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摘要 

在這篇論文裡，我們使用兩種數值方法去處理曲率運動的問題。

第一種方法稱為介面追蹤法(front-tracking method)，主要是用有限差

分法追蹤曲率運動後的曲線。為了瞭解非線性表面張力的影響，我們

將介面活性劑加至曲線上，讓介面活性劑能夠在曲線上自由的擴散。

我們所介紹的數值方法能夠保證隨著時間的流逝介面活性劑之濃度

的總和不變。另一個方法稱為多重等位函數法(multiple level set 

method)，主要用此方法處理圖形結構變化的問題。圖形上的每條曲

線的運動是由曲率運動所決定。在此問題中我們暫時不添加介面活性

劑。 
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Abstract 

In this paper, we use two numerical methods to model a grain 

boundary evolution for motion by mean curvature. In the first part, 

we present a finite difference method to track a network of curves 

whose motion is determined by curvature. To study the effect of 

inhomogeneous surface tension on the evolution of the network of 

curves, we include surfactant which can diffuse along the curves. 

Our numerical method is based on a direct discretization of the 

governing equations which conserves the total surfactant mass in 

the curve network. In the second part, we present a multiple level 

set method to track the grain topological change. The motion of 

grain boundary is considered by mean curvature. In this part, there 

is no surfactant on each grain boundary. The governing equations 

consist of a level set equation for the grain boundary motion and 

reinitialization equation for reconstructing signed distance function. 

Thus, one important step is coupling of multiple level set functions. 

Numerical examples shows the topological change evolution of the 

grain structure. 
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1 Introduction

In this paper, we generalize the grain growth problem discussed in [1] by including
the e�ect of an inhomogeneous surface tension. For practical problems, it is di�cult
to maintain constant surface tension as insoluble surface active agents (surfactant) are
common and their presence could signi�cantly a�ect the value of the surface tension,
therefore the dynamics of interface motion [6]. To account for the e�ect of the surface
tension on the interfacial dynamics of a complex network of interfaces, we consider
a network of curves in two dimensional setting and assume that there is surfactant
distributed along the curve and the surface tension varies according to the surfactant
concentration.

In recent years the processes of grain boundary evolution and grain growth have
been studied extensively through computer simulations. Direct computer simulations
of the grain structure and topological changes can be further classi�ed into proba-
bilistic and deterministic approaches. Probabilistic models include the Potts model
[7],[8] and kinetic lattice Monte Carlo methods [9]. In deterministic models a precise
description of the motion of the grain boundaries is needed. It is assumed that the
grain boundary evolution velocity is proportional to the driving force. Front-tracking
method [1],[10] use this assumption. In front-tracking method, the grain boundaries
are discretized and tracked explicitly by piecewise curved segments. However, level
set method use an implicit representation of the geometry.

The level set method was �rst proposed in 1980 [5] for front propagation with cur-
vature dependent speed. Since than, it has been extended to numerous applications
with moving interfaces in uid mechanics, computer animation, image processing,
among others, see [4]. In the level set method the interface is represented as the
zero contour of a level set function which satis�es an evolution equation. The physics
which governs the motion of the interface is included naturally in this model.

The rest of the paper is organized as follows. In Section 2, we present the gov-
erning equations for front-tracking method which includes one parabolic equation for
the curve motion coupled with a convection-di�usion equation for the surfactant con-
centration along each curve. The numerical method is described in Section 3 which
includes an algorithm of solving the parabolic equation and a conservative scheme for
the surfactant concentration equation. The e�ects of inhomogeneous surface tension
on the motion of network and the cell evolution of the von Neumann law are inves-
tigated numerically in Section 4. In Section 5, we present the governing equations
for multiple level set method which includes a level set equation for the grain bound-
ary motion and reinitialization equation for reconstructing signed distance function.
The numerical method is described in Section 6. The topological change evolution
of the grain structure is investigated numerically in Section 7. Some conclusions and
remarks are given in Section 8.
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2 The governing equations for front-tracking method

As in [1], we consider the situation with three phase boundaries in a unit circular
domain described by parametric curves X i(s; t), s 2 [0; 1], for i = 1; 2; 3 as shown in
Fig. 1. The mean curvature motion of equations are de�ned as

X
i
t = �i X

i
ss

jX i
sj2

; (2.1)

where �i(s; t) is the surface tension along the curve X i and is determined by surfac-
tant concentration � i(s; t). In this paper we use the simpli�ed nonlinear Langmuir
equation of state [17]

�i = �c(1 + ln(1� � i� i)); (2.2)

where �c is the surface tension of a clean interface and � i satisfying 0 � � i < 1,
8i are dimensionless numbers that measure the sensitivity of surface tension to the
surfactant concentration. Along the curve, the surfactant concentration is governed
by the transport-di�usion equation [2, 19]

� i
t + (rs �U i) � i = �r2

s �
i; (2.3)

where rs is surface gradient operator and r2
s = rs � rs is the surface Laplacian.

