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摘 要 

 

微觀世界中存在著不均勻擴散現象，此現象在科學應用領域中占有重要地

位。本論文應用 A.D.I.法研究不均勻擴散方程式，我們除了討論 A.D.I.法的收

斂速度以及無條件穩定性之外，並且將其數值結果與疊代法所得數值結果互相比

較。由於不均勻擴散方程式中的擴散係數可分為常係數與變係數的形式，因此離

散之後所得的線性系統亦可分為常係數與變係數的型態。我們利用疊代法中常用

的 C.G.法與 B.I.C.G.法分別處理。基於特殊的線性系統結構，A.D.I.法在計算

速度上遠勝於疊代法。 
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A Numerical Study of A.D.I. Methods to
Anisotropic Diffusion Problems

Student : Yu-Chen Chen Advisor : Ming-Chih Lai

Institute of Mathematical Modeling and Scientific Computing,

National Chiao Tung University,
1001 Ta Hsueh Road, Hsinchu 30050,

Taiwan.

Abstract

Anisotropic diffusion is a kind of microscopic phenomenon. It plays an im-
portant role in a lot of scientific applications. We use A.D.I. method which
is efficient to solve anisotropic diffusion problems. We study the order of ac-
curacy and unconditionally stable convergence of the method, and compare it
with preconditioned iterative methods. Since diffusivity of anisotropic diffu-
sion equations can be constant and variable type. We choose conjugate gradi-
ent method to deal with the constant type equation and biconjugate gradient
method to solve the general type. Because of the special structure of linear
systems, A.D.I. method outperforms iterative methods of CPU time.

Keywords: A.D.I. method; Conjugate gradient method; Biconjugate grdient

method; dirichlet boundary condition; anisotropic diffusion problems; precondition;

iterative methods
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1 Introduction

As it known, the anisotropic diffusion [5] is a kind of microscopic phenomenon in the

random thermal motion on a microscopic scale. A lot of applications of anisotropic

diffusion in physics, chemistry, biotechnology, and engineering. It is a net transport

of particles from higher concentration to lower concentration. Because of anisotropic

diffusion, the material mix gradually. The mixing process which can be described by

Fick’s law will attempt to the equilibrium state. By solving the anisotropic diffusion

problems could help us to simulate the whole behavior of diffusion.

In section 2, we introduce the alternating direction implicit (A.D.I.) method [9]

which is known as the finite-difference implicit-type algorithm. A.D.I. method has the

advantage of ensuring a more efficient formulation and calculation than other implicit

methods in the case of multidimensional problems. We discretize the anisotropic dif-

fusion equation by Crank-Nicolson scheme and split the finite difference time-domain

problem by Douglas-Rachford method which is a kind of A.D.I. method. By us-

ing Taylor series, we discuss the order of accuracy of the A.D.I. method which is

first order in time and second order in space. Next, we illustrate that the two level

finite-difference method is unconditionally stable.

Next, we introduce some direct methods solving large sparse linear system of

equations. Direct methods take too much time and limited memory in computing

process. In section 3, the conjugate gradient method [7] can be regarded as the

iterative method to solve the anisotropic diffusion problems. When the diffusivity

is constant type and the matrix of linear system is symmetric positive definite, the

problem will be dealt by conjugate gradient (C.G.) method. If the diffusivity is

variable type, we employ bi-conjugate gradient (B.I.C.G.) [12] method. Both B.I.C.G.

1



and C.G. are iterative methods, but the first one does not take advantage of the

symmetric property, it requires the transpose of the original matrix. In other words,

B.I.C.G. is more general than C.G. method. Generally speaking, one employs iterative

methods to include preconditioning, if the matrix is ill-conditioned. C.G. and B.I.C.G.

is highly susceptible to rounding errors. We use incomplete LU factorization [15]

which is often used as a preconditioner, especially for large sparse matrix.

The last section contains numerical results about implementing of A.D.I. method,

C.G. method and biconjugate gradient method. Firstly, we consider a heat equation

which is a simpler problem than the anisotropic diffusion problem. The numerical

results show that A.D.I. , C.G. and B.I.C.G methods converge in the second order of

accuracy. In addition, we record CPU time for these methods and notice that A.D.I.

is more efficient than iterative methods. Finally, we apply our numerical methods for

the anisotropic diffusion problems and make a conclusion by comparison of numerical

results.
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2 The Alternating Direction Implicit method (A.D.I.)

In section 2, firstly, we describe a standard problem of the anisotropic diffusion prob-

lem. Secondly, we introduce an efficient and simple numerical method for solving

parabolic equations, especially on regular domains. By using Taylor series, we show

that the scheme is consistent with the partial differential equation. The accuracy is

first order in time and second order in space. Thirdly, we illustrate the implemen-

tation of A.D.I. method. We will demonstrate some numerical results in the last

section, and give a concise conclusion.

2.1 The anisotropic diffusion problems

Anisotropic diffusion problems arise in widespread range of scientific fields such as

oil-reservoir simulation, plasma physics, image processing, semiconductor modeling,

biology, and hydro-geology etc. Numerical simulation plays an important role in wild

applications. When implement various numerical methods on this type of problem,

one needs to find an approximation of u, which is the solution of the following two

dimensional anisotropic diffusion equation. [9]

∂u

∂t
= ∇ · (β∇u) in Ω × (0, T ] (2.1)

with the initial condition

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω

and the dirichlet boundary condition

u(x, y, t) = g(x, y, t), (x, y) ∈ ∂Ω, t ∈ (0, T ],

3



where β =

(

ã(x, y) b̃(x, y)

b̃(x, y) c̃(x, y)

)

is a 2 × 2 symmetric coefficient matrix, subject to

ã > 0, c̃ > 0, and b̃2 − ãc̃ < 0.

2.2 Discretization of A.D.I. method

As noted before, the anisotropic diffusion problems are difficult and expensive when

solved by all kinds of direct methods or iterative methods. In other words, they may

cost much time and memory at each time step. If we want to solve the problems

efficient, the expensive method may not suitable. A.D.I. method is an approach

which reduce two-dimensional problem to a succession of a system of one-dimensional

problems. Now, we start our work to extend Eqn.(2.1) as follows.

∂u

∂t
=∇ · (β∇u) = ∇ · (

(

ã b̃

b̃ c̃

) (

ux

uy

)

) = ∇ ·
(

ãux + b̃uy

b̃ux + c̃uy

)

.

Obviously, we extend the above equation which contains four terms.

∂u

∂t
= auxx + buxy + buyx + cuyy.

Notice that the right-hand side includes ∇2u, and two mixed terms uxy and uyx.

