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A Numerical Study of A.D.I. Methods to
Anisotropic Diffusion Problems

Student : Yu-Chen Chen Advisor : Ming-Chih Lai

Institute of Mathematical Modeling and Scientific Computing,
National Chiao Tung University,
1001 Ta Hsueh Road, Hsinchu 30050,
Taiwan.

Abstract

Anisotropic diffusionis a’kind of microscopic phenomenon. It plays an im-
portant role in a lot. of ‘scientific_applications. We use A.D.I. method which
is efficient to solve ‘anisotropic-diffusion problems. We study the order of ac-
curacy and unconditionally stable-convergence of the method, and compare it
with preconditioned iterative methods. Since diffusivity of anisotropic diffu-
sion equations can-be constant and variable type. We choose conjugate gradi-
ent method to deal with the constant type equation and biconjugate gradient
method to solve the general type. Because of the special structure of linear
systems, A.D.I. method outperforms iterative-methods of CPU time.

Keywords: A.D.I. method; Conjugate-gradient method; Biconjugate grdient
method; dirichlet boundary condition; anisotropic diffusion problems; precondition;

iterative methods
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1 Introduction

As it known, the anisotropic diffusion [5] is a kind of microscopic phenomenon in the
random thermal motion on a microscopic scale. A lot of applications of anisotropic
diffusion in physics, chemistry, biotechnology, and engineering. It is a net transport
of particles from higher concentration to lower concentration. Because of anisotropic
diffusion, the material mix gradually. The mixing process which can be described by
Fick’s law will attempt to the equilibrium state. By solving the anisotropic diffusion

problems could help us to simulate the whole behavior of diffusion.

In section 2, we introduce the alternating direction implicit (A.D.I.) method [9]
which is known as the finite-difference implicit-type algorithm. A.D.I. method has the
advantage of ensuring a more efficient formulation-and calculation than other implicit
methods in the case of multidimensional problems. We diseretize the anisotropic dif-
fusion equation by Crank-Nicolsonscheme and split the finite difference time-domain
problem by Douglas-Rachford method which is-a kind of A'D.I. method. By us-
ing Taylor series, we discuss the order of accuracy of the A.D.I. method which is
first order in time and second order<in space.- Next, we illustrate that the two level

finite-difference method is unconditionally stable.

Next, we introduce some direct, methods solving large sparse linear system of
equations. Direct methods take too much time and limited memory in computing
process. In section 3, the conjugate gradient method [7] can be regarded as the
iterative method to solve the anisotropic diffusion problems. When the diffusivity
is constant type and the matrix of linear system is symmetric positive definite, the
problem will be dealt by conjugate gradient (C.G.) method. If the diffusivity is

variable type, we employ bi-conjugate gradient (B.I.C.G.) [12] method. Both B.I.C.G.



and C.G. are iterative methods, but the first one does not take advantage of the
symmetric property, it requires the transpose of the original matrix. In other words,
B.I.C.G. is more general than C.G. method. Generally speaking, one employs iterative
methods to include preconditioning, if the matrix is ill-conditioned. C.G. and B.I.C.G.
is highly susceptible to rounding errors. We use incomplete LU factorization [15]

which is often used as a preconditioner, especially for large sparse matrix.

The last section contains numerical results about implementing of A.D.I. method,
C.G. method and biconjugate gradient method. Firstly, we consider a heat equation
which is a simpler problem than the anisotropic diffusion problem. The numerical
results show that A.D.I. | C.G. and B.I.C.G methods converge in the second order of
accuracy. In addition, we record CPU time for these methods and notice that A.D.I.
is more efficient than iterative methods. Finally, we apply our numerical methods for
the anisotropic diffusion problems-and.make a conclusion by comparison of numerical

results.



2 The Alternating Direction Implicit method (A.D.I.)

In section 2, firstly, we describe a standard problem of the anisotropic diffusion prob-
lem. Secondly, we introduce an efficient and simple numerical method for solving
parabolic equations, especially on regular domains. By using Taylor series, we show
that the scheme is consistent with the partial differential equation. The accuracy is
first order in time and second order in space. Thirdly, we illustrate the implemen-
tation of A.D.I. method. We will demonstrate some numerical results in the last

section, and give a concise conclusion.

2.1 The anisotropic diffusion problems

Anisotropic diffusion problems arise in widespread. range of scientific fields such as
oil-reservoir simulation, plasma physies, image processing, semiconductor modeling,
biology, and hydro-geology etc. Numerical simulationplays an important role in wild
applications. When implement various numerical methods on this type of problem,
one needs to find an approximation of wu; which is the solution of the following two

dimensional anisotropic diffusion equation. [9]

ou :
5 = VH(BY4) m 0% (0,T] (2.1)

with the initial condition
U([L’, Y, O) = UO(‘T? y)v (xay) €
and the dirichlet boundary condition

u(x,y,t) = g(x,y,t), (x,y) € 0Q,t € (0,77,



where [ = a(z,y) b,y
here (( y) e,

d>0,5>0,and62 ac <

) is a 2 X 2 symmetric coefficient matrix, subject to

2.2 Discretization of A.D.I. method

As noted before, the anisotropic diffusion problems are difficult and expensive when
solved by all kinds of direct methods or iterative methods. In other words, they may
cost much time and memory at each time step. If we want to solve the problems
efficient, the expensive method may not suitable. A.D.I. method is an approach
which reduce two-dimensional problem to a succession of a system of one-dimensional
problems. Now, we start our work to extend Eqn.(2.1) as follows.

o =% v = SO ey (i)

Obviously, we extend the above equation which contains four terms.

ou
T = gzt Dugy F DUy ey, .

ot

Notice that the right-hand side includes V?u, and two mixed terms wu,, and wu,,.
In order to simplify the'equation, we assume w € C*; then we have u,, = u,,. Thus
we obtain.

Up = AWzt 20U Cllyy - (2.2)

In the beginning of discretization, we omit the mixed derivative term to reduce the
difficulties of designing the scheme of equation. Therefore we consider heat equation
first and look for a higher order of accuracy approximation of time derivative. Crank-
Nicolson scheme is one kind of traditional scheme which has high order of accuracy
as we want. We start with the formula for u, evaluated at t;1,/2. By using Taylor

series, we obtain two equations (2.3) and (2.4).

