
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 23, 1349-1365 (2007)

1349

Event-Driven Dynamic Workload Scaling
for Uniprocessor Real-Time Embedded Systems*

LI-PIN CHANG AND YA-SHU CHEN+

Department of Computer Science
National Chiao Tung University

Hsinchu, 300 Taiwan
+Department of Electrical Engineering

National Taiwan University of Science and Technology
Taipei, 106 Taiwan

Many embedded systems are designed to take timely reactions to the occurrences of

particular scenarios. Such systems could sometimes experience transient overloads be-
cause of workload bursts or hardware malfunctions. Thus a mechanism to focus limited
resources on the processing of urgent events is a key to retain system validity under
stressing workloads. In this paper, we propose a new approach for workload scaling in
uniprocessor real-time embedded systems. The idea is to view the system as a black box,
and workload scaling for overload management can be done via very intuitive primitives,
i.e., how hardware events are selectively fed into the system. Such a new approach re-
moves the need for the adjustments of task periods and task phasing, which is important
for many workload-scaling techniques. The proposed approach is implemented in a
real-time surveillance system. Experimental results show that the system still delivers
good accuracy and high responsiveness for visual-object tracking under the presence of
overloads.

Keywords: embedded systems, real-time systems, adaptive applications, overload man-
agement, real-time surveillance

1. INTRODUCTION

Many embedded systems are designed to take timely reactions to the occurrences of
particular scenarios. For example, an automobile controlling system should simulta-
neously control cruising, traction, the brake system, and the engine. A real-time sur-
veillance system in a shopping mall could track a number of moving people and evaluate
pre-defined rules to detect thieving. These systems might sometimes experience transient
workload bursts due to hardware malfunctions (e.g., one processor fails in a dual-
processor system) or workload bursts (e.g., a number of people suddenly rush into
monitored areas). To prevent the systems from being overloaded, the system could
smartly allocate available computing power among tasks so as to pay more attention to
those urgent events and, at the same time, to slow down the processing of inactive events.

Consider an embedded system which deals with periodically recurring external
(hardware) events. Intuitively, proportional period adjustment for periodic tasks could be

Received November 15, 2006; accepted February 15, 2007.
Communicated by Sung Shin and Tei-Wei Kuo.
* This work was partly supported by the National Science Council of Taiwan, R.O.C., under grant No.

95-2221-E-009-063. This paper is an extended version of the paper in [21].

LI-PIN CHANG AND YA-SHU CHEN

1350

useful to slow down or to speed up the processing of events. However, this simple
approach has some major drawbacks: First, even though the period of a task could be
arbitrarily adjusted, the recurring rate of a hardware event are usually not. Consider a
thermal sensor connected to a system via USB and its reading is sampled every 1 ms.
Because the minimal time frame for USB bus traffic is 1 ms, change the sampling rate to
1.5 ms is unlikely applicable. Second, mismatches of hardware-event recurring periods
and task periods could sometimes result in unpredictable arrivals of events due to buffer
overflows. Not being aware of which event is sampled and when it is sampled could
damage the usefulness of timing-sensitive algorithms such as Kalman filters. Third,
responsiveness for detecting pre-defined scenarios would largly be retarded due to long
propagation delays introduced by improper task periods and task phasing. All these
drawbacks of proportional period adjustment will be shown in our experiments.

BBlack boxlack box

Fig. 1. A “black box” that receives periodic hardware events and then delivers outputs.

In this paper, we propose a new approach for workload scaling in uniprocessor
real-time embedded systems. Let a system be viewed as a “black box” (as shown in Fig.
1), and the system requires no intervention when workload scaling is conducted. When
transient overloads are experienced, the feeding of events (i.e., e1, e2, and e3 in Fig. 1)
could be controlled by some mechanism (i.e., the traffic lights in Fig. 1) to protect the
system against timing violations. Our objectives are summarized as follows: (1) System
workloads should be adjusted by means of very simple and intuitive primitives. (2) Tasks
in the system should automatically react to new settings for workload scaling without
intervention from the scheduler. (3) Tasks in the system should have deterministic timing
behaviors. (4) An on-line admission control policy is needed to examine whether any
change to system workloads can be made.

The rest of this paper is organized as follows: Section 2 provides past work related
to the issues we considered. The system model and terminologies are introduced in sec-
tion 3. System timing analysis and an efficient on-line admission control algorithm are
presented in section 4. Performance evaluation and comparison are provided in section 5,
and this paper is concluded in section 6.

2. RELATED WORK

As modern embedded software is component-based, event-driven paradigms are one
of many software architectures to formulate precedence constraints among components.
Tindell [13] considered an iterative approach to calculate response time for distributed

o1

o2

e1

e2

e3

EVEN-DRIVEN DYNAMIC WORKLOAD SCALING

1351

event-driven tasks. The proposed analysis was extended to handle complex precedence
constraints in hard-real-time distributed systems [14]. The model is applicable to many
types of applications such as parallel and distributed systems [15] and embedded systems
[16]. Precedence constraints among tasks could also be formulated as producer-consumer
relation in uniprocessor systems [1]. Recently, operating systems based on event-driven
models are also considered in the implementation of sensor nodes [8].

Dynamic workloads could transiently overload a real-time system. Prior work pro-
posed many excellent workload-scaling approaches for overload management: In par-
ticular, Koren and Shasha [4] proposed to schedule tasks while task jobs could be
skipped in a controllable way. Hamdaoui and Ramanathan [5, 6] proposed the (m, k)-firm
task model to complete at least m task jobs out of any k consecutive ones. Window-
constrained scheduling [2, 3] is to fulfill m task jobs out of every window of k successive
task jobs, while windows do not overlap one another. Imprecise computation [9] defines
that any job is of a mandatory portion and an optional portion. Mandatory portions must
be successfully completed before their deadlines, while the more CPU execution are
contributed to optional portions the more reward is attained. Besides to skip jobs,
task-period adjustment is also a commonly adopted technique [17, 18].