In order to simplify the equation, we assume u ∈ C2, then we have uxy = uyx. Thus

we obtain.

ut = auxx + 2buxy + cuyy. (2.2)

In the beginning of discretization, we omit the mixed derivative term to reduce the

difficulties of designing the scheme of equation. Therefore we consider heat equation

first and look for a higher order of accuracy approximation of time derivative. Crank-

Nicolson scheme is one kind of traditional scheme which has high order of accuracy

as we want. We start with the formula for ut evaluated at tk+1/2. By using Taylor

series, we obtain two equations (2.3) and (2.4).

un+1 = un+1/2 +
k

2
ut +

k2

4
utt + O(k3), (2.3)
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un = un+1/2 −
k

2
ut +

k2

4
utt + O(k3). (2.4)

We combine equations (2.3) and (2.4) such that the second derivative of time van-

ished. Therefore we have a second order accuracy scheme (2.5) and we will use it to

approximate the time derivative.

ut =
un+1 − un

k
+ O(k2). (2.5)

We undertake to approximate the derivatives respect to space. By using Taylor series,

we have

ui+1 = ui + hux + h2uxx + h3uxxx + O(h4), (2.6)

ui−1 = ui − hux + h2uxx − h3uxxx + O(h4). (2.7)

Take summation of eqn.(2.6) and (2.7), the first derivative in space can be vanished,

and let the summation divided by h2 immediately. We product eqn.(2.8) which con-

verges in the second order accuracy. Base on the same techniques, we derive eqn.(2.9).

uxx =
ui+1,j − 2ui,j + ui−1,j

h2
+ O(h2), (2.8)

uyy =
ui,j+1 − 2ui,j + ui,j−1

h2
+ O(h2). (2.9)

Next, we will derive the finite difference scheme for the first derivative respect to

space in x and y directions. We subtract (2.7) from (2.6) to keep the term ux, and

divide by 2h immediately, and we obtain eqn. (2.8).

Similarly, we produce the approximation for first order derivative in y direction. To

simplify, we introduce some notations.

ux =
ui+1,j − ui−1,j

2h
+ O(h2), (2.10)

uy =
ui,j+1 − ui,j−1

2h
+ O(h2). (2.11)

5



Let δ2
x, δ2

y , Hx, and Hy be linear operators [10]. For convenience, we define

δ2
xu =

ui+1,j − 2ui,j + ui−1,j

h2
,

δ2
yu =

ui,j+1 − 2ui,j + ui,j−1

h2
,

Hxu =
ui+1,j − ui−1,j

2h
,

Hyu =
ui,j+1 − ui,j−1

2h
.

For the approximation in space, we employ the same ideas which has been used in

the Crank-Nicoslon scheme at tk+1/2. Thus we obtain the equation below.

un+1 − un =
ka

2
(δ2

xu
n+1 + δ2

xu
n) +

kc

2
(δ2

yu
n+1 + δ2

yu
n) + O(k3 + kh2),

(1 + a)(1 + b) = 1 + a + b + ab. (2.12)

It is quiet difficult to solve the block tri-diagonal linear system by direct methods.

However, base on formula (2.12), we add k2acδ2
xδ

2
yu

n+1/4 to both side of above equa-

tion and re-write it as follows.

(1−ka

2
δ2
x)(1−

kc

2
δ2
y)u

n+1 = (1+
ka

2
δ2
x)(1+

kc

2
δ2
y)u

n+
k2ac

4
δ2
xδ

2
y(u

n+1−un)+O(k3+kh2).

(2.13)

Since un+1 − un = kut + O(k3) and the k2 factor, the second term of eqn.(2.13) is

higher order term. We can omit the term without effecting the order of accuracy of

original numerical scheme. From now on, we have already illustrated the detail of

discretization of heat equation.

(1 − ka

2
δ2
x)(1 − kc

2
δ2
y)u

n+1 = (1 +
ka

2
δ2
x)(1 +

kc

2
δ2
y)u

n + O(k3 + kh2). (2.14)

Now, we try to deal with the mixed derivative. According to the Douglas-Rachford

method [9], we put the mixed term on right-hand side of eqn. (2.14). In other words,

6



we treat it as the information that we have already known.

uxy =
1

2h
[
ui+1,j+1 − ui+1,j−1

2h
− ui−1,j+1 + ui−1,j−1

2h
] + O(h),

=
1

4h2
[ui+1,j+1 − ui+1,j−1 − ui−1,j+1 + ui−1,j−1] + O(h),

= HxHyu + O(h).

We insert the mixing derivative term into eqn. (2.14), then we have.

(1− ka

2
δ2
x)(1−

kc

2
δ2
y)u

n+1 = (1+
ka

2
δ2
x)(1+

kc

2
δ2
y)u

n +2bkHxHyu
n +O(k3 +kh2 +kh).

(2.15)

By the way, the scheme is consistent with the anisotropic diffusion equation. The

order of accuracy is first order in time and second order in space.

We split above equation into two level time-domain scheme by Douglas-Rachford

method.

(1 − 1

2
kaδ2

x)u
∗
i,j = (1 +

1

2
kaδ2

x + kcδ2
y + 2kbHxHy)u

n
i,j, (2.16)

(1 − 1

2
kcδ2

y)u
n+1
i,j = u∗

i,j −
1

2
kcδ2

yu
n
i,j. (2.17)

Notice that each step requires the value u∗
i,j. We should regard u∗

i,j as intermediate or

temporary value. A.D.I. method deal with intermediate values by boundary condition

[10]. The problem about temporary values will illustrate in implementation of A.D.I

method.

2.3 Stability for A.D.I. method

The Douglas-Rachford method is unconditionally stable. It can be easily checked by

von Neumann analysis for two dimensional problems. Since von Neumann analysis

can not deal with variable coefficient case, we show the variable type as well as

constant type referring to [13].

7



2.3.1 von Neumann analysis for the anisotropic diffusion problems

Before we study the stability of A.D.I. method, we apply von Neumann analysis of fi-

nite difference schemes which is used to check the stability of finite difference schemes.

By using von Neumann analysis, we can give necessary and sufficient conditions for

the stability of A.D.I. method.

We consider simple case whose coefficient matrix is constant type. By using von

Neumann analysis for two dimensional equation [9], we replace un
i,j by λneimθejnφ, θ =

ηh, φ = ξh, η and ξ which are arbitrary real numbers, 0 ≤ θ, φ ≤ π.

Where λ is amplification factor. We will perform von Neumann analysis for A.D.I

method. The method is stable if and only if |λ| ≤ 1.

δ2
xu

n =
eiθ − 2 + e−iθ

h2
λneimθejnφ = − 4

h2
sin2 θ

2
λneimθejnφ,

δ2
yu

n =
ejφ − 2 + e−jφ

h2
λneimθejnφ = − 4

h2
sin2 θ

2
λneimθejnφ,

HxHyu
n =

(eiθejφ − eiθe−jφ − e−iθejφ + e−iθe−jφ)

4h2
λneimθejnφ = − 1

h2
λneimθejnφ sin θ sin φ.

By using equations above, eqn. (2.15) can be re-written as follows.

(1+
2ak

h2
sin2 θ

2
)(1+

2ck

h2
sin2 φ

2
)λ = [(1− 2ak

h2
sin2 θ

2
)(1− 2ck

h2
sin2 φ

2
)− 2bk

h2
sin θ sin φ].

Then we have the absolute value of λ.

|λ| =
|(1 − 2ak

h2 sin2 θ
2
)(1 − 2ck

h2 sin2 φ
2
) − 2bk

h2 sin θ sin φ|
|(1 + 2ak

h2 sin2 θ
2
)(1 + 2ck

h2 sin2 φ
2
)|

.