U
i is the velocity of the curve and � is the di�usion coe�cient of the surfactant

concentration. In this paper, the di�usion coe�cient of the surfactant concentration
is constant for all curves. Throughout this paper, we de�ne

�
i(s; t) =

X
i
s

jX i
sj

(2.4)

Figure 1: A three-curve network.
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as the unit tangent vector of the curve i. For simplicity, the above surface divergence
and surface Laplacian can be written explicitly as

rs �U i =
@U i

@� i
� � i =

�
@U i

@s
� � i

������@X i

@s

���� ; (2.5)

r2

s �
i =

@

@s

�
@� i

@s

�����@X i

@s

����
������@X i

@s

���� : (2.6)

At s = 0, we assume that each curve meets the domain boundary with a normal
angle. To be more precise, let b(�) be the given parametric representation of the unit
circular domain with � 2 [0; 2�]. Then the conditions at the domain boundary are
given by

X
i(0; t) = b(�i); (2.7)

for all i such that
�
i(0; t) � b0(�i) = 0: (2.8)

We also assume that there is no surfactant ux across the domain boundary

rs�
i(0; t) � � i(0; t) =

@� i(0; t)

@s
= 0: (2.9)

At triple junction (s = 1), three curves must meet at triple junction point, that is

X
1(1; t) =X

2(1; t) =X
3(1; t): (2.10)

In order to balance the surface tension at the triple junction, the condition is given
by

3X
i=1

�i(1; t)� i(1; t) = 0: (2.11)

The above condition comes from the Young-Laplace equation. Moreover, we also
need to impose similar conditions for surfactant concentration at the triple junction.
Firstly, the following condition hold the continuity of the surfactant concentration

�1(1; t) = �2(1; t) = �3(1; t): (2.12)

In order to balance the tangential ux for surfactant concentration at the triple junc-
tion, the condition is given by

3X
i=1

rs�
i(1; t) � � i(1; t) =

3X
i=1

@� i(1; t)

@s

�����@X i(1; t)

@s

���� = 0: (2.13)

When �i in Eq. (2.2) are identical for each curve, the surface tensions take same value
at the triple junction because of the same surfactant concentration at there. Thus,
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the condition (2.11) becomes
P

3

i=1 �
i(1; t) = 0, that is, the angles between these

curves at the triple junction are 120� which results in the famous law of Plateau.

Finally, we want to check that the total surfactant mass along the three curves is
conserved. We rewrite the surfactant concentration equation in a form as

@� i

@t

����@X i

@s

����+ @

@t

����@X i

@s

����� i = �
@

@s

�
@� i

@s

�����@X i

@s

����
�
; (2.14)

by multiplying Eq. (2.3) with stretching factor j@X i=@sj and using Eq. (2.5,2.6) and
the following equation [2]

(rs �U i)

����@X i

@s

���� = @U i

@s
� � i =

�
@U i

@s
� @X

i

@s

������@X i

@s

����
=

�
@

@t

�
@X i

@s

�
� @X

i

@s

������@X i

@s

���� = @

@t

����@X i

@s

���� :
(2.15)

From the domain boundary condition and the junction boundary condition, the total
surfactant mass along the three curves is written in form as

3X
i=1

Z
1

0

�
@� i

@t

����@X i

@s

����+ @

@t

����@X i

@s

����� i

�
ds = 0: (2.16)

By taking the time derivative outside the integral, we can get that the total surfactant
mass along the three curves is conserved, i.e.,

d

d t

 
3X

i=1

Z
1

0

� i(s; t)

����@X i

@s

���� ds
!
= 0: (2.17)

3 Numerical method

For each parametric curve i, we set up a mesh sk = (k � 1=2)�s, k = 1; 2; : : :m
where �s = 1=m, and use X i

k =X
i(sk; n�t) as Lagrangian markers to represent the

curve at time t = n�t. The surfactant concentrations and surface tensions on each
curve are also de�ned on these Lagrangian markers and denoted by � i

k = � i(sk; n�t)
and �i

k = �i(sk; n�t), respectively. In order to avoid confusing reader, we use the
variables with tilde as the values at the next time step; that is, ~X i

k =X
i(st; (n+1)�t)

and ~� i
k = � i(sk; (n+ 1)�t). The whole procedures of the numerical time integration

are as follows.

Step 1. Compute the surface tension on each curve i

�i
k = �c(1 + ln(1� �i � i

k)); k = 1; 2; : : :m: (3.1)
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Figure 2: The implementation of the domain boundary condition.

where �c is the surface tension of a clean interface and � i satisfying 0 � � i < 1 for
all i are dimensionless numbers that measure the sensitivity of surface tension to the
surfactant concentration.