Besides considering new task models, an alternative approach for overload handling
is to consider how “fresh” a piece of data is. Data freshness can be defined over time
domain or value domain: A piece of fresh data stands for either one that has just been
recently updated, or one which’s value has not been changed a lot. When systems are
overloaded, either the sampling rates of those inactive events could be decreased [20], or
only updates (i.e., jobs) to those “stale” data should be scheduled for execution [19].
However, there is no direct mapping from the definition of data freshness into how
workload is scaled down. The algorithm may need to try a number of different settings
before the system gets rid of being overloaded.

Different from prior work, this paper aims at a new approach for dynamic workload
scaling. It employs no adjustment and alignment of task periods. With a proposed on-line
admission control policy, workload adjustment can be done on the fly.

3. THE SYSTEM MODEL

Let tasks be preemptively scheduled with fixed priorities over a single processor.
An event-driven task δi is a template of jobs, and job δi,n stands for the nth task job. Let
each job of task δi require ci units of processor time, and a static priority Ωi be assigned
to all jobs of task δi. A result is a piece of data that a task job prepares for another task,
and an event is sent to the destination task when a predefined number of results are ready.
A task job is released and becomes ready when the task receives an event. A task could
either (1) receive one (and only one) hardware event, or (2) receive one or many events
from other tasks. An event sent from task δi to task δj is denoted by ei,j, and a hardware
event that task τi receives is denoted by e0,i. No tasks could receive both hardware events
and events from other tasks. Let all hardware events be periodic, and pi stands for the
recurring period of hardware event e0,i.

If δi sends events to task δj, then δi and δj are referred to as the producer and the
consumer of each other. The relation is denoted by δi p δj. An event ei,j is composed by

LI-PIN CHANG AND YA-SHU CHEN

1352

ri,j cumulated results (ri,j ∈ Z+). Upon every ri,jth result is ready, δi composes an event
and sent to consumer δj. At the same time, a ready job of consumer δj is released. For any
n ∈ Z+, job δi,n⋅ri,j

 is referred to as an effective job of δi p δj since it triggers the execution
of job δj,n. Note that each arrival of hardware event e0,j triggers the execution of a job of
task δj because r0,j = 1.

Task jobs are assigned to no explicit deadlines. Instead, a task job must complete
before the next task job arrives. A task is referred to as a pump if it receives a hardware
event. A taskchain Δ = {δ1, δ2, …, δn} is a collection of tasks, in which δ1 is a pump and
δi p δi+1 for any {δi, δi+1} ⊆ Δ. As shown in Fig. 2, three basic structures are considered:
pipes, forks, and syncs. Note that, in a sync, a consumer job becomes ready as long as the
consumer receives at least one event from each producer of the sync.

jδ kδ

iδ

jir , kir ,
jir ,

ijr , ikr ,

jδ

iδ jδ kδ

iδ

(a) pipe. (b) fork. (c) sync.
Fig. 2. Three basic structures in our event-driven system model.

For comparison and later use in this paper, a time-driven periodic system is defined

as follows: A periodic task τi = (oi, ci, pi) is a template of jobs, and job τi,n denotes the nth
task job. The first job of τi arrives at time oi and then a job arrives every pi units of time.
In other words, job τi,m is released at time oi + (m − 1)pi for m ∈ Z+. Computation re-
quirement of each job of task τi is no more than ci units of time, and the relative deadline
of a task job is the task period. A fixed priority Ωi is assigned to all jobs of task τi for
preemptive scheduling.

4. WORKLOAD SCALING FOR EVENT-DRIVEN SYSTEMS

4.1 Timing Analysis for Pipes and Forks

This section aims at timing analysis of tasks in pipes and forks with or without event
skips.

4.1.1 Scheduling without event skips

In pipes and forks, every consumer has only one producer. First we shall determine
the optimal priority assignment for tasks in a taskchain:

Lemma 1 Given a taskchain Δ = {δ1, δ2, …, δn} and an arbitrary priority assignment A
= {Ω1, Ω2, …, Ωn}. If Δ is schedulable with A then Δ is also schedulable with a priority
assignment A′ = {Ω1′, Ω2′, …, Ωn′}, in which Ω′i is higher than Ω′i+1 for any i.

EVEN-DRIVEN DYNAMIC WORKLOAD SCALING

1353

Proof Sketch: It can be proved by repeatedly swapping priorities Ωi and Ωi+1 until Ωi is
higher than Ωi+1 for any i. After each priority swap taskchain Δ is still schedulable.

Under the optimal priority assignment, the following theorem shows that event-

driven tasks in a taskchain can be equivalently modeled as a collection of independent
periodic tasks in terms of timing behaviors:

Theorem 1 Given a taskchain Δ = {δ1, δ2, …, δn}. Let T be a set of independent peri-
odic tasks {τ1 = (0, c1, p1), τ2 = (p1(r1,2 − 1), c2, p1 ⋅ r1,2), …, τn = (p1 ⋅ 1,1

(() 1),n
x xx

r −=
−∏

1 1,1
,)}.n

n x xx
c p r −=

⋅ ∏ Under a priority assignment A = {Ω1, Ω2, …, Ωn} in which Ωi is
higher than Ωi+1 for any i, Δ and T produce the same schedule.