To simplify, we replaced k/h2 by r.

|λ| =
|(1 − 2arsin2 θ

2
)(1 − 2cr sin2 φ

2
) − 2br sin θ sin φ|

|(1 + 2r sin2 θ
2
)(1 + 2cr sin2 φ

2
)|

.

8



Next work will discuss the relations between a, b, c, θ, φ, r which make |λ| ≤ 1. We

multiply denominator on both sides, and take square.

|(1 − 2ar sin2 θ

2
)(1 − 2cr sin2 φ

2
) − 2br sin θ sin φ| ≤ |(1 + 2r sin2 θ

2
)(1 + 2cr sin2 φ

2
)|,

|(1 − 2ar sin2 θ

2
)(1 − 2cr sin2 φ

2
) − 2br sin θ sin φ|2 ≤ |(1 + 2r sin2 θ

2
)(1 + 2cr sin2 φ

2
)|2,

We subtract right hand side from left hand side and apply difference of two squares.

|(1−2ar sin2 θ

2
)(1−2cr sin2 φ

2
)−2br sin θ sin φ|2−|(1+2r sin2 θ

2
)(1+2cr sin2 φ

2
)|2 ≤ 0,

[(1 − 2ar sin2 θ

2
)(1 − 2cr sin2 φ

2
) − 2br sin θ sin φ + (1 + 2r sin2 θ

2
)(1 + 2cr sin2 φ

2
)]×

[(1 − 2ar sin2 θ

2
)(1− 2cr sin2 φ

2
)− 2br sin θ sin φ− (1 + 2r sin2 θ

2
)(1 + 2cr sin2 φ

2
)] ≤ 0.

Finally, we obtain a inequality as follows.

[1 + 4acr2 sin2 θ

2
sin2 φ

2
− br sin θ sin φ][a sin2 θ

2
+ c sin2 φ

2
+

b

2
sin θ sin φ] ≥ 0

For simplification, we let

λ1 = 1 + 4acr2 sin2 θ
2
sin2 φ

2
− br sin θ sin φ, and λ2 = a sin2 θ

2
+ c sin2 φ

2
+ b

2
sin θ sin φ.

Obviously, |λ| ≤ 1 if and only if λ1λ2 ≥ 0.

λ1 = 1 + 4acr2 sin2 θ

2
sin2 φ

2
− br sin θ sin φ

= 1 + 4acr2 sin2 θ

2
sin2 φ

2
− 4br sin

θ

2
cos

θ

2
sin

φ

2
cos

φ

2

= 1 + [2r
√

ac sin
θ

2
sin

φ

2
− b√

ac
cos

θ

2
cos

φ

2
]2 − b2

ac
cos2 θ

2
cos2 φ

2
.

In the above three equations, we use addition formula and complete the square.

λ1 = [2r
√

ac sin
θ

2
sin

φ

2
− b√

ac
cos

θ

2
cos

φ

2
]2 +

ac − b2

ac
cos2 θ

2
cos2 φ

2
+1− cos2

θ

2
cos2 φ

2

9



By the constraint of anisotropic diffusion equation, we have b2 − ac < 0. Thus the

second term will be positive.

λ1 = [2r
√

ac sin
θ

2
sin

φ

2
− b√

ac
cos

θ

2
cos

φ

2
]2 +

ac − b2

ac
cos2 θ

2
cos2 φ

2
+ 1 − cos2 θ

2
cos2 φ

2

= [2r
√

ac sin
θ

2
sin

φ

2
− b√

ac
cos

θ

2
cos

φ

2
]2 +

ac − b2

ac
cos2 θ

2
cos2 φ

2
+ sin2 θ

2
+ cos2 θ

2
(1 − cos2 φ

2
)

= [2r
√

ac sin
θ

2
sin

φ

2
− b√

ac
cos

θ

2
cos

φ

2
]2 +

ac − b2

ac
cos2 θ

2
cos2 φ

2
+ sin2 θ

2
+ cos2 θ

2
sin2 φ

2
≥ 0

Finally, we find the third and fourth terms of λ1 are both non-negative. Therefore,

we have a conclusion that λ1 must be positive. Similarly, we deal with λ2.

λ2 = a sin2 θ

2
+ c sin2 φ

2
+

b

2
sin θ sin φ

= a sin2 θ

2
+ c sin2 φ

2
+ 2b sin

θ

2
cos

θ

2
sin

φ

2
cos

φ

2

= [
√

a sin
θ

2
cos

φ

2
+

b√
a

cos
θ

2
sin

φ

2
]2 + a sin2 θ

2
sin2 φ

2
+ c sin2 φ

2
− b2

a
cos2 θ

2
sin2 φ

2

= [
√

a sin
θ

2
cos

φ

2
+

b√
a

cos
θ

2
sin

φ

2
]2 +

ac − b2

a
cos2 θ

2
sin2 φ

2
+ (a + c) sin2 θ

2
sin2 φ

2
≥ 0.

Notice that the constraint b2 −ac < 0 plays an important role both in the calculation

process of λ1 and λ2.

No matter what a, b, c, θ, φ, γ be, λ1 ≥ 0, λ2 ≥ 0. The result implies λ1λ2 ≥ 0.

In other words, |λ| ≤ 1 is unconditional. Thus A.D.I. method is also unconditional

stable when the anisotropic diffusion equation has a constant coefficient matrix.

2.3.2 von Neumann analysis for general anisotropic diffusion problems

Next, we show that the general situation for the anisotropic diffusion problems. The

von Neumann analysis fails to deal with variable type. Fortunately, we find that the

important reference which be made by Widlund[13]. Therefore, the stability of A.D.I.

method in general situation will be done. We rewrite the equation (2.15) as follows.

(1 − ka

2
δ2
x −

kc

2
δ2
y +

k2ac

4
δ2
xδ

2
y)u

n+1 = (1 +
ka

2
δ2
x +

kc

2
δ2
y +

k2ac

4
δ2
xδ

2
y + 2bkHxHy)u

n.

10



For convenience, we define notations below and rewrite the equation.

P =1 − (1 − 1

2
kaδ2

x)(1 − 1

2
kcδ2

y) =
1

2
kaδ2

x +
1

2
kcδ2

y −
1

4
ack2δ2

xδ
2
y ,

Q =(1 +
1

2
kaδ2

x)(1 +
1

2
kcδ2

y) + 2kbHxHy − 1 =
1

2
kaδ2

x +
1

2
kcδ2

y +
1

4
ack2δ2

xδ
2
y + 2kbHxHy,

un+1
i,j − un

i,j = P̄ un+1
i,j + Q̄un

i,j.

Now, we replace some terms which refer to widlund’s notations.

ui±1,j − ui,j = ±2i sin
θ

2
e±i θ

2 ,

ui,j±1 − ui,j = ±2i sin
φ

2
e±i φ

2 ,

ui+1,j − ui−1,j = 2i sin θ,

ui,j+1 − ui,j−1 = 2i sin φ.

un+1
i,j − un

i,j = P̄ un+1
i,j + Q̄un

i,j,

P̄ = −2ka

h2
sin2 θ

2
− 2kc

h2
sin2 φ

2
− 4ack2

h4
sin2 θ

2
sin2 φ

2
,

Q̄ = −2ka

h2
sin2 θ

2
− 2kc

h2
sin2 φ

2
+

4ack2

h4
sin2 θ

2
sin2 φ

2
− 2kb

h2
sin θ sin φ,

un+1
i,j − P̄ un+1

i,j = +Q̄un
i,j + un

i,j ⇒ (1 − P̄ )un+1
i,j = (1 + Q̄)un

i,j ⇒ un+1
i,j =

1 + Q̄

1 − P̄
un

i,j.