2

k k
Wt = Y2 4 S + ~un + Ok, (2.3)

4



n k k2 3
U = Upt1/2 — §ut + Zutt + O(l{? ) (24)

We combine equations (2.3) and (2.4) such that the second derivative of time van-
ished. Therefore we have a second order accuracy scheme (2.5) and we will use it to

approximate the time derivative.
+ O(k?). (2.5)

We undertake to approximate the derivatives respect to space. By using Taylor series,
we have

Uit1 = Ui + Py + P2 Uy + RPUgee + O(RY), (2.6)
Uimy = U; — Py + WP Ugy — PPy, + O(h?). (2.7)

Take summation of eqn.(2.6) and (2.7); the first.derivative in space can be vanished,
and let the summation divided by h? immediately. We product eqn.(2.8) which con-

verges in the second order accuracy. Base on the same techniques, we derive eqn.(2.9).

_ Uig1j — 2Uij A+ Ui

“ “ rop) 2.8)
bt = 25 = Ui
gy = M g (1), (29)

Next, we will derive the finite difference scheme for the first derivative respect to
space in = and y directions. We subtraet.(2.7) from (2.6) to keep the term u,, and
divide by 2h immediately, and we obtain eqn. (2.8).

Similarly, we produce the approximation for first order derivative in y direction. To

simplify, we introduce some notations.

Uy = ““%h“‘” +O0(h), (2.10)

uy = % +O(h?). (2.11)



Let 62, 5;, H,, and H, be linear operators [10]. For convenience, we define

2y = it 2 F Ui

T h2 ?
2y = Wid+l = 2Uig F Ui
vy h2 ’
Hou— Wit1,j — Ui-1,5
LU = —d )
2h ’
- Wij+1 — Uij—1

v 2h

For the approximation in space, we employ the same ideas which has been used in
the Crank-Nicoslon scheme at ?j1/2. Thus we obtain the equation below.

ut — oy = %(5211”“ + 62u™) + %(5511”“ + 5§u”) + O(K* + kh?),

(14+a)d +b) =1+ a=+b+ ab. (2.12)

It is quiet difficult to solveithe block tri-diagonal linear-system by direct methods.
However, base on formula (2:12), we add k*aco30;u™! /4t both side of above equa-

tion and re-write it as follows.

/{32
?Céz)u’”r%ﬁéi(u”*l—u”)+0(k3+kh2).

(12020 K (14 M gy

(2.13)
Since u™™! — u™ = ku; +O(k?). and the k? factor, the second term of eqn.(2.13) is
higher order term. We can omit/the term without effecting the order of accuracy of
original numerical scheme. From now on, we have already illustrated the detail of

discretization of heat equation.

(1- %55)(1 - %5§)u"+1 =(1+ %55)(1 + %65)% + Ok +kh%).  (2.14)

Now, we try to deal with the mixed derivative. According to the Douglas-Rachford

method [9], we put the mixed term on right-hand side of eqn. (2.14). In other words,



we treat it as the information that we have already known.

1o Wi — Wigr -1 Wim1 41 + Uim1 1
oy = =T ’ — — ’ ’ h
tay = o o I+ 0(h)

1
4h2 [uz—i-l g1 T Uit15—1 — Ui—1,5+1 + Ui J— 1] + O(h)

= H,H,u+ O(h).

We insert the mixing derivative term into eqn. (2.14), then we have.

ka ke

(1__53( ka kc

52) ntl — (1+—52)(1+ 52)u + 20k H, Hu" + O(k* + kh* + kh).
(2.15)
By the way, the scheme is consistent with the anisotropic diffusion equation. The

order of accuracy is first order in time and second order in space.

We split above equation into two level time-domain scheme by Douglas-Rachford

method.
1
(1-— §ka(5§)ui =1+ ka(52 + kedy + 2kbHoH  )uy (2.16)
(1l kc62) S —kcaj A (2.17)

Notice that each step requires the value u; ;. We should regardw; ; as intermediate or
temporary value. A.D.I"method deal with intermediate values by boundary condition
[10]. The problem about temporary values will illustrate in implementation of A.D.I

method.

2.3 Stability for A.D.I. method

The Douglas-Rachford method is unconditionally stable. It can be easily checked by
von Neumann analysis for two dimensional problems. Since von Neumann analysis
can not deal with variable coefficient case, we show the variable type as well as

constant type referring to [13].



2.3.1 von Neumann analysis for the anisotropic diffusion problems

Before we study the stability of A.D.I. method, we apply von Neumann analysis of fi-
nite difference schemes which is used to check the stability of finite difference schemes.

By using von Neumann analysis, we can give necessary and sufficient conditions for

the stability of A.D.I. method.

We consider simple case whose coefficient matrix is constant type. By using von
Neumann analysis for two dimensional equation [9], we replace ui; by \eimbeind ) —
nh, ¢ = £h, n and £ which are arbitrary real numbers, 0 < 6, ¢ < 7.

Where A is amplification factor. We will perform von Neumann analysis for A.D.I

method. The method is stable if and only if |\| < 1.

e — 2 4=t : : 4 +,0 , ,
(ﬁun — h2 )\nezmeejmz) — _ﬁ SlIl2 _)\nezmeejngb’
QL Y/ i~y | 4 0 .
2. n_ € niml jneg _ T 2 n imb _jneo
o u" = iz e el M= 2 sin 2)\ e el"?,
e0ei® — ce=1? —g=1Wel® 4 o=We—i® o 1 o
H, Hu" = ( e )A”e’m063"¢ = —ﬁ)\"e’meem‘z’ sin @ sin ¢.

By using equations above, eqn. (2:15) can -bere=written as follows.

1+ 2% 602 831 1 2 g2 ) LR e L Y — 2 in2 &) — 2};’“

7 5 72 5 sin @ sin ¢).

Then we have the absolute value of \.

I _%ksm2g)(1—2}f§sm2 2) — 2% sin @ sin ¢)|

[(1+4 2}ff sin —)(1 + 2;2]“ sin? ¢)|

Al =

To simplify, we replaced k/h? by r.