Step 2. Solve the equation of motion (2.1) by a explicit scheme as in [1]

~X i
k �X i

k

�t
= �i

k

(X i
k+1 � 2X i

k +X
i
k�1)=�s

2

j(X i
k+1 �X i

k�1)=(2�s)j2
: (3.2)

As the above discretization, we use the central di�erence schemes to approximate
the �rst and second derivatives. Note that the interior points k = 1; 2; : : :m are
computed by the above discretization only. Next we provide the details on how to
�nd the boundary points ~X i

0 and ~X i
m+1 at the domain boundary s = 0 and the

triple-junction boundary s = 1, respectively.

(a) At the domain boundary, we discretize Eq. (2.7) by central di�erence approx-
imation as

~X i
1 +

~X i
0

2
= b(�i): (3.3)

If the point b(�i) is known, the domain boundary point can be extrapolated by

~X i
0 = 2b(�i)� ~X i

1: (3.4)

As in Fig. 2, the point b(�i) is determined by discretizing Eq. (2.8) with central
di�erence approximation to obtain

~X i
1 � b(�i)

�s
� b0(�i) = 0: (3.5)

Since the domain is the unit circle and ~X i
1 has polar coordinates (r; �), we obtain

b(�i) = (cos �; sin �).

(b) At the triple-junction boundary, we discretize Eq. (2.10) as

~X1
m+1 +

~X1
m

2
=

~X2
m+1 +

~X2
m

2
=

~X3
m+1 +

~X3
m

2
= ~Xj: (3.6)
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Figure 3: The implementation of the triple-junction boundary condition.

If the triple-junction point ~Xj is known, the points ~X i
m+1 are determined by

~X i
m+1 = 2 ~Xj � ~X i

m: (3.7)

The detail of location of the markers at the triple-junction can be found in Fig. 3.
We discretize Eq. (2.11) by forward di�erence approximation as

�1m
~Xj � ~X1

m

j ~Xj � ~X1
mj

+ �2m
~Xj � ~X2

m

j ~Xj � ~X2
mj

+ �3m
~Xj � ~X3

m

j ~Xj � ~X3
mj

= 0; (3.8)

and solve these equations. Then we can obtain the triple-junction point ~Xj.

Step 3. Update surfactant concentration ~� i
k as follows. For clarity, we denote

the discrete stretching factor j@X i=@sj by

jDsX
i
kj =

����X i
k+1 �X i

k�1

2�s

���� : (3.9)

By using the above approximation, we obtain

jDsX
i
k+1=2

j=

�
�
�
�
�

X
i
k+3=2

�X
i
k�1=2

2�s

�
�
�
�
�
=

�
�
�
�
�

(Xi
k+3=2

+Xi
k+1=2

)=2�(Xk+1=2+Xk�1=2)=2

�s

�
�
�
�
�
=

�
�
�
�
�

X
i
k+1�X

i
k

�s

�
�
�
�
�

and
jDsX

i
k�1=2

j=

�
�
�
�
�

X
i
k+1=2

�X
i
k�3=2

2�s

�
�
�
�
�
=

�
�
�
�
�

(Xi
k+1=2

+Xi
k�1=2

)=2�(Xk�1=2+Xk�3=2)=2

�s

�
�
�
�
�
=

�
�
�
�
�

X
i
k�X

i
k�1

�s

�
�
�
�
�
:

Next, we can discretize Eq. (2.14) by an explicit and symmetric schemes as

~� i
k � � i

k

�t

jDs
~X i
kj+ jDsX

i
kj

2
+
jDs

~X i
kj � jDsX

i
kj

�t

~� i
k + � i

k

2

=�
1

�s

 
(�i

k+1 � �i
k)=�s

jDsX
i
k+1=2j

� (�i
k � �i

k�1)=�s

jDsX
i
k�1=2j

!
;

(3.10)
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on the interior points k = 1; 2; : : :m. For the values on the boundary points ~� i
o

and ~� i
m+1, we use the following conditions at the domain boundary s = 0 and the

triple-junction boundary s = 1, respectively.

(a) At the domain boundary s = 0, we use central di�erence approximation to
discretize Eq. (2.9) and obtain ~� i

0 = ~� i
1.

(b) At the triple-junction boundary s = 1, we approximate Eqs. (2.12) by

~� 1
m+1 + ~� 1

m

2
=

~� 2
m+1 + ~� 2

m

2
=

~� 3
m+1 + ~� 3

m

2
= ~�j; (3.11)

where ~�j represents the surfactant concentration at the triple-junction. Moreover, we
discretize Eq. (2.13) by �nite di�erence scheme as

(~� 1
m+1 + ~� 1

m)=�s

jDs
~X1

m+1=2j
+
(~� 2

m+1 + ~� 2
m)=�s

jDs
~X2

m+1=2j
+
(~� 3

m+1 + ~� 3
m)=�s

jDs
~X3

m+1=2j
= 0: (3.12)

By substituting Eq. (3.11) into Eq. (3.12), we solve a single equation to obtain the
surfactant concentration at the triple junction ~�j. Once ~�j is found, ~� i

j can be
obtained from Eq. (3.11).