Proof: We shall show the correctness of this theorem by induction on n the number of
tasks:

I.B.: The base case is trivial.
I.H.: Suppose that the theorem is true when for n tasks.
I.S.: Consider the case {δ1, δ2, …, δn} ∪ {δn+1}. By I.H., δn is equivalent to a periodic

task 1 1, 1 1,1 1
((() 1), ,)n n

n x x n x xx x
p r c p rτ − −= =

= ⋅ − ⋅∏ ∏ in terms of timing behaviors.
Because Ωn is higher than Ωn+1, job δn+1,i could be treated as one which arrives si-
multaneously with job τn,i⋅rn,n+1

 for any i. The inter-arrival time of jobs of task δn+1
could then be rn,n+1 ⋅ pn. Because any job must complete before the next job of the
same task arrives, δn+1 could be treated as a periodic task 1, 1 1,1

((() n
n n x xx

r p r+ −=
⋅ ⋅ −∏

1 1, 1 1,1
1), ,)n

n n n x xx
c r p r+ + −=

⋅ ⋅ ∏ in terms of timing behaviors.

'1τ

'2τ

'3τ

1δ

2δ

3δ

(a) Event-driven tasks. (b) Periodic tasks.

Fig. 3. Modeling a collection of event-drive tasks as a collection of purely periodic tasks.

Fig. 3 shows a schedule fragment resulted by three event-driven task Δ = {δ1, δ2, δ3},
where r1,2 = 2 and r2,3 = 1. Suppose c1 = 1, c2 = 2, and c3 = 2. The pump δ1 is driven by a
hardware event e1 every 3 units of time. On the other hand, a collection of independent
periodic tasks T = {τ1 = (0, 1, 3), τ2 = (3, 2, 6), τ3 = (3, 2, 6)} is considered. For all i, Ωi is
assigned both to δi and to τi. Ω1 is the highest priority and Ω3 is the lowest priority. As
shown in Fig. 3, Δ and T result in the same schedule, no matter how long the actual exe-
cution times of jobs are.

LI-PIN CHANG AND YA-SHU CHEN

1354

Because a fork could be considered as a structure that “joins” one or more task-
chains, Lemma 1 and Theorem 1 is still applicable to taskchains in a fork. Tasks in dif-
ferent taskchains could be optimally assigned to priorities which are inversely propor-
tional to the corresponding “periods” from Theorem 1.

4.1.2 Scheduling with event skips

With event skips, this section considers how tasks in pipes and forks behave. A
firm-real-time scheduling technique is first introduced, and timing analysis is then pre-
sented.

1. (m, k)-Firm Scheduling

We choose to adopt (m, k)-firm scheduling [5, 6] as the policy for event selection so
as to achieve workload scaling. A (m, k)-firm task is a generalization of a periodic task.
A task being subject to (m, k)-firm constraint must successfully complete m jobs before
their relative deadlines (i.e., the period) out of any k consecutive jobs. A job is classified
as being mandatory if it has to be completed in time, or it is classified as being optional.

Let all jobs of a task be labeled with their ordinal numbers and the smallest number
be zero. The following equation classifies which job should be classified as being man-
datory:

, .i m k i Z
k m

⎢ ⋅ ⎥⎡ ⎤ ∈⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦
 (1)

For example, a task being subject to (3, 5)-firm constraint must successfully com-
plete the jobs labeled with 0, 1, 3, and so on. An alternative form representing (m, k)-firm
constraint is an array of k binary elements: A job labeled with i is a mandatory job if the
i%kth element1 is 1, otherwise the job is an optional job. For example, (3, 5)-firm con-
straint can be represented as 11010. The array is referred to as the activation pattern of (3,
5)-firm constraint.

Derived from Eq. (1), two functions can be derived: (1) f(n) that calculates the
smallest ordinal number of a job until which there are n jobs had been classified as being
mandatory2, and (2) h(n) that calculates the number of jobs classified as being mandatory
from the job labeled with zero to the job labeled with n:

(1) (1)() , and () .n k n mf n h n
m k
− + ⋅⎢ ⎥ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥

 (2)

2. Scheduling Event-Driven Tasks with (m, k)-firm Constraint
When (m, k)-firm constraints are applied to pumps (i.e., tasks that receive hardware

events) to skip some certain events, the question that what are the timing behaviors of
consumer tasks behave in taskchains needs to be answered.

Consider the example shown in Fig. 4, where producer δi is subject to (4, 7)-firm

1 % is the modulus operator and the array elements are labeled from zero.
2 f(n) is an abbreviation of ().k

mf n

EVEN-DRIVEN DYNAMIC WORKLOAD SCALING

1355

iτ

jδ

2, =jir

Fig. 4. A producer-consumer pair of task δi and task δj, where δi is a pump being subject to (4, 7)-

firm constraint.

constraint. Based on the same arguments in the proving of Theorem 1, consumer δj could
be treated as a periodic task which inherits task period pi from producer δi and is subject
to an activation pattern {1000100}. It is conjectured that the pattern {1000100} is the
result of rotating the activation pattern of (4/ri,j, 7)-firm (i.e., (2, 7)-firm) constraint by
three elements leftward (i.e., {1001000} → {1000100}).

To verify our conjecture, the notion of pattern rotations is introduced: Let the acti-
vation pattern of (m, k, ε)-firm constraint be the result of rotating the pattern of (m,

k)-firm constraint by ε elements leftward. Let us be focused on () , , -firmk
mm k ρ ⋅⎢ ⎥

⎢ ⎥⎣ ⎦

constraint, where ρ ∈ Z. Function f() in Eq. (2) could be generalized as follows:

((1))() .n k kf n
m m

ρ ρ− + ⋅⎢ ⎥ ⎢ ⎥′ = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (3)

Consider δi p δj, where δi is subject to (m, k)-firm constraint. Based on the same ar-
guments in the proving of Theorem 1 and f() in Eq. (2), the arrival times of δj’s jobs are:

, ,(1) (1)
.i j i jr n k r k

m m
− −⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

Suppose that m = ri,j ⋅ m′ for some m′ ∈ Z. By some modulus algebra the above
equation could be rewritten as

((1) (1)) (1)n k k
m m
π π− + + +⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥′ ′⎣ ⎦ ⎣ ⎦