(1 — 2arsin®%)(1 — 2cr sin® £) — 2br sin f sin ¢|

Al = $
(1 + 2rsin® £)(1 + 2crsin® 2)|




Next work will discuss the relations between a, b, ¢, 6, ¢, 7 which make |A| < 1. We

multiply denominator on both sides, and take square.

5 0 5 0
|(1 — 2arsin® 2)(1 — 2cr sin? (5) — 2brsin @ sin ¢| < |(1 + 27 sin? 2)(1 + 2cr sin? (5)|
o0 2 ¢ i 112 o0 RN
|(1 — 2ar sin 5)(1 — 2crsin 5) — 2brsin 0sin ¢|* < |(1 4 2rsin 5)(1 + 2crsin 5)\ ,
We subtract right hand side from left hand side and apply difference of two squares.

50 0
(1 —2ar sin? 5)(1 2cr sin? ?) 20r sin 0 sin ¢|* — |(1+2r sin? 2)(1—{—20rsm ¢)|2§0,

0 5 0
[(1 — 2arsin® 5)(1 2¢r sin (5) — 2brsin@sin ¢ + (1 + 2r sin® 2)(1 + 2crsin (5)] X
. o0 5 @ 6 o &
[(1 — 2arsin 5)(1 2cr sin? 2)—2brs1n981n¢ (1 + 27 sin? 5)(1+20rsm 2)] <0.
Finally, we obtain a inequality as follows.

2%5—brsin@sinqb][asinQg+csir1225 +gsin9sin¢] >0

0
1 4 2 . 2_ .
[1+ 4acr® sin 5 Si 5

For simplification, we let

A = 1+ 4acr? sin® g sin® % — brsin@sin ¢y and Ay = asin® g 4 sin? % + gsinesin 0.

Obviously, |A| < 1 if and only if Ay A5 > 0.

0
A1 = 1+ dacr? sin® 5 sin? % — br sin 0 sing

20 . 20 ¢

= 1+ dacr? sin 3 sin 5~ 4br'sin 5 cos 3 sin — cos —

2 2

0 b 0 b? 0
=1+ [2rv/acsin 3 sing " e €S 7 €O g]Q - cos? 3 cos? g

In the above three equations, we use addition formula and complete the square.

0 b 6 - 6 6
= [2rv/acsin 3 sin % ~ cos 5 cos 2]2 + acac cos® 3 cos® 5t 1 — cos® 3 cos® B




By the constraint of anisotropic diffusion equation, we have b*> — ac < 0. Thus the

second term will be positive.

0 b 0 — b? 0 0
A1 = [2ry/acsin 3 sing — ﬁ €08 5 COS g]z + acac cos? 3 cos? g + 1 — cos? 5 cos” g
0 b 0 — b? 0 0 0
= [2rv/acsin 3 sing T cos 5 cos g]z + acac cos? 3 cos? % + sin? 5+ cos’ 5(1 — cos® 5)

0 b 0 — b? 0 0 0
= [2rv/acsin 3 sing — \/? €08 5 COS g]z + acac cos? 3 cos? 5 + sin? 2 + cos? 3 sin? g >0

Finally, we find the third and fourth terms of A\; are both non-negative. Therefore,

we have a conclusion that A\; must be positive. Similarly, we deal with .

0 b
Ao = asin2§ +csin2? + §sinesin¢

2
0 0 0
:asin2§—|—csin2§+2bsin§cos§sin§cos§
0 b o b? 0
= [\/Esinﬁcosg + %cosésm 5]2 1 asin® ésin2§ +csin2§ — 20082 §sin2§
0 b 7 — b? 0 0
= [\/5811(156082 + %cosﬁsin 2]2 + aca 0052§sin2§—|— (a+c) sin2§sin2§ > 0.

Notice that the constraint b — ac <0 plays animportant role both in the calculation

process of A\ and \s.

No matter what a,bye, 0, ¢, ¥ be, Ay > 0, Ay > 0. The result implies A;\s > 0.
In other words, |A| < 1 is unconditional. Thus A.D.I. method is also unconditional

stable when the anisotropic diffusion. equation hasa constant coefficient matrix.

2.3.2 von Neumann analysis for general anisotropic diffusion problems

Next, we show that the general situation for the anisotropic diffusion problems. The
von Neumann analysis fails to deal with variable type. Fortunately, we find that the
important reference which be made by Widlund[13]. Therefore, the stability of A.D.I.

method in general situation will be done. We rewrite the equation (2.15) as follows.

ka ke k*ac . ka ke k*ac .
(1— 755 - ?55 + Tagaj)u = (1+ 753 + 755 + Tagaj + 2bk H, H,)u™.

10



For convenience, we define notations below and rewrite the equation.

Po1—(1-— %/m(sg)( kC(s?)

1
—ack?§26?

k;62+ k052 k573,

1 1
Q=01+ 5k,msg)u - §k:c5§) + 2kbH, H, — 1 = §ka5§ + §k:c5§ - Zacmfcdj + 2kbH, H
u?jl — U Pu"Jrl + Qu

Now, we replace some terms which

refer to widlund’s notations.

6 ..
Uit1,j — W;; = £2isin —eﬂ%,
Ui ja1 — Ui ; = F2isin geﬂ%
Ui,y — Wi—1,; — 27'sin 9,
U j+1 — Ui -1 = 21 sin ¢
upf = upy = Pupf s Quiy,
_ 2ka . .0 2kec . .0 dack® 50 .o
P:—?s 5—?81 5 sin §Sln ok
- 2k 0 2k dack? o 2kb
Q== s~ TR G sl e s s
_ 1 o
qul_Pu?jl :+Qu + = (L— P)u; n+1 (1+Q)u :>u"+1 = 1+guzj.
A < 1. We find
11+ Q)| A = (1 — 2% sin® £)(1 — thf sin? £) — 2% sin 0 sin ¢|
|1 — P| |(1+4 Q:Qk sin —)(1+ QhCQk sin? ¢)|

Since the absolutely value of amplification factor of constant type is the same to
variable type, so we can repeat the same work as well as the case with constant
coefficient matrix. Therefore A.D.I method is unconditionally stable with variable

coeflicient matrix.