It is only necessary to show that |1+Q̄|

|1−P̄ |
≤ 1. We find

|1 + Q̄|
|1 − P̄ | = |λ| =

|(1 − 2ak
h2 sin2 θ

2
)(1 − 2ck

h2 sin2 φ
2
) − 2bk

h2 sin θ sin φ|
|(1 + 2ak

h2 sin2 θ
2
)(1 + 2ck

h2 sin2 φ
2
)|

.

Since the absolutely value of amplification factor of constant type is the same to

variable type, so we can repeat the same work as well as the case with constant

coefficient matrix. Therefore A.D.I method is unconditionally stable with variable

coefficient matrix.

11



2.4 Apply A.D.I. method to anisotropic diffusion problems

To implement A.D.I. method on a square domain Ω = {(x, y)|0 ≤ x, y ≤ 1}, we

begin with a grid consisting of points (xi, yj), given by xi = ih, and yj = jh for

i, j = 0, 1, ..., N respectively. In time direction we have t = nk, 1 ≤ n ≤ N − 1, where

k = 1/N .

Firstly, we solve the temporary value u∗ by implicit method. We write down the

left hand side of eqn. (2.16) as follows. Obviously, the matrix which corresponds to

the linear system is tri-diagonal.

−kai,j

2h2
u∗

i−1,j + (1 +
kai,j

h2
)u∗

i,j −
kai,j

2h2
u∗

i+1,j.

The right hand side will be written below, it contains known information.

(1 +
1

2
kaδ2

x + kcδ2
y + 2kbHxHy)u

n
i,j.

We assume that r = k/h2 and reduce the equation. We have implicit part

−0.5rai,ju
∗
i−1,j + (1 + rai,j)u

∗
i,j − 0.5rai,ju

∗
i+1,j.

and information part.

(1 − rai,j − 2rci,j)u
n
i,j + 0.5rai,j(u

n
i+1,j + un

i−1,j) + rci,j(u
n
i,j+1 + un

i,j−1) + 0.5rbi,j

(ui+1,j+1 − un
i−1,j+1 − un

i+1,j−1 + un
i−1,j−1).

For 1 ≤ j ≤ N −1, we rewrite above equation for each j in matrix form, and solve the

12



linear system Ajxj = rj ,where Aj is a tri-diagonal square matrix with order N − 1.

Ai =











1 + ka1,j −0.5ka1,j

−0.5ka2,j 1 + ka2,j −0.5ka2,j

. . .
. . .

. . .

−0.5kaN−1,j 1 + kaN−1,j











, xj =















u∗
1,j
...

u∗
i,j
...

u∗
N−1,j















,

ri =















un
1,j + 0.5ka1,jδ

2
xu

n
1,j + kc1,jδ

2
yu

n
1,j + 0.5kb1,jHxHyu

n
1,j

...
un

i,j + 0.5kai,jδ
2
xu

n
i,j + kci,jδ

2
yu

n
i,j + 0.5kbi,jHxHyu

n
i,j

...
un

N−1,j + 0.5kaN−1,jδ
2
xu

n
N−1,j + kcN−1,jδ

2
yu

n
N−1,j + 0.5kbN−1,jHxHyu

n
N−1,j















+















0.5a1,ju
∗
1,j

0
...
0

0.5aN−1,ju
∗
N−1,j















.

Notice rj composed of two terms, the second term is consisted of boundary condition.

Unfortunately, u∗ is undefined. Here is a problem arising, how to deal with the

boundaries about u∗ ? Obviously, the term u∗ is contained both in eqn. (2.16) and

eqn. (2.17). Generally, we combine two equations and vanish the derivative terms

about u∗. Therefore, u∗ will be represent by un+1 and un. We want to follow the

same tactic to deal with our equation. Consider that eqn. (2.17)

(1 − 1

2
kcδ2

y)u
n+1
i,j = u∗

i,j −
1

2
kcδ2

yu
n
i,j.

The terms of left hand side associate with un+1 only, and the right hand side contains

u∗ and some terms associate with un. u∗ can be expressed by combination of un
i,j

and un+1
i,j as the equation below, so the boundary condition u∗

i,j becomes easier to

implement.

u∗
i,j = [1 − 1

2
kci,jδ

2
y ]u

n+1
i,j − 1

2
kci,jδ

2
yu

n
i,j.

Thomas is applied to solve the tri-diagonal system. We obtain u∗.

13



Similarly, we solve un+1. By eqn. (2.17)

−kci,j

2h2
un+1

i−1,j + (1 +
kci,j

h2
)un+1

i,j − kci,j

2h2
un+1

i+1,j = u∗
i,j −

kci,j

2h2
un

i,j−1 + kci,ju
n
i,j −

kci,j

2h2
un

i,j+1.

For 1 ≤ i ≤ N − 1, we have

Āix̄i =b̄iĀi =











1 + kci,1 −0.5kci,1

−0.5kai,2 1 + kai,2 −0.5kai,2

. . .
. . .

. . .

−0.5kai,N−1 1 + kai,N−1











, x̄i =















un+1
i,1
...

un+1
i,j
...

un+1
i,N−1















,

r̄i =















un
i,1 + 0.5kai,1δ

2
xu

n
i,1 + kci,1δ

2
yu

n
i,1 + 0.5kbi,1HxHyu

n
i,1

...
un

i,j + 0.5kai,jδ
2
xu

n
i,j + kci,jδ

2
yu

n
i,j + 0.5kbi,jHxHyu

n
i,j

...
un

i,N−1 + 0.5kai,N−1δ
2
xu

n
i,N−1 + kci,N−1δ

2
yu

n
i,N−1 + 0.5kbi,N−1HxHyu

n
i,N−1















+















0.5ai,1u
n+1
i,1

0
...
0

0.5ai,N−1u
n+1
i,N−1















.

We deal with tri-diagonal linear system by using Thomas algorithm again.
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3 Conjugate gradient method for anisotropic dif-

fusion problem

In section 3 we introduce some iterative methods and preconditioner. Then apply

the iterative methods to anisotropic diffusion problems. Finally, we will show the

numerical results

3.1 Steepest Descent method

Steepest descent method [7] is one kind of iterative method which generally converges

to the solution and global in nature. Nearly, for any starting initial value will give

convergence. Because C.G. method is originated from steepest descent method, we

introduce the steepest descent method before we study C.G method. Consider the

linear system of equation.

Ax = b, (3.1)

where An×n is a large sparse matrix which is symmetric positive definite. b ∈ R
n×1

is a known vector, and x ∈ R
n×1 is solution of the linear system. If we solve eqn.

(3.1) by fully implicit scheme, we will face to save CPU time and limited memory for

computing when we invert the matrix. In order to avoid the expensive process, it is

by no means of inverting the fully implicit matrix by direct methods. Thus we will

change our tactic and turn to take advantage of iterative methods.