 (4)

for some π ∈ Z. Comparing Eq. (3) with Eq. (4), obviously the consumer is subject to

()(1), , -firmk
mm k π +
′

⎢ ⎥′ ⎢ ⎥⎣ ⎦
 constraint. Let a firm-real-time task τ is denoted by ((o, c, p),

(m, k, ε)), where o, c, and p denote the initial arrival time, the computation demand, and
the period of task τ respectively. τ is subject to (m, k, ε)-firm constraint. Now Theorem 1
can be generalized as follows:

Corollary 1 Given a taskchain Δ = {δ1, δ2, …, δn}, where pump δ1 is subjected to (m1,
k1, ε1)-firm constraint and 1,1

x
i ii

r −=∏ divides m1 for every x ≦ n. Let T be a set of inde-
pendent firm-real-time tasks

LI-PIN CHANG AND YA-SHU CHEN

1356

 1

1

1

1

1
1 1 1 1 1 1 1, 2 2 1 1 2

1, 2

1
1 1, 1 11

1,1

{((0, ,), (, ,)), (((), ,), (, ,)), ,

(((), ,), (, ,))}.

k
m

nk
n i i n nm ni

i ii

mc p m k p f r c p k
r

mp f r c p k
r

ε ε

τ ε−=
−=

= ∏
∏

K

Systems Δ and T produce same schedule under a priority assignment in which Ωi is
higher than Ωi+1 for any i.

Proof: It directly follows Theorem 1 and the above discussion.

4.2 Timing Analysis for Syncs

Now let our attention be focused on timing analysis for tasks involved in sync struc-
tures. As we did in the previous sections, the discussions first begin with scheduling
event-driven tasks in syncs, where no event skips are allowed.

Let the consumer δc of a sync be an event-driven task, and the producers of the sync
be independent periodic tasks. Let δc = {τi | τi p δc} be a collection of tasks including all
producers of consumer δc. For any producer τ ∈ δc, the inter-arrival time of the effec-
tive jobs of τ p δc is referred to as the effective cycle of producer τ. Consumer job δc,x
becomes ready as soon as all effective jobs in {τi,x⋅ri,c | ∀i : τi ∈ δc} send an event to con-
sumer δc. Priorities assigned to producers are inversely proportional to their recurring
periods, and the consumer is assigned to the lowest priority (as shown in Lemma 1).

Fig. 5 depicts a scenario in which two periodic producers τi and τj conjunctively
trigger the execution of the event-driven consumer δc. As Fig. 5 (b) shows, even though
the producer τi and τj periodically issue events to consumer δc, jobs of δc do not arrive in
a regular period. On the other hand, as Fig. 5 (c) shows, if the first effective job of τj (i.e.,
τj,1) arrives no earlier than the effective first job of τi (i.e., τi,2) does, then all jobs δc will
be released every rj,c ⋅ pj units of time as if δc were a periodic task. The adjustments of
task arrival times could be formulated as the following corollary:

j

i

τ

τ

cδ

iτ jτ

cδ

2, =cir 1, =cjr

2=ip 5=jp

j

i

τ

τ

cδ
ip ip jp jp jp jp

(a) A sync structure. (b) Timing δc when τi and τj arrive
simultaneously.

(c) Timing δc when τj arrives 2 units of
time later than τi does.

Fig. 5. Arrivals of consumer jobs in a sync.

Corollary 2 Suppose that task δc is conjunctively driven by events sent from a collec-
tion of independent periodic task Γ = δc. Let be

, , , ,

, { } :
, (1) (1) .

i j i

i c i j c j i i c i j j c jr p r p o r p o r p
τ τ τ∃ ∈Γ ∀ ∈Γ −
⋅ ≥ ⋅ + − ≥ + −

EVEN-DRIVEN DYNAMIC WORKLOAD SCALING

1357

Consider a periodic task τc = (oi + (ri,c − 1)pi, cc, ri,cpi). Systems Γ ∪ {τc} and Γ ∪ {δc}
produce the same schedule.

Proof: For any job δc,x of task δc, the job becomes ready as soon as every task τj ∈ Γ
sends x events to task δc. Because the arrival of job τi,x⋅ri,c is always the latest among those
of jobs τj,x⋅ri,c and task δc is assigned to the lowest priority, the processor would not be
available to job δc,x until job τi,x⋅ri,c completes. Job δc,x could then be treated as one that
arrives simultaneously with job τi,x⋅ri,c, and the inter-arrival time of jobs of δc is pi ⋅ ri,c.
Obviously, Γ ∪ {τc} and Γ ∪ {δc} produce the same schedule.

A simple algorithm based on topological sort could be adopted to adjust pumps’ ini-
tial arrival times to comply with the condition stated in Corollary 2. Corollary 2 can be
revised accordingly to analyze tasks in sync with event skips.

4.3 On-Line Admission Control

As previous sections show, all event-driven tasks could be exactly modeled as in-
dependent periodic tasks. This section is then focused on providing an efficient sched-
ulability test for a collection of periodic tasks being subject to (m, k, ε)-firm tasks.