11



2.4 Apply A.D.I. method to anisotropic diffusion problems

To implement A.D.I. method on a square domain Q = {(z,y)[0 < z,y < 1}, we
begin with a grid consisting of points (z;,y;), given by x; = ih, and y; = jh for
1,7 =0,1,..., N respectively. In time direction we have t = nk,1 <n < N — 1, where

k=1/N.

Firstly, we solve the temporary value u* by implicit method. We write down the
left hand side of eqn. (2.16) as follows. Obviously, the matrix which corresponds to
the linear system is tri-diagonal.

kaij .

_ U k:ai,j
2h2 i—1,j

h2

o haig o
i T op2 titly

+ (1 +

Yu
The right hand side will be written below, it contains known information.
1 2 2 n
(1+ §k‘a5x +keo, + 2kbH, H, ) ;:
We assume that r = k/h? and reduce the equation: We have implicit part
—0.5rai’ju;-k_17j + (1 —+= TG,Z'J')U:J - O.57’CLZ'7]'U:+1J.

and information part.

n n n n n
(1 —Tra;; — 2rci7j)ui7j + 0.5rai,j(ui+17j + ui—l,j) + T’Ci,j(ui7]~+1 + um-_l) + O-5Tbi,j

n n n
(Ui+1,j+1 — U1 T Uig o1t ui—l,j—l)‘

For 1 < j7 < N —1, we rewrite above equation for each 7 in matrix form, and solve the

12



linear system A;z; =r; ,where A; is a tri-diagonal square matrix with order N — 1.

uj ;
1 + kal,j —0.5]{7@1’]‘ .
—0.5]{7@2’]‘ 1 + kag’j —O.5ka27j *
i = - - . S A
—0.5]{3&]\[_17]' 1+ k:aN_Lj .
UN_1,j

U?’j + O.5ka17j5§u?’j + kcldésu’f’j + 0.5kb1,meHyU?’j

T, = Uzj + 0.5kai,j52u"- + ]{JCZ'J(52U7-L- —+ 05]€bl,]HmHyuZ]

T, Ay,

0.5a4 juj ;

0

0
O.5aN_17ju*N_1,j
Notice r; composed of two'terms, the second term is consisted of boundary condition.
Unfortunately, u* is undefined. -Here is.a problem arising, how to deal with the
boundaries about u* 7:Obviously, the term w* is contained both in eqn. (2.16) and
eqn. (2.17). Generally, we combine two equations and vanish the derivative terms
about u*. Therefore, u* will be represent by u"*' and u". . We want to follow the

same tactic to deal with our equation. Consider that equ. (2.17)

1 ' .

The terms of left hand side associate with «™*! only, and the right hand side contains

u* and some terms associate with u". u* can be expressed by combination of u}';

and u?;rl as the equation below, so the boundary condition u;; becomes easier to
implement.
ui,=1[1— 1/’{;c- O urtt — 1/’{;c- 2l
i 2 LIyl T,y 2 YRS TR NN

Thomas is applied to solve the tri-diagonal system. We obtain u*.
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Similarly, we solve u"™!. By eqn. (2.17)

kci,j n+1 kci,j n+1 kcivj n+1 * kcl,] n kcl,] n
o2 Yi-1g +(1+ T2 Jui T — Sp2 Uity = Yig T ops i1 + ke jui; oh2 lig+l:
For 1 <i < N — 1, we have

uﬂfl
1+ ke —0.5keis
_ _ —05]€CLZ 1+ l{:ai —O5ka2 ’
Ai.fi :bzAz = ? . ? . ? . 7fi = uz;_l
—0.5]{7@@]\/_1 1 + /{:ai,N_l n-;-l
i, N—1

UZ 1 + 0. 5k‘aZ 1695 z 1 + k‘Cz 15 —l— 05kb,71HxHyu21

7y = 7+ 0.5ka; j02u; + k:c”(52u" + 0.5kb; j H, Hyull;

IEZ] ylj

Ui N 1 +0.5ka; v 102 U N 1+kCzN 15yUzN 1 +0.5kb; n— 1HHuZN 1

n+1
0.5a;1u;

0

0
n+1
O5CLZN 1uzN 1

We deal with tri-diagonal linear system by using Thomas algorithm again.
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3 Conjugate gradient method for anisotropic dif-
fusion problem

In section 3 we introduce some iterative methods and preconditioner. Then apply
the iterative methods to anisotropic diffusion problems. Finally, we will show the

numerical results

3.1 Steepest Descent method

Steepest descent method [7] is one kind of iterative method which generally converges
to the solution and global in nature. Nearly, for any starting initial value will give
convergence. Because C.G. method is-originated from steepest descent method, we
introduce the steepest descent method before we study.C.G method. Consider the

linear system of equation.

Az=b; (3.1)

where A™™ is a large sparse matrix which is symmetric positive definite. b € R™*!
is a known vector, and @ € R™*! is solution of the linear system. If we solve eqn.
(3.1) by fully implicit scheme, we will face to save CPU time and limited memory for
computing when we invert the matrix. In order to avoid the expensive process, it is
by no means of inverting the fully implicit- matrix by direct methods. Thus we will

change our tactic and turn to take advantage of iterative methods.

In the beginning of study the steepest descent method, we consider the quadratic

form which is simply defined by
1
g(:c):§<x,Ax>—<x,b >, (3.2)

where € R™! are arbitrary vector, A € R™" is defined in eqn. (3.1) and <, > is

usual inner product. We demonstrate that the solution of linear system problem (3.1)

15



is equivalent to the solution of minimizing problem (3.2) by the detail as follows. Let

v # 0 € R™! be a fixed vector and t is a real number, then think about

1
g(a:+tv):§<:v+tv,A93+tAv>—<x+tv,b>

1 t t? t
25<£E,A[L'>—|—§<£E,AU>+§<U,AU>—|—§<’U,A[L'>—<£E,Z)>

—t<uv,b>

2
:g(x)—|—§<'u,A’U>—|—t<A{L'—b>. (3.3)

e _
‘@ﬁﬁﬁhyf“

LI
NS

Figure 1: The quadratic form with a positive definite matrix-has minimal extreme
value.