In the beginning of study the steepest descent method, we consider the quadratic

form which is simply defined by

g(x) =
1

2
< x, Ax > − < x, b >, (3.2)

where x ∈ R
n×1 are arbitrary vector, A ∈ R

n×n is defined in eqn. (3.1) and <, > is

usual inner product. We demonstrate that the solution of linear system problem (3.1)
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is equivalent to the solution of minimizing problem (3.2) by the detail as follows. Let

v 6= 0 ∈ R
n×1 be a fixed vector and t is a real number, then think about

g(x + tv) =
1

2
< x + tv, Ax + tAv > − < x + tv, b >

=
1

2
< x, Ax > +

t

2
< x, Av > +

t2

2
< v, Av > +

t

2
< v, Ax > − < x, b >

− t < v, b >

= g(x) +
t2

2
< v, Av > +t < Ax − b > . (3.3)

Figure 1: The quadratic form with a positive definite matrix has minimal extreme
value.

The extension (3.3) can be regarded as function of t, we suppose that

h(t) = g(x) +
t2

2
< v, Av > +t < v, Ax − b > .

Since A is positive-definite, with the special structure, and the leading coefficient

< v, Av > is always positive when v 6= 0. Since the extreme value will occur at

critical point. The first derivative respect to t as follows.

h′(x) = t < v, Av > + < v, Av − b >= 0,
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t = −< v, Ax − b >

< v, Av >
.

After replacing t into eqn. (3.3) we obtain

g(x + tv) = g(x) − < v, Ax >2

2 < v, Av >
,

∀t, t 6= 0 ⇒ g(x + tv) ≥ g(x). (3.4)

Now, we show the equivalence of linear system (3.1) and minimization problem (3.2)

If there exists certain vector x̄ which satisfies the linear system Ax = b, we have

Ax̄ = b. Therefore, t = Ax̄ − b = 0. The equality of (3.4) holds, in other words,

g(x̄) is minimal. On the other way, the equality of (3.4) holds when t = 0 implies

b − Ax = 0. We find a solution of the linear system.

In the method of steepest descent, we give an arbitrary vector x and then approx-

imate to the minimal value step by step. We take a series of steps x1, x2, . . ., until we

are satisfied with the numerical solution close enough to exact solution. By theorem,

we have the direction of greatest increase in the value g(x) is the direction given by

∇g(x). In other words, the decreasing rate is maximal along the opposite direction

of gradient.

g(x) =
1

2
< x, Ax > − < x, b >

=
1

2

n
∑

i=1

n
∑

j=1

aijxixj −
n

∑

i=1

xibi.

And then we calculate the gradient.

∂g(x)

∂xj
=

n
∑

i=1

aji − bj ,

∇g(x) = [
∂g(x)

∂x1
,
∂g(x)

∂x2
, . . . ,

∂g(x)

∂xn
]T = Ax − b = −(b − Ax) = −r,

Based on the advantage of greatest decreasing rate, we will solve eqn. (3.2) rather

than eqn. (3.1). Thus the method of steepest descent will start from an initial vector
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x0, and then define the initial search direction r0 = −∇g(x0) = b−Ax0. The following

steps are recursively given by

xk+1 = xk + αkr
k, k = 0, 1, 2, . . . .

αk are parameters which will be chosen so that g(x) can be minimized. We add b to

both hand sides after multiplying on both hand sides.

−Axk+1 = −Axk − αkArk,

b − Axk+1 = b − Axk − αkArk.

Since −∇g(xk) = b − Axk, thus search direction is also given as follows.

rk+1 = rk − αkArk, k = 0, 1, 2, . . . .

A line search is a procedure that minimizing g(x) by the way of choosing αk, we

initiate our calculation from the equation.

g(xk+1) = g(xk + αkr
k) = g(xk) − αk < rk, rk > +

1

2
α2

k < rk, Ark > .

The above equation can be regarded as function of αk. The leading coefficient

1
2

< rk, Ark > is positive. By partial derivative respect to αk, the minimal value

occurs at critical point.

∂g(xk+1)/∂αk = − < rk, rk > +αk < rk, Ark > .

Setting ∂g(xk+1)/∂αk = 0, we find that αk given by

αk =
< rk, rk >

< rk, Ark >
.

We check that consecutive residuals are orthogonal for the choice of

< rk+1, rk > =< rk − αkArk, rk >=< rk, rk > −αk < rk, Ark >

=< rk, rk > − < rk, rk >

< rk, Ark >
< rk, Ark >= 0.
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We collect the steps of the steepest descent method as follows.

1. Choose an arbitrary initial vector x0 and r0 = b −Ax0, and tolerance is given.

2. for k=0,1,2,..... , αk = <rk,rk>
<rk,Ark>

,

xk+1 = xk + αkr
k,

rk+1 = rk − αkArk.

3. If |xk+1 − xk| <tolerance, the solution can be approximated by xk+1

else return to step 2.

3.2 Introduction of conjugate gradient method (C.G. method)

The conjugate gradient method [7] of Hestenes and Stiefel was originally developed

as a direct method to solve positive definite matrix of linear systems. In this section,

we employed the C.G. method as an iterative method. The C.G. method is one of

the most prominent and efficient algorithms for the numerical solution of particular

linear systems, namely the systems whose matrix is symmetric positive definite. Since

the C.G. method is a kind of iterative method, so it can be applied to deal with

large sparse systems which can not be deal with by direct method such as cholesky

decomposition, Gauss-Seidel, and Jacobi methods. The idea of the C.G. method is

from minimization of the quadratic forms. Moreover, preconditioning is a technique

in further acceleration. C.G. method is most popular and efficient iterative method

for solving large sparse systems of the form.

The conjugate method can be regarded as the modification of the steepest descent

method. The most difference is that C.G. method modifies the search direction, and

then it becomes more efficient method. We start with an arbitrary x0, then we have
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p0 = r0 = b − Ax0. Therefore, the iterative steps will be defined as follows.

xk+1 = xk + αkp
k, (3.5)

pk = rk + γk(x
k − xk−1). (3.6)

Notice the vector pk is called new search direction to the k-th iteration which is the

modification of steepest descent method pk is linear combination of original defined

search direction rk and difference between consecutive steps is xk −xk−1. We re-write

eqn. (3.6)

pk = rk + γk(x
k − xk−1) = rk + γkαk−1p

k−1.

Then let γkαk−1 = βk−1. The above equation will become pk+1 = rk+1 + βkp
k. We

collect the formulas. Therefore we have

xk+1 = xk + αkp
k,

rk+1 = rk − αkApk,

pk+1 = rk+1 + βkp
k.

We wish that the above three equations will converge quickly once αk and βk are

determined. Now, we choose αk by the idea as well as method of steepest descent.

g(xk+1) = g(xk + αkp
k) =

1

2
< xk + αkp

k, Axk + αkApk > − < xk + αkp
k, b >

= g(xk) +
1

2
α2

k < pk, Apk > −αk < pk, rk > . (3.7)

Then we calculate the partial derivative respect to αk.

∂g(xk+1)/∂αk = αk < pk, Apk > − < pk, rk > .