Let a periodic task being subject to (m, k, ε)-firm constraint be referred to as a (m, k,
ε)-firm task for conciseness. Consider that a collection of event-driven tasks {δ1, δ2, …,
δn} had been successfully modeled as a collection Tn of (m, k, ε)-firm tasks {τ1, τ2, …,
τn}. The critical instance of T occurs when all (m, k, ε)-firm tasks are in phase and εi = 0
for all τ ∈ Tn. Because each task job must complete before the next task job arrives
(please see section 3), the schedulability test based on worst-case response time analysis
is as follows:

Lemma 2 [5] A collection of (m, k, ε)-firm tasks Tn = {τ1, τ2, …, τn} with arbitrary
arrival times is schedulable if and only if

1

/
{1, , }, : 0 , .

i
i j ji

i i i i j
i jj

t p mk
i n t t p t c

m k=

⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥∀ ∈ ∃ ≤ ≤ ≥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥
∑K

In the above test, the term i
i
i

k
m p⎢ ⎥
⎢ ⎥⎣ ⎦

 stands for the arrival time of the second job of

task τi (please refer to Eq. (2)), and the term
/

j
i j j

j

t p m
kc

⎡ ⎤
⎢ ⎥⎢ ⎥
⎡ ⎤
⎢ ⎥
⎢ ⎥⎢ ⎥

 calculates the cumulative

computation demand of task τj in the interval [0, ti) (please refer to Eq. (2)). The compu-
tational cost depends on task periods and the constraints that tasks are subject to. Because
workload scaling should be performed on the fly to handle transient bursts, an efficient
on-line schedulability test is needed.

In the rest of this section, a sufficient condition for the schedulability of a collection
of (m, k, ε)-firm tasks is introduced. Our basic idea is to develop a systematic method
that transforms a collection of (m, k, ε)-firm tasks into a collection of purely periodic
tasks. The transformation guarantees that if the given collection of (m, k, ε)-firm tasks is
unschedulable then after the transformation the resultant collection of purely periodic
tasks is unschedulable. So, conversely, if the resulted collection of purely periodic tasks

LI-PIN CHANG AND YA-SHU CHEN

1358

is schedulable, then the given collection of (m, k, ε)-firm tasks is schedulable. The tech-
nical question is how to prevent the transformation from being overly pessimistic.

Let U(n) be the utilization bound of the Liu-and-Layland schedulability test [7], we
have the following test:

Theorem 2 A collection of (m, k, ε)-firm tasks Tn = {τ1, τ2, …, τn} is schedulable if

*1
* *

*
1

* *1

1

{1, , } : (), where , ,

/ /
and .

i
j i i i i

i i i i
j j i ii

i
i k k i k k

i k
k k k

c c m k
i n U n c c p p

p k mp

p p m p p m
c

k k

−

=

−

=

⎢ ⎥+ Δ
∀ ∈ + ≤ = = ⎢ ⎥

⎣ ⎦

⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥Δ = −
⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠

∑

∑

K

Proof: Suppose that Tn-1 = {τ1, τ2, …, τn-1} is schedulable but Tn = Tn-1 ∪ {τn} is not.
Now we are going to transform Tn into a collection of purely periodic tasks which is
guaranteed to be unschedulable.

Let Tn-1 first be transformed into 1,nT −′ where any task τi = ((0, ci, pi), (mi, ki, 0)) in
Tn-1 is converted to a purely periodic task 1((0, ,), (1, 1, 0)) in .i i i n

i
i

m
kc p Tτ −′ ′= Based on

Lemma 2, at any time t ≧ 0, the cumulative processor time demand of task iτ ′ would be
/

,i
i i

i

t p m
kc

⎡ ⎤
⎢ ⎥⎢ ⎥ which is no larger than that of task τi (i.e.,

/
i

i i

i

t p m
kc

⎡ ⎤
⎢ ⎥⎢ ⎥⎡ ⎤
⎢ ⎥
⎢ ⎥

). Therefore if Tn-1 is
schedulable then 1nT −′ is schedulable.

Because there is some loss of cumulative processor time demand during the trans-
forming from Tn-1 into 1,nT −′ so even though Tn is unschedulable it is not guaranteed that

1nT −′ ∪ {τn} is unschedulable. For this purpose, we shall transform τn into nτ ′′= ((0, c′′,

p′′), (1, 1, 0)), where n
n
n

k
mp p ⎢ ⎥′′ = ⎢ ⎥⎣ ⎦

 and c′′ = cn + Δn. Δn denotes the loss of processor time

demand in the time interval [0, p″) when transforming Tn-1 into 1nT −′ . If Δn is “reclaimed”
and added to cn″ then it is straightforward to show that 1nT −′ ∪ {τ′′} is surely unschedul-

able. By using Eq. (2) it can be derived that 1

1

/ /
.n

n k k

i ik k k k

k k

p p m p p m
k kc

⎡ ⎤ ⎡ ⎤
− ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
=

′′ ′′⎛ ⎡ ⎤ ⎞
Δ = −⎜ ⎟⎢ ⎥⎜ ⎠⎢ ⎥⎝

∑

It is then concluded that if Tn is unschedulable then 1 { }n nT τ−′ ′′∪ is unschedulable. Con-
versely, if 1 { }n nT τ−′ ′′∪ can be admitted by any schedulability test for purely period tasks
(e.g., the Liu-and-Layland test) then Tn is schedulable.

The time complexity of the proposed test is O(n2), which is efficient enough for
on-line implementations.

5. EXPERIMENTAL RESULTS

5.1 Overview

The usefulness of the proposed workload-scaling approach is demonstrated by con-
ducting a series of experiments on a real-time surveillance system. We built a surveillance

EVEN-DRIVEN DYNAMIC WORKLOAD SCALING

1359

Fig. 6. A real-time surveillance system monitoring fishes in a fish tank.

1τ 2τ 3τ 1,4τ

2,4τ

4,4τ

3,4τ

1,5τ

2,5τ

4,5τ

3,5τ
6τ

7τ

firm(1,1,0)−
firm)k,(m, −ε

1msp1=

4msp7=

4
4

4

4

4

1

1

1

1

1

1

1

1

1

1

Fig. 7. Interactions of tasks in the surveillance system for demonstration.

system to monitor fishes in a fish tank. The application was a part of a biological re-
search project, in which dynamics of a group of fishes were analyzed based on real-time
data collection. The system was built over an embedded computing platform, on which
an ARM processor and 16 MB of RAM were adopted. The processor was normally rated
at 200 MHZ. As shown in Fig. 6, a video camera and a thermal sensor were connected to
the system via USB. The resolution and frame-rate of the video stream delivered by the
camera were 352 × 288 pixels and 25 fps, respectively. We chose to modify and port the
OpenCV package [10] onto the target platform. The tracking of visual objects in video
streams was based on the Lucas-Kanade optical-flow algorithm [11], and Kalman filters
[12] were used to estimate the trajectories of moving objects. An instance of the Kalman
filter was created for each visual object and the prediction provided by the filter was used
to refine the result of the optical-flow algorithm so as to reduce trajectory losses.