The extension (3.3) can be regarded as function of ¢, we suppose that

2

h(t):g(x)+§<v,Av>—|—t<v,Ax—b>.

Since A is positive-definite, with the special structure, and the leading coefficient
< v, Av > is always positive when v # 0. Since the extreme value will occur at

critical point. The first derivative respect to t as follows.
h(z) =t <v,Av >+ < v, Av —b>= 0,

16



< v,Ar — b >

t =
<wv,Av >

After replacing t into eqn. (3.3) we obtain

(o4 t0) = gla) — — AT
g —9 2 <, Av >’
Vi, t # 0= gz +tv) > g(x). (3.4)

Now, we show the equivalence of linear system (3.1) and minimization problem (3.2)

If there exists certain vector £ which satisfies the linear system Ax = b, we have
Az = b. Therefore, t = Az — b = 0. The equality of (3.4) holds, in other words,
¢(Z) is minimal. On the other way, the equality of (3.4) holds when ¢t = 0 implies

b — Az = 0. We find a solution of the linear system.

In the method of steepest descent, we give an arbitrary vector x and then approx-
imate to the minimal value step by step.. We take a series of steps x1, o, . . ., until we
are satisfied with the numerical solution close-enough to exaet solution. By theorem,
we have the direction of greatest increase in the value g(#) is the direction given by
Vg(x). In other words, the decreasing rate is maximal along the opposite direction

of gradient.

1
g(x):§<:v,Ax>—<x,b>

1 n n n
% > s
i=1 j=1 i=1
And then we calculate the gradient.

dg(r) <
Oz, =D i —bj,

i=1

_ 00 dole)  dula)
Oxy = Oxy ' Ox,

Vy(z) "'=Ar—b=—(b— Az) = —,

Based on the advantage of greatest decreasing rate, we will solve eqn. (3.2) rather

than eqn. (3.1). Thus the method of steepest descent will start from an initial vector

17



2%, and then define the initial search direction r® = —Vg(2) = b— Az". The following

steps are recursively given by
=2 ot k=0,1,2,.. ..

oy, are parameters which will be chosen so that ¢g(z) can be minimized. We add b to

both hand sides after multiplying on both hand sides.
—AzM = — A2k — a ArF,
b— AzF !t = — Ak — ap ArF.
Since —Vg(z*) = b — Ax*, thus search direction is also given as follows.
=k o Ak =0,1,2,. ...

A line search is a procedure:that minimizing ¢(#) by the way of choosing oy, we

initiate our calculation from the equation.
1
g(*) = g(ahat apr®) = g(a®) — ey < 2P rF > —1-5041,2c <k At >

The above equation can be regarded as funetion of ;. The leading coefficient

% < rk, Ar* > is positive. By partial derivative respect to oy, the minimal value

occurs at critical point.
Ag(x*) /0= — et > Fag < rF APF >

Setting dg(x**1)/day, = 0, we find that oy, given by

<rk,rk>

ap = ————"—.
<rk Ark >

We check that consecutive residuals are orthogonal for the choice of

<Ptk s ek AR R s=c ok pb sy < B AR >
k .k
<rv,rt >
=<t ot > - <t A =0,
<rk Ark >
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We collect the steps of the steepest descent method as follows.

1. Choose an arbitrary initial vector 2° and r® = b — Ax°, and tolerance is given.

. _ o <rkak>
2. for k=0,1,2,..... s Ok = R Arks
2P = oF 4+ aprk,
,,,.k-i—l e ’r’k — C]{kA'rk.

3. If |#F*1 — 2*| <tolerance, the solution can be approximated by x**!

else return to step 2.

3.2 Introduction of conjugate gradient method (C.G. method)

The conjugate gradient method [7] of Hestenes and Stiefel was originally developed
as a direct method to solve positive definite matrix of linear systems. In this section,
we employed the C.G..method as-an-iterative method. The €.G. method is one of
the most prominent and efficient algorithms for the numerical solution of particular
linear systems, namely the systems whose matrix is symmetric positive definite. Since
the C.G. method is a kind of iterative method, so it can be applied to deal with
large sparse systems which can net be deal with by direct method such as cholesky
decomposition, Gauss-Seidel, andJacobi methods. The idea of the C.G. method is
from minimization of the quadratic forms. Moreover, preconditioning is a technique
in further acceleration. C.G. method is most popular and efficient iterative method

for solving large sparse systems of the form.

The conjugate method can be regarded as the modification of the steepest descent
method. The most difference is that C.G. method modifies the search direction, and

then it becomes more efficient method. We start with an arbitrary z°, then we have
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p? = 1% = b — Ax?. Therefore, the iterative steps will be defined as follows.

M = 2k g, (3.5)

PP =rF 4y (af — 2T, (3.6)

Notice the vector p* is called new search direction to the k-th iteration which is the
modification of steepest descent method p* is linear combination of original defined

k

search direction r* and difference between consecutive steps is 2% —2*~!. We re-write

eqn. (3.6)

k—l)

PP =rF @t — o =r* 4 ypap_p" L

Then let viap_1 = Br_1. The above equation will become p**! = r*+1 4 B.pF. We

collect the formulas. Therefore we have

K+l _ ok k
2" = 2 + agp”,

k+1

= = k- azkApk,

pFl = Rl g ok

We wish that the above three equations will converge quickly once oy, and [y are

determined. Now, we chooese ay by the idea as well as method of steepest descent.

1
g(l’k+1) _ g(l’k + Oékpk) _ 5 < Ik - Oékpk,AZ'k —|—O!kApk > — K xk —l—Oékpk,b >
1
= g(z") + aj < p* Ap* > —ap < pF 0t > (3.7)

2
Then we calculate the partial derivative respect to ay.
Ag(x" ™) /0ay, = oy, < pF, ApP > — < pFrP >

Set dg(2**1)/0ay = 0, we find that a; can be given by

<pFrk >

A — —————.
<k Aph >
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We re-write eqn. (3.7)

< pk’ ,,,k >2

K1y (o ky
g(l’ )—g(l’) 2<pk,Apk >'

(3.8)

We illustrate the idea why we let the search direction py = r¢, according to eqn.
(3.8). If we choose the initial search direction py equal to 7, we can decrease the

value g(z') than g(2°) as follows.