Note that, by taking the summation of both sides of Eq. (3.10) and using the
numerical boundary condition (3.12) at the triple-junction, one can verify that

3X
i=1

mX
k=1

~� i
kjDs

~X i
kj�s =

3X
i=1

mX
k=1

� i
kjDsX

i
kj�s: (3.13)

This is the discrete version of the conservation of total surfactant mass along all the
curves, corresponding to the mid-point rule discretization for the integral in Eq. (2.17).

It is interesting to note that the numerical scheme (3.2) for Eq. (2.1) is independent
of the mesh width �s. Since the scheme is explicit, the time step size must be chosen
similarly in [1] by

�t =
1

8
min
j;k

jX i
k+1 �X i

k�1j2
�i
k

: (3.14)

Under this constraint, the time step becomes smaller if the length of any curve short-
ens in which the marker spacing becomes smaller. One way to maintain the marker
resolution is to delete the markers in an appropriate way so that the time step size
can be maintained. On the other hand, if the curve stretches and the marker spacing
is too coarse, then we need to add more markers along the curve. One important
thing during the marker redistribution process is to keep the mass conservation of the
surfactant. This can be done in a local way. For instance, in the segment of adding
more marker points, we simply distribute the surfactant into those points uniformly.
On the other hand, in the segment of removing marker points, we add those surfac-
tant to the new combining segment. Thus, the overall surfactant mass is conserved
exactly.
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4 Numerical results

As in [1], we consider the network of curves inside the unit circle such that
b(�) = (cos�; sin�), where � 2 [0; 2�]. For comparison purpose, we will present
results for the cases without surfactant (clean) and with surfactant (contaminated).
In Eq. (2.2), �i = 0 implies no surfactant exists on the curves, in which we do not need
to solve the surfactant equation (2.3). Thus, the clean curves have uniform surface
tension � = �c = 1. In the following case, we choose the mesh width �s = 1=16 on
each curve and the time step �t = 0:0001.

4.1 Three-curve network

In the �rst example, we consider the evolution of three curves in the unit circle
with initial con�guration as in [1]

X
1(s; 0) = (1� s)(�1=2;�

p
3=2); (4.1)

X
2(s; 0) = (1� s)(�1=2;

p
3=2); (4.2)

X
3(s; 0) = (1� s; sin2(�s)=4): (4.3)

The above initial con�guration is shown in Fig. 1. In order to check the e�ect the
surfactant on the curves, we compare the cases with (�i = 0:25; i = 1; 2; 3) and with-
out surfactant (�i; i = 1; 2; 3). For the case with surfactant, the di�usion coe�cient

Figure 4: The time evolution of curve networks: solid lines for �i = 0 and dotted
lines for �i = 0:25.

8



Figure 5: Distribution of the surfactant concentration on curve 1 (left), curve 2
(center) and curve 3 (right).

is chosen as � = 0:1. The initial surfactant concentration is uniformly distributed
only along the curve 3 so that

�1(s; 0) = �2(s; 0) = 0; �3(s; 0) = 1: (4.4)

Fig. 4 shows the time evolution of these three curve networks. We denote the clean
curve network (without surfactant) by solid line, while the contaminated curve net-
work (with surfactant) by dotted line. As demonstrated in [1], the curve 3 will be
attered because of the motion of mean curvature. Thus, the area between curve
2 and curve 3 decrease as time evolves. Since the existence of the surfactant along
the curve 3 reduces the surface tension, the curve motion becomes slower than the
clean curve motion. Fig. 5 shows the distribution of the surfactant concentration on
each curve. In Fig. 5, x-axis and y-axis represents the length of the curve and the
surfactant concentration on each curve. Due to the e�ect of di�usion, the surfactant
on curves 1 and 2 are no longer zero.

4.2 Von Neumann law

In 1952, von Neumann [14] showed that the rate of the change of the area of a
given bubble (a curve polygon) in two-dimensional dry foam is independent of bubble
size and solely dependent on the number of edges. The original derivation is based
on the rate of gas di�uses through a permeable wall. In our case, the rate of area

9



change of the domain is given by

dA

dt
=
X
i

Z
U

i � ni ds =

Z
P
�� ds; (4.5)

Figure 6: The time evolution of six nodes cell. Solid line: without surfactant; Dotted
line: with surfactant. � 1(s; 0) = � 2(s; 0) = 0; � 3(s; 0) = 1 and rest of � i(s; 0) = 0;
�1 = 0:75; �2 = 0:5; �3 = 0:25 and the rest of �i = 0:25.