There were twenty guppies in the fish tank. Normally the processor has been al-
ready overloaded if all twenty fishes need to be tracked. Thus we proposed to split the
video stream into four channels by partitioning every frame into four equal-sized regions,
as shown in the right-hand side of Fig. 6. The intention is to flexibly allocate processor
time among the channels so as to pay more attention to those active objects and, at the
same time, to slow down the monitoring of inactive objects. As shown in Fig. 7, the de-

LI-PIN CHANG AND YA-SHU CHEN

1360

livery of channel frames from task τ3 to instances of task τ4 was subject to different (m, k,
ε)-firm constraints for workload scaling. To conduct experiments, a pre-recorded
20-minute video was projected onto a small white screen and the vision was then cap-
tured by the USB camera.

Two performance metrics were adopted. The first is the average of the Root-Mean-
Square errors between actual positions and predicted positions of visual objects. The
lower the errors, the more accurate the tracking is. The other metric is responsiveness,
which is the time between the ground-truth time of an occurrence of a particular scenario
and the time the scenario is detected by the system. The shorter the time, the higher the
responsiveness is.

Let the proposed firm-real-time-based event-driven approach be referred to as FE
approach. An alternative approach was developed for performance comparison: Let all
tasks in the system be independent and periodic. For workload adjustment, the periods of
channel-frame delivery from task τ3 to instances of task τ4 were proportionally scaled.
Let the approach be referred to as PP approach. More details on PP approach would be
included in the later sections.

5.2 Visual-Object Tracking Accuracy

Let first only one of the four channels is enabled, and all the other three channels are
ignored by the processor. In other words, the flow of τ1 → τ2 → τ3 → τ4,1 → τ5,1 → τ6 is
enabled. Processor time available to the system was controlled by a parameter work-
load-scaling factor for both FE approach and PP approach. A workload-scaling factor
reflected a percentage of available processor utilization. For FE approach, with respect to
workload-scaling factor x/y, the delivery of channel frames from task τ3 to task τ4,1 was
subject to (x, y, 0)-firm constraint. On the other hand, for PP approach, periods of task
τ4,1 and task τ5,1 were proportionally enlarged by multiplying their periods by y/x. In the
experiments, seven workload-scaling factors were considered: 7/7 = 100%, 6/7 = 86%,
5/7 = 71%, 4/7 = 57%, 3/7 = 43%, 2/7 = 29%, and 1/7 = 14%. For example, with respect
to workload-scaling factor 57%, under FE approach, frame delivery from task τ3 to task
τ4,1 would be subject to (4, 7, 0)-firm constraint. Under PP approach, the periods of task
τ4,1 and task τ5,1 would both be enlarged from 4 ms to 4 × 7/4 = 7ms. Because 7 is a
prime number, under anyone of the seven work-scaling factors (except 7/7 and 1/7), the
inter-arrival times of jobs of task τ4,1 under PP approach and under FE approach would
not be the same (and so were those of jobs of task τ5,1).

The experimental results for the only one enabled channel were shown in Fig. 8, in
which the X-axis denoted the workload-scaling factors and the Y-axis denoted the aver-
age RMS errors. The figure showed that, even when the workload-scaling factor was
decreased to 57%, FE approach could still kept the average RMS errors as small as if
there were no frames skipped (i.e., 100%). The average RMS error significantly grew
under a very small workload-scaling factor because the tracking of visual objects was
ineffective when a lot of frames were skipped. A similar phenomenon was observed for
PP approach, however it imposed a relatively larger average RMS errors than the FE
approach did when the workload-scaling factor was between 86% and 29%. The ration-
ale would be explained later. Note that PP approach and FE approach resulted in the
same average RMS errors when the workload-scaling factor were 7/7 = 100% and 1/7 =

EVEN-DRIVEN DYNAMIC WORKLOAD SCALING

1361

4

6

8

10

12

14

16

18

100% 86% 71% 57% 43% 29% 14%

R
oo

t-
m

ea
n-

sq
ua

re
 e

rr
or

s (m,k)-f irm w ith event-driven
proportional w ith periodic

workload-scaling factors

Fig. 8. RMS errors resulted by different workload-scaling factors under the proposed event-driven
paradigm and the purely periodic system.

iτ

'jτ

"jτ (4,7,0))((0,2,4),
FE

(0,2,7)
PP

(0,1,4)

Fig. 9. A scenario for workload scaling, where task τi = (0, 1, 4) and τj = (0, 2, 4) are a pump and

the consumer (not shown), respectively. Let the workload-scaling factor be 4/7. Under PP
approach and under FE approach we have τj′ = (0, 2, 7) and τj′′ = ((0, 2, 4), (4, 7, 0)), re-
spectively.

14%. That was because, with respect to 7/7 or 1/7, the inter-arrival times of channel
frames under the two approaches were the same.