Next, we determine [ by studying eqn. (3.8).

k+1\ _ k <ph rk>2 e
As we know g(z"*') = g(2%) — TP AFS In order to minimize the value of each step,
we discuss the minus term —-<Z2">2
2<pk, ApF>

The numerator part :

< pork > =< rhep gt ikt s

=< Pk S Pt NS (3.9)
<pFhrk > =< pPTL PP g APF T S

=< p"Ehrls —apy < pt o AR >

=< p" ! <p > £t Al >=0. (3.10)

< P Ark—Ls
In order to make the equation simple, we replace (3.9) into (3.10) we have the

< pF,rk >=<rk vk > and re-write eqn. (3.10) as g(2F*1) = g(z*) — %.

The denominator part : Since p* = r* + B,_1p*~ L.

<ph ApF > =<0k + Bt A(Tk + 5k—1pk_l) >

=< 7P AR > 420y <P ApPT > 182 < pF T APt >

T (< rF AP > 428, < rF APM > 487 < pF T ApFTt > =0,
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<7k ApFTl > Bauival 3 < rhrlAph >
- . Equivalence, f = ————————.
< pF-1, Apk-1 > q F < pk, ApF >

By = (3.11)

By minimizing the denominator, C.G. method converges more quickly. Next, we
describe by saying that consecutive search directions are conjugate. By eqn.(3.11)
<P AR > 48, < pFL ApF >=0.
=< "4 Bt ApF >=0,
=< pFtt ApF >=0.

3.3 Implementation of the conjugate gradient method for
anisotropic diffusion problems

We consider the anisotropic diffusion equation with constant coefficient matrix.

Ju

Oy SN

where 3 = <

u(z,y,t) = g(x,y,t), (@yy) € 00t € (0, T] Because of constant-coefficient matrix, we

),d >0, > 0,and b>—aé < 0,u(x,y,0).= uo(z,y), (zr,y) € Q,

T QA

can choose suitable diseretization such that the linear system Az = b has a symmetric

positive definite matrix.

3.3.1 Discrtiazation by Crank-Nicolson scheme

We extend the anisotropic diffusion equation into simple form as follows.

0
8—1: =V - (BVu) = u = atyy + 2bugy + cuy,.
Beginning with the formula u;, = “H;_“" + O(k?) for u; evaluated at t + 1/2, and

using the same idea to deal with u,,, u,, and u.,. We have

un-‘rl —

1, ,J 1 n 1 n 1 n 1 n 1 n 1 n
Y Y| - J_ §a5§uzjl+§a5§ui,j+§cc§§uijl+505§ui,j+§beHyuijl+§beHyui,j,
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k k k k k k
uPtt =l = —aéfc ;“j1+ aaﬁu?]+ cou 4+ céju?]+2bH H,u ”+1+2bH Hyul!

We separate ©"*! from u”, and then
ko, k k oy 1 k; 2y k; 5 Kk "
To simplify, we multiply two on both sides.
(2 — kad} — ked} — kbH  H,)uf T = (2 4 kad + ked, + kbH, H,)u?! (3.12)

We extend the eqn. (3.12) into two parts. To simplify, we define some notations.
d =2+ 2ka + 2ke,é = 2 — 2ka — 2ke, @ = ka,b = kb, ¢ = kc.
The left hand side of eqn. (3.12)

(2 + 2ka + 2kc)u; "+1 — ka(u ?:11] + uf+11]) kc(qull + ufﬁl) kb(u?jﬁjﬂ — u?fﬁNl

By notations which is defined above, left part. becomes

n+l n+1 n+1 n+1 n+1 n+1 n+1 n+1 n+1
du i,j ( Uity +u; j) _C( —1 +u1, ]—i—l) b(ui-l-l,j-l—l U1 T Wi 1 +u; J— 1)

The right hand side ofieqn. (3.12) which-is

(2 — 2ka — 2kc)ui'; + kalugiyyy + iy ;) Re(u =+ uiliiq) + kb(uiy 0 — uily
Uiy o U )

turns to

ey +a(ufy ;+ulg ) +e(uly g tug ) F0(ul g sy —uly g — U g g )
Obviously, the fully implicit scheme will need to solve nine points at the same time.

We solve the equation by fully implicit method. Re-write the eqn. (3.12) in matrix
form

Au = Bx+ R.
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11 W-1,1
Figure 2: We use regular uniform domain and collect the columns to be a new column.

The vector Au is corresponding to the left.hand side part of eqn. (3.12), where
u € RV-D*x1 g an unknown vector which represented the value of next time step.

We take each column from:domain and compose them tobe a new vector which is

denoted by
u= [ul u2 UN—I]T,

where u' = [u?jl, u;‘;l, ,u?}l_l]T.

Therefore we have the matrix

D U
A= Lo , where A € RO=DXWN-D*g plock tri-diagonal and posi-
L D
tive definite matrix. The three block matrices are also tri-diagonal.
d —é¢ a —b a b

D=| ¢ v=|" =] i

_~6 5 _b ; b
—¢ d b a —b a

Notice that U? = L, so the matrix has the property of symmetricization.
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The left hand side part of eqn.