Set ∂g(xk+1)/∂αk = 0, we find that αk can be given by

αk =
< pk, rk >

< pk, Apk >
.
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We re-write eqn. (3.7)

g(xk+1) = g(xk) − < pk, rk >2

2 < pk, Apk >
. (3.8)

We illustrate the idea why we let the search direction p0 = r0, according to eqn.

(3.8). If we choose the initial search direction p0 equal to r0, we can decrease the

value g(x1) than g(x0) as follows.

g(x1) = g(x0) −
< p0, r0 >2

2 < p0, Ap0 >
.

Next, we determine βk by studying eqn. (3.8).

As we know g(xk+1) = g(xk)− <pk,rk>2

2<pk,Apk>
. In order to minimize the value of each step,

we discuss the minus term − <pk,rk>2

2<pk,Apk>
.

The numerator part :

< pk, rk > =< rk + βkp
k−1, rk >

=< rk, rk > +βk−1 < pk−1, rk >, (3.9)

< pk−1, rk > =< pk−1, rk−1 − αk−1Ark−1 >

=< pk−1, rk−1 > −αk−1 < pk−1, Ark−1 >

=< pk−1, rk−1 > − < pk−1, rk−1 >

< pk−1, Ark−1 >
< pk−1, Ark−1 >= 0. (3.10)

In order to make the equation simple, we replace (3.9) into (3.10) we have the

< pk, rk >=< rk, rk >, and re-write eqn. (3.10) as g(xk+1) = g(xk) − <rk>
2<pk,Apk>

.

The denominator part : Since pk = rk + βk−1p
k−1.

< pk, Apk > =< rk + βk−1p
k−1, A(rk + βk−1p

k−1) >

=< rk, Ark > +2βk−1 < rk, Apk−1 > +β2
k−1 < pk−1, Apk−1 >,

∂

∂βk−1

[< rk, Ark > +2βk−1 < rk, AP k−1 > +β2
k−1 < pk−1, Apk−1 >] = 0,
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βk−1 = − < rk, Apk−1 >

< pk−1, Apk−1 >
. Equivalence, βk = −< rk+1, Apk >

< pk, Apk >
. (3.11)

By minimizing the denominator, C.G. method converges more quickly. Next, we

describe by saying that consecutive search directions are conjugate. By eqn.(3.11)

< rk+1, Apk > +βk < pk, Apk >= 0.

⇒< rk+1 + βkp
k, Apk >= 0,

⇒< pk+1, Apk >= 0.

3.3 Implementation of the conjugate gradient method for

anisotropic diffusion problems

We consider the anisotropic diffusion equation with constant coefficient matrix.

∂u

∂t
= ∇ · (β∇u),

where β =

(

ã b̃

b̃ c̃

)

, ã > 0, c̃ > 0, and b̃2 − ãc̃ < 0, u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

u(x, y, t) = g(x, y, t), (x, y) ∈ ∂Ω, t ∈ (0, T ] Because of constant coefficient matrix, we

can choose suitable discretization such that the linear system Ax = b has a symmetric

positive definite matrix.

3.3.1 Discrtiazation by Crank-Nicolson scheme

We extend the anisotropic diffusion equation into simple form as follows.

∂u

∂t
= ∇ · (β∇u) ⇒ ut = auxx + 2buxy + cuyy.

Beginning with the formula ut = un+1−un

k
+ O(k2) for ut evaluated at t + 1/2, and

using the same idea to deal with uxx, uyy and uxy. We have

un+1
i,j − un

i,j

k
=

1

2
aδ2

xu
n+1
i,j +

1

2
aδ2

xu
n
i,j +

1

2
cδ2

yu
n+1
i,j +

1

2
cδ2

yu
n
i,j +

1

2
bHxHyu

n+1
i,j +

1

2
bHxHyu

n
i,j,
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un+1
i,j −un

i,j =
k

2
aδ2

xu
n+1
i,j +

k

2
aδ2

xu
n
i,j +

k

2
cδ2

yu
n+1
i,j +

k

2
cδ2

yu
n
i,j +

k

2
bHxHyu

n+1
i,j +

k

2
bHxHyu

n
i,j.

We separate un+1 from un, and then

(1 − k

2
aδ2

x −
k

2
cδ2

y −
k

2
bHxHy)u

n+1
i,j = (1 +

k

2
aδ2

x +
k

2
cδ2

y +
k

2
bHxHy)u

n
i,j.

To simplify, we multiply two on both sides.

(2 − kaδ2
x − kcδ2

y − kbHxHy)u
n+1
i,j = (2 + kaδ2

x + kcδ2
y + kbHxHy)u

n
i,j. (3.12)

We extend the eqn. (3.12) into two parts. To simplify, we define some notations.

d̃ = 2 + 2ka + 2kc, ẽ = 2 − 2ka − 2kc, ã = ka, b̃ = kb, c̃ = kc.

The left hand side of eqn. (3.12)

(2 + 2ka + 2kc)un+1
i,j − ka(un+1

i+1,j + un+1
i−1,j) − kc(un+1

i,j−1 + un+1
i,j+1) − kb(un+1

i+1,j+1 − un+1
i−1,j+1

− un+1
i+1,j−1 + un+1

i−1,j−1).

By notations which is defined above, left part becomes

d̃un+1
i,j − ã(un+1

i+1,j +un+1
i−1,j)− c̃(un+1

i,j−1 +un+1
i,j+1)− b̃(un+1

i+1,j+1−un+1
i−1,j+1−un+1

i+1,j−1 +un+1
i−1,j−1).

The right hand side of eqn. (3.12) which is

(2 − 2ka − 2kc)un
i,j + ka(un

i+1,j + un
i−1,j) + kc(un

i,j−1 + un
i,j+1) + kb(un

i+1,j+1 − un
i−1,j+1

− un
i+1,j−1 + un

i−1,j−1).

turns to

ẽun
i,j + ã(un

i+1,j +un
i−1,j)+ c̃(un

i,j−1 +un
i,j+1)+ b̃(un

i+1,j+1−un
i−1,j+1 −un

i+1,j−1 +un
i−1,j−1).

Obviously, the fully implicit scheme will need to solve nine points at the same time.

We solve the equation by fully implicit method. Re-write the eqn. (3.12) in matrix

form

Au = Bx + R.
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Figure 2: We use regular uniform domain and collect the columns to be a new column.

The vector Au is corresponding to the left hand side part of eqn. (3.12), where

u ∈ R
(N−1)2×1 is an unknown vector which represented the value of next time step.

We take each column from domain and compose them to be a new vector which is

denoted by

u = [u1 u2 . . . uN−1]T ,

where ui = [un+1
i,1 , un+1

i,2 , . . . , un+1
i,N−1]

T .

Therefore we have the matrix

A =











D U

L
. . .

. . .
. . .

. . . U
L D











, where A ∈ R
(N−1)2×(N−1)2 is block tri-diagonal and posi-

tive definite matrix. The three block matrices are also tri-diagonal.

D =













d̃ −c̃

−c̃
. . .

. . .
. . .

. . . −c̃

−c̃ d̃













, U =













ã −b̃

b̃
. . .

. . .
. . .

. . . −b̃

b̃ ã













, L =













ã b̃

−b̃
. . .

. . .
. . .