One advantage of FE approach over PP approach is that the “absolute” inter-arrival
time of any two successive events is exactly known. Consider the scenario shown in Fig.
9: Producer τi = (0, 1, 4) handles a periodic hardware event and send events to consumer
τj = (0, 2, 4) with ri,j = 1. Now let the workload-scaling factor for the delivery of events
be 4/7 = 57%. Under PP approach consumer τj became τj′ = (0, 2, 7) and under FE ap-
proach it became τj′′ = ((0, 2, 4), (4, 7, 0)). As shown in Fig. 9, τj′ assumed that the in-
ter-arrival time of events was pj = 7. However, it can be seen that the inter-arrival times
of the first four events were actually 0pi, 1pi, 3pi, and 5pi. Conversely, under FE ap-
proach, the inter-arrival times of events could be calculated for τj′′ based on Eq. (2) and
Corollary 1. To exactly know the inter-arrival times of events is very important to tim-
ing-sensitive algorithms such as Kalman filters. With the absolute time of the current
event, Kalman filters need to know when the prior event arrived and when the next event
will arrive for refinement and prediction, respectively.

With multiple channels, this part of experiments was focused on evaluating whether
or not processor time could be effectively allocated among channels for accurate tracking.

LI-PIN CHANG AND YA-SHU CHEN

1362

Now all four channels are enabled for experiments. A naive workload adjustment policy
(i.e., task τ6) was adopted for both FE approach and PP approach. The following illustra-
tion was based on FE approach: Let the delivery of channel frames from task τ3 to tasks
τ4,1, τ4,2, τ4,3, and τ4,4 be subject to (m, k, ε)-firm constraint chosen from {(1, 7, 0), (2, 7,
0), (3, 7, 0), (4, 7, 0), (5, 7, 0), (6, 7, 0), (7, 7, 0)}. Each time when task τ6 was invoked, it
picked the channel which was of the largest average RMS error. Ties were broken arbi-
trarily. Suppose task τ4,i corresponded to the chosen channel. Task τ6 tried to promote (mi,
ki, εi) (e.g., from (3, 7, 0) to (4, 7, 0)). Let THRMS be a predefined system parameter for
the threshold of the maximum difference between the average RMS errors of any two
channels. If the workload could not be admitted by the test in Theorem 2, some proce-
dures were taken: Let τ4,j correspond the channel which had the smallest average RMS
error. τ6 tried to demote (mj, kj, εj) (e.g., from (5, 7, 0) to (4, 7, 0)). The demotion was
repeated until the resulted workload was schedulable. If all possible adjustments to
workloads were not admitted, all changes were reverted. Note that, based on proportional
period adjustment; workload adjustment for PP approach was done similarly. But the
difference is that PP adjusts task periods.

The experimental results were presented in Fig. 10, where the X-axis denoted dif-
ferent settings of the threshold THRMS and the Y-axis denoted the average RMS error over
the four channels. As we can see, FE approach significantly outperformed PP approach
no matter what THRMS was. Because PP approach was less effective in tracking objects
than FE approach was (as shown in the previous section), for one single channel to re-
duce it’s average RMS error PP approach could require more CPU utilization than FE
approach did, and consequently processor utilization available to the monitoring of other
channels became small. We must point out that a very small setting of THRMS could result
in frequent workload adjustments (i.e., when THRMS = 1), which usually incorrectly
slowed down the monitoring of some channels which needed a lot of attentions.

6

7

8

9

10

11

12

13

1 2 3 4 5

FE approach
PP approach

errorsRMSaveragechannels'
four the among difference the of threshold the ,THRMS

ch
an

ne
ls

fo

ur

th

e

ov
er

er

ro
r

RM

S

av
er

ag
e

Th

e

Fig. 10. The overall average RMS error resulted by the FE approach and the PP approach under

different settings of the difference threshold of average RMS errors of channels (i.e.,
THRMS).

5.3 Responsiveness

 This section provides evaluations of the two approaches’ responsiveness. Respon-
siveness was evaluated in terms of the time interval between the ground-truth time of a

EVEN-DRIVEN DYNAMIC WORKLOAD SCALING

1363

scenario’s occurrence and the time when the occurrence was detected. The time interval
is referred to as the response time hereafter. The ground-truth time of the occurrences of
a scenario was first measured from the video stream by off-line analysis, and during run-
time the scenario was defined as a rule to be evaluated by task τ5. From the off-line
analysis, the ground-truth number of scenario occurrences was 32.

The experimental results were shown in Table 1. Compared to the results of PP ap-
proach, FE approach showed significantly reduced average response time. The phe-
nomenon was due to misalignments of task jobs of PP approach: Consider the taskchain
with ri,j = rj,k = 1 shown Figs. 11 (a) and (b). Because under PP approach any task job
needed only to complete before its task period, a lengthy delay could be resulted as
events were propagated among task jobs if they were not aligned. Such a phenomenon
would be exaggerated when the periods of consumers and producers were relatively
prime to each other because most task jobs were misaligned. The response time of the
scenario shown in Fig. 11 (a) could potentially go up to pi + pj + pk. On the other hand,
with respect to FE approach shown in Fig. 11 (b), a job of task τk must complete before
the upcoming job of task τi arrived, and consequently the worst-case response time was
bounded by pi. In addition, as showed in Table 1, four scenario occurrences were not
detected by PP approach due to ineffective tracking. The number of undetected occur-
rences was only two under FE approach.

iτ

kτ

jτ

iτ

kτ

jτ

(a) PP approach. (b) FE approach.

Fig. 11. Scenarios of FE approach and PP approach in responding hardware events, where ri,j = rj,k = 1.

Table 1. The average response time of PP approach and FE approach.

(The ground-truth number of scenario occurrences was 32 in the pre-recorded video)

 The average response time (ms) The number of scenario occurrences detected
The FE approach 5.41 30
The PP approach 3.22 28

6. CONCLUSION

This paper considers a workload scaling mechanism for uniprocessor real-time em-
bedded systems. The design objectives are to hide complex precedence constraints
among tasks from outside, and to expose a set of simple but effective primitives for
workload scaling. A new approach that combines firm-real-time scheduling and an event-
driven paradigm is proposed: The feeding of external hardware events are controlled by a

LI-PIN CHANG AND YA-SHU CHEN

1364

deterministic algorithm, and dependencies among task jobs are formulated as events.
Because task jobs are triggered by events, the whole system automatically reacts to when
and how external hardware events are fed in. We also show that, with our approach, the
system still have deterministic timing behaviors, thus timing-sensitive algorithms such as
Kalman filters are benefited a lot. An on-line admission control policy is proposed so that
system timing correctness can be verified before any changes to workloads can be made.
A series of experiments were conducted on a real-time surveillance system based on the
proposed approach. Experimental results showed that, under heavily stressing workloads,
the proposed approach still provided better accuracy and higher responsiveness for visual
object tracking than a system using proportional period adjustment for purely periodic
tasks.