(3.12) is represented by vector Bx, where x €

_1)2 . . . . . .
RW-1"x1ig a known vector which take the information for solving next time step.
DU
L/
B = , where B is also a block tri-diagonal matrix, and
o
L D
e —c —a b —a —b
_& _
D = U = - i
c b
—Cc € —-b —a b
_1)2 . L.
The column vector R € RV=1"*1 contains boundary condition.
R = [Rl,Rz, ,RN_I]T
augyt F et + bugdt —busg e buy !
aug—gl o bun—f—l . bun+1
1 _ n+1 n+1
R = z—l] + buz—l] 1 bul— 1,7+1
n+1 n+1 7. n+1
2+b oN—3 — bug Ny |
n+1 n+1 n+1 n+1 n+1
auo v+ cuy N1t b“o N-1_ bu2 N-1T buo,N+1
n—|—1 ~n+1 n—|—1 n+1 n+1
u?v-l-zl 4 bun—l—l + bun—i—l
N—-1 __ n+1 n+1 7. n+1
R = au;ly ; — b“z+1] 0l ]
n+1 7 n+1 7. n+1
auNN 2 buNN 3+ buN,N—l ~
n+1 n+1 n+1 n+1
“UNN ¢ Un_1 N T b“ — bu Un N—2 — buN—2,N
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~ n+1 7. n+1 7. n+1
Cujo~ + bui—l,O - bui+1,0
0
R = 2<i<N-2
0
n+1 n+1

cup it bupl = buily
We apply conjugate gradient method to deal with the anisotropic diffusion problem

with constant coefficient matrix. Next, we consider the matrix whose entries are

variable type, and we will use biconjugate gradient method to deal with the problem.

3.3.2 The biconjugate gradient method

Different from conjugate gradient. method, biconjugate gradient method does not

require symmetric matrix,but conjugate transpose A*. The algorithm is as follows.
1. Choose a initial vector 2°, v =b — Az and select 7 suich that < 7%, 7% >=£ 0.
2. Set p* =Y and'p® = 7°,

3. Fork=0,1,2,.."

xk-ﬁ-l — ij + akpk,
i,k-i—l — i’k + Oékﬁk,
Tk-l—l — ,,,k _ OékApk,

L — 7k o AT

ﬁ <kt gRAls
k — <7.k7/;7k'> 9
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phHl = phtl 4 g sk

prtt = 7R L BpF ) if convergence ends.
3.3.3 The preconditioned conjugate gradient method

A technique resulting in further acceleration of the conjugate gradient method is the
preconditioned conjugate gradient method.[3] The basic idea of the preconditioned

conjugate method is to replace the system.
Ar=b>

by
CACTHCm) = C7'.

Since A is large sparse matrix, we apply incomplete LU factorization which is a kind of
precondition. The factorization is-used to solve sparse square matrices. Incompleting
LU factorization produces a unit lower triangular matrix L, an upper triangular

matrix U, and residuals R.

A=LU-R

We let C' = L, and C~'AC~ s a matrix for which the conjugate gradient method

converges faster than it does with A itself. We-define

A=CtAC?
r=Cx
b=C"

Since A is symmetric positive definite, then we apply conjugate gradient method to

the linear system Az = b.
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1. Start with a initial vector 2°. Initial search direction 7° = b — A7°.

2. For k=0,1,2,...,

Q= LI
<pk,Apk>
:i.k+1 _ Z’k + dkﬁk,
,,:k-l—l = F — ~k ~]5k,
S R
By = —%, if convergence ends.

3.3.4 The preconditioned biconjugate gradient method

We apply the same idea to. the precondition of bicenjugate gradient method. The

algorithm
1. Choose initial vector 2%, two vectors @°, band a preconditioner M ,M can be I.
2. 10 =10 — Ax0, 70 =0 — AT 7O,
3. p° = M~120, 5% = (M 1)"59).

4. For k=0,1,2,...

. — <F,M~lrk>

k — <pk,ApF>
ghH = ok 4y ph, 7R = 3R 4 @R,
rhl = pk — oy Apk 7 = 7 — G, AT,

/6 _ <Rl Ap—lphtls
k <iE M—IrF>

pk+1 — Mlpktl +/6kpk’pk+1 — M lpktl +ﬁ~k25k-
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Notice that the terms r* and 7#* satisfy with r* = b — Ax*, #* = b — A7*. And 2*

and ZF are solutions corresponding to Az = b and AT = b.
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4 Numerical results

In this section, we discuss some numerical simulations performed by A.D.I. and itera-
tive methods to characterize the advantages and disadvantages of these two different
kinds of approach. To analyze the order of accuracy of previous algorithms, we firstly
consider two dimensional test cases with no mix-derivative term which is heat equa-
tion, then constant and variable coefficients diffusivity. We will also demonstrate the

CPU time to compare the efficiency of each method.

4.1 Numerical results for heat equations

In order to compare these two numerical methods, we consider two dimensional heat
equation.

U = AUy F-Clyy u(0) = g, Qulo = g(1),
u € C?% land Q={(z, )0 <z, <}, 0<t<T.
The first example is a two dimensional parabolic differential equation with initial and
dirichlet boundary conditions.

Up = Ugpt Uy, 0 < 2,y < 1 and >0,

u(z,y,0)=e 0L e,y < 1,
u(0,y,t) = e2t+y,u(1, y,t) = eyt
u(z,0,t) = e u(x, 1,t) = 2ot

The exact solution is
u(z,y,t) = "tV
No matter what the coefficient matrix be, A.D.I. method works. The discretized

matrix of above equation is constant and symmetric positive definite. We employ
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C.G. method then list a table about order of accuracy and CPU time immediately.

Using exact solution, we compute 2-norm relative errors and calculation is run up to

time T = 1.
Conjugate Gradient method A.D.I method
At = h relative error time order | relative error time order
1/20 3.3598e-005 0.17 1.3355e-005 0.06
1/40 8.0106e-006 0.29  2.0684 | 3.1992e-006 0.18 2.0616
1/80 1.9545e-006 2.43  2.0351 | 7.8148¢-007 0.86 2.0334
1/160  4.8263e-007  35.90 2.0178 | 1.9303e-007  5.56 2.0174

Next, we consider another test equation with variable matrix which is not symmetric

but positive definite and apply B.I.C.G. method.
Uy = x2um+y2uyy,0 <wyy < landt >0

u(#,y,0) = 2%y + 2y*,0 < By <1
w(0,y, ) =0:u(ly.t)= €' (2 +y)
u(z,0,t) = 0,u(z,1,t) = (2 + 2)

The exact solution is w(, y, t) =€ (z?*y 4 xy?). The numerical results are as follows.