. . . b̃

−b̃ ã













Notice that UT = L, so the matrix has the property of symmetricization.
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The left hand side part of eqn. (3.12) is represented by vector Bx, where x ∈

R
(N−1)2×1 is a known vector which take the information for solving next time step.

B =











D′ U ′

L′ . . .
. . .

. . .
. . . U ′

L′ D′











, where B is also a block tri-diagonal matrix, and

D′ =











ẽ −c̃

−c̃
. . .

. . .
. . .

. . . c̃
−c̃ ẽ











, U ′ =













−ã b̃

−b̃
. . .

. . .
. . .

. . . b̃

−b̃ −ã













, L′ =













−ã −b̃

b̃
. . .

. . .
. . .

. . . −b̃

b̃ −ã













The column vector R ∈ R
(N−1)2×1 contains boundary condition.

R = [R1, R2, . . . , RN−1]T ,

R1 =

























ãun+1
0,1 + c̃un+1

1,0 + b̃un+1
0,0 − b̃un+1

2,1 − b̃un+1
0,2

ãun+1
0,2 + b̃un+1

0,1 − b̃un+1
0,3

...

ãun+1
i−1,j + b̃un+1

i−1,j−1 − b̃un+1
i−1,j+1

...

ãun+1
0,N−2 + b̃un+1

0,N−3 − b̃un+1
0,N−1

ãun+1
0,N + c̃un+1

1,N−1 + b̃un+1
0,N−1 − b̃un+1

2,N−1 − b̃un+1
0,N+1

























,

RN−1 =

























ãun+1
N,1 + c̃un+1

N−1,0 + b̃un+1
N−2,0 + b̃un+1

N,2 − b̃un+1
N,0

ãun+1
N,2 + b̃un+1

N,1 + b̃un+1
N,3

...

ãun+1
i+1,j − b̃un+1

i+1,j−1 + b̃un+1
i+1,j+1

...

ãun+1
N,N−2 − b̃un+1

N,N−3 + b̃un+1
N,N−1

ãun+1
N,N−1 + c̃un+1

N−1,N + b̃un+1
N,N − b̃un+1

N,N−2 − b̃un+1
N−2,N

























,
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Ri =

























c̃un+1
i,0 + b̃un+1

i−1,0 − b̃un+1
i+1,0

0
...
...
...
0

c̃un+1
i,N + b̃un+1

i+1,N − b̃un+1
i−1,N

























, 2 ≤ i ≤ N − 2.

We apply conjugate gradient method to deal with the anisotropic diffusion problem

with constant coefficient matrix. Next, we consider the matrix whose entries are

variable type, and we will use biconjugate gradient method to deal with the problem.

3.3.2 The biconjugate gradient method

Different from conjugate gradient method, biconjugate gradient method does not

require symmetric matrix, but conjugate transpose AT . The algorithm is as follows.

1. Choose a initial vector x0, r0 = b − Ax0 and select r̃0 such that < r0, r̃0 >6= 0.

2. Set p0 = r0 and p̃0 = r̃0,

3. For k = 0, 1, 2, . . .

αk = <rk,r̃k>
<pk,Ap̃k>

,

xk+1 = xk + αkp
k,

x̃k+1 = x̃k + αkp̃
k,

rk+1 = rk − αkApk,

r̃k+1 = r̃k − αkA
T p̃k,

βk = <rk+1,r̃k+1>
<rk,r̃k>

,
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pk+1 = rk+1 + βkp̃
k,

p̃k+1 = r̃k+1 + βkp̃
k, if convergence ends.

3.3.3 The preconditioned conjugate gradient method

A technique resulting in further acceleration of the conjugate gradient method is the

preconditioned conjugate gradient method.[3] The basic idea of the preconditioned

conjugate method is to replace the system.

Ax = b

by

C−1AC−1(Cx) = C−1b.

Since A is large sparse matrix, we apply incomplete LU factorization which is a kind of

precondition. The factorization is used to solve sparse square matrices. Incompleting

LU factorization produces a unit lower triangular matrix L, an upper triangular

matrix U , and residuals R.

A = LU − R

We let C = L, and C−1AC−1 is a matrix for which the conjugate gradient method

converges faster than it does with A itself. We define

Ã = C−1AC−1

x̃ = Cx

b̃ = C−1b

Since Ã is symmetric positive definite, then we apply conjugate gradient method to

the linear system Ãx̃ = b̃.
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1. Start with a initial vector x̃0. Initial search direction r̃0 = b̃ − Ãx̃0.

2. For k = 0, 1, 2, . . .,

α̃k = <p̃k,r̃k>

<p̃k,Ãp̃k>
,

x̃k+1 = x̃k + α̃kp̃
k,

r̃k+1 = r̃ − α̃kÃp̃k,

p̃k+1 = p̃k − β̃kp̃
k,

β̃k = −<r̃k+1,Ãp̃k>

<p̃k,Ãp̃k>
, if convergence ends.

3.3.4 The preconditioned biconjugate gradient method

We apply the same idea to the precondition of biconjugate gradient method. The

algorithm

1. Choose initial vector x0, two vectors x̃0, b̃ and a preconditioner M ,M can be I.

2. r0 = b0 − Ax0, r̃0 = b̃0 − AT x̃0.

3. p0 = M−1x0, p̃0 = (M−1)∗r̃0).

4. For k = 0, 1, 2, . . .

αk = <r̃,M−1rk>
<p̃k,Apk>

,

xk+1 = xk + αkp
k, x̃k+1 = x̃k + α̃kp̃

k,

rk+1 = rk − αkApk, r̃k+1 = r̃ − α̃kA
T p̃k,

βk = <r̃k+1,M−1rk+1>
<r̃k,M−1rk>

,

pk+1 = M−1rk+1 + βkp
k, p̃k+1 = M−1r̃k+1 + β̃kp̃

k.
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Notice that the terms rk and r̃k satisfy with rk = b − Axk, r̃k = b̃ − Ax̃k. And xk

and x̃k are solutions corresponding to Ax = b and AT x̃ = b̃.
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4 Numerical results

In this section, we discuss some numerical simulations performed by A.D.I. and itera-

tive methods to characterize the advantages and disadvantages of these two different

kinds of approach. To analyze the order of accuracy of previous algorithms, we firstly

consider two dimensional test cases with no mix-derivative term which is heat equa-

tion, then constant and variable coefficients diffusivity. We will also demonstrate the

CPU time to compare the efficiency of each method.

4.1 Numerical results for heat equations

In order to compare these two numerical methods, we consider two dimensional heat

equation.

ut = auxx + cuyy, u(0) = u0, ∂u|Ω = g(t),

u ∈ C2, and Ω = {(x, y)|0 ≤ x, y ≤}, 0 ≤ t ≤ T.

The first example is a two dimensional parabolic differential equation with initial and

dirichlet boundary conditions.

ut = uxx + uyy, 0 < x, y < 1 and t > 0,

u(x, y, 0) = ex+y, 0 ≤ x, y ≤ 1,

u(0, y, t) = e2t+y , u(1, y, t) = e2t+y+1,

u(x, 0, t) = e2t+x, u(x, 1, t) = e2t+x+1.

The exact solution is

u(x, y, t) = ex+y+2t.