REFERENCES

1. K. Jeffay, “The real-time producer/consumer paradigm: a paradigm for the construc-
tion of efficient, predictable real-time systems,” in Proceedings of ACM Symposium
on Applied Computing, 1993, pp. 796-804.

2. A. K. Mok and W. Wang, “Window-constrained real-time periodic task scheduling,”
in Proceedings of the 22nd IEEE Real-Time Systems Symposium, 2001, pp. 15-24.

3. R. West and C. Poellabauer, “Analysis of a window-constrained scheduler for real-
time and best-effort packet streams,” in Proceedings of the 21st IEEE Real-Time
Systems Symposium, 2000, pp. 239-248.

4. G. Koren and D. ShaSha, “Skip-over: algorithms and complexity for overloaded sys-
tems that allow skips,” in Proceedings of the 16th IEEE Real-Time Systems Sympo-
sium, 1995, pp. 110-117.

5. P. Ramanthan, “Overload management in real-time control applications using (m,
k)-firm guarantee,” IEEE Transactions on Parallel and Distributed Systems, Vol. 10,
1999, pp. 549-559.

6. M. Hamdaoui and P. Ramanathan, “A dynamic priority assignment technique for
streams with (m, k)-firm deadlines,” IEEE Transactions on Computers, Vol. 44,
1995, pp. 1443-1451.

7. C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a
hard real-time environment,” Journal of the ACM, Vol. 20, 1973, pp. 46-61.

8. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister, “System
architecture directions for networked sensors,” in Proceedings of the 9th ACM In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, 2000, pp. 93-104.

9. W. K. Shih and J. W. S. Liu, “On-line scheduling of imprecise computations to
minimize error,” in Proceedings of the 13th IEEE Real-Time Systems Symposium,
1992, pp. 280-289.

10. “The open computer vision library,” http://sourceforge.net /projects /opencvlibrary/.
11. B. Lucas and T. Kanade, “An iterative image registration technique with an applica-

tion to stereo vision,” in Proceedings of the 7th International Joint Conference on
Artificial Intelligence, 1981, pp. 121-130.

12. G. Welch and G. Bishop, “An introduction to the Kalman filter,” Technical Report
No. TR 95-041, Dept. of Computer Science, University of North Carolina, 1995.

EVEN-DRIVEN DYNAMIC WORKLOAD SCALING

1365

13. K. Tindell and J. Clark, “Holistic schedulability analysis for distributed hard real-
time systems,” Microprocessing and Microprogramming, Vol. 40, 1994, pp. 117-134.

14. P. Richard, F. Cottet, and M. Richard, “On-line scheduling of real-time distributed
computers with complex communication constraints,” in Proceedings of the 7th
IEEE International Conference on Engineering of Complex Computer Systems, 2001,
pp. 26-34.

15. K. Ramamritham, “Allocation and scheduling of precedence-related periodic tasks,”
IEEE Transactions on Parallel and Distributed Systems, Vol. 6, 1995, pp. 412-420.

16. T. Y. Yen and W. Wolf, “Performance estimation for real-time distributed embedded
systems,” IEEE Transactions on Parallel and Distributed Systems, Vol. 9, 1998, pp.
1125-1136.

17. Y. Shin and K. Choi, “Rate assignment for embedded reactive real-time systems,” in
Proceedings of the 24th EUROMICRO Conference, Vol. 1, 1998, pp. 237-242.

18. T. W. Kuo and A. K. Mok, “Incremental reconfiguration and load adjustment in
adaptive realtime systems,” IEEE Transactions on Computers, Vol. 46, 1997, pp.
1313-1324.

19. T. Gustafsson and J. Hansson, “Data freshness and overload handling in embedded
systems,” Technical Report, http://www.ida.liu.se/~thogu/gustafsson06admission.
pdf, 2006.

20. K. D. Kang, S. H. Son, and J. A. Stankovic, “Managing deadline miss ratio and sen-
sor data freshness in real-time databases,” IEEE Transactions on Knowledge and
Data Engineering, Vol. 16, 2004, pp. 1200-1216.

21. L. P. Chang, “Event-driven scheduling for dynamic workload scaling in uniprocessor
embedded systems,” in Proceedings of the 21st ACM Symposium on Applied Com-
puting, 2006, pp. 1462-1466.

Li-Pin Chang (張立平) received his Ph.D. and M.S. degrees

from Department of Computer Science and Information Engi-
neering, National Taiwan University, Taipei, Taiwan, in 2003 and
1997, respectively. After two years of military service in Judicial
Yuan, Taiwan, he serves as Assistant Professor at Department of
Computer Science, National Chiao Tung University, Hsinchu,
Taiwan, since 2005. His current research interests are of two main
themes: real-time computing, and embedded storage systems.

 Ya-Shu Chen (陳雅淑) received her B.S. degree from Na-

tional Chiao Tung University, Taiwan, R.O.C., in 2001. She re-
ceived her M.S. and Ph.D degree from National Taiwan Univer-
sity, Taiwan, R.O.C., in 2003 and 2007, respectively. She serves
as Assistant Professor at Department of Electrical Engineering,
National Taiwan University of Science and Technology, since
2007. Her current research interests include real-time systems,
embedded systems, and system-on-a-chip.