Bi-Conjugate Gradientimethod A:D.I method
At = h relative error . time order | relative error time order
1/20 2.1829e-005 0.20 2.1785e-005 0.06
1/40 5.0507e-006 0.71 2.1117 | 5.0486e-006 0.16 2.1094
1/80 1.2156e-006 7.85 2.0548 | 1.2155e-006 0.88 2.0544
1/160  2.9814e-007 126.53 2.0276 | 2.9821e-007  5.44 2.0271

Finally, we test the third example and analyze the result.
2 2 2 2
U = g(l—l—x—l—y) um+§(1+x+y) Uyy, 0 < z,y < 1and t >0,

u(z,y,0)=(1+x+y)"°0<2y<1,
u(0,y,t) = e' (1 +y)"° u(l,y,t) = e (2 + y)'?,
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u(z,0,t) = e'(1+2)"% u(x,1,t) = "2+ 2)"°,

The exact solution is u(z,y,t) = e'(1 + z + y)**.

Bi-Conjugate Gradient method A.D.I method
At = h relative error time  order | relative error time order
1/20 2.2056e-006 0.15 8.3317e-007 0.06

1/40 5.3968e-007  0.50  2.0310 | 2.0462e-007  0.18 2.0257
1/80 1.3306e-007  5.21  2.0200 | 5.0611e-008  0.85 2.0154
1/160  3.3048e-008  41.25 2.0095 | 1.2580e-008  5.55  2.0084

We analyze the examples previously by figures. The discussion contains order of
accuracy and CPU time. Since heat equation contains pure second derivative terms
respect to space. When we evaluate it at #,,1/2 by Crank-Nicolson scheme, A.D.I
and iterative methods will converge in the second order of accuracy. Figure 3 shows
that A.D.I., C.G. and B.I.C.G method satisfy the expected results. Next, we want to
figure out which method is more efficient. For each method, the grid sizes are 1/20,
1/40, 1/80, and 1/160. There are four kinds of grid points; we construct polynomials
which are degree 3 to fit the data. We notice the iterative methods need more and
more time in computing process, but the increasing rate of CPU time of A.D.I is quiet

small. It seems linearly:

4.2 Comparison of iterative methods and the A.D.I. method

Mix-derivative term is the only difference between heat and anisotropic diffusion
equation. In the following examples, We will illustrate how the mix-derivative term

effects these methods.
1 -1
Up = AQUgg + 20Uy + clyy, 0 < 2,y < 1 and ¢ > 0, where 5 = 1 o3 )

u(x7 y7 0) = 6x+y70 S x?y S 17
u(0,y,t) = e u(l,y,t) = TV
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2.15 - .

—0— C.G. method
2.1t —afe— A.D.I. method
2.05F
ﬂ;
2 L 1 |
2.15 ; . .
—0— C.G. method
2.1 =—sfe— A.D.I. method
2.05F
2 L 1 |
2.15 ; . .
——©— C.G. method
2.1t =—sfe— A.D.|. method |/
2.05F ]
2 L f |

Figure 3: Comparison of order of accuracy for case 1, 2, 3, respectively. (y-axis is
order of accuracy, x-axis is number of grid point)

u(z,0,t) = e ulr, 1) = "t

The exact solution is u(x,y, )= e“v 2.

Bi-Conjugate Gradient method A.D.I method
At = h relative error time  order | relative error time order
1/20 2.2459e-004 0.25 8.3664e-004 0.06

1/40 5.7107e-005  0.89  1.9755 | 4.0900e-004  0.16 1.0325
1/80 1.4421e-005 7.32  1.9855 | 2.0468e-004  0.90 1.0200
1/160  3.6279e-006 53.37 1.9910 | 1.0007e-004  5.63 1.0110

The second case is as follows.
Up = QUgg + 2bUgyy + cly,, 0 < 2,y < 1 and t > 0,
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Figure 4: CPU time of case 1, 2, 3, repectively.

a = ¢ = 12e08*[n(x + y) /6] /7> b = —3cos’[r (v +¥)/6] /72,

u(z,y,0)=tan[r(z4+vy)/6],0 <z y< 1
u(0,y,t) = etan|zy /6], u(1,y, t).="ctan[r(1 + yv)/6],

u(r,0,t) = e'tan|my /6], u(x, 1,t) = e'tan|r(1 + y)/6].

The exact solution is u(z,y,t) = e'tan[r(z +y)/6]

Bi-Conjugate Gradient method A.D.I method
At = h relative error time order | relative error time order
1/20 1.0265e-004 0.19 1.1431e-004 0.07

1/40 2.4869e-005  0.55  2.0453 | 6.3867e-005 0.14 0.8398
1/80 6.1116e-006  3.52  2.0247 | 3.3412e-005 0.89 0.9347
1/160 1.5142e-006  38.08 2.0130 | 1.7051e-005 6.01 0.9705
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Figure 5: Order of accuracy of case 4, 5, repectively. (y axis represent order of
accuracy )

To the A.D.I. method, we see that the order of accuracy is first order only since we
deal with the mixed derivative term-as explicit type. Iterative methods still maintain
the second order of accuracy, in spite the mix-derivative part makes block tri-diagonal
matrix more complex. Mix-derivative term does not effect CPU time of A.D.I. method
because the structure of tri-diagonal linear system do not change at all. By fitting
the data, we can see the tendency of increasing of CPU time, and the result is given

by figure 6.
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Figure 6: CPU time of case 4, 5, respectively.

4.3 Conclusion

By using A.D.I. and iterative methods to solve heat equations without mix-derivative
term, the second order of accuracy has shown in-figure 3. In calculating process,
iterative methods cost more time than A.D.I. method, the defect will react to effi-
ciency of simulating. Since A.D.I method solves two tri-diagonal systems during a
single time step, the time consuming of anisotropic diffusion problem is as well as
heat equation. As we employ iterative methods to the same problem, mix-derivative
term makes coefficients of matrix complex. Therefore iterative methods take more
time to deal with the large sparse matrix. If we need to refine the grid to search for

higher precise simulations, A.D.I. method can outperform iterative method with a

36



speedy calculating.
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Figure 7: A case satisfied heat and anisotropic diffusion, we fit the curve of data
solved by A.D.I. and iterative methods. and compare with the CPU time.
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