No matter what the coefficient matrix be, A.D.I. method works. The discretized

matrix of above equation is constant and symmetric positive definite. We employ
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C.G. method then list a table about order of accuracy and CPU time immediately.

Using exact solution, we compute 2-norm relative errors and calculation is run up to

time T = 1.

Conjugate Gradient method A.D.I method

∆t = h relative error time order relative error time order

1/20 3.3598e-005 0.17 1.3355e-005 0.06
1/40 8.0106e-006 0.29 2.0684 3.1992e-006 0.18 2.0616
1/80 1.9545e-006 2.43 2.0351 7.8148e-007 0.86 2.0334
1/160 4.8263e-007 35.90 2.0178 1.9303e-007 5.56 2.0174

Next, we consider another test equation with variable matrix which is not symmetric

but positive definite and apply B.I.C.G. method.

ut = x2uxx + y2uyy, 0 < x, y < 1 and t > 0

u(x, y, 0) = x2y + xy2, 0 ≤ x, y ≤ 1

u(0, y, t) = 0, u(1, y, t) = e2t(y2 + y)

u(x, 0, t) = 0, u(x, 1, t) = e2t(x2 + x)

The exact solution is u(x, y, t) = e2t(x2y +xy2). The numerical results are as follows.

Bi-Conjugate Gradient method A.D.I method

∆t = h relative error time order relative error time order

1/20 2.1829e-005 0.20 2.1785e-005 0.06
1/40 5.0507e-006 0.71 2.1117 5.0486e-006 0.16 2.1094
1/80 1.2156e-006 7.85 2.0548 1.2155e-006 0.88 2.0544
1/160 2.9814e-007 126.53 2.0276 2.9821e-007 5.44 2.0271

Finally, we test the third example and analyze the result.

ut =
2

3
(1 + x + y)2uxx +

2

3
(1 + x + y)2uyy, 0 < x, y < 1 and t > 0,

u(x, y, 0) = (1 + x + y)1.5, 0 ≤ x, y ≤ 1,

u(0, y, t) = et(1 + y)1.5, u(1, y, t) = et(2 + y)1.5,
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u(x, 0, t) = et(1 + x)1.5, u(x, 1, t) = et(2 + x)1.5,

The exact solution is u(x, y, t) = et(1 + x + y)1.5.

Bi-Conjugate Gradient method A.D.I method

∆t = h relative error time order relative error time order

1/20 2.2056e-006 0.15 8.3317e-007 0.06
1/40 5.3968e-007 0.50 2.0310 2.0462e-007 0.18 2.0257
1/80 1.3306e-007 5.21 2.0200 5.0611e-008 0.85 2.0154
1/160 3.3048e-008 41.25 2.0095 1.2580e-008 5.55 2.0084

We analyze the examples previously by figures. The discussion contains order of

accuracy and CPU time. Since heat equation contains pure second derivative terms

respect to space. When we evaluate it at tk+1/2 by Crank-Nicolson scheme, A.D.I.

and iterative methods will converge in the second order of accuracy. Figure 3 shows

that A.D.I., C.G. and B.I.C.G method satisfy the expected results. Next, we want to

figure out which method is more efficient. For each method, the grid sizes are 1/20,

1/40, 1/80, and 1/160. There are four kinds of grid points, we construct polynomials

which are degree 3 to fit the data. We notice the iterative methods need more and

more time in computing process, but the increasing rate of CPU time of A.D.I is quiet

small. It seems linearly.

4.2 Comparison of iterative methods and the A.D.I. method

Mix-derivative term is the only difference between heat and anisotropic diffusion

equation. In the following examples, We will illustrate how the mix-derivative term

effects these methods.

ut = auxx + 2buxy + cuyy, 0 < x, y < 1 and t > 0, where β =

(

1 −1
−1 3

)

,

u(x, y, 0) = ex+y, 0 ≤ x, y ≤ 1,

u(0, y, t) = ey+2t, u(1, y, t) = e1+y+2t,
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Figure 3: Comparison of order of accuracy for case 1, 2, 3, respectively. (y-axis is
order of accuracy, x-axis is number of grid point)

u(x, 0, t) = ex+2t, u(x, 1, t) = ex+1+2t.

The exact solution is u(x, y, t) = ex+y+2t.

Bi-Conjugate Gradient method A.D.I method

∆t = h relative error time order relative error time order

1/20 2.2459e-004 0.25 8.3664e-004 0.06
1/40 5.7107e-005 0.89 1.9755 4.0900e-004 0.16 1.0325
1/80 1.4421e-005 7.32 1.9855 2.0468e-004 0.90 1.0200
1/160 3.6279e-006 53.37 1.9910 1.0007e-004 5.63 1.0110

The second case is as follows.

ut = auxx + 2buxy + cuyy, 0 < x, y < 1 and t > 0,
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Figure 4: CPU time of case 1, 2, 3, repectively.

a = c = 12cos2[π(x + y)/6]/π2, b = −3cos2[π(x + y)/6]/π2,

u(x, y, 0) = tan[π(x + y)/6], 0 < x, y < 1,

u(0, y, t) = ettan[πy/6], u(1, y, t) = ettan[π(1 + y)/6],

u(x, 0, t) = ettan[πy/6], u(x, 1, t) = ettan[π(1 + y)/6].

The exact solution is u(x, y, t) = ettan[π(x + y)/6]

Bi-Conjugate Gradient method A.D.I method

∆t = h relative error time order relative error time order

1/20 1.0265e-004 0.19 1.1431e-004 0.07
1/40 2.4869e-005 0.55 2.0453 6.3867e-005 0.14 0.8398
1/80 6.1116e-006 3.52 2.0247 3.3412e-005 0.89 0.9347
1/160 1.5142e-006 38.08 2.0130 1.7051e-005 6.01 0.9705
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Figure 5: Order of accuracy of case 4, 5, repectively. ( y axis represent order of
accuracy)

To the A.D.I. method, we see that the order of accuracy is first order only since we

deal with the mixed derivative term as explicit type. Iterative methods still maintain

the second order of accuracy, in spite the mix-derivative part makes block tri-diagonal

matrix more complex. Mix-derivative term does not effect CPU time of A.D.I. method

because the structure of tri-diagonal linear system do not change at all. By fitting

the data, we can see the tendency of increasing of CPU time, and the result is given

by figure 6.
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Figure 6: CPU time of case 4, 5, respectively.

4.3 Conclusion

By using A.D.I. and iterative methods to solve heat equations without mix-derivative

term, the second order of accuracy has shown in figure 3. In calculating process,

iterative methods cost more time than A.D.I. method, the defect will react to effi-

ciency of simulating. Since A.D.I method solves two tri-diagonal systems during a

single time step, the time consuming of anisotropic diffusion problem is as well as

heat equation. As we employ iterative methods to the same problem, mix-derivative

term makes coefficients of matrix complex. Therefore iterative methods take more

time to deal with the large sparse matrix. If we need to refine the grid to search for

higher precise simulations, A.D.I. method can outperform iterative method with a
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speedy calculating.
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Figure 7: A case satisfied heat and anisotropic diffusion, we fit the curve of data
solved by A.D.I. and iterative methods. and compare with the CPU time.
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