Figure 7: The time evolution of �ve nodes cell. Solid line: without surfactant; Dotted
line: with surfactant. � 1(s; 0) = � 2(s; 0) = 0; � 3(s; 0) = 1 and rest of � i(s; 0) = 0;
�1 = 0:75; �2 = 0:5; �3 = 0:25 and the rest of �i = 0:25.
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Figure 8: The time evolution of seven nodes cell. Solid line: without surfactant;
Dotted line: with surfactant. � 1(s; 0) = � 2(s; 0) = 0; � 3(s; 0) = 1 and rest of
� i(s; 0) = 0; �1 = 0:75; �2 = 0:5; �3 = 0:25 and the rest of �i = 0:25.

Figure 9: The cell area versus time, for the cases with and without surfactant. With-
out surfactant (solid lines), the area evolves as predicted by the von Neumann law
while for the case with surfactant (dotted lines), the rate of growth is increased for
n = 7 while the rate of decay for n = 5 is decreased. The area for n = 6 with
surfactant also increases.

where U i �ni represents the normal velocity of the curve i per unit length, as discussed
earlier. Note that, the above integral of mean curvature is over all the curves that
enclose the area. When � is a constant, the enclosed area is polyhedral-shaped with
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arcs edges, the above integral can be simpli�ed as

dA

dt
= �

 
nX

i=1

�i � 2�

!
=

�

3
�(n� 6); (4.6)

where �i = �=3 is the exterior (turning) angle at the vertex, and n is the number of
edges. A similar derivative can be found in [12]-[14]. When surface tension varies,
however, Eq. (4.6) is no longer valid. For example, �i does not always take the
value of �=3. It will be interesting to examine how the area changes under a similar
setup. We start with a single n-vertices inner cell with circular arcs and connect
those vertices with n straight lines to the domain boundary. In particular, the cell
boundary is a circle of radius 0:5. Note that, the number of lines is the same as the
number of vertices on the inner cell. Along each line or circular arc, we lay out a
parametrization on those curves. So a cell network with n vertices should have 2n
curves and n triple-junction.

From the von Neumann law, one can see that the cell with more than six edges
will grow while the one less than six edges will shrink when the surface tension is
constant. More speci�cally, the area of a cell with n = 6 remains unchanged while the
cells with n = 5 and n = 7 should have the same growth (decay) rate. Fig. 6 shows
the time evolution of a six vertices cell with (dotted line) and without surfactant
(solid line). One can see that in the absence of surfactant, the cell area does not
change. However, with surfactant, the system behaves di�erently. For illustrative
purposes, we add surfactant only along one line segment � 3(s; 0) = 1 initially, and
choose �1 = 0:75; �2 = 0:5 and �3 = 0:25 in Langmuir equation along the rightmost
three curves network (same set up as in Fig. 1) and keep other �i = 0:25, then the
symmetry is broken due to unbalanced surface tension, as shown in Fig. 6.

Figs. 7 and 8 show the time evolution of �ve and seven vertices cell with (dotted
line) or without surfactant (solid line), respectively. These �gures have same set up
as in Fig. 6. It is interesting to see that the unbalanced surface tension slows down
the decay rate for the �ve vertices cell area and speeds up the area growth for seven
vertices cell. This is due to the fact with di�erent �i and surfactant concentration,
thus, di�erent surface tension along the rightmost three curves network. Fig. 9 shows
the plot of cell area versus time for the cell with and without surfactant for di�erent
nodes n = 5; 6; and 7. One can see the result con�rms the prediction by the von
Neumann law when there is no surfactant.

As our �nal example, we present the results when surfactant is added initially
� i(s; 0) = 1 to all the outside line segments connecting the center network (cell) to
the boundary. The inner cell boundaries are thus kept clean (without surfactant)
initially. In this case, the initial exterior turning angles of the center network are
all less than �=3, which reduces the value of

P
7

i=1 �i � 2� in the von Neumann law.
Therefore, we expect that the center network grows much less than the case without
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surfactant. Furthermore, the cell area should increase again as the surfactant di�uses
into the center network, as shown in Figs. 10 and 11.

Figure 10: The time evolution of seven nodes cell. Solid line: without surfactant;
Dotted line: with surfactant. �i = 0:25.

