by using only the concept of

flux conservation and simple approximation techniques. The main advantages for the momentum

space CESE method, compared to the traditional CESE method in coordinate space are twofold.

First, the boundary conditions are fulfilled automatically. That is, for sufficient large momentum

value, the function and its derivatives are simply vanishing at the numerical boundary. This is

because the kinetic energy of a system is physically finite. Second, the information of the wave

is preserved completely inside the numerical momentum region without flowing out from the

boundary like the coordinate space method. This will be especially useful in treating scattering

problems in the future.With the efficient momentum space CESE method, we are able to calculate

the ATI photoelectron spectra. We elucidate the capability of this method with the atom either

under a very high intensity or a very long duration laser pulse to show the nice features. There

is no loss of the continuous part of the wave functions, unlike filtering function employed in

coordinate space method to prevent boundary reflection. In this simulation, the conspicuous

enhancements appear in the high-energy part of the above-threshold (ATI) spectra, too. Because

no information of wave is lost. Comparing with experiment data, the high-energy part ATI

spectra obtained from our method is more accurate than the method from other coordinate space

method. Further applications of the method to intense laser pulses on atoms and molecules

will be presented in the future. In the future, we will develop the higher order of accuracy, and

the higher dimensional momentum space CESE method to practical useful in solving realistic

time-dependent problems.
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Appendix A The definition of weight factor in the wiggle-suppressing scheme

The wiggle-suppressing scheme to be abbreviated as w-α scheme. The extension is formed by

Eq. (2.21) and

(ux)
n
j = (ω−)n

j (ûx+)n
j + (ω+)n

j (ûx−)n
j (A.1)

with

(ω±)n
j = W±

(
(ûx−)n

j , (ûx+)n
j , α

)
=

∣∣∣(ûx∓)n
j

∣∣∣α∣∣∣(ûx−)n
j

∣∣∣α +
∣∣∣(ûx+)n

j

∣∣∣α . (A.2)

Because the scheme is an extension of the c-τ ∗ scheme in which (ux)
n
j is expressed as an weighted

average of (ûx−)n
j and (ûx+)n

j . In case that
∣∣∣(ûx+)n

j / (ûx−)n
j

∣∣∣ is very close to 1, the only way to

prevent the weighted average from becoming almost a simple average is to increase the value of

α used. However, this approach is impracticable because evaluation of xα would be hamperd

by very large round-off errors if α becomes very large. As such, there is a need to introduce

new-weighted-averaging techniques that do not have the limitation discussed above. Two

weighted-averaging formulae much more potent and flexible that discussed here were described

briefly.

For motivation, note that Eqs. (A.1) and (A.2) can be expressed as

(ux)
n
j = ω1x1 + ω2x2 (A.3)

and

ω1 =
s1

s1 + s2

and ω2 =
s2

s1 + s2

(s1 + s2 > 0) (A.4)
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respectively if

x1 ≡ (ûx−)n
j and x2 ≡ (ûx+)n

j (A.5)

ω1 ≡ (ω−)n
j and ω2 ≡ (ω+)n

j

s1 ≡
∣∣∣(ûx+)n

j

∣∣∣α and s2 ≡
∣∣∣(ûx−)n

j

∣∣∣α (α ≥ 0)

The derivation for the first scheme is derived as following. Let

δℓ ≡ ωℓ −
1

2
, ℓ = 1, 2. (A.6)

Thus the set {δℓ} , ℓ = 1, 2 provides a measure of how far the weighted average is deviated from

the simple average. In the following, a simple way to adjust this deviation will be introduced. Let

δmin ≡ min {δℓ} and δmax ≡ max {δℓ} . (A.7)

σmax ≡ min

{
1

2δmax
,− 1

2δmin

}
> 1.

We can given any adjustable real parameter σ > 0, let

δ
′

ℓ ≡ σδℓ. (A.8)

Then we define

ω
′

ℓ ≡
1

2
+ δ

′

ℓ. (A.9)

, where

σ = min

{
σmax,

σ0

|ν|

}
(A.10)

(σ0 > 0 is a preset parameter in the order on 1).

For the second scheme describe as follows. To proceed, the indices of sℓ, ℓ = 1, 2, will be

reshuffled such that

s2 > s1 > 0 (A.11)

Let

η1 ≡
s2

s1

− 1. (A.12)
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Given any adjustable real parameter σ > 0, let (i) s̃1 = s1 and s̃2 = (1 + ση1)s1 and (ii)

ω̃ℓ ≡
s̃ℓ

S̃
, ℓ = 1, 2. (A.13)

where

S̃ ≡

(∑
ℓ

s̃ℓ

)
> 0. (A.14)

Note that the current approach for amplifying the weight factors has one advantage over the

approach described earlier, i.e., in the current approach, there is no upper bound for the value of σ

one could use. Thus, in the current approach, Eq. (A.10) can be simplified as

σ =
σ0

|ν|
(A.15)

where σ0 > 0 again is a preset parameter in the order of 1.
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