Figure 11: The cell area versus time, for the cases with and without surfactant for
n = 7. Without surfactant (solid lines), the area evolves as predicted by the von
Neumann law while for the case with surfactant (dotted lines), the area decreases in
the beginning but increases later on as the surfactant di�uses into the center network.
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5 The governing equations for multiple level set

method

We review the level set method as in [15]. Consider a moving interface X(t)
bounding a open region 
(t) in Rn of codimension one by a Lipschitz continuous
function �(x; t) which has the following properties8<

:
�(x; t) < 0 if x 2 X(t)�

�(x; t) = 0 if x 2 X(t)
�(x; t) > 0 if x 2 X(t)+

; (5.1)

where X(t)� and X(t)+ represents inside and outside of the interface respectively.
This means that the interface X(t) is represented as the zero level set of function
�(x; t). We use the convection equation to de�ne the motion of the interface where
�(x; t) = 0 in a form as

�t + v � r� = 0; (5.2)

where v is the interface velocity. We consider the motion by curvature where the
interface moves in the normal direction with a velocity proportional to its curvature;
i.e., v = �b�n, where b = �� > 0 is a constant, � is the grain boundary mobility, �
is the surface tension, � is the curvature and n is unit normal vector. Therefore, the
interface moves in the direction of concavity, so that circles shrink to a single point
and disappear. By plugging the interface velocity into the level set equation (5.2), we
have

�t � b�n � r� = 0: (5.3)

Furthermore, since

� = r � n = r �
� r�
jr�j

�
(5.4)

and

n � r� =
r�
jr�j � r� =

jr�j2
jr�j = jr�j; (5.5)

the level set equation for grain boundary motion induced by curvature is rewritten as

�t � br �
� r�
jr�j

�
jr�j = 0; (5.6)

where jr�j =p�2x + �2y: In this paper, the Neumann boundary condition is used as

@�

@n
= 0 on @
; (5.7)

where n is the unit normal vector on the domain boundary @
. The initial conditions
of �(x; t) are often de�ned to be the signed distance function to the interface as

�(x; 0) =

8<
:

�d (x; X(0)) if x 2 X(0)�

0 if x 2 X(0)
+d (x; X(0)) if x 2 X(0)+

; (5.8)
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Figure 12: The interface is constructed by four level set functions.

where the distance function d (x; X) is de�ned as

d (x; X) = min(jx� xI j) 8 xI 2 X: (5.9)

In addition, the signed distance function satis�es the following property

jr�j = 1: (5.10)

For example, we use a signed distance function �(x; y) =
p
x2 + y2 � 1 to represent

implicitly the unit circle. By computing �x and �y, we can get that

jr�j =
q
�2x + �2y =

2
4
 

xp
x2 + y2

!2

+

 
yp

x2 + y2

!2
3
5

1
2

= 1: (5.11)

In fact, the initial grain structure is described by multiple level set functions. For
example, the initial grain structure as shown in Fig. 12 contains four level set func-
tions. Each level set function �i represents a grain. The grains change their topology
by Eq. (5.6) independently. Therefore, in order to couple these grains, we do some
corrections [15] for level set functions as

�̂ i =
1

2

�
� i �min

j 6=i
� j

�
; (5.12)

where �̂ i is the corrector of � i. As we know, a number of simpli�cations can be made
when � is a signed distance function. For this reason, a reinitialization procedure is
needed to reset the level set function to be a signed distance function to the interface.
As in [4], we use the following reinitialization equation for the correction of � for all
i at time t�

@��

@t
= S(�̂)(1� jr��j); (5.13)

where the sign function S(�̂) is given by

S(�̂) =

8><
>:

1 if �̂ > 0

0 if �̂ = 0

�1 if �̂ < 0

: (5.14)
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6 Numerical method

Assume that the initial grain structure is composed of multiple signed distance
functions �i, i = 1; 2; : : : p. For each signed distance function i, we use the domain of
two dimension D = [�; �]�[; �], and set up the mesh of two dimension xk = �+k�x,
k = 0; 1; : : :m and yh =  + h�y, h = 0; 1; : : :m, where �x = (� � �)=m and
�y = (� � )=m. Thus, we use � i

k;h = � i((xk; yh); n�t) and �ik;h = �i((xk; yh); n�t)
to represent the grid point x = (xk; yh) on the domain D and the curvature at the
time t = n�t, respectively. In order to avoid confusing reader, we use the variables
with tilde as the values at the next time step; that is, ~� i

k;h = � i((xk; yh); (n+ 1)�t).
The whole procedures of the numerical time integration are as follows.

Step 1. Compute the curvature of each grain boundary in a form as

�i = r �
� r� i

jr� ij
�
=

� i
xx(�

i
y)
2 � 2� i

x �
i
y �

i
xy + � i

yy(�
i
x)

2

[(� i
x)

2 + (� i
y)
2]3=2

: (6.1)

In this work, we approximate the �rst and second partial derivative for spacial (� i
x,

� i
y, �

i
xx, �

i
yy and � i

xy) by central di�erence approximation as

Dx�
i
k;h = (� i

k+1;h � � i
k�1;h)=(2�x); (6.2)

Dy�
i
k;h = (� i

k;h+1 � � i
k;h�1)=(2�y); (6.3)

Dxx�
i
k;h = (� i

k+1;h � 2� i
k;h + � i

k�1;h)=(�x
2); (6.4)

Dyy�
i
k;h = (� i

k;h+1 � 2� i
k;h + � i

k;h�1)=(�y
2); (6.5)

Dxy�
i
k;h = (� i

k+1;h+1 � � i
k�1:h+1 � � i

k+1;h�1 + � i
k�1;h�1)=(4�x�y): (6.6)

Next, the discretization of the curvature of each grain boundary at the point (xk; yh)
can be written by

� i
k;h =

Dxx�
i
k;h(Dy�

i
k;h)

2 � 2Dx�
i
k;hDy�

i
k;hDxy�

i
k;h +Dyy�

i
k;h(Dx�

i
k;h)

2

[(Dx� i
k;h)

2 + (Dy� i
k;h)

2]3=2
: (6.7)

Step 2. Solve the level set equation (5.6) by explicit scheme in a form as

~� i
k;h � � i

k;h

�t
� b� i

k;h [(Dx�
i
k;h)

2 + (Dy�
i
k;h)

2]
1
2 = 0; (6.8)

where b is a constant. For the Neumann boundary conditions, we discretize Eq. (5.7)
by central di�erence and obtain the following equations

~� i
m;h =

~� i
m�1;h; 8 h = 1; 2; : : :m� 1;

~� i
0;h =

~� i
1;h; 8 h = 1; 2; : : :m� 1;

~� i
k;0 =

~� i
k;1; 8 k = 1; 2; : : :m� 1;

~� i
k;m = ~� i

k;m�1; 8 k = 1; 2; : : :m� 1;

(6.9)
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Figure 13: The deformation of each grain without coupling.

and
~� i
0;0 =

~� i
1;1;

~� i
m;0 =

~� i
m�1;1;

~� i
m;m = ~� i

m�1;m�1;
~� i
0;m = ~� i

1;m�1: (6.10)

Note that, there are multiple signed distance function in our initial grain structure.
Thus, the deformation of each grain is independent if we do not anything as shown
in Fig. 13. Therefore, we need to do some corrections for coupling multiple grains.

Step 3. Coupling of multiple level set functions. As in [15], we use the following
correction for coupling multiple level set functions as

�̂ i
k;h =

1

2

�
~� i
k;h �min

j 6=i

~� j
k;h

�
; (6.11)

where �̂ i
k;h is the corrector of

~� i
k;h.

Step 4. Construct signed distance function by the reinitialization equation. In
the step 2, the signed distance functions which are given initially do not satisfy the
property of signed distance function any more. However, a number of simpli�cations
can be made when � i

k;h are signed distance functions. For this reason, a reinitialization
procedure is needed to reset the level set function to be a signed distance function.
We discretize the reinitialization equation (5.13) by explicit scheme as

(�̂ i
k;h)

� � �̂ i
k;h

�t
= S(�̂ i

k;h)

�
1�

�
(Dx�̂

i
k;h)

2 + (Dy�̂
i
k;h)

2

� 1
2

�
: (6.12)
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For numerical purposes, a smooth sign function is used as in [15]

S(�̂ i
k;h) =

8>>>><
>>>>:

1 if �̂ i
k;h > "

�̂ i
k;h

"
+

1

�
sin

 
��̂ i

k;h

"

!
if j�̂ i

k;hj � "

�1 if �̂ i
k;h < �"

; (6.13)

where " is a regularization parameter. Since the scheme is explicit, numerical stability
requires a time step restriction as [15]

b

�
�t

�x2
+

�t

�y2

�
<

1

2
; (6.14)

where �x and �y are the grid sizes, b = �� > 0 is a constant, � is the grain boundary
mobility and � is the surface tension.

7 Numerical results

In this section, there are four numerical examples with Neumann boundary con-
dition, and last one numerical example with periodic boundary condition. For the
�rst four examples, we consider the domain [�0:5; 0:5] � [�0:5; 0:5], and choose the
mesh width �x = �y = 1=100, the constant b = 0:05, the parameter " = �x=2
and the time step �t = 0:001. In the last one example, we consider the domain
[0; 3

p
3=5] � [0; 1:2], and choose the mesh width �x = (3

p
3=5)=100; �y = 1:2=100,

the constant b = 0:025, the parameter " = �x=2 and the time step �t = 0:001.

7.1 Types of grain topological change

LetN denote the number of grains, V denote the number of vertices and E denote
the number of grain boundaries. The grain structure in two-dimensional space obeys
the following Euler equation [20]

N + V � E = 1: (7.1)

The above geometry rule leads to a topological reconstruction of the entire grain
structure. As in [21], there are two types of grain topological change. Fig. 14 shows
the time evolution of grain topological change for type 1 by multiple level set method.
At the initial time, we consider a triangle grain at the center of the domain. After
the initial time, the shape of the central grain becomes like the three nodes cell.
According to the motion by mean curvature, the shade of the central grain would
shrink and even to a point. Fig. 15 shows the time evolution of grain topological
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Figure 14: The time evolution of grain topological change for type 1 by multiple level
set method.

Figure 15: The time evolution of grain topological change for type 2 by multiple level
set method.
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change for type 2 by multiple level set method. The grain topological change of type
2 involves the switching of the grain boundaries when two triple-junctions come very
close to each other. Two grains lose an edge while two other grains gain an edge, thus
maintaining the total number of edges and grains in the grain structure.

7.2 Von Neumann law

From the Von Neumann law, one can see that the grain with six edges will
unchange. The grain with more than six edges will grow while the one with less
than six edges will shrink. Now, we try to explain this motion from the geometric
viewpoint. An equilateral hexagon has an interior angle with 120 degrees. Since
the surface tensions are equal without surfactant, the angles at the triple-junction
are same as the interior angle (120 degrees). Therefore, the grain with six edges
will not change at all. A square has an interior angle with right angle. Since the
surface tensions are equal without surfactant, the angles at the triple-junction must
be expanded from right angle to 120 degrees. So each curve between two triple-
junction points is convex. Due to the motion by mean curvature, the curves will at
and the grain with four edges will shrink to a point as shown in Fig. 16. Fig. 17 shows
the time evolution of eight nodes grain by multiple level set method. It is interesting to
see that the central grain expands at beginning and shrinks later. Since an equilateral
octagon has an interior angle more than 120 degrees, each curve between two triple-

Figure 16: The time evolution of four nodes grain by multiple level set method.
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Figure 17: The time evolution of eight nodes grain by multiple level set method.

junction points is concave. Due to the motion by mean curvature, the curves will at
and the grain with four edges will expand. By using Neumann boundary conditions,
the curves near the domain are perpendicular to the domain. When the wall number
of the central grain becomes four, the central grain will shrink to a point.

7.3 Imposition of periodic boundary conditions

The above boundary condition is imposed by Neumann boundary condition. In
this subsection, The level set equations are solved with periodic boundary condition.
Firstly, we need that the initial signed distance functions are periodic on the domain
boundaries. For clarity, we show that the contour of initial signed distance function for
each grain as in Figs. 18 and 19. Excluding the boundary conditions, every numerical
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Figure 18: The contour of initial signed distance functions with the periodic boundary
conditions.

Figure 19: The contour of initial signed distance functions with the periodic boundary
conditions.
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Figure 20: The time evolution of grains with periodic boundary conditions by multiple
level set method.
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steps follow the previous section. The periodic boundary conditions are written by

~� i
m;h =

~� i
1;h; 8 h = 1; 2; : : :m� 1;

~� i
0;h =

~� i
m�1;h; 8 h = 1; 2; : : :m� 1;

~� i
k;0 =

~� i
k;m�1; 8 k = 0; 1; : : :m;

~� i
k;m = ~� i

k;1; 8 k = 0; 1; : : :m:

(7.2)

Fig. 20 shows the time evolution of grains with periodic boundary conditions by
multiple level set method. The geometry includes two grains with seven edges, two
gains with �ve edges and eight grains with six edges. By von Neumann law, one can
see that the gains with seven edges will expand and the gains with �ve edges will
shrink and disappear. In fact, the grain with more than six edges will grow and the
one with less than six edges will shrink. After two gains with �ve edges disappears,
there are two grains with seven edges, one grain with eight edges, four grains with
�ve edges and three grains with six edges in the domain. While four grains with �ve
edges disappears, the domain includes two grains with seven edges, two grains with
four edges and two grains with six edges. After two grains with four edges disappears,
there are four grains with six edges in the domain only.

8 Conclusions

In this paper, we propose a �nite di�erence method to track curves motion whose
normal velocity is determined by surface tension times the local mean curvature. We
introduce the surfactant into the curves network and the surface tension varies fol-
lowing surface di�usion of the surfactant. The equations of motion are governed by
a parabolic equation for the curve motion as well as a convection-di�usion equation
for the surfactant concentration along each curve. Our numerical method is based
on direct discretization of the governing equations and the associated boundary con-
ditions, which conserves the total surfactant mass in the curve network. Numerical
examples are presented to illustrate how the inhomogeneous surface tension a�ects
the motion of the curves and the evolution of the curve network. In the second part,
we present a multiple level set method to track the grain topological change. The
motion of grain boundary is considered by mean curvature. In this part, there is
no surfactant on each grain boundary. The governing equations consist of a level
set equation for the grain boundary motion and reinitialization equation for recon-
structing signed distance function. Thus, one important step is coupling of multiple
level set functions. Numerical examples shows the topological change evolution of the
grain structure